

Minimal Perl
For UNIX and Linux People

BY TIM MAHER

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email: orders@manning.com

©2007 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetters: Denis Dalinnik, Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-50-8
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06

To Yeshe Dolma Sherpa,
whose fortitude, endurance,

and many sacrifices made this book possible.

To my parents,
Gloria Grady Washington and William N. Maher,

who indulged my early interests in literature.

To my limbic system,
with gratitude for all the good times we’ve had together.

brief contents

Part 1 Minimal Perl: for UNIX and Linux Users 1

1 Introducing Minimal Perl 3

2 Perl essentials 16

3 Perl as a (better) grep command 53

4 Perl as a (better) sed command 89

5 Perl as a (better) awk command 121

6 Perl as a (better) find command 178

Part 2 Minimal Perl: for UNIX and
Linux Shell Programmers 203

7 Built-in functions 205

8 Scripting techniques 247

9 List variables 295

10 Looping facilities 330

11 Subroutines and variable scoping 362

12 Modules and the CPAN 388
vii

contents
foreword xvii
preface xix
acknowledgments xxii
about this book xxiii
about the cover illustration xxxiv
list of tables xxxv

Part 1 Minimal Perl: for UNIX and Linux Users 1

1 Introducing Minimal Perl 3

1.1 A visit to Perlistan 3
Sometimes you need a professional guide 5

1.2 Perl can be simple 7

1.3 About Minimal Perl 7
What Minimal Perl isn’t 8 ✦ What Minimal Perl is 8

1.4 Laziness is a virtue 9

1.5 A minimal dose of syntax 10
Terminating statements with semicolons 10

1.6 Writing one-line programs 11
Balancing simplicity and readability 12
Implementing simple filters 12

1.7 Summary 14

2 Perl essentials 16

2.1 Perl’s invocation options 17
One-line programming: -e 18 ✦ Enabling warnings: -w 18
Processing input: -n 19 ✦ Processing input with automatic
printing: -p 19 ✦ Processing line-endings: -l 20 ✦ Printing
without newlines: printf 21 ✦ Changing the input record
separator: -0digits 22
ix

2.2 Using variables 23
Using special variables 23 ✦ Using the data variable: $_ 24
Using the record-number variable: $. 24 ✦ Employing
user-defined variables 25

2.3 Loading modules -M 27

2.4 Writing simple scripts 29
Quoting techniques 30 ✦ True and False values 32
Handling switches: -s 32 ✦ Using warn and die 35
Using logical and, logical or 37 ✦ Programming with BEGIN
and END blocks 39 ✦ Loading modules with use 41

2.5 Additional special variables 42
Employing I/O variables 42 ✦ Exploiting formatting
variables 43

2.6 Standard option clusters 44
Using aliases for common types of Perl commands 46

2.7 Constructing programs 47
Constructing an output-only one-liner 49 ✦ Constructing
an input/output script 50

2.8 Summary 51
Directions for further study 51

3 Perl as a (better) grep command 53

3.1 A brief history of grep 53

3.2 Shortcomings of grep 54
Uncertain support for metacharacters 54 ✦ Lack of string
escapes for control characters 56 ✦ Comparing capabilities
of greppers and Perl 57

3.3 Working with the matching operator 60
The one-line Perl grepper 61

3.4 Understanding Perl’s regex notation 63

3.5 Perl as a better fgrep 64

3.6 Displaying the match only, using $& 64

3.7 Displaying unmatched records (like grep -v) 65
Validating data 66 ✦ Minimizing typing with shortcut
metacharacters 67

3.8 Displaying filenames only (like grep -l) 67

3.9 Using matching modifiers 68
Ignoring case (like grep -i) 70
x

3.10 Perl as a better egrep 70
Working with cascading filters 72

3.11 Matching in context 75
Paragraph mode 75 ✦ File mode 77

3.12 Spanning lines with regexes 77
Matching across lines 79 ✦ Using lwp-request 80
Filtering lwp-request output 80

3.13 Additional examples 81
Log-file analysis 81 ✦ A scripted grepper 84
Fuzzy matching 85 ✦ Web scraping 86

3.14 Summary 86
Directions for further study 88

4 Perl as a (better) sed command 89

4.1 A brief history of sed 89

4.2 Shortcomings of sed 91

4.3 Performing substitutions 93
Performing line-specific substitutions: sed 96 ✦ Performing
line-specific substitutions: Perl 96 ✦ Performing record-specific
substitutions: Perl 97 ✦ Using backreferences and numbered
variables in substitutions 99

4.4 Printing lines by number 100
Printing lines by number: sed 100 ✦ Printing lines by number:
Perl 100 ✦ Printing records by number: Perl 101

4.5 Modifying templates 101

4.6 Converting special characters 103

4.7 Editing files 105
Editing with commands 105 ✦ Editing with scripts 107
Safeguarding in-place editing 111

4.8 Converting to lowercase or uppercase 113
Quieting spam 113

4.9 Substitutions with computed replacements 114
Converting miles to kilometers 114 ✦ Substitutions using
function results 116

4.10 The sed to Perl translator 118

4.11 Summary 118
Directions for further study 120
xi

5 Perl as a (better) awk command 121

5.1 A brief history of AWK 122

5.2 Comparing basic features of awk and Perl 123
Pattern-matching capabilities 124 ✦ Special variables 126
Perl’s variable interpolation 128 ✦ Other advantages of
Perl over AWK 129 ✦ Summary of differences in basic
features 129

5.3 Processing fields 130
Accessing fields 130 ✦ Printing fields 132 ✦ Differences
in syntax for print 134 ✦ Using custom field separators
in Perl 136

5.4 Programming with Patterns and Actions 138
Combining pattern matching with field processing 142
Extracting data from tables 143 ✦ Accessing cell data using
array indexing 145

5.5 Matching ranges of records 151
Operators for single- and multi-record ranges 152 ✦ Matching
a range of dates 153 ✦ Matching multiple ranges 155

5.6 Using relational and arithmetic operators 157
Relational operators 157 ✦ Arithmetic operators 158

5.7 Using built-in functions 159
One-liners that use functions 161 ✦ The legend of nexpr 162
How the nexpr* programs work 164

5.8 Additional examples 165
Computing compound interest: compound_interest 165
Conditionally pluralizing nouns: compound_interest2 166
Analyzing log files: scan4oops 168

5.9 Using the AWK-to-Perl translator: a2p 175
Tips on using a2p 175

5.10 Summary 175
Directions for further study 177

6 Perl as a (better) find command 178

6.1 Introducing hybrid find/perl programs 180

6.2 File testing capabilities of find vs. Perl 180
Augmenting find with Perl 183

6.3 Finding files 184
Finding files by name matching 184 ✦ Finding files by
pathname matching 187
xii

6.4 Processing filename arguments 188
Defending against grep’s messes 189 ✦ Recursive grepping 191
Perl as a generalized argument pre-processor 192

6.5 Using find | xargs vs. Perl alternatives 192
Using Perl for reliable timestamp sorting 193
Dealing with multi-word filenames 196

6.6 find as an argument pre-processor for Perl 197

6.7 A Unix-like, OS-portable find command 198
Making the most of find2perl 198 ✦ Helping non-Unix
friends with find2perl 199

6.8 Summary 200
Directions for further study 201

Part 2 Minimal Perl: for UNIX and
Linux Shell Programmers 203

7 Built-in functions 205

7.1 Understanding and managing evaluation context 206
Determinants and effects of evaluation context 207
Making use of evaluation context 208

7.2 Programming with functions that generate or
process scalars 210
Using split 211 ✦ Using localtime 214 ✦ Using
stat 215 ✦ Using chomp 219 ✦ Using rand 221

7.3 Programming with functions that process lists 223
Comparing Unix pipelines and Perl functions 223
Using sort 224 ✦ Using grep 227 ✦ Using join 229
Using map 232

7.4 Globbing for filenames 234
Tips on globbing 237

7.5 Managing files with functions 239
Handling multi-valued return codes 240

7.6 Parenthesizing function arguments 242
Controlling argument-gobbling functions 242

7.7 Summary 243
Directions for further study 245
xiii

8 Scripting techniques 247

8.1 Exploiting script-oriented functions 248
Defining defined 249 ✦ Exiting with exit 253
Shifting with shift 254

8.2 Pre-processing arguments 256
Accommodating non-filename arguments with implicit loops 256
Filtering arguments 257 ✦ Generating arguments 259

8.3 Executing code conditionally with if/else 259
Employing if/else vs. and/or 260 ✦ Mixing branching
techniques: The cd_report script 261 ✦ Tips on using
if/else 264

8.4 Wrangling strings with concatenation and
repetition operators 265
Enhancing the most_recent_file script 267 ✦ Using
concatenation and repetition operators together 267 ✦ Tips on
using the concatenation operator 268

8.5 Interpolating command output into source code 269
Using the tput command 271 ✦ Grepping recursively: The
rgrep script 273 ✦ Tips on using command interpolation 274

8.6 Executing OS commands using system 275
Generating reports 277 ✦ Tips on using system 280

8.7 Evaluating code using eval 283
Using a Perl shell: The psh script 284 ✦ Appreciating a
multi-faceted Perl grepper: The preg script 286

8.8 Summary 292
Directions for further study 294

9 List variables 295

9.1 Using array variables 296
Initializing arrays with piecemeal assignments and push 299
Understanding advanced array indexing 300 ✦ Extracting
fields in a friendlier fashion 301 ✦ Telling fortunes:
The fcookie script 304 ✦ Tips on using arrays 308

9.2 Using hash variables 308
Initializing hashes 311 ✦ Understanding advanced hash
indexing 312 ✦ Understanding the built-in %ENV
hash 313 ✦ Printing hashes 314 ✦ Using %ENV in
place of switches 315 ✦ Obtaining uniqueness with
hashes 316 ✦ Employing a hash as a simple database: The
user_lookup script 319 ✦ Counting word frequencies
in web pages: The count_words script 323
xiv

9.3 Comparing list generators in the Shell and Perl 325
Filename generation/globbing 326 ✦ Command substitution/
interpolation 327 ✦ Variable substitution/interpolation 327

9.4 Summary 328
Directions for further study 329

10 Looping facilities 330

10.1 Looping facilities in the Shell and Perl 331

10.2 Looping with while /until 333
Totaling numeric arguments 333 ✦ Reducing the size of an
image 335 ✦ Printing key/value pairs from a hash using
each 336 ✦ Understanding the implicit loop 337

10.3 Looping with do while /until 338
Prompting for input 339

10.4 Looping with foreach 340
Unlinking files: the rm_files script 341 ✦ Reading a line at a
time 341 ✦ Printing a hash 342 ✦ Demystifying acronyms:
The expand_acronyms script 343 ✦ Reducing image sizes: The
compress_image2 script 344

10.5 Looping with for 345
Exploiting for’s support for indexing: the raffle script 347

10.6 Using loop-control directives 349
Nesting loops within loops 350 ✦ Enabling loop-control
directives in bottom-tested loops 351 ✦ Prompting for
input 352 ✦ Enhancing loops with continue blocks: the
confirmation script 353

10.7 The CPAN’s select loop for Perl 355
Avoiding the re-invention of the “choose-from-a-menu” wheel 356
Monitoring user activity: the show_user script 357
Browsing man pages: the perlman script 358

10.8 Summary 360
Directions for further study 361

11 Subroutines and variable scoping 362

11.1 Compartmentalizing code with subroutines 363
Defining and using subroutines 365 ✦ Understanding use
strict 368

11.2 Common problems with variables 370
Clobbering variables: The phone_home script 371 ✦ Masking
variables: The 4letter_word script 372 ✦ Tips on avoiding
problems with variables 373
xv

11.3 Controlling variable scoping 373
Declaring variables with my 374 ✦ Declaring variables with
our 374 ✦ Declaring variables with local 375 ✦ Introducing
the Variable Scoping Guidelines 375

11.4 Variable Scoping Guidelines for complex programs 376
Enable use strict 377 ✦ Declare user-defined variables and
define their scopes 377 ✦ Pass data to subroutines using
arguments 383 ✦ Localize temporary changes to built-in variables
with local 383 ✦ Employ user-defined loop variables 383
Applying the Guidelines: the phone_home2 script 384

11.5 Reusing a subroutine 386

11.6 Summary 387
Directions for further study 387

12 Modules and the CPAN 388

12.1 Creating modules 389
Using the Simple Module Template 390 ✦ Creating a
module: Center.pm 393 ✦ Testing a new module 395

12.2 Managing modules 398
Identifying the modules that you want 398 ✦ Determining
whether you have a certain module 400 ✦ Installing
modules from the CPAN 401

12.3 Using modules 403
Business::UPS—the ups_shipping_price script 403
LWP::Simple—the check_links script 405
Shell::POSIX::Select—the menu_ls script 408
File::Find—the check_symlinks script 411
CGI—the survey.cgi script 414 ✦ Tips on using
Object-Oriented modules 422

12.4 Summary 424
Directions for further study 425

epilogue 426
appendix A: Perl special variables cheatsheet 427
appendix B: Guidelines for parenthesizing code 430
glossary 432
index 443
xvi

foreword
Perl is a lamb in wolf ’s clothing. It has a ferocious reputation for incomprehensibility
(“executable line-noise”) and excessive power (“the Swiss-Army chainsaw”), but under-
neath lurks a kinder, gentler programming language than whatever you’re using now.

Of course, Perl can be complex. After all, very few other popular languages have
so many advanced built-in capabilities, which is one reason why Perl rates as one of
the most sophisticated programming languages in widespread use today.

Fortunately, unlike many other programming languages, Perl also comes standard
with one other vital feature: a gentle learning curve. You don’t have to understand a
multitude of high-end programming constructs before you can do useful work with
it. If you’re familiar with the basic tools of Unix/Linux—grep, sed, awk, find, and
the shell itself—then many of the features of Perl will seem hauntingly familiar.

Perl’s creator, Larry Wall, once described his language as “a cleaned up and sum-
marized version of that wonderful semi-natural language known as ‘Unix.’” And that’s
precisely the direction from which this book leads you into the depths of the language:
by showing how Perl has evolved “Unix” into a dialect that is much more powerful
but also much easier to use. If you’re already fluent in Perl’s mother tongue, and you
want to discover how expressive and poetic Perl itself can be, you could have chosen
no better primer than this book and no better guide than Dr. Tim Maher, a gifted
teacher and a decorated veteran of both the Unix world and the Perl community.

So, welcome to Perl! You don’t have to come from *nix to work here…but it cer-
tainly helps.

DAMIAN CONWAY
xvii

preface
In this preface, I’ll tell you about the history of Minimal Perl and the origins of this
book.

THE HISTORY OF MINIMAL PERL

The seeds of this book were sown many years ago, when I was building up my knowl-
edge of Perl, the greatest programming language I’d ever encountered (before or since).
While reading a variety of books on the subject, I was surprised that the authors felt
obliged to delve into so many of the different but equivalent choices for expressing
every basic operation in the language, as well as each of the syntactic variations for
expressing any one of those choices.

As an example, I’ve shown here some of the available choices for expressing in Perl
the simple idea that B should be executed only if A is True (with those letters repre-
senting arbitrary program elements). Both forward and backward variations for
expressing the dependency are included:1

Although some are inclined to present symptoms like these of Perl’s complexity and
redundancy as evidence of its “richness,” “versatility,” or “expressiveness,” many Perl
novices would surely have a different reaction—that Perl is needlessly complex and too
hard to learn.

Minimal Perl was created to address these obstacles presented by Perl’s redundancy
and complexity. By emphasizing Perl’s grep, sed, and awk-like features, and relying

Forward Backward

A and B; B if A;

A && B; B if A;

A and do { B }; do { B } if A;

A && do { B }; do { B } if A;

if (A) { B }; B if A;

unless (!A) { B }; B unless !A;

1 Before you despair, I should point out that Minimal Perl uses only 2 of these variations—which is all
anybody needs!
xix

on concepts such as inputs, filters, and arguments, it allows Unix1 users to directly apply
their existing knowledge to the task of learning Perl. So rather than being frustrated
with Perl’s complexities and disappointed with its steep learning curve, they quickly
and painlessly acquire the ability to write useful programs that can solve a wide variety
of problems.

My first public presentation on this subject was in a tutorial called “Minimal Perl
for the Impatient” at the YAPC::Europe 2001 conference2 in Amsterdam, the Nether-
lands. The eagerness with which that audience devoured the material confirmed my
hunch that many were hungering for an easier way to learn Perl. Since then, I’ve
taught Minimal Perl at other professional conferences, at meetings of Perl Users
Groups in the US and Canada, and to many Fortune 500 companies.

THE GENESIS OF THE BOOK

By 2001, the Minimal Perl approach had convincingly proven its ability to help Unix
people acquire Perl skills with relative ease. But many who could appreciate its benefits
never get to see conference presentations or attend corporate training classes, so I
became interested in making this information available to a wider audience.

However, I had some serious reservations about embarking on a book, having
heard many sobering stories from colleagues about the travails of authorship. Fortu-
nately, I received some encouragement that was instrumental in helping me decide to
go forward with this project, from a good friend—Dr. Damian Conway.

A little help from my friend

Damian and I first met after my presentation on the first “Perl Beautifier” at The Perl
Conference in 1998,3 when he gently informed me that I could have categorized Perl
source code into its constituent elements by using a program he had written (in Perl’s
module format), rather than writing my own from scratch to attempt that difficult task.

After examining more of his ingenious modules and reading his excellent book
Object Oriented Perl ,4 I soon realized that Damian had a deeper understanding of Perl
than almost anyone else. To allow others to benefit from his insights, I arranged for
him to periodically teach Perl classes through my Seattle-based company (Consultix)
and also to present talks to our Seattle Perl Users Group (SPUG, aka Seattle.pm). This
worked out wonderfully for Seattleites, who would learn practical Perl incantations

1 In this book, Unix is shorthand for “UNIX, Linux, and related operating systems,” as detailed in the
“Essential terminology” section of “About this book.”

2 See this book’s glossary for the definition of YAPC.
3 For more details, see http://TeachMePerl.com/perl_beautifier.html.
4 His book is described at http://www.manning.com/conway. It’s for a more advanced audience than

this one.
xx

from him during the formal daytime sessions and then enjoy his overtly hilarious (yet
covertly educational) conference-style presentations by night.

Damian is probably still blushing from my effusive introductions of him as

• The Perl Wonder from Down Under (because he’s an Aussie), and

• The Supreme Modulator of Perl.1

But I feel vindicated, because by now everybody knows I was correct in my estimation
of his uniqueness and importance to the Perl community.

An auspicious weather non-event

During one week while Damian was in Seattle as a visiting instructor for Consultix, we
took an extended bike ride along the shore of Lake Washington together—and we
didn’t even get drenched by rain! As a long-time Seattleite, I knew this to be an
extremely auspicious sign, so I seized the opportunity to tell him about my interest in
writing a Minimal Perl book. Being a fellow fan of the AWK language (which is Perlish,
but simpler)—and having a keen interest in making Perl more accessible to novices—
he expressed enthusiasm for the project and offered some interesting ideas about how
to approach it.

The combination of my ideas with some of Damian’s—along with sufficient fer-
mentation and seasoning—ultimately led to the format, content, and approach of the
book you now hold. The result is a volume that teaches Perl in ways no book has done
before! I hope you enjoy reading it as much as I did writing it.

1 This is a reference to his unique ability to crank out amazingly ambitious and advanced Perl modules
that mortal hackers dread even to contemplate, let alone code at blazingly high speeds.
xxi

acknowledgments
When I founded the Seattle Perl Users Group (SPUG) early in 1998,1 I half-jokingly
told the members that my motivation was to collect as many Perl experts together as
possible, so I could learn everything they knew. At the time, I had no idea how much
I would ultimately learn from them—or how convenient it would be to have ready
access to 400+ Perl fanatics when it came time to round up technical reviewers for this
book! On both counts, I’m glad to be indebted to so many of the members of SPUG.

I’m happy to acknowledge the assistance of the following individuals for providing
insightful comments on early drafts of this book: Kurt deMaagd, Keith Tarbell, Ben
Reser, Brian Wisti, Brian Maher (no relation to me), Brian Downs, Randy Kobes, Erik
J. Pearson, Michael Wallendahl, Ken Meyer, Gareth Beale, Ashok Misra, Bellam
Prakasa, Brian Maddux, Creede Lambard, Chris Whip, Steven Herber, C. J. Collier,
Jarod Wilson, Phil Moeck, David Innes, Joel Grow, John Creech, Rob Blomquist,
Neil Fryer, Reuven M. Lerner, Paul Campbell, and Stuart Kendrick.

I’m even more deeply indebted to the following intrepid souls, whose generous
contributions of time, effort, and sage guidance went far beyond even my most opti-
mistic expectations: Damian Conway, Jon Allen, Christie Robertson, Peter Scott,
David Dyck, Joe Knape, Dan Sanderson, and Michael R. Wolf.

I’m also grateful to the helpful folks at Manning for their assistance during all
phases of this book’s development—especially the publisher, Marjan Bace, for his wis-
dom, patience, and many indulgences.

Like all JAPHs, I’m grateful to Larry for giving us the gift of Perl, but also for gen-
erously answering my questions on Perl’s finer details—even while balancing his laptop
on one arm to consult Perl’s source code while dashing down the hotel escalator to his next
conference talk. What a guy!

Finally, all my remaining gratitude goes to my wife, Yeshe Dolma Sherpa, who
endured seemingly endless periods of husbandly inattention while I was writing
this book.

1 Although this group is now also known by its Perl Mongers (see http://www.pm.org) moniker of Seat-
tle. pm, that organization didn’t yet exist at the time of our formation, so our initial name is still our
official one. For more on the history of SPUG, which has been recognized as one of the oldest, largest,
and best Perl User Groups, see http://TeachMePerl.com/interviews/tmp_com_interview.html.
xxii

about this book
It would have been easy to write a truly “minimal” book on Perl by revealing so little
of the language that nobody would have been able to do much with it. This isn’t that
kind of book.

It would also have been easy to write yet another “maximal” book on Perl, which
would spend so much ink enthusing over its expressiveness, reveling in its redundan-
cies, frolicking through its freakier features, and rampaging through its ribald regions,
that there’d be insufficient room left to adequately explain how realistic programs
actually work or to give you practical tips on avoiding common problems. This isn’t
that kind of book either.

This is a new kind of Perl book—one that empowers you to write lots of useful pro-
grams, without learning any more about Perl than is necessary.

Why, you may be excused for asking, is this book so big for one having “Minimal”
in its title? There are three reasons. First, it contains dozens of practical programs
showing what you can do with this subset of the language, accompanied by detailed
explanations of their workings. Second, it shows helpful comparisons between funda-
mental features of the Shell programming language and their Perl counterparts (in
part 2). Third, the essential technical details of all topics are presented in tabular form
to maximize the utility of this volume as a reference book.

As a testament to what you can do with Minimal Perl, this book features program-
ming examples drawn from a wide variety of application areas, including system
administration, networking, web development, web scraping, HTML processing, CGI
programming, databases, log-file analysis, financial calculations, file management, pat-
tern matching, field processing, data validation, report generation, file conversion, and
text parsing—among others.

We’ll discuss the target audience for this book next.

AUDIENCE AND ORGANIZATION

This book has two parts, aimed at those with different types of prior experience in
a Unix environment. The first part is for those with at least a Unix user’s
background, and the second part is for those who additionally have a Shell pro-
grammer’s background.1

1 As explained under “Essential terminology,” Shell refers to a group of related Unix shells.
xxiii

Part 1: Perl for UNIX and Linux users

Part 1 gives those with at least user-level Unix skills—which includes even the most
advanced programmers—a gentle introduction to the core elements of Minimal Perl.
After reading it, you’ll be able to write custom programs to do the most common types
of data-processing tasks.

You’re assumed to be familiar with the most basic commands, file-management
techniques, and command formats used on Unix systems. For example, you should
know how to view the contents of text files, how to change the current directory with-
out getting lost, and how to use the grep command to extract matching lines from
a file.

Readers with more extensive backgrounds in Shell programming can especially
benefit from part 2.

Part 2: Perl for UNIX and Linux Shell programmers

Part 2 helps Shell programmers capitalize on their specialized knowledge to quickly
acquire Perl skills that go beyond those learned in part 1. A basic understanding of
Shell variables, I/O techniques, flow-control facilities, and other fundamental features
of the Bourne, Korn, Bash, or POSIX shells is assumed.

If you lack this more advanced knowledge, you may still benefit from this material
after assimilating the lessons of part 1. But you should focus on the Perl syntax descrip-
tions, rather than the Shell-to-Perl translation aids (which aren’t designed for your
use). The same advice holds for programmers who specialize in the C shell, which is
fundamentally different from the Shells emphasized in this book.

We’ll discuss the book’s other resources next.

Reference materials

Some handy reference materials are provided in the back of the book, including the
“Perl special variables cheatsheet” (appendix A) and “Guidelines for parenthesizing
code” (appendix B). A glossary is also provided, to explain special terms such as direc-
tive, JAPHly, and clobberation.

Some comments on the approach used in writing this book come next.

AUTHOR’S APPROACH

Before diving into this book, it may help you to understand my approach in writing it
and the pedagogical tricks and techniques I’ve used to maximize your benefits from
reading it.

First, we’ll talk about the features that increase this book’s value as a reference
work.

Reference value

After your initial reading, you’ll want to use this volume as a reference work. To help
you bypass the text and rapidly locate the essential technical details, I’ve packaged
xxiv

them in carefully titled, self-contained tables. I’ve also included helpful commentary in
program listings, so you’ll be able to quickly refresh your memory of how the programs
work without re-reading the accompanying explanations.

As an avid reader of technical documentation, I value footnotes highly. For this
reason, I haven’t hesitated to add clarifications in footnotes that may someday be
important to you but that shouldn’t be allowed to derail your train of thought dur-
ing your initial reading. So please feel free to postpone the reading of those footnotes
until a later time, when you may feel the need to dig deeper into the details of a par-
ticular topic.

Many trainers and authors shy away from telling those learning a new language that
they’ll encounter certain predictable problems. I follow a different approach, which I’ll
explain next.

Forewarned is forearmed

As you read through this book, I’ll periodically warn you about the pitfalls that you’re
likely to encounter in your early adventures with Perl. I do this because I feel you’re bet-
ter served by being forewarned about the hurdles you’ll have to surmount, and by being
shown how to handle them, than by being left to grapple with them on your own.

So, pay close attention to the “Tips on using ...” headings, which tell you what
might go wrong when you’re using certain language features and how you should deal
with those situations.

In addition to warning you about potential problems, I’ll also try to entertain you.

Entertainment value

I’ve read many technical books in my career. Many were unbearably dull. Others tried
too hard to be entertaining, usually by employing the tired formula of silly chapter
headings and dumb jokes, and ended up annoying me with their patronizing attitude.

In an effort to avoid these pitfalls and produce a better result, I’ve drawn on tech-
niques I developed during my multi-decade career as a classroom lecturer and adapted
them for use in this book.

For example, I sometimes dramatize Perl solutions for common programming
problems by casting famous or fictional characters as workers on similar projects. This
approach works well on several levels and has the added benefit of automatically
attaching a memorable appellation to each such case study—such as “Rambo’s Shop-
ping Cart” or “Britney’s Jewelry Database.”

As a sampling of what you’re in for, here are some of the more memorable char-
acters you’ll meet in this book:

• Diggity Dog, a rapper with a reputation to uphold, who validates his lyrics with
Perl

• Felix and Oscar, Perl programmers who respectively specialize in the fastidious
and quick-and-dirty styles of programming, and who are competing for the
same promotion
xxv

• Patrick from soggy Seattle, a climatology-data wrangler who consoles himself by
proving that Miami and New York are rainier

• The wily Bell Labs veteran, who wins a $200 bar-bet by writing a one-line Shell
script that does complex mathematical calculations

• Ivan, a stamp collector, who needs to compress photos of stamps ranging from
scowling dictators to Frank Zappato's tweezer collection to fit within the storage
allotted by his ISP

• Yoko, a bad speller, who compensates by writing a fuzzy pattern-matching utility

Any writer of fiction has to choose fitting names for characters and places, and tech-
nical writers have to name files and programs as well. To make my life easier and
possibly add a hint of intrigue to yours, I’ve used a few themes in my naming prac-
tices, based on my lifelong interests. These include exotic destinations, musical
genres, science fiction, television shows, tennis champions, and the fine arts. You’ll
see what I mean.

 I’ve tried to make this book both informative and entertaining, and I hope it works
on both levels for you. But remember, when you’re in the mood for getting just the
facts, and you don’t want to wade through narrative passages looking for them, you
should concentrate on the relevant tables and program listings. And by all means, use
the index too!

Next, to help you get started, we’ll define a few essential terms that are used in the
book.

ESSENTIAL TERMINOLOGY

Definitions follow for the most important terms that this book endows with special
meanings. You need to understand them before you read the following chapters, so
please take a moment to examine them now. If you have any doubts about the mean-
ings of other words later on, please consult the glossary:

• Camel book—This is the shorthand name used in Perl circles to refer to the
book more properly called Programming Perl, which serves as the printed refer-
ence manual for the Perl language.

• Larry—Larry Wall is the amazing guy who invented the original Perl and who
continues to be its major architect and contributor. As an expression of admira-
tion for his creative brilliance and gratitude for his generous gift of Perl to the
world, he has been awarded a special honor by members of the Perl community:
We refer to him simply as “Larry,” as you’d refer to Elvis and other larger-than-
life figures.

• Newline—The word newline has a special meaning in Perl, as it does in Unix
documentation. But instead of representing a particular character (linefeed), as
it does in Unix, it stands for the character that’s used to split input into separate
xxvi

records by the operating system (OS) a program is running on.1 Making new-
line a flexible concept allows a Perl program to be run without change on Unix,
VMS, Windows, and other OSs, because the Perl interpreter on the target sys-
tem will automatically choose the appropriate record separator, whether it be
return, return/linefeed, linefeed/return, or something different. Although we can
generally avoid explicit references to newlines in Minimal Perl, there are situa-
tions where we can’t, so you need to know that it’s represented in Perl programs
as \n within double quotes.

• Perlistan—This is an exotic imaginary land, somewhere in Central Asia, popu-
lated by refugees from such places as the tyrannical “land of C.” Perl is the offi-
cial language, but many dialects, derived from the mother tongues of the
immigrant populations, are spoken. Perlistanis speaking particular dialects iden-
tify themselves by marking their foreheads with different geometric shapes, such
as circles and squares, so they can recognize each other.

• Shell—This term, which is always capitalized, is used to collectively refer to the
Bourne shell and its most similar descendants—the Korn shell, the Bash shell,
and POSIX-compliant shells. Note that the C shell, which is incompatible with
the shells of this group, is not included.

Next, we’ll talk about how various typefaces are used to convey different kinds of
information.

TYPOGRAPHICAL CONVENTIONS

The following typographical conventions are used in this book.

Constant width

This typeface is used within the narrative and its associated tables for terms having spe-
cial meanings to Unix, the Shell, or Perl—including commands, keywords, operators,
built-in functions, subroutines, filenames, and the Shell’s command prompt ($). It’s
also used for code listings, depictions of Shell terminal sessions (see the section on
“Displays of commands or code with output”), and output from programs.

For instance, this example shows the syntax of a Unix command:

date +%Y

And these lines show the contents of the file called lines:

Line 1
Line 2

1 In keeping with established conventions, newline is referred to as a character for convenience, despite
the fact that it might actually amount to a character sequence on some OSs.
xxvii

Terminal-like sessions, in which commands and their outputs are both shown, are
depicted somewhat differently, as detailed in the next section.

Constant width bold

This typeface is used in displays of Shell terminal sessions to differentiate what is typed
by the user from the other text that appears on the screen.

Consider the following example. It includes a Shell prompt ($), a command, and
the command’s output. Only the command is rendered as bold, to make it clear that
it alone was typed by the user:1

$ perl -wl -e 'print 22/7;'
3.14285714285714

The section on “Displays of commands or code with output” provides additional
information about the conventions used in terminal displays.

Italics
Italics are used to:

• Highlight initial uses of special terms in the narrative;

• Identify elements of programming examples as placeholders for what belongs
there.2

For instance, the word file in the following example is a placeholder for whichever
file the user wishes to display, so it’s italicized:

$ perl -wnl -e 'print;' file
These are the
contents of the file.

Italics are also used to make comments look different from code, as discussed in the
section on ”Shell and Perl comments”.

Markup for highlighting and cross-referencing

To draw your attention to important elements in code listings, commands, or out-
put—called highlighting—this book uses several font-style variations. Bold is generally
the preferred choice, but if that option is considered too intense for the context or it’s
already being used for another purpose there, underlining is used instead.

For example, an element within the following pathname would be highlighted in
bold:

/home/plankton/latest-plan-for-world-domination

1 Of course, the <ENTER> key must be pressed to submit the command to the Shell, but that keystroke
is shown only when it needs to be emphasized.

2 Notice that the word placeholders is italicized to highlight its initial use in this chapter, in keeping with
the rule stated in the first bullet item.
xxviii

However, if that pathname occurred in the context of a command, it would already be
in bold, so underlining would be used instead:

$ cat /home/plankton/latest-plan-for-world-domination

In addition, there’s sometimes a need to cross-reference remarks in the narrative to ele-
ments in code or program output. This is done by using corresponding style changes
to mark the associated elements. For example:

The following message tells us that a problem was detected on the indicated
line of the specified file:

 Warning: something's wrong at ./rygel/latest_scheme line 3.

Underlining is the primary style variation used for cross-referencing, but in cases like
this where two variations are needed, bold type is also brought into play.

Special characters

Non-printing characters are referred to by their names in the narrative, such as space
and tab, but they’re sometimes depicted as <SPACE> and <TAB> to indicate their
presence in code listings or to indicate that the user pressing their associated keys in
representations of interactive terminal sessions. In the latter case, <SPACE> and
<TAB> are shown in a “ghost” font, to emphasize that those symbols represent an
invisible character.

In output displays, box characters () are used to represent spaces in cases where
it’s important to know how many are present.

Shell and Perl comments

Shell and Perl comments, which start with a # symbol and end with the next (car-
riage-) return character, are frequently used to attach commentary to code samples.
They are rendered in italics to make them look different from the associated Shell
commands or Perl code. They’re not shown in bold in depictions of interactive com-
mands, because the author types them, not the user (see the section on “Constant
width bold” type):

$ perl -wl -e 'print "Crikey";' # This command prints: Crikey

Additional details on the depiction of terminal sessions are provided in the next
section.

DISPLAYS OF COMMANDS OR CODE
WITH OUTPUT

This book includes two types of displays that depict output: one form that shows what
appears on the user’s screen when a command is typed to the Shell (command with out-
put) and another that shows the output that a statement from a Perl program generates
(code with output).
xxix

We’ll discuss Shell displays first and then Perl displays.

Shell command-with-output displays

Shell terminal sessions are shown as follows, where the $ at the beginning of the com-
mand line is the Shell prompt:

$ perl -wnl -e 'print;' one_line_file
Line 1

$ who | sort
shroomy pts/9 Oct 24 13:42
shroomy pts/0 Oct 24 14:22

As mentioned in the section on “Constant width bold” type, the bold typeface identi-
fies what the user types.

Every effort is made to represent terminal sessions with complete accuracy, which
includes backslashing long lines for continuation and showing the Shell’s secondary
prompt (>) on continuation lines:

$ who |
> perl -wnl -e 'print; exit;' # like head -1

contix pts/0 Oct 24 14:22
$

The critical thing to understand about examples like this one is that the Shell itself pro-
vides the > symbol at the beginning of the second line—which means a reader trying
the command shown will never type it. In this case, the trailing pipe symbol (|) auto-
matically triggers a continuation line, leading to the appearance of the secondary
prompt, which is the Shell’s way of saying “I can’t run the command yet, because you
haven’t finished typing it.”

In commands like the following, which do not naturally end with a command con-
nector like the | symbol, continuation must be explicitly requested by dangling a
backslash at the end of each incomplete line:

$ meeting_page -title='Kwiki' -speaker='Brian "Ingy" Ingerson' \
> -date='September Meeting; Tuesday, 9/16/03:' \
> -summary='Ingy talks about "Kwiki"' meeting.tmpl > 0903.html
$

There’s one exception to the policy of always showing sessions exactly as they would
appear on the user’s screen: to save space, the final prompt after the last command is
generally omitted, unless its presence adds to your understanding (e.g., by revealing
the presence of a blank line at the end of a command’s output).

Perl code-with-output displays

This book uses a special method of depicting Perl statements and their output,
which is analogous to the way Shell commands are depicted with their output. For
instance, the following examples show comparable Shell and Perl ways of printing an
array’s values:

Final prompt
xxx

$ echo "${stooges[@]}" # Shell syntax
arry Moe Curly

print "@stooges"; # Perl syntax; required program omitted
Larry Moe Curly

You could type that echo command directly to the Shell as shown to produce the
indicated output, as indicated by that command being typed after a Shell prompt.

In contrast, the Perl print statement must be included within a program to be
processed. But to avoid bogging down examples like this one with extra program mate-
rial, the book uses this Shell-like code-with-output format to show what a Perl state-
ment would produce as output, if run from a suitable program.

The key to differentiating the Shell examples from the Perl examples is to remem-
ber that only the former are preceded by the Shell prompt ($).

Ellipsis marks

Ellipsis marks (…) are used to indicate that unnecessary information has been omit-
ted. In addition to being used in the text (e.g., with quotations), they’re also used in
displays of data files, shell commands, and program output to indicate that something
has been omitted:

$ chastise file1 file2 ... # can supply many filenames
Chastising on Tuesday, September ...
...
Thank you for running chastise!

The three dots of the ellipsis are displayed in the font of the surrounding text, except
when they appear in listings of Perl source code, where they’re shown in a propor-
tional font (…) rather than the monospaced code font (...). This approach is
needed because Perl’s range operator looks identical to the ellipsis, as do some regular
expressions, and these conflicts could otherwise cause uncertainty about how to inter-
pret ... in Perl source code. So, just remember that “...” in Perl source code is Perl
code, whereas any occurrence of “...” there signifies omitted material.

CODING CONVENTIONS

The coding conventions used for the Shell and Perl programs are discussed next.

Shell programs

In cases where there’s considered to be a relatively conventional way of writing the code
for a particular type of command, the examples use that style. On the other hand, in
cases where two different styles are in popular use, both are shown, as in these equiv-
alent commands:

 [-f "$file" -a -r "$file" -a -s "$file"] || exit 42;
[[-f $file && -r $file && -s $file]] || exit 42;
xxxi

http://www.manning.com/Maher
http://www.manning.com/Maher
http://www.manning.com/Maher
http://www.manning.com/Maher
mailto:author@minimalperl.com.

Perl programs

Perl allows the programmer to select from a variety of language features when coding
program statements,1 and to exercise wide liberties in how those features are laid out
on the pages of the resulting programs.

The features used in this book were included in Minimal Perl for their compati-
bility with the expectations of UNIX/Linux people, and they’re laid out in a manner
that is compatible with those expectations. As an additional influence, guidelines from
the book Perl Best Practices2 are followed, but only where they don’t conflict with our
“prime directive” of catering to UNIX and Shell sensibilities.

DOWNLOADING THE SOURCE CODE

You can download the source code for many of the one-line commands and scripts pre-
sented in this book from Manning’s website. Follow the appropriate links from the
http://www.manning.com/maher website to get them.

DEFAULT INVOCATION OPTIONS FOR PERL
EXAMPLES

For code snippets shown in tables and interspersed within the narrative, you should
generally assume that the w and l invocation options are in effect. But for complete
scripts that are displayed, you should refer to the shebang line (see the glossary) to
determine which options are being used.

DEPICTION OF OPTIONAL MATERIAL

In keeping with Unix conventions, optional arguments for commands and functions
are shown in square brackets, which are never typed by the user. For example:

grep [-vli] [filename] # options and filename are optional
print [items to print go here] # items are optional

ERRATA

Many conscientious professionals have scrutinized this book to ensure its technical
accuracy and grammatical correctness. But proofreading is a difficult job for organisms
equipped with automatic error-correction circuitry in their perceptual systems, which
hides errors, so it’s inevitable that some mistakes have slipped through.

To optimize your experience with this book, please check the errata link at the
http://www.manning.com/maher website to see the latest list of corrections. In addi-
tion, if you find any errors that aren’t reported there, we would be grateful if you

1 As illustrated in the preface under the heading “The History of Minimal Perl.”
2 Damian Conway, Perl Best Practices (O’Reilly Media Inc., 2005).
xxxii

would bring them to our attention. The errata page provides the email address for sub-
mitting error reports.

AUTHOR ONLINE

Purchase of Minimal Perl includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to http://www.manning.com/maher. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the book's forum remains voluntary (and unpaid).
We suggest you try asking the author some challenging questions, lest his interest
stray! The Author Online forum and the archives of previous discussions will be acces-
sible from the publisher’s website as long as the book is in print.

ABOUT THE AUTHORS

TIM MAHER, PH D, has many years of experience as a software developer, university
professor of computer science, courseware developer, and corporate educator. He has
trained thousands of engineers on Unix, Linux, and Perl worldwide. Tim founded
Seattle’s SPUG, one of the oldest, largest, and most active Perl Users Groups. He
serves on the the University of Washington Advisory Board that oversees its Perl Cer-
tificate Program. Tim’s company, Consultix, offers corporate software training classes
to the international community from its base in Seattle, Washington.

DAMIAN CONWAY, PH D, the author of the foreword, is one of the most active mem-
bers of the Perl community. He is a highly sought after presenter at Perl conferences,
a contributor to the Perl Journal and a three-time winner of the annual Larry Wall
award for Practical Utility. He has written numerous technical and scientific papers as
well as three books, including Manning’s acclaimed Object Oriented Perl. He is also
the author of numerous popular Perl modules, and one of the chief designers of Perl
itself. He runs an international IT training company, Thoughtstream, which provides
programmer education from beginner to masterclass level throughout Europe, North
America, and Australia.
xxxiii

about the cover illustration
The figure on the cover of Minimal Perl is an “Albanian.” The illustration is taken from
a collection of costumes of the Ottoman Empire published on January 1, 1802, by Wil-
liam Miller of Old Bond Street, London. The title page is missing from the collection
and we have been unable to track it down to date. The book’s table of contents identifies
the figures in both English and French, and each illustration bears the names of two art-
ists who worked on it, both of whom would no doubt be surprised to find their art grac-
ing the front cover of a computer programming book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea market
in the “Garage” on West 26th Street in Manhattan. The seller was an American based
in Ankara, Turkey, and the transaction took place just as he was packing up his stand
for the day. The Manning editor did not have on his person the substantial amount
of cash that was required for the purchase and a credit card and check were both
politely turned down. With the seller flying back to Ankara that evening the situation
was getting hopeless. What was the solution? It turned out to be nothing more than
an old-fashioned verbal agreement sealed with a handshake. The seller simply pro-
posed that the money be transferred to him by wire and the editor walked out with
the bank information on a piece of paper and the portfolio of images under his arm.
Needless to say, we transferred the funds the next day, and we remain grateful and
impressed by this unknown person's trust in one of us. It recalls something that might
have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life. Or a more varied and interesting intellectual
and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago‚ brought back to life by the pictures from this collection.
xxxiv

tables
Chapter 1

1.1 Forehead markings for the Perl dialects of Perlistan . 6

Chapter 2

2.1 Effects of Perl’s most essential invocation options . 17
2.2 The data and record-number variables . 24
2.3 Employing user-defined scalar variables in the Shell and Perl. 26
2.4 Comparison of Shell and Perl scripting techniques . 29
2.5 Using switch variables . 33
2.6 Shell and Perl techniques for writing messages to STDOUT and STDERR 36
2.7 Special variables for I/O operations . 42
2.8 Special variables for formatting output . 43
2.9 Standard option clusters for Perl commands and scripts .45

Chapter 3

3.1 String escapes for representing control characters. 56
3.2 Fundamental capabilities of greppers and Perl . 58
3.3 Matching operator syntax . 60
3.4 Essential syntax for regular expression . 63
3.5 Compact character-class shortcuts . 67
3.6 Matching operator examples . 69
3.7 Matching modifiers . 69
3.8 Metacharacters for alternation, grouping, match capturing, and match

referencing in greppers and Perl. 71
3.9 Quantifier metacharacters . 73

3.10 Examples of matching across lines . 78
3.11 Patterns for the shortest and longest sequences of anything or something 78
3.12 Unix and Perl commands for common grepping activities .87

Chapter 4

4.1 Text-modification capabilities of sed and Perl . 91
4.2 Substitution modifiers . 95
4.3 Substitution operator syntax . 95
4.4 Substitution operator examples . 96
xxxv

4.5 String modifiers for case conversion . 113
4.6 sed and Perl commands for common editing activities . 119

Chapter 5

5.1 Differences in pattern-matching capabilities of AWK versions and Perl 125
5.2 Comparison of special variables in AWK and Perl . 126
5.3 Loading field data into user-defined variables . 131
5.4 Using undef in assignments to explicit lists . 132
5.5 Syntactic differences for print in AWK and Perl . 135
5.6 Custom field separator definitions . 137
5.7 Patterns and Actions in AWK and Perl . 139
5.8 AWK and Perl programs for simple tasks . 141
5.9 Illustration of array indexing syntax using the field array, @F . 145

5.10 Using pattern ranges . 153
5.11 Relational operators of AWK and Perl . 157
5.12 Arithmetic operators of AWK and Perl . 159
5.13 Popular built-in functions of AWK and Perl . 160
5.14 Perl counterparts to popular AWK functions . 161

Chapter 6

6.1 Syntax for file attribute tests . 181
6.2 Comparison of supported file attributes in versions of the

find command and Perl . 182

Chapter 7

7.1 Tools for data-type conversion . 209
7.2 Useful Perl functions for scalars, and their nearest relatives in Unix 210
7.3 The split function . 211
7.4 The localtime function. 214
7.5 The stat function . 216
7.6 The chomp function . 220
7.7 The rand function . 222
7.8 Useful Perl functions for lists, and their nearest relatives in Unix 223
7.9 Data flow in Unix pipelines vs. Perl functions . 224

7.10 The sort function . 224
7.11 The grep function . 228
7.12 The join function . 229
7.13 The map function . 233
7.14 The globbing operator . 235
7.15 The globbing operator’s FNG metacharacters . 236
7.16 Corresponding expressions for the FNG and regex notations . 238
7.17 Functions for managing directories . 239
7.18 Functions for managing files . 240
xxxvi

Chapter 8

8.1 The exit function . 253
8.2 Using shift and unshift in the Shell and Perl . 255
8.3 The if/else construct . 260
8.4 Nested if/else vs. elsif .261
8.5 String operators for concatenation and repetition . 265
8.6 Command substitution/interpolation in the Shell and Perl . 270
8.7 Controlling and interrogating screen displays using tput options 271
8.8 The system function . 276
8.9 The eval function in the Shell and Perl . 283

Chapter 9

9.1 Indices and values for the @stooges array . 297
9.2 Syntax for using arrays in the Shell and Perl. 298
9.3 Syntax for advanced array indexing . 300
9.4 Array of phone-owners’ names. 309
9.5 Array of phone numbers for phone owners . 309
9.6 Storing phone numbers in a hash. 309
9.7 Syntax for using hashes in Perl. 310
9.8 Syntax for basic and advanced hash indexing . 312
9.9 Common list generators in the Shell and their Perl counterparts 326

Chapter 10

10.1 Looping-related differences between the Shell and Perl .332
10.2 The while/until loop. 333
10.3 Pre- and post-processing in implicit and explicit loops. 338
10.4 Perl’s do while loop and its Shell equivalent .338
10.5 The Shell’s for loop and Perl’s foreach loop. 340
10.6 Perl’s for loop. 345
10.7 Corresponding loop-control directives for the Shell and Perl .349
10.8 Enhanced while/until loops for the Shell and Perl . 353
10.9 The Shell’s select loop . 356

10.10 The select loop for Perl . 356

Chapter 11

11.1 Syntax for defining and using subroutines . 364
11.2 The my, our, and local variable declarations . 374

Chapter 12

12.1 Essential functions of the CGI module . 422
12.2 Form-related functions of the CGI module . 423
xxxvii

1
P A R T
Minimal Perl: for UNIX
and Linux Users

Part 1 gives those with at least user-level Unix skills—which includes even the most
advanced Unix programmers—a gentle introduction to the use of Minimal Perl’s
most essential features.

We’ll start with a humorous allegory about a Traveler from the world of Unix
who’s visiting Perlistan, which leads to a discussion of the “less is more” philosophy
underlying Minimal Perl. Then in chapter 2 we’ll cover the most essential features of
the Minimal Perl dialect, which is a strategically crafted subset of standard Perl
designed for easy assimilation by Unix people. In the following chapters, we’ll use
those features to develop tiny Perl programs that surpass the limitations of some of the
most important Unix commands—grep, sed, awk, and find.

Because they are relevant to a wide range of problem areas, we’ll concentrate on
programs that do data validation, file conversion, report generation, and number
crunching. For example, we’ll discuss programs that:

• Calculate the growth of an investment over various time periods

• Web-scrape a newspaper’s electronic edition for travel deals

• Scan Unix logfiles for error messages

• Help bad spellers do successful grepping through use of fuzzy matching

Along the way, you’ll acquire an impressive set of new tools to use in your data
processing activities. In addition, you’ll learn how to think like a Perl program-
mer, and how to effectively use some of the most simple—yet powerful—features
of the language.

C H A P T E R 1

Introducing Minimal Perl

1.1 A visit to Perlistan 3
1.2 Perl can be simple 7
1.3 About Minimal Perl 7

1.4 Laziness is a virtue 9
1.5 A minimal dose of syntax 10
1.6 Writing one-line programs 11
1.7 Summary 14
Perl is a great language, with an ingenious mentality underlying it, and a terrific user
community gathered around it. Given these properties, it’s no wonder it has become
so popular.

But Perl is also a large and complex language that offers the programmer many dif-
ferent ways to accomplish the same goal. This can make it hard for beginners to learn
the language and for one programmer to understand a program written by another.

In this chapter, we’ll discuss the motivation behind the development of Minimal
Perl and the philosophy underlying the special subset of the standard Perl language
that it employs. But before delving into those matters, we’ll begin our journey with a
tale of travel that provides a helpful orientation to Perl culture.

1.1 A VISIT TO PERLISTAN

A Unix user visiting the world of Perl may feel like he’s in a foreign land, where people
use words that sound familiar but that have different meanings than they do back
home. Let’s observe the adventures of such a Traveler, as he tries to understand the
way people communicate in Perlistan.
3

Scene: The main market of Perlistan, a hub of the famous Silk Road, in a high
desert region of central Asia. Nomads in tribal dress are haggling
enthusiastically for discounts on goods, as camel carts and yak carts compete for

��
space in the narrow lanes of the old city.

As the Traveler pauses to snap a photo of an ornately decorated camel, he overhears a
merchant saying to his assistant

“Foreach gingko nut in basket, if it passes freshness test, push it in bag.”

The assistant complies, and hands the waiting customer a bag of fresh nuts from the
Gingko Biloba tree.

The Traveler can’t help but notice the distinctive triangle drawn on the merchant’s
forehead. He’s heard that these markings hold a special significance in Perlistani com-
munications, so he makes a mental note of this transaction for later reference.

Across the way, he observes another merchant, also wearing a triangle, getting the
same result by telling her identically marked assistant something a bit different:

“Test it for freshness and push it in bag, foreach gingko nut in basket.”

It disturbs the Traveler that this instruction was expressed backwards relative to that of
the first merchant and that and is now playing the conditional role previously played
by if. He wonders if it’s significant that this merchant’s triangle points to the left
(from the customer’s viewpoint), whereas that of the first merchant points to the right.

Next, he overhears a merchant bearing a large circle on his forehead saying to his
identically marked assistant

“Bag—grep ripe—basket of kiwis.”

The Traveler knows that grep is used back home for selecting items on the basis of
matches , so he suddenly fells hopeful that he may be able to crack this linguistic code
after all. But now he’s wondering why the two “triangled” merchants expressed a
related request in a completely different way—without any reference to grep!

Then he hears a fourth merchant, also distinguished by a forehead circle, call out:
“Bag—grep rand—basket of jerkies.”

An apparently random selection of assorted jerkies (dried meats) is put into the bag by
his circle-wearing assistant.

Now the Traveler is perplexed. His theory about grep being for matching—
which fit the grep ripe case perfectly—is discredited by this new evidence. That’s
because rand , unlike ripe , wasn’t a property of any of the selected jerkies and therefore
shouldn’t have been usable as a basis for matching. At least, the grep back home
doesn’t work like that!

Seeking consolation, he buys a few assorted jerkies and commences to gnaw con-
tentedly. A runny-nosed boy interrupts his reverie, offering to change money for
him at attractive black-market rates. The Traveler declines, but not before learning
4 CHAPTER 1 INTRODUCING MINIMAL PERL

that the jerky with the rigid texture and overbearing flavor is made from dried
python meat.

Then he notices a merchant sporting a square on his forehead, who is accumulat-
ing a long queue of impatient customers. Shortly after the merchant finishes intoning
the following long-winded set of instructions to his (equally square) assistant, a dis-
gruntled customer finally receives a bag of ripe figs:

“Set variable candidate to 0;
set variable selection to 0;
test variable candidate is less than number of figs in basket or finish;
select fig from basket;
if fig passes test for ripeness, mark it with value of variable selection,

increment variable selection by 1, and put fig into bag;
increment variable candidate by 1;
repeat from ‘test variable candidate’ step.”

Now the Traveler is mystified. Given the ample evidence that there are more concise
ways to express this kind of transaction, why would anyone go to all the trouble to do
it this way? Could there be some advantage to this excessively verbose manner of
speaking—like, do they get paid by the syllable? Or maybe these squared guys are just
meticulous to a fault.

At this point, the Traveler wonders how any visitor could pick up the language of
Perlistan, given its many different—and largely unrelated—ways of expressing the
same idea. His chances of mastering its nuances seem as remote as those of him being
invited to a high tea, catered by Oxford-educated snow leopards, at the den of the
Alpha Yeti.1

In frustration, he rushes to catch the quickest flight home, and he resolves that his
next vacation will be free of linguistic puzzles—and python jerky!

But the Traveler is left wondering if he could have had a better experience in Per-
listan, if only he had tried a different approach.

1.1.1 Sometimes you need a professional guide

It’s too bad linguistic turmoil ruined the Traveler’s vacation. He should have hired a
certified guide before venturing into Perlistan’s market district—as the brochure had
advised. Had he done so, he would have learned that the JAPHs (which is what the
people of Perlistan call themselves) do indeed share a common language called Perl,
which was invented with the founding of the country in 1987.

Rather than being a new creation of whole cloth, Perl was created like a patchwork
quilt, incorporating the best features of the languages that were the mother tongues
of the JAPHly tribes. But it’s not an ugly quilt with a jumble of patterns and shapes

1 Yeti is the Perlistani name for what other cultures call bigfoot or the abominable snowman.
A VISIT TO PERLISTAN 5

all forced together, as you might expect. Instead, thanks to the ingenuity of Perl creator
Larry Wall (“Larry”), it’s a work of art that cleverly coordinates its disparate elements
into an aesthetically pleasing result.2

Naturally, JAPHs tend to feel most comfortable using the elements of Perl that are
derived from their own mother tongues. It shouldn’t be surprising therefore that
some of these makeshift dialects are so dissimilar as to appear to be different languages
because, in fact, they started out that way!

Now you know why the Perlistanis wear dialect-identifying markings—it’s so they
can easily identify others from their linguistic group.

Table 1.1 summarizes the meanings of the different forehead markings and indi-
cates the subculture associated with each dialect.

With the benefit of this table, we’re now equipped to understand the Trav-
eler’s observations.

The triangles identify those whose mother tongue is Shell and who find Perl’s
flow-control structures to be refreshingly familiar. These JAPHs come in two varieties,
so it’s important to notice the direction in which the triangle is pointing. If it points
to your right, the individual follows the time-honored tradition of putting control
keywords such as if and foreach at the beginning of the sentence. However, Perl
also allows such instructions to be expressed in backward order, which those wearing
left-pointing triangles consider to be more natural.

Those wearing circles have lots of spare time left over after communicating their
needs to each other, but they have fewer friends to enjoy it with. That’s because they
either learned Perl as their mother tongue or have lived in Perlistan long enough to
lose their native accents, and they now speak idiomatic Perl—which doesn’t have
much in common with its UNIX-based predecessors.

Those wearing the mark of the square need great patience, because it takes them
a long time to communicate. Their dialect emphasizes features derived from the

2 Others have commented on the eclectic mix of linguistic ingredients that constitute Perl, such as Yoz
Grahame, who wrote an interesting article called “Perl is Internet Yiddish” (available on the Internet).

Table 1.1 Forehead markings for the Perl dialects of Perlistan

Forehead marking Perl dialect Marketplace quote

Right-pointing triangle UNIX Shell Foreach gingko nut in basket, if it passes
freshness test, push it in bag.

Left-pointing triangle UNIX Shell
(but backward)

Test it for freshness and push it in bag,
foreach gingko nut in basket.

Circle Idiomatic Perl Bag—grep ripe—basket of kiwis.
Bag—grep rand—basket of jerkies.

Square C language set variable candidate to 0; …
6 CHAPTER 1 INTRODUCING MINIMAL PERL

notoriously hazardous C language, which breeds a mistrust among its users that
causes them to compulsively over-specify all aspects of every operation.

But Perl doesn’t have to be this complicated.

1.2 PERL CAN BE SIMPLE

As illustrated in the Traveler’s tale, Perl provides you with many different ways of
obtaining the same result. This is partly due to its extensive appropriation of overlap-
ping features from the UNIX shell languages, the AWK and C languages, and various
core UNIX utilities (especially grep and sed), which has endowed it with more
redundancies than other languages. The rest is due to Larry’s predilection for giving
Perl users as much freedom of expression as possible, as celebrated in the Perl motto
“There’s More Than One Way To Do It!”

What’s a would-be Perl programmer to do? Given the sorry state of our current
time-travel technology, we can’t go back to modify the fundamental design decisions
that led to the unusual richness and complexity of the modern Perl language. Nor
would we necessarily want to; those features have their uses. But there’s nothing stop-
ping us from making these factors work for us, rather than against us.

With the Minimal Perl approach, you learn a Perl subset that’s based on familiar
features derived from its UNIX-based predecessors. This allows you to continue pro-
gramming in the AWK style, for instance, while using Perl and benefiting from its
many enhancements.

Part 1 of this book, which capitalizes on your existing knowledge of important
Unix utilities, is devoted to showing you how to program in this fashion. Part 2 takes
this approach a step further, by teaching those with Shell programming experience
additional features of Perl—again by capitalizing on existing knowledge.

In addition to UNIX-derived features, Perl also provides others that are unique to
Perl, for those who choose to learn them. But you should wait until you’ve fully mas-
tered Minimal Perl before aspiring to learn the advanced dialect of the circled JAPHs,
which is replete with extremely enigmatic expressions!

Next, we’ll consider what Minimal Perl is—and isn’t—in more detail.

1.3 ABOUT MINIMAL PERL

Many Perl books and training programs try to teach more of Perl than is necessary or
can be readily assimilated. By doing so, they impose an unnecessary and counterpro-
ductive burden on Perl novices who have modest immediate needs—especially those
who know a related language.

From this perspective, setting out to teach a Unix person3 everything about Perl is
like telling a Dutchman who wants to relocate to Zurich that he must learn every one

3 A Unix person is a user of Unix command-line utilities, such as grep. This group includes both
beginning users and advanced Shell programmers.
ABOUT MINIMAL PERL 7

of Switzerland’s official languages—German, French, Italian, and Romansch—instead
of the single language closest to Dutch that’s widely understood there: German.

That’s why this book teaches you Perl from the perspective that’s most easily assimi-
lated by those with a Unix background. You’ll be able to pick up Minimal Perl quickly
and easily, by capitalizing on your existing knowledge of Shell programming and/or
basic Unix commands, rather than having to learn everything from scratch. As a result,
you’ll be able to transfer your existing skills to a more powerful and more portable lan-
guage, which will enhance your productivity as well as your career prospects.

1.3.1 What Minimal Perl isn’t

Before we discuss what Minimal Perl is, we’ll discuss what it isn’t, to dispel some pos-
sible misconceptions.

Is Minimal Perl a dumbed-down version of Perl?

No. It isn’t a version of Perl at all, in the sense that distinguishes the old Perl 4 from the
current Perl 5. Instead, it’s a carefully crafted subset of standard Perl 5, designed for
easy assimilation by Unix people.

Is Minimal Perl a less capable Perl?

Not really. As a general rule, you can write the same kinds of programs using the tech-
niques of Minimal Perl that you can using the facilities of the full language. The pri-
mary exception is that Minimal Perl doesn’t include any features for Object-Oriented
programming. But there’s nothing to stop you from learning additional features, if
and when you feel the need, and using them alongside your Minimal Perl skills.

Will learning Minimal Perl restrict my future options?

Not at all. Although Minimal Perl leads you down a narrow path away from the cha-
otic linguistic conditions of Perlistan’s central market area, it’s not a one-way path or a
dead-end. Nothing will prevent you from learning more Perl later on.

1.3.2 What Minimal Perl is

I created Minimal Perl because I believe it’s a good idea to simplify things that are
overly complex. This practice is embodied in a principle that is a cornerstone of sci-
ence, variously called parsimony, Occam’s Razor, and, in more everyday use, KISS
(Keep it Simple, Stupid).

It has even been expressed by the great blues artist B. B. King, in words to the fol-
lowing effect:

Some players use as many notes as they can to make sure they don’t leave any
good ones out. Great players leave out as many notes as possible, so they can
concentrate on the ones they really need.

We’ll talk next about how Minimal Perl fits into its associated cultures.
8 CHAPTER 1 INTRODUCING MINIMAL PERL

How does Minimal Perl relate to Unix

and standard Perl?

Minimal Perl emphasizes the features of Perl that are most closely related to Unix
tools, most applicable to a wide variety of application areas, and most easily learned
and used by the corporate engineers who take our training classes. It’s “minimal” in
the sense that it distills Perl down to its most essential features, by excluding those that
are redundant, highly advanced, or overly esoteric.

Like a dialect of a natural language, Minimal Perl consists of more than just a spe-
cialized vocabulary and grammar—it also has helpful idioms and powerful techniques
that hold it together and make it work. It reduces redundancies, by showing a single
good way to accomplish a particular kind of task rather than all the possibilities. It
minimizes the amount of grammar you have to learn, by omitting the reversed vari-
ants of all the control structures—so you won’t also have to learn to talk backwards
like the left-triangle merchant in the Traveler’s tale.

Above all, the Minimal Perl approach is practical, eclectic, and willing to take
what it needs from beyond the borders of Perlistan. This approach benefits those who
already know some Unix utilities, because it’s often easier to get the results you want
by adding a Perl command to a pipeline of Unix commands than it is to implement
all the needed functionality with Perl alone. For this reason, in many of the program-
ming examples in part 1, other Unix commands are exploited to full advantage, to
allow the Perl portion to focus on what it can uniquely contribute.

Truly, sometimes less is more! That’s the philosophy behind Minimal Perl. But
before you begin to learn Minimal Perl, you need to embrace your Laziness.

1.4 LAZINESS IS A VIRTUE

Some of your envious colleagues may seek to lay a guilt trip on you, once they see the
impressive progress you’ll be making with the Minimal Perl approach. For lack of a
better explanation, they may think you’re cheating in some way, or at least cutting cor-
ners for short-term gains that will come back to haunt you later.

It comes down to the fact that some will think you’re lazy for typing a 12-character
Perl command to get a particular job done while others are writing and debugging 12-
line Perl scripts or 120-line C programs to accomplish the same task.

Your acquisition of Perl skills will go more smoothly if you accept the following
simple truth: A willingness to take advantage of the Perl features that simplify your
programs doesn’t mean you’re lazy—at least, not in the derogatory sense of the word.
It does, however, mean you’re Lazy, with a capital L, as the term is used by Larry in
the Camel book.4

4 As discussed in the glossary, the “Camel book” is the nickname for the Perl reference manual, more
formally known as Programming Perl , 3rd Edition, by Larry Wall, Tom Christiansen, and Jon Orwant
(O’Reilly and Associates, Inc., 2000).
LAZINESS IS A VIRTUE 9

The highly desirable trait of Laziness refers to a tendency to judiciously exploit
available resources to accomplish your programming goals with minimal effort. And
that’s good, because it enhances productivity. Therefore, as the term is used in the
Perl community, Laziness has more to do with using your energy efficiently than
indulging in slothfulness or lethargy.

But Perl provides so much scope for the expression of Laziness that it’s easy to go
overboard. If taken to an extreme, Perl’s shortcuts can easily push your programs past
simplification into obfuscation. And writing programs that nobody else can under-
stand—or even worse, that you can’t understand next year yourself—is not a recom-
mended practice.

With this perspective in mind, we’ll review some of Perl’s essential technical features,
which allow you to write tiny but powerful programs—Lazily ! To illustrate this impor-
tant point, we’ll compare the easy way of writing a particular kind of simple program
in Perl with the much more complicated approach that’s favored by squared JAPHs.

But before we look at our first programming examples, we must first discuss a few
important aspects of Perl syntax.

1.5 A MINIMAL DOSE OF SYNTAX

In many languages, new programmers have to learn lots of syntax rules before they
can start writing useful programs. Such rules typically decree where spaces are
required, where double quotes must be used instead of single quotes, and how to con-
tinue a statement onto the next line.

Fortunately, Perl is relatively flexible in its syntax requirements, and is often com-
pliant with Unix conventions. So, Unix-derived habits, such as putting a space after
a command name and quotes around its arguments (the words that follow the com-
mand name), will serve you well in the world of Perl.

1.5.1 Terminating statements with semicolons

As an illustration of the similarity of the languages, consider these Shell and Perl ways
of printing a word to the screen:

echo "Greetings"

or

print "Greetings"

(using l option)5

print "Greetings";

5 Perl’s l invocation option causes print statements to be automatically supplied with terminating new-
line characters, just as the Shell’s echo is by default. Chapter 2 discusses invocation options in detail.

Shell

Perl
10 CHAPTER 1 INTRODUCING MINIMAL PERL

Notice that the Perl example has a semicolon at the end the argument list for print,
although the Shell examples don’t use that character. This difference is based on the
way each language identifies the end of a statement—a completed instruction that’s
ready for processing. In the Shell case, pressing <ENTER> at the end of a line marks a
statement as complete, whereas in Perl, typing a semicolon there does that job.

That’s all you need to know about Perl syntax for now, although some additional
details will be illustrated later as we review other kinds of programs.

Now let’s learn how to write one-line programs.

1.6 WRITING ONE-LINE PROGRAMS

There are two ways to write Perl programs. With the script approach, the program is
placed in a file that starts with a perl shebang line, such as #! /usr/bin/perl.
With the command approach, a perl command is typed interactively to the Shell,
consisting of a short program preceded by the e invocation option (see the following
example).6

That e option (for execution of programs) is the foundation on which Perl one-
liners (one-line commands) are built, because it provides a convenient way for
highly compact programs to be conveyed to perl without the overhead of creating
a script file.

Here’s an example of a simple yet useful program that can be written as a one-
line command:

$ perl -wl -e 'print 22/7;' # Gimme pi!
3.14285714285714
$

The print function is the general facility for sending results to the current output
destination, which is the user’s terminal by default. It’s followed, in this case, by an
expression describing the division of two numbers, positioned in the argument list of
print. Accordingly, the result of that calculation gets printed.

Just as the pattern argument to a grep command would be single-quoted to prevent
the Shell from tampering with its contents (e.g., grep '* On Sale! *' adverts),
the Perl program is also enclosed in single quotes.

The w option enables warnings , which are especially helpful for new programmers.
The l option (the lowercase L) requests automatic line-end processing, which in this
case ensures that a Unix-appropriate record separator is printed after the numerical
result. That allows the next Shell prompt to appear on a fresh line, as expected. These
two options are so beneficial that they’re used with almost every program in this
book, and they deserve to be used routinely by you as well.

Now you know how to type a simple Perl program directly to the Shell and have
its output delivered to the screen. But many programs must collect and process input

6 Further details on creating Perl commands and scripts are provided in sections 2.1 and 2.4.
WRITING ONE-LINE PROGRAMS 11

in addition to generating output, and doing so requires the use of additional Perl
invocation options. We’ll cover them in chapter 2.

Next, we’ll consider the benefits of striving for simplicity in Perl programming,
and an important philosophical principle underlying Minimal Perl.

1.6.1 Balancing simplicity and readability

You’ll soon see how the essential behavior of the Unix cat command can be replicated
in Perl using various techniques. Along the way you’ll learn how to write an elementary
filter program , which will serve as the foundation for dozens of more interesting ones
that are covered later in this book. During this discussion, the Minimal Perl philoso-
phy of employing the simplest practical solution from the rich collection of alterna-
tives will be demonstrated.

Filter programs—such as the grep, sed, and sort commands of Unix—take
input, process it in some way, and then emit the results. The single Perl feature that’s
most valuable for writing filters is the implicit loop of the n invocation option, which
makes it easy to process lines one at a time. It’s much Lazier (and wiser) to use this
option than to continually reinvent the wheels of its infrastructure on your own (as
squared JAPHs are inclined to do).

One of the more important lessons conveyed in the following sections is that
although “There’s More Than One Way To Do It” in Perl, those ways aren’t all
equal—some are preferable to others, based on their optimal balance of simplicity
and readability.

You’ll see some well-crafted programs in the following section, as well as alterna-
tives that are either too large and complex, or too succinct and cryptic. Keep in
mind that you won’t need to absorb the Perl techniques that are demonstrated in
passing at this time, because they’ll be covered in detail later. And please note that
the complex programs are presented primarily for their shock value—they won’t be
on the test!

TIP Using Perl’s n option makes it easy to write tiny but powerful
filter programs.

1.6.2 Implementing simple filters

Our exploration of filtering with Perl begins with a consideration of the Unix cat
command and a replication of its basic functionality in Perl. Behold the syntax of the
humble cat, which is typical of Unix filter programs:

cat file file2

This invocation causes cat to open file, read a line, write that line to the screen,
and repeat those steps until all lines have been processed. Then it does the same
for file2.
12 CHAPTER 1 INTRODUCING MINIMAL PERL

For example:

$ cat exotic_fruits exotic_jerkies
fig
kiwi
camel
python

Now we’ll examine some Perl programs that act as cat-like filters. Why? Because the
simplicity of cat—called a null filter, since it doesn’t change its input—makes it an
ideal starting point for our explorations of Perl’s data-processing facilities.

Here’s an example of the hard way to emulate cat with Perl, using a script that
takes an unnecessarily complex approach:

#! /usr/bin/perl -wl

@ARGV or @ARGV = '-';
foreach my $file (@ARGV) {
 open IN, "< $file" or
 die "$0: Open of $file failed, code $!\n";
 while (defined ($_=<IN>)) {
 print $_;
 }
 close IN or
 die "$0: Close of $file failed, code $!\n";
}

Only masochists, paranoiacs, or programmers abused in their early years by the C
language (e.g., squared JAPHs) would write a Perl program this way.7 That’s because
Perl provides facilities to automatically create the filtering infrastructure for you—all
you have to do is ask for it!

An equivalent yet considerably simpler approach is shown next. In this case, Perl’s
input operator (<>) is used to automatically acquire data from filename arguments or
STDIN (as detailed in chapter 10). Unlike the previous solution, this cat-like pro-
gram is small enough to implement as a one-liner:

perl -wl -e 'while (<>) { print; }' file file2

But even this is too much coding! You’re busy, and typing is tiresome, error-prone,
and likely to give you carpal tunnel syndrome, so you should try to minimize it
(within reason). Accordingly, the ideal solution to writing a basic filter program in
Perl is the following, which uses the n option:

perl -wnl -e 'print;' file file2 # OPTIMALLY simple!

The beauty of this version is that it lets you focus on the filtering being implemented
in the program, which in this case is no filtering at all—the program just prints every

7 There are cases where it makes sense to write your own loops in Perl, as shown in chapter 10, but this
isn’t one of them.
WRITING ONE-LINE PROGRAMS 13

line it reads. That’s easy to see when you aren’t distracted by a dozen lines of boilerplate
input-reading code, as you were with the scripted equivalent shown earlier.

Where did the while loop go? It’s still there, but it’s invisible, because the n
option tells Perl, “Insert the usual input-reading loop for this Lazy programmer, with
no automatic printing of the input lines.”

A fuller explanation of how the n option works is given in chapter 10. For the time
being, just remember that it lets you forget about the mundane details of input pro-
cessing so you can concentrate on the task at hand.

Believe it or not, there’s a way to write a cat-like program in Perl that involves
even less typing:

perl -wpl -e '' file file2 # OVERLY simple!

By now, you’re probably thinking that Perl’s reputation in some circles as a write-only
language (i.e., one nobody can read) may be well deserved. That’s understandable, and
we’ll return to this matter in a moment. But first, let’s discuss how this program
works—which certainly isn’t obvious.

The p option requests the usual input-reading loop, but with automatic printing of
each input line after it has been processed. In this case, no processing is specified,
because there’s no program between those quotes. Yet it still works, because the p
option provides the essential cat-like behavior of printing each input line.

This bizarrely cryptic solution is, frankly, a case of taking a good thing too far. It’s
the kind of coding that may lead IT managers to wonder whether Larry has a screw
loose somewhere—and to hope their competitors will hire as many Perl programmers
as they can find.

Of course, it’s unwise to drive your colleagues crazy, and tarnish your reputation,
by writing programs that appear to be grossly defective—even if they work! For this
reason, the optimally simple form shown previously with the n option and the explicit
print statement is the approach used for most filter programs in Minimal Perl.

1.7 SUMMARY

As illustrated by the Traveler’s tale at the beginning of this chapter, and the cat-like
filter programs we examined later, the Perl programmer often has the choice of writing
a complex or a simple program to handle a particular task. You can use this flexibility
to create programs that range from minor masterpieces of inscrutability—because
they’re so tiny and mysterious—to major masterpieces of verbosity—because they’re
so voluminous and long-winded. The Perl subset I call Minimal Perl avoids programs
at both ends of that spectrum, because they can’t be readily understood or maintained,
and there are always concise yet readable alternatives that are more prudent choices.

To make Perl easier for Unix people to learn, Minimal Perl favors simple and
compact approaches based on familiar features of Unix, including the use of invoca-
tion options to duplicate the input-processing behavior of Unix filter programs.
14 CHAPTER 1 INTRODUCING MINIMAL PERL

Minimal Perl exploits the power of Perl to indulge the programmer’s Laziness,
which allows energy to be redirected from the mundane aspects of programming
toward more productive uses of its capabilities. For instance, the n and p invoca-
tion options allow Lazy Perl programmers—those who strive to work efficiently—to
avoid retyping the generic input-reading loop in every filter program they write for
the rest of their Perl programming careers. As an additional benefit, using these
options also lets them write many useful programs as one-line commands rather
than as larger scripts.

In the next chapter, we’ll discuss several of Perl’s other invocation options. Learn-
ing about them will give you a better understanding of the inner workings of the sim-
ple programs you’ve seen thus far and will prepare you for the many useful and
interesting programs coming up in subsequent chapters.
SUMMARY 15

C H A P T E R 2

Perl essentials

2.1 Perl’s invocation options 17
2.2 Using variables 23
2.3 Loading modules: -M 27
2.4 Writing simple scripts 29

2.5 Additional special variables 42
2.6 Standard option clusters 44
2.7 Constructing programs 47
2.8 Summary 51
This chapter introduces the most essential features of Perl, to pave your way for the
programming examples you’ll see in the following chapters. Among the topics we’ll
cover here are the use of Perl’s special variables, how to write Perl one-line commands
and scripts , and the fundamentals of using Perl modules.

But we don’t discuss everything you need to know about Perl in this chapter. Fur-
ther details on this chapter’s topics—and more specialized ones not discussed here—
are presented in later chapters, in the context of illustrative programming examples.

Some of the language features discussed here won’t be used until part 2 of the book,
so it’s not necessary for you to read this chapter in its entirety right now. If you haven’t
learned a computer programming language before—or if you have, but you’re eager
to get started with Perl—you should read the most important sections1 now (2.1,
2.4.5, 2.5.1, and 2.6, including subsections) and then proceed to the next chapter.

This chapter will serve you well as a reference document, so you should revisit it
when you need to brush up on any of its topics. To make this easy for you, when
“essential” features are used in programs in the following chapters, cross-references
will refer you back to the relevant sections in this chapter. Forward references are also

1 To help you spot them, the headings for these sections are marked with the symbol.
16

provided, to help you easily find more detailed coverage in later chapters on topics
introduced here.

We’ll begin our coverage of Perl with a discussion of its invocation options, because
you’ve got to invoke Perl before you can do anything else with it.2

2.1 PERL’S INVOCATION OPTIONS

An invocation option is a character (usually a letter) that’s preceded by a hyphen and
presented as one of the initial arguments to a perl command. Its purpose is to enable
special features for the execution of a program.

Table 2.1 lists the most important invocation options.

Although each of the invocation options shown in table 2.1 is described under its own
heading in the sections that follow, it’s not necessary to memorize what each one does,
because they’re commonly used in only a handful of combinations. These combina-
tions, which we call option clusters , consist of a hyphen followed by one or more
options (e.g., –wnl).

Toward the end of this chapter, you’ll learn now to select the appropriate options
for your programs using a procedure for selecting standard option clusters that takes
the guesswork out of this important task.

First, we’ll describe what the individual options do.

2 A few of these options were discussed in chapter 1’s comparisons of easy and hard ways to write cat-
like commands. To enhance the reference value of this chapter, these options are also included here.

Table 2.1 Effects of Perl’s most essential invocation options

Option Provides Explanation

-e 'code' Execution of
code

Causes Perl to execute code as a program. Used to avoid the
overhead of a script’s file with tiny programs.

-w Warnings Enables warning messages, which is generally advisable.

-n Reading but no
printing

Requests an implicit input-reading loop that stores records in $_.

-p Reading and
printing

Requests an implicit input-reading loop that stores records in $_
and automatically prints that variable after optional processing of
its contents.

-l Line-end
processing

Automatically inserts an output record separator at the end of
print’s output. When used with -n or -p, additionally does
automatic chomping—removal of the input record separator from
input records.

-0digits Setting of input
record
separator

Defines the character that marks the end of an input record, using
octal digits. The special case of -00 enables paragraph mode, in
which empty lines mark ends of input records; -0777 enables file
mode, in which each file constitutes a single record.
PERL’S INVOCATION OPTIONS 17

2.1.1 One-line programming: -e

The purpose of Perl’s e invocation option is to identify the next argument as the pro-
gram to be executed. This allows a simple program to be conveyed to perl as an
interactively typed command rather than as a specially prepared file called a script.

As an example, here’s a one-line command that calculates and prints the result of
dividing 42 by 3:

$ perl -wl -e 'print 42/3;'
14

The division of 42 by 3 is processed first, and then the print function receives 14 as
its argument, which it writes to the output.

We’ll discuss the w option used in that command’s invocation next and the l
option shortly thereafter.

2.1.2 Enabling warnings: -w

Wouldn’t it be great if you could have Larry and his colleagues discreetly critique your
Perl programs for you? That would give you an opportunity to learn from the masters
with every execution of every program. That’s effectively what happens when you use
the w option to enable Perl’s extensive warning system. In fact, Perl’s warnings are gen-
erally so insightful, helpful, and educational that most programmers use the w option
all the time.

As a practical example, consider which of the following runs of this program pro-
vides the more useful output:

$ perl -l -e 'print $HOME;' # Is Shell variable known to Perl?
(no output)
$ perl -wl -e 'print $HOME;' # Apparently not!
Name "main::HOME" used only once: possible typo at -e line 1.
Use of uninitialized value in print at -e line 1.

The messages indicate that Perl was unable to print the value of the variable $HOME
(because it was neither inherited from the Shell nor set in the program). Because
there’s usually one appearance of a variable when its value is assigned and another
when the value is retrieved, it’s unusual for a variable name to appear only once in a
program. As a convenience to the programmer, Perl detects this condition and warns
that the variable’s name may have been mistyped (“possible typo”).3

You’d be wise to follow the example of professional Perl programmers. They use
the w option routinely, so they hear about their coding problems in the privacy of
their own cubicles—rather than having them flare up during high-pressure customer
demos instead!

The option we’ll cover next is also extremely valuable.

3 You could say the variable’s name was grossly mistyped, because in Perl this Shell variable is accessed
as a member of an associative array (a.k.a. a hash) using $ENV{HOME}, as detailed in chapter 9.
18 CHAPTER 2 PERL ESSENTIALS

2.1.3 Processing input: -n

Many Unix utilities (grep, sed, sort, and so on) are typically used as filter pro-
grams—they read input and then write some variation on it to the output.

Here’s an example of the Unix sed command inserting spaces at the beginning
of each input line using its substitution facility, which typically appears in the form
s/search-string/replacement-string/g:4

$ cat seattleites
Torbin Ulrich 98107
Yeshe Dolma 98117
$ sed 's/^/ /g' seattleites
 Torbin Ulrich 98107
 Yeshe Dolma 98117

The ^ symbol in the search-string field represents the beginning of the line, causing
the spaces in the replacement-string to be inserted there before the modified line is sent
to the output.

Here’s the Perl counterpart to that sed command, which uses a sed-like substitu-
tion operator (described in chapter 4). Notice the need for an explicit request to
print the resulting line, which isn’t needed with sed:

$ perl -wnl -e 's/^/ /g; print;' seattleites
 Torbin Ulrich 98107
 Yeshe Dolma 98117

This command works like the sed command does—by processing one line at a time,
taken from files named as arguments or from STDIN, using an implicit loop (provided
by the n option). (For a more detailed explanation, see section 10.2.4.)

This example also provides an opportunity to review an important component of
Perl syntax. The semicolons at the ends of the sed-like substitution operator and the
print function identify each of them as constituting a complete statement—and
that’s important! If the semicolon preceding print were missing, for example, that
word would be associated with the substitution operator rather than being recognized
as an invocation of the print function, and a fatal syntax error would result.

Because sed-like processing is so commonly needed in Perl, there’s a provision for
obtaining it more easily, as shown next.

2.1.4 Processing input with automatic printing: -p

You request input processing with automatic printing after (optional) processing by
using the p option in place of n:

4 Are you wondering about the use of the “global” replacement modifier (/g)? Because it’s needed much
more often than not, it’s used routinely in Minimal Perl and removed only in the rare cases where it
spoils the results. It’s shown here for both the sed and perl commands for uniformity.
PERL’S INVOCATION OPTIONS 19

$ perl -wpl -e 's/^/ /g;' seattleites # "p" does the printing
 Torbin Ulrich 98107
 Yeshe Dolma 98117

This coding style makes it easier to concentrate on the primary activity of the com-
mand—the editing operation—and it’s no coincidence that it makes the command
look more like the equivalent sed command shown earlier. That’s because Larry
modeled the substitution operator on the syntax of sed (and vi) to make Perl easier
for UNIX users to learn.

Like the Shell’s echo command, Perl’s print can automatically generate new-
lines, as you’ll see next.

2.1.5 Processing line-endings: -l

Before discussing how automatic processing of record separators works in Perl, we
first need to define some terms.

A record is a collection of characters that’s read or written as a unit, and a file is a
collection of records. When you’re dealing with text files, each individual line is con-
sidered to be a separate record by default. The particular character, or sequence of
characters, that marks the end of the record being read is called the input record sepa-
rator. On Unix systems, that’s the linefeed character by default; but for portability
and convenience, Perl lets you refer to the OS-specific default input record separator
(whatever it may be) as \n, which is called newline.

Perl normally retains the input record separator as part of each record that’s read,
so it’s still there if that record is printed later. However, with certain kinds of programs,
it’s a great convenience to have the separators automatically stripped off as input is read,
and then to have them automatically replaced when output is written by print. This
effect is enabled by adding the l option to n or p with perl’s invocation.

To see what difference that option makes, we’ll compare the outputs of the fol-
lowing two commands, which print the number of each input line (but not the input
lines themselves). The numbers are provided by the special variable “$.” (covered in
table 2.2), which automatically counts records as they’re processed.

First, here’s a command that omits the l option and features a special Shell
prompt (go$) for added clarity:

go$ perl -wn -e 'print $.;' three_line_file # file has three lines
123go$

The output lines are scrunched together, because the “$.” variable doesn’t contain a
newline—and nothing else in the program causes one to be issued after each print.
Notice also that the Shell’s prompt for the next command isn’t where it should be—at
the beginning of a fresh line. That’s about as unnerving as a minor earthquake to the
average Unix user!

In contrast, when the l option is used, a newline is automatically added at the end
of print’s output:
20 CHAPTER 2 PERL ESSENTIALS

go$ perl -wnl -e 'print $.;' three_line_file
1
2
3
go$

For comparison, here’s how you’d achieve the same result without using l:

$ perl -wn -e 'print $. , "\n";' three_line_file
...

This approach requires an explicit request to print the newline, which you make by
adding the "\n" argument to print. Doing that doesn’t require a substantial
amount of extra typing in this tiny program, but the extra work would be consider-
able in programs having many print statements. To avoid the effort that would be
wasted in routinely typing "\n" arguments for print statements, Minimal Perl nor-
mally uses the l option.

Of course, in some situations it’s desirable to omit the newline from the end of an
output line, as we’ll discuss next.

2.1.6 Printing without newlines: printf

In most programs that read input, using the l option offers a significant benefit, and
in the others, it usually doesn’t hurt. However, there is a situation where the process-
ing provided by this option is undesirable. Specifically, any program that outputs a
string using print that should not be terminated with a newline will be affected
adversely, because the l option will dutifully ensure that it gets one.

This situation occurs most commonly in programs that prompt for input. Here’s
an example, based on the (unshown) script called order, which writes its output
using print but doesn’t use the l option:

$ order
How many robotic tooth flossers? [1-200]: 42
We'll ship 42 tomorrow.

Here’s another version of that script, which uses the l option:

$ order2 # using -l option
How many robotic tooth flossers? [1-200]:
42

We'll ship 42 tomorrow.

As computer users know, it’s conventional for input to be accepted at the end of a
prompt—not on the line below it, as in the case of order2. This can be accom-
plished by using the printf function rather than print, because printf is
immune to the effects of the l option.5

5 The name printf refers to this function’s ability to do formatted printing when multiple arguments
are provided (as opposed to the single-argument case we’re using for prompting).
PERL’S INVOCATION OPTIONS 21

Accordingly, the order2 script can be adjusted to suppress the prompt’s newline
by adding one letter to its output statement, as shown in the second line that follows:

print "How many robotic flossers? [1-200]:"; # -l INcompatible
printf "How many robotic flossers? [1-200]:"; # -l compatible

In summary, the l option is routinely used in Minimal Perl, and printf is used in
place of print when an automatic newline isn’t desired at the output’s end (as in the
case of prompts).

Tip on using printf for prompting

In its typical (non-prompting) usage, printf ’s first argument contains % symbols
that are interpreted in a special way. For this reason, if your prompt string contains
any % symbols, you must double each one (%%) to get them to print correctly.

2.1.7 Changing the input record separator: -0digits

When the n or p option is used, Perl reads one line at a time by default, using an OS-
appropriate definition of the input record separator to find each line’s end. But it’s not
always desirable to use an individual line as the definition of a record, so Perl (unlike
most of its UNIX predecessors) has provisions for changing that behavior.

The most common alternate record definitions are for units of paragraphs and files,
with a paragraph being defined as a chunk of text separated by one or more empty lines
from the next chunk. The input record separator of choice is specified using special
sequences of digits with the -0digits option, shown earlier in table 2.1.

Look how the behavior of the indenting program you saw earlier is altered as the
record definition is changed from a line, to a paragraph, to a file (represents the
space character):

$ perl –wpl -e 's/^/ /g;' memo # default is line mode
This is the file "memo", which has these
lines spread out like so.

And then it continues to a
second paragraph.

$ perl -00 -wpl -e 's/^/ /g;' memo # paragraph mode
This is the file "memo", which has these

lines spread out like so.

And then it continues to a
second paragraph.
$ perl -0777 -wpl -e 's/^/ /g;' memo # file mode

This is the file "memo", which has these
lines spread out like so.

And then it continues to a
second paragraph.

In all cases, indentation is inserted at the beginning of each record (signified by ^ in
the search-string field), although it may not look that way at first glance.
22 CHAPTER 2 PERL ESSENTIALS

The first command uses the default definition of a line as a record, so every line is
indented at its beginning. The second defines each paragraph as a record, so each of
the two paragraphs is indented at its beginning. The last command defines the entire
file as one record, so the single file is indented at its beginning.

Apart from these commonly used alternate record definitions, it’s also possible to
change the input record separator to an arbitrary character string by assigning that
string to the special variable “$/”. That technique is documented in table 2.7 for ref-
erence purposes and demonstrated in later chapters (e.g., listings 9.3 and 9.4).

Now we’ll turn our attention to Perl’s fastest and easiest-to-use mechanism for
storing and retrieving data: the variable.

2.2 USING VARIABLES

In part 1 of this book, most of the variables you’ll see are the simplest kind: scalar vari-
ables, which can store only one value. All Perl variables have identifying marks, and
for scalars, it’s a leading dollar sign. That’s different from AWK variables, which lack
identifying marks, and from Shell variables, whose names must be typed either with
or without a leading dollar sign—depending on the context.

Consider a scalar variable called $ring. It could store the text “size 10”, or a JPEG
image of a gold wedding ring, or even an MPEG movie clip of the climactic meltdown
of the “ring to rule them all” from the movie The Return of the King.

As these examples illustrate, the scalar variable’s restriction about storing only one
value doesn’t affect the amount or type of data it can store. But whatever is stored in
a scalar variable is treated as one indivisible unit.

In contrast, list variables provide for the storage (and retrieval) of multiple indi-
vidually identifiable values, allowing you to make requests like “give me the MPEG for
the Lord of the Rings movie number N,” where N can be 1, 2, or 3, or even “one”,
“two”, or “three”. We’ll discuss this class of variables in chapter 9.

Both types of Perl variables come in two varieties: special variables that are pro-
vided automatically by the language, such as “$.”, and user-defined variables that are
created by programmers as needed, such as $ring.

We’ll look first at the special variables.

2.2.1 Using special variables

For the convenience of the programmer, Perl provides a number of special variables
that are built into the language. Table 2.2 describes those that are most useful in the
widest variety of small programs. These variables are derived from predecessors in
the AWK language, so their AWKish names are shown as well—for the benefit of
readers who are AWKiologists.6

6 As part of the AWK-like environment provided in Perl, programmers are even allowed to use the orig-
inal AWK names for the special variables. Type man English for more information.
USING VARIABLES 23

Next, we’ll turn our attention to Perl’s hardest-working yet most inconspicu-
ous variable.

2.2.2 Using the data variable: $_

The $_ variable has the honor of being Perl’s default custodian of data. For this rea-
son, the n and p options store each input record they read in $_, and that variable acts
as the default data donor for argument-free print statements.

Consider this example of a cat-like program that shows each line of its input:

$ perl -wnl -e 'print;' marx_bros
Groucho
Harpo
Chico

The implicit input-reading loop provided by the n option reads one line at a time and
stores it in the $_ variable before executing the supplied program. Because print
lacks any explicit arguments, it turns to the default data source, $_, to get the data it
needs. In this way, each input line is printed in turn, without the need for any explicit
reference to the location of the data.

Here’s a more explicit way to write this program, which requires more typing to
achieve the same effect:

$ perl -wnl -e 'print $_;' marx_bros # $_ can be omitted
Groucho
...

The next section shows a case where there’s a good reason to refer explicitly to $_.

2.2.3 Using the record-number variable: $.

When you use the n or p option, the record-number variable, “$.”, holds the
number of the current input record (as opposed to that record’s contents, which
reside in $_). This variable is used in a variety of ways, such as to number lines, to
select lines by number for processing, and to report the total number of lines that
were processed.

Table 2.2 The data and record-number variables

Variable Name Nickname Usage notes

$_ Dollar
underscore

Data variable When the n or p option is used, $_ contains the most
recently read input record. It’s also the default data source
for many built-in functions, such as print. AWK: $0

$. Dollar dot Record
number
variable

When the n or p option is used, or the input operator, “$.”
contains the number of the current input record. AWK: NR
24 CHAPTER 2 PERL ESSENTIALS

Here’s a program that prints each line’s number, a colon, and a space, followed by
the line’s contents:

$ perl -wnl -e 'printf "$.: "; print;' marx_bros
1: Groucho
...

Notice that double quotes are used to allow the variable substitution request for “$.”
to be recognized (as in the Shell) while simultaneously causing other enclosed charac-
ters, such as “:”, to be stripped of any special meanings. (More details on quoting
techniques are presented in section 2.4.1.)

The printf function is used to output the line-number prefix, to avoid shifting
Groucho to the line below “1:”, which would happen if print with its automatic
newline were used instead (as discussed earlier). Then “print;” writes out the cur-
rent input line using its implicit $_ argument, on the same output line used by
printf.

There’s another way to write this program using only one print, which is pre-
ferred for its greater simplicity. It’s done by incorporating an explicit reference to the
data variable within the double quotes:

perl -wnl -e 'print "$.: $_";' marx_bros

This second solution is better for two reasons. First, it makes the program simpler by
using one print rather than one printf and one print; and second, the double-
quoted string serves as a visual template for the desired layout, allowing the reader to
visualize the format of the output more easily.

As useful as special variables are, Perl can’t offer predefined variables to meet all
possible needs, so it also lets you create your own on the fly.

2.2.4 Employing user-defined variables

Perl permits the programmer (a.k.a. user) to create new user-defined variables that
make handy containers for storing and retrieving data. As with the special vari-
ables discussed earlier, all references to user-defined scalar variables begin with a $
symbol. But unlike the case with special variables, the next character must be a let-
ter or underscore, optionally followed by any combination of additional digits,
letters, or underscores.

As in the Shell and AWK, variables don’t have to be declared before they’re used,
because using them automatically triggers their creation. But in contrast to its con-
text-dependent usage in the Shell, the initial $ symbol is always used with a scalar
variable in Perl. Like AWK, Perl has the convenient feature of automatically using
the empty string or the number 0 as the value of an uninitialized variable, depend-
ing on how it’s used.

Table 2.3 compares the use of scalar variables in the Shell and Perl.
USING VARIABLES 25

Here are some simple commands that employ user-defined scalar variables:

$ perl -wl -e '$message="Hello!"; print $message;'
Hello!
$ perl -wl -e '$fname="Larry"; $sname="Wall";
> print "$fname $sname is also known as $sname, $fname.";'
Larry Wall is also known as Wall, Larry.

As indicated in table 2.3, because one-line commands are already encased in single
quotes, double quotes are used to quote the values assigned to their variables.
However, in Perl scripts, you’re free to choose either type of quote (as discussed in
section 2.4.1).

Again, it’s important for the Shell-shocked to remember that the $ symbol always
accompanies the name of a scalar variable in Perl.

Table 2.3 Employing user-defined scalar variables in the Shell and Perl

Shell Perl Usage notes

Assignment name=value
name="value"

$name=value;
$name="value";

$num2=$num1=42;

In both languages, quoting a value
being assigned to a variable is
generally a good practice but isn’t
always required.

In Perl, assignments can flow through
one variable to another, providing a
simple way to initialize multiple
variables to the same value.

Access echo $star print $star; With Perl, the result of $varname is
always the variable’s actual contents,
but the Shell may replace special
characters in the variable by
something else on access. For
example, if “*” was assigned to the
variable, the Shell example would
echo filenames.

Access

without

further

processing

echo "$star" print $star;
or
print "$star";

If a variable contains a special
character such as “*”, double quotes
must be used in the Shell to prevent
further processing (e.g., filename
generation). Although they’re not
needed in Perl, using double quotes
doesn’t hurt and keeps your Shell
habits intact.

Assignment

using access

name2=$name
name2="$name"

$name2=$name;
$name2="$name";

As in the Shell, variables can be
assigned values extracted from other
variables.
26 CHAPTER 2 PERL ESSENTIALS

Tips on employing user-defined variables

As shown in table 2.3, Perl allows you to put whitespace characters around the = sym-
bol in assignment statements. Although generations of Shell programmers before you
have been seduced into exercising that liberty with Perl, you’d be wise to stick with the
no-whitespace format, because doing so reduces the interference between your new
Perl habits and your ongoing ability to program with the Shell.

For instance, consider these examples of Shell and Perl assignment statements:

performer='Chris Bliss'; # no $, no whitespace around =

$performer='Chris Bliss'; # maximally Shell compatible
$performer = 'Chris Bliss'; # minimally Shell compatible

My students have taught me that they have enough trouble remembering to drop
the Perlish leading $ symbol when assigning values to Shell variables without also
remembering to omit the whitespace around = that Perl allows. For this reason, I
recommend the maximally Shell compatible approach shown here for beginning
Perl programmers.

You’ll see user-defined variables used to good effect in several upcoming scripts,
and you’ll learn about a special subcategory called switch variables as well.

Nothing can boost programmer productivity more than avoiding the “reinvention
of the wheel”. Next, you’ll learn how Lazy JAPHs accomplish that goal.

2.3 LOADING MODULES: -M
One of Perl’s great strengths is its vast collection of freely reusable modules, which are
similar to what other languages call libraries. A module is a collection of Perl code
that’s packaged in a special format, which facilitates the reuse of its functions or sub-
routines in new programs. Some modules are included with the Perl language, and
many others are available from the Comprehensive Perl Archive Network (CPAN).7

You’ve already encountered two important functions that are built into Perl:
print and printf. The module mechanism allows your program to use other func-
tions with the same convenience, after the relevant modules have been loaded into
your program. That’s where the M invocation option comes into play—its job is to
load the indicated module.

Consider this situation. You need to convert a raggedy-looking text file into one
that has evenly filled lines, and numbered paragraphs. The following command
handles the paragraph-numbering requirement using techniques covered earlier in
this chapter:

Shell

Perl

7 See chapter 12 for detailed coverage.
LOADING MODULES: -M 27

$ perl -00 -wnl -e 'print "$.: $_";' memo # -00: paragraph mode
1: This is the file "memo", which has these
lines spread out like so.

2: And then it continues to a
second paragraph.

To reformat the text by filling in short lines up to a 60-column boundary, you could
filter the output with the standard Unix utility called fmt:

$ perl -00 -wnl -e 'print "$.: $_";' memo | fmt -60
1: This is the file "memo", which has these lines spread
out like so.

2: And then it continues to a second paragraph.

There’s nothing wrong with this approach, except that the paragraph numbers don’t
stand out as much as they could, and all the work could have been done by Perl. A
better solution is to use the CPAN module Text::Autoformat,8 which will recog-
nize the leading numbers as worthy of out-denting, and make the paragraph numbers
stand out more:

$ perl -M'Text::Autoformat' \
> -00 -wn -e 'print autoformat "$.: $_", { right => 60 };' memo
1: This is the file "memo", which has these lines spread

out like so.

2: And then it continues to a second paragraph.

For each input record (a paragraph), the double-quoted string containing the record-
number variable and data variable is first filled in with their values. Then that string is
presented to the module’s autoformat function as its first argument, followed by the
format argument that sets the right margin. Next, the output of autoformat (a
reformatted paragraph) is provided as the argument to print.

This pure-Perl solution is superior to the earlier one because not only does it pro-
duce a better result, but it also does so without depending on an external command
(fmt). Moreover, the module it uses is cool in so many ways that it won an award!9

As powerful and useful as Perl commands like the ones we’ve been examining may
be, there comes a point when you should convert them to a more convenient format,
which we’ll describe next.

8 The doubled colons in Text::Autoformat tell Perl’s module-loading system to look for Auto-
format.pm in the installation area under a directory called Text. Because of the way this module
works, the l invocation option isn’t needed with the command shown.

9 The “Larry Wall” Award for the best practical utility program of the year 2000 was presented to the
module’s author, my scarily amazing friend, Dr. Damian Conway.
28 CHAPTER 2 PERL ESSENTIALS

2.4 WRITING SIMPLE SCRIPTS

Packaging a program as a script lets you execute it by typing the script’s name:

$ weed_my_email
1,075 SPAM messages weeded out.
 13 valid messages retained.
Valid content: 2.2% -- much higher than yesterday!

This style of invocation offers many advantages over retyping the program from
scratch on the command line every time you need its services, especially for programs
that are large or difficult to remember.

In this section, we’ll cover the fundamentals of Perl scripting, as well as some
important language features that appear principally in scripts (as opposed to one-line
commands).10

On a Unix system, a Perl script is one or more Perl statements stored in a file that’s
marked as executable and readable, and that has an appropriate Perl shebang line at
the top. In some ways, it’s constructed much like a Shell script, but there are some dif-
ferences, as detailed in table 2.4.

To illustrate the differences between commands and scripts, here once again is the
one-line Perl command that prints each line of its input, along with its scripted coun-
terpart, called perl_cat.

10 Chapter 8 provides additional information about scripting, with an emphasis on more advanced
techniques.

Table 2.4 Comparison of Shell and Perl scripting techniques

Shell* Perl Comments

#! /bin/sh options #! /usr/bin/perl options As with Shell scripts, Perl scripts
need to specify a valid path to the
script’s desired interpreter on the
shebang line, such as the typical
/usr/bin/perl. Invocation
options may follow that path.

$*

"$@"

Arguments are handled
automatically via the n, p, or s
option, or <>.

In Shell scripts, command-line
arguments are accessed
collectively using “$*” or "$@".
In Perl scripts that use the n or p
option or the empty input
operator, handling of filename
arguments is automatic. In those
that use the s option, handling of
-name and -name=value switch
arguments is also automatic.
WRITING SIMPLE SCRIPTS 29

$ perl -wnl -e 'print;' marx_bros # one-liner version
Groucho
...
$ vi perl_cat # create the script

(editing session not shown)
$ cat perl_cat # examine the script; note that -e is omitted
#! /usr/bin/perl -wnl
print;

While creating the scripted version, I copied the command’s invocation options to the
script’s shebang line—except –e and its argument (because the program code for a
script appears in the script file, not as an argument to -e). Then I placed the contents
of the e option’s quoted string in the file.

The next steps are to add execute permission to the file and to conduct a test run:

$ chmod +x perl_cat # enable execute permission
$ ls -l perl_cat # confirm execute permission
-rwxr--r-- 10 tim staff 29 2003-09-30 11:58 perl_cat
$ perl_cat marx_bros # script gives same results as command
Groucho
...

There’s a big difference between this script and a comparable one written for the Shell:
You don’t have to refer to the command-line argument marx_bros in order to access
its data—the n option handles that for you automatically.

Now it’s time to delve into a subject that strikes terror into the hearts of Shell pro-
grammers—until they migrate to Perl, where it’s less fraught with danger.

2.4.1 Quoting techniques

With the Perl commands we’ll emphasize in part 1, Shell-level quoting is used to
allow the program code that follows -e to be safely conveyed as an argument to Perl:

$ perl -wnl -e 'program code' filename

Single quotes must be used, because they prevent the Shell from making any alter-
ations to the program code. However, because the Shell doesn’t allow a single quote to
appear within a single-quoted string (i.e., to be nested), you’re restricted with such
commands to using double quotes within the program code.

Perl scripts, on the other hand, aren’t first interpreted by the Shell, so you can use
both types of quotes within them.

In most cases, single and double quotes behave similarly in the Shell and Perl.11

In both languages, single quotes cause the enclosed characters to be taken literally
(e.g., '-' is interpreted as a hyphen, not a request for subtraction), whereas double
quotes allow variable substitutions to occur (e.g., $_ in "Input: $_" gets replaced

11 For a detailed discussion of the cases in which double quotes work differently in these languages, see
http://TeachMePerl.com/DQs_in_shell_vs_perl.html.
30 CHAPTER 2 PERL ESSENTIALS

by the contents of the current input line). However, although the backslash in the
Shell can generally be used to quote the character that follows it, in Perl the backslash
only acts as a quoting character within quotes (e.g., print "\$_" prints $_).

We’ll review the most typical uses of the different quoting characters next.

Typical uses of quotes

For reference purposes, common uses of single quotes, double quotes, and the back-
slash in Perl commands and scripts are summarized below.

Single quotes

• in Unix one-liners

– convey program code as the argument to the e option:
perl -wl -e 'print 84/2;' # Output: 42

• in scripts

– cause enclosed characters to lose any special meanings:
print 'The price is $1/@noon'; # The price is $1/@noon

Double quotes

• represent empty (null) strings more clearly than single quotes:
print ''; # is that one double-quote, or two single quotes?
print ""; # with l option, prints a blank line (as does above)

• enclose strings in which string modifiers (e.g., \U; see table 4.5), string escapes
(e.g., \t; see table 3.1), and variable interpolations (e.g., $price; see table 2.3)
can be processed:
print "It's \Uonly\E:\t$price lire!"; # It's ONLY: 42 lire!

Backslashes

• within single quotes within scripts

– allow nested single quotes to be treated as literal characters (which isn’t true of
the Shell):
print 'Spendy\'s restaurant saves you $$$';

• within double quotes

– introduce string escapes that insert special characters:
print "\n"; # prints "newline", OS-specific record separator

– introduce string modifiers that perform case conversions:
print "Upper case signifies \Ushouting\E" # ... SHOUTING

– allow the following special character to be taken literally, if it’s not one that
signifies a string escape or a string modifier (e.g., $):
$price=42; print "Sale price: \$$price"; # Sale price: $42

Shell programmers may be inclined to call Perl a liar when it actually speaks the truth,
for reasons we’ll cover next.
WRITING SIMPLE SCRIPTS 31

2.4.2 True and False values

We’ll frequently need to distinguish between True and False outcomes of logical tests,
and True and False values for variables. The Perl definitions of these important con-
cepts are as follows, stated separately for values treated as numbers or strings:

• For numbers, only values equating to 0 (including 0.0, and so on) are False.

• For strings, only the null string (e.g., "", '') and strings containing exactly zero
("0", '0') are False.

• Any expression that has no value, such as a variable that has not yet been set, is
considered False.

In comparison, the Shell has no general way of distinguishing between an unset vari-
able and one containing a null string, and it considers the numeric values of 0 and
non-0 as respectively True and False—the opposite of Perl’s definitions (more on this
issue in chapter 8).

NOTE In the Shell, 0 is considered True, and other numbers are False. In Perl, it’s
the other way around.

Having discussed how the Shell and Perl have switched their definitions of Truthiness
and Falsity, let’s examine another kind of switching next.

2.4.3 Handling switches: -s

To let a script work on different data items on different invocations—such as Homer’s
email address on the first run and Marge’s on the second—words with a special signifi-
cance, called arguments, can be presented after the script’s name.

As a case in point, the following invocation of a custom script shows how one fic-
titious IT manager displays her appreciation for her most outstanding software
developers (who have quirky login names). Last year, the script was invoked with
squidward, gandalf, and peewee as arguments, but this time, different develop-
ers have been chosen for special recognition:

$ award_cruises 'slurm' 'gollum' 'kryten' # argument order critical
'gollum' awarded Alaska cruise
'slurm' awarded Panama Canal cruise
'kryten' awarded Perlistan Riviera cruise

The programmer named in the first argument gets the Panama Canal cruise, the sec-
ond the Alaska Inside Passage cruise, and the third the Perlistan Riviera cruise (around
the desiccated Lake Perlistan; that’s a punishment!). This design requires the program-
mer to know how to access command-line arguments manually, and the user to present
them in exactly the right order—or the wrong developer gets the booby prize.

Fortunately, Perl provides an easier alternative, based on the s option for automatic
processing of switch arguments (a.k.a. switches). By supporting the use of switches such
as –perlistan, this enhanced version of the earlier script becomes easier to use:
32 CHAPTER 2 PERL ESSENTIALS

$ award_cruises2 -perlistan='kryten' -panama='slurm' \
> -alaska='gollum' # argument order is now unimportant
'gollum' awarded Alaska cruise
'slurm' awarded Panama Canal cruise
'kryten' awarded Perlistan Riviera cruise

The effect of each switch argument is to assign a value to a like-named switch variable
in the program. Here’s the part of the award_cruises2 script that prints the values
of its switch variables:

print "'$alaska' awarded Alaska cruise";
print "'$panama' awarded Panama Canal cruise";
print "'$perlistan' awarded Perlistan Riviera cruise";

The major benefit of this improved version is that it allows cruises to be associated
with developers through use of the –cruise-name=User-ID switch syntax, which
frees the user (and the programmer) from worrying about the argument order.

The upper portion of table 2.5 shows the two formats for switches and explains
their differences. The lower portion describes the use of the our declaration to mark
switches as optional.

Table 2.5 Using switch variables

Syntax on

command line
a

Effect Comments

-name Sets $name to
True value.

The -name format is used for switches of the on/off
type, where all that matters is detecting the switch’s
presence via a True value or absence via False. For
example, script –debug sets $debug to a True value
within script.

-name='stuff' Sets $name to
stuff.

This format is used for switches that need to have particular
values associated with their variables. For example,
script -email='a@b.ca' sets $email to that address.

Syntax in script Effect Comments

our ($color);

our ($shape,
 $size);

Makes the
-color switch
optional.

Makes the
-shape and -size
switches optional.

Switches that are optional should have their variables listed
in our statements at the top of the script, to prevent Perl
from issuing warnings when they aren’t used.

To list more than one switch variable in a single our
statement, insert commas between them and
parentheses around them.

a. Switches are implemented as scalar variables, so any combination of letters, digits, and underscores can be
used in forming a switch name—but the first character should be a letter. When the -name=stuff format is
used, proper Shell-level quoting must be used on stuff—single quotes are appropriate for literal values.
WRITING SIMPLE SCRIPTS 33

Now you can understand how award_cruises2 works. It employs the s option,
and, as you saw earlier, it was invoked with the variable-assignment style of switch
syntax (e.g., -panama='slurm'). The = symbol makes it clear that the effect of this
switch is to request the assignment of the indicated value to the associated switch vari-
able within the program. In this way, $panama got set to “slurm” with the earlier
invocation, $alaska to “gollum”, and $perlistan to “kryten”, allowing the pro-
grammer to access those variables to see who will be cruising where.

Being able to handle command-line switches in such a convenient manner is one
of the features that makes Perl so easy to use. You’ll see a complete example of a sim-
ple switch-using script next.

A switch-driven line-numbering script: show_files

The cat-like show_files script recognizes a -line_numbers (“show line num-
bers”) switch, which causes the script to insert each line’s number before its contents.
Because there’s no need to set the associated variable ($line_numbers) to any par-
ticular value, the -name syntax is used instead of -name='stuff' (see table 2.5),
causing the variable to be set to a True value.

Here are some sample runs of show_files:

$ show_files gilliam_movies # "-line_numbers" switch not used
Time Bandits
12 Monkeys
The Fisher King
$ show_files -line_numbers gilliam_movies # switch used
1: Time Bandits
2: 12 Monkeys
3: The Fisher King

Note that switches must come before filenames on the command line; otherwise,
perl interprets them as filenames:

$ show_files gilliam_movies –line_numbers # switch misplaced
Time Bandits
12 Monkeys
The Fisher King
Can't open -line_numbers: No such file or directory ...

Here’s the script—notice the -s argument on its shebang line:

$ cat show_files
#! /usr/bin/perl -s -wnl
Usage: show_files filename
show_files -line_numbers filename (for line numbers)
our ($line_numbers); # makes -line_numbers optional
$line_numbers and printf "$.: "; # if switch provided, print line
 # number, without newline
print; # print current line with newline
34 CHAPTER 2 PERL ESSENTIALS

This script can print a line-number prefix before each line, but it does so only when
the $line_numbers variable is True (reflecting the presence of the -line_numbers
switch on the command line). The conditionality of the printf statement on the
value of the switch variable is expressed by the logical and operator (discussed in
section 2.4.5), which has an “if/then” meaning here (like the Shell’s &&).

Notice that the switch variable is named in an our statement, which has the effect
of making that switch optional.12

A different approach is required for programs that have mandatory switches.
An example is award_cruises2, shown earlier, which requires all of -panama,
-perlistan, and -alaska to be set on each run (perhaps because the com-
pany gets a discount for triple bookings). In such cases, no our declarations
should be made for the variables associated with required switches. This allows a
warning to be generated for any switch that is omitted, calling the user’s atten-
tion to the mistake.

For example, here’s what happens when the award_cruises2 script is run with-
out the -alaska=User-ID switch:

$ award_cruises2 -perlistan='kryten' -panama='slurm' # -alaska?
Name "main::alaska" used only once: possible typo ...

The “used only once” message is triggered because the script is being asked to retrieve
the value of the variable $alaska, without the value first being set by a correspond-
ing switch argument on the command line. In this way, the user is alerted to her
incorrect usage and given a (somewhat vague) indication of what was missing.

You’ll see techniques for presenting custom diagnostic messages that are even
more helpful next.

2.4.4 Using warn and die

Perl’s built-in print function is an important one, but it’s not always enough. As
with Shell programming, sometimes you need to send a message to the error channel
(STDERR) rather than to STDOUT, and sometimes a script needs to terminate prema-
turely upon detection of fatal errors. Table 2.6 compares the Perl and Shell methods
for handling these conditions.13

12 This kind of our declaration is beneficial when a variable, corresponding to a switch the programmer
considers optional, would otherwise appear only once in the program. Using our makes the switch op-
tional, in the sense that no “used only once” warning is generated if the user doesn’t supply the corre-
sponding switch argument.

13 Because we concentrate on Perl commands in part 1—whose programs are enclosed in single quotes—
we show double quotes being used around function arguments in the table. But in scripts, function ar-
guments are generally single-quoted.
WRITING SIMPLE SCRIPTS 35

You’ll see examples of warn and die in the next four sections. We’ll discuss the helpful
role a special variable with a self-deprecating name can play in diagnostic messages next.

Using $0 with warn and die

As in the Shell, the $0 variable in Perl contains the name by which the script was
invoked. It’s routinely used in warn and die messages.

For example, this code snippet can be used to issue a warning if a script has
detected that the user has provided more arguments than it needs:

warn "$0: Ignoring extra arguments\n"; # sendit: Ignoring extra ...

Why is it wise to label such messages with a script’s name? Because when a user runs a
script along with several others in a pipeline, or runs a script that invokes other
scripts, she may have trouble identifying the one that’s issuing a particular warn or
die message without the help of that label.

As detailed in table 2.6, you can use newline characters, represented by the \n
sequence, at the end of warn and die messages to suppress additional information
(regarding the line number from which the message was issued and the script’s name).
The difference is easy to see:

$ validate_file -quickly # uses die "msg\n" format
validate_file: Sorry, no switches allowed
$ validate_file2 -quickly # uses die "msg" format
validate_file2: Sorry, no switches allowed at validate_file2 line 6

Table 2.6 Shell and Perl techniques for writing messages to STDOUT and STDERR

Shell Perl Comments

echo "msg" print "msg"; The examples send msg to STDOUT.

echo "msg" >&2 warn "msg\n";
print STDERR "a", "b";

The examples send their messages to STDERR.
The \n tells Perl that warn’s message is
complete, which prevents the associated line
number and filename from automatically being
added at its end; the \n should be omitted if that
additional information is desired. The advantage
of print STDERR over warn is that the former
automatically uses the “$,” variable to separate
its printed arguments (see table 2.8).

echo "msg" >&2
exit 255

Outside a BEGIN block:
 die "msg\n";

Inside a BEGIN block, using logical
operators for conditional execution:
 $success or
 warn "msg\n" and
 exit 255;

The examples send msg to STDERR and then
terminate the program, sending an error code to
the parent process. die sends code 255 by
default; but with the exit function that’s used in
a BEGIN block (see section 2.4.6), that value can
be supplied as an argument. The \n following
msg tells Perl not to automatically add the line
number and filename to the message’s end.
36 CHAPTER 2 PERL ESSENTIALS

The second form is principally used while debugging large scripts, where it’s an
advantage to the programmer to be told where in the program the early termina-
tion occurred.

The most interesting uses of warn and die occur with conditional tests based on
Perl’s if/else facility, covered in part 2. Here in part 1, we’ll focus on their use with
the simpler logical and and or operators, which are covered next.

2.4.5 Using logical and, logical or

Logical operators are used to test the True or False status of an expression, and also to
express the conditionality of one program element on another. As an example, the
show_files script presented earlier uses and to conditionally print the number of
the current line before it prints its contents:

$line_numbers and printf "$.: "; # print line-number prefix?
print; # now print the line

First, the True/False value of $line_numbers is checked. If it’s True—because the
-line_numbers switch was supplied on invocation—then the printf function is
executed, because the logical and executes the expression on its right if the one on its
left is True. The logical and therefore provides a concise way of expressing a simple
if/then condition.

Here’s an example taken from another file-printing script, which uses an optional
-double_space switch:

print; # print the current input line
$double_space and print ""; # print a blank line on request

Depending on the True/False value of $double_space, this script optionally prints
a blank line, formed from the empty quoted string and the automatic newline
donated by the l option, after each input line.

The logical or is the opposite of the logical and; instead of expressing an if/then
condition, it expresses an if/else. This means the right-hand element is executed only
if the value on its left is False.

For instance, this example shows how a script can be designed to produce lots of
messages by default, but to run more quietly when requested by a -quiet switch:

$quiet or warn "Processed record #$.\n"; # be quiet if requested

Because the optional output is of a different type than the normal output of the pro-
gram, it’s sent to the STDERR channel using warn rather than to STDOUT using
print. This allows the script’s user to selectively redirect the normal output to a
printer, for example, while allowing the warning to remain on the screen.

Shell programmers use the || and && symbols for logical or and logical and,
respectively, yielding the following as a Shell equivalent of the previous command:

[-n "$quiet"] || # test for non-emptiness
 echo "Processed record #$counter" >&2
WRITING SIMPLE SCRIPTS 37

Notice that the >&2 request is required to redirect output to STDERR in the Shell ver-
sion, whereas Perl’s warn does that automatically.

Using Perl’s logical or permits a more polite variation on the award_cruises2
program, which issues a fairly inscrutable “used only once, possible typo” warning for
required switches that are missing. Its successor, award_cruises3, identifies miss-
ing switches by sensing False values attached to their associated variables, and it issues
explanatory messages as needed:

$ award_cruises3 -perlistan='kryten' -panama='slurm' # -alaska?
Designate recipient for Alaska cruise

Here’s the line that was added to the earlier version to provide that message:

$alaska or warn "Designate recipient for Alaska cruise\n";

If more than one thing needs to be done on the basis of the True/False value of a vari-
able, you can use and operators to chain together additional program elements,
including calls to functions such as warn and print that return True:

$verbose and $error_detected and warn "An error was detected\n";
$confirmed_order and
 $in_stock and
 print "Your order will ship today";

The last statement prints the shipping confirmation message on the joint condition
that the user has confirmed he is submitting the order and that the item is in
stock. You can think of it as expressing the conditionality of print on a combined
True value of all the prior conditions, as in “if conditions A and B are both True,
then print”.

Tips on using logical and, logical or

Because the logical and is “stronger” than the logical or (in terms of operator prece-
dence), explicit parentheses are sometimes required in order to clarify your intent and
to get the correct result.

For instance, consider this statement:

$verbose or $debug and warn "Entering output section\n";

It’s interpreted as if parentheses were already placed as shown, due to the higher pre-
cedence of and over or:

$verbose or ($debug and warn "Entering output section\n");

This statement means: “If $verbose is False, then if $debug is True, then issue
the warning.” If your intent is to issue the warning if either $verbose or $debug
is True, then you should write the following instead, with actual parentheses typed
as shown:

($verbose or $debug) and warn "Entering output section\n";
38 CHAPTER 2 PERL ESSENTIALS

Such explicit parentheses are needed wherever a mixture of logical or and and opera-
tors would produce the wrong result without them.

Here is an example of a common case (discussed in the next section) that doesn’t
require the use of parentheses. Its intent is to make both warn and exit conditional
on a False value of a variable, which is the meaning that Perl attaches to this state-
ment automatically:

$info_provided or warn "Provide info\n" and exit 255;

The negation operator, “!”, converts a True result to a False one, and vice versa. It
sometimes comes in handy when you’re constructing statements involving multiple
conditions. For example, if the variable being tested is $no_info_provided rather
than $info_provided, the second statement that follows can be constructed using
the same logic as the first through use of the “!” operator:

 $info_provided or warn "Provide info\n" and exit 255;
! $no_info_provided or warn "Provide info\n" and exit 255;

That second statement is read: “If it’s not true that no information was provided (i.e.,
if information was provided), don’t issue the warning.”

Another use for Perl’s logical and and or is to construct compound conditional
tests for use with the if/else facility, as you’ll see in part 2.

Next, we’ll talk about Perl’s special provisions for executing specific code blocks
before and after processing input.

2.4.6 Programming with BEGIN and END blocks

Like AWK, Perl provides a special way of indicating that certain statements should be
executed before or after input processing occurs. The basic syntax of the so-called
BEGIN and END blocks is as follows:

BEGIN { statement(s); }
END { statement(s); }

As usual, you’re free to insert additional whitespace characters around the elements
(i.e., the keywords and curly braces) as desired.

BEGIN blocks are typically used in such tasks as initializing scalar variables with
numbers other than the default of zero, and printing headings for the program output
that will follow. END blocks are customarily used to compute summary statistics after
all input has been processed (such as averages), and to print final results. Perl allows
you to use BEGIN and END together, separately, or not at all in your programs.

In the following example, additional output is produced by statements within
BEGIN and END blocks when the -verbose switch is provided on the script’s invo-
cation. The END block’s statement exploits the fact that after all input has been pro-
cessed, the record-number variable ($.) holds the number of the last record, which
indicates the total number of records that were read:
WRITING SIMPLE SCRIPTS 39

$ cat double_space
#! /usr/bin/perl -s -wnl
Usage: double_space [-verbose] [file1 ...]
our ($verbose); # makes switch optional
BEGIN {
 $verbose and print "Running in verbose mode\n";
}
print; # print the current input record
print ""; # print a blank line
END {
 $verbose and print "Processed $. lines\n";
}
$ double_space -verbose marx_bros
Running in verbose mode

Groucho

Harpo

Chico

Processed 3 lines

Notice that it’s critical that the messages controlled by the $verbose variable occur
in BEGIN and END blocks rather than in the body of the program (i.e., within the
implicit loop provided by the n option). This allows those messages to be printed
before and after the full set of output lines, respectively—rather than before and after
the output of each individual line, which would be the result if the capital keywords
and their associated curly braces were erased from double_space. (Chapter 10 has
more on this subject.)

A BEGIN block is often the best place to determine whether a program has every-
thing it needs to do its job, as you’ll see next.

Testing and setting variables in the BEGIN block

In scripts that require the user to provide command-line switches, your first task is to
determine whether the user has indeed supplied them—and, if she hasn’t, to issue a
“Usage” message, and exit.

In other scripts, it may be necessary to set special variables to define the manner
in which input should be read or output should be written, which must be accom-
plished before input/output processing begins.

Programs that use the n or p option to request an implicit input-reading loop need
to handle these preliminary tasks in a BEGIN block. Here’s an example taken from
chapter 3, from a script called greperl. It needs to ensure that the user has provided
the required pattern before it starts to search for matches with it, which it does using
this code:
40 CHAPTER 2 PERL ESSENTIALS

BEGIN {
 # -pattern='regex' switch is required
 $pattern or
 warn "Usage: greperl -pattern='regex' [file1 ...]\n" and
 exit 255;
}

Those statements allow the script to tell the difference between this incorrect
invocation

greperl somefile

and this correct one

greperl -pattern='stuff' somefile

and to respond properly when the switch variable $pattern has a False value.14

A preliminary step in the execution of some programs is the importing of required
modules, using techniques covered next.

2.4.7 Loading modules with use

Another important difference between Perl commands and scripts is that the
-M'Module_name' invocation option isn’t used to request the loading of Perl
modules in scripts. Instead, you place a “use Module_name;” statement below
the shebang line. The following comparison between the text-formatting one-
liner shown earlier and its script counterpart contrasts the two techniques:

Command version:
$ perl -M'Text::Autoformat' -00 -wnl \
 -e 'print autoformat "$.: $_";' file

...

Script version:
$ cat autoformat
#! /usr/bin/perl -00 -wnl
use Text::Autoformat;
print autoformat "$.: $_";
$ autoformat file
...

Notice that the one-liner’s argument to the M option was repackaged in a use state-
ment in the script; that the code following the e option became the body of the
script, and that the remaining invocation options were included on the script’s she-
bang line.

14 Some False values may be considered acceptable, such as 0 (zero). In section 8.1.1, you’ll see an alter-
native method for validating the contents of the $pattern variable (based on the defined function)
which can accept False values.
WRITING SIMPLE SCRIPTS 41

2.5 ADDITIONAL SPECIAL VARIABLES

Perl has a few other special variables that are used in part 1, which we’ll document
here for reference purposes, and discuss in later chapters.

2.5.1 Employing I/O variables

Table 2.7 shows Perl’s most important Input/Output (I/O) variables, which include
those that determine what constitutes an input record ($/) and how output records
should be terminated by print ($\). Although these variables are updated automati-
cally when you uses the -0digits invocation option (see table 2.1), that option
only allows the setting of single-character record separators. When a multicharacter
separator is desired, you must set the relevant variable(s) directly. The table shows
the proper technique for doing that, along with the names of these variables in the
AWK language.

The $ARGV variable contains the name of the current input file and is typically
used to label messages regarding that file’s contents. Its relative ARGV, which lacks the
leading $ symbol, is a filehandle; it’s used to exert control over the currently open file.

Table 2.7 Special variables for I/O operations

Variable
Name and

Nickname
Usage notes

$/ Dollar-slash
Input record
separator

By default, “$/” is set to the OS-specific input record separator
character (or sequence) represented as "\n". You can change it to
an arbitrary character through use of the -0digits option or to an
arbitrary multicharacter sequence by assigning a string to “$/”.
AWK: RS
Example:
 BEGIN { $/='**'; } # ** becomes input separator

$\ Dollar-backslash
Output record
separator

When “$/” is set to an arbitrary string, it’s generally desirable to
set $\ to the same string so that -l automatically appends to
print’s output the same string it removed on input. AWK: ORS
Example:
 BEGIN { $\=$/='**'; } # set both separators

$ARGV Dollar-ARGV
(“dollar arg-vee”)
The filename
variable

When the n or p option or empty input operator is used, this
variable identifies the current input source, either by the file’s name
or by a “-” to represent STDIN. AWK: FILENAME

ARGV ARGV (“arg-vee”)
The file handle

ARGV is used to exert control over the current input source,
especially to close it. (Note: This is not a variable, as indicated by
its lack of a $ symbol.) AWK: No counterpart

@ARGV At-ARGV
The argument
array

Program arguments must be accessed manually from this array
variable when neither the n or p option nor the input operator is
used. AWK: ARGV
42 CHAPTER 2 PERL ESSENTIALS

It most commonly appears in the form close ARGV, which tells Perl to stop reading
input from the associated file.

More details on using the features listed in table 2.7, including sample programs,
are presented in later chapters.15

Next, we’ll discuss some special variables that make it easy to format output nicely.

2.5.2 Exploiting formatting variables

The special variables covered in table 2.8 provide for custom formatting of printed
output. Their AWK counterparts are indicated also in the table.

We’ll look at examples of using these variables in printing the contents of the spe-
cial variable @ARGV, the argument array, which in this case contains three values: A,
B, and C.

As this first case shows, the elements of an array are squashed together when
they’re printed without any special treatment, because the relevant formatting vari-
able ($,) is empty by default:

print @ARGV; # Unquoted
ABC

But if the variable is set to a slash, that character appears between each pair of ele-
ments, which looks nicer:

$,='/';
print @ARGV; # Unquoted, custom $,
A/B/C

Alternatively, when an array variable is double-quoted (the most common case), the
space character that’s the default setting for the associated formatting variable ($") is
automatically inserted between each pair of elements:

15 For example, “$/” is used in listing 9.4, $ARGV in section 5.4.3, ARGV in listing 8.7, and @ARGV in
section 10.4.1.

Table 2.8 Special variables for formatting output

Variable Name Usage notes

$" Dollar double
quote

‘$"’ contains the characters that are automatically inserted between
elements of arrays whose names appear in double quotes. It’s set to
the space character by default. AWK: No counterpart

$, Dollar comma “$,” is involved in two kinds of special formatting for arguments in
print statements. Its contents are used on output in place of
commas that appear between print’s arguments, and also
between the elements of unquoted array or hash arguments. It’s
empty by default. AWK: OFS
ADDITIONAL SPECIAL VARIABLES 43

print "@ARGV"; # Double quoted
A B C

In this final example, ‘$"’ is assigned a custom comma-space separator to use within
the double quotes, which—compared to the earlier SPACEd-out version—looks even
groovier:

$"=', '; # Double quoted, custom $"
print "@ARGV";

A, B, C

Tip on using formatting variables

Someday, you’ll find yourself wondering why the print statement you added to a
program is displaying funny characters in its output, only to find that those values
were assigned to “$,” or ‘$"’ earlier in the program. The best defense against this
problem is to set such variables using the local declaration, as discussed later, in sec-
tion 11.3.3.

Congratulations!

By this point, you’ve learned the most essential features of the Minimal Perl dialect,
and you’re probably eager to start writing tiny yet powerful programs that enhance
your productivity and dazzle your co-workers and managers—and make you an even
more valuable asset to your firm.

But you won’t get far without a better understanding of how to select and assem-
ble the appropriate invocation options for your upcoming creations in the Perl lan-
guage. We’ll cover that vital topic next.

2.6 STANDARD OPTION CLUSTERS

As you know by now, you can use many invocation options with the perl command,
including w, l, n, and e. What’s more, you could conceivably arrange them in many
different orders, such as –wnle and –ewnl.

However, it’s critical that certain options appear in the correct order relative to
others. The e option, for instance, must come directly before the quoted program,
and clustering it incorrectly with others (as in –ewnl) is a common error that can be
hard to identify. Accordingly, it’s prudent to develop good habits for assembling
option sequences.

For your convenience, we provide a collection of standard option clusters that are
appropriate for different types of programs. If you use them as indicated, you’ll find
it easy to convey invocation options properly to perl.

Table 2.9 lists the most commonly used option clusters. Each is suited to a differ-
ent type of program, as indicated in the Application Type column.
44 CHAPTER 2 PERL ESSENTIALS

Table 2.9 Standard option clusters for Perl commands and scripts

Primary option

cluster

Application

type
Example

a

-wl Output
generation

perl –wl –e 'print "TEXT";'

-wnl Input or Input/
Output
processing

perl –wnl –e 'print;' /etc/passwd
who | perl –wnl –e 'print;'

-wnla Field
processing;
whitespace
separators

$F[0] accesses the input record’s first field:
perl –wnla –e 'print $F[0];' F

-wnlaF'sep' Field
processing;
custom
separators

$F[2] accesses the input record’s third colon-separated
field:
perl –wnlaF':' –e 'print $F[2];' F

Record definition

cluster
Effect Example

-00 Enables
paragraph mode

Print paragraphs with numbers:
perl -00 –wnl –e 'print "$.: $_";' F

-0777 Enables file
mode

Print files with numbers:
perl -0777 –wnl –e 'print "$.: $_";' F F2

Switch cluster Effect Example

-s Enables switch
processing

Print lines with optional numbers, using switch -n:
$ print_lines –n F F2 # -n sets $n True
...
$ cat print_lines
#! /usr/bin/perl –s –wnl
$n and printf "$.: ";
print;

In-place editing

cluster
Effect Example

-i.extension Enables in-place
editing

Make changes in original file after backing it up as F.bak:
perl –i.bak –wnl –e 's/A/B/g; print' F

Module cluster Effect Example

-M'mod_name' Loads the
indicated
module

Convert tabs in $_ to spaces before printing (expand is
provided by Text::Tabs):
perl –M'Text::Tabs' \
 -wnl –e 'print expand $_;' F
In scripts, employ “use mod_name;” instead.

Program cluster Program type Usage

-e 'code' Perl command Include this cluster if the program will be provided by a
code argument rather than a script file.

a. See section 2.7 for directions on how to use this table in constructing programs.
STANDARD OPTION CLUSTERS 45

TIP Using the standard option clusters from table 2.9 will help you avoid prob-
lems that afflict many new Perl programmers.

We’ve already discussed most of the option clusters shown in the table, and you’ve
seen them used in sample programs. The exceptions are the i option for in-place edit-
ing, which is covered in section 4.7, and the a and F options for field processing, which
are discussed in section 5.3.

Before we look at a technique that helps you select the options to use in various
kinds of programs, we’ll discuss an even simpler approach that works with Perl
one-liners.

2.6.1 Using aliases for common types of Perl commands

There’s no time to waste in our half-day tutorials on Minimal Perl, so we need to
make option selection as easy as possible for the students. Toward this end, we provide
easily remembered Shell aliases that supply the appropriate invocation options for
common types of commands. You may find these aliases useful during your initial
adventures with Perl, so we’ll discuss them next.

Aliases for Perl commands: Line mode

The first alias is for Perl commands that only generate output:

alias perl_o=' perl -wl ' # Output Generation

This next group is for commands that read input:

alias perl_io=' perl -wnl ' # Input/Output Processing
alias perl_iop=' perl -wpl ' # I/O Processing, with printing
alias perl_f=' perl -wnla ' # Field Processing
alias perl_fp=' perl -wpla ' # Field Processing, with printing

Next, we’ll examine paragraph-oriented variations on these aliases.

Aliases for Perl commands: Paragraph mode

The names of these aliases are the same as those of the previous group, except they
start with a capital P to signify that they process input a paragraph at a time:

alias Perl_o=' perl -00 -wl ' # Output Generation
alias Perl_io=' perl -00 -wnl ' # Input/Output Processing
alias Perl_iop=' perl -00 -wpl ' # I/O Processing, with printing
alias Perl_f=' perl -00 -wnla ' # Field Processing
alias Perl_fp=' perl -00 -wpla ' # Field Processing, with printing

If you put these alias definitions in your Shell startup file,16 log out, and log in again,
you’ll be able to type typical Perl one-liners without worrying about option selection.

16 Usually .kshrc for the Korn shell or .bashrc for the Bash shell.
46 CHAPTER 2 PERL ESSENTIALS

All you need to do is type the alias and the -e option before your quoted program,
along with any other arguments that are needed.

For example, a program that restricts its activities to “Output Generation” can be
written as follows:

$ perl_o -e 'print 22/7;' # perl_o provides the perl invocation
3.14285714285714

Just keep this in mind: As handy as these aliases may be initially, you’ll ultimately have
to learn the underlying clusters anyway for use in your scripts, because aliases don’t
work on shebang lines.

We’ll talk next about a procedure that simplifies the selection of appropriate invo-
cation options for your Perl programs and guides you through the construction of
both commands and scripts.

2.7 CONSTRUCTING PROGRAMS

You can easily construct Perl programs of various kinds by using the information pro-
vided in table 2.9. Here’s a detailed list of the steps involved:

1 Select the appropriate Primary Option Cluster according to the program’s Appli-
cation Type (from column 2), and write it after perl on your scratch pad. If
more than one Application Type applies, choose the Primary Option Cluster
that has the most keyletters.

Sample scratch pad:
perl –wnl # for I/O Processing

2 If you want to use switches, write the Switch Cluster on your scratch pad imme-
diately to the right of perl.

Sample scratch pad:
perl -s –wnl

3 Determine which additional option clusters you need from table 2.9, apart
from the Program Cluster. For example, if your Primary Option Cluster con-
tains an n, and you don’t want the default of reading a line at a time, pick an
appropriate Record Definition Cluster. Type your chosen clusters to the left of
the Primary Option Cluster.17

Sample scratch pad:
perl -s -00 –wnl

17 The techniques described here help Perl novices by taking the guesswork out of proper option selection
and ordering—by avoiding certain legitimate option orderings that don’t work as they should, and by
ensuring that options that may need following arguments (e.g., l and F) are always at the right end of
a cluster.
CONSTRUCTING PROGRAMS 47

4 Choose an execution method.

a To use the one-line command format, type what’s on your scratch pad followed
by the -e of the Program Cluster to your Shell, but don’t press <ENTER> yet.

Sample command line:
$ perl -s -00 -wnl –e

b Alternatively, to use the script format, type the contents of your scratch pad on
the first line of an appropriately named file (scriptname). Then, begin the
shebang line by inserting #! and a space followed by your system’s correct
Perl-path before perl.18

Sample shebang line, in scriptname:
#! /usr/bin/perl -s -00 –wnl

Just as you would do when creating a Shell script, save the file and then run
chmod +x scriptname to make it executable.

5 Type your program in the appropriate manner.

a If you’re using the one-line command format, type your program in single
quotes after –e on the partially constructed command line:

$ perl -s -00 -wnl –e 'insert code here;'

b Alternatively, if you’re using the script format, type your program into
scriptname, below the shebang line:

#! /usr/bin/perl -s -00 –wnl
insert code starting here;

6 Now you’re ready to test the program. For a command, type any additional
arguments (such as names of input files) after the –e 'code' cluster, and press
<ENTER>. For a script, type scriptname followed by any additional argu-
ments, and press <ENTER>. Then, make corrections to your program until it
works correctly.

7 If the program uses the n invocation option and its last line (outside of the END
block) is the argument-free “print;” statement, consider deleting that line and
changing the n invocation option to p. To enhance readability, you may choose
to skip this adjustment; but if you make it, be sure to test the program again as
described in step 6 to make sure it still works (as it should!).

Learning to construct a program following these seven steps will make life with Perl a
lot easier for you. The next thing we’ll do is walk through a couple of examples to
show you how to apply these steps in representative cases.

18 You can determine the pathname for perl by issuing the type perl command to your Shell.
48 CHAPTER 2 PERL ESSENTIALS

TIP The only option cluster that should be placed to the right of a Primary
Option Cluster (e.g., -wnl) is the Program Cluster (-e 'code'), and
that’s only in commands—not scripts.

2.7.1 Constructing an output-only one-liner

Now we’ll write a comical variation on the classic program that prints “Hello, world!”
Because it’s very small, we’ll implement it as a one-liner.

In step 1 of section 2.7, we’re told to choose the appropriate Primary Option
Cluster and place it after perl. Because this program will do nothing but output a
message, it fits the Application Type called Output Generation. Table 2.9 prescribes
–wl, so we write the following on our scratch-pad:

perl -wl

Step 2 applies only when the Primary Option Cluster contains an n; because -wl
lacks one, this step doesn’t apply to the current case.

In step 3, we consider including additional option clusters. But this program
won’t need to use a nonstandard record definition to handle switches, to do in-place
editing, or to use any modules, so we have all the clusters we need.

In step 4a, we decide to make this program a one-liner, so we add the Pro-
gram Cluster:

perl -wl -e 'code'

In step 5a, we replace the “code” placeholder with the actual program of interest,
yielding the following:19

perl -wl -e 'print "Good day, world! What a little beauty!";'

Step 6 tells us to run the program to see what happens:

$ perl -wl -e 'print "Good day, world! What a little beauty!";'
Good day, world! What a little beauty!

Because the program works correctly, its output conjures up an image of a wacky
Aussie park ranger gushing with admiration over the drooling man-eating beast that’s
eyeing him with malice. Then the imagined scene suddenly shifts to a commercial,
just as the animal’s hideously unkempt fangs (no, I’m not talking about Austin Pow-
ers) are about to penetrate the Crocodile Hunter’s already battle-scarred leg.

19 As fans of the Crocodile Hunter know, the proper representation of his speech pattern is
print "G'day, world! Crikey, isn't she a little beauty!";

(See http://crocodilehunter.com.) But if this line were wrapped in single quotes and presented as an
argument to the e option, its apostrophes would interfere with the outer single quotes. Accordingly,
his mantra has been changed slightly for this example, so we can avoid getting mired in the intricacies
of Shell quoting techniques (detailed in http://TeachMeUnix.com/quoting.html).
CONSTRUCTING PROGRAMS 49

But he can’t blame that on Perl. Hooray! The program works. Isn’t she a little
ripper! What’s more, we’re finished, because step 7 is skipped for programs that
don’t use the n option.

Now let’s try a script.

2.7.2 Constructing an input/output script

What about programs that involve multiple Application Types? As indicated in step 1
of section 2.7, such cases require the largest option cluster (i.e., the one with the most
keyletters) from any of the relevant areas.

For example, consider the line-numbering command shown earlier:

perl -wnl -e 'printf "$.: "; print;' marx_bros

The printing of the record-number variable ($.) via printf qualifies as Output
Generation, as does the implicit printing of the $_ variable via print. Thus far, the
-wl Primary Option Cluster seems to be indicated.

But what about the marx_bros argument at the end of the command? Its pres-
ence reminds us that the program reads input, which specifies the Application Type
of Input Processing and the -wnl Primary Option Cluster. That one is larger than
-wl, so it wins, and we use it.

At this point in the construction of the program, we have the following:

perl -wnl

Step 2 doesn’t require any adjustments, because we want to use the default of reading
a line at a time with the n option.

Step 3 doesn’t apply, because no additional option clusters are needed.
We’re writing a script rather than a one-liner, so step 4b gives us this:

$ cat num_lines
#! /usr/bin/perl -wnl

Next we make the script executable:

$ chmod +x num_lines

In step 5b, we add the code for the program itself, which yields

#! /usr/bin/perl -wnl
printf "$.: ";
print;

Step 6 reminds us to supply a filename argument for our test run:

$ num_lines marx_bros
1: Groucho
...

Step 7 tells us that the final print can be deleted if we replace the shebang line’s n
option with p, which would reduce the program to:
50 CHAPTER 2 PERL ESSENTIALS

#! /usr/bin/perl -wpl
printf "$.: ";

But that adjustment makes it too easy for a casual reader to mistakenly conclude that
the program just prints line numbers, so we’ll keep the final print statement in this
case. However, when we discuss sed-like Perl programs in chapter 4, you’ll see several
examples where replacing n with p is recommended.

2.8 SUMMARY

Perl was created as an amalgamation of the best features of various UNIX languages
and utilities. But Larry also added some imaginative new features, which represent a
departure from UNIX traditions. The result is that Perl is a large and complex lan-
guage—and a potentially confusing one—because it provides so many distinctly dif-
ferent ways to accomplish the same task.

By focusing on a carefully selected subset of the language, you can easily learn to
write small programs that provide the essential infrastructure for many types of data
processing tasks. In this chapter, you became familiar with the most essential features
of Perl, including the most important invocation options , special variables , and functions.

Let’s review some key details. The w invocation option enables warnings, which
provide you with valuable feedback about potential problems in a program. The n
option enables automatic input processing, which loads the “data variable” $_ with
the contents of each input line in turn. The most widely used function in Perl pro-
grams is print, which sends its arguments to the output destination. It’s often used
without any arguments, to exploit the fact that it prints the contents of $_ by default.

In addition to learning key elements of the language, you saw how Minimal Perl’s
guidelines for program construction take the guesswork out of selecting appropriate
invocation options for programs and putting together the scripts or one-liners that
can do the job.

In the following chapters, you’ll learn other features of Perl that provide additional
benefits for programs having particular needs. However, we’ll retain our focus on
doing as much as possible with a small subset of the language. I think you’ll be
impressed with how much you’ll be able to do with the little you’ll need to learn!

Directions for further study

Appendix B provides guidelines for using parentheses in code and expands on the dis-
cussion provided at the end of section 2.4.5.

To learn more about other topics covered here, you can consult online documen-
tation by issuing the commands listed at the chapter’s end, such as man perlintro.
Some of those commands use Perl’s perldoc utility for accessing online documen-
tation, which is similar to the Unix man command. However, perldoc has addi-
tional features, such as the ability to extract and display small excerpts from large
documents. Even better, because it’s distributed with Perl, it’s available on every
SUMMARY 51

system that a Perl programmer would use—which cannot be said of man, which is
Unix-based.

In cases where both perldoc and man can do the job of delivering the desired
documentation on a Unix system, we show the use of man, because it’s faster.

For example, you can learn more about CPAN by using this command:

• perldoc -q CPAN # answers questions about CPAN

The q option instructs perldoc to search Perl’s online Frequently Asked Questions
(FAQ) files for matching keywords.

In the interest of keeping things simple in your early days with Perl, you may want
to put off exploring the following resources until you feel comfortable with all the
material in part 1:

• man perlrun # describes invocation options

• perldoc -f print # describes the "print" function

• man perlintro # provides beginner orientation

• man Text::Autoformat # describes the indicated module

• man perlop # describes operator precedence

52 CHAPTER 2 PERL ESSENTIALS

C H A P T E R 3

Perl as a (better)
grep command

3.1 A brief history of grep 53
3.2 Shortcomings of grep 54
3.3 Working with the matching

operator 60
3.4 Understanding Perl’s regex

notation 63
3.5 Perl as a better fgrep 64
3.6 Displaying the match only,

using $& 64

3.7 Displaying unmatched records
(like grep -v) 65

3.8 Displaying filenames only
(like grep -l) 67

3.9 Using matching modifiers 68
3.10 Perl as a better egrep 70
3.11 Matching in context 75
3.12 Spanning lines with regexes 77
3.13 Additional examples 81
3.14 Summary 86
This chapter shows you how to write one-line Perl commands and small Perl scripts
that surpass the limitations of the UNIX grep command. We’ll start by reviewing
grep’s history, strengths, and weaknesses, and Perl’s superior features, and then we’ll
show how Perl programs can exceed the limitations of grep.

3.1 A BRIEF HISTORY OF grep
Out of hundreds of command-line utilities provided on early UNIX systems, the
grep command rapidly emerged as one of the most important and influential. This
became most obvious in the mid 1980s, when implementations started appearing for
non-UNIX systems—including versions of the humble DOS.
53

Although modern versions of grep have additional features, the basic function of
grep continues to be the identification and extraction of lines that match a pattern.
This is a simple service, but it has become one that Shell users can’t live without.

NOTE You could say that grep is the Post-It® note of software utilities, in the
sense that it immediately became an integral part of computing culture,
and users had trouble imagining how they had ever managed without it.

But grep was not always there. Early Bell System scientists did their grepping by inter-
actively typing a command to the venerable ed editor. This command, which was
described as “globally search for a regular expression and print,” was written in docu-
mentation as g/RE/p.1

Later, to avoid the risks of running an interactive editor on a file just to search for
matches within it, the UNIX developers extracted the relevant code from ed and cre-
ated a separate, non-destructive utility dedicated to providing a matching service.
Because it only implemented ed’s g/RE/p command, they christened it grep.

But can grep help the System Administrator extract lines matching certain pat-
terns from system log files, while simultaneously rejecting those that also match
another pattern? Can it help a writer find lines that contain a particular set of words,
irrespective of their order? Can it help bad spellers, by allowing “libary” to match
“library” and “Linux” to match “Lunix”?

As useful as grep is, it’s not well equipped for the full range of tasks that a pat-
tern-matching utility is expected to handle nowadays. Nevertheless, you’ll see solu-
tions to all of these problems and more in this chapter, using simple Perl programs
that employ techniques such as paragraph mode, matching in context , cascading fil-
ters, and fuzzy matching.

We’ll begin by considering a few of the technical shortcomings of grep in greater
detail.

3.2 SHORTCOMINGS OF grep
The UNIX ed editor was the first UNIX utility to feature regular expressions (regexes).
Because the classic grep was adapted from ed, it used the same rudimentary regex
dialect and shared the same strengths and weaknesses. We’ll illustrate a few of grep’s
shortcomings first, and then we’ll compare the pattern-matching capabilities of differ-
ent greppers (grep-like utilities) and Perl.

3.2.1 Uncertain support for metacharacters

Suppose you want to match the word urgent followed immediately by a word begin-
ning with the letters c-a-l-l , and that combination can appear anywhere within a

1 As documented in the glossary, RE (always in italics) is a placeholder indicating where a regular expres-
sion could be used in source code.
54 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

line. A first attempt might look like this (with the matched elements underlined for
easy identification):

$ grep 'urgent call' priorities
Make urgent call to W.
Handle urgent calling card issues
Quell resurgent calls for separation

Unfortunately, substring matches, such as matching the substring “urgent” within the
word resurgent, are difficult to avoid when using greppers that lack a built-in facility
for disallowing them.

In contrast, here’s an easy Perl solution to this problem, using a script called
perlgrep (which you’ll see later, in section 8.2.1):

$ perlgrep '\burgent call' priorities
Make urgent call to W.
Handle urgent calling card issues

Note the use of the invaluable word-boundary metacharacter,2 \b, in the example. It
ensures that urgent only matches at the beginning of a word, as desired, rather than
within words like resurgent , as it did when grep was used.

How does \b accomplish this feat? By ensuring that whatever falls to the left of the
\b in the match under consideration (such as the s in “resurgent”) isn’t a character of
the same class as the one that follows the \b in the pattern (the u in \burgent).
Because the letter “u” is a member of Perl’s word character class,3 “!urgent” would be
an acceptable match, as would “urgent” at the beginning of a line, but not “resurgent”.

Many newer versions of grep (and some versions of its enhanced cousin egrep)
have been upgraded to support the \< \> word-boundary metacharacters introduced
in the vi editor, and that’s a good thing. But the non-universality of these upgrades
has led to widespread confusion among users, as we’ll discuss next.

RIDDLE What’s the only thing worse than not having a particular metacharacter
(\t, \<, and so on) in a pattern-matching utility? Thinking you do, when
you don’t! Unfortunately, that’s a common problem when using Unix util-
ities for pattern matching.

Dealing with conflicting regex dialects

A serious problem with Unix utilities is the formidable challenge of remembering
which slightly different vendor- or OS- or command-specific dialect of the regex nota-
tion you may encounter when using a particular command.

For example, the grep commands on systems influenced by Berkeley UNIX rec-
ognize \< as a metacharacter standing for the left edge of a word. But if you use that
sequence with some modern versions of egrep, it matches a literal < instead. On the

2 A metacharacter is a character (or sequence of characters) that stands for something other than itself.
3 The word characters are defined later, in table 3.5.
SHORTCOMINGS OF grep 55

other hand, when used with grep on certain AT&T-derived UNIX systems, the \<
pattern can be interpreted either way—it depends on the OS version and the vendor.

Consider Solaris version 10. Its /usr/bin/grep has the \< \> metacharacters,
whereas its /usr/bin/egrep lacks them. For this reason, a user who’s been working
with egrep and who suddenly develops the need for word-boundary metacharacters
will need to switch to grep to get them. But because of the different metacharacter
dialects used by these utilities, this change can cause certain formerly literal characters
in a regex to become metacharacters, and certain former metacharacters to become lit-
eral characters. As you can imagine, this can cause lots of trouble.

From this perspective, it’s easy to appreciate the fact that Perl provides you with a
single, comprehensive, OS-portable set of regex metacharacters, which obviates the
need to keep track of the differences in the regex dialects used by various Unix utili-
ties. What’s more, as mentioned earlier, Perl’s metacharacter collection is not only as
good as that of any Unix utility—it’s better.

Next, we’ll talk about the benefits of being able to represent control characters in
a convenient manner—which is a capability that grep lacks.

3.2.2 Lack of string escapes for control characters

Perl has advantages over grep in situations involving control characters, such as a tab.
Because greppers have no special provision for representing such characters, you have
to embed an actual tab within the quoted regex argument. This can make it difficult
for others to know what’s there when reading your program, because a tab looks like a
sequence of spaces.

In contrast, Perl provides several convenient ways of representing control charac-
ters, using the string escapes shown in table 3.1.

Table 3.1 String escapes for representing control characters

String escape
a Name Generates…

\n Newline the native record terminator sequence for the OS.

\r Return the carriage return character.

\t Tab the tab character.

\f Formfeed the formfeed character.

\e Escape the escape character.

\NNN Octal value the character whose octal value is NNN. E.g., \040 generates a
space.

\xNN Hex value the character whose hexadecimal value is NN. E.g., \x20 generates
a space.

\cX Control
character

the character (represented by X) whose control-character
counterpart is desired. E.g., \cC means Ctrl-C.

a. These string escapes work both in regexes and in double-quoted strings.
56 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

To illustrate the benefits of string escapes, here are comparable grep and perlgrep
commands for extracting and displaying lines that match a tab character:

grep ' ' somefile # Same for fgrep, egrep

perlgrep ' ' somefile # Actual tab, as above

perlgrep '\011' somefile # Octal value for tab

perlgrep '\t' somefile # Escape sequence for tab

You may have been able to guess what \t in the last example signifies, on the basis of
your experience with Unix utilities. But it’s difficult to be certain about what lies
between the quotes in the first two commands.

Next, we’ll present a detailed comparison of the respective capabilities of various
greppers and Perl.

3.2.3 Comparing capabilities of greppers and Perl

Table 3.2 summarizes the most notable differences in the fundamental pattern-matching
capabilities of classic and modern versions of fgrep, grep, egrep, and Perl.
The comparisons in the top panel of table 3.2 reflect the capabilities of the individual
regex dialects, those in the middle reflect differences in the way matching is per-
formed, and those in the lower panel describe special enhancements to the fundamen-
tal service of extracting and displaying matching records.

We’ll discuss these three types of capabilities in the separate sections that follow.

Comparing regex dialects

The word-boundary metacharacter lets you stipulate where the edge of a word must
occur, relative to the material to be matched. It’s commonly used to avoid substring
matches, as illustrated earlier in the example featuring the \b metacharacter.

Compact character-class shortcuts are abbreviations for certain commonly used char-
acter classes; they minimize typing and make regexes more readable. Although the
modern greppers provide many shortcuts, they’re generally less compact than Perl’s,
such as [[:digit:]] versus Perl’s \d to represent a digit. This difference accounts
for the “?” in the POSIX and GNU columns and the “Y” in Perl’s. (Perl’s shortcut
metacharacters are shown later, in table 3.5.)

Control character representation means that non-printing characters can be clearly
represented in regexes. For example, Perl (alone) can be told to match a tab via \011
or \t, as shown earlier (see table 3.1).

Repetition ranges allow you to make specifications such as “from 3 to 7 occurrences
of X ”, “12 or more occurrences of X ”, and “up to 8 occurrences of X ”. Many grep-
pers have this useful feature, although non-GNU egreps generally don’t.

Backreferences, provided in both egrep and Perl, provide a way of referring back
to material matched previously in the same regex using a combination of capturing
parentheses (see table 3.8) and backslashed numerals. Perl rates a “Y+” in table 3.2
because it lets you use the captured data throughout the code block the regex falls within.
SHORTCOMINGS OF grep 57

Metacharacter quoting is a facility for causing metacharacters to be temporarily treated
as literal. This allows, for example, a “*” to represent an actual asterisk in a regex. The
fgrep utility automatically treats all characters as literal, whereas grep and egrep
require the individual backslashing of each such metacharacter, which makes regexes
harder to read. Perl provides the best of both worlds: You can intermix metacharacters
with their literalized variations through selective use of \Q and \E to indicate the start
and end of each metacharacter quoting sequence (see table 3.4). For this reason, Perl
rates a “Y+” in the table.

Embedded commentary allows comments and whitespace characters to be inserted
within the regex to improve its readability. This valuable facility is unique to Perl, and
it can make the difference between an easily maintainable regex and one that nobody
dares to modify.4

Table 3.2 Fundamental capabilities of greppers and Perl

Capability
Classic

greppers
a

POSIX

greppers

GNU

greppers
Perl

Word-boundary metacharacter – Y Y Y

Compact character-class shortcuts – ? ? Y

Control character representation – – – Y

Repetition ranges Y Y Y Y

Capturing parentheses and backreferences Y Y Y Y+

Metacharacter quoting Y Y Y Y+

Embedded commentary – – – Y

Advanced regex features – – – Y

Case insensitivity – Y Y Y

Arbitrary record definitions – – – Y

Line-spanning matches – – – Y

Binary-file processing ? ? Y Y+

Directory-file skipping – – Y Y

Access to match components – – – Y

Match highlighting – – Y ?

Custom output formatting – – – Y

a. Y: Perl, or at least one utility represented in a greppers column (fgrep, grep, or egrep) has this capability;
Y+: has this capability with enhancements; ?: partially has this capability; –: doesn’t have this capability. See the
glossary for definitions of classic , POSIX, and GNU.

4 Believe me, there are plenty of those around. I have a few of my own, from the earlier, more carefree
phases of my IT career. D’oh!
58 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

The category of advanced regex features encompasses what Larry calls Fancy Pat-
terns in the Camel book, which include Lookaround Assertions, Non-backtracking Sub-
patterns, Programmatic Patterns, and other esoterica. These features aren’t used nearly
as often as \b and its kin, but it’s good to know that if you someday need to do more
sophisticated pattern matching, Perl is ready and able to assist you.

Next, we’ll discuss the capabilities listed in table 3.2’s middle panel.

Contrasting match-related capabilities

Case insensitivity lets you specify that matching should be done without regard to case
differences, allowing “CRIKEY” to match “Crikey” and also “crikey”. All modern
greppers provide this option.

Arbitrary record definitions allow something other than a physical line to be defined
as an input record. The benefit is that you can match in units of paragraphs, pages,
or other units as needed. This valuable capability is only provided by Perl.

Line-spanning matches allow a match to start on one line and end on another. This
is an extremely valuable feature, absent from greppers, but provided in Perl.

Binary-file processing allows matching to be performed in files containing contents
other than text, such as image and sound files. Although the classic and POSIX grep-
pers provide this capability, it’s more of a bug than a feature, inasmuch as the match-
ing binary records are delivered to the output—usually resulting in a very unattractive
display on the user’s screen! The GNU greppers have a better design, requiring you to
specify whether it’s acceptable to send the matched records to the output. Perl dupli-
cates that behavior, and it even provides a binary mode of operation (binmode) that’s
tailored for handling binary files. That’s why Perl rates a “Y+” in the table.

Directory-file skipping guards the screen against corruption caused by matches
from (binary) directory files being inadvertently extracted and displayed. Some mod-
ern greppers let you select various ways of handling directory arguments, but only
GNU greppers and Perl skip them by default (see further discussion in section 3.3.1).

Now we’ll turn our attention to the lower panel of table 3.2, which discusses other
features that are desirable in pattern-matching utilities.

Appreciating additional enhancements

Access to match components means components of the match are made available for later
use. Perl alone provides access to the contents of the entire match, as well as the portions
of it associated with capturing parentheses, outside the regex. You access this informa-
tion by using a set of special variables, including $& and $1 (see tables 3.4 and 3.8).

Match highlighting refers to the capability of showing matches within records in
a visually distinctive manner, such as reverse video, which can be an invaluable aid
in helping you understand how complex regexes are being interpreted. Perl rates
only a “?” in this category, because it doesn’t offer the highlighting effect provided
by the modern greppers. However, because Perl provides the variable $&, which
SHORTCOMINGS OF grep 59

retains the contents of the last match, the highlighting effect is easily achieved with
simple coding (as demonstrated in the preg script of section 8.7.2).

Custom output formatting gives you control over how matched records are dis-
played—for example, by separating them with formfeeds or dashed lines instead of
newlines. Only Perl provides this capability, through manipulation of its output record
separator variable ($\; see table 2.7).

Now you know that Perl’s resources for matching applications generally equal or
exceed those provided by other Unix utilities, and they’re OS-portable to boot. Next,
you’ll learn how to use Perl to do pattern matching.

3.3 WORKING WITH THE MATCHING OPERATOR

Table 3.3 shows the major syntax variations for the matching operator, which pro-
vides the foundation for Perl’s pattern-matching capabilities.

One especially useful feature is that the matching operator’s regex field can be delim-
ited by any visible character other than the default “/”, as long as the first delimiter is
preceded by an m. This freedom makes it easier to search for patterns that contain
slashes. For example, you can match pathnames starting with /usr/bin/ by typing
m|^/usr/bin/|, rather than backslashing each nested slash-character using /^\/
usr\/bin\//. For obvious reasons, regexes that look like this are said to exhibit
Leaning Toothpick Syndrome, which is worth avoiding.

Although the data variable ($_) is the default target for matching operations, you
can request a match against another string by placing it on the left side of the =~
sequence, with the matching operator on its right. As you’ll see later, in most cases the
string placeholder shown in the table is replaced by a variable, yielding expressions
such as $shopping_cart =~ /RE/.

That’s enough background for now. Let’s get grepping !

Table 3.3 Matching operator syntax

Form
a Meaning Explanation

/RE/ Match against $_ Uses default “/” delimiters and the default
target of $_

m:RE: Match against $_ Uses custom “:” delimiters and the default
target of $_

string =~ /RE/ Match against
string

Uses default “/” delimiters and the target of
string

string =~ m:RE: Match against
string

Uses custom “:” delimiters and the target of
string

a. RE is a placeholder for the regex of interest, and the implicit $_ or explicit string is the target for the match,
which provides the data for the matching operation.
60 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

3.3.1 The one-line Perl grepper

The simplest grep-like Perl command is written as follows, using invocation options
covered in section 2.1:

perl -wnl -e '/RE/ and print;' file

It says: “Until all lines have been processed, read a line at a time from file (courtesy of
the n option), determine whether RE matches it, and print the line if so.”

RE is a placeholder for the regex of interest, and the slashes around it represent
Perl’s matching operator. The w and l options, respectively, enable warning messages
and automatic line-end processing, and the logical and expresses a conditional depen-
dency of the print operation on a successful result from the matching operator.
(These fundamental elements of Perl are covered in chapter 2.)

The following examples contrast the syntax of a grep-like command written in
Perl and its grep counterpart:

$ grep 'Linux' /etc/motd
Welcome to your Linux system!

$ perl -wnl -e '/Linux/ and print;' /etc/motd
Welcome to your Linux system!

In keeping with Unix traditions, the n option implements the same data-source
identification strategy as a typical Unix filter command. Specifically, data will be
obtained from files named as arguments, if provided, or else from the standard
input. This allows pipelines to work as expected, as shown by this variation on the
previous command:

$ cat /etc/motd | perl -wnl -e '/Linux/ and print;'
Welcome to your Linux system!

We’ll illustrate another valuable feature of this minimal grepper next.

Automatic skipping of directory files

Perl’s n and p options have a nice feature that comes into play if you include any
directory names in the argument list—those arguments are ignored, as unsuitable
sources for pattern matching. This is important, because it’s easy to accidently include
directories when using the wildcard “*” to generate filenames, as shown here:

perl -wnl -e '/Linux/ and print;' /etc/*

Are you wondering how valuable this feature is? If so, see the discussion in section 6.4
on how most greppers will corrupt your screen display—by spewing binary data all
over it—when given directory names as arguments.

Although this one-line Perl command performs the most essential duty of grep
well enough, it doesn’t provide the services associated with any of grep’s options,
such as ignoring case when matching (grep -i), showing filenames only rather than
WORKING WITH THE MATCHING OPERATOR 61

their matching lines (grep -l), or showing only non-matching lines (grep -v).
But these features are easy to implement in Perl, as you’ll see in examples later in
this chapter.

On the other hand, endowing our grep-like Perl command with certain other
features of dedicated greppers, such as generating an error message for a missing pat-
tern argument, requires additional techniques. For this reason, we’ll postpone those
enhancements until part 2.

We’ll turn our attention to a quoting issue next.

Nesting single quotes

As experienced Shell programmers will understand, the single-quoting of perl’s pro-
gram argument can’t be expected to interact favorably with a single quote occurring
within the regex itself. Consider this command, which attempts to match lines con-
taining a D'A sequence:

$ perl -wnl -e '/D'A/ and print;' priorities
>

Instead of running the command after the user presses <ENTER>, the Shell issues its
secondary prompt (>) to signify that it’s awaiting further input (in this case, the
fourth quote, to complete the second matched pair).

A good solution is to represent the single quote by its numeric value, using a string
escape from table 3.1:5

$ perl -wnl -e '/D\047A/ and print;' guitar_string_vendors
J. D'Addario & Company Inc.

The use of a string escape is wise because the Shell doesn’t allow a single quote to be
directly embedded within a single quoted string, and switching the surrounding
quotes to double quotes would often create other difficulties.

Perl doesn’t suffer from this problem, because it allows a backslashed quote to
reside within a pair of surrounding ones, as in

print ' This is a single quote: \' '; # This is a single quote: '

But remember, it’s the Shell that first interprets the Perl commands submitted to it,
not Perl itself, so the Shell’s limitations must be respected.

Now that you’ve learned how to write basic grep-like commands in Perl, we’ll
take a closer look at Perl’s regex notation.

5 You can use the tables shown in man ascii (or possibly man ASCII) to determine the octal value for
any character.
62 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

3.4 UNDERSTANDING PERL’S REGEX NOTATION

Table 3.4 lists the most essential metacharacters and variables of Perl’s regex notation.

Most of those metacharacters will already be familiar to grep users, with the excep-
tions of \b (covered earlier), the handy $& variable that contains the contents of the
last match, and the \Q...\E metacharacters that “quote” enclosed metacharacters to
render them temporarily literal.

Table 3.4 Essential syntax for regular expression

Metacharacter
a Name Meaning

^ Beginning
anchor

Restricts a match with X to occur only at the beginning;
e.g. ^X.

$ End anchor Restricts a match with X to occur only at the end;
 e.g., X$.

\b Word boundary Requires the juxtaposition of a word character with a non-
word character or the beginning or end of the record. For
example, \bX, X\b, and \bX\b, respectively, match X only
at the beginning of a word, the end of a word, or as the
entire word.

. Dot Matches any character except newline.

[chars] Character class Matches any one of the characters listed in chars.
Metacharacters that aren’t backslashed letters or
backslashed digits (e.g., ! and .) are automatically treated
as literal. For example, [!.] matches an exclamation mark
or a period.

[^chars] Complemented
character class

Matches any one of the characters not listed in chars.
Metacharacters that aren’t backslashed letters or
backslashed digits (e.g., ! and .) are automatically treated
as literal. For example, [^!.] matches any character that’s
not an exclamation mark or a period.

[char1-char2] Range in
character class

Matches any character that falls between char1 and char2
(inclusive) in the character set. For example, [A-Z]
matches any capital letter.

$& Match variable Contains the contents of the most recent match. For example,
after running 'Demo' =~ /^[A-Z]/, $& contains “D”.

\ Backslash The backslash affects the interpretation of what follows it. If
the combination \X has a special meaning, that meaning is
used; e.g., \b signifies the word boundary metacharacter.
Otherwise, X is treated as literal in the regex, and the
backslash is discarded; e.g., \. signifies a period.

\Q...\E Quoting
metacharacters

Causes the enclosed characters (represented by ...) to be
treated as literal, to obtain fgrep-style matching for all or
part of a regex.

a. chars is a placeholder for a set of characters, and char1 is any character that comes before char2 in
sorting order.
UNDERSTANDING PERL’S REGEX NOTATION 63

Nevertheless, it won’t hurt to indulge in a little remedial grepology, so let’s con-
sider some simple examples. The regex ^[m-y] matches lines that start with a char-
acter in the range m through y (inclusive), such as “make money fast” and “yet another
Perl conference”. The pattern \bWin\d\d\b matches “Win95” and “Win98”, but
neither “WinCE” (because of the need for two digits after “Win”), nor “Win2000”
(which lacks the required word boundary after the “Win20” part).

We’ll refer to table 3.4 as needed in connection with upcoming examples that
illustrate its other features.

Next, we’ll demonstrate how to replicate the functionality of grep’s cousin
fgrep, using Perl.

3.5 PERL AS A BETTER fgrep
Perl uses the \Q...\E metacharacters to obtain the functionality of the fgrep com-
mand, which searches for matches with the literal string presented in its pattern argu-
ment. For example, the following grep, fgrep, and Perl commands all search for the
string “** $9.99 Sale! **” as a literal character sequence, despite the fact that the string
contains several characters normally treated as metacharacters by grep and perl:

grep '** $9\.99 Sale! **' sale
fgrep '** $9.99 Sale! **' sale
perl -wnl -e '/\Q** $9.99 Sale! **\E/ and print;' sale

The benefit of fgrep, the “fixed string” cousin of grep, is that it automatically
treats all characters as literal. That relieves you from the burden of backslashing
each metacharacter in a grep command to achieve the same effect, as shown in the
first example.

Perl’s approach—of delimiting the metacharacters to be literalized—is even better
than fgrep’s, because it allows metacharacters that are within the regex but outside
the \Q...\E sequence to function normally. For example, the following command
uses the ^ metacharacter to anchor the match of the literal string between \Q and
\E to the beginning of the line:6

perl -wnl -e '/^\Q** $9.99 Sale! **\E/' and print' sale

In addition to providing a rich collection of metacharacters that you can use in writ-
ing matching applications, Perl also offers some special variables. One that’s especially
valuable in matching applications is covered next.

3.6 DISPLAYING THE MATCH ONLY, USING $&
Sometimes you need to refer to what the last regex matched, so, like sed and awk,
Perl provides easy access to that information. But instead of using the control charac-

6 You can save a bit of typing by leaving out the \E when it appears at the regex’s end, as in this example,
because metacharacter quoting will stop there anyway.
64 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

ter & to get at it, as in those utilities, in Perl you use the special variable $& (introduced
in table 3.4). This variable is commonly used to print the match itself, rather than the
entire record in which it was found—which most greppers can’t do.

For example, the following command extracts and prints the five-digit U.S. Zip
Codes from a file containing the names and postal codes for the members of an inter-
national organization:

$ cat members
Bruce Cockburn M5T 1A1
Imrat Khan 400076
Matthew Stull 98115
Torbin Ulrich 98107
$ perl -wnl -e '/\b\d\d\d\d\d\b/ and print $&;' members # 5-digits
98115
98107

The command uses “print $&;” to print only the match, rather than “print;”,
which would print the entire line (as greppers do).

The regex describes a sequence of five consecutive digits (\d)7 that isn’t embedded
within a longer “word” (due to the \b metacharacters). That’s why Imrat’s Indian and
Bruce’s Canadian postal codes aren’t accepted as matches.

We’ll look next at the Perlish way to emulate another feature of grep—the print-
ing of lines that do not match the given pattern.

3.7 DISPLAYING UNMATCHED RECORDS
(LIKE grep -v)

Another variation on matching is provided by grep’s v option, which inverts its logic
so that records that don’t match are displayed. In Perl, this effect is achieved through
conditional printing—by replacing the and print you’ve already seen with or
print—so that printing only occurs for the failed match attempts.

The main benefit of this approach is seen in cases where it’s more difficult to write
the regex to match the lines you want to print than the ones you don’t. One elemen-
tary example is that of printing lines that aren’t empty, by composing a regex that
describes empty lines and printing the lines that don’t match:

perl -wnl -e '/^$/ or print;' file

This regex uses both anchoring metacharacters (see table 3.4). The ^ represents the
line’s beginning, the $ represents its end, and the absence of anything else between
those symbols effectively prevents the line from having any contents. Because that’s
the correct technical description of a line with nothing on it, the command says,
“Check the current line to see if it’s empty—and if it’s not, print it.”

7 Although the command works as intended, all those backslashes make it hard on the eyes. You’ll see a
more attractive way to express the idea of five consecutive digits using repetition ranges in table 3.9.
DISPLAYING UNMATCHED RECORDS (LIKE grep -v) 65

Another situation where you’ll routinely need to print non-matching lines occurs
with programs that do data validation, which we’ll discuss next.

3.7.1 Validating data

Ravi has just spent the last hour entering a few hundred postal addresses into a file.
The records look like this:

Halchal Punter:1234 Disk Drive:Milpitas:ca:95035
Mooshi Pomalus:4242 Wafer Lane:San Jose:CA:95134
Thor Iverson:4789 Coffee Circle:Seattle:WA:981O7

The fields are separated by colons, and the U.S. Zip Code field is the last one on each
line. At least, that’s the intended format.

But maybe Ravi bungled the job. The quality of his typing always goes into a down-
ward spiral just before tea-time, so he wants to make sure. Using wisdom acquired
through attending a Perl seminar at a recent conference, he composes a quick command
to ensure that each line has a colon followed by exactly five digits just before its end.

In writing the regex, Ravi uses the \d shortcut metacharacter, which can match
any digit (see table 3.5). In words, the resulting command says, “Look on each line
for a colon followed by five digits followed by the end of the line, and if you don’t find
that sequence, print the line”:

$ perl -wnl -e '/:\d\d\d\d\d$/ or print;' addresses.dat
Thor Iverson:4789 Coffee Circle:Seattle:WA:981O7

It thinks that line is incorrect? Perl must have a bug.
But after spending further time staring at the output, Ravi realizes that he acciden-

tally entered the letter O in Thor’s Zip Code instead of its look-alike, the number 0.
He knows this is a classic mistake made the world over, but that does little to reduce
his disappointment. After all, if his forefathers invented the zero, shouldn’t he have a
genetic defense against making this mistake? Aw, curry. Perhaps a sickly sweet jalebi8

will help improve his mood.
As his spirits soar along with his blood-sugar level, Ravi feels better about finding

this error, and he becomes encouraged by the success of his first foray into Perl pro-
gramming. With a surge of confidence, he enhances the regex to additionally validate
the penultimate field as having two capital letters only.

Much to his dismay, this upgraded command finds another error, in the use of
lowercase instead of uppercase:

$ perl -wnl -e '/:[A-Z][A-Z]:\d\d\d\d\d$/ or print;' addresses.dat
Halchal Punter:1234 Disk Drive:Milpitas:ca:95035
Thor Iverson:4789 Coffee Circle:Seattle:WA:981O7

What an inauspicious development. More trouble—and he’s fresh out of jalebis!
While Ravi is pondering his next move, let’s learn more about shortcut metacharacters.

8 For those unfamiliar with this noble confection of the Indian subcontinent, it is essentially a deep-fried
golden pretzel, drowned in a sugary syrup. Yum!
66 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

3.7.2 Minimizing typing with shortcut metacharacters

Table 3.5 lists Perl’s most useful shortcut metacharacters, including the \d (for digit)
that appeared in the last example. These are handy for specifying word, digit, and
whitespace characters in regexes, as well as their opposites (e.g., \D matches a non-
digit). As you can appreciate by examining their character-class equivalents in the
table, the use of these shortcuts can save you a lot of typing.

As a case in point, the regex \bTwo\sWords\b matches words with any whitespace
character between them. That’s a lot easier than specifying on your own that a newline,
space, tab, carriage return, linefeed, or formfeed is a permissible separator, by typing

\bTwo[\n\040\t\r\cJ\cL]Words\b

Another important feature of the standard greppers is their option for reporting just
the names of the files that have matches, rather than displaying the matches them-
selves. The implementation of this feature in a Perl command is covered next.

3.8 DISPLAYING FILENAMES ONLY (LIKE grep -l)

In some cases, you don’t want to see the lines that match a regex; instead, you just
want the names of the files that contain matches. With grep, you obtain this effect by
using the l option, but with Perl, you do so by explicitly printing the name of the
match’s file rather than the contents of its line.

For example, this command prints the lines that match, but with no indication of
which file they’re coming from:

perl -wnl -e '/RE/ and print;' file file2 ...

In contrast, the following alternative prints the name of each file that has a match,
using the special filename variable $ARGV9 that holds the name of the most recent
input file (introduced in table 2.7):

perl -wnl -e '/RE/ and print $ARGV and close ARGV;' file file2 ...

We’ll look at some sample applications of this technique before examining its workings.

Table 3.5 Compact character-class shortcuts

Shortcut metacharacter Name Equivalent character class
a

\w Word character [a-zA-Z0-9_]

\W Non-word character [^a-zA-Z0-9_]

\s Whitespace character [\040\t\r\n\cJ\cL]

\S Non-whitespace character [^\040\t\r\n\cJ\cL]

\d Digit character [0-9]

\D Non-digit character [^0-9]

a. The backslashed sequences in the (square-bracketed) character classes are described in table 3.1.
DISPLAYING FILENAMES ONLY (LIKE grep -l) 67

The following command looks for matches with the name “Matthew” in the
addresses.dat and members files seen earlier, and correctly reports that only the
members file has a match:

$ perl –wnl -e '/\bMatthew\b/ and print $ARGV and close ARGV;' \
> addresses.dat members
members

However, if you search for matches with the number 1, both filenames appear:

$ perl -wnl -e '/1/ and print $ARGV and close ARGV;' \
> addresses.dat members
addresses.dat
members

Note that the command reports each filename only once, just as grep -l would do,
despite the fact that there are multiple matching lines in each file.

How do these commands work? The contents of the filename variable ($ARGV)
are printed on the condition (expressed by and) that a match is found, and then the
close function is executed on the condition (again expressed by and) that the
print succeeds.

Why do you need to close the input file? Because once a match has been found
and its associated filename has been shown to the user, there’s no need to look for
additional matches in that file. The goal is to print the names of the files that contain
matches, so one printing of each name is enough.

The close function stops the collection of input from the current file and allows
processing to continue with the next file (if any). It is called with the filehandle for the
currently open file (ARGV), which you’ll recognize as the filename variable $ARGV
stripped of its leading $ symbol.

The chaining of the print and the close operations with and makes them both
contingent on the success of the matching attempt.10

Next, we’ll discuss how to request optional behaviors from the matching operator.

3.9 USING MATCHING MODIFIERS

Table 3.6 shows matching modifiers that are used to change the way matching is per-
formed. As an example, the i modifier allows matching to be conducted with insensi-
tivity to differences in character case (UPPER versus lower).

The g option will be familiar to sed and vi users. However, its effects are sub-
stantially more interesting in Perl, because of its ability to “do the right thing” in list
context (more on this in part 2).

9 Although the name $ARGV may seem an odd choice, it was selected for the warm, fuzzy feeling it gives
C programmers, who are familiar with a similarly named variable in that language.

10 Other more generally applicable techniques for conditionally executing a group of operations on the
basis of the logical outcome of another, including ones using if/else, are shown in part 2.
68 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

Are you wondering about the s and m options? They sound kinky, and in a sense they
are, because they let you bind your matches at either or both ends when record sizes
longer than a single line are used.

To help you visualize how the modifiers and syntax variations of the matching
operator fit together, table 3.7 shows examples that use different delimiters, target
strings, and modifiers. Notice in particular that the examples in each of the panels of

Table 3.6 Matching modifiers

Modifier(s)
Syntax

examples
Meaning Explanation

i /RE/i
m:RE:i

Ignore case Ignores case variations while matching.

x /RE/x
m:RE:x

Expanded
mode

Permits whitespace and comments in the RE field.

s /RE/s
m:RE:s

Single-line
mode

Allows the “.”metacharacter to match newline,
along with everything else.

m /RE/m
m:RE:m

Multi-line
mode

Changes ^ and $ to match at the beginnings or
ends of lines within the target string, rather than at
the absolute beginning or end of that string.

g /RE/g
m:RE:g

Global Returns all matches, successively or collectively,
according to scalar/list context (covered in part 2).

i, g, s, m, x /RE/igsmx
m:RE:igsmx

Multiple
modifiers

Allows all combinations; order doesn’t matter.

Table 3.7 Matching operator examples

Example Meaning Explanation

/perl/ Looks for a match
with perl in $_

Matches “perl” in $_.

m:perl: Same, except uses
different delimiters

Matches “perl” in $_.

$data =~ /perl/i Looks for a match
with perl in $data,
ignoring case
differences

Matches “perl”, “PERL”, “Perl”, and so
on in $data.

$data =~ / perl /xi Same, except x
requests extended
syntax

Matches “perl”, “PERL”, “Perl”, and so
on in $data. Because the x modifier
allows arbitrary whitespace and #-
comments in the regex field, those
characters are ignored there unless
preceded by a backslash.

$data =~ m%
 perl # PeRl too! %xi

Same, except adds a
#-comment and
uses % as a delimiter

Matches “perl”, “PERL”, “Perl”, and so
on in $data. Whitespace characters and
#-comments within the regex are
ignored unless preceded by a backslash.
USING MATCHING MODIFIERS 69

that table, despite their different appearances, are functionally identical. That’s due to
the typographical freedom provided by the x modifier and the ability to choose arbi-
trary delimiters for the regex field.

Next, you’ll see additional examples of using the i modifier to perform case-insen-
sitive matching.

3.9.1 Ignoring case (like grep -i)

A common problem in matching operations is disabling case sensitivity, so that a
generic pattern like mike can be allowed to match Mike, MIKE, and all other possible
variations (mikE, and so on).

With modern versions of grep, case sensitivity is disabled using the i option. In
Perl, you do this using the i (ignore-case) matching modifier, as in this example:

perl -wnl -e '/RE/i and print;' file file2 ...

Because it uses case-insensitive matching, the output from the following command
shows a line from the file that you haven’t seen yet, containing the capitalized version
of the word of interest. In addition, the “resurgent calls” line that accidentally
appeared in earlier output is missing, because the use of \b on both sides of urgent
prevents substring matches:

$ perl -wnl -e '/\burgent\b/i and print;' priorities
Make urgent call to W.
Handle urgent calling card issues
URGENT: Buy detergent!

Even before Perl arrived on the scene, grep had competition. Let’s see how Perl com-
pares to grep’s best known rival.

3.10 PERL AS A BETTER egrep
The grep command has an enhanced relative called egrep, which provides meta-
characters for alternation, grouping, and repetition (see tables 3.8 and 3.9) that grep
lacks. These enhancements allow egrep to provide services such as the following:

• Simultaneously searching for matches with more than one pattern, through use
of the alternation metacharacter (|):
egrep 'Bob|Robert|Bobby' # matches Bob, Robert, or Bobby

• Applying anchoring or other contextual constraints to alternate patterns,
through use of grouping parentheses:
egrep '^(Bob|Robert|Bobby)' # matches each at start of line

egrep '\b(Bob|Robert|Bobby) Dobbs\b' # matches each variation

• Applying quantifiers such as “+” (meaning one or more) to multi-character pat-
terns, through use of grouping parentheses:
egrep 'He said (Yadda)+ again' # "Yadda", "YaddaYadda", etc.
70 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

Traditionally, we’ve had to pay a high price for access to egrep’s enhancements by sac-
rificing grep’s capturing parentheses and backreferences to gain the added metachar-
acters (see table 3.9). But nowadays, we can use GNU egrep, which (like Perl)
simultaneously provides all these features, making it the gold standard of greppers.

However, GNU egrep has some differences in syntax and functionality from
grep, as shown in table 3.8. In particular, the parentheses it uses to capture a match
aren’t backslashed, and they simultaneously provide the service of grouping regex
components. By no coincidence, Perl’s parentheses work the same way.11

As you’ll see throughout the rest of this chapter, Perl provides many valuable
enhancements over what GNU egrep has to offer, including the numbered variables
described in the bottom panel of table 3.8. That feature will be demonstrated in
examples shown in section 4.3.4 and in the preg script in section 8.7.2.

11 Those clever GNU folks have borrowed liberally from Perl while implementing their upgrades to the
classic UNIX utilities.

Table 3.8 Metacharacters for alternation, grouping, match capturing, and match referencing in

greppers and Perl

Syntax
a Name Explanation

X|Y|Z Alternation This metacharacter allows a match with any of the
patterns separated by a vertical bar. The example looks
for matches with any of the patterns represented by X,
Y, or Z.

\(X\) Capturing parentheses
(grep)

Capturing parentheses store what’s matched within
them for later access. grep requires those parentheses
to be backslashed, unlike GNU egrep and Perl.

(X) Grouping parentheses
(egrep, Perl)

Grouping parentheses cause the effects of associated
metacharacters to be applied to the group. They’re used
with alternations, as in a(X|Y)b; repetitions of
alternations, as in (X|Y)+; and repetitions of multi-
character sequences, as in (XY)+.

(X) Capturing and grouping
parentheses (GNU
egrep, Perl)

With these utilities, parentheses provide both capturing
and grouping services.

\1, \2, ... Backreferences (grep,
GNU egrep, Perl)

These are used within a regex to access a stored copy
of what was most recently matched by the pattern in
the first, second, and so on set of capturing
parentheses.

Perl enhancement

$1, $2, ... Numbered variables These are like backreferences, except they’re used
outside a regex, such as in the replacement field of a
substitution operator or in code that follows a matching
or substitution operator.

a. X, Y and Z are placeholders, standing for any collection of literal characters and/or metacharacters.
PERL AS A BETTER egrep 71

Next, we’ll review the use of the alternation metacharacter in egrep and explain how
you can use Perl to obtain order-independent matching of alternate patterns even
more efficiently.

3.10.1 Working with cascading filters

That TV receiver built into Guido’s new monitor sure comes in handy. But all too
soon, his virtual chortling over SpongeBob’s latest escapade in Bikini Bottom is inter-
rupted by that annoying phone ringing again. “Hello, may I help you? Sure boss, no
problem. I’ll get right on it! ”

He has just been given the task of extracting some important information from the
projects file, which contains the initials of the programmers who worked on vari-
ous projects. Here’s how it looks:

area51: ET,CYA,NOYB,UFO,NSA
glorp: FYI,INGY,ESR
slurm: URI,INGY,TFM,ESR,SRV
yabl: URL,SRV,INGY,ESR

The boss wants to know which projects, if any, ESR and SRV have both worked on.12

Being well rested from his cartoon interlude, Guido realizes that the tricky part is
avoiding the trap of order-specificity, meaning he can’t assume that “ESR” necessarily
appears to the left of “SRV”, or vice versa.

He decides to start with a grep command that matches the word “ESR” followed
by the word “SRV”, and to worry about the reverse ordering later on. To indicate that
he doesn’t care what comes between those sets of initials, he opts for grep’s “longest
anything” sequence: “.*” (see table 3.10). This works because the “*” allows for zero
or more occurrences of the preceding character (see table 3.9), and the “.” can match
any character on the line. Time for a test run:

$ grep '\<ESR\>.*\<SRV\>' projects
slurm: URI,INGY,TFM,ESR,SRV

That’s a promising start. But Guido soon concludes that’s as far as he can go with
grep, because he’ll need egrep’s alternation metacharacter to allow for the other
ordering of the developers.13

Guido whips up a fresh cup of cappuccino, along with a shiny new egrep varia-
tion on his original command. It uses the alternation metacharacter to signify that a
match with the pattern on either its left or its right is acceptable (see table 3.8):

$ egrep '\<ESR\>.*\<SRV\>|\<SRV\>.*\<ESR\>' projects
slurm: URI,INGY,TFM,ESR,SRV
yabl: URL,SRV,INGY,ESR

12 Guido isn’t sure, but he thinks those initials stand for Eric S. Raymond and Stevie Ray Vaughan.
13 He’s overlooking the alternative approach based on cascading filters, which we’ll cover in short order.
72 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

It worked the first time! He wisely savors the ecstasy of the moment, having learned
from experience that early programming successes are often rapidly followed by out-
breaks of latent bugs.

Guido’s mentor, Angelo, is passing by his cubicle and pauses momentarily to
glance at Guido’s screen. He suggests that Guido change the “*” metacharacters into
“+” ones. Guido says Yes, you’re right, of course!—and then he makes a mental note to
find out what the difference is.

Table 3.9 lists Perl’s quantifier metacharacters (some of which are also found
in grep or egrep), including the “+” metacharacter in which Guido has become
interested.

The executive summary of the top panel of table 3.9 is that the “?” metachar-
acter makes the preceding element optional, “*” makes it optional but allows it
to be repeated, and “+” makes it mandatory but allows it to be repeated.

By now, Guido has determined that changing the instances of “.*” to “.+” in
his command makes no difference in his results, because the back-to-back word-
boundary metacharacters already ensure that all matches have some (non-word) char-
acter between the sets of initials (at least a comma). But Angelo convinces him that
the use of “.*” where “.+” is more proper could confuse somebody later—like

Table 3.9 Quantifier metacharacters

Syntax
a Description Utilities

b Explanation

X* Optional, with
repetition

grep, egrep,
perl

Matches a sequence of zero or more
consecutive Xs.

X+ Mandatory,
with repetition

egrep, perl Matches a sequence of one or more
consecutive Xs.

X? Optional egrep, perl Matches zero or one occurrence of X.

X\{min,max\}
X\{min,\}
X\{count\}

X{min,max}
X{min,}
X{count}

X{,max}

Number of
repetitions

Number of
repetitions

Number of
repetitions

grep

GNU egrep,
perl

perl

For the first form of the repetition range, there
can be from min to max occurrences of X. For
the forms having one number and a comma,
no upper limit on repetitions of X is imposed if
max is omitted, and as many as max
repetitions are allowed if min is omitted. For
the other form, exactly count repetitions of X
are required.

Note that the curly braces must be
backslashed in grep.

REP? Stingy
matching

perl When “?” immediately follows one of the
above quantifiers (represented by REP), Perl
seeks out the shortest possible match rather
than the longest (which is the default). A
common example is “.*?”; see table 3.10 for
additional information.

a. X is a placeholder for any character, metacharacter, or parenthesized group. For example, the notation X+
includes cases such as 3+, [2468]+, and (Yadda)+.

b. Some of these metacharacters are also provided by other Unix utilities, such as sed and awk.
PERL AS A BETTER egrep 73

Guido himself, next year when he needs this command once again—so he opts for
the “.+” version.14

Guido is happy with his solution, but his boss has a surprise in store for him.

Switching from alternation metacharacters to pipes

Now, Guido’s boss wants to know which projects a group of four particular developers
worked on together. That’s trouble, because the approach he has used thus far doesn’t
scale well to larger numbers of programmers, due to the rapidly increasing number of
alternate orderings that must be accommodated.15

Angelo suggests an approach based on a cascading filter model16 as a better choice;
it will do the matching incrementally rather than all at once. Like Guido’s egrep
solution, the following pipeline also matches lines that contain both “ESR” and
“SRV”—regardless of order—but as you’ll see in a moment, it’s more amenable to
subsequent enhancements:

$ egrep '\<ESR\>' projects | egrep '\<SRV\>'
slurm: URI,INGY,TFM,ESR,SRV
yabl: URL,SRV,INGY,ESR

This command works by first selecting the lines that have “ESR” on them and then
passing them through the pipe to the second egrep, which shows the lines that (also)
have “SRV” on them. Thus, he’s avoided the order-specificity problem completely by
searching for the required components separately.

To handle the boss’s latest request, Guido constructs this pipeline:

egrep '\<ESR\>' projects |
 egrep '\<SRV\>' |
 egrep '\<CYA\>' |
 egrep '\<FYI\>'

NOTE It’s not necessary to format the individual filtering components in this
stairstep fashion for either the Shell or Perl—the code just looks nicer
this way.

He could also implement a pipeline of this type using Perl instead of egrep, but he
sees little incentive to do so. Either way he writes it, a cascading-filter solution is an
attractive alternative to the difficult chore of composing a single regex that would in
itself handle all the different permutations of the initials. But as you’ll see next, Perl
makes an even better approach possible.

14 After all, what good is having an angel looking over your shoulder if you don’t heed his advice?
15 For example, adding 1 additional programmer for a total of 3 requires 6 variations to be considered;

for a group of 5, there are 120 variations to handle!
16 By analogy to the way water works its way down a staircase-like cliff one level at a time, a set of filters

in which each feeds its output to the next is also said to “cascade.”
74 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

Switching from egrep to Perl to gain efficiency

All engineering decisions involve tradeoffs of one resource for another. In this case,
Guido’s cascading-filter solution simplifies the programming task by using additional
system resources—one additional process per programmer, and nearly as many pipes
to transfer the data.17 There’s nothing wrong with that tradeoff—unless you don’t
have to make it.

What’s the alternative? To use Perl’s logical and to chain together the individual
matching operators, which only requires a single perl process and zero pipes, no mat-
ter how many individual matches there are:

perl -wnl -e '/\bESR\b/ and
 /\bSRV\b/ and
 /\bCYA\b/ and
 /\bFYI\b/ and
 print;' projects

Note that you can’t make any comparable modification to the stack of egrep com-
mands shown earlier, because egrep’s specialization for matching prevents it from
supporting more general programming techniques, such as this chaining one.

There’s much to recommend this Perl solution over its more resource-intensive
egrep alternative: It requires less typing, it’s portable to other OSs, and it can access
all of Perl’s other benefits if needed later.

Next, we’ll turn our attention to a consideration of context (you know, what public
figures are always complaining about being quoted out of).

3.11 MATCHING IN CONTEXT

In grepping operations, showing context typically means displaying a few lines above
and/or below each matching line, which is a service some greppers provide. Perl offers
more flexibility, such as showing the entire (arbitrarily defined) record in which the
match was found, which can range in size from a single word to an entire file.

We’ll begin our exploration of this topic by discussing the use of the two most
popular alternative record definitions: paragraphs and files.

3.11.1 Paragraph mode

Although there are many possible ways to define the context to be displayed along
with a match, the simple option of enabling paragraph mode often yields satisfactory
results, and it’s easy to implement. All you do is include the special -00 option with
perl’s invocation (see chapter 2), which causes Perl to accumulate lines until it
encounters one or more blank lines, and to treat each such accumulated “paragraph”
as a single record.

17 How inefficient is it? Well, on my system, the previous solution takes about seven times longer to run
than its upcoming Perl alternative (in both elapsed and CPU time).
MATCHING IN CONTEXT 75

The one-line command for displaying the paragraphs that contain matches
is therefore

perl -00 -wnl -e '/RE/ and print;' file

To appreciate the benefit of having a match’s context on display, consider the frustra-
tion that the output of the following line-oriented command generates, versus that of
its paragraph-oriented alternative:

$ cat companies
Consultix is a division of
Pacific Software Gurus, Inc.

Insultix is a division of Ricklesosity.com.
$ grep 'Consultix' companies
Consultix is a division of

A division of what? Please tell me!

$ perl -00 -wnl -e '/Consultix/ and print;' # paragraph mode
Consultix is a division of
Pacific Software Gurus, Inc.

That’s better! But a scandal is erupting on live TV; let’s check it out.

Senator Quimby needs a Perl expert

There’s trouble over at Senator Quimby’s ethics hearing, where the Justice Depart-
ment’s IT operatives just ran the following command on live TV against the written
transcript of his testimony:

$ perl -wnl -e '/\bBRIBE\b/ and print;' SenQ.testimony # line mode
I ACCEPTED THE BRIBE!

His handlers voice an objection, and they’re granted the right to make modifica-
tions to that command. It’s rerun with paragraph-mode enabled, to show the
matches in context, and with case differences ignored, to ensure that all bribe-
related remarks are displayed:

$ perl -00 -wnl -e '/\bBRIBE\b/i and print;' SenQ.testimony
I knew I'd be in trouble if
I ACCEPTED THE BRIBE!
So I did not.

My minimum bribe is $100k, and she only offered me $50k,
so to preserve my pricing power, I refused it.

Although the senator seemed to be exonerated by the first paragraph, the second one
cast an even more unfavorable light on his story!

He would have been happier if his people had limited the output to the first para-
graph by using and close ARGV to terminate input processing after the first match’s
record was displayed:18

18 See section 3.8 for another application of this technique.
76 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

$ perl -00 -wnl -e '/\bBRIBE\b/i and close ARGV;' SenQ.testimony
I knew I would be in trouble if
I ACCEPTED THE BRIBE!
So I did not.

grep lacks the capability of showing the first match only, which may be why you
never see it used in televised legal proceedings.

Sometimes you need even more context for your matches, so we’ll look next at
how to match in file mode.

3.11.2 File mode

In the following command, which uses the special option -0777 (see table 2.9), each
record consists of an entire file’s worth of input:

perl -0777 -wnl -e '/RE/ and print;' file file2 ...

With this command, the matching operator is applied once per file, with output rang-
ing from nothing (if there’s no match) to every file being printed in its entirety (if
every file has a match).

This matching mode is more commonly used with substitutions than with matches.
For this reason, we’ll return to it in chapter 4, when we cover the substitution operator.

Next, you’ll learn how to write regexes that match strings which span lines.

3.12 SPANNING LINES WITH REGEXES

Unlike its UNIX forebears, Perl’s regex facility allows for matches that span lines,
which means the match can start on one line and end on another. To use this feature,
you need to know how to use the matching operator’s s modifier (shown in table 3.6)
to enable single-line mode, which allows the “.” metacharacter to match a newline. In
addition, you’ll typically need to construct a regex that can match across a line bound-
ary, using quantifier metacharacters (see tables 3.9 and 3.11).

When you write a regex to span lines, you’ll often need a way to express indiffer-
ence about what’s found between two required character sequences. For example,
when you’re looking for a match that starts with a line having “ON” at its beginning
and that ends with the next line having “OFF” at its end, you must make accommo-
dations for a lot of unknown material between these two endpoints in your regex.

Four types of such “don’t care” regexes are shown in table 3.10. They differ as to
whether “nothing” or “something” is required as the minimally acceptable filler between
the endpoints, and whether the longest or shortest available match is desired.

The regexes in table 3.10’s bottom panel use a special meaning of the “?” meta-
character, which is valuable and unique to Perl. Specifically, when “?” appears after
one of the quantifier metacharacters, it signifies a request for stingy rather than greedy
matching; this means it seeks out the shortest possible sequence that allows a match,
rather than the longest one (which is the default).
SPANNING LINES WITH REGEXES 77

Representative techniques for matching across lines are shown in table 3.11, and
detailed instructions for constructing regexes like those are presented in the next section.

Table 3.10 Patterns for the shortest and longest sequences of anything or something

Metacharacter

sequence
a

Meaning Explanation

.* Longest anything Matches nothing, or the longest possible sequence of
characters.

.+ Longest something Matches the longest possible sequence of one or more
characters.

.*? Shortest anything Matches nothing, or the shortest possible sequence of
characters.

.+? Shortest something Matches the shortest possible sequence of one or
more characters.

a. The metacharacter “.” normally matches any character except newline. If single-line-mode is enabled via the s
match-modifier, “.” matches newline too, and the indicated metacharacter sequences can match across line
boundaries.

Table 3.11 Examples of matching across lines

Matching operator
a Match type Explanation

/\bMinimal\b.+\bPerl\b/s Ordered
words

Because of the s modifier, “.” is allowed
to match newline (along with anything
else). This lets the pattern match the
words in the specified order with anything
between them, such as “Minimal training
on Perl”.

/\bMinimal\b\s+\bPerl\b/ Consecutive
words

This pattern matches consecutive words.
It can match across a line boundary, with
no need for an s modifier, because \s
matches the newline character (along with
other whitespace characters). For
example, the pattern shown would match
“Minimal” at the end of line 1 followed by
“Perl” at the beginning of line 2.

/\bMinimal\b[\s:,-]+\bPerl\b/ Consecutive
words,
allowing
intervening
punctuation

This pattern matches consecutive words
and enhances the previous example by
allowing any combination of whitespace,
colon, comma, and hyphen characters to
occur between them. For example, it
would match “Minimal:” at the end of line
1 followed by “Perl” at the beginning of
line 2.

a. To match the shortest sequence between the given endpoints, add the stingy matching metacharacter (?) after
the quantifier metacharacter (usually +). To retrieve all matches at once, add the g modifier after the closing
delimiter, and use list context (covered in part 2).
78 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

As shown in table 3.11, regexes of different types are needed to match a sequence of
two words in the same record, depending on what’s permitted to appear between
them. The table’s examples illustrate typical situations that provide for anything,
only whitespace, or whitespace and selected punctuation symbols to appear between
the words.

Next, you’ll see how to combine line-spanning regexes with appropriate uses of
the matching operator to obtain line-spanning matches.

3.12.1 Matching across lines

To take advantage of Perl’s ability to match across lines, you need to do the following:

1 Change the input record separator to one that allows for multi-line records
(using, for example, -00 or -0777).

2 Use a regex that allows for matching across newlines, such as:

• The “longest anything” sequence (.*; see table 3.10) in conjunction with the
s match modifier, which allows “.” to match any character, including the
newline (this is called single-line mode).

• A regex that describes a sequence of characters that includes the newline,
either explicitly as in [\t\n]+ and [_\s]+, or by exclusion as in
[^aeiou]+. (Those character classes respectively represent a sequence con-
sisting of one or more tabs or newlines, a sequence of one or more under-
scores or whitespace characters, or a sequence of one or more non-vowels.)

For example, let’s say you want to match and print the longest sequence starting with
the word “MUDDY” and ending with the word “WATERS”, ignoring case. The
sequence is allowed to span lines within a paragraph, and anything is allowed to
appear between the words. To solve this problem, you adapt your matching operator
from the sample shown in table 3.11 for the Match Type of Ordered Words.

Here’s the appropriate command:19

perl -00 -wnl -e '/\bMUDDY\b.*\bWATERS\b/si and print $&;' file

A common mistake is to omit the s modifier on the matching operator; that prevents
the “.” metacharacter (in .*) from matching a newline, and thus limits the matches
to those occurring on the same physical line.

Several interesting examples of line-spanning regexes will be shown in upcoming
programs. To prepare you for them, we’ll take a quick look at a command that’s used
to retrieve data from the Internet.

19 Methods for printing multiple matches at once are shown later in this chapter, and methods for han-
dling successive matches through looping techniques are shown in, e.g., listing 10.7.
SPANNING LINES WITH REGEXES 79

3.12.2 Using lwp-request

Although interactive search engines are getting more powerful all the time, in some
cases you may prefer to obtain information from the Internet using programs of your
own. Fortunately, it’s easy to do such Web-scraping using Perl commands in conjunc-
tion with Perl’s lwp-request script,20 which provides easy access to the Library for
Web Programming (LWP, covered in chapter 12).

The simplest thing you can do with lwp-request is to download the contents
of a web page to your computer, in preparation for further processing. By default, you
get the page in its native format, but you can also specify conversions to PostScript,
text, or (readability-enhanced) HTML.

For example, to fetch the front page for www.yahoo.com to your system and store
its text in a file, you would use a command that requests output in text format:21

lwp-request -o text www.yahoo.com > yahoo.txt

After running this command, you could search within yahoo.txt using grep-like
Perl commands to find material of interest.

Or, to store the web page in PostScript form, for nicer printing, you would use
this variation:

lwp-request -o ps www.yahoo.com > yahoo.ps

The next section shows you how to use lwp-request to “scrape” a web page for
travel-related information, such as discounted flights to exotic destinations.

3.12.3 Filtering lwp-request output

Suppose you know that the USA TOMORROW newspaper always has travel tips on
its “Money” page, and you’d like an easy way to display the latest ones on your
surfing-enabled Perl-equipped PDA. After figuring out the appropriate URL, you
can use the following command to isolate and display the paragraph that contains
the latest travel tips:

$ lwp-request -o text usatomorrow.com/money/front.htm |
> perl -00 -wnl -e '/\bTravel tips\b/ and print;' # paragraph mode
TRAVEL TIPS AND DEALS
Want to know how you can fly at freight rates?
Simple--just pack yourself in a shipping crate!
Details in Tuesday's edition.

But perhaps your only destination of interest is the exotic Indonesian island of Bali.
How do you refine this command to better suit your needs? By modifying the regex to

20 If it isn’t already on your system, you can download the LWP module from CPAN and install it using
the techniques shown in chapter 12.

21 The o option makes use of the additional modules HTML::Parse and HTML::FormatText; see
chapter 12 for installation instructions.
80 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

require that the word Bali appears in the same paragraph as Travel tips, using the
Ordered Words pattern from table 3.11: 22

$ lwp-request -o text usatomorrow.com/money/front.htm |
> perl -00 -wnl -e '/\bTravel tips\b.+\bBali\b/is and print;'
$

Note the use of the s modifier to allow “.+” to match across a newline, and the i
modifier to ignore case differences (for all you know, those excitable travel writers may
be SHOUTING about Bali!).

As you can see, there was no match for Bali in today’s paper, but you can try again
tomorrow. If you’re especially keen on travel, you can store the command in your
Shell startup file, so you’ll see the latest travel tips every time you log in.

3.13 ADDITIONAL EXAMPLES

Now that we have covered Perl’s most important features for matching patterns, we’ll
discuss some more exotic examples of what you can do with one-line grep-like com-
mands, and we’ll illustrate correct and incorrect approaches to composing regexes.
We’ll start by doing some log-file analysis, which is a common activity of System
Administrators (SAs).

3.13.1 Log-file analysis

Many of us play the role of the SA these days, including some who have that official
job title and others who maintain their own systems or those of friends and family. As
professional SAs will tell you, the only task more important than doing regular disk
backups is that of monitoring system log files for error messages.

One day, I developed an interest in identifying hits on my web site that come from
sources outside the USA. I started by examining a few records from my Apache web
server’s access_log file to see how they were formatted. Here are some samples
shown with carriage returns inserted after “- -” to let the lines fit on the page:

robot.szukacz.pl - -
 [17/Aug/2006:21:05:21 -0700] "GET /bsh.html HTTP/1.1" 200 9519
proxy3.cc.swin.edu.au - -
 [19/Aug/2006:00:44:24 -0700] "GET /Pa1055.jpg HTTP/1.0" 200 7741
crawler14.googlebot.com - -
 [17/Aug/2006:00:46:12 -0700] "GET /robots.txt HTTP/1.0" 200 328

The domain name of the visiting surfer is in the first field, which you can see is made
up of letters, digits, and dots. Domains ending in two-letter country codes other than
.us are “foreign” (to Americans, at least); for instance, the .pl domain stands for
Poland, and .au stands for Australia.

22 Although this example works at the time of this writing, there could be a future change in the format
of this page that would require modifications to the regex shown. Caveat scraper!

➦

➦
➦

ADDITIONAL EXAMPLES 81

Given this information, you could use the following regex to match the lines that
start with domains ending in country codes:

/^[\w\.]+\.[a-z][a-z] /i

The leading caret (^) ensures that each match starts at the beginning of the line. The
following character-class ([...]) lists the characters that are acceptable in the subdo-
main field, based on the evidence that they consist of letters and digits (both handled
by the \w metacharacter, covered in table 3.5) and literal period (\.) characters.23 The
“+” after the character class requests a sequence of one or more of the indicated char-
acters. Following that, a literal period is needed before the country code (a letter fol-
lowed by a letter), and then a space character. Just in case capital letters appear in
some records, the matching operator’s i modifier is used to ignore case variations.

That’s how you could build up a regex to extract lines having domains ending in
country codes. But I wouldn’t recommend it!

There are two problems with this approach: The solution isn’t properly aligned
with the objective, and it isn’t accurate enough to ensure the correct results. Remem-
ber, all we’re trying to accomplish in this exercise is to match lines whose first field
ends in two letters. Complicating the issue by trying to guess which characters might
legitimately appear in that field, and getting it wrong, costs extra time and effort and
is likely to give incorrect results.

What’s wrong? Hyphens should be permitted in the domain names, but not the
underscores permitted by \w (in addition to the desired letters and digits). Although
this will prevent us from matching hyphenated domain names, allowing underscores
probably won’t cause any trouble, because such (illegal) domain names shouldn’t
appear in the file anyway.

TIP Confused about whether a particular symbol will have a special or literal
meaning in a Perl regex? To ensure the literal meaning, put a backslash
before it. For example, “\.” means a literal period.

Sometimes, if you’re not sure what something is, it’s helpful to consider the other side
of the coin and think about what it is not.

This problem is more easily solved from that vantage point. Think about this:
Have you ever seen whitespace characters, such as a space or tab, in a domain name?
Certainly not, because they’re expressly disallowed.

Accordingly, let’s define the subdomain-portion of the first field, which leads up
to the period followed by the two-letter top-level domain-name portion, as consisting
of one or more non-whitespace characters. (Again, this could theoretically allow some
illegal characters to match, but they shouldn’t be present in the log file anyway, so this
simplification shouldn’t hurt.)

23 In the context of a character class ([]), the period is taken literally even without the benefit of
the preceding backslash. But backslashing it makes the programmer’s intention more clear and
does no harm.
82 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

This approach makes sense because our goal isn’t to validate the contents of the
first field, but instead to scan forward to its end, which is marked by a space, and
ensure the top-level domain name has only two letters in it.

The appropriate metacharacter for matching non-whitespace is \S (from table 3.5),
and to request one or more, you add “+” yielding this command:24

$ perl -wnl -e '/^\S+\.[a-z][a-z] /i and print;' access_log
m021182.ppp.asahi-net.or.jp ...
p0915.nas4-asd3.dial.wanadoo.nl ...
robot.szukacz.pl ...
server.stmarys.unimelb.edu.au ...
spider2.cpe.ku.ac.th ...
willynilly.us ...

Note the literal period in the regex after the non-whitespace sequence and before the
two-letter top-level domain name, because without it, three-letter domains would also
match (given that the first letter of each will be non-whitespace).

But what about that willynilly.us domain? Because it’s not foreign (from the
U.S. viewpoint), its lines should be excluded from a report of foreign visitors to the
web site. You’ll see how to deal with that case in the next section.

Disqualifying undesirable matches

Earlier in this chapter, you saw how matching operators can be chained together with
the logical and to print records that match each of several regexes, using a technique
called cascading filters. With a slight twist, chains of matching operators can be used
to ensure that certain regexes are matched while others are not matched. You do this
by preceding the matching operators that are required to fail with the negation oper-
ator, “!”.

To handle the problem of excluding the .us domain, you need to enhance the
original command by adding a second “must not match” component:

perl -wnl -e ' /^\S+\.[a-z][a-z] / and
 ! /^\S+\.us / and print; ' access_log

In words, it says: “Any line that has a two-letter domain name that isn’t .us should be
printed.” With this adjustment, the command successfully excludes U.S. domains
such as willynilly.us and prints only the “foreign” ones.

A worthwhile enhancement might be to modify the command’s output so that it
shows the country codes for the foreign surfers, like so:

au jp nl pl sg th

Even better, it could print the country names that correspond to those codes, rather
than the (somewhat inscrutable) codes themselves:

24 Because the lines in this log file are very long, they have been truncated after the domain name, as in-
dicated by the sequences of three dots.
ADDITIONAL EXAMPLES 83

Australia Japan Netherlands Poland Singapore Thailand

You’ll learn additional techniques that could be used to effect these enhancements in
later chapters.

Next, you’ll learn how to simplify the use of grep-like Perl commands by using
a Perl script.

3.13.2 A scripted grepper

As shown earlier, the basic Perl command for finding matches and displaying their
associated records is compact and simple to type. But it would be even easier and
more foolproof to do your matching using a script. Consider the following session,
which shows the use of a script called greperl:

$ greperl -pattern='\bCA\b' addresses.dat # find CA customers
Mooshi Pomalus:4242 Wafer Lane:San Jose:CA:95134

Note that you specify the desired regex using a switch called -pattern, which
Perl handles automatically through the s option on the shebang line (introduced in
table 2.4).

Here’s the greperl script:

#! /usr/bin/perl -s -wnl

BEGIN {
 # -pattern='RE' switch is required
 $pattern or
 warn "Usage: $0 -pattern='RE' [file1 ...]\n" and
 exit 255;
}

/$pattern/ and print;

As discussed in chapter 2, the required -pattern='RE' switch is tested for a True
value25 in a BEGIN block, and a warn and exit combination is executed in the event
of a False result.

As you can imagine, it would be useful to have variations on this script that
employed different definitions of the input record separator, different match modi-
fiers, and so forth. But rather than having a multitude of such scripts, a better
solution would be to have a single script that lets you select those options through
use of command-line switches (as with grep). Because it takes additional knowl-
edge to write such programs, we’ll defer their discussion until part 2.

Many people have benefited from the use of dictionaries designed for bad spellers.
In like fashion, a grepper designed for those who don’t quite know how to spell their
search patterns can be useful, as you’ll see next.

25 One legitimate value, 0, that could be assigned to this switch variable will inadvertently produce a False
result and terminate the program. For this reason, a different approach, based on the defined func-
tion covered in chapter 8, is more proper in such cases.
84 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

3.13.3 Fuzzy matching

Unlike computers, the people who use them tend to be fuzzy. Some are certainly fuzz-
ier than others, but as a general rule, humans express themselves with considerably
less precision than machines are inclined to require.

A good example is the task of looking for occurrences of a name you’re not sure
how to spell. This is illustrated by the following session in which Yoko, a fan of the
Farscape TV series, is having trouble extracting the records for her favorite characters
using the greperl script shown earlier:

$ greperl -pattern=Rigel farscape_characters # No matches!
$ greperl -pattern=Scorpeus farscape_characters # No matches!

Yoko needs a matching program that’s as fuzzy as her spelling! So, she writes one
called fuzzy_match, which finds the desired matches despite her slightly mis-
spelled patterns:

$ fuzzy_match -string=Rigel farscape_characters
Rygel XVI:Imperious Froggy
$ fuzzy_match -string=Scorpeus farscape_characters
Scorpius:Ghoulish Villain

The script was easy for Yoko to write, once she found out about the module called
String::Approx and downloaded and installed it from CPAN. It provides an
approximate match function called amatch, which accepts matches if the mismatch
with the target string is within an allowed percentage.

Here’s the fuzzy_match script:

#! /usr/bin/perl -s -wnl

use String::Approx 'amatch'; # must specifically request "amatch"

BEGIN {
 $string or
 warn "Usage: $0 -string='something' [file1 ...]\n" and
 exit 255;
}
amatch $string, ["i", "20%"] and print; # Ignore case; 20% fuzzy

Unlike some modules, this one doesn’t automatically export all its functions, so Yoko
has to specify amatch explicitly after the module name (see section 12.1.3). She
designed the script to use -string for the switch rather than -pattern to empha-
size the fact that amatch doesn’t support any metacharacters. On the script’s last line,
the conditional printing of the current line via the logical and is controlled by the
success or failure of amatch, just as it’s controlled in greperl by the result of the
matching operator.

Because of the design of the amatch function, the request to ignore case while
matching is presented as an “i” within square brackets. The fuzziness of the match-
ing operation can be increased or decreased by changing the double-quoted per-
centage value that follows.
ADDITIONAL EXAMPLES 85

Yoko settled on 20 percent fuzziness after some experimentation to determine the
smallest value that would let her misspellings obtain their intended matches. If you’re
happy with the defaults, which provide matching with case sensitivity and 10 percent
fuzziness, you can leave out the square-bracketed argument and supply only the
$string argument to amatch.

Next, we’ll look at a web-oriented application of pattern matching.

3.13.4 Web scraping

One way to use web scraping to good advantage is to obtain a listing of the subjects
covered on a particular web page. As a case in point, once I figured out that the bullet
symbol used on slashdot.org was character #267, I found that I could easily obtain an
outline of the site’s front page by extracting lines containing that character. I did so by
using the character-generating metacharacter \267 (see table 3.1) in the regex:26

$ lwp-request -o text slashdot.org |
> perl -wnl -e '/\267/ and print;'
 · Microsoft Tracking Behavior of Newsgroup Posters
 · SCO Prepares To Sue Linux End Users
 · Talk About A Security Hole, Go To Jail?

Another useful command would be one that lets you quickly determine the latest
release of a particular CPAN module by looking for it under the dist subdirectory of
the CPAN search URL, using a variation on its name in which any doubled colons are
replaced by a dash:

$ lwp-request -o text \
> 'search.cpan.org/dist/Shell-POSIX-Select'
Shell::POSIX::Select
The POSIX Shell's "select" loop for Perl
Shell-POSIX-Select-0.05 - 11 May 2003 - Tim Maher
...

You’ll see lwp-request used in additional examples in later chapters (e.g., sec-
tions 9.2.8, 12.3.2).

3.14 SUMMARY

From a Perl perspective, the grep command and its relatives impose numerous limi-
tations on applications that need to match patterns against records and display
selected aspects of the results. These limitations stem from the fact that some or all
Unix greppers lack the following:

26 By the time this book had entered its production phase, Slashdot had changed its web pages to use the
“·” entity request as a bullet symbol rather than character #267, but there should be other
web pages for which this command will work.
86 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

• Word-boundary metacharacters (\<, \>)

• Compact character-class shortcuts (such as \d for a digit)

• Control character representations (such as \t for the tab character)

• Provisions for embedding commentary and arbitrary whitespace in regex fields

• Access to match components (e.g., as provided by Perl’s $& variable)

• The ability to define custom input records (such as Perl’s paragraph mode)

• The ability to match across lines (e.g., as provided for by Perl’s single-line mode)

• Automatic skipping of directory files that are inadvertently named as pro-
gram arguments

• The ability to customize the format used for printing matches within records (as
provided for by Perl’s ‘$,’ and ‘$"’ variables)

• The ability to do “fuzzy” matching

Another more general problem with the use of Unix commands for pattern matching
is that there are variations between different OSs, vendors, and versions with respect
to the regex dialects that particular commands employ. This creates uncertainty about
the meaning a particular character (e.g., | or {) will have with a specific command on
a specific system, and valid concerns about transporting scripts employing such com-
mands to other systems.

The use of Perl programs in place of those unpredictable Unix commands elimi-
nates these problems and provides access to Perl’s superior capabilities. For example,
you can add the -00 invocation option to display each match in the context of its
containing paragraph rather than its line, and you can use print $& to display the
match without the context of its containing record.

Table 3.12 lists the Unix commands for performing the most common types of
grepping tasks, their Perl counterparts, and pointers to the sections in this chapter in
which those commands were discussed.

Table 3.12 Unix and Perl commands for common grepping activities

Unix command Perl counterpart Type of task Section

grep 'RE' F perl -wnl -e '/RE/ and print;' F Show
matching lines

3.3.1

grep -v 'RE' F perl -wnl -e '/RE/ or print;' F Show non-
matching lines

3.7

grep -i 'RE' F perl -wnl -e '/RE/i and print;' F Ignore case 3.9.1

grep -l 'RE' F perl -wnl -e '/RE/ and
 print $ARGV and close ARGV;' F

Show only
filenames

3.8

fgrep 'STRING' F perl -wnl -e '/\QSTRING\E/ and
 print;' F

Match literal
characters

3.5
SUMMARY 87

In subsequent chapters, you’ll learn how to write more sophisticated types of grep-
like applications and how to emulate the familiar command-line interface of grep
more closely, while still retaining access to Perl’s more powerful capabilities.

Such enhancements will include the following:

• Accepting the regex as an argument to a script rather than via an assignment to
a switch variable (as greperl does)

• Checking for improper usage and issuing warnings as needed

• Skipping over inappropriate arguments

• Embedding comments within regexes

• Highlighting matches in context (e.g., in reverse video)

Directions for further study

To learn more about the topics discussed in this chapter, you can run the following
commands to obtain further documentation:

• man lwp-request

• man String::Approx

After you finish reading part 1, if you feel bold enough to venture out of the UNIX
quarter of Perlistan and hang out with the circled JAPHs, you’ll want to learn more
about Perl’s regexes and matching operator by issuing the following commands:

• man perlrequick # An introduction to Perl's regexes

• man perlretut # A tutorial on using Perl's regexes

• man perlre # Coverage of more complex regex issues

• man perlreref # Regular expressions reference

• man perlfaq6 # Regular expressions FAQ
88 CHAPTER 3 PERL AS A (BETTER) grep COMMAND

C H A P T E R 4

Perl as a (better)
sed command

4.1 A brief history of sed 89
4.2 Shortcomings of sed 91
4.3 Performing substitutions 93
4.4 Printing lines by number 100
4.5 Modifying templates 101
4.6 Converting special characters 103

4.7 Editing files 105
4.8 Converting to lowercase

or uppercase 113
4.9 Substitutions with computed

replacements 114
4.10 The sed to Perl translator 118
4.11 Summary 118
In this chapter, you’ll learn how to write Perl programs that surpass the limitations of
the UNIX sed command. We’ll start by discussing the historical uses of sed, and then
we’ll consider its modern-day applications—which are quite different.1

Then, we’ll explore a variety of commands and scripts that show how Perl can beat
sed at its own game.

4.1 A BRIEF HISTORY OF sed
Although it isn’t as famous as its brother grep, the sed command is another offshoot
of the original UNIX editor, ed. But unlike ed, which needs an interactive user to feed
it instructions, sed is a stream editor that applies a predetermined set of editing com-
mands to the stream of data flowing through it. The primary contribution of sed to

1 Why? Because sed was relieved of many of its duties by the ascendancy of AWK in the late 1970s.
89

the UNIX toolkit is therefore that it provides a non-interactive (or batch-oriented)
interface to ed’s capabilities.

sed also has some features that go well beyond ed’s, including conditional
branching, looping, and character transliteration. For this reason, sed reigned as the
primary text-processing utility of early UNIX. But when the ingenious and highly
influential AWK language emerged from the Bell Labs in 1977, it quickly supplanted
sed for most text-editing applications.

To see why, consider the following solution to the problem of reordering name
fields into the “Surname, Firstname” format:

$ cat farscapers
Ka D'Argo
John Crichton
...

$ sed 's/^\([^][^]*\) \([^][^]*\).*$/\2, \1/' farscapers
D'Argo, Ka
Crichton, John
...

Hello? HELLO? Are you still there?
That sed command is certainly a shocker, so I’ll give you a moment to regain your

equilibrium. But please believe me, despite appearances, that command isn’t a cruel
hoax—we really used to do field processing like that! In consideration of your trau-
matized state, I won’t try to explain what that command’s scary-looking regex is all about.
You don’t need to know anyway, because in Perl you’d never have to write one like that.

Now, consider the AWK way of doing the same job:

$ awk '{ print $2 ", " $1 }' farscapers # isn't this better?
D'Argo, Ka
Crichton, John
...

This contrast accurately conveys the message that just about anything sed can do,
AWK can do better. UNIX programmers noticed this long ago and started using AWK
in preference to sed wherever possible. The result is that nowadays, sed is most com-
monly used in just two kinds of applications: simple text substitutions (that don’t
involve fields!), and extractions of lines by number. sed is preferred to AWK for these
uses principally because it requires less typing—which, other things being equal, is
considered a valid reason in Perlistani culture, where Laziness is highly valued.

In this chapter, you’ll first learn how to use Perl to emulate the most popular types
of sed applications.2 Then, we’ll examine programs that demonstrate Perl’s superior-
ity over sed.

2 You’ll learn Perl techniques for printing reordered fields in chapter 5; but as a sneak preview, here’s the
Perl counterpart to the awk command that reorders the farscapers file:
perl –wnla –e 'print "$F[1], $F[0]";' farscapers
90 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

For example, you’ll learn how to do text substitutions while generating replace-
ment strings on the fly, using the full power of Perl to create them. This capability,
called computed replacements, allows for such feats as converting a dollar amount
within a string into one that’s 10 percent larger or 20 percent smaller.

Before we examine the impressive capabilities of Perl as a text-processing utility,
we’ll begin by comparing the basic capabilities of sed and Perl for tasks of this kind,
with an emphasis on sed’s shortcomings.

4.2 SHORTCOMINGS OF sed
As in the corresponding table for the grep command (see table 3.2), the topmost
panel of table 4.1 shows the differences in basic matching facilities provided by sed
commands and Perl. Many of the shortcomings of the classic sed are the same as
those listed earlier for the classic grep, due to their mutual dependence on the classic
regex dialect.

Table 4.1 Text-modification capabilities of sed and Perl

Capability
a

Classic

sed
POSIX

sed
GNU

sed
Perl

Word-boundary metacharacter – Y Y Y

Compact character-class shortcuts – ? – Y

Control character representation – – – Y

Repetition ranges Y Y Y Y

Capturing parentheses and backreferences Y Y Y Y+

Metacharacter quoting Y Y Y Y+

Embedded commentary – – – Y

Advanced regex features – – – Y

Case insensitivity – – Y Y

Arbitrary record definitions – – – Y

Line-spanning matches – – – Y

Binary-file processing – – – Y

Directory-file skipping – – Y Y

Arbitrary delimiters Y Y Y Y+

Access to match components – – – Y

Customized replacements – – – Y+

File modifications – – Y Y+

a. Y: has the capability; Y+: has the capability with enhancements; ?: partially has the capability; –: doesn’t have the
capability
SHORTCOMINGS OF sed 91

The middle panel of the table compares the kinds of matching the individual
commands support, and the lower panel compares the enhanced matching ser-
vices they provide.

You’ll understand what most of the listed capabilities mean, either because they’re
self-explanatory or because they were discussed earlier in chapter 3. We’ll focus on the
other capabilities here.

Arbitrary delimiters give you the ability to use an arbitrary character to separate the
search and replacement fields in the substitution syntax, which can greatly enhance
readability. For example, the following commands all strip the leading /etc/ from
each input line by substituting an empty replacement string (indicated by the adja-
cent second and third delimiters) for what was matched:

sed 's/^\/etc\///g' file # default delimiters

sed 's|^/etc/||g' file # custom delimiters

perl -wpl -e 's|^/etc/||g;' file # Perl

Isn’t the first sed solution hard to read, with those slanty lines falling against each
other? This effect, called Leaning Toothpick Syndrome, detracts from readability, and
can be easily avoided. Like sed, Perl allows the first visible character occurring
immediately after the s to be used as an alternative delimiter; it’s used here to avoid
the need for backslashing literal occurrences of the delimiter character within the
regex field.

As the following example shows, Perl even allows the use of reflected symbol pairs
such as () and {}—whose components are mirror images of each other—to delimit
the separate components of the search and replacement fields:

perl -wpl -e 's{^/etc/ }{ }g;' # reflected symbols for delimiters

In recognition of this advanced feature, Perl is accorded a “Y+” (has the capability
with enhancements) in the “Arbitrary delimiters” category of table 4.1.3

Customized replacements refers to the ability to adapt the replacement string to the
specific characteristics of the string that was matched. An example would be substi-
tuting “FREDERICK” for “FRED”, but “Frederick” for “Fred”. The computed
replacements mentioned earlier, which are covered later in this chapter, fall into this
category, along with the mapped replacements discussed in section 10.4.4.

Perl provides automatic directory file skipping to ensure that (nonsensical) requests
for directory files to be edited aren’t honored. In contrast, POSIX sed is happy to
dump the edited binary data to the user’s (soon to be unreadable) screen. Like Perl,
the GNU sed refuses to perform substitutions on data taken from directories, but
it does so less gracefully, by issuing an error message that suggests a faulty permis-
sion setting:

3 Remember, Perl’s matching operator also supports arbitrary delimiters, as shown in table 3.3.
92 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

sed: read error on /etc: Is a directory

File modification means the utility can store changes in the file where the data origi-
nated, rather than having to send those changes to the output. Although POSIX ver-
sions of sed can’t directly modify a file, GNU sed and Perl can both do that and even
make a backup copy of the original file for you before modifying it. But Perl wins over
GNU sed in this category because it allows an automatically updated file extension to
be used on the backed-up file, for greater reliability (see section 4.7.3).

In summary, table 4.1 shows that Perl has the richest collection of text-editing
capabilities, with the GNU version of sed coming in second, the POSIX version third,
and the classic sed last.

But before you can begin to realize Perl’s benefits as a premier text-processing util-
ity, you must first learn to use it for performing simple text substitutions, which we’ll
discuss next.

4.3 PERFORMING SUBSTITUTIONS

Several Unix utilities can be used to replace one string of text with another. Text sub-
stitutions are performed in sed using a substitution command :

sed 's/RE/replacement/g' file1 file2 ...

The Perl equivalent uses the substitution operator, in a command of this form:

perl -wpl -e 's/RE/replacement/g;' file1 file2 ...

And the vi editor’s substitution command for modifying the current line is

 :s/RE/replacement/g

Notice the similarity? It’s no accident that Perl’s syntax is nearly identical to that of
sed and vi. Larry, in his wisdom, designed it that way, to facilitate your migration
to Perl.

In each of these three commands, the s before the initial slash indicates that a
substitution is being requested, RE is a placeholder for the regex of interest, and the
slashes delimit the search string and the replacement string. The trailing g after the
third slash means global ; it requests that all possible substitutions be performed,
rather than just the leftmost one on each line. (You almost always want that behav-
ior, so in Minimal Perl we use the g there by default and omit it only where it
would spoil the command.)

As with all sed-like Perl commands, the one shown here uses the Primary Option
Cluster that’s appropriate for “Input processing,” enhanced in this case for automatic
printing with the addition of the p option (see table 2.9).

Now let’s consider a simple and practical example of the use of sed and Perl
for performing text substitution. The purpose of the following commands is to edit
PERFORMING SUBSTITUTIONS 93

the output of date to expand the day-name abbreviation, which makes its output
more understandable:

$ date
Sun Dec 25 16:53:03 PDT 2005
$ date | sed 's/Sun/Sunday/g' # sed version
Sunday Dec 25 16:53:04 PDT 2005
$ date | perl -wpl -e 's/Sun/Sunday/g;' # Perl version
Sunday Dec 25 16:53:05 PDT 2005

As you can see, the -wpl option-cluster causes Perl to function like a sed substitution
command.

That’s all well and good, until you realize that these solutions work properly for
only one day of the week! It takes seven separate editing operations to do this job
properly, which would be most easily handled in sed using the “get commands from
a file” option, -f, along with a file full of appropriate substitution commands:

$ cat expand_daynames.sed
s/Sun/Sunday/g
s/Mon/Monday/g
... you get the idea

$ date | sed -f expand_daynames.sed # takes commands from file
Sunday Dec 25 16:53:10 PDT 2005

Perl has its own ways of handling a file full of editing commands, but the most ele-
mentary and sed-like approach is to use multiple substitution operators:

$ date |
> perl -wpl -e '
> s/\bSun\b/Sunday/g;
> s/\bMon\b/Monday/g;
... you get the idea
> '
Sunday Dec 25 16:53:14 PDT 2005

You can do as many substitutions as you want, by stacking them as shown, for execu-
tion in top-to-bottom order. But it would be more convenient to package these state-
ments in a script:

$ cat expand_daynames
#! /usr/bin/perl -wpl

s/\bSun\b/Sunday/g;
s/\bMon\b/Monday/g;
... you get the idea

This approach works well enough, but you’ll see simpler ways to write programs that
do multiple substitutions in part 2 (e.g., section 10.4.4).

In addition to allowing you to specify a delimiter of choice, Perl’s substitution
operator also permits you to specify a data source other than the default ($_).
Table 4.2 shows examples of these syntax variations.
94 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

As with the matching operator discussed in chapter 3, the substitution operator rec-
ognizes several modifiers that change the way it works. These modifiers, which are
typed after the closing delimiter, are listed in table 4.3. Most of them also work with
the matching operator, but the e modifier shown in the bottom panel is a notable
exception. Its job is to evaluate the Perl code in the replacement field to generate a
replacement string (as demonstrated in section 4.9.1).

Table 4.4 provides examples of using the substitution operator, to help you see how
the various syntax variations and modifiers are used together in actual applications.
As shown in the table’s last row, you can even use the $& variable (introduced in
table 3.4) in the replacement field, to substitute for what was matched, a variation
on that string.

You’ll see examples of the features presented in these tables throughout the
remainder of this chapter, and also in part 2.

Table 4.2 Substitution operator syntax

Form
a Explanation

s/RE/new/g Using default “/” delimiters, substitutes for all matches
of the regular expression RE found in the $_ variable the
value new

s:RE:new:g Same, but uses custom “:" delimiters

$somevar =~ s/RE/new/g Using default “/" delimiters, substitutes for all matches of
the regular expression RE found in the $somevar variable the
value new

$somevar =~ s:RE:new:g Same, but uses custom “:" delimiters

a. RE stands for a regular expression, and new stands for the string that replaces what RE matches. The
substitution operator returns the number of substitutions it performed—not the modified string, as sed does.

Table 4.3 Substitution modifiers

Modifier Meaning Explanation
a

i Ignore case Ignores case variations while matching.

x Expanded mode Permits whitespace and comments in the RE field.

s Single-line mode Allows the “.” metacharacter to match newline.

m Multi-line mode Changes ^ and $ to match the ends of the lines within a
record rather than the ends of the record.

g Global Allows multiple substitutions per record, and returns
different values for scalar and list contexts (details in part 2).

e Eval(uate) Evaluates new as Perl code, and substitutes its result for
what RE matches.

a. RE stands for a regular expression, and new stands for the string that replaces what RE matches in
s/RE/new/g.
PERFORMING SUBSTITUTIONS 95

We’ll look next at how you can exercise more control over where substitutions are
allowed to occur.

4.3.1 Performing line-specific substitutions: sed

The sed command can restrict its attentions to particular lines, specified either by a
single line number or by a range of two (inclusive) line numbers separated by a
comma, placed before the s. For example, the sed command in this example restricts
its editing to Line 1 of a file, by using 1s///g instead of the unrestricted s///g:

$ cat beatles # notice contents of first line
Beatles playlist, for Sun Jun 4 11:01:10 PDT 2006
...

$ sed '1s/Sun/Sunday/g' beatles
Beatles playlist, for Sunday Jun 4 11:01:10 PDT 2006
Here Comes the Sun
...

The restriction of the editing operation to Line 1 allows the abbreviated month name
to be processed on the heading line, while preventing “Here Comes the Sun” from
getting changed into “Here Comes the Sunday” on Line 2 (a data line).

With sed, you can even specify a range of lines using context addresses, which look
like two Perl matching operators separated by a comma, as in /^Start/,/^Stop/. But
that capability is more closely associated with AWK, so we’ll cover it in section 5.5.

Next, you’ll see the Perl counterpart to the sed command that edits the first line
of the beatles file.

4.3.2 Performing line-specific substitutions: Perl

Because Perl is more versatile than sed, some operations that are easily expressed in
sed require more work to specify precisely in Perl. That may sound strange, or even
backward, so let’s consider an everyday analogy.

Table 4.4 Substitution operator examples

Example Meaning

s/perl/Perl/; Substitutes “Perl” for the leftmost occurrence of “perl”
in $_. Global (/g) substitutions are usually preferable.

s/perl/Perl/g; Globally substitutes “Perl” for each occurrence of
“perl” in $_.

$oyster =~ s/perl/Perl/g; Globally substitutes “Perl” for each occurrence of
“perl” in $oyster.

$oyster =~ s/\bperl\b/'$&'/ig; Globally searches for the word “perl” in $oyster,
ignoring case, and substitutes for each match that same
word (via $&; see table 3.4) wrapped in single quotes
(i.e., “'perl'” for “perl”, “'PERL'” for “PERL”, etc.).
96 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

When you want to boil a cup of water, you can tell your microwave oven to cook
for two minutes by punching the Minute button twice and the Start button once.
That’s easily specified, because it’s implicit that the operation of interest is cooking—
that’s all an oven knows how to do.

However, if you want to tell your computer to do something for two minutes,
instead of saying “do your thing for two minutes”—which works splendidly with the
microwave—you have to tell the computer exactly what you want it do during that
period, because it has numerous options.

In the case at hand, sed is like the microwave oven, and Perl is like the computer.
Sometimes you have to type a bit more to get Perl to do the same thing as sed—but
it’s usually worth it. With that in mind, let’s see how to perform substitutions on spe-
cific lines in Perl.

Although Perl doesn’t support the 10,19s/old/new/g syntax of sed, it does
keep track of the number of the current record (a line by default) in the special vari-
able “$.” (see table 2.2), if the n or p invocation option is used. This being the case,
processing specific lines is accomplished by composing an expression that’s true when
the line number is in the desired range, and then using the logical and to make the
operation of interest conditional on that result.

For example, the following commands perform substitutions only on specified
lines, and they unconditionally print (courtesy of the p option) all lines. The result is
that a selectively edited version of the file is sent to the output destination:

• Edit line 1:
perl -wpl -e '$. == 1 and s/old/new/g;' file

• Edit lines 3–11:
perl -wpl -e '3 <= $. and $. <= 11 and s/old/new/g;' file

• Edit lines 10–last:
perl -wpl -e '$. > 9 and s/old/new/g;' file

The relational operators (<=, etc.) might look familiar, because they’re identical to those
used with certain Shell commands. They’re covered in more detail in section 5.6.1.

You can see from the first example that the Perl counterpart to the earlier sed
command, which edits only the heading line of the beatles file, is

perl -wpl -e '$. == 1 and s/Sun/Sunday/g;' beatles

But Perl can also perform substitutions on records bigger than a single line, as we’ll
discuss next.

4.3.3 Performing record-specific substitutions: Perl

Unlike sed, Perl lets you perform substitutions on arbitrarily defined records. Con-
sider the following data file, called data_east:
PERFORMING SUBSTITUTIONS 97

Data for Eastern Region

updated: Sun Sep 18 18:40:51
checked: Mon Sep 19 00:00:01
updated: Sun Sep 25 18:40:52
checked: Mon Sep 26 00:00:00

42 56 778 001: Sun Myung
918 42 178 13: Mon Soon
86 574 09 108: Tue Hawt

Upper management has been making a lot of noise recently about “bold new innova-
tions” to be announced soon, so Ashanti isn’t surprised when she hears their decree
that abbreviations for day names are no longer acceptable for presentations in depart-
mental meetings. So before her next weekly meeting, she needs to expand those sud-
denly taboo day-name abbreviations in the data_east file.

One apparent complication is that there could be any number of “updated/
checked” lines in the file, which are the lines with the day-name abbreviations. On the
other hand, they’re all guaranteed to be in the same chunk of text that’s separated by
one or more blank lines from the others—and that coincides perfectly with Perl’s defi-
nition of a paragraph.

Sun, Mon, and Tue in paragraph 3 are people’s names—not day-name abbrevia-
tions—so only paragraph 2 needs to be modified. Accordingly, Ashanti composes the
following command to expand its abbreviations:

$ perl -00 -wpl -e '$. == 2 and s/\bSun\b/Sunday/g;
> $. == 2 and s/\bMon\b/Monday/g;' data_east
Data for Eastern Region

updated: Sunday Sep 18 18:40:51
checked: Monday Sep 19 00:00:01
updated: Sunday Sep 25 18:40:52
checked: Monday Sep 26 00:00:00

42 56 778 001: Sun Myung
918 42 178 13: Mon Soon
86 574 09 108: Tue Hawt

The use of -00 enables paragraph mode (see table 2.1), and the equality tests (==) on
the values of the “$.” variable select the record of interest. Note that the occurrences
of Sun and Mon in paragraph 2 were modified as desired, while those in paragraph 3
were correctly exempted from editing.

Now all Ashanti needs to do is run the command again with output redirected to
the printer, and she’ll be ready for the meeting.

Line and record numbers are also commonly used in connection with selective
printing, which we’ll discuss next.
98 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

4.3.4 Using backreferences and

numbered variables in substitutions

Like grep (see table 3.8), sed recognizes parentheses as literal characters unless
they’re backslashed, which turns them into parentheses that capture what’s matched
by the regex between them. In contrast, Perl’s parentheses are of the capturing type
unless they’re backslashed, which converts them to literal characters.4

The regex notation common to grep and sed allows you to use numbered back-
references such as \1 and \2 to refer to the captured matches. Although you can use
these backreferences in both the search and replacement fields of sed’s substitution
command, with Perl’s substitution operator they work only in the search field; how-
ever, you can use their dollar-prefixed relatives ($1, $2, etc.) in the replacement
field—and elsewhere in the program too!

Backreferences and numbered variables are useful in substitutions where you need
to interject new text between words that match patterns. For example, consider these
sed and Perl solutions to the problem of inserting an individual’s personal name
between his (occasionally dotted) title and (variously spelled) surname:

$ cat invite # Note Mr. vs Mr, and Bean vs. Been
Mr. Bean hereby requests the company of his noble
companion, Teddy, for high tea today with Mr Been.
$ sed 's/\(Mr\.\) \(Be[ea]n\)/\1 Jelly \2/g;’ invite
Mr. Jelly Bean hereby requests the company of his noble
companion, Teddy, for high tea today with Mr Been.
$ perl –wpl –e 's/(Mr\.) (Be[ea]n)/$1 Jelly $2/g;’ invite

… (same output)

Note the backslashing of parentheses and numbered backreferences with sed versus
the use of plain parentheses and dollar variables with perl.

In addition, it’s noteworthy that only one substitution was performed by each
command, due to the lack of a period after the second occurrence of “Mr”. But Perl
can treat that period as optional and perform the second substitution, because—
unlike sed—it supports the “?” metacharacter (see table 3.9):

$ perl –wpl –e 's/(Mr\.?) (Be[ea]n)/$1 Jelly $2/g;’ invite
Mr. Jelly Bean hereby requests the company of his noble
companion, Teddy, for high tea today with Mr Jelly Been.

Now, we’ll turn our attention to another popular use of sed, which doesn’t involve
substitutions.

4 To keep your mind from boggling, Perl’s policy is simply this—any backslashed symbol is always treat-
ed as a literal character.
PERFORMING SUBSTITUTIONS 99

4.4 PRINTING LINES BY NUMBER

Besides performing substitutions, sed is also used to print (i.e., display) lines by num-
ber. After we review how that’s done, we’ll discuss alternative Perl techniques that go
beyond sed’s capabilities.

4.4.1 Printing lines by number: sed

The second most common use of sed in contemporary computing is to extract and
print an arbitrary range of lines from a file (or from STDIN).5 This requires the use of
sed’s n option, which means “no automatic printing” (as in Perl), along with the p
modifier, which selectively prints the lines specified by the range expression. You can
use the special character $ to represent the last line (as in ed and vi).

For example, here’s how to skip over the heading line from the beatles file
(“Beatles playlist”) and print the song titles only, using sed:

$ sed -n '2,$p' beatles # omit line #1
Here Comes the Sun
Norwegian Wood
Something

Let it Be

Next, you’ll see how this is accomplished in Perl.

4.4.2 Printing lines by number: Perl

Printing lines by number is accomplished in the same general way as the line-specific
editing discussed earlier. The only differences are that automatic-printing is disabled
(i.e., the n option is used rather than p) and a print function is made conditional on
the test of the line number, rather than a substitution operator.

As an illustration, the following commands print specific lines from a file:

perl -wnl -e '$. == 1 and print;' F # line 1
perl -wnl -e '3 <= $. and $. <= 11 and print;' F # lines 3-11
perl -wnl -e '$. > 9 and print;' F # lines 10-last

Given this background, here’s the Perl counterpart for the earlier sed example that
omits the heading line from the beatles file:

$ perl -wnl -e '$. ›= 2 and print;' beatles # omit line #1
Here Comes the Sun
...

Next, you’ll learn how Perl can be used to print records larger than a single line.

5 Although the head and tail commands are also of some use in this regard, they’re specialized to re-
spectively extract the first or last N lines. In contrast, you can tell sed to extract, e.g., lines 3–17.
100 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

4.4.3 Printing records by number: Perl

As discussed in table 2.1 and demonstrated in section 4.3.3, to operate on records
larger than the default of a single line, you can change Perl’s record definition using
the -0digits option.

Consider these variations on the commands shown earlier, which also work by
changing the record definition and testing the “$.” variable to select the records of
interest. Because of the -0777 option, the first example prints a specified file rather
than a line, and the second one prints a specified range of paragraphs rather than a
range of lines.

• File mode:
perl -0777 -wnl -e '$. == 2 and print;' f1 f2

• Paragraph mode:
perl -00 -wnl -e '3 <= $. and $. <= 11 and print;' f1 f2

Now that you know how to duplicate sed’s most common uses in Perl, we’ll use
this knowledge in the rest of this chapter to handle typical text processing tasks.

First, we’ll discuss how you can write programs that modify templates. This tech-
nique can be used in many ways, including the personalization of form letters, the
generation of web pages, and even the customization of Perl programs.

4.5 MODIFYING TEMPLATES

In this section, you’ll see how Perl’s substitution operator can be used to convert tem-
plates containing placeholders into customized documents. This kind of text process-
ing can also be done with sed, but Perl has certain advantages. I’ll present this topic
by telling you how I came to need a simple template processor at one time, and then
we’ll discuss the code that implemented it.

For the first six years since its formation in early 1998, I had the privilege of run-
ning the Seattle Perl Users Group (SPUG), one of the first, biggest, and most active
PUGs on the planet.6

How active were we during this period? Well, we always had one technical meet-
ing per month, and for an extended period, we even had two meetings per month.
That’s a lot of meetings!

Why am I telling you this? Because I am a busy guy, and I need all the help I can
get to minimize my workload. That included having an easy way to automate the gen-
eration of the HTML pages needed to announce each of these hundreds of meetings.
And, as you have probably guessed, my salvation was a custom Perl script.

Before I show it to you, consider its user interface, which is designed to make its
invocation as foolproof as possible (although there’s still quite a bit of typing). Here’s

6 To learn more about SPUG, see http://TeachMePerl.com/interviews/tmp_com_interview.html and
http://seattleperl.org.
MODIFYING TEMPLATES 101

the command I issued to prepare the announcement for one especially significant
meeting that featured long-time SPUG member Brian “Ingy” Ingerson, a prolific con-
tributor of highly creative modules to the CPAN archive:

$ make_meeting_page -title='Kwiki' -speaker='Brian Ingerson' \
> -contact='ingy@ttul.org' \
> -date='September Meeting; Tuesday, 9/16/03:' \
> -summary='Ingy will talk about "Kwiki".' meeting.tmpl › 0903.html

As discussed in chapter 2, an argument of the form -title='Kwiki' causes the
variable $title to take on the value of Kwiki inside the script, when the s invoca-
tion option is included on the shebang line (see table 2.5).

The script modifies a copy of meeting.tmpl (a template) to replace occurrences
of special placeholders with the contents of their associated variables. In particular,
%%TITLE%% is replaced with the contents of $title (which is Kwiki),
%%CONTACT%% is replaced with the contents of $contact (ingy@ttul.org), and
so forth. Then, via a redirection request to the Shell, the modified template is stored
in a file (0903.html).

Here’s the template file used in the previous command, which is a simplified ver-
sion of the one used by SPUG:

$ cat meeting.tmpl
<H2> <I> %%DATE%% </I> </H2>
<CENTER>
<H1> "%%TITLE%%" </H1><P>
 %%SPEAKER%%

 %%CONTACT%% <P>
 <P> %%SUMMARY%% <P>
</CENTER>

And here’s the output generated by the invocation of the script shown earlier:

$ cat 0903.html
<H2> <I> September Meeting; Tuesday, 9/16/03: </I> </H2>
<CENTER>
<H1> "Kwiki" </H1><P>
 Brian "Ingy" Ingerson

 ingy@ttul.org <P>
 <P> Ingy will talk about "Kwiki". <P>
</CENTER>

Figure 4.1 shows how that file looks when viewed with a GUI browser.
The make_meeting_page script that modified the template to create that

announcement is shown below the figure. Note that it uses the x modifier with its
substitution operators, which provides for enhanced readability by allowing extra
whitespace in the regex field (see table 3.6).
102 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

#! /usr/bin/perl -s –wpl
Template processor for SPUG meeting announcement

s/ %%DATE%% /$date/gx;
s/ %%SPEAKER%% /$speaker/gx;
s/ %%TITLE%% /$title/gx;
s/ %%CONTACT%% /$contact/gx;
s/ %%SUMMARY%% /$summary/gx;

As mentioned previously, the lack of an our declaration for any of the switch variables
ensures that a warning is issued for any missing switch (see table 2.5). This is appro-
priate because all switches are mandatory for this program.

In contrast, a sed solution wouldn’t be able to use automatic switch processing,
let alone benefit from automatic warnings about required switches that are missing.
Moreover, sed’s lack of the x modifier would prevent the columnar alignment of the
search and replacement fields, which enhances readability. Furthermore, Perl’s more
powerful regex dialect and OS portability might provide advantages, in some cases.

Has a use for a templating system already occurred to you? If not, keep this tech-
nique in mind, because sooner or later, most programmers find a way to use templat-
ing as a productivity enhancer.7

Next, you’ll see how Perl can help people attain a better appreciation for certain
odd characters in the financial world.

4.6 CONVERTING SPECIAL CHARACTERS

A character set is a particular mapping of numbers to characters.8 For example, with the
ASCII character set popularized by UNIX systems, 65 means A, 13 means carriage
return, and 32 means space. Or, if you want to use octal (base 8) numbers instead of

7 If your needs go beyond the rudimentary capabilities of the example shown, consider using Perl’s freely
available Template Toolkit. See http://search.cpan.org/dist/Template-Toolkit for documentation, and
type install Template to the CPAN shell to install the software.

Figure 4.1

A SPUG meeting

announcement

generated by the

make_meeting_page

script from a template

8 See man ascii (or perhaps man ASCII, on your system) for a complete listing of the ASCII characters
and their numeric values.
CONVERTING SPECIAL CHARACTERS 103

decimal (base 10) ones, those characters are represented as 101, 015, and 040, respec-
tively. A special group of characters—called control characters—are variations on other
characters that affect the way devices work. For example, Ctrl-I makes your screen’s
cursor jump to the next tab stop, and Ctrl-L causes a printer to eject the current page.

As mentioned in table 4.1, Perl, unlike sed, can represent control characters
through special codes, such as their numeric values in the character set. This is useful
because special characters cause trouble when they reside within a script, due to their
propensity to alter the display attributes of the terminal during editing, or to affect
printer operations during printing.

I subscribe to a financial newsletter that is delivered to me via email, in plain text.
More precisely, although the text should be plain, it’s not quite plain enough. For
some reason, certain characters within the newsletter are always encoded improperly
for my viewing purposes. These include apostrophes, and left and right variations on
double quotes, which are meant to look like “this”. Instead of looking as they should,
those characters are represented by my favorite mail reader (mutt) as the strings \223
and \224, and within my standard editor (vim) as ˜ S and ˜ T (representing Ctrl-S
and Ctrl-T).

With a little effort, I could figure out how to get mutt to use the appropriate char-
acter set when displaying these emails; but I’ve never bothered to try, because it’s easy
to fix this with a tiny Perl script. I can tell by the context which characters those funny
sequences are meant to represent, so all I have to do is set up the appropriate substi-
tutions to convert them accordingly:

$ cat fix_newsletter9

#! /usr/bin/perl –wpl

s/\222/'/g; # apostrophe
s/\223/"/g; # replacement for LHS of "smart-quote" DQ pair
s/\224/"/g; # same replacement for RHS of "smart-quote" DQ pair

In the first substitution operator, the string escape \222 (see table 3.1) tells Perl to look
for characters in the current line that have that octal value and to convert them all (via
the g modifier) to apostrophes. The other two substitutions replace the left and right
double quotes (“ and ”) with their common ASCII equivalent, which is a straight dou-
ble quote (").

Armed with this script, I can read a newsletter using this kind of command:

fix_newsletter september.txt | more

Perl also allows a control character to be represented as \c followed by its associated
visible character, allowing, for instance, Ctrl-D to be represented by \cD. This
allowed me to come up with a more readable way to write the script’s substitutions,
after consulting man ascii:

9 LHS and RHS, respectively, stand for left- and right-hand-side, and DQ stands for double quotes.
104 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

s/\cR/'/g; # apostrophe
s/\cS/"/g; # LHS of "smart-quote" DQ pair
s/\cT/"/g; # RHS of "smart-quote" DQ pair

These techniques for representing characters also work on the replacement side of the
substitution operator, as indicated in the following program, which converts each
instance of a tab character (\t) at the beginning of a line to a series of four spaces:10

perl -wpl -e 's/^\t/\040\040\040\040/g;' file

This representation is helpful, because once you memorize the association between
\040 and the space character, a command like that one is easier to comprehend than
one with the corresponding whitespace characters embedded directly in it:

perl -wpl -e 's/^ / /g;' file # What's going on?

Because the programmer issuing that command pressed the actual keys to generate
the inscrutable whitespace characters, you can’t tell if the command is meant to
replace initial space characters by one or two tabs, an initial tab by a bunch of spaces,
or something else. In contrast, using \040 or \t would have made the programmer’s
intentions clear.

Another common type of character conversion is changing case from upper to
lower, or the reverse. Although that isn’t a chore traditionally performed by sed, it’s
easily done with Perl’s substitution operator; we’ll cover that topic later in this chapter
(section 4.8).

Keep in mind that the results of all the editing operations in the preceding exam-
ples appear only on the screen—not in the original file. Although sed has historically
lacked the capability of storing its output in the original file, that’s easy to accomplish
in Perl, as you’ll see next.

4.7 EDITING FILES

In the examples thus far, you’ve seen how to read data from a file, make modi-
fications, and send the results to the output. But it’s often desirable to have the
modifications appear in the original file itself, rather than in an output stream
flowing to the screen or to a different file. Accordingly, you’ll learn how to do
in-place editing with Perl next.

4.7.1 Editing with commands

Sometimes, companies behave strangely. And when they do, they usually say, “The
lawyers made us do it!” Imagine, if you will, that one day at work while you’re mind-
ing your own business, the following message appears in your email:

10 It’s a good practice to left-pad small octal numbers with leading zeroes to form three digits, to eliminate
potential ambiguities that could otherwise cause problems.
EDITING FILES 105

! URGENT !

NEW CORPORATE DECREE ON TERMINOLOGY (CDT)

Headquarters (HQ) has just informed us that, as of today, all company
documents must henceforth use the word “trousers” instead of the (newly
politically incorrect) “pants.” All IT employees should immediately make this
Document Conversion Operation (DCO) their top priority (TP).

The Office of Corporate Decree Enforcement (OCDE) will be scanning all
computer files for compliance starting tomorrow, and for each document that’s
found to be in violation, the responsible parties will be forced to forfeit their Free
Cookie Privileges (FCPs) for one day.

So please comply with HQ’s CDT on the TP DCO, ASAP, before the OCDE
snarfs your FCPs.

What’s that thundering sound?
Oh, it’s just the sed users stampeding toward the snack room to load up on free

cookies while they still can. It’s prudent of them to do so, because most versions of
sed have historically lacked a provision for saving its output in the original file! In con-
sequence, some extra I/O wrangling is required, which should generally be scripted—
which means fumbling with an editor, removing the inevitable bugs from the script,
accidentally introducing new bugs, and so forth.

Meanwhile, back at your workstation, you, as a Perl aficionado, can Lazily com-
pose a test-case using the file in which you have wisely been accumulating pant-
related phrases, in preparation for this day:

$ cat pantaloony
WORLDWIDE PANTS
SPONGEBOB SQUAREPANTS

Now for the semi-magical Perl incantation that’s made to order for this pants-to-
trousers upgrade:

$ perl -i.bak -wpl -e 's/\bPANTS\b/TROUSERS/ig;' pantaloony
$ cat pantaloony
WORLDWIDE TROUSERS
SPONGEBOB SQUAREPANTS

It worked. Your Free Cookie Privileges might be safe after all!
Why did the changes appear in the file, rather than only on the screen? Because the

i invocation option, which enables in-place editing, causes each input file (in this case,
pantaloony) to become the destination for its own filtered output. That means it’s
critical when you use the n option not to forget to print, or else the input file will
end up empty! So I recommend the use of the p option in this kind of program, to
make absolutely sure the vital print gets executed automatically for each record.
106 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

But what’s that .bak after the i option all about? That’s the (arbitrary) filename
extension that will be applied to the backup copy of each input file. Believe me, that
safeguard comes in handy when you accidentally use the n option (rather than p)
and forget to print.

Note also the use of the i match modifier on the substitution (introduced in
table 3.6), which allows PANTS in the regex to match “pants” in the input (which
is another thing most seds can’t do11).

Now that you have a test case that works, all it takes is a slight alteration to the
original command to handle lots of files rather than a single one:

$ perl -i.bak -wpl -e 's/\bPANTS\b/TROUSERS/ig;' *
$ # all done!

Do you see the difference? It’s the use of “*”, the filename-generation metacharacter,
instead of the specific filename pantaloony. This change causes all (non-hidden)
files in the current directory to be presented as arguments to the command.

Mission accomplished! Too bad the snack room is out of cookies right now, but
don’t despair, you’ll be enjoying cookies for the rest of the week—at least, the ones
you don’t sell to the newly snack-deprived sed users at exorbitant prices.12

Before we leave this topic, I should point out that there aren’t many IT shops
whose primary business activities center around the PC-ification of corporate text
files. At least, not yet. Here’s a more representative example of the kind of mass edit-
ing activity that’s happening all over the world on a regular basis:

$ cd HTML # 1,362 files here!
$ perl -i.bak -wpl -e 's/pomalus\.com/potamus.com/g;' *.html
$ # all done!

It’s certainly a lot easier to let Perl search through all the web server’s *.html files to
change the old domain name to the new one, than it is to figure out which files need
changing and edit each of them by hand.

Even so, this command isn’t as easy as it could be, so you'll learn next how to
write a generic file-editing script in Perl.

4.7.2 Editing with scripts

It’s tedious to remember and retype commands frequently—even if they’re one-
liners—so soon you’ll see a scriptified version of a generic file-changing program.

But first, let’s look at some sample runs so you can appreciate the program’s user
interface, which lets you specify the search string and its replacement with a conve-
nient -old='old' and -new='new' syntax:

11 The exception is, of course, GNU sed, which has appropriated several useful features from Perl in re-
cent years.

12 This rosy scenario assumes you remembered to delete the *.bak files after confirming that they were
no longer needed and before the OCDE could spot any “pants” within them!
EDITING FILES 107

$ change_file -old='\bALE\b' -new='LONDON-STYLE ALE' items
$ change_file -old='\bHEMP\b' -new='TUFF FIBER' items

You can’t see the results, because they went back into the items file. Note the use of
the \b metacharacters in the old strings to require word boundaries at the appropri-
ate points in the input. This prevents undesirable results, such as changing “WHITER
SHADE OF PALE” into “WHITER SHADE OF PLONDON-STYLE ALE”.

The change_file script is very simple:

#! /usr/bin/perl -s -i.bak -wpl
Usage: change_file -old='old' -new='new' [f1 f2 ...]

s/$old/$new/g;

The s option on the shebang line requests the automatic switch processing that handles
the command-line specifications of the old and new strings and loads the associated
$old and $new variables with their contents. The omission of the our declarations
for those variables (as detailed in table 2.5) marks both switches as mandatory.

In part 2 you’ll see more elaborate scripts of this type, which provide the addi-
tional benefits of allowing case insensitivity, paragraph mode, and in-place editing to
be controlled through command line switches.

Next, we’ll examine a script that would make a handy addition to any program-
mer’s toolkit.

The insert_contact_info script

Scripts written on the job that serve a useful purpose tend to become popular, which
means somewhere down the line somebody will have an idea for a useful extension, or
find a bug. Accordingly, to facilitate contact between users and authors, it’s considered
a good practice for each script to provide its author’s contact information.

Willy has written a program that inserts this information into scripts that don’t
already have it, so let’s watch as he demonstrates its usage:

$ cd ~/bin # go to personal bin directory
$ insert_contact_info -author='Willy Nilly, willy@acme.com' change_file

$ cat change_file # 2nd line just added by above command
#! /usr/bin/perl –s -i.bak -wpl
Author: Willy Nilly, willy@acme.com
Usage: change_file -old='old' -new='new' [f1 f2...]

s/$old/$new/g;

For added user friendliness, Willy has arranged for the script to generate a helpful
“Usage” message when it’s invoked without the required -author switch:

$ insert_contact_info some_script
Usage: insert_contact_info -author='Author info' f1 [f2...]
108 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

The script tests the $author variable for emptiness in a BEGIN block, rather than in
the body of the program, so that improper invocation can be detected before input
processing (via the implicit loop) begins:

#! /usr/bin/perl -s -i.bak -wpl
Inserts contact info for script author after shebang line

BEGIN {
 $author or
 warn "Usage: $0 -author='Author info' f1 [f2 ...]\n" and
 exit 255;
}
Append contact-info line to shebang line
$. == 1 and
 s|^#!.*/bin/.+$|$&\n# Author: $author|g;

Willy made the substitution conditional on the current line being the first and hav-
ing a shebang sequence, because he doesn’t want to modify files that aren’t scripts. If
that test yields a True result, a substitution operator is attempted on the line.
Because the pathname he’s searching for (/bin/) contains slashes, using the custom-
ary slash also as the field-delimiter would require those interior slashes to be back-
slashed. So, Willy wisely chose to avoid that complication by using the vertical bar as
the delimiter instead.

The regex looks for the shebang sequence (#!) at the beginning of the line, fol-
lowed by the longest sequence of anything (.*; see table 3.10) leading up to /bin/.
Willy wrote it that way because on most systems, whitespace is optional after the “!”
character, and all command interpreters reside in a bin directory. This regex will
match a variety of paths—including the commonplace /bin/, /local/bin/, and
/usr/local/bin/—as desired.

After matching /bin/ (and whatever’s before it), the regex grabs the longest
sequence of something (.+; see table 3.10) leading up to the line’s end ($). The “+”
quantifier is used here rather than the earlier “*” because there must be at least one
additional character after /bin/ to represent the filename of the interpreter.

If the entire first line of the script has been successfully matched by the regex,
it’s replaced by itself (through use of $&; see table 3.4) followed by a newline and
then a comment incorporating the contents of the $author switch variable. The
result is that the author’s information is inserted on a new line after the script’s she-
bang line.

Apart from performing the substitution properly, it’s also important that all the
lines of the original file are sent out to the new version, whether modified or not.
Willy handles this chore by using the p option to automate that process. He also uses
the -i.bak option cluster to ensure that the original version is saved in a file having
a .bak extension, as a precautionary measure.

We’ll look next at a way to make regexes more readable.
EDITING FILES 109

Adding commentary to a regex

The insert_contact_info script is a valuable tool, and it shows one way to make
practical use of Perl’s editing capabilities. But I wouldn’t blame you for thinking that
the regex we just scrutinized was a bit hard on the eyes! Fortunately, Perl programmers
can alleviate this condition through judicious use of the x modifier (see table 4.3),
which allows arbitrary whitespace and comments to be included in the search field to
make the regex more understandable.

As a case in point, insert_contact_info2 rephrases the substitution operator
of the original version, illustrating the benefits of embedding commentary within the
regex field. Because the substitution operator is spread over several lines in this new
version, the delimiters are shown in bold, to help you spot them:

Rewrite shebang line to append contact info
$. == 1 and
The expanded version of this substitution operator follows below:
s|^#!.*/bin/.+$|$&\n# Author: $author|g;
 s|
 ^ # start match at beginning of line
 \#! # shebang characters
 .* # optionally followed by anything; including nothing
 /bin/ # followed by a component of the interpreter path
 .+ # followed by the rest of the interpreter path
 $ # up to the end of line
 |$&\n\# Author: $author|gx; # replace by match, \n, author stuff

Note that the “#” in the “#!” shebang sequence needs to be backslashed to remove its
x-modifier-endowed meaning as a comment character, as does the “#” symbol before
the word “Author” in the replacement field.

It’s important to understand that the x modifier relaxes the syntax rules for the
search field only of the substitution operator—the one where the regex resides. That
means you must take care to avoid the mistake of inserting whitespace or comments
in the replacement field in an effort to enhance its readability, because they’ll be taken
as literal characters there.13

Before we leave the insert_contact_info script, we should consider
whether sed could do its job. The answer is yes, but sed would need help from
the Shell, and the result wouldn’t be as straightforward as the Perl solution. Why?
Because you’d have to work around sed’s lack of the following features: the “+”
metacharacter, automatic switch processing, in-place editing, and the enhanced
regex format.

As useful as the –i.bak option is, there’s a human foible that can undermine the
integrity of its backup files. You’ll learn how to compensate for it next.

13 An exception is discussed in section 4.9—when the e modifier is used, the replacement field contains
Perl statements, whose readability can be enhanced through arbitrary use of whitespace.
110 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

4.7.3 Safeguarding in-place editing

The origins of the problem we’ll discuss next are mysterious. It may be due to the
unflagging optimism of the human spirit. Or maybe it’s because certain types of
behavior, as psychologists tell us, are especially susceptible to being promoted by
“intermittent reinforcement schedules.” Or it may even be traceable to primal notions
of luck having the power to influence events, passed down from our forebears.

In any case, for one reason or another, many otherwise rational programmers are
inclined to run a misbehaving program a second time, without changing anything, in
the hope of a more favorable outcome. I know this because I’ve seen students do it
countless times during my training career. I even do this myself on occasion—not on
purpose, but through inadvertent finger-fumbling that extracts and reruns the wrong
command from the Shell’s history list.

This human foible makes it unwise to routinely use .bak as the file extension for
your in-place-editing backup files. Why is that a problem? Because if your program
neglects to print anything back to its input file, and then you run it a second time,
you’ll end up trashing the first (and probably only) backup file you’ve got!

Here’s a sample session that illustrates the point, using the nl command to num-
ber the lines of the files:

$ echo UNIX > os # create a file
$ nl os
 1 UNIX

$ perl -i.bak -wnl -e 's/UNIX/Linux/g;' os # original os -> os.bak

$ nl os # original file now empty; printing was omitted!
$ nl os.bak # but backup is intact
 1 UNIX

Now for the misguided 2nd run—in the spirit of a
"Hail Mary pass"—in a vain attempt to fix the "os" file:

$ perl -i.bak -wnl -e 's/UNIX/Linux/g;' os # empty os -> os.bak!

$ nl os # original file still empty
$ nl os.bak # backup of original now empty too!
$ # Engage PANIC MODE!

The mistake is in the use of the error-prone n option in this sed-like command
rather than the generally more appropriate p. That latter option automatically
prints each (potentially modified) input record back to the original file when the i
option is used, thereby preventing the programmer from neglecting that operation
and accidentally making the file empty.

Next, you’ll see how to avoid damage to backup files when running Perl
commands.
EDITING FILES 111

Clobber-proofing backup files in commands: $SECONDS

For commands typed interactively to a Shell, I recommend using -i.$SECONDS
instead of -i.bak to enable in-place editing. This arranges for the age in seconds of
your current Korn or Bash shell, which is constantly ticking higher, to become the
extension on the backup file.

For comparison, here’s a (corrected) command like the earlier one, along with its
enhanced counterpart that uses $SECONDS:

perl -i.bak -wpl -e 's/RE/something/g;' file

perl -i.$SECONDS -wpl -e 's/RE/something/g;' file

The benefit is that a different file extension will be used for each run,14 thereby pre-
venting the clobbering of earlier backups when a dysfunctional program is run a sec-
ond time.

With this technique, you’re free to make a common mistake without jeopardizing
the integrity of your backup file—or your job security. (Just make sure your Shell
provides $SECONDS first, by typing echo $SECONDS a few times and confirming that
the number increases each second.)

This technique works nicely for commands, but you should use a different one for
scripts, as we’ll discuss next.

Clobber-proofing backup files in scripts: $$

For scripts that do in-place editing, I recommend an even more robust technique for
avoiding the reuse of backup-filename extensions and protecting against backup-file
clobberation. Instead of providing a file extension after the i option, as in -i.bak,
you should use the option alone and set the special variable $^I to the desired file
extension in a BEGIN block.15

Why specify the extension in the variable? Because this technique lets you obtain
a unique extension during execution that isn’t available for inclusion with -i at the
time you type the shebang line. The value that’s best to use is the script’s Process-ID
number (PID), which is uniquely associated with it and available from the $$ variable
(in both the Shell and Perl).

Here’s a corrected and scriptified version of the command shown earlier, which
illustrates the technique:

#! /usr/bin/perl –i -wpl

BEGIN { $^I=$$; } # Use script's PID as file extension

s/UNIX/Linux/g;

14 More specifically, this technique protects the earlier backup as long as you wait until the next second
before rerunning the command. So if you do feel like running a command a second time in the hope
of a better result, don’t be too quick to launch it!

15 Incidentally, the .bak argument in -i.bak winds up in that variable anyway.
112 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

Note, however, that the use of $$ isn’t appropriate for commands :
$ perl -wpl -i.$$ -e 's/UNIX/Linux/g;' os

In cases like this, $$ is a Shell variable that accesses the PID of the Shell itself; because
that PID will be the same if the command is run a second time, backup-file clobbera-
tion will still occur. In contrast, a new process with a new PID is started for each
script, making Perl’s automatically updated $$ variable the most appropriate backup-
file extension for use within in-place editing scripts.

4.8 CONVERTING TO LOWERCASE OR UPPERCASE
Perl provides a set of string modifiers that can be used in double quoted strings or the
replacement field of a substitution operator to effect uppercase or lowercase conver-
sions. They’re described in table 4.5.

You’ll now learn how to perform a character-case conversion, which will be demon-
strated using a chunk of text that may look familiar.

4.8.1 Quieting spam

Email can be frustrating! It’s bad enough that your in-box is jam-packed with mes-
sages promising to enlarge your undersized body parts, transfer fortunes from Nige-
rian bank accounts to yours, and give you great deals on previously-owned industrial
shipping containers.

But to add insult to injury, these messages are typically rendered ENTIRELY IN
UPPERCASE, which is the typographical equivalent of shouting! So, in addition to
being deceitful, these messages are rude—and they need to be taught some manners.

Unfortunately, the sed command isn’t well suited to this task.16 For one thing, it
doesn’t allow case conversion to be expressed on a mass basis—only in terms of

Table 4.5 String modifiers for case conversion

Modifier Meaning Effect
a

\U Uppercase all Converts the string on the right to uppercase, stopping at \E or
the string’s end.

\u Uppercase next Converts the character on the right to uppercase.

\L Lowercase all Converts the string on the right to lowercase, stopping at \E or
the string’s end.

\l Lowercase next Converts the character on the right to lowercase.

\E End case conversion Terminates the case conversion started with \U or \L (optional).

a. String modifiers work only in certain contexts, including double-quoted strings, and matching and substitution
operators. Modifiers occurring in sequence (e.g., "\u\L$name") are processed from right to left.

16 The Unix tr command can be used to convert text to lowercase, as can the built-in Perl function by
the same name. However, because this chapter focuses on Perl equivalents to sed, we’ll discuss an easy
Perl solution based on the use of the substitution operator instead.
CONVERTING TO LOWERCASE OR UPPERCASE 113

specific character substitutions, such as s/A/a/g and s/B/b/g. That means you’d
have to run 26 separate global substitution commands against each line of text in
order to convert all of its letters.

Perl provides a much easier approach, based on its ability to match an entire line
and do a mass conversion of all its characters. The following example, which converts
a fragment of a typical spam message to lowercase, illustrates the technique:

$ cat make_money_fast
LEARN TO MAKE MONEY FAST!

JUST REPLY WITH YOUR CREDIT CARD INFORMATION,
AND WE WILL TAKE CARE OF THE REST!

$ perl -wpl -e 's/^.*$/\L$&/g;' make_money_fast
learn to make money fast!

just reply with your credit card information,
and we will take care of the rest!

How does it work? The substitution operator is told to match anything (.*) found
between the line’s beginning (^) and its end ($)—in other words, the whole current
line (see table 3.10). Then, it replaces what was just matched with that same string,
obtained from the special match variable $& (see table 3.4), after converting it to low-
ercase (\L). In this way, each line is replaced by its lowercased counterpart.

\L is one of Perl’s string modifiers (see table 4.5). The uppercase metacharacters
(\L and \U) modify the rest of the string, or up until a \E (end) marker, if there is
one. The lowercase modifiers, on the other hand, affect only the immediately follow-
ing character.

Are you starting to see why Perl is considered the best language for text processing?
Good! But we’ve barely scratched the surface of Perl’s capabilities, so stay tuned—
there’s much more to come.

4.9 SUBSTITUTIONS WITH
COMPUTED REPLACEMENTS
This section shows programs that employ more advanced features, such as the use of
calculations and functions to derive the replacement string for the substitution opera-
tor. How special is that? So special that no version of sed can even dream about doing
what you’ll see next!

We’ll explain first how to convert miles to kilometers and then how to replace
each tab in text with the appropriate number of spaces, using Perl substitution oper-
ators. Along the way, you’ll learn a powerful technique that lets you replace matched
text by a string that’s generated with the help of any of the resources in Perl’s arsenal.

4.9.1 Converting miles to kilometers

Like the Unix shells, Perl has a built-in eval function that you can use to execute a
chunk of code that’s built during execution. A convenient way to invoke eval is
114 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

through use of the e modifier to the substitution operator (introduced in table 4.3),
like so:

s/RE/code/e;

This tells Perl to replace whatever RE matches with the computed result of code. This
allows for replacement strings to be generated on the fly during execution, which is a
tremendously useful feature.

Consider the following data file that shows the driving distances in miles between
three Canadian cities:

$ cat drive_dist
 Van Win Tor
Vancouver 0 1380 2790
Winnipeg 1380 0 1300
Toronto 2790 1300 0

Those figures may be fine for American tourists, but they won’t be convenient for
most Europeans, who are more comfortable thinking in kilometers. To help them,
Heidi has written a script called m2k, which extracts each mileage figure, calculates its
corresponding value in kilometers, and then replaces the mileage figure with the kilo-
meter one. Here’s the output from a sample run:

$ m2k drive_dist
Driving Distance in Kilometers
 Van Win Tor
Vancouver 0 2208 4464
Winnipeg 2208 0 2080
Toronto 4464 2080 0

Note that Heidi labeled the output figures as kilometers, so readers will know how to
interpret them.

Here’s the m2k script—which, like much in the world of Perl, is tiny but powerful:

#! /usr/bin/perl -wpl

BEGIN { print "Driving Distance in Kilometers"; }
s/\d+/ $& * 1.6 /ge;

The print statement that generates the heading is enclosed within a BEGIN block to
ensure that it’s only executed once at the beginning—rather than for each input line,
like the substitution operator that follows it.

The \d+ sequence matches any sequence of one or more (+) digits (\d), such as 3
and 42. (To handle numbers with decimal places as well, such as 3.14, the sequence
[\d\.]+ could be used instead.)

The special match-variable $& contains the characters that were matched; by
using it in the replacement field, the figure in miles gets multiplied by 1.6, with the
resulting kilometer figure becoming the replacement string. The g (for global) modi-
fier ensures that all the numbers on each line get replaced, instead of just the left-
most ones (i.e., those in the “Van“ column). As usual, the p option ensures that the
SUBSTITUTIONS WITH COMPUTED REPLACEMENTS 115

current line gets printed, regardless of whether any modifications have been per-
formed—which is why the column headings, which lack numbers, are also present
in the output.

Note that you’re always free to insert readability-enhancing spaces in the replace-
ment field when the e modifier is used, because it contains Perl code, not literal text.

In addition to performing arbitrary calculations to generate a replacement string,
you can also make use of Perl functions, as we’ll discuss next.

4.9.2 Substitutions using function results

Another way to use eval in a substitution is to replace the matched text with a trans-
formation of that text that’s provided by a function.

For example, Ramon needs to identify lines that are longer than 55 characters,
because they can’t be successfully printed on the cheap (but narrow) paper rolls that
he gets from the Army Surplus store.

He knows about Perl’s length function, which can be used to determine the
length of a line. But despite his abhorrence of euphemisms, Ramon must admit
there’s an “issue” with using length: It counts each tab as one character, whereas
the printer will treat a tab as from one to eight spaces, depending on where the tab
occurs in the line. So before checking each line’s length, Ramon needs to use the
expand function of the standard Perl module called Text::Tabs to convert all tabs
to spaces.

He finds a sample document and runs it through his new script to see
what happens:

$ check_length ponie
** WARNING: Line 1 is too long:
 So it came to pass that The Larry blessed a Ponie, and
appointed brave Porters, armed with the Sticks of the
Riddle, to train her in the ways of Perl V and prepare
the Engine of the Parrot for Perlitus Sixtus.

It works! This file has been properly identified as one that needs to be reformatted to
fit on the paper, due to its first line being overly long. That adjustment can be easily
accomplished using the autoformat function of Text::Autoformat (introduced
in chapter 2).

The check_length script is compact, but powerful—like Ramon himself:

#! /usr/bin/perl -wnl

use Text::Tabs; # provides "expand" function

s/^.*$/expand $&/ge; # replace tabs by spaces in line

length > 55 and
 print "** WARNING: Line $. is too long:";

print; # Now print the line
116 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

Ramon’s script begins by loading the Text::Tabs module with the use directive.
Then, in the substitution operator, the “.*” (longest anything) sequence in the search
field matches everything between the line’s beginning (^) and its end ($). That line is
then replaced by the result of running expand on it (via $&), which converts its tabs
to spaces. Once that’s done, the length function can accurately assess the number of
characters on the line, and a warning can be interjected immediately before the print-
ing of each line that’s too long.

Ramon is planning to switch to the cheaper Navy Surplus 53-column paper next
week; to pave the way for that transition, he decides to replace the hard-wired 55-
character specification in his script with one provided by a new -maxlength com-
mand-line switch. Being a cautious shopper, he takes care to test the new version first,
before ordering a truckload of the new paper:

$ check_length2 -maxlength=53 ponie
** WARNING: Line 1 is too long:
 So it came to pass that The Larry blessed a Ponie, and
appointed brave Porters, armed with the Sticks of the
** WARNING: Line 3 is too long:
Riddle, to train her in the ways of Perl V and prepare
the Engine of the Parrot for Perlitus Sixtus.

Bull’s-eye! This version works, too, on the first try. While Ramon is imagining how he
would look wearing the “Purple Camel Award for Outstanding Achievements in Perl
Programming” on his flak vest, let’s take a moment to look at his new script,
check_length2 (the new parts are in bold):

#! /usr/bin/perl -s -wnl

use Text::Tabs; # provides "expand" function

BEGIN {
 $maxlength or
 warn "Usage: $0 -maxlength=character_count [files]\n" and
 exit 255;
}

s/^.*$/expand $&/ge; # replace tabs by spaces in line

length > $maxlength and
 print "** WARNING: Line $. is too long:";

print; # Now print the line

Note the addition of the s option to the shebang line, and the replacement of the
number 55 in the original script by the variable $maxlength. Because it’s imperative
that the user supply the -maxlength switch, Ramon dutifully follows orders and
omits the our ($maxlength); declaration that would make it optional (in compli-
ance with the regulations of table 2.5).

Note also that he included a $var or warn and exit condition, which ensures
that the program terminates after showing a “Usage” message if the user neglects to
supply the -maxlength=N option:
SUBSTITUTIONS WITH COMPUTED REPLACEMENTS 117

$ check_length2 ponie
Usage: check_length2 -maxlength=character_count [files]

In part 2, you’ll see how the contents of switch variables can be tested more exten-
sively—allowing you to ensure, for example, that a reasonable, positive, integer num-
ber is provided as the argument for the -maxlength switch.

Now that you’re convinced you should do your future text processing with Perl,
what should you do with all your old sed scripts? Why, convert them to Perl auto-
matically, of course, so you can continue to develop them using a more powerful lan-
guage, and gain OS portability to boot.

4.10 THE sed TO PERL TRANSLATOR

Larry has been considerate enough to provide a sed-to-perl translator with every
release of Perl, which makes it easy to convert existing sed scripts into equivalent
perl programs. It’s valued by those having sed programs that they’d like to use on
Perl-equipped but sed-less systems (such as Windows) and by others who have inher-
ited sed scripts that they’d prefer to extend by writing the enhancements in Perl.

The translator is called s2p, for sed-to-Perl, and you may want to check it out.
But don’t look at the code it generates, or you’ll turn into a pillar of salt, and spend
the rest of your days being licked by camels!

The reason for this warning is that s2p speaks the ancient dialect of the ancestors
of the founders of Perlistan, Perl Version 4, which has some keywords, grammatical
constructs, and syntactic elements that have fallen into disuse. The code it generates
can still be run by modern perl interpreters, but parts of it might look rather strange
to you.

4.11 SUMMARY

Nowadays, the Unix sed command is principally used to apply predefined editing
commands to text and to print lines by number. But—as you learned in this chap-
ter—with its more powerful regex dialect, its greater flexibility in defining records, its
wider variety of options for generating replacement strings, and other advantages, Perl
can not only replace sed for these tasks, but also do a better job at them.

For example, you saw in the fix_newsletter script how control characters that
need to be replaced by more legible ones can be conveniently specified using \NNN
string escapes with the substitution operator.

Perl’s support for embedded commentary within regexes, which is enabled by
adding the x modifier to the matching or substitution operator, was used to make
the make_meeting_page and insert_contact_info2 scripts more readable
and maintainable.

Although sed has historically lacked the ability to modify the files whose contents
it edits, this is easily accomplished with Perl by using the –i.bak invocation option,
as demonstrated in the change_file script and various commands (see section 4.7).
118 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

The Perl programmer’s freedom to arbitrarily define what constitutes an input
record allows programs to work on arbitrary units of input, such as the paragraphs that
were processed by a single substitution operator in the commands of section 4.3.3, or
the files processed by a single print statement in those of section 4.4.3.

Perl’s substitution operator even allows its replacement string to be computed on
the fly when the e modifier is used, as the miles-to-kilometers converter m2k and
Ramon’s check_length scripts demonstrated. Although the Shell has a code-eval-
uation facility (eval) like the one Perl’s e modifier invokes, no mechanism is pro-
vided for using it in conjunction with the Shell’s counterpart to the substitution
operator—the sed command. Making its own code-evaluation facility so easy and
convenient to use is surely one of Perl’s greatest contributions.17

Because sed lacks the fundamental features that make these tasks so easy to han-
dle in Perl, many of the Perl programs we examined in this chapter couldn’t be
duplicated using sed alone. In fact, advanced skills with the Shell and/or other util-
ity programs would be needed to get the job done. For example, the essential ser-
vice of the make_meeting_page script is to substitute the desired strings for
placeholders of the form %%NAME%%. This is something that sed could do on
its own, but it would need a lot of help from other quarters to duplicate the
friendly switch-oriented interface that was so easily incorporated into the Perl script.

For reference purposes, table 4.6 provides a handy summary of the corresponding
sed and perl commands that perform basic editing tasks, along with the locations
where they’re discussed in this chapter.

17 What’s more, Perl’s Shell-inspired eval function can be used for much more than substitutions, as
you’ll see in section 8.7.

Table 4.6 sed and Perl commands for common editing activities

sed command Perl counterpart
a Meaning

Section

reference

sed 's/RE/new/g' F perl -wpl
-e 's/RE/new/g;' F

Attempt substitutions
on all lines of F, and
print all lines

4.3

sed '3,9s/RE/new/g' F perl -wpl -e '3 <= $.
and $. <= 9
and s/RE/new/g;' F

Attempt substitutions
on lines 3–9 of F, and
print all lines

4.3.1,
4.3.2

sed -n '9,$p' F perl -wnl -e '$. >= 9
and print;' F

Print the contents of F
from line 9 through the
last line

4.4.1,
4.4.2

cp F F.bak
sed 's/RE/new/g' F > F+
mv F+ F

perl -i.bak -wpl
-e 's/RE/new/g;' F

Perform substitutions
in the file F, after
making a backup copy

4.7.1

a. If typed directly to the Shell in the format shown, each of the multi-line Perl commands would require a space-
backslash sequence at the end of its non-final lines.
SUMMARY 119

Directions for further study

To further explore the features covered in this chapter, you can issue the following
commands and read the documentation they generate:

• perldoc -f length # documentation for function called length

• perldoc Text::Tabs # documentation for "expand" function

• man ascii # info on character sets18

The following command brings up the documentation for s2p, which, unlike the
scary Perl Version 4 code that s2p generates, can be viewed with impunity:

• man s2p # documentation on sed to Perl translator

18 If man ascii doesn’t work on your system, try man ASCII.
120 CHAPTER 4 PERL AS A (BETTER) sed COMMAND

C H A P T E R 5

Perl as a (better)
awk command

5.1 A brief history of AWK 122
5.2 Comparing basic features of awk

and Perl 123
5.3 Processing fields 130
5.4 Programming with Patterns and

Actions 138
5.5 Matching ranges of records 151

5.6 Using relational and arithmetic
operators 157

5.7 Using built-in functions 159
5.8 Additional examples 165
5.9 Using the AWK-to-Perl

translator: a2p 175
5.10 Summary 175
The awk command is surely one of the most useful in the Unix toolkit. It’s even more
important than grep and sed, because it can do everything they can do and more.
That’s to be expected, because unlike those commands, awk implements a general-
purpose programming language (called AWK), which can handle many types of data-
processing tasks.

This is why a Unix “power user” who’s asked to take the time and effort to
learn a new language—such as Perl—can be expected to ask, “What can it do that
AWK can’t?”1

The answer is “Plenty!”, because Perl offers many enhancements over its AWKish
ancestor. But before discussing those enhancements and showing you a multitude of

1 For the story of the author’s initial reluctance to trade in his trusty (and rusty) tools of AWK and the
Korn shell for a shiny new Perl, see http://www.perlfoundation.org/pr/newsletter/2002_10-en.html
and http://www.TeachMePerl.com/interviews/tmp_com_interview.html.
121

useful one-liners and scripts, we’ll begin with a brief history of the AWK language.
This will help you understand why AWK has had such a substantial influence on Perl
and why it’s a good idea to honor AWK by continuing to use its Pattern/Action model
of programming—in Perl!

5.1 A BRIEF HISTORY OF AWK

AWK, like its offshoot Perl, has a diverse group of fans, including linguists, artists, sci-
entists, actuaries, academics,2 hackers, nerds, dorks, and dweebs, and even a few
award-winning programming language designers.

I call these people AWKiologists, or, for those who are especially fervent about the
language (like me), I sometimes affectionately use the term AWKoholics. In addition
to its proponents having funny designations, AWK itself has lots of flattering and
well-deserved nicknames, including “Queen of UNIX Utilities” and “Jewel in the
Crown of UNIX.” But it’s no ivory-tower sissy, as reflected by its most macho moni-
ker, “Swiss Army Knife of UNIX.”

But what is AWK? Like Perl, it was created as an amalgamation of the capabilities
of the UNIX Shell, egrep, and sed, with a little syntax from the C language thrown
in for good measure. Although it has many valuable features, it’s appreciated most
widely for its field-processing capabilities, which are superior to those of its traditional
competitor, the UNIX cut command.

The AWK language has a brilliant design that makes it remarkably easy and pleas-
ant to use and that allows programs to be concise without being cryptic. Indeed,
many AWK programs that do substantial data-processing tasks can be expressed in
only a handful of characters. That’s because the language makes certain clever assump-
tions about what your program will need to do, which allows you to omit much of
the boilerplate code that has to be repeated over and over again in other languages.

AWK debuted with the UNIX version of 1977. But due to the governmental regu-
lations of that era, UNIX was distributed only to the Bell System companies and a few
universities and colleges. AWK went on to attract an enthusiastic population of users,
but they were mostly within the Bell System itself, owing to the fact that detailed lec-
ture/lab courses on AWK’s use were provided only in that community (by my col-
leagues and me).

AWK was especially popular with the clerical and administrative workers of the
Bell System, who were already doing a little grep-ing and sed-ing, but needed a tool
for writing simple programs to do data validation, report generation, file conversion,
and number crunching—without going back to college first! AWK fit that bill to a tee.

2 E.g., while working in the late 1980s as a senior systems analyst at U.C. Berkeley, I was approached by
a researcher about automatically grouping samples of medieval Portuguese poetry into different rhyme-
scheme categories. I solved her problem with an AWK program that looked for different patterns in
word endings.
122 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Unfortunately, due to the lack of comprehensive documentation on AWK before
1984,3 even those few outside the Bell System who did notice its arrival couldn’t
fully fathom its abilities or importance. So, despite its greatness and the reverence
with which it’s viewed by language experts, AWK hasn’t had the degree of influence
it deserved.

If that first book on AWK had come out a few years earlier, and made it possible
for those outside the Bell System to fully appreciate this uniquely valuable tool, I
wonder if current languages might proudly reflect ancestry from it, with names like
Turbo-AWK, AWK++, Visual AWK, and perhaps even AWK#. AWK is just that
good—if it had been more widely known and used early on, it might have changed
programming forever.

Nowadays, many programmers still use AWK for certain kinds of programs, but
they’re more likely to use the new AWK (nawk), which came out of the Bell Labs in
1985, or GNU AWK (gawk), which first appeared in 1986, rather than the classic
AWK of 1977.

Now that you know AWK’s history, let’s consider its present status. Despite all the
developments that have taken place in the world of computing since AWK’s emer-
gence in 1977, there’s still only one general-purpose scripting language that’s better.
Guess what—it’s called Perl!

This is so because Larry, knowing a good thing when he saw one, incorporated
almost all of AWK’s features into Perl. Then he added many more, of his own devis-
ing, to make Perl even better.

We’ll look at some specific comparisons of the capabilities of AWK and Perl next.

NOTE AWK is totally AWKsome, but Perl is even better; it’s Perlicious!

5.2 COMPARING BASIC FEATURES
OF awk AND PERL

This section provides an overview of how AWK and Perl compare in terms of their
most fundamental capabilities. Later, we’ll discuss more specific differences (in built-
in functions, operators, etc.) in the context of illustrative programming examples.

Due to the fact that a nearly complete4 re-creation of an AWK-like programming
environment is provided in Perl (albeit with a different syntax), there aren’t many

3 AWK’s earliest comprehensive documentation was in The UNIX Programming Environment by Brian
Kernighan and Rob Pike (Prentice-Hall, 1984). The first book devoted to AWK was The Awk Pro-
gramming Language (Addison-Wesley, 1988), by AWK’s creators—Al Aho, Peter Weinberger, and
Brian Kernighan (hence the name).

4 AWK does have some features Perl lacks; e.g., all AWK versions allow the field separator to be changed
during execution (via the FS variable)—although I’ve never heard of anyone exploiting this possibility.
When I asked Larry why he didn’t include an FS-like variable in Perl, his typically enigmatic response
was, “AWK has to be better at something!”
COMPARING BASIC FEATURES OF awk AND PERL 123

ways in which Perl can be said to beat AWK at its own game. However, Perl provides
features that go well beyond those of its influential predecessor, allowing the use of
AWKish programming techniques with a much wider variety of applications (e.g.,
networked, database-oriented, and object-oriented).

Perl also provides a richer infrastructure that makes its programmers more produc-
tive, through its module-inclusion mechanism and the availability of thousands of
high-quality pre-written modules from the Comprehensive Perl Archive Network
(CPAN; see chapter 12).

In consideration of the fact that these languages are both rightly famous for their
pattern-matching capabilities, let’s see how they stack up in this respect.

5.2.1 Pattern-matching capabilities

Table 5.1 lists the most important differences between noteworthy AWK versions
and Perl, which pertain to their fundamental capabilities for pattern matching and
related operations.5

The comparisons in the upper panel of table 5.1 refer to the capabilities of the dif-
ferent regex dialects, those in the middle to the way in which matching is performed,
and those in the lower panel to other special features. By observing the increasing
number of Ys as you move from Classic AWK’s column to Perl’s, you can see that
GAWK’s capabilities are a superset of AWK’s, whereas Perl’s capabilities are generally
a superset of GAWK’s.

Perl’s additional capabilities are most clearly indicated in the top and bottom pan-
els, which reflect its richer collection of regular expression metacharacters and other
special features we’ll cover later in this chapter.

Because AWK has inherited many characteristics from grep and sed, it’s no sur-
prise that the AWK versus Perl comparisons largely echo the findings of the grep ver-
sus Perl and sed versus Perl comparisons in earlier chapters. Most of the listed
capabilities have already been discussed in chapter 3 or 4, so here we’ll concentrate on
the new ones: stingy matching and record-separator matching.

Stingy matching

Stingy matching is an option provided by Perl to match as little as possible—rather
than as much as possible, which is the greedy behavior used by Unix utilities (and Perl
by default). You enable it by appending a “?” to a quantifier (see table 3.9), most
commonly “+”, which means “one or more of the preceding.”

The stingy (as in miserly) matching option is valued because it makes certain pat-
terns much easier to write. For example, stingy matching lets you use ^.+?: to cap-
ture the first field of a line in the /etc/passwd file—by matching the shortest
sequence starting at the beginning that ends in a colon (the field separator for that

5 There’s no separate column for POSIX AWK because its capabilities are duplicated in GNU AWK.
124 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

file). In contrast, many beginners would make the mistake of using the greedy pattern
^.+: in an attempt to get the same result. This pattern matches across as many char-
acters as needed—including colons—along its way to matching the required colon at
the end, resulting in fields one through six being matched rather than only field one.
Perl’s ability to do stingy matching gives it an edge over AWK.

Record-separator matching

Perl’s capability of record separator matching allows you to match a newline (or a cus-
tom record separator), which is not allowed by any of the regex-oriented Unix utilities
(grep, sed, awk, vi, etc.). You could use this option, for example, to find a “Z”

Table 5.1 Differences in pattern-matching capabilities of AWK versions and Perl

Capability
a Classic AWK GAWK

b Perl

Word boundary metacharacter – Y Y

Compact character-class shortcuts – ? Y

Control character representation Y Y Y

Repetition ranges – Y Y

Capturing parentheses and backreferences – ?
c Y

Metacharacter quoting ? ? Y

Embedded commentary – – Y

Advanced RE features – – Y

Stingy matching – – Y

Record-separator matching – – Y

Case insensitivity – Y Y

Arbitrary record definitions Y Y+d Y

Line-spanning matches Y Y Y

Binary-file processing Y Y Y

Directory-file skipping – Y Y+

Match highlighting – – ?

Custom output formatting Y Y Y

Arbitrary delimiters – – Y+

Access to match components – – Y

Customized replacements – – Y+

File modifications – – Y

a. Y: has this capability; Y+: has this capability with enhancements; ?: partially has this capability; –: doesn’t have
this capability

b. Using POSIX-compliant features and GNU extensions
c. Works only with certain functions
d. Allows the specification of a record separator via regex
COMPARING BASIC FEATURES OF awk AND PERL 125

occurring at the end of one line that is immediately followed by an “A” at the begin-
ning of the next line, using Z\nA as your regex. It’s difficult to work around the
absence of this capability when you really need it, which gives Perl an advantage over
AWK (and every other Unix utility) for having it.

Now that we’ve compared the pattern-matching capabilities of AWK and Perl,
we’ll next compare the sets of special variables provided by the languages.

5.2.2 Special variables

Both AWK and Perl provide the programmer with a rich collection of special vari-
ables whose values are set automatically in response to various program activities (see
table 5.2). A syntactic difference is that almost all AWK variables are named by
sequences of uppercase letters, whereas most Perl variables have $-prefixed symbols
for names.

The fact that Perl provides variables that correspond to AWK’s $0, NR, RS, ORS,
OFS, ARGV, and FILENAME attests to the substantial overlap between the languages
and tells you that the AWKish programming mindset is well accommodated in Perl.
For instance, after an input record has been automatically read, both languages
update a special variable to reflect the total number of records that have been read
thus far.

Some bad news in table 5.2 for AWKiologists is that the Perl names for variables
that provide the same information are different (e.g., the record-counting variables
“$.” vs. NR), and the only name that is the same ($0) means something different in
the languages.6

Table 5.2 Comparison of special variables in AWK and Perl

Modern

AWKs
a

Perl Comments

$0 $_ AWK’s $0 holds the contents of the current input record. In Perl, $0 holds
the script’s name, and $_ holds the current input record.

$1 $F[0] These variables hold the first field
b of the current input record; $2 and

$F[1] would hold the second field, and so forth.

NR $. The ”record number” variable holds the ordinal number of the most recent
input record.c After reading a two-line file followed by a three-line file, its
value is 5.

continued on next page

a. Some of the listed variables were not present in classic AWK.
b. Requires use of the n or p, and a invocation option in Perl.
c. Requires use of the n or p invocation option in Perl.

6 As discussed in section 2.4.4, $0 knows the name used in the Perl script’s invocation and is routinely
used in warn and die messages. Perl will actually let you use AWK variable names in your Perl pro-
grams (see man English), but in the long run, you’re better off using the Perl variables.
126 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

FNR N/A The file-specific ”record number” variable holds the ordinal number of the
most recent input record from the most recently read file. After reading a
two-line file followed by a three-line file, its value is 3. In Perl programs that
use eof and close ARGV,d “$.” acts like FNR.c

RS $/ The ”input record separator” variable defines what constitutes the end of an
input record. In AWK, it’s a linefeed by default, whereas in Perl, it’s an OS-
appropriate default. Note that AWK allows this variable to be set to a regex,
whereas in Perl it can only be set to a literal string.

ORS $\ The ”output record separator” variable specifies the character or sequence
for print to append to the end of each output record. In AWK, it’s a linefeed
by default, whereas in Perl, it’s an OS-appropriate default.

FS N/A AWK allows its “input field separator” to be defined via an assignment to FS
or by using the -F'sep' invocation option; the former approach allows it to
be set and/or changed during execution. Perl also allows the run-time setting
(using the –F'sep' option) but lacks an associated variable and therefore
the capability to change the input record separator during execution.

OFS $, The “output field separator” variable specifies the string to be used on
output in place of the commas between print’s arguments. In Perl, this
string is also used to separate elements of arrays whose names appear
unquoted in print’s argument list.

NF @F The “number of fields” variable indicates the number of fields in the
current record. Perl’s @F variable is used to access the same information
(see section 7.1.1).

ARGV @ARGV The “argument vector” variable holds the script’s arguments.

ARGC N/A The ”argument count” variable reports the script’s number of arguments.
In Perl, you can use $ARGC=@ARGV; to load that value into a similar
variable name.

FILENAME $ARGV These variables contain the name of the file that has most recently provided
input to the program.c

N/A $& This variable contains the last match.e

N/A $` This variable contains the portion of the matched record that comes before
the beginning of the most recent match.e

N/A $' This variable contains the portion of the matched record that comes after the
end of the most recent match.e

RSTART N/A This variable provides the location of the beginning of the last match. Perl
uses pos()-length($&) to obtain this information.

RLENGTH N/A This variable provides the length in bytes of the last match. Perl uses
length($&) to obtain this information.

a. Some of the listed variables were not present in classic AWK.
c. Requires use of the n or p invocation option in Perl.
d. For example, see the extract_cell script in section 5.4.3.
e. You can obtain the same information in AWK by applying the subst function to the matched record with

suitable arguments (generally involving RSTART and/or RLENGTH).

Table 5.2 Comparison of special variables in AWK and Perl (continued)

Modern

AWKs
a

Perl Comments
COMPARING BASIC FEATURES OF awk AND PERL 127

Another difference is that in some cases one language makes certain types of infor-
mation much easier to obtain than the other (e.g., see the entries for Perl’s “$`” and
AWK’s RSTART in table 5.2).

Once these variations and the fundamental syntax differences between the lan-
guages are properly taken into account, it’s not difficult to write Perl programs that
are equivalent to common AWK programs. For example, here are AWK and Perl pro-
grams that display the contents of file with prepended line numbers, using equiva-
lent special variables:

awk '{ print NR ": " $0 }' file
perl –wnl -e 'print $., ": ", $_; ' file

The languages differ in another respect that allows print statements to be written
more concisely in Perl than in AWK. We’ll discuss it next.

5.2.3 Perl’s variable interpolation

Like the Shell, but unlike AWK, Perl allows variables to be interpolated within double-
quoted strings, which means the variable names are replaced by their contents.7 This
lets you view the double-quoted string as a template describing the format of the desired
result and include variables, string escapes (such as \t), and literal text within it. As a
result, many print statements become much easier to write—as well as to read.

For example, you can write a more succinct and more readable Perl counterpart to
the earlier AWK line-numbering program by using variable interpolation:

perl –wnl -e 'print $., ": ", $_;' file # literal translation
perl –wnl -e 'print "$.: $_";' file # better translation

It’s a lot easier to see that the second version is printing the record-number variable, a
colon, a space, and the current record than it is to surmise what the first version is
doing, which requires mentally filtering out a lot of commas.

What’s more, Perl’s variable interpolation also occurs in regex fields, which allows
variable names to be included along with other pattern elements.

For instance, to match and print an input record that consists entirely of a Zip
Code, a Perl programmer can write a matching operator in this manner:

/^zip_code/ and print;

Note the use of the variable to insert the metacharacters that match the digits of the
Zip Code between the anchor metacharacters.

In contrast, an AWK programmer, lacking variable interpolation, has to concate-
nate (by juxtaposition) quoted and unquoted elements to compose the same regex:8

$0 ~ "^" zip_code "$"

7 In Shell-speak, this process is called variable substitution rather than variable interpolation.
8 When constructing regexes in this way, AWK needs to be instructed to match against the current input

line with the $0 ~ regex notation.
128 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

These statements do the same job (thanks to AWK’s automatic and print, but
because Perl has variable interpolation, its solution is more straightforward.

We’ll consider some of Perl’s other advantages next.

5.2.4 Other advantages of Perl over AWK

As discussed in section 4.7, Perl provides in-place editing of input files, through the
–i.ext option. This makes it easy for the programmer to save the results of editing
operations back in the original file(s). AWK lacks this capability.

Another potential advantage is that in Perl, automatic field processing is disabled
by default, so JAPHs only pay its performance penalty in the programs that benefit
from it. In contrast, all AWK programs split input records into fields and assign them
to variables, whether fields are used in the program or not.9

Next, we’ll summarize the results of the language comparison.

5.2.5 Summary of differences in basic features

Here are the most noteworthy differences between AWK and Perl that were touched
on in the preceding discussion and in the comparisons of tables 5.1 and 5.2.

Ways in which Perl is superior to AWK

Perl alone (see tables 5.1 and 5.2) provides these useful pattern-matching capabilities:

• Metacharacter quoting, embedded commentary in regexes, stingy matching,
record separator matching, and freely usable backreferences

• Arbitrary regex delimiters, access to match components, customized replace-
ments in substitutions, and file modifications

• Easy access to the contents of the last match, and the portion of the matched
record that comes before or after the match

Only Perl provides variable interpolation, which

• allows the contents of variables to be inserted into quoted strings and regex
fields. This feature makes complex programs much easier to write, read, and
maintain, and can be used to good advantage in most programs.

Perl alone has in-place editing.

Only Perl has a module-inclusion mechanism, which lets programmers

• package bundles of code for easy reuse;

• download many thousands of freely available modules from the CPAN.

9 Depending on the number of records being processed and the number of fields per record, it seems
that AWK could waste a substantial amount of computer time in needless field processing.
COMPARING BASIC FEATURES OF awk AND PERL 129

Ways in which AWK is superior to Perl

Many simple AWK programs are shorter than their Perl counterparts, in part because
and print must always be explicitly stated in grep-like Perl programs, whereas it’s
implicit in AWK.

It’s easier in AWK than in Perl (see table 5.2) to

• determine a script’s number of arguments;

• obtain a file-specific record number;

• determine the position within a record where the latest match began.

However, to put these differences into proper perspective, Perl’s listed advantages are
of much greater significance that AWK’s, because there’s almost nothing that AWK
can do that can’t also be done with Perl—although the reverse isn’t true.

Now that you’ve had a general orientation to the most notable differences between
AWK and Perl, it’s time to learn how to use Perl to write AWKish programs.

5.3 PROCESSING FIELDS

The single feature of AWK that’s most widely known and used is its elegant facility for
field processing. For example, here’s an AWK program that displays the first two fields
of each input line in reverse order, using birthday data for 1960s guitar heroes:

$ cat birthdays
03/30/45 Eric Clapton
11/27/42 Jimi Hendrix
06/24/44 Jeff Beck
 1 2 3

$ awk '{ print $2, $1 }' birthdays
Eric 03/30/45
...

In AWK, $1 means the first field of the current record, $2 the second field, and so
forth. By default, any sequence of one or more spaces or tabs is taken as a single field
separator, and each line constitutes one record. For this reason, “3/30/45” was treated
as the first field of Eric’s line and “Eric” as the second.

After discussing a Perl technique for accessing fields, we’ll revisit this example and
translate it into Perl.

5.3.1 Accessing fields

Before you can use fields, you have to gain access to them. In AWK, you do this by
referring to special variables named $1, $2, and so on. Minimal Perl’s main technique
for field processing10 is shown in table 5.3. It involves copying the fields of the current

Field
numbers

10 We’ll discuss an alternative technique for accessing fields called array indexing in section 5.4.3, which
uses variables like the $F[0] shown in table 5.2.
130 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

record from the field container @F into a parenthesized list of user-defined variables.
For instance, the first example in the table assigns the first field of @F to $A and its
second field to $B.

In some programs, certain fields won’t ever be used, and that requires a different
kind of entry in the parenthesized list. Specifically, for unused fields that occur before
the rightmost field of interest, the keyword undef (for undefined) takes the place of
a variable in the parenthesized list (as illustrated by the table’s second example).

On the other hand, there’s no need to provide variable names or undef keywords
for any fields beyond the rightmost one that will be used in the program. This means
the assignment statement ($A, $B)=@F can be used with input records having from
two to any larger number of fields, as long as only the first two fields are of interest.

As shown in table 5.3, generic variable names such as $A and $B are generally used
in programs that don’t know what’s in the fields they’re manipulating. But in cases
where the programmer has that information, it’s a better practice to use more descrip-
tive names for the field variables, such as $size and $shape.

The table’s last row shows how to determine the number of fields in the current
input record. You do this by making an assignment to a variable that’s not enclosed
in parentheses (for reasons discussed in section 7.1.1).

Table 5.4 illustrates the assignments of field values to variables and undef key-
words in parenthesized lists. The arrows indicate that when a variable name—such as
$first—is provided as the target for a particular field, the associated field value
(such as “A”) is copied into it. In contrast, no copying is performed for an undef tar-
get, whose function is just to displace the next variable (or undef) into alignment
with the next field value.

Note in particular that there’s no effective difference between the last two assign-
ment formats shown in table 5.4, which illustrates the earlier point that you don’t
need to supply undef entries for fields beyond the rightmost one of interest.

Table 5.3 Loading field data into user-defined variables

Syntax
a Effect Comments

($A, $B)=@F; Loads the first field of the
current record into $A and the
second into $B.

Variables must be provided for each
field up to the rightmost one that will
be used in the program.

($A, undef, $C)=@F; Loads the first field into $A and
the third into $C.

undef in the second position
indicates that no variable has been
designated to receive the value of
the second field.

$numfields=@F; Loads the field count for the
current record into
$numfields.

For an assignment to a non-
parenthesized scalar variable, @F
provides the field count.

a. These examples depend on the use of Perl’s n and a invocation options to load the fields of the current input
record into @F.
PROCESSING FIELDS 131

NOTE Minimal Perl’s approach of copying field values into descriptively named
variables produces more readable programs than conventional AWK solu-
tions.

Now that you know how to access fields in Perl, we’ll put that knowledge to use by
writing some simple programs that print fields.

5.3.2 Printing fields

Let’s construct a Perl counterpart to the AWK command shown earlier, which
prints selected fields from the birthdays file. To refresh your memory, here’s the
AWK version:

$ awk '{ print $2, $1 }' birthdays
Eric 03/30/45
...

Our first task is to choose an appropriate Primary Option Cluster from table 2.9,
which prescribes -wnla for field-processing applications where the default whitespace
delimiters are desired. Perl’s n option requests the inclusion of an implicit input-reading
loop, as we’ve discussed, and the a option additionally requests the automatic splitting
of each input record into fields, which are stored in the @F array.

Table 5.4 Using undef in assignments to explicit lists

Format of assignment statement

(@F contains A, B, and C)
Resulting assignment of values to

variables

($first, $second, $third)=@F; A B C

➝ ➝ ➝

$first $second $third

(undef, $second, $third)=@F; A B C

➝ ➝ ➝

undef $second $third

($first, undef, $third)=@F; A B C

➝ ➝ ➝

$first undef $third

($first, $second, undef)=@F; A B C
➝ ➝ ➝

$first $second undef

($first, $second)=@F; A B C

➝ ➝ ➝

$first $second
132 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

After consulting the first example of table 5.3 for the appropriate syntax, it’s easy
to construct a Perl one-liner that displays the first two whitespace-separated fields of
each input line in reverse order on the screen:

$ perl -wnla -e '($date, $name)=@F; print "$name $date";' birthdays
Eric 03/30/45
...

This solution takes more typing than its AWK counterpart, but its descriptive variable
names (compared to AWK’s cryptic $1 and $2) make it easier to understand.

Next, we’ll turn our attention to a program that demonstrates the use of undef,
along with named variables, in assignments to explicit lists.

A rock-star biodata system (AWK)

Perhaps because of his name, paranormal researcher Fox Boulder is vitally interested
in rock lore. He’s currently investigating the rash of rock-star deaths by alleged “acci-
dents” and “drug overdoses” that occurred from 1969 to 1971.

Fox has been a fan of AWK since the last millennium, so he’s using it to view
selected bits of biodata pertaining to the rock-star deaths. His data file, called X, is
shown in listing 5.1.

Birth Death Name
02/28/42 07/03/69 Brian Jones
11/27/42 09/18/70 Jimi Hendrix
11/19/43 10/04/70 Janis Joplin
12/08/43 07/03/71 Jim Morrison
11/20/46 10/29/71 Duane Allman

This file may not look suspicious to you, but Fox is a trained observer, so he immedi-
ately notices that the order in which the individuals were born is exactly the same as
the order in which they died. He has several theories about what that means, but all
he knows for sure about this case is this—AWK has really come in handy in helping
him reformat the data!

For example, here’s the command he uses to display each first name and birth
date, which requires printing the third field followed by the first field from each line
of the X file:

$ awk '{ print $3 "\t" $1 }' X
Name Birth
Brian 02/28/42
...

Listing 5.1 Birth and death dates of rock stars, from the X file
PROCESSING FIELDS 133

Satisfied with this command, Fox retires to his pyramid-covered hyperbaric bed
chamber for some well-deserved rest—but he’s soon awakened by a nightmare. As
usual, it featured a handsome, dark-haired, bespectacled man sporting a Hawaiian
shirt and droopy mustache (i.e., Larry), exhorting him to Retool from AWK to Perl ,
exploit the CPAN, and embrace TMTOWTDI! Hoping it will help exorcise this demon,
Fox sets out to convert his AWK birthday-printing command to Perl.

A rock-star biodata system (Perl)

After rummaging through some handouts from a YAPC tutorial on Minimal Perl that
the CIA probably won’t notice are missing, Fox comes up with the following Perl
counterpart to his earlier AWK command:11

$ perl -wnla -e '($b_date, undef, $fname)=@F;
> print "$fname\t$b_date";' X
Name Birth
Brian 02/28/42
...

As illustrated in table 5.4, he only had to account for the fields up to the rightmost
one of interest (first name) while populating the parenthesized list with variables.
Notice also that Fox gave the field variables descriptive names, because he knows that
proper labeling of evidence can be critical to the success of a case.

Unlike the corresponding AWK solution, this Perl command can format its output
by using variable interpolation (see section 5.2.3) to insert the fields into print’s
double-quoted argument string. Perl even has in-place editing, so Fox could rewrite
the original file in the new format just by adding the i option (see section 4.7):

$ perl –i.bak -wnla -e '($b_date, undef, $fname)=@F;
> print "$fname\t$b_date";' X # X-file gets transmogrified
$ # Output went back into X

We’ll explore some additional differences in the use of print in AWK and Perl next.

5.3.3 Differences in syntax for print

Table 5.5 summarizes the major AWK versus Perl syntax differences for print state-
ments involving variables, string escapes, and literal text.

A fundamental difference is that Perl, like many other computer languages,
requires commas to appear between arguments. In contrast, AWK allows commas to
be present in print statements—to indicate that arguments should be separated in
the output by the value of the OFS variable (see table 5.2)—or commas to be absent,
to indicate that the arguments should be concatenated together on output.

11 The Perl solution requires considerably more typing than the AWK one, but for an apples-to-apples
comparison, here’s an AWK solution that also uses descriptive variable names, which is nearly as large
as its Perl counterpart: awk '{ birth=$1; fname=$3; print fname "\t" birth }' X
134 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Therefore, in the AWK example of table 5.5’s first row, the juxtaposition of the three
arguments causes them to be concatenated, whereas the first corresponding Perl solu-
tion needs a comma between each pair of arguments to do the same (and to avoid a
fatal syntax error). The second Perl solution in that row, which uses variable interpo-
lation, is the recommended approach.

In the table’s second row, the AWK program uses a comma to obtain a space
between the printed items, which is explicitly included in the double-quoted string of
the Perl version.

Table 5.5 Syntactic differences for print in AWK and Perl

AWK Perl
a Explanation

print name "\t" age

Output:
Suzy--->29

print $name, "\t", $age;
Or
print "$name\t$age";

Output:
Suzy--->29

In Perl, arguments can’t be placed
next to one another without an
intervening comma. But because
Perl provides Shell-like variable
interpolation, items to be printed
are generally included in double
quotes. The arrow symbol
represents the effect of printing
the tab character requested by \t.

print name, age

Output:
Suzy 29

print "$name $age";

Output:
Suzy 29

In AWK, a comma in a print
statement requests the insertion
of the OFS variable’s contents (a
space, by default, indicated here
by a box). In Perl, the space is
either included within a quoted
argument to print or loaded into
“$,” (see table 2.8).

print "NR is:", NR

Output:
NR is: 13

print "\$. is: $."

Output:
$. is: 13

In AWK, the name of a variable is
treated as a literal string when it
appears within double quotes. In
Perl, a backslash is needed before
a $ in double quotes to suppress
variable interpolation (as in the
Shell).

print name

Output:
Suzy

print "$name"
Or
print $name

Output:
Suzy

When there’s nothing in Perl’s
double quoted string but a single
variable name, the quotes have no
effect and can be omitted.

a. These examples assume the use of Perl’s l invocation option.
PROCESSING FIELDS 135

Similarly, the Perl example in the third row includes a space after “is:” that was pro-
vided by a comma in its AWK counterpart.

The examples in the last row make the point that it’s optional in Perl to use double
quotes around the name of a lone scalar variable, because doing so has no effect on
the result. On the other hand, prudent Shell programmers acquire the habit of gen-
erally using double quotes in similar cases, to disallow additional processing of the
results of substitutions.12 For this reason, Perl newbies who plan to continue pro-
gramming in the Shell may wish to keep their Shell-friendly habits intact by using
double quotes around scalar variable names in Perl.

With the data files you’ve seen thus far, the default field separators have been
appropriate for extracting the fields of each line. However, sometimes you need to
specify custom separators , which you’ll learn to do next.

5.3.4 Using custom field separators in Perl

By default, Perl’s a option splits input records into fields using whitespace characters
as field separators. That’s fine when you’re working with files whose records look
like this:

01/08/35 08/16/77 Elvis

But in other cases, whitespace characters occur within fields, so a different character
must be used as a field separator, such as the colon in this example:

Stimey:Matthew Beard

To change Perl’s idea of what constitutes a field separator, you specify with the F invo-
cation option (see table 2.9) the desired character(s) or regular expression—as in
AWK. Accordingly, this command prints “Stimey”:

echo 'Stimey:Matthew Beard' | # Character:Actor
 perl –wnlaF':' –e '($character)=@F; print $character;'

Table 5.6 shows examples of custom field separators, which define fields consisting of
whatever is found between them in the input.

The field separator definitions are shown in the table with single quotes around
their contents, to allow them to work properly when submitted to a Shell.13

Yikes! The little hairs on the back of my neck just started tingling—that means it’s
time to check on Fox.

12 For a discussion of quoting techniques in Shell programming and guidelines for proper quoting, see
http://TeachMeUnix.com/quoting.html.

13 What happens if you omit the quotes? In the case -F'\t', the Shell would convert the unquoted
-F\t to –Ft by gobbling up unquoted backslashes—which would make each “t” a field separator,
rather than each tab. That wouldn’t keep the program from running—just from producing the
right results!
136 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Enhancing the rock-star biodata system

Fox is experimenting with his new Perl command that displays rock-star birthdays,
when the phone rings. To his surprise, it’s an excited guy from TVM—the television
music network—who has heard about his new rock-star biodata system and wants to
make him an offer for it.14

But there’s a catch—they need him to modify the program so that both name
components can be manipulated as one unit, so, for example, the last output line
prints as “Duane Allman 11/20/46”, rather than the current “Duane 11/20/46”.

After negotiating an appropriate “license in perpetuity” arrangement for a seven-
figure amount, Fox accepts the assignment of modifying his program. He begins by
scrutinizing the last line of the X file:

11/20/46 10/29/71 Duane Allman

The evidence shows a big gap after each date field and a small one between each name
component. His intuition tells him that his assistant probably used tabs to separate
the three obvious fields while typing the file. He tests this hunch by using a special
invocation of the sed command:15

Table 5.6 Custom field separator definitions

Separator option

and argument
a Meaning

F'///' Each sequence of three slashes is a single field separator.

F'\t' Each tab is a single field separator.

F'\t+' Each sequence of one or more tabs is a single field separator.

F'\s+' Each sequence of one or more whitespace characters is a single field
separator. Although this is the default definition, it can produce different results
when stated explicitly (see text).

F'[,;!?]+' Each sequence of one or more of the characters listed in the square brackets is
a single field separator.

F'[^\w]+' Because the list-complementing character (^) is at the beginning of the
character class, each sequence of one or more non-”word” characters is a
single field separator.

a. Tables 3.4 and 3.5 define the metacharacters used in these examples. The F option works only in the presence
of options n/p and a, so it generally appears in the form –wnlaF'sep'

14 But Fox had just typed it in on his laptop! How could anybody have learned of its existence? Hmm …
his television and ISP services both ride on the same cable; could his ISP be monitoring his keystrokes
and sharing them with the TV networks? Naw; it must be an alien conspiracy !

15 The -n option tells sed not to do automatic printing of automatically-read input lines (as with Perl).
The l command tells it to list non-printing characters (other than space) in a visible manner, and to
mark the end of each line with a $ symbol.
PROCESSING FIELDS 137

$ sed -n l X
Birth\t\tDeath\t\tName$
...
11/20/46\t10/29/71\tDuane Allman$
 1 2 3
 1 2 3 4

The \t sequences reveal tabs between the date and name fields, confirming Fox’s
hunch. Now he can see that each data line will have four fields when the default sepa-
rators are used but three fields with tabs as separators.

Armed with the new evidence produced by the arcane sed incantation, he is now
ready to solve the case:

$ perl -wnlaF'<TAB>+' -e \
> '($b_date, undef, $name)=@F; print "$name<TAB>$b_date";' X
...
Duane Allman 11/20/46

Fox selected the second field-oriented Primary Option Cluster from table 2.9,
-wnlaF 'sep', so he could define “one or more tabs” as the field separator. He
specified this choice pressing the tab key (<TAB>) in quotes after the F option,16

and he inserted a tab in the same way within print’s quoted argument string.
Shazaam—the program works! Now all Fox has to do is reports its readiness and

seal the deal. But suddenly the TVM guy calls, saying they found another source for
a rock-star biodata system and won’t be needing his after all.

His last remark is still reverberating in Fox’s head:
By the way, my people tell me you could have used \t to represent the tab in the
arguments to the F option and print to enhance the program’s readability.
Whatever. Rock on, dude!

The TVM guy was right! But how did they already know what his new version looked
like? Fox vowed he would find out, because The Truth Is Out There—somewhere.

Fox is good at identifying patterns in data and taking appropriate actions. That’s
why he likes AWK so much—it’s good at associating Patterns with Actions. You’ll see
how to make such associations with Perl next.

5.4 PROGRAMMING WITH PATTERNS
AND ACTIONS

After field processing, AWK’s next most highly prized feature is its ability to combine
pattern matching with conditional execution. Why is that so good?

16 Because Fox uses the Bash shell with vi-editing mode enabled, he has to press <Ctrl><V> before the
tab character to have it taken literally.

Field numbers
using tabs

Field numbers
using whitespace
138 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Think for a moment about the most fundamental service provided by grep,
which is to look for lines that match a pattern and display them. Although this is a
useful service, many other things could be done with the match itself, or its associated
record, which may at times be more desirable. AWK’s creators recognized this fact and
engineered it so that any of its activities could be dependent on the result of a match.
Perl shares this property.

Here’s an example of a simple AWKish Perl command that demonstrates the
power of the Pattern/Action programming model, in which a conditional element
(called the Pattern) is paired with an executable element (called the Action):

$ perl -wnl -e '/^@/ and print $.;' data
3
17

If the Pattern (the matching operator) yields a True result, the Action (print) is exe-
cuted. In consequence, this command reports the numbers of the lines in the data
file that are marked by an initial @ symbol, which by convention in this IT depart-
ment identifies those lines as incomplete.

Notice that grep isn’t up to this task. Its specialty is to print matching lines, and
there’s no way to persuade it to track their numbers and print them instead. The
sed command isn’t well suited to this job either, because the task involves the
reporting of new data (line numbers) rather than the modification of existing data
(by substitution).

On the other hand, the Shell can handle this task—if the programmer is willing
to write an input-processing loop, manage a line counter, and do some conditional

Table 5.7 Patterns and Actions in AWK and Perl

AWK

program

type

AWK format &

sample programs

Perl format & sample

programs
a Explanation

Pattern and
Action

Pattern {
 Action
}

Example:
 /RE/ {
 print NR
 }

Pattern and Action;

Example:
 /RE/ and print $.;

Prints record numbers of
records matching RE. In AWK,
regex Patterns are enclosed in
slashes, and Actions are
enclosed in curly braces.

Pattern only Pattern

Examples:
 /RE/

 NR > 1

Pattern and print;

Examples:
 /RE/ and print;

 $. > 1 and print;

The upper examples print
records matching RE, and the
lower ones print all records
except the first.

Action only { Action }

Example:
 { print }

Action;

Example:
 print;

Prints every record.

a. The Perl examples assume use of the (AWKish) n option.
PROGRAMMING WITH PATTERNS AND ACTIONS 139

branching based on the result of a pattern match. But following this approach would
constitute a flagrant violation of the First Virtue of Perl programming: Laziness !

Fortunately, Patterns in AWK and Perl needn’t be matching oriented; you can use
any True/False expression as a conditional element, such as “$. > 42”.

Another convenience is that in AWK, a Pattern without an associated Action is
automatically provided the default Action of printing the record, and an Action with-
out a Pattern is treated as having a Pattern that selects all records. You can arrange for
this behavior in Perl too, by using an appropriate syntax.

Table 5.7 shows Perl counterparts to the three types of AWK programs that can be
constructed using a Pattern/Action pair, a lone Action, or a lone Pattern. The exam-
ples in the first row of the table associate a Pattern with an Action, to print a line’s
number if its contents match a pattern. The second row’s examples show how to
obtain AWK’s default print Action in Perl, and those in the last row show how to
apply a particular Action to all input lines.

To give you a better idea of how the languages compare in practice, table 5.8
shows the implementations in AWK and Perl of some simple programs that perform
elementary types of data-processing tasks.

The AWK programs in the upper panel of table 5.8 are of the Pattern-only type,
employing the default Action of printing the selected records. Their Perl counterparts
need an explicit and print clause to obtain the same functionality. Notice also that
AWK’s && (logical and) used in the compound test of the first example becomes and
in the Perl version. The examples of the first two rows demonstrate that Patterns
don’t necessarily involve matching—conditions based on relational operators (“<=”,
“!=”, etc.; see table 5.11) are among the others you can use.

The programs in the table’s middle panel are of the Action-only type, in which all
records are selected for processing by the Action (with the help of the n option in the
Perl versions).

The programs in the bottom panel each use at least one Pattern/Action pair,
although that may not be readily apparent. That’s because BEGIN and END are
pseudo-Patterns that respectively become True before any input has been read or after
all input has been read. Accordingly, the statements in a BEGIN block are the first to
be executed in a program, and those in the END block are the last.17

As shown in table 5.8’s last row, a BEGIN block is used for preliminary operations,
such as printing a heading to describe the upcoming output of those programs. The
programs then employ an Action-only statement to accumulate a total, and after all
the input has been processed, they calculate and print the average of the numbers in
and END block.

17 The Perl (or AWK) solution could alternatively use the += compound assignment operator (see
table 5.12) in incrementing the variable $total, as in $total += $_.
140 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

The following script, called incomplete, is an enhanced version of the program you
saw at the beginning of this section. The original version reported the numbers of the
lines that begin with a @ character (which marks them as incomplete). The new one
adds value by reporting the proportion of incomplete lines at the end of its run. The
script uses both the BEGIN and the END block:18

$ cat incomplete
#! /usr/bin/perl –wnl
BEGIN {
 $count=0; # to suppress warnings
}

/^@/ and # this symbol identifies incomplete lines
 print "Line #$. is incomplete" and
 $count=$count + 1;

Table 5.8 AWK and Perl programs for simple tasks

AWK
a Perl

b Explanation

1 <= NR && NR <= 3 1 <= $. and $. <= 3
 and print;

Prints records 1 through 3 of the
input.

NF != 2 @F != 2 and print; Prints records that don’t have
exactly two fields. Perl’s @F
corresponds to AWK’s NF when
its context calls for a single value
(see chapter 7).

$2 =~ /^9/ $F[1] =~ /^9/ and
 print;

Prints records that have "9" at the
beginning of the second field.

{ print $NF } print $F[-1]; Prints the last field of each line,
using negative indexing in Perl’s
case (see table 5.9).

{ print NR ": " $0 } print "$.: $_"; Prepends record numbers to
records and prints them.

END { print NR } END { print $.; } Reports the total number of
records read.

BEGIN {
 print "AVERAGE:"
}
{ total=total + $0 }
END {
 print total / NR
}

BEGIN {
 print 'AVERAGE:';
}
$total=$total + $_;
END {
 print $total / $.;
}

For input lines consisting of
individual numbers, reports the
average of those numbers.18

a. AWK’s special variables are discussed in table 5.2.
b. These Perl programs use the n invocation option, and those employing @F or $F[] additionally use the a

option.

18 Additional details on BEGIN and END blocks, and how they fit into the use of implicit loops, are pro-
vided in section 10.2.4.
PROGRAMMING WITH PATTERNS AND ACTIONS 141

END {
 print "\n$count lines out of $. are incomplete";
}

$ incomplete datafile
Line #3 is incomplete
Line #17 is incomplete

2 lines out of 38 are incomplete

Notice that the variable $count is initialized to zero in the BEGIN block. Although
this step is rarely needed in Perl, it’s included here for two reasons. One is that an
“uninitialized variable” warning would otherwise be issued the first time the variable-
incrementing statement is executed, because the underlined instance of the variable
would not yet have been given a value. This wouldn’t interfere with the addition,
because Perl (like AWK) would automatically default to using the desired value of zero
for the variable anyway. As in other cases where you know that an “uninitialized vari-
able” warning would otherwise be “crying wolf,” you can suppress it through the
expedient of explicitly initializing the variable.

A more compelling reason for initializing $count is that if the input lacked any
incomplete lines, the variable-incrementing statement would never get executed, and
the variable’s value would remain undefined. This would cause the print within END
to generate an “uninitialized variable” warning for $count, and for Perl to substitute
a null string19 for the variable interpolation request.

Explicit initialization of $count to zero avoids both of these undesirable situa-
tions, and is conveniently done in a BEGIN block to ensure that the desired starting
value will be in effect from the program’s outset.

Next, we’ll briefly revisit the topic of field processing to see how it can be used
with Pattern/Action programming.

5.4.1 Combining pattern matching with field processing

AWK’s Pattern/Action model allows you to combine a record selection step with the
conditional printing of selective fields from a record, as in this simple example:

/RE/ { print $1, $3 } # if record matches, print 1st and 3rd fields

Perl shares this capability but wields it with greater power, due in part to its superior
pattern-matching capabilities (summarized in table 5.1). You’ll see many programs
that demonstrate these benefits later, but first we’ll look at an elementary example.

The following command reports the login names and UIDs for Unix accounts
having three-digit UIDs that start with 7, which on this system are accounts for stu-
dents taking a particular class. Printing the report requires matching against the third

19 Why not a zero, as before? Because the double-quoted string provides a string context for the variable,
in contrast to the numeric context provided by the variable-incrementing statement discussed earlier.
142 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

colon-separated field of the passwd file (the UID), coupled with conditional printing
of the first and third fields:

$ perl -wnlaF':' -e '($name, undef, $uid)=@F;
> $uid =~ /^7\d\d$/ and print "$name:\t$uid";' /etc/passwd
raga: 710
theka: 711
tala: 712
...

The Pattern is of the matching type and is constructed using the match-binding oper-
ator (“=~”; see table 3.3) to specify $uid as the regex’s target. The Pattern’s associated
Action prints the $name and $uid fields of the current line in the event of a match.

Next, you’ll see how to use Perl’s AWK-like capabilities to extract a single chunk
of information from a particular location within a file.

5.4.2 Extracting data from tables

As a long-time resident of Seattle, Patrick knows that identifying other cities that have
even more rain is a popular pastime there during the soggy days of winter. Now that
most coffee shops provide WiFi Internet access, the availability of online data should
help to quickly settle the inevitable disputes over rainfall patterns.

With a bit of surfing, Patrick finds a U.S. government web site that reports
detailed weather data for all major cities in the U.S. and Canada. In preparation for
the next “your city is rainier than mine” dispute, he downloads the associated text files
to his laptop computer.

Waving from the next table, Patrick’s friend Vitas introduces his new friend Guill-
ermo, who has just moved to Seattle from Miami, Florida.

Guillermo mumbles the following, while barely glancing at Patrick: “Hi, Patrick.
Please excuse my depressed mood—I’m having trouble adjusting to this dreary Seattle
weather—which is so much rainier than Miami!”

Vitas chimes in with: “Yeah, when I like first arrived here from New York, I
couldn’t believe that human beings would have, like, ever settled in a city so, like,
soggy as this one—if you know what I’m sayin’—so I’m down with that!”

Being an IT guy, and freshly armed with the relevant data, Patrick can’t resist the
opportunity to put these allegations to a test. He pushes aside his coffee, fires up his
notebook computer, and begins working on a script to compare the raininess statistics
for Seattle, New York, and Miami.

Comparing cities for “mean annual precipitation”

Patrick’s first step is to study the data files, so he’ll be able to extract the relevant infor-
mation from the appropriate spots. Looking over his shoulder, you can see in listing 5.2
the first screen of the file for Seattle, with line numbers added for reference purposes.
PROGRAMMING WITH PATTERNS AND ACTIONS 143

Patrick adopts a tentative definition of the city with the “most rain” as the one
with the largest number under the ANN (“annual”) column on Line 23 of its file,
which reports the total of the mean inches of precipitation for all the months of
the year. With a few well-practiced mouse maneuvers, he highlights that cell and
its row/column endpoints to help him maintain his focus on the pertinent loca-
tions in the file (and, coincidentally, to help you spot them too).

But a quick check of the files for the other cities reveals a snag—the statistic of inter-
est doesn’t appear on the same line in every file, because some files have more blank
lines between the data paragraphs than others (e.g., between Lines 19 and 21). That
means Patrick can’t access the desired statistic by just grabbing the last field on Line
23. His next idea is to search for “MEAN” to find the line of interest within the pre-
cipitation data block, but as it happens, that word occurs within other kinds of data
paragraphs too (e.g.,. TEMPERATURE); thus that strategy is equally unacceptable.

Patrick finally settles on the approach of finding the PRECIPITATION data para-
graph, locating the intersection of its MEAN line and ANN column, and extracting
the number found in that cell.

Listing 5.2 Weather data for Seattle
144 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Such table-oriented data wrangling is way beyond the capabilities of grep and its
kin, but it’s well within the scope of AWK or AWKish Perl. So Patrick solves the
problem by writing a script that uses paragraph mode to grab the whole block of
PRECIPITATION data, and then uses indexing to extract the value of the appropriate
field from the field array.

Before we examine Patrick’s script, we’ll take a moment to lay the conceptual
foundation for the array-indexing technique used in his program.

5.4.3 Accessing cell data using array indexing

As you know, one convenient way to access elements of arrays is to copy them from
the array into a list of named variables and then extract the values from those vari-
ables. But in cases where you’ve got dozens or even thousands of values to choose
from, this approach isn’t practical—typing the ($A,$B, etc.)=@F assignment state-
ment is too burdensome.

The alternative is to use array indexing to extract specific values directly from the
array. You do this by changing the @ symbol in the array name to a $ sign and
appending a pair of square brackets with an integer number (or an expression that
evaluates to one) between them.

As shown in table 5.9, Perl is unusual in providing both positive and negative
indexing. The benefit is that the last element of the array, for example, can either be
retrieved using the index of -1 or the index of N-1, where N is the total number of ele-
ments. (The maximum index is one less than the number of elements, because the
indices start from 0, rather than 1.)

Now let’s examine Patrick’s script, called mean_annual_precip, which is compact,
sweet, and powerful—like his espresso:

#! /usr/bin/perl -00 -wnla
Parses "Operational Climatic Data Summary" reports to extract
and print "mean annual precipitation" statistic for each file.
#
Find precipitation record, and print its field #33 (index 32)
#
/^ 2\. PRECIPITATION / and print "\u$ARGV: $F[32]";

The script is designed to read multiple files in sequence (via option n) using paragraph
mode (-00) and to automatically load the fields of each record into @F (using a). To
home in on the correct portion of each city’s data file, the matching operator is used

Table 5.9 Illustration of array indexing syntax using the field array, @F

Storage position

1st 2nd 3rd 4th (and last)

Positive indexing $F[0] $F[1] $F[2] $F[3]

Negative indexing $F[-4] $F[-3] $F[-2] $F[-1]
PROGRAMMING WITH PATTERNS AND ACTIONS 145

to find the paragraph with the PRECIPITATION heading by looking at the beginning
of a paragraph for a space, a 2, a literal dot, and then two spaces before that word.

Next, the logical and is used to print the file’s name (via $ARGV; see table 2.7)
followed by a colon, a space, and the value of the appropriate field within the record.
Notice the use of \u before $ARGV (see table 4.5), which conveniently capitalizes the
first letter of each city’s name. To help you visualize the implicit lines-to-record map-
ping that determines the index numbers for the fields in @F, consider the following
data file:

A B
C D

When read in line mode, each line would have two fields, and the maximum index for
each record’s @F would be 1.

However, if you read the same file in paragraph mode, each field would be con-
sidered part of the same record and treated for field-numbering purposes as if the
input had looked like this:

A B C D

Therefore, field “D” would be stored under the index of 3, rather than under 1, as it
would be with input records defined as lines.

Using this logic, Patrick determines that the number of the field he’s interested in
is 33, which means it can be retrieved with the index 32.

Okay, now it’s time to run the script, and determine which city is the rainiest:20

$ mean_annual_precip miami new_york seattle
Miami: 57.9

New_york: 41.2

Seattle: 38.3

Patrick gently breaks the news to Guillermo about Miami being rainier than Seat-
tle. After a brief period of shock-induced choking on his carob-iced hemp biscotti,
Guillermo congratulates himself on being wise enough to relocate to (relatively)
rain-free Seattle.

But Patrick is left wondering why Seattle has such an oversaturated reputation,
given that even New York has more rain. In an attempt to reconcile his observations
with reality, he speculates that Seattle’s distinction might be its number of days with
significant rainfall, as opposed to its annual amount of rainfall.

20 When perl is invoked with the -00 –wnla options, the l option strips blank lines from the end of
each record, not newlines. Field 33 occurs at the end of a line, so it still has the line-ending newline
attached at its end. But the l option automatically adds a newline at the end of print’s argument list,
making the output double-spaced. To avoid this effect, a chomp $F[32]; statement could be added
above the print statement to remove any trailing newline present in the field variable. You’ll learn
more about chomp in section 7.2.4.
146 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Comparing cities for “days of significant rain”

Patrick begins work on a new script to compare the “number of rainy days” statistic
from the weather files of the three cities. But instead of writing a script specific to this
particular task, he decides to make it a very general one that’s configurable by
switches, to liberate him from the chore of writing another new script as each new dis-
pute arises in the future.

With the weather-data files, the script could use a matching operator to select the
desired record, as mean_annual_precip did. But that technique can’t be expected
to work with every file, because it requires the record of interest to have a unique
marker within it, such as the precipitation record’s PRECIPITATION. Accordingly,
Patrick opts for the more general approach of selecting records by number.

To give the script the flexibility it needs, he lets the user specify the number of the
record and the field of interest within it using command-line switches. Prior to testing
his new script against mean_annual_precip, he identifies the number of the PRE-
CIPITATION record in the weather files using this one-liner:

$ perl -00 -wnl -e 'print "Paragraph #$.:\n$_";' seattle

Now that Patrick knows that the paragraph number for precipitation data is 6, he can
test his new script by specifying that record number21 along with the number of the
desired field within it. The location described by those attributes is like a cell in a two-
dimensional table, inasmuch as it occurs at the intersection of a horizontal element (in
this case, a paragraph) and a vertical one (a column); so, he dubs the new script
extract_cell. Patrick then tries it with an invocation that should produce the
same results as mean_annual_precip:

$ extract_cell -recnum=6 -fnum=33 miami new_york seattle
Miami: 57.9
...

As he hoped, the new more flexible script produced the same output as the earlier one.

21 It will be 6 no matter how many extra blank lines occur between the paragraphs, which is critical, be-
cause the weather files for different locations differ in that respect (as mentioned earlier).
PROGRAMMING WITH PATTERNS AND ACTIONS 147

But did you notice that the argument for the -fnum switch is 33 with
extract_cell, whereas mean_annual_precip used 32 to access the same field?
That’s because the new script provides the useful service of automatically decrement-
ing the given field number by one to convert it into an array index, so the user won’t
have to remember to do that.

Here’s the extract_cell script:

#! /usr/bin/perl -s -00 -wnla
Prints field indicated by the $recnum/$fnum combination,
preceded by filename

BEGIN {
 $fnum and $recnum or
 warn "Usage: $0 -recnum=M -fnum=N\n" and
 exit 255;
 # Decrement field number, so user can say 1, and get index of 0
 $index=$fnum - 1;
}
$. == $recnum and print "\u$ARGV: $F[$index]";

Reset record counter $. after end of each file
eof and close ARGV;

The script begins by checking that both of the obligatory switches have been supplied
and by issuing a “Usage:” message and exiting if they weren’t. The last statement of
the script senses whether input from the current file has been exhausted by calling the
built-in eof function; if that’s true, the script closes the current file by referencing
its filehandle, ARGV.22 The effect is to reset the “$.” variable back to 1 for the next file,
so the program can continue to correctly identify the record number desired by the
value of “$.”.

It’s time to test Guillermo’s theory about Seattle being remarkable for its number
of days with significant rainfall rather than its mean amount of rainfall. As it happens,
section 2 of the precipitation report contains a statistic that seems well suited to this
comparison—it reports the number of days per year on which at least half an inch of
rain has fallen:

22 This is how Perl programmers get “$.” to behave like AWK’s FNR rather than AWK’s NR (see table 5.2).
148 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Oops, there’s a snag—Patrick’s eyes keep glazing over23 as he tries to determine the
number of the last field within that data paragraph, which is the one on the last line
and under the ANN (for “annual”) column.

However, once he realizes that there are 12 JAN-DEC columns on each line,
plus an extra column at the beginning and end of that group for a total of 14 per
line, plus the 3 fields for the paragraph heading and a few more for the row labels,
he’s able to calculate the field number as 101.

Which of the three cities has the largest number of days per annum with at least
half an inch of rain? May I have the envelope, please:

$ extract_cell -recnum=6 -fnum=101 miami new_york seattle
Miami: 24

New_york: 27

Seattle: 22

It’s New York! Vitas still can’t accept the idea that New York could be rainier than
Seattle, so he asks to review the script. Although he is unable to find any fault with it,
he does come up with an idea for alleviating the need for those grueling field calcula-
tions in the future.

Specifically, he points out that counting 101 fields to identify the last one in the
record isn’t necessary, because Perl recognizes the index of -1 as referring to that ele-
ment. Vitas goes on to say, like, in like fashion, -2 could be used to refer to the second
element from the end, -20 to the twentieth from the end, and so forth (see table 5.9).

Patrick is excited to learn this, but he realizes that he must modify the script to
avoid decrementing arguments to -fnum= that are already suitable index values, like
-1, while still allowing conventional field-count values, such as 33, to receive the dec-
rementing treatment they require. For additional flexibility, he modifies the script to
default to line-mode but to allow paragraph mode to be enabled by a command-line
switch when desired. This requires removing the -00 invocation option from the she-
bang line and selectively enabling paragraph mode by conditionally assigning a null
string to $/ (see table 2.7).

Here’s the new version, called extract_cell2:

#! /usr/bin/perl -s -wnla

Prints field indicated by $recnum/$fnum, preceded by filename.
-fnum switch handles field numbers as well as negative indices.

our ($p); # -p switch for paragraph mode is optional

BEGIN {
 $fnum and $recnum or
 warn "Usage: $0 -recnum=M -fnum=N\n" and
 exit 255;

23 He can’t help but wonder—could that genetically engineered low-carb zest be to blame?
PROGRAMMING WITH PATTERNS AND ACTIONS 149

 # Decrement positive fnum, so user can say 1, and get index of 0
 # But don't decrement negative values; they're indices already!
 $index=$fnum; # initially assume $fnum is an index
 $index >= 1 and $index--; # make it an index if it wasn't
 $p and $/=""; # set paragraph mode if requested
}
$. == $recnum and print "\u$ARGV: $F[$index]";

Reset record counter $. after end of each file
eof and close ARGV;

A quick test shows that the new script successfully extracts the same figures as
its predecessor:

$ extract_cell2 -p -recnum=6 -fnum=-1 miami new_york seattle
Miami: 24
...

Notice the use of the –p switch to enable paragraph mode, which isn’t hard-coded
within the script as it was in the earlier version, and the use of the convenient -1
index rather than the field number of 101, to specify the last field of the record.

Although the script seems to work properly for the data on the first page of the
weather file, Patrick wants to be sure the script will work on the subsequent pages too;
so, he examines them in greater detail. While doing so, he’s excited to find that they
all contain a data paragraph called FREQ RAIN AND/OR DRIZZLE, which sounds
like a measure on which Seattle might really shine.

Comparing cities for “sogginess”

In preparation for comparing cities for frequency of rain and/or drizzle—which we’ll
call sogginess for short—Patrick improvises a paragraph-numbering one-liner to iden-
tify the record number for the relevant data paragraph:

$ perl -00 -wnl -e '/12\..*DRIZZLE / and
> print "Paragraph #$.:\n$_";' seattle

...

The appropriate field for comparison is the one in the bottom-right corner of the
paragraph, at the intersection of ALL HOURS and ANN. The 15 there indicates that
150 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

over periods of an entire year, rain or drizzle has occurred 15 percent of the time. Seat-
tle’s track record seems like a pretty formidable one to beat, but let’s see if Miami or
New York is up to the challenge:

$ extract_cell2 -p -recnum=23 -fnum=-1 miami new_york seattle
Miami: 5
New_york: 9
Seattle: 15

Hooray! Finally, Seattle comes up a winner! Now you can understand why it has such
a soggy reputation, despite its relatively unimpressive amounts of annual rainfall and
days with significant rain. As any resident can tell you, it’s the frequent drizzling that
makes Seattle so refreshingly moist and inviting!

Let’s sum up what we’ve learned about Perl from Patrick and his friends. The
grep command couldn’t have done the job of mean_annual_precip or the
extract_cell* scripts, because it’s specialized for extracting and displaying entire
records. The sed command, on the other hand, could at least have whittled down the
appropriate record to the correct field for us—if only it knew how to handle multi-
line records.

But by using Perl’s AWK-like features, it was easy to arrange for the conditional
printing of a specified field from a particular record, prefixed by the name of the file
from which it came. Along the way, we added a useful tool to our collection—a script
that extracts and prints a cell from a table.

Now it’s time to discuss a powerful yet easy-to-use feature of AWK and Perl that’s
not widely known: the ability to apply processing to a range of input records.

5.5 MATCHING RANGES OF RECORDS

Consider Martina’s problem. She needs help wading through her company’s volumi-
nous log files so she can more rapidly identify and correct the problems reported
within them. She’s particularly concerned about “File doesn’t exist” errors in her
Apache v2 server’s error_log file, such as these examples:24

[Fri Aug 18 13:35:41 2006]
 [error] [client 127.0.0.1] File doesn't exist: /shruti.htm
[Thu Oct 19 03:03:07 2006]
 [error] [client 127.0.0.1] File doesn't exist: /html/nsiislog.dll

One explanation for the first error is that the indicated file used to exist, but now it’s
gone. Messages like the second one reflect the activities of bad guys who are trying to
execute vulnerable programs on Martina’s system.

24 To save room, we always omit the initial “httpd: ” string of these error messages, along with other
characters (indicated by ...) when necessary. The nsiislog.dll entry references a file that could
be exploited on Windows boxes by hackers.

➦
➦

MATCHING RANGES OF RECORDS 151

Her first step is to extract all the lines that report errors of this type, so she con-
structs the following command. Notice that the apostrophe in “doesn’t” is represented
by its numeric code, to avoid a clash with the surrounding Shell-level single quotes:

$ perl -wnl -e '/File doesn\047t exist:/ and print;' error_log
...

The command works, but it produces hundreds of lines of output, so Martina decides
to initially limit the analysis to reports within a specific time period. To accomplish
this, she uses a pattern range.

A pattern range is a facility for selecting a series of records occurring between a pair
of pattern matches. In a typical AWK usage, the programmer separates two slash-
delimited regexes by a comma, and AWK’s default Action is used to print the match-
ing lines along with those that fall between them.

As an example, consider the following command:

$ awk '/Monday/ , /Wednesday/' days
Monday
Tuesday
Wednesday

It displays the first three weekday names from the days file, using a pattern range to
select the lines between Monday and Wednesday:

$ cat days
Sunday
Monday
Tuesday
Wednesday
Thursday
...

The equivalent Perl program uses the range operator (..) between two matching
operators:

perl -wnl '/Monday/ .. /Wednesday/ and print;' days

We’ll discuss the two slightly different versions of Perl’s range operator next.

5.5.1 Operators for single- and multi-record ranges

Perl provides two variations on the range operator—one that gives AWK-like results
using two dots, and one that gives sed-like results using three dots. The difference is
that the two-dot version performs the test for the second match on the same line that
matched the first one (as AWK does), allowing the same line to satisfy both matches.
In contrast, the three-dot version requires the second match to occur with a following
record (as with sed).25

25 Yes, it’s true, sed can also match ranges of records; but that’s such a well-kept secret that we discuss
this feature in this chapter on AWK, where readers will be more likely to look for it.
152 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

TIP You can keep the range operators straight by remembering that the one
with more dots is the one that must match a larger number of records—at
least two, rather than just one.

The behavior of Perl’s range operators in matching applications is summarized
in table 5.10.26

Remember Martina? She was interested in extracting “File doesn’t exist” errors for a
particular span of dates—let’s see what she’s up to.

5.5.2 Matching a range of dates

In an attempt to isolate errors for October 19 and 20, Martina tries using a pattern
range. Notice that she’s first using a pattern range to select lines within the desired
time-period, and then checking each of those lines for the error message of interest:

$ perl -wnl -e '/Oct 19/ ... /Oct 20/ and
> /File doesn\047t exist:/ and print;' error_log # Output edited
[Thu Oct 19 ...] File doesn't exist: /html/_vti_bin/owssvr.dll
[Thu Oct 19 ...] File doesn't exist: /html/MSOffice/cltreq.asp
[Fri Oct 20 ...] File doesn't exist: /html/nsiislog.dll

She notices that the output isn’t quite right, because it shows only the first error for
“Oct 20”, rather than all of them. After some thought, she decides to change the

Table 5.10 Using pattern ranges
O

p
e

ra
to

r

Sample syntax
a Example Explanation

.. expr1 .. expr2
 and something

/START/ .. /STOP/
 and print;

Prints all records between the first containing
“START” and the first containing “STOP”
(which could be the same record), and then
repeats that process, looking for the next
record containing “START”, etc. The operator
returns a string ending in “E0" when “STOP”
is found (see the scan4oops script).

... expr1 ... expr2
 and something

/START/ ... /STOP/
 and print;

Same as the two-dot form, except the first
evaluation of expr2 doesn’t occur until after
the record that yielded True for expr1 has
already been processed, thereby preventing
both patterns from matching the same record.

a. something is a placeholder for the expression that is to be executed for each record matched by the range
operator. Although matching operators are often used for expr1 and expr2, any scalar expression can be
used. If expr1 produces a True result, but expr2 doesn’t, all the remaining records are selected.

26 See ellipsis in the glossary to learn how to tell the difference between the three-dot version of the range
operator and the three-dot ellipsis that indicates omitted material.
MATCHING RANGES OF RECORDS 153

range’s endpoint to the day beyond the last in which she’s interested, so she won’t miss
any data for the 20th:

$ perl -wnl -e '/Oct 19/ ... /Oct 21/ and
> /File doesn\047t exist:/ and

> print;' error_log # Output edited
[Thu Oct 19 ...] File doesn't exist: /html/_vti_bin/owssvr.dll
[Thu Oct 19 ...] File doesn't exist: /html/MSOffice/cltreq.asp
[Fri Oct 20 ...] File doesn't exist: /html/nsiislog.dll
[Fri Oct 20 ...] File doesn't exist: /html/cgi-bin/formmail.pl
[Thu Oct 21 ...] File doesn't exist: /html/nsiislog.dll

The output now includes all the errors for the 19th and 20th, as desired—but it also
includes one for the 21st, which isn’t desired. Using her burgeoning knowledge of
Perl, Martina avoids printing the undesirable line by using the negation operator27

before an additional matching operator, to introduce a “not-match” condition in the
chain of logical ands:

$ perl -wnl -e '/Oct 19/ ... /Oct 21/ and
> ! /Oct 21/ and /File doesn\047t exist:/ and

> print;' error_log # Output is edited
[Thu Oct 19 ...] File doesn't exist: /html/_vti_bin/owssvr.dll
[Thu Oct 19 ...] File doesn't exist: /html/MSOffice/cltreq.asp
[Fri Oct 20 ...] File doesn't exist: /html/nsiislog.dll
[Fri Oct 20 ...] File doesn't exist: /html/cgi-bin/formmail.pl

Now she has the desired result. In words, her command says:
Select lines starting with the first that contains Oct 19 up to the next that contains
Oct 21, and for the lines that don’t contain Oct 21, if the error message is present,
print the line.

It may seem odd to you that to match all the lines for October 20, Martina had to
match the first for the 21st and then refrain from printing it; that’s the case because
the range operator stops yielding a True result when it finds the first match with the
second pattern (“Oct 21”), rather than the last one.

Now that you know how to match “one record too far” with the range operator
without printing that record, you’ll find it easy to get the results you want while using
it in applications like this one.

In contrast to the situation with Martina’s error_log file—which holds less
than a year’s worth of data and will therefore have only one span of dates per file—
there are cases where a pattern range can be expected to extract multiple spans of
records. We’ll consider a case of that type next.

27 Covered near the end of section 2.4.5.
154 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

5.5.3 Matching multiple ranges

An expression that selects records using a range operator, such as a pattern range, isn’t
restricted to matching a single span of records—on the contrary, it will match all the
qualifying spans it can find.

We’ll use the show_fields2_1 script (see listing 5.3), whose purpose is to print
the second field of the input before the first, to illustrate the technique. It’s a legiti-
mate script, but it’s a kind we haven’t discussed yet—one that incorporates its own
documentation in POD format,28 mixed in with the Perl code.

 1 #! /usr/bin/perl -wnla
 2
 3 =pod
 4
 5 =head1 Name
 6
 7 show_fields2_1 - Show field #2 followed by field #1
 8

 9 =head1 Synopsis
10
11 show_fields2_1 [file1 file2 ...]
12
13 =head1 Description
14
15 For each input line, prints field #2 followed by field #1.
16
17 =cut
18
19 ($A, $B)=@F; # Copy first field to $A, second to $B
20 print "$B $A"; # Print in reverse order
21
22 =pod
23
24 =head1 Author
25
26 Halchal Punter, IIT Rishikesh 27
27
28 =cut

Of course, the embedded documentation must be identified in a special way so it can
be distinguished from the program code. You do this by marking the beginning of a

28 This is Perl’s native documentation format, whose full name is Plain Old Documentation (see man
perlpod). By the way, I wrote the early drafts of this book using home-grown enhancements to
POD, UNIX’s venerable troff typesetting software, and additional Perl programs I wrote to help
them cooperate.

Listing 5.3 Script with embedded POD documentation: show_fields2_1
MATCHING RANGES OF RECORDS 155

chunk of POD documentation with =pod and its end with =cut. In listing 5.3, I
highlighted these regions by using bold type for the directives and drawing a box
around the documentation they enclose.

Perl’s POD tools (such as perldoc) extract and process the documentation
between these markers; conversely, the Perl interpreter filters out these parts and
treats what’s left as program code.

Here’s a command that extracts and displays any POD documentation it finds
in a file:

$ perl -wnl -e '/^=pod$/ ... /^=cut$/ and print;' show_fields2_1
 =pod

 =head1 Name

 show_fields2_1 - Show field #2 followed by field #1

 =head1 Synopsis

 show_fields2_1 [file1 file2 ...]

 =head1 Description

 For each input line, prints field #2 followed by field #1.

 =cut
 =pod

 =head1 Author

 Halchal Punter, IIT Rishikesh

 =cut

Two =pod to =cut chunks of documentation were found and printed.
The utility used to view POD documentation, perldoc, first extracts the embed-

ded documentation in like fashion and then converts it to the Unix manual page for-
mat. Here’s the documentation for show_fields2_1, as extracted and formatted
from the script itself by perldoc:

$ perldoc show_fields2_1 # edited for fit

SHOW_FIELDS2_1(1) User Contributed Documentation SHOW_FIELDS2_1(1)

Name
 show_fields2_1 - Show field #2 followed by field #1

Synopsis
 show_fields2_1 [file1 file2 ...]

Description
 For each input line, prints field #2 followed by field #1.

Author
 Halchal Punter, IIT Rishikesh
156 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

As you’ll see in upcoming examples, Perl’s ability to match pattern ranges comes in
handy in a variety of contexts and often leads to easy solutions to otherwise difficult
programming problems.

But first, we’ll discuss some other fundamental resources used in Perl program-
ming—operators.

5.6 USING RELATIONAL
AND ARITHMETIC OPERATORS

Because AWK is a general-purpose programming language, it provides facilities for
branching on the basis of logical tests and for performing numeric calculations. This
section shows you how AWK’s logical and mathematical operators compare to Perl’s
and explains how to write Perl programs that compare strings, compare numbers, and
perform calculations.

5.6.1 Relational operators

Table 5.11 lists the relational operators of AWK—and their counterparts in Perl.

Unlike those programming in other languages, AWK programmers can compare
numbers or strings by using a single set of operators and leaving it up to the language
to determine which type of comparison to apply. This is a convenience in the majority
of cases, where AWK is smart enough to correctly guess your intentions.29

In contrast, Perl programmers use different operators for comparing numbers and
strings, which eliminates guesswork of the kind that AWK engages in when such com-
parisons are made. As shown in table 5.11, Perl uses the mathematical-looking opera-
tors of AWK for comparing numbers and word-like ones for comparing strings.

Table 5.11 Relational operators of AWK and Perl

AWK
Perl

Name
numeric string

== == eq Equal to

!= != ne Not equal to

> > gt Greater than

>= >= ge Greater than or equal to

< < lt Less than

<= <= le Less than or equal to

N/A <=> cmp Comparison

29 I can tell you from hard-earned experience that AWK hasn’t always guessed correctly, requiring me to
engage in more marathon debugging sessions than I care to remember.
USING RELATIONAL AND ARITHMETIC OPERATORS 157

Here’s an AWK program that prints Lines 24–42 of its input:

awk '24 <= NR && NR <= 42' file

Its Perl counterpart has to specify the and print Action that is AWK’s default, along
with a different logical and operator and a different variable name:

perl -wnl -e '24 <= $. and $. <= 42 and print;' file

The following programs print the lines after the second that are alphanumerically
greater than “L”. The result is that the first two input lines are filtered out, along with
those that begin with a letter in the range “A” through “L”:

awk 'NR > 2 && $0 > "L"' names

perl -wnl -e '$. > 2 and $_ gt "L" and print;' names

Notice the use of the numeric greater-than operator in the first Perl expression and the
use of the string greater-than operator in the second one.

Table 5.11 also shows that Perl has one relational operator that AWK lacks, called
the comparison operator. Like the others, it comes in two forms: one for comparing
numbers (<=>) and one for comparing strings (cmp). Its purpose is to return a num-
ber that indicates whether the left operand is less than, equal to, or greater than the
right operand.30 It’s most commonly used with the sort function, so it’s discussed
in chapter 7.

5.6.2 Arithmetic operators

Like AWK, Perl has inherited a rich set of operators for doing arithmetic from their
common ancestor, the C language. Table 5.12 lists the most important operators of
this set.31

The compound assignment operators listed in the bottom panel have a special
property in Perl. Consider, for example, the following two Perl statements, which
ultimately do the same job, despite their different appearances:

$sum=$sum + $_; # increment value in $sum by value of current line

Versus

$sum += $_; # means: $sum=$sum + $_; (same as above)

Each adds the current numeric value of $_ to the current numeric value of $sum
before storing the result back in $sum. But if $sum hasn’t been initialized by the time
the statement is first executed, and warnings are enabled (e.g., via –w), the statements
will behave a bit differently. Specifically, an “uninitialized variable” warning will be
generated for the first format, when Perl automatically initializes the variable to zero

30 Any functional similarity between this operator and the strcmp() library function of the C language
was fully intended by Larry.

31 For a more complete list of Perl operators, run man perlop.
158 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

to permit the calculation to proceed. In contrast, Perl doesn’t issue a warning if you
use the second format, because it figures you’re smart enough to know what you’re
doing if you use that fancy syntax.32

Next, we’ll compare the sets of built-in functions supplied with AWK and Perl.
These are great productivity enhancers, because by using them effectively, you can
reduce the amount of custom code you have to write for your programs.

5.7 USING BUILT-IN FUNCTIONS

A major advantage of AWK over its forebears—grep, sed, and the Shell—is that it
comes with a useful collection of built-in functions for processing text, numbers,
input and output, and more. Perl also has functions like these, but it does AWK one
better—it incorporates a module facility for importing additional functions into pro-
grams, letting you extend the language on the fly (as discussed in chapters 2 and 12).

As a case in point, the compound_interest2 script presented later (section 5.8.1)
uses a function that conditionally pluralizes a noun—despite the fact that Perl doesn’t
officially have any such function!

You’ll see that script shortly. But first, look at table 5.13, which lists some popular
built-in functions for two flavors of the new AWK as well as Perl.

We’ve already encountered several of the Perl functions listed in the table (includ-
ing length, sqrt, die, print, printf, substr, and warn), and you’ll see others
used in part 2. You’ll find many of their names to be familiar if you have prior expe-
rience with the Basic, AWK, C, Shell, or Unix programming environments.

Table 5.12 Arithmetic operators of AWK and Perl

Operator
a Name Operation

++ Plus plus Incrementing

-- Minus minus Decrementing

* Star Multiplication

/ Slash Division

% Modulus Remainder of integer division

+ Plus Addition

- Minus Subtraction

+= -= *= /= Compound assignment $A += 1 means $A=($A + 1), etc.

a. Operators sharing the same precedence level are listed in the same panel, with operator precedence
decreasing across panels from the top of the table to the bottom. Section 2.4.5 explains the concept of operator
precedence.

32 See the discussion of the incomplete script in section 5.4 for more on the subject of variable initiali-
zations and avoiding the “uninitialized variable” warning.
USING BUILT-IN FUNCTIONS 159

However, some of the apparent similarities between the languages mask significant
differences. For example, some AWK functions have namesakes that take different
arguments in Perl, and certain other functions, such as AWK’s sub and match, corre-
spond to operators represented by symbols in Perl, rather than to named functions.

To help AWKiologists migrate to Perlistan, table 5.14 shows the Perl counter-
parts to the most commonly used (non-mathematical) functions found in popular
versions of AWK. Some general differences are that Perl functions are normally
invoked without any parentheses around their arguments,33 and all occurrences of
the $0 variable in the AWK examples must be converted to $_ for Perl (assuming use
of the n or p option).

Notice in particular that the “offset” argument (#2) of AWK’s substr (“sub-
string”) function needs to be a 1 to grab characters from the very beginning of the
string, whereas in Perl, the value 0 has that meaning.

Table 5.13 Popular built-in functions of AWK and Perl

Type
a NAWK GAWK Perl

String gsub, index,
match, split,
sprintf, sub,
substr,
tolower,
toupper

asort, gensub, gsub,
index, length,
match, split,
strtonum, sub,
substr, tolower,
toupper

chomp, chop, chr, crypt, hex,
index, lc, lcfirst, length, oct,
ord, pack, q/STRING/, qq/STRING/,
reverse, rindex, sprintf, substr,
tr///, uc, ucfirst, y///

Arithmetic cos, exp, int,
log, sin,
sqrt, srand

cos, exp, int, log,
sin, sqr

abs, atan2, cos, exp, hex, int, log,
oct, rand, sin, sqrt, srand

Input/Output close,
getline,
print,
printf

close, getline,
print, printf,
fflush

binmode, close, closedir,
dbmclose, dbmopen, die, eof,
fileno, flock, format, getc,
print, printf, warn

Miscella-
neous

system bindtextdomain,
compl, dcgettext,
dcngettext,
extension, lshift,
mktime, rshift,
strftime, system

defined, dump, eval, formline,
gmtime, local, localtime, my, our,
pos, reset, scalar, system, time,
undef, wantarray

a. The standard Perl installation provides hundreds of additional functions not listed here, including ones that fall
into these categories: Unix system calls, array handling, file handling, fixed-length record manipulation, hash
handling, list processing, module management, network information retrieval, pattern matching, process
control, socket control, user/group information retrieval, and variable scoping.

33 But if you’ve been cruelly rebuked by other languages whenever you’ve forgotten to use parentheses
around your function arguments, and you consequently feel your Perl programs look shockingly
defective without them, feel free to put them in! Perl won’t mind.
160 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Another difference is that GAWK’s case-conversion functions, toupper and
tolower, have two corresponding resources in Perl—the functions called uc and lc,
and the \U and \L string modifiers (see table 4.5).

Perl’s voluminous collection of built-in functions makes it easy to write com-
mands that do various types of data processing, as you’ll see next.

5.7.1 One-liners that use functions

The following command prints up to 80 characters from each input line:

perl -wnl -e 'print substr $_, 0, 80;' lines

It uses the substr function and specifies an offset of zero from the beginning of $_
as the starting point, along with a selection length of 80 characters. Because the call to
substr appears in the argument list of print, substr’s output is delivered into
print’s argument list and subsequently printed.

The following command reads lines consisting of numbers, and prints their
square roots:

perl -wnl -e 'print "The square root of $_ is ", sqrt $_;' numbers

The addition of syntactically unnecessary but cosmetically beneficial parentheses
changes the previous commands into these variations:

perl -wnl -e 'print "The square root of $_ is ", sqrt($_);' numbers

perl -wnl -e 'print substr ($_, 0, 80);' lines

Perl won’t mind the unnecessary parentheses (see section 7.6, and appendix B), but
after you become more acculturated to Perlistan, you’ll no longer feel the need to type
them in such cases.

Table 5.14 Perl counterparts to popular AWK functions

AWK (or GAWK) Perl

sub("RE","replacement") s/RE/replacement/;

gsub("RE","replacement") s/RE/replacement/g;

match(string_var,"RE") $string_var =~ /RE/;

substr($0, 1, 3) substr $_, 0, 3;

$0=tolower($0) $_="\L$_"; Or $_=lc;

$0=toupper($0) $_="\U$_"; Or $_=uc;

getline $_=<>;

split($0, array_var) @array_var=split;

index, length, print, printf,
sprintf, system

Same function names, but Perl doesn’t require
parentheses.
USING BUILT-IN FUNCTIONS 161

Commands like those just reviewed are great for applying the same processing regi-
men to each input record—but what if you only want to perform a single numeric cal-
culation, such as the square root of 42 or the remainder of 365 divided by 12?

You could write a custom program to generate each of those results. But wouldn’t
it be even better to write a generic script that could calculate and print the result of
any basic mathematical problem?

This valuable technique will be demonstrated next, using a command of legen-
dary significance.

5.7.2 The legend of nexpr

We’ll begin this section with a discussion of the role played by a certain command in
UNIX’s early years and how AWK improved on it, and then you’ll see how Perl’s ver-
sion is even better. Along the way, you’ll learn not only some UNIX history, but also
how to win barroom bets by writing one-liners on napkins that can compute tran-
scendental numbers!34

But first, you need to understand that in the early days of UNIX, C was considered
the language of choice for all serious computing tasks—such as performing mathemati-
cal calculations. In contrast, the early shells were viewed as simple tools for packaging
command sequences in scripts and processing interactively issued commands.

For this reason, the utility program that was used to perform calculations in
shell programming, expr, was only endowed with the most rudimentary mathe-
matical capabilities:

$ expr 22 / 7 # Gimme pi! And I won't take 3 for an answer!
3

Moreover, using expr was horrendously inefficient. For instance, reading 100 num-
bers from a file and totaling them required 100 separate expr processes—compared
to a single process on modern systems, using AWK or Perl.

Therefore, even though it was the mathematical mainstay of Bourne shell pro-
gramming during the late 1970s and 1980s, the expr approach to arithmetic still left
a lot to be desired.35 Given this situation, it’s no wonder there was so much interest
in improving expr.

Without further ado, I’ll now relate to you the Legend of Nexpr (for new expr),
which was initially told to me by my Bell System boss, then extensively embellished
by yours truly through hundreds of retellings to my students.

34 Well, at least approximations thereof.
35 We actually had a great alternative for doing arithmetic starting in 1977—AWK! But most program-

mers didn’t understand its capabilities until the 1988 book came out.
162 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Born in a barroom wager: nexpr

One day after work in the early 1980s, three Bell System software engineers stop in a
popular New Jersey watering hole. The bearded veteran orders his usual—a pint of
Guinness—while the rookies each order a can of the local lager.

“Man,” the veteran mumbles, apparently to himself, “the UNIX shell is really awe-
some for math!”

The first rookie says to the other, “Grandpa over there thinks the shell is good at
math! That black sludge he’s imbibing must have fouled up his logic circuits.”

Fixing his beady eyes intensely on the impudent rookie, the veteran says:
I’ll bet you $100 each I can write a one-line shell script that calculates the square
root of pi! 36

The second rookie exclaims, “Impossible! The expr command used in Bourne shell
programming can’t even do floating-point calculations, let alone mathematical func-
tions—we accept the bet.”

While hastily writing the following script on a napkin—using a nacho-chip
dipped in salsa—the veteran says, “I call the script nexpr, for new expr”:

#! /bin/sh
awk "BEGIN{ print $*; exit }"

“Read it and weep, and hand over $200!”
If laptop computers running UNIX had been available in those days, the Chumps

would surely have typed in the script and tested it on the spot, using this command:37

$ nexpr 'sqrt(22/7)' # Becomes: awk 'BEGIN {print sqrt(22/7); exit}'
1.77281

(The comment attached to that command shows the awk command that is composed
and run by nexpr, as explained in section 5.7.3.)

The rookies are first shocked, then flabbergasted, and finally angry. They cry foul,
arguing that awk isn’t part of the shell, and therefore what he has written isn’t a shell
script after all.

The veteran mounts a quick defense by pointing to the script’s unequivocally
shellish shebang line and reminding them that it’s normal for a shell script to use
external UNIX commands like sort, grep, and yes, even awk—not to mention the
expr command they assumed he’d use.

The rookies grudgingly relent and remit payment, admitting they’ve been out-
foxed by the wily vet.

36 You know, the transcendental number that expresses the ratio of the circumference of a circle to its
diameter that’s represented by the sixteenth letter of the Greek alphabet, .

37 expr can do more than arithmetic, so the nexpr* scripts aren’t full-fledged replacements for it.
USING BUILT-IN FUNCTIONS 163

Okay, I hear you. You’re wondering, “What does all this have to do with Perl?”
Quite a bit, actually, because Perl can do just about anything AWK can do—includ-
ing generating revenues from barroom wagers.

The nexpr_p script (Perl)

A script like nexpr is a great asset to those employing a command-line interface to
Unix. But the Perl version, which I call nexpr_p (for perl), is even better than the
original nexpr:

$ cat nexpr_p
#! /bin/sh
This script uses the Shell to create and run a custom Perl
program that evaluates and prints its arguments.
Sample transformation: nexpr_p '2 * 21' --> perl ... print 2 * 21;

perl -wl -e "print $*;"

Perl is smart enough to exit automatically once it runs out of things to do, so there’s
no need for an explicit exit statement in this script as there was with the classic AWK
of nexpr’s era. Nor is there any need for a BEGIN block, which the AWK version
requires to position its statements outside the (obligatory) implicit input-reading
loop. That’s because that (unnecessary) loop can be omitted from the Perl version
through use of the –wl cluster instead of –wnl.

Like nexpr, nexpr_p is capable of performing any calculation that is supported
by its built-in operators (such as / for division; see table 5.12) or its functions (such
as sqrt; see table 5.13). But the Perl version is even more capable than nexpr,
because it has access to a richer collection of built-in functions, along with Perl’s other
advantages over AWK (especially its module mechanism).

Next, we’ll discuss how these nexpr* scripts manage to make the requested
computations.

5.7.3 How the nexpr* programs work

The nexpr_p Shell script works the same way nexpr does—by exploiting the Shell’s
willingness to substitute the script’s own arguments (see tables 2.4, 10.1) for the “$*”
variable in a double-quoted string, thereby creating a custom print statement to
handle the user’s request.

So when the user issues this comand:

$ nexpr_p 'sqrt(22/7)'

nexpr_p’s Shell transforms the Perl source code template in the script from

perl -wl -e "print $*;"

into

perl -wl -e "print sqrt(22/7);"

and executes that command.
164 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Next, we’ll examine some additional programs that employ techniques presented
in this chapter.

5.8 ADDITIONAL EXAMPLES

This section features Perl programs that analyze Linux log files, perform compound
interest calculations, and inflect nouns in print statements to make them singular or
plural as needed. I think you’ll find these examples interesting, but feel free to proceed
to the next chapter at this point if you prefer.

5.8.1 Computing compound interest: compound_interest

Consider the following script called compound_interest, which reports the
growth of an investment over time:

$ compound_interest -amount=100 -rate=18
Press <ENTER> to see $100 compound at 18%.<ENTER>
$118 after 1 year(s)<ENTER>
$139.24 after 2 year(s)<ENTER>

$164.3032 after 3 year(s)<ENTER>
$193.877776 after 4 year(s)<^D>

Although the script uses the n option, it’s meant to be invoked without any file-
name arguments, so it will default to reading input from the user’s terminal. This
allows each press of <ENTER> to be taken as a request to show an additional year’s
worth of growth.38 What’s more, when given certain command-line switches, the
script will calculate the growth of an arbitrary initial investment at an arbitrary
annual rate of interest. I’m sure your interest in examining the script is rapidly com-
pounding, so have a look at listing 5.4.

 1 #! /usr/bin/perl -s -wn
 2
 3 BEGIN {
 4 $Usage="Usage: $0 -amount=dollars -rate=percent";
 5
 6 # Check for proper invocation
 7 $amount and $rate or warn "$Usage\n" and exit 255;
 8
 9 $pct_rate=$rate/100; # convert interest to decimal
10 $multiplier=1 + $pct_rate; # .05 becomes 1.05
11 # Instruct user
12 print "Press <ENTER> to see \$$amount compound at $rate%.";
13 }

38 The results demonstrate the Rule of 72, according to which an investment of $X at Y% interest will
approximately double in value every 72/Y years. In this case, Y is 18, yielding 4 years for each doubling.

Listing 5.4 The compound_interest script
ADDITIONAL EXAMPLES 165

14
15 $amount=$amount * $multiplier; # accumulate growth
16
17 # $. counts input lines, which represent years here
18 print "\$$amount after $. year(s)";
19
20 END { print "\n"; } # start shell prompt on fresh line after <^D>

The first thing to notice is that all the operations that can be done in advance of input
processing are collected together in the BEGIN block. For example, an informational
message is loaded into the $Usage variable on Line 4, which will be printed by the
warn function if the user neglects to provide the required switches.

The nominal percentage rate is then converted to a decimal number on Line 9,
and the multiplier that will be used to add each additional year’s worth of interest to
the previous balance is prepared on Line 10. Then a message is printed to inform the
user how to interact with the program.

Next, the program waits for a line of input (via <ENTER>) before executing the
first line after the BEGIN block, Line 15, which calculates the new balance figure. The
result is then reported to the user on Line 18.

Fortunately, although we think of “$.” as counting records, in cases where records
represent the passage of additional years of investment growth—as they do here—
that variable conveniently doubles as a year counter.

Notice the need to backslash certain $ symbols in the double-quoted strings of
Lines 12 and 18 to make them literal dollar signs, and the absence of that treatment
for the $ symbols attached to scalar variable names, which allows variable interpola-
tion for $amount and “$.” to occur.

Although this is a useful program, it doesn’t do anything that AWK couldn’t do on
its own—at least, not yet. But we’ll teach it how to improve its grammar next, using
a valuable programmer’s aid that AWK lacks.

5.8.2 Conditionally pluralizing nouns: compound_interest2

As useful as it is, there’s something that bothers me about the compound_interest
program.

Specifically, it’s the output statement that hedges its bets on the singular/plural
nature of the year-count, using the phrasing “1 year(s)” and “2 year(s)”. Like any lit-
erate person striving for grammatical correctness,39 I’d prefer to see the output pre-
sented as “1 year” and “2 years” instead.

Although programmers using other languages—including AWK—may have
to settle for such compromises, we certainly don’t in the world of Perl! The

39 More candidly, as a survivor of a Catholic grade-school education, something deep inside me still fears
the wrath of the hickory ruler on my throbbing knuckles when I contemplate such flagrant examples of
grammatical incorrectness.
166 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

easy and entirely general solution to this problem is to use a function from the
Lingua::EN::Inflect module to automatically inflect the word as “year” or
“years”, so it will match the numeric value before it.

To effect this enhancement, you first download and install the required module
from the CPAN (as discussed in chapter 12) and then add the following line at the top
of the script:

use Lingua::EN::Inflect 'PL_N';

That statement loads the module and the needed function, which in this case is one
that knows how to conditionally pluralize (“PL”) a noun (“N”). Then, the statement
that prints the investment’s growth is modified to call PL_N with arguments consist-
ing of the noun and its associated count.

For comparison, here are the original and PL_N-enhanced print statements:

print "\$$amount after $. year(s)"; # 1 year(s), 2 year(s)

print "\$$amount after $. ", PL_N 'year', $.; # 1 year, 2 years

Notice that the quoted string is terminated after the first “$.” in the second version,
because the function name PL_N would be treated as literal text if it appeared within
those quotes.

How does the automatic inflection work? The function PL_N returns its first argu-
ment as “year” or “years”, according to the singular/plural nature of the number in
“$.”, its second argument. Then, the word returned by PL_N becomes the final argu-
ment to print, providing the grammatically correct output that’s desired.40

Here’s a sample run of the enhanced script:

$ compound_interest2 -amount=100 -rate=10
Press <ENTER> to see $100 compound at 10%.<ENTER>
$110 after 1 year<ENTER>
$121 after 2 years ...

Listing 5.5 shows the enhanced script in its entirety.
An alternative to using a module-based function to conditionally print “year” or

“years” would be to employ Perl’s if/else construct (covered in part 2) to print the
appropriate word. But it’s equally easy to use the PL_N function—and more empow-
ering to learn how to do such things using Perl’s modules—than it is to roll your own
solution. For this reason, we’ll discuss functions and modules more fully in part 2.

40 As detailed in section 7.6, adding optional parentheses may make it clearer to the reader that the final
“$.” is an argument to PL_N, not to print:
print "\$$amount after $. ", PL_N('year', $.);
ADDITIONAL EXAMPLES 167

 1 #! /usr/bin/perl -s -wn
 2
 3 use Lingua::EN::Inflect 'PL_N'; # import noun pluralizer
 4
 5 BEGIN {
 6 $Usage="Usage: $0 -amount=dollars -rate=percent";
 7
 8 # Check for proper invocation
 9 $amount and $rate or warn "$Usage\n" and exit 255;
10
11 $pct_rate=$rate/100; # 5 becomes .05
12 $multiplier=1 + $pct_rate; # .05 becomes 1.05
13 # Instruct user
14 print "Press <ENTER> to see \$$amount compound at $rate%.";
15 }
16
17 $amount=$amount * $multiplier; # accumulate growth
18
19 # $. counts input lines, which represent years

20 print "\$$amount after $. ", PL_N 'year', $.;
21
22 END { print "\n"; } # start shell prompt on fresh line after <^D>

5.8.3 Analyzing log files: scan4oops

Felix has been a happy Linux user since his company installed it on all their notebook
computers a few years back. But ever since that clumsy security agent dropped Felix’s
notebook at the airport, while Felix was frantically trying to grab his freshly X-rayed
shoes, his notebook has been crashing periodically. Of course, he did load some experi-
mental device drivers into the kernel during that flight, which could also be the source
of the problem.

In any case, he needs to diagnose the problem and get his notebook fixed. He
already ran its hardware diagnostic tests several times, and it passed them all with fly-
ing colors. So, he needs to try another approach.

The nice people at the local Linux users group suggested he should check the
/var/log/messages file for “Oops” reports, because they might indicate why his
machine is crashing. When his boss, Murray, heard about this, he requested that
Felix formalize his solution in the form of a Perl script so that others in the com-
pany (and the users group) could benefit from his efforts.

Felix examines that file and indeed finds an “Oops” report within it. To help the
report fit on the page, the timestamp at the beginning of every line, “Aug 17
04:15:14 floss kernel: ” has been removed:

Listing 5.5 The compound_interest2 script
168 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Isn’t that a lovely format? 8-(
Scanning onward in the file, he notices many other “Oops” reports, varying

slightly in their details. Realizing he’d probably need to examine them all eventually,
he resolves to write a script to extract them.

His first step in attaining that goal is to identify what it is about the “Oops”
reports that distinguishes them from the many other reports in the same file, includ-
ing ones like these:

Aug ... floss insmod: Using ... usb-storage.o
Aug ... floss sshd[1079]: Received signal 15; terminating.
Aug ... floss cardmgr[807]: executing: './network check eth0'

He finds an easy answer—apart from the “Oops” reports all having multiple lines, the
first line is always of this form:

Aug 17 04:15:14 floss kernel: Oops: 0001

And the last line always ends with a sequence of 20 two-digit hex numbers:

Apr 17 00:38:52 floss kernel: Code: 89 50 24 89 02 c7 43 24 ...

Having found the distinctive markers that encase each “Oops” report, Felix’s next step
is to construct regexes to match them.

Constructing a regex to match “Oops” reports

On further scrutiny, Felix notices that the timestamps on the individual reports differ,
and that the hostname “floss” that appears within them is unique to his system. So he
allows for variations in those fields in the regex he designs to match the initial line of
an “Oops” report:

^[A-Z]\w+ +\d+ \d+:\d+:\d+ \w+ kernel: Oops: \d+
A B C D

This regex says, starting from position A, “Find records that start with a capital let-
ter, followed by one or more ‘word’ characters” (that’s for the Month-abbreviation).

Position
markers
ADDITIONAL EXAMPLES 169

Then, at B, “there must be one or more spaces followed by one or more digits” (that’s
for the number of the day, allowing for an extra space before a one-digit day number).
Then, at C, “we need a space followed by three sets of digits separated by two colons
and followed by a space” (for the hours:minutes:seconds of the time), “followed
by (at D) a word and a space” (for the hostname), “followed by the literal text
‘kernel: Oops: ’, and then some digits.”

Being a conscientious programmer who prefers an ounce of prevention to a pound
of cure, Felix built up that long regex one step at a time, ensuring that it still matched
a sample report’s initial line as each component was added, so that he’d know where
he’d gone wrong if the match suddenly failed.

The specific numbers on the “Code:” line that ends each report are variable, so he
composes an appropriate regex to match them. To save some typing, he copies most
of the regex for the initial line of “Oops” reports and then adds the new components
(in bold):

^[A-Z]\w+ +\d+ \d+:\d+:\d+ \w+ kernel: Code:([a-f0-9][a-f0-9]){20}

Felix used the {20} quantifier (see table 3.9) to concisely specify exactly 20 occur-
rences of the grouped space/hex-digit/hex-digit sequence that follows Code:. He put
parentheses around the sequence that needs to be repeated so the following quantifier
would be applied to that sequence, rather than to the item immediately before the
opening curly brace (the second [a-f0-9]).

Next, he put each regex into a matching operator, joined them with the “...”
range operator, dangled a conditional print at one end and a variable assignment at
the other, and packaged it all in the scan4oops script shown in listing 5.6.

Listing 5.6 The scan4oops script
170 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Although the structure of the key statement in that script may be hard to discern
because of the long regexes, it’s really quite simple:

$variable=/RE1/ ... /RE2/ and print;

Owing to the precedence levels of the various operators (see man perlop), the state-
ment is processed as follows. First, the range operator is evaluated, then its returned
value is assigned to the variable, and then the True/False status of the variable’s value
is tested to conditionally print the current record.

As stated in table 5.10, the range operator returns the special string “E0” to indicate
when it has matched the last element of the specified range—in this case, the ending
line of an “Oops” report. Accordingly, Felix captures the range operator’s return value
in $status and checks it against the regex “E0” at the bottom of the implicit loop,
so that he can print a blank line for separation after the last line of the current “Oops”
report has been printed. This makes it much easier for him to see where one report
ends and the next begins, when there are multiple reports.

Felix switches to the root account before running his script so he’ll be permitted
to read the /var/log/messages file. After some testing, he concludes that the
script works.

But he still has no idea what’s wrong with his notebook or what these “Oops”
reports are trying to tell him! So he checks with the Linux users group again and is
informed that the ksymoops command must be used to convert the inscrutable
codes of those “Oops” reports into a form more fit for human consumption.

After rerunning his script with output redirected to a file, Felix uses the
ksymoops command as instructed to process the single “Oops” report in the file:

$ ksymoops oops1 # Edited to save space
Oops: 0001
... (Rest of Oops report appears here, followed by:)
>>EIP; c01284ff <__remove_inode_page+4f/90> <=====

>>ebx; c1063334 <_end+d29ed0/a4efbfc>
...
>>ecx; c326c9e8 <_end+2f33584/a4efbfc>
>>edx; c1065de4 <_end+d2c980/a4efbfc>
>>esi; c326c8b4 <_end+2f33450/a4efbfc>
>>edi; c02b2a78 <contig_page_data+d8/3ac>
>>esp; c9f31f28 <_end+9bf8ac4/a4efbfc>

Trace; c01302d0 <shrink_cache+290/380>
Trace; c013055d <shrink_caches+3d/60>
Trace; c01305e2 <try_to_free_pages_zone+62/f0>
...
Trace; c013079c <kswapd_balance_pgdat+6c/b0>
Trace; c0130808 <kswapd_balance+28/40>
Trace; c013094d <kswapd+9d/c0>
Trace; c0105000 <_stext+0/0>
Trace; c01073fe <arch_kernel_thread+2e/40>
Trace; c01308b0 <kswapd+0/c0>
ADDITIONAL EXAMPLES 171

Code; c01284ff <__remove_inode_page+4f/90>
00000000 <_EIP>:
Code; c01284ff <__remove_inode_page+4f/90> <=====
 0: 89 50 24 mov %edx,0x24(%eax) <=====
Code; c0128502 <__remove_inode_page+52/90>
 3: 89 02 mov %eax,(%edx)
Code; c0128504 <__remove_inode_page+54/90>
 5: c7 43 24 00 00 00 00 movl $0x0,0x24(%ebx)
Code; c012850b <__remove_inode_page+5b/90>
 c: 89 1c 24 mov %ebx,(%esp,1)
Code; c012850e <__remove_inode_page+5e/90>
 f: c7 44 24 04 ff 00 00 movl $0xff,0x4(%esp,1)
Code; c0128515 <__remove_inode_page+65/90>
 16: 00

Felix is happy to see that this report, which converts memory addresses into ker-
nel symbols, shows the actual names of the kernel functions that were called just
before the problem occurred. He’s feeling optimistic because he’s been told that
the local “kernel nerds” will be able to help him isolate his problem with the bene-
fit of this information.

However, he’s having second thoughts about the robustness of his script. For
example, what will happen when the upgrade to the next version of the Linux kernel
occurs? Newer versions sometimes introduce changes in kernel error messages, and all
it would take to make his regexes fail is the tiniest variation from the current format—
such as changing any of its spaces into a tab, or reducing the number of “code” items
from 20 to 19.

Given that everybody in the company will ultimately have access to this script, and
untold numbers of Linux users groups as well, it seems worthwhile to spend some
time to clean it up a bit. That effort leads to scan4oops2, which we’ll discuss next.

The enhanced scan4oops2 script

To make his script more modular, readable, and maintainable, Felix breaks its regexes
into tiny pieces, and stores those pieces in suitably named variables. This should enable
anyone who can interpret a variable name to identify which metacharacters would need
to be adjusted to handle any change in the format of a future Linux kernel’s messages.

Listing 5.7 shows the new, more maintainable version of the script, called
scan4oops2.

In this new script, Felix has made good use of Perl’s capabilities by storing regular
expression metacharacters in variables, using shortcut metacharacters (such as \w and
\d) for conciseness, using the {20} quantifier in $codes to represent 20 hex num-
bers, and assembling the $timestamp, $oops_start, and $oops_end regexes
through use of variable interpolation within double-quoted strings.
172 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

 1 #! /usr/bin/perl -s -wnl
 2
 3 our ($debug); # debugging switch is optional
 4
 5 BEGIN {
 6 $month='[A-Z]\w+';
 7 $spaces=' +'; # for space(s) between month and day number
 8 $date='\d+';
 9 $hhmmss='\d+:\d+:\d+';
10 $hostname='\w+';
11 $oops_num='\d+';
12
13 # Assemble pieces into more usable form
14 $timestamp="$month$spaces$date $hhmmss $hostname kernel";
15
16 # "Codes" occur in a series of 20 hex numbers,
17 # so allow digits and letters a-f
18 $hex_digit='[a-f0-9]';
19 $num_codes='20';

20 $gap=' '; # one space currently, in future could change?
21
22 # RE for $num_codes reps of $gap-prefixed $hex_digit pairs
23 $codes="($gaphex_digithex_digit){$num_codes}";
24
25 # Assemble RE to match first line of report
26 # Sample first line: Apr 17 19:30:04 floss kernel: Oops: 0001
27 $oops_start="$timestamp: Oops: $oops_num";
28
29 # Assemble RE to match last line of report
30 # Sample last line; wrapped onto new line after Code:
31 # Apr 17 19:30:04 floss kernel: Code:
32 # 89 50 24 89 02 c7 43 24 00 00 00 00 89 1c 24 c7 44 24 04 ff
33
34 $oops_end="$timestamp: Code:$codes";
35
36 $debug and warn "Oops start RE:\n'$oops_start'",
37 "\n\nOops end RE:\n'$oops_end'\n\n";
38 }
39
40 # Now extract and print "Oops" reports
41 $status=/^$oops_start/ ... /^$oops_end/ and print;
42
43 # If range operator returned E0, we just printed last line of
44 # report; printing "" puts blank line before next report.
45
46 $status =~ /E0$/ and print "";

Listing 5.7 The scan4oops2 script
ADDITIONAL EXAMPLES 173

Here’s a sample run, with debugging output enabled so you can see the regexes:

$ scan4oops2 -debug # Output edited
Oops start RE:
'[A-Z]\w+ \d+ \d+:\d+:\d+ \w+ kernel: Oops: \d+'

Oops end RE:
'[A-Z]\w+ \d+ \d+:\d+:\d+ \w+ kernel: Code:([a-f0-9][a-f0-9]){20}'

Oops: 0001
...
Code: 89 50 24 89 02 c7 43 24 00 00 00 00 89 1c 24 c7 44 24 04 ff

Oops: 0002
...
Code: 89 50 04 89 02 c7 46 04 00 00 00 00 c7 06 00 00 00 00 d1 64

Satisfied with his result, Felix saunters over to Murray’s desk to show off his script
(after all, he’s still in the running for that promotion):

Hi, Murray! Remember that script you asked me to write, to automate the extraction
of kernel Oops reports? It’s all tested and ready to distribute. Here’s the code listing—
it’s only about 50 lines! What’s that? Oscar has already submitted a program that
does the same job? What are you scribbling on the board—oh, that’s his program?
Where’s the rest! You cannot be serious—it’s a one-liner?

Felix takes a moment to ponder Oscar’s command, as you should too:

perl -wnla -e '$F[5] =~ /Oops:/ .. $F[5] =~ /Code/ and print;' messages

Yikes! Felix’s polar opposite, Oscar, somehow got wind of this project and seized the
opportunity to score a few cheap points with Murray. But Felix must admit, good old
cigar-chewing Oscar is an immensely valuable player on their team.

When customers are screaming for immediate action and time is running out,
nobody else can step up to the mound and pitch those one-liners with half the speed
or accuracy that Oscar routinely delivers. In recognition, he’s been voted “Program-
mer of the Month” and “Most Valuable Programmer of the Year” more times than
Felix can remember. In contrast, Felix feels faint when required to work under pres-
sure, and he invariably develops a debilitating migraine and has to go home sick.

Oscar’s program should do the basic job well enough—at least, until the report
format changes. But unlike Felix’s version, it doesn’t put blank lines between the indi-
vidual reports, and it uses the two-dot version of the range operator rather than the
more appropriate three-dot version. Oscar probably realized that both patterns would
never be able to match the same line in the log file anyway, given its format, so he
chose to omit the technically correct—but, in this case, arguably ineffective—third
dot. How lazy!

Felix also finds it irksome that Oscar included the trailing colon in the “Oops”
regex but not in the “Code” one, and that he put spaces around one instance of the
array index (5) but not the other.
174 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

Sloppy work. Inelegant programming! Would it have killed him to add just one
tiny comment? Some people…

Just then, his scathing but silent code review is interrupted by Murray, who looks
up from Felix’s code listing and beams at him:

Felix, this is a work of art—and compassion! Every variable name is so carefully
crafted, and every comment so succinctly yet clearly phrased. I’m really lucky to have
both you and Oscar on my team—one programmer who can always be counted on,
when the going gets rough, to cobble together an immediate solution to keep us in the
game. And another who can provide solutions so elegant and robust and clear that
any hung-over bench-warmer can maintain them. By the way, although we initially
had only one promotion to award, in recognition of the valuable skills each of you
brings to the team, we’ve decided to promote both of you. Congratulations!

In real life, you can’t always get a fairy-tale ending like this one, but truly, any IT
manager would be fortunate to have the combined talents of an Oscar and a Felix
on hand.

In your own career, I’d advise you to develop an appreciation and an aptitude for
both the quick-and-dirty and elegant-and-formal styles of programming, and to culti-
vate the ability to produce either kind on demand, as circumstances warrant.

5.9 USING THE AWK-TO-PERL TRANSLATOR: a2p
As discussed in chapter 4, Larry has always strived to make it easy for programmers
using other Unix tools to migrate to Perl, which is why Perl comes with a sed-to-
perl translator.

Guess what—Perl comes with an awk-to-perl translator too, called a2p! It con-
verts inline AWK programs, such as the quoted portion of awk '{print $1}', as
well as stand-alone AWK scripts, such as the one in the file munge referenced in the
command awk -f munge, into Perl scripts.

As with s2p, the code emitted by a2p is based on the venerable but now ancient
version 4 of Perl, so this book’s coverage of the language won’t prepare you to fully
understand it. Although that factor reduces the educational value of a2p, it presents
no obstacle to those using a2p to adapt existing AWK programs for use on Perl-
equipped but AWK-less systems, such as Windows machines and mainframes.

5.9.1 Tips on using a2p

If you need to use a2p on a complex AWK program, look at the CONSIDERATIONS
section of its man page. It discusses the AWK expressions that may not always get
translated into Perl the way you’d like, and it offers tips on dealing with those cases.

5.10 SUMMARY

AWK and Perl have a lot in common. Indeed, the family resemblance runs so deep
you can even write AWK-like programs in Perl, using the Pattern/Action style of
SUMMARY 175

programming, the record-number variable, and BEGIN and END blocks. But there are
some significant differences in their capabilities.

Like the Shell—but unlike AWK—Perl provides variable interpolation, which
makes print statements substantially easier to read and write.

Like AWK, Perl provides field processing, the automatic parsing of input records into
fields (via the a option). However, Perl’s implementation offers several improvements
over AWK’s. One is that field processing is disabled by default, allowing programs that
don’t need it to avoid its impact on performance. Another advantage is that Perl’s fields
can easily be loaded into descriptively named variables (e.g., ($size,$shape)=@F)
when readability is important, or directly accessed using positive or negative array
indexing ($F[2], $F[-3]) when succinctness is the priority.41

Perl shares AWK’s ability to match ranges of input records, but it improves on
AWK’s implementation by also supporting sed-style (non-overlapping) ranges and
returning a special code (E0) to allow the last record of the range to be detected,
thereby facilitating special processing for that record.

Perl’s rich collection of built-in functions and operators is much larger than
that of any version of AWK. In fact, in addition to providing AWKish functions
such as system and printf, Perl even provides access to the internal functions
of Unix systems.

As discussed in earlier chapters, Perl’s more powerful regex dialect, more flexible
matching options, and support of in-place editing give it substantial advantages in
pattern-matching applications over other UNIX-based utilities, including AWK.
What’s more, the ability of the Perl language to be extended through the inclusion of
modules gives it another major advantage over AWK.

The many practical examples featured in this chapter show that Perl can match
or exceed the benefits of AWK for applications falling into the latter’s traditional
fields of expertise: data validation (e.g., incomplete), report generation (mean_
annual_precip), file conversion (the Perl rock-star biodata system), and number
crunching (nexpr_p and compound_interest). Moreover, the compound_
interest2 program goes way beyond AWK’s capabilities by importing a function
from a module that can, as dictated by the data at hand, inflect a noun into its sin-
gular or plural form.

AWKiologists migrating to Perlistan should keep in mind that tables 5.6, 5.7, and
5.13 provide a succinct summary of the major differences in syntax between the lan-
guages, and that the a2p command is available to help convert legacy AWK programs
into Perl scripts.

41 As you’ll see in chapter 9, Perl even provides for the aggregate extraction of arbitrary elements from
arrays, using array slices.
176 CHAPTER 5 PERL AS A (BETTER) awk COMMAND

As a final note, don’t forget that when you’re down on your luck, you may be able
to make a few bucks by soliciting wagers on the mathematical capabilities of the Shell,
using the techniques illustrated in the nexpr_p script.

Directions for further study

For more information on other topics covered in this chapter, you may wish to con-
sult these resources:

• man perlop # operators, and operator precedence

• man Lingua::EN::Inflect # conditional pluralization, and more42

• man perlpod # Perl's Plain Old Documentation system

• man perldoc # Perl's documentation-retrieval utility

• man a2p # AWK to Perl source-code converter

• http://perldoc.perl.org/index-functions.html # the function list

TIP The range operator is documented in excruciating detail on the perlop
man page. Unless you crave excruciation, you’d be wise to stick with the
more informal coverage provided here.

42 The module’s documentation won’t be found unless it’s already on your system; chapter 12 shows
module-installation instructions.
SUMMARY 177

C H A P T E R 6

Perl as a (better)
find command

6.1 Introducing hybrid find/perl

programs 180
6.2 File testing capabilities of find

vs. Perl 180
6.3 Finding files 184
6.4 Processing filename arguments 188

6.5 Using find|xargs vs. Perl
alternatives 192

6.6 find as an argument pre-processor
for Perl 197

6.7 A Unix-like, OS-portable find
command 198

6.8 Summary 200
Scene: Church basement, Seattle, USA. Raining—as usual.

A burly, unshaven, heavily tattooed man is tugging at the sleeve of a woman,

��
who is standing at a podium. She responds to the sleeve-tugger with annoyance.

“Yes Lefty, I know you’re upset that they’re not serving the tea biscuits on those lovely
lace doilies anymore, but given our cash-flow situation—sorry, we’ll have to discuss
this later.

Testing, testing, 1 2 3. Is this thing on?

Attention!

Would you take your seats please, the meeting is about to begin.
178

Good evening! As you regulars know, we always begin by welcoming the newcomers.
Do we have any first-timers here tonight?

Yes, you sir, with the bushy red hair, would you please introduce yourself to the
group?”

[Camera zooms in on a bearded, bespectacled, amber teddy-bear of a man,
obviously of Irish descent.]

“Hello, my name’s Tim.

And I am a loser.”

��
[Fade to black]

As much as I hate to admit it, that statement is 100 percent true! I really am a loser.
What’s worse, I am a chronic loser!

I don’t mean that I’m a pitiful ne’er do-well who can never get his life in order. I
mean that I lose things—all the time! Luckily for me, my wife has what psychologists
call eidetic imagery, which is more commonly known as a photographic memory. All I
have to do is ask her, “Have you seen my iPod lately?” and she’ll consult her database
of mental images and tell me exactly where it is.

Even if you’re not a chronic loser like me, you’ve probably misplaced a file or two
on a Unix system by now. This may have motivated you to learn about the find
command, because it’s used to locate and identify files that have certain specified
attributes. In a sense, find is the Unix system’s answer to having a partner with a
photographic memory.

The find command can certainly come in handy. As a case in point, the other day
I made some modifications to the standard Perl script that’s used to convert docu-
ments from Perl’s Plain Old Documentation format (POD) to HTML. The new script
worked nicely, and it instantly became a valuable addition to my toolkit.

But then I lost it! I couldn’t remember its name, or what directory I had stored it
in. But I knew what its attributes were: owned by tim, file-type regular, name con-
taining html, permissions of read, write, and execute for the owner, and modified in
the last 24 hours.

So I issued the following find command, and it rapidly found the file for me:1

$ find /home/tim -user tim -type f -name '*html*' \
> -perm -0700 -mtime -1 -print
/home/tim/book/publishing/bin/my_pod2html

1 The -perm -0700 option specifies the rwx permissions for the file’s owner; the time of a file’s
last access, modification, and attribute change (i.e., its timestamps) are respectively accessed via the
-atime, -mtime, and -ctime options. Run man find for additional details.
179

In addition to being invaluable to Unix users, find is even more important to Unix
system administrators, who would have a hard time managing their systems without it.

On the other hand, find has some annoying limitations, which have been known
to motivate programmers to seek alternatives. What’s more, you can only count on
find being available on Unix systems, so once you grow dependent on it, you’ll miss
it when using other OSs.

Fortunately, you can easily write Perl programs that surpass find’s limitations
and extend its reach to non-Unix platforms. You’ll see examples of many programs of
this type shortly, but first we’ll discuss why most of them take a different form than
the programming examples shown thus far.

6.1 INTRODUCING HYBRID find/perl PROGRAMS

In earlier chapters, we discussed Perl programs that served as more powerful replace-
ments for grep, sed, and awk by exploiting the advanced capabilities of Perl’s closely
related facilities (e.g., the matching and substitution operators).

Although Perl has less intimate connections to most other Unix utilities, in many
cases it can still be used to add value to,2 if not to completely replace, another utility.
Accordingly, we’ll approach our discussion of find differently than we did the dis-
cussions of grep, sed, and AWK. Specifically, we’ll generally use Perl commands to
perform additional filtering of find’s output rather than to eliminate the use of find
altogether. This approach allows us to take advantage of find’s ability to generate
filenames by recursively descending into directories, rather than having to duplicate
that functionality in Perl.3

Our primary focus in this chapter will be on find | perl pipelines that serve as
functional enhancements to find rather than replacements for find. In addition to this
primary theme, we’ll also consider possible improvements to grep and sed-like pro-
grams (covered in chapters 3 and 4), which can benefit from many of the enhanced
file-finding services we’ll be discussing.

We’ll begin by comparing find’s file-testing capabilities with Perl’s.

6.2 FILE TESTING CAPABILITIES OF find VS. PERL

Table 6.1 shows the syntax for Perl’s file-test operators.4 You have the option of sup-
plying an explicit filename argument when conducting a file test, as in

-r '/etc/passwd' or warn "/etc/passwd is not readable\n";

2 E.g., I've seen Perl commands used to enhance the interfaces to, and/or outputs emanating from,
crontab, date, df, du, echo, expr, find, fmt, ifconfig, ls, mozilla, mutt, newaliases,
sendmail, sort, vim, who, and users.

3 Replacing find altogether in Perl programs is accomplished using File::Find (see chapter 12).
4 There’s no separate column for POSIX find, because its capabilities are duplicated in GNU find.
180 CHAPTER 6 PERL AS A (BETTER) find COMMAND

Alternatively, you can omit the filename, causing the data variable ($_) to be accessed
as the implicit argument:

-r or warn "$_ is not readable\n"; # filename in $_

In addition, the result of a test can be complemented by preceding its associated
operator with the “!” character, as in the following reverse-logic variation on the
previous example:

! -r and warn "$_ is not readable\n"; # filename in $_

Table 6.2 lists a variety of attributes for files and shows, for Perl and significant versions
of find, which ones are impossible, possible, or easy to test. The table also shows, in its
rightmost column, the Perl operator that’s used to perform each file attribute test.

The most basic file attribute tests (shown in the top panel) are rated as easy to per-
form with both versions of find as well as Perl. On the other hand, the second panel
shows that all permission-related tests that are easy with Perl are impossible to per-
form with find.

The table also shows that the text-file and binary-file tests provided by Perl (-T,
-B) are impossible with find, and the three other tests in the third panel are easier
with Perl.

For example, Perl’s test for a file’s “sticky bit” being set is –k filename, whereas
find requires the more complicated –perm -01000. All it takes to bungle the latter
test is the omission of the second “-” or the misplacement of the 1 relative to all those
0s, which is why Perl rates an E (for easy), but find a P (for possible) on this test.5

The bottom panel shows several tests that are easier with find than Perl,
because you have to test for these attributes using the stat function (discussed in
section 7.2.3) rather than a file-test operator.

All in all, Perl stacks up relatively well against find, especially when you consider
that Perl makes certain extremely helpful tests possible, or even easy (viz., those in the
second and third panels). For example, Perl’s unique offering of six read/write/execute

Table 6.1 Syntax for file attribute tests

Syntax
a Meaning

 -X filename Tests that filename has attribute X

! -X filename Tests that filename lacks attribute X

 -X Tests that the file named in $_ has attribute X

! -X Tests that the file named in $_ lacks attribute X

a. X stands for a Perl file-operator’s keyletter, such as the r in “-r memo”.

5 For more information about Unix file types and permissions, consult man ls and man chmod.
FILE TESTING CAPABILITIES OF find VS. PERL 181

tests solves a long-standing problem in Unix programming. Why? Because Perl (on
Unix) actually interprets the permissions a file grants to its User (a.k.a. owner),
Group, and Others in light of the Real/Effective UID and GID of the person running

Table 6.2 Comparison of supported file attributes in versions of the find command

and Perl

File attribute
a Classic find

b GNU find
c Perl Perl operator

Regular/plain E E E -f

Directory E E E -d

Symlink E E E -l

Named pipe E E E -p

Character E E E -c

Block E E E -b

Socket E E E -S

Empty E E E -z

Non-empty E E E -s

Readable by Real UID/GID - - E -R

Writable by Real UID/GID - - E -W

Executable by Real UID/GID - - E -X

Owned by Real UID - - E -O

Readable by Effective UID/GID - - E -r

Writable by Effective UID/GID - - E -w

Executable by Effective UID/GID - - E -x

Owned by Effective UID - - E -o

Owned by Specified UID/GID E E P statd

Set-UID P P E -u

Set-GID P P E -g

Sticky P P E -k

Text - - E -T

Binary - - E -B

Newer than another E E P stat

Accessed more recently than another - E P stat

Number of links E E P stat

Inode number E E P stat

a. Real and Effective IDs are those of the process running find or perl.
b. E: test is easily done; P: test is possible; -: test isn’t possible.
c. Using POSIX-compliant features and GNU extensions.
d. Covered in section 7.2.3.
182 CHAPTER 6 PERL AS A (BETTER) find COMMAND

the test—in the same way the Unix kernel does—and yields a True/False code to
indicate whether the specified access would be permitted.

In contrast, find only gives you the ability to determine if a particular user
owns a file (e.g., -user nigel) and whether it has particular permission bits set or
not (e.g., -perm -0400). What’s missing is the all-important logic—provided by
Perl—that determines whether the current user will be granted a particular type of
access to the file, according to the (rather involved) rules of Unix.

In short, Perl’s permission tests report the implications of the file’s ownerships and
permissions on the current user’s activities, whereas find merely provides isolated bits
of information from which a programmer must draw her own conclusions.

Each tool has its strengths, so with these differences in mind, let’s look at some
ways to augment find’s capabilities with Perl.

6.2.1 Augmenting find with Perl

A useful way to exploit their individual strengths is to use find to generate an initial
set of pathnames and Perl to eliminate those whose files lack some additional attributes.
For example, any of the following commands could be used as the first stage of a pipe-
line6 to take advantage of find’s ability to locate files according to their size, name,
and timestamp attributes:

find . -size +100 -print |
find /src -name 'core' -print |
find $HOME -mtime -3 -print | # starts from /home/tim

Then Perl commands, having forms such as these, could be added as the filtering stage
in the pipeline:

perl -wnl -e '-A and print;' # Example 1

perl -wnl -e '-A and -B and print;' # Example 2

perl -wnl -e '-A and ! -B and print;' # Example 3

perl -wnl -e '-A and -B and -C and print;' # Example 4

perl -wnl -e '(-A or -B) and print;' # Example 5

perl -wnl -e '(-A or -B or -C) and print;' # Example 6

perl -wnl -e '-A and (-B or -C) and -D and print;' # Example 7

In these commands, -A, -B, and -C are placeholders for the file-type attributes of inter-
est, and “!” has the effect of negating the meaning of the following test (as it does with
find). Note also that or, being weaker in precedence than and (see section 2.4.5),
needs parentheses around its arguments.7

6 You could alternatively use another pathname-generating command, such as ls or locate, in place
of find at the head of such pipelines.

7 Or, to use the more proper term for an operator’s arguments, its operands.
FILE TESTING CAPABILITIES OF find VS. PERL 183

Therefore, Example 2 reports files from its input that have attributes A and B,
Example 3 reports those having A but not (!) B, and Example 6 reports those having
at least one of A, B, or C.

Here is a pipeline based on Example 1 that lists regular files under the directory
/home/ersimpson that contain text. Although find is used for the regular file
(-type f) test, Perl must be used for the text-file test that find doesn’t provide:

find /home/ersimpson -type f -print | perl -wnl -e '-T and print;'

Because many programs work best when users feed them files having exactly these
properties, you’ll find the Perl component of that pipeline to be useful in many
future commands. For this reason, it’s worth converting to a script:

$ cat textfiles
#! /usr/bin/perl -wnl
If file named on input line contains text, print its name
-T and print;

We’ll use this script later in this chapter, in an example that provides a file-validating
service for grep.

As an example of a case using or, the following command lists files that are regular
(-type f) and either empty8 or nontext:

find . -type f -print | perl -wnl -e '(! -s or ! -T) and print;'

The parentheses surrounding or’s conditions in that command are critical, due to the
higher precedence of and. Without them, a True result from the first test—signifying
emptiness—wouldn’t lead to the filename being printed as desired, due to implicit
parentheses being placed as follows:

find . -type f -print | perl -wnl -e '! -s or (! -T and print);'

Now that we’ve discussed how to find filenames by file attributes, we’ll turn next to
finding filenames according the characteristics of the names themselves.

6.3 FINDING FILES

Perl’s facilities for text processing make it a natural choice when you need to select files
whose names have particular properties. We’ll look at some typical cases next.

6.3.1 Finding files by name matching

One common use of find is to identify pathnames having certain patterns of charac-
ters in their final segments, using the –name option. For example, Don is looking for
a text file he created with the vi editor a long time ago. After contemplating the many

8 The –s operator returns the actual size of the file in bytes: For non-empty files, the value it returns is
True, so for empty files, “! –s” returns True. Think of “! –s” as meaning “not having contents,” or
perhaps “no stuff.”
184 CHAPTER 6 PERL AS A (BETTER) find COMMAND

possibilities, he concludes that the filename might have been “letter”, or it might have
contained “memo”, or it might have started with “epistle”.

He composes the appropriate find command, and tries it:

$ find $HOME -type f \
> \(-name 'letter' -o -name '*memo*' -o -name 'epistle*' \) -print
/home/donovan/hippie_love_songs/epistle2dippy.txt
/home/donovan/bin/memoize
/home/donovan/bin/order_more_commemorative_plates_of_woodstock

Note that it’s vital to enclose those alternative -name options joined by -o (or) oper-
ators within backslashed parentheses. Unfortunately, due to the way find works, the
result of omitting them is an incorrect outcome, rather than an error message.9

Using a Perl command instead to do the filename matching allows a solution
that’s less error-prone and more powerful. That’s largely because Perl’s pattern-
matching is based on a powerful regular expression (regex) notation with an intuitive
egrep-like syntax, rather than find’s more limited filename generation (FNG) nota-
tion coupled with a cumbersome syntax.

In addition, Perl uniquely supports the text-file test, which is appropriate to
use when you’re searching for files created with vi, like the one Don misplaced.
Using it eliminates undesirable matches against names of compiled programs, such
as the matches with “*memo*” shown in the last two lines of the previous com-
mand’s output.

Here’s Don’s improvement on the previous find command, which handles the
trickier parts of the problem with Perl:

$ find $HOME -type f -print |
> perl –wnlaF'/' -e '-T and
> $F[-1] =~ /^letter$|memo|^epistle/ and print;'

/home/donovan/hippie_love_songs/epistle2dippy.txt

Notice that Don used the a and F options to request the automatic splitting of the
incoming pathnames into fields, using “/” as the delimiter. This makes it easier to
direct the matching to the final segment of each pathname, to mimic what find’s
option –name does.10

The matching operator is used to scan each pathname’s final segment (in $F[-1])
for the exact string “letter”, or the substring “memo”, or a string starting with “epis-
tle”—with the entire pathname being printed (from $_) for each match.

9 Due to the lower precedence of -o versus the implicit –a (and) before –print, such a command
would ignore the “letter” and “memo”-based filenames, and produce the same output as the following
command: find $HOME -type f -name 'epistle*' -print

10 The use of the a and F options, and array indexing with $F[-1], are covered in section 5.3 and
table 5.9, respectively.
FINDING FILES 185

In summary, Don’s vague recollections about his text-file’s name were accurate
enough to let him write two kinds of commands to find it. The command using the
POSIX find by itself requires a tricky syntax and uses a relatively weak pattern-
matching notation, whereas an approach relying primarily on Perl has the benefits of
a more powerful matching facility with a familiar egrep-like syntax, and the ability
to distinguish text files from nontext files.

We’ll next use Perl with a matching operator to select pathnames in another way
that POSIX find just can’t match.

Finding multi-word filenames

Let’s consider the intriguing case of Steffi, who has a lingering thumb. When using her
word-processing application, she saves her documents under multi-word filenames,
but because of her “thumb issue”, those words may be separated by one space or
several , depending on how long her thumb lingers on the (automatically repeating)
<SPACE> key.

Right now, she needs to rapidly locate a file named “Final Report”, or maybe it
was “Final report”, or possibly “final report”, or perhaps even “final Report”, or blast
it, quite possibly “FINAL REPORT”. What’s more, because of her thumb issue, she
needs to make allowances for various numbers of spaces between the words.

She’ll be using the POSIX find command, so to save a lot of redundant typing,
she simplifies the solution by initially looking for filenames having only one or two
spaces of separation between the required words. She also arranges for uppercase and
lowercase variations to be allowed for every character, through the highly effective
but egregiously cumbersome method of using a character-class for each and every let-
ter.11 Here’s the resulting command:

$ find $HOME -type f \(\
 -name '[Ff][Ii][Nn][Aa][Ll] [Rr][Ee][Pp][Oo][Rr][Tt]' -o \
 -name '[Ff][Ii][Nn][Aa][Ll] [Rr][Ee][Pp][Oo][Rr][Tt]' \
 \) -print

To handle the case of two spaces between the words, Steffi retyped the first -name line
with an extra space between the words to create the second –name line. She needed to
match names containing additional spaces as well, but she was already sick of typing
by this point and highly motivated to look for an easier solution.

After pleading with a Perlish friend for help, she came up with this alternative:

$ find $HOME -type f -print |
 perl –wnlaF'/' -e '-B and $F[-1] =~ /^final +report$/i and print;'

/home/Steffi/first drafts/final report.stw

11 The GNU version of find has a -iname option that ignores case while looking for files by name, but
Steffi’s approach has the advantage of working with the –name option that’s provided in all versions
of find.
186 CHAPTER 6 PERL AS A (BETTER) find COMMAND

The -B operator checks that the current filename is a binary file (i.e., non-text; see
table 6.2), which is appropriate because Steffi’s word-processing program saves files in
a format of that type. The find command can’t test for this property, so Steffi couldn’t
have been certain of finding the right file types with her solution based entirely on it.

The i modifier on the matching operator requests a case-insensitive match,
thereby dispensing with all the [Cc][Aa][Ss][Ee]-variation complexities of the find
solution with one keystroke.

The “+” quantifier following the space allows for one or more spaces between the
words, accommodating much more extreme cases of thumb-down hysteresis than the
more complex but less powerful find version that Steffi initially coded.

In summary, Steffi’s problem is more easily solved with help from Perl because the
pattern-matching operations can be handled using the more versatile regex notation,
case-insensitive matching can be requested, and non-binary files can be excluded from
consideration.12 Moreover, the Perl solution is also more complete—because it han-
dles any number of additional spaces between words—and more compact than its
POSIX find counterpart.

Next, you’ll see another way in which Perl’s file-finding capabilities exceed those
of find.

6.3.2 Finding files by pathname matching

You’ve seen that Perl can mimic the behavior of find’s –name option by matching
within a pathname’s final segment. But Perl can do something the POSIX find can’t
do—it can match anywhere within the pathname.

I use this feature periodically when I need to find one of my scripts by name.
Because I know it resides in one of my *bin directories, I can use this knowledge to
avoid matches with like-named files that reside in other directories, such as *man and
*lib.13

For instance, here’s how Homer would locate his scripts for converting images in
other formats to JPEGs, using the fact that he employs a *2jpg convention in naming
them:

$ find $HOME -type f -print |
> perl –wnla -e '-T and m:bin/\w+2jpg$: and print;'

/home/ersimpson/bin/gif2jpg
/home/ersimpson/public_domain_bin/tiff2jpg
/home/ersimpson/SPUG-bin/png2jpg

Notice that the mX syntax of the matching operator is used to specify the “:” character
as the delimiter, overriding the default of the slash. This allows the slash at the end of
“bin/” to unambiguously represent the directory separator in the pathname, which

12 GNU’s find can provide the first two of these capabilities but not the third.
13 In keeping with long-standing Unix conventions, I’m using the FNG notation here to specify that the

directories of interest all end with the string bin.
FINDING FILES 187

creates a context that ensures the \w+2jpg$ pattern is only matched as a whole file-
name under a *bin directory.

By using this technique of matching filenames only within directories matching
specified patterns, Homer can avoid undesirable matches such as these:

/home/ersimpson/man/gif2jpg
/home/ersimpson/src/graphics/tifflib/tiff2jpg
/home/ersimpson/SPUG-man/png2jpg

Next, you’ll see how to use a special kind of find | perl pipeline for filtering out
undesirable arguments for Unix utilities, and how to use Unix utilities for validating
arguments for Perl programs.

6.4 PROCESSING FILENAME ARGUMENTS

Have you ever run the grep command, only to find yourself suddenly staring at a
screen full of blinking graphics characters? Most Unix users should witness this phe-
nomenon sooner or later, because it’s not only the closest approximation to the
Aurora Borealis you’ll ever see on a computer terminal, it’s also a rite of passage for
Unix newbies.

If you don’t know what I’m talking about, feast your eyes on figure 6.1, which
shows what happened when a hapless user attempted to search all files under $HOME
for lines containing the letter e, using POSIX grep.

Unfortunately for that user, grep doesn’t treat $HOME as some kind of magical
reference to all the files within the directory it names, as many are prone to assume.
Instead, it’s taken as the name of the specific file that’s to be opened and examined for
matches! As luck would have it, this directory-file did contain some occurrences of the
letter e, so grep dutifully sent the associated “lines” to the screen.

But the terminal interpreted something in that data stream as a request to
switch character sets, which is why it’s difficult to decipher the output of the who
and ls -l commands that came next.

By the way, if you’re thinking, “I’m too smart too fall into that trap,” consider the
related commands shown here, which are just as dangerous in cases where “*” finds
a subdirectory it can match:14

grep 'e' $HOME/*
grep 'e' *

It’s scary to contemplate, but I know from my decades in Unix IT circles that many
users issue commands like these all the time; they’re just lucky to rarely find matches
in the binary files they’re inadvertently searching.

14 Because this shortcoming has been rectified in the GNU version, those wishing to use the command
formats identified here as dangerous may successfully do so with help from its -r (recursive) option, as
in grep -r 'e' $HOME.
188 CHAPTER 6 PERL AS A (BETTER) find COMMAND

Okay, now you understand the problem, and you’ve seen that it’s an easy trap to fall
into. So you’re probably asking yourself, “Is there any hope of defending the hordes of
accident-prone Unix users from these grepological calamities? And what does this have to
do with Perl?”

Of course there’s hope; and, as usual, our salvation is achieved by Perl coming to
the rescue.

6.4.1 Defending against grep’s messes

A valuable feature provided by the Shell is its ability to replace a command in back-
ward quotes with that command’s own output. This facility, called command substitu-
tion, and its Perl counterpart, called command interpolation, are covered in detail in
section 8.5. In this section, we’ll look briefly at how this powerful feature is used and
how you sometimes need to use a command called xargs in its place.

The following command uses the Shell’s command substitution facility to execute
an ls | perl pipeline and deliver its output to grep as a set of filename arguments:

grep 'pattern' `ls -d * | perl -wnl -e '-T and print;'`

Figure 6.1 Example of screen corruption produced by careless grepping.
PROCESSING FILENAME ARGUMENTS 189

Even better, here’s a version using the tiny Perl script presented earlier that embodies
the code of that pipeline’s Perl command:

grep 'pattern' `ls -d * | textfiles`

The -d option tells ls to list directory names themselves (rather than their contents),
which limits the generated filenames to those residing in the current directory.
Because it has backward quotes around it, the ls | textfiles pipeline is replaced
on the command line by its own output, causing the names of the resulting text files
from the current directory to become the arguments to grep.

With that command, if the only text files in the current directory were ones
named Larry, Moe, and Curly, the end result would be exactly as if the user had
been willing and able to type those “Stoogeadelic” filenames as arguments to grep in
the first place, like so:

grep 'pattern' Larry Moe Curly

The kinds of pipelines you’ve just seen are relevant to our current discussion because
they provide a simple workaround for the screen-corruption problem discussed ear-
lier. As a case in point, consider this command, which finds a match in the file
named Moe:

$ grep 'HEAD' `ls -d * | textfiles`
Moe: HEAD STOOGE

This command is effectively a screen-safe version of the following, which is suitable
only for extreme optimists (and gamblers) when the POSIX or classic grep is used:

grep 'HEAD' *

Why is the first command of this pair superior? Because it filters the filenames gener-
ated by the “*” to remove any troublemakers that don’t contain text.

For those restricted to using versions of grep that have the “search in a binary
file and corrupt the screen” problem, a scripted version of that pipeline might come
in handy.

A screen-safe grepper: text_grep

text_grep implements a case-insensitive grepper for text files:

$ text_grep -pattern='Head' Larry Moe Curly bin # bin is ignored
Moe: HEAD STOOGE

Contrary to what you might expect, the textfiles script can’t be used directly in
implementing text_grep, because the former operates on filenames presented to its
input, whereas the latter accepts them as arguments (like a real grep).

But you can easily implement text_grep using the techniques covered in chap-
ter 2. First, test that the current input file has text contents using –T $ARGV. Then,
if that test fails, close the filehandle (ARGV) to terminate the processing of the file
190 CHAPTER 6 PERL AS A (BETTER) find COMMAND

before any matching is attempted, and to trigger the opening of the next file (if there
is one).

Because the script accepts multiple filename arguments, it’s important that it iden-
tifies each matching line with the name of its associated file, as shown in the earlier
run that used $ARGV to prefix “Moe” to the matching line.

Here’s the text_grep script:15

#! /usr/bin/perl -s -wnl

BEGIN {
 @ARGV and $pattern or # must have argument, and pattern
 warn "Usage: text_grep -pattern='RE' f1 [f2 ...]\n" and
 exit 255;
}

Close current file, if not text-file, and get next input
-T $ARGV or close ARGV and next;

On match, show "filename: matching-line"
/$pattern/i and print "$ARGV: $_";

This script even has value for those who already have access to improved GNU grep-
pers, because it provides a framework for accessing Perl’s superior collection of regex
metacharacters and matching options (see table 3.2).

We’ll look next at a convenient way to direct a grepper to search within an entire
branch of the file-system tree for matches.

6.4.2 Recursive grepping

In the previous section, you saw a filename-filtering technique that prevents non-GNU
grep commands from searching within binary files, finding accidental matches, and
corrupting the screen. But there are occasions when you really want to name a direc-
tory as an argument to grep, and have DWIMity16 prevail—which means grep
should search within every file in that directory, and the files of its subdirectories.
That’s called recursive grepping. You’ll see how to accomplish this worthy goal next.

Here’s the command that formed the initial basis for the text_grep script dis-
cussed earlier:

$ grep 'HEAD' `ls -d * |
> perl -wnl -e '-T and print;'`
Moe: HEAD STOOGE

Only a slight change is needed to allow the user to specify a directory instead of a file
and to get the appropriate results from any version of grep. You simply replace the ls

15 Placing defined before $pattern would make the script more robust, as you’ll learn in section 8.1.1.
The next directive is Perl’s counterpart to the Shell’s continue (see table 10.7).

16 DWIMity is the property allowing a program to Do What I Mean—regardless of What I Say!
PROCESSING FILENAME ARGUMENTS 191

in that pipeline with a find command that starts in the specified directory and recur-
sively descends into those below it, finding all regular files.

Here’s an example that starts its search in /home/ersimpson:

$ grep 'HEAD' `find /home/ersimpson -type f -print |
> perl -wnl -e '-T and print;'`
/home/ersimpson/Moe: HEAD STOOGE
/home/ersimpson/stoogetrivia/Shemp: HEAD STOOGE "WANNABE"

You’ll see a scripted version of this recursive grep command in chapter 8, which pro-
vides a more grep-like interface:

rgrep 'pattern' file_or_directory_name(s)

Despite its many virtues, it’s important to recognize that command substitution, as
used in the preceding examples, isn’t always the most reliable way to pass arguments to
commands. For this reason, we’ll examine the xargs alternative shortly. But first,
we’ll wind up this topic with a quick discussion of the widespread applicability of the
techniques we’ve covered thus far.

6.4.3 Perl as a generalized argument pre-processor

Although previous examples focused on the use of Perl commands to preprocess file-
names for presentation to the grep command, there’s no reason to restrict the use of
this type of argument-validation service to any particular utility. On the contrary, you
can use it to good advantage with any command that accepts input from text files
named as arguments, including sed and awk, and dozens of other Unix utilities.

For instance, here are examples of awk commands benefiting from argument pre-
processing provided by Perl:

awk 'program' `ls -d * | textfiles`
awk 'program' `find . -type f -print | textfiles`

You’ll see additional examples of Perl’s usefulness as an argument pre-processor in
part 2.

Next, we’ll discuss where the much-lauded xargs command can provide advan-
tages over command substitution—and where it can’t, but Perl can.

6.5 USING find|xargs VS. PERL ALTERNATIVES

As shown earlier, find can be used to generate filenames that ultimately become
arguments to another command. This is such an important service that find has its
own option for processing such commands, called -exec.

How does it work? You insert {} symbols anywhere the current filename should
be inserted within the –exec command clause, followed by a “\;” sequence to mark
the end of command’s argument list. The usual command format is therefore

find dir(s) attribute(s) -exec command {} \;
192 CHAPTER 6 PERL AS A (BETTER) find COMMAND

For simplicity, let’s first consider the common task of removing those pesky files
named core—which can be produced when a program dies—from the branch of the
file-system tree rooted at the current directory. The appropriate command is

find . -name 'core' -type f -exec rm {} \;

If the following three pathnames were found, that find -exec command would exe-
cute a separate rm for each one, just as if you had manually typed these commands:

rm ./bin/core
rm ./source/shopping_cart/core
rm ./backups/core

Although this approach gets the job done, it’s not economical. Why? Because if 100
pathnames were found, it would take 100 processes, one for each rm command, to
handle them all.

They say that the more processes a task on Unix requires, the more time it takes
to run,17 so to should think about minimizing process utilization—especially if a sin-
gle rm command (i.e., one using 1 process with 100 arguments) could do all the work
by itself!

Thanks to the efforts of generations before us who have grappled with this prob-
lem, modern Unix systems come equipped with a utility program designed to solve
it, called xargs. Its job is to convert its input lines into arguments for the designated
command, allowing the following rewrite of the earlier find -exec command:

find . -name 'core' -type f -print | xargs rm

With this approach, xargs bundles together as many filename arguments as possible
for submission to each invocation of rm that’s needed, in compliance with the OS’s
maximum allowed size for an argument list. This means xargs is guaranteed not
only to handle all the arguments, but also to use the smallest possible number of pro-
cesses in doing so. For example, if each command can handle 100 arguments, and
there are 110 filenames to process, there will be two invocations of the command,
respectively handling 100 and 10 arguments.

As is the case with any powerful tool, you must be careful not to use it improperly.
After all, a rocket-propelled grenade is an appropriate device for punching holes in
tanks, but it’s not recommended for manicuring toenails. Unfortunately, Unix users
are in constant danger of shooting themselves in the foot by using xargs in places
where it doesn’t belong. For a thorough briefing on how to use Perl to avoid these
types of friendly fire situations, report to the next section—pronto!

6.5.1 Using Perl for reliable timestamp sorting

A classic problem is that of identifying the most recently modified (i.e., newest) file
within a particular branch of the file system, which might reflect the most recent

17 This guideline is most applicable to single-CPU computers.
USING find|xargs VS. PERL ALTERNATIVES 193

order received, the latest blog uploaded, the last Unix configuration file modified, and
so forth. To find the newest file, a knowledgeable Unix programmer might compose a
command like the following:

find . -type f -print |
 xargs ls -lrdt |
 tail -1

What does that pipeline do? The find command emits the pathnames of the relevant
files; the xargs command submits them as arguments to ls, whose -lrdt options
sort their listings in ascending order by modification time; and then the tail -1 com-
mand peels off the listing that comes out last—the one for the newest file. At least,
you’d expect it to be the pathname of the newest file, on the basis of (dodgy) advice
from books or colleagues, or your own experiences with similar commands.

As discussed earlier, it’s considered fiendishly clever to use xargs with find
instead of an -exec clause, because doing so is guaranteed to minimize the number
of processes required to handle all the arguments. In fact, the find | xargs
approach is so efficient, and so highly revered in Unix culture, and so impressive to
your colleagues, and so, well, cool , that the only bad thing you could possibly say
about its use for this task is: It’s not guaranteed to produce the correct results!18

Why can’t it be trusted? Because the ls command isn’t guaranteed to sort all the
filenames in one batch. That can lead to an incorrect result, because the most recent
file from the final batch is always the last one provided as input to tail and therefore
the one emitted by the pipeline. Therefore, if so many filenames are presented to
xargs that it has to divvy them up for processing by two or more ls commands,
there’s no guarantee that the file of interest will be processed in the critical final batch
and that the correct pathname will emerge from the pipeline.

Note that this isn’t a criticism of xargs itself, which does an admirable job of run-
ning the separate ls commands as efficiently as possible. The problem is that sorting
isn’t an operation that can be done in piecemeal fashion—all the filenames must be
sorted in one batch. For this reason, the find | xargs approach just isn’t suited to
solving this problem.

The modified solution shown next uses a custom Perl script called most_
recent_file instead of xargs, which has two distinct advantages:

• It always produces the correct answer.

• It works even on non-Unix systems that have Perl.19

18 Unfortunately, that doesn’t prevent it from being widely used this way. I hope the results aren’t being
used to control any nuclear reactors!

19 Which brings with it the find2perl command (see section 6.7), which can play the role of a Unix
find command for systems that lack one.
194 CHAPTER 6 PERL AS A (BETTER) find COMMAND

Here are the results from using the xargs-based technique shown earlier—and its
Perl alternative—for finding the most recently modified file under /etc on my
Linux-equipped laptop:

$ cd /etc
$ find . -type f -print |
> xargs ls -lrdt |
> tail -1
-rw-r--r-- 1 root root 28005 2006-07-31 12:53 ./ld.so.cache

$ find . -type f -print | most_recent_file # the correct answer!
./mtab
Tue Aug 1 11:41:29 2006

As you can see, the commands identify different files as the newest—and they can’t
both be right.

The wrong answer is the one produced by the first pipeline, because find gener-
ated so many arguments that xargs couldn’t present them all to ls in one batch.
In contrast, most_recent_file (shown in Listing 6.1) always produces the cor-
rect answer.

#! /usr/bin/perl -wnl
From pathname inputs, emits name of one most recently modified
Gives correct answer where pipelines of this form may not:
find . -print | xargs ls –lrdt | tail -1

NOTE: Use find or locate to provide input, or ls -d dir/*,
but *not* simply "ls dir" (dir won't be present in pathname)

Sample invocations:
locate '*.c' | most_recent_file
ls -d /etc/* | most_recent_file
find /local -name 'somescript' | most_recent_file
most_recent_file < filelist

BEGIN {
 $newest=0; # initialize modification-time reference point
}
Get file's numeric modification time; 10th value from stat
$mtime=(stat $_)[9]; # indexing into output of stat
if ($mtime > $newest) { # if True, current file is newest yet seen
 # Remember mod-time for comparison to others,
 # and remember filename for final report
 $newest=$mtime;
 $name=$_;
}

END {
 print $name;
}

Listing 6.1 The most_recent_file script
USING find|xargs VS. PERL ALTERNATIVES 195

That script may look intimidating at first, due to its size, but if you look more closely,
you’ll see that it’s mostly comments.

It starts by using the stat function to obtain the file’s data.20 The value it returns
for the index of 9 is the time of the file’s last modification, represented by a large inte-
ger number that represents the seconds that elapsed to that time from an ancient ref-
erence point.

The rest of the script is devoted to keeping constant track of the most recent modi-
fication time seen thus far, along with its associated filename, and then printing the
“winning” name after all input has been processed (in the END block). The logic goes
like this: If the current file’s $mtime value is larger than the largest one seen thus far
(stored in $newest), the current filename replaces the earlier one as our latest idea of
the one most recently modified.

That’s all it takes to write a Perl script that avoids the predilection of the xargs-
based solution for identifying the wrong file as most recently modified, when many
must be examined.

Next, we’ll discuss another limitation of xargs, and how Perl can once again be
of assistance. It involves wrangling pathnames that contain whitespace characters,
which has historically been a vexing problem for Unix system administrators.

6.5.2 Dealing with multi-word filenames

As discussed earlier, the find | xargs approach to handling filenames has the advan-
tage of using fewer processes than the find -exec alternative. However, there’s a
limitation of the xargs approach that’s important to understand. Specifically, filena-
mes containing whitespace characters are split into separate pieces at those positions,
preventing them from being handled properly.

Let’s say we need to count the number of characters (via wc -c) in each of the regu-
lar files within or below the current directory. The find -exec approach isn’t both-
ered by filenames containing whitespace characters (represented by �):

$ find . -type f -exec wc -c {} \;
 177 ./multi-word�name
 258 ./regular_name

but the find | xargs approach certainly is:

$ find . -type f -print | xargs wc -c
 wc: ./multi-word: No such file or directory
 wc: name: No such file or directory
 258 ./regular_name
 258 total

20 stat is related to the Unix function that ls -l and find . -ls use to obtain a file’s properties. The
(stat $_)[9] syntax is discussed in section 7.2.3. In section 8.4.1, we’ll enhance this script to show
multiple filenames as “most recent” when there are ties.
196 CHAPTER 6 PERL AS A (BETTER) find COMMAND

As you can see, each part of multi-word name was presented as a separate argument
to the wc command.

This problem can easily be rectified by using a Perl command in place of xargs,
because Perl can also report file sizes, but it doesn’t automatically do word-splitting
on input lines:

$ find . -type f -print | perl -wnl -e 'print -s , " $_"'
177 ./multi-word�name
258 ./regular_name

The -s operator provides the byte-count for the file named in the current input line
(see table 6.2), and $_ provides the filename itself, so printing these elements—with a
space before the filename—produces a report that resembles wc’s output.

The result is a solution that handles whitespace embedded in filenames properly,
like find’s –exec option, but that’s even more economical with processes than
xargs—the Perl command uses only one, versus one process for xargs and from
one to an astronomical number for the required wc commands.

We discussed the benefits of pre-processing arguments for other commands with
Perl in section 6.3. But turnabout is fair play, so next we’ll discuss the use of other
commands, such as find, as argument pre-processors for Perl.

6.6 find AS AN ARGUMENT PRE-PROCESSOR
FOR PERL

Back in chapter 4, we covered simple Perl commands that offered improvements on
sed, including examples that automatically edited large numbers of files with com-
mands like these:

perl -i.bak -wpl -e 's/\bpotatos\b/potatoes/g;' *

perl -i.bak -wpl -e 's/\bWireless\b/WiFi/g;' site[12]/*.html

The first example edits every file in the current directory,21 whereas the second one
edits all the HTML files in the directories called site1 and site2.

That format works nicely for processing all files within directories, but what if you
want to select particular files on the basis of their attributes—including files that
reside in subdirectories? That problem can be solved by using find to feed filenames
to a Perl command—which filters out the inappropriate ones and passes the others on
to xargs—which in turn feeds arguments to another Perl command.

Here’s an example:

find $HOME -type f -print | # only regular files

 perl -wnl -e '-T and print;' | # only text files
 xargs perl -i.bak -wpl -e 's/\bPRE-OWNED\b/USED/g;' # be honest

21 More precisely, it edits only non-hidden files—which are also regular files, because Perl automatically
skips other types presented as arguments (see table 4.1).
find AS AN ARGUMENT PRE-PROCESSOR FOR PERL 197

This can be simplified a bit more by using the textfiles script from this chapter
along with the change_file script from chapter 4, yielding the following:

find $HOME -type f -print |
 textfiles |
 xargs change_file -old='\bPRE-OWNED\b' -new='USED'

As discussed previously, the use of xargs ensures that every pathname emitted by
find | textfiles is eventually presented as an argument to change_file, even if
the OS won’t allow a single instance of the script to handle them all.22

Of course, the invocation could be simplified even more by enclosing this pipeline
in a script. One user interface might look like this:

change_text_files -dir=$HOME -old='\bPRE-OWNED\b' -new='USED'

Another interface might dispense with the switch options and assign meanings to
arguments by position instead:

change_text_files2 '\bPRE-OWNED\b' 'USED' $HOME

You’ll learn techniques for processing positional parameters, such as the three argu-
ments of that last command, in section 8.1.3.

Next, you’ll see how Perl lets you enjoy the benefits of the Unix find command
on Windows.

6.7 A UNIX-LIKE, OS-PORTABLE find COMMAND

When the Perl language is installed, some useful ready-made scripts are installed
along with it, which can be of considerable value—even to those who think a Perl is
something manufactured by irritated mollusks! As a case in point, we’ll discuss
find2perl next, which provides the valuable service of emulating the Unix find
command for systems that lack it.

6.7.1 Making the most of find2perl

Many Unix users are accustomed to having the power of find at their disposal. That
allows powerful commands like the following to be quickly unleashed to burrow
through the file system and process the indicated files:

Show JPEG files last accessed in 24 hours (< 1 day)
 find . -name '*.jpg' -type f -atime -1 -print

Compress my regular, not recently read, big files
 find $HOME -type f -atime +30 -size +1000 | xargs gzip

But what’s the hapless Windows user or system administrator to do? Is she doomed
to wade forever through the “friendly” GUI interface of Search>All file and folders,

22 The fundamental advantage of cmd1 | xargs cmd2 over cmd2 `cmd1` is that the latter fails alto-
gether when cmd1 generates more arguments than the OS can deliver to cmd2.
198 CHAPTER 6 PERL AS A (BETTER) find COMMAND

cutting and pasting its output into delete commands in a cmd.exe window? Fortu-
nately, after installing Perl (and therefore find2perl), such people can use find
commands like those shown previously.

The procedure is as follows. The find2perl command is run with options
appropriate for the real Unix find command,23 with its output redirected to a file.
That file then contains a custom-crafted Perl script that implements the functionality
of the particular find command that the options specified. Then, the script is exe-
cuted (perhaps after being shipped to a different Perl-equipped system), and its results
are obtained.

Here’s a sample session, from a DOS-like session on a Windows box:24

C:\> find2perl . -name "*.jpg" -atime -1 -print > find_script

C:\> perl find_script
./images/dalailama.jpg
./images/spongebob.jpg
./images/slowhand.jpg

That’s just about all there is to using find-like commands on non-Unix systems,
except for taking care to comply with local filename conventions.

For example, the following command on a Unix system creates a script that lists
all the filenames of the indicated directories:

$ find2perl /tmp /local/tmp -print > find_script

But a comparable script destined for a Windows system may have to specify drive
key-letters:

$ find2perl C:/tmp D:/tmp -print > find_script.4win

Fortunately for those with Unix habits, using slashes (rather than backslashes) in Win-
dows pathnames will work, because Perl automatically handles such OS-specific con-
versions for you anywhere filenames are expected (see http://TeachMePerl.com/
Perl_on_non-Unix_systems.html for additional details).

By the way, the find2perl approach to script-generation works on Unix systems
too, and there are cases where it’s useful to run find2perl rather than the real find
on Unix. One such situation is described next.

6.7.2 Helping non-Unix friends with find2perl

Do you know someone who could benefit from the power of the Unix find com-
mand but doesn’t have it on his system, and wouldn’t know how to use it even if he
did? If so, and Perl is installed on his computer, you can generate an appropriate script

23 At the time of this writing, find2perl translates the popular –ls option into code that won’t run on
most non-Unix OSs, but perhaps this will be fixed by the time you read this.

24 To eliminate the need to type that leading perl command, Windows systems are typically modified
so that files with the .pl or .plx extension are automatically interpreted by Perl.
A UNIX-LIKE, OS-PORTABLE find COMMAND 199

on your system using find2perl and email it to your friend for him to use. And you
won’t even need to be on a Unix system when you do that! All you need is a Perl envi-
ronment, an understanding of find’s syntax, and (for certain find commands) an
understanding of the pathname conventions on your friend’s system.

Figure 6.2 illustrates the concepts with a fictional interchange.25
It’s as simple as that! By using this technique of composing a custom file-finding

script and supplying it to a friend in need (or to yourself on a non-Unix platform),
anybody who has a working Perl installation can reap the benefits of the Unix find
command—without having access to it, or even knowing how to use it.

Are you wondering how well the Unix rm command, shown with the –exec
option in the figure, works on Windows? Perfectly, in fact, because find2perl
watches for the frequently used rm command and translates it into its native Perl
equivalent, unlink (see table 7.18). But other Unix commands aren’t automagically
transformed, so as a general rule, commands specified with –exec must be restricted
to those that will be present on the system that will run the script.

6.8 SUMMARY

The Unix find command is a valuable tool for finding files that have particular
attributes. But some attributes are more easily specified with Perl than with find,
such as whether a file is readable by the current process, or whether a file’s name

25 Unix people have the luxury of eschewing –exec in favor of the more economical xargs, but those
using other OSs will happily settle for find2perl’s offering of –exec.

Figure 6.2 PerlDude coming to rescue of WinDude with find2perl
200 CHAPTER 6 PERL AS A (BETTER) find COMMAND

matches a non-trivial pattern. What’s more, Perl uniquely offers tests for some espe-
cially useful attributes, such as the -T operator for identifying text files.

You can easily overcome many of these limitations of find with a little help from
Perl. A simple yet effective method is to use find | perl pipelines, where find is
used to generate an initial set of pathnames, and Perl to provide additional filtering
on specified attributes. In some cases, it’s sufficient to let the output of such a pipeline
flow to the screen; in others, the output is presented as the argument list for another
command, using Shell-level command substitution, or the xargs command—the
input-to-argument converter of Unix.

You saw how augmenting find’s capabilities with Perl can produce enhanced
grep-like scripts that can automatically disregard non-text files and process directory
arguments as requests for recursion into the file system, as users expect. You also saw
these techniques used to handle classic problems in Unix file-wrangling, such as the
proper treatment of multi-word filenames.

Savvy Unix users are wise to be fond of find’s sidekick—xargs—which is prized
for its ability to efficiently allocate arguments to processes. However, they shouldn’t
let their admiration for it blind them to its intrinsic limitations. As a case in point, the
use of xargs in sorting applications can lead to incorrect results, so you should use
dependable Perl scripts such as most_recent_file instead.

Finally, although there’s generally no Unix-like find command available on other
OSs, you can use the find2perl script that’s part of the standard Perl distribution
to create custom find-like scripts that will run on any Perl-equipped system. With
this technique, find-savvy individuals can create find-like scripts that can be used
by anyone who has access to Perl.

Directions for further study

You can learn more about the topics covered in this chapter from the following
resources:

• man find # describes the Unix find command

• man xargs # describes the Unix xargs command

• man perlfunc # describes –T, -r, etc.

• http://TeachMePerl.com/Perl_on_non-Unix_systems.html

Further details on additional topics introduced here are discussed in part 2:

• Section 7.2.3 describes Perl’s stat function.

• Section 8.5 describes command interpolation.

• The use of the module on which find2perl relies—File::Find—is dis-
cussed in section 12.3.4.
SUMMARY 201

2
P A R T
Minimal Perl: for
UNIX and Linux

Shell Programmers
Part 1 focused on ways in which simple Perl programs can provide superior alterna-
tives to standard Unix commands. Along the way, you learned the features of Perl that
are relevant to emulating or surpassing the functionality of grep, sed, awk, and
find. Although those features are an essential subset of Minimal Perl, there’s more
for you to discover.

In part 2, our focus will shift to rounding out your view of Perl. Accordingly,
you’ll learn to use additional language features that will let your programs solve a
wider variety of problems, and to do so with greater efficiency and OS portability.

The topics we’ll cover are diverse, including the following:

• Special programming techniques used in scripts

• The most essential built-in functions

• Storing and retrieving data using arrays and hashes

• Compartmentalizing program code for easier access and reuse

• Preventing name-clashes between variables

• Downloading, installing, using and creating Perl modules

We’ll also discuss how to go beyond the implicit loop by writing explicit ones, and
how to automate your menu-oriented programming with Perl’s new Shell-inspired
select loop—developed especially for this book!

Unlike part 1, part 2 assumes an understanding of basic Shell programming tech-
niques. If you lack this background you may still benefit from reading part 2, but you
should focus on the discussions of the Perl features themselves rather than the Shell-
to-Perl translation aids that accompany them.

C H A P T E R 7

Built-in functions

7.1 Understanding and managing

evaluation context 206
7.2 Programming with functions that

generate or process scalars 210
7.3 Programming with functions that

process lists 223

7.4 Globbing for filenames 234
7.5 Managing files with functions 239
7.6 Parenthesizing function

arguments 242
7.7 Summary 243
One of the properties of a programming language that makes it easy and gratifying to
use, or the opposite, is the collection of built-in functions it provides. Perl has literally
hundreds of these, including the relatively mundane ones called print, printf,
warn, and die that you encountered in part 1. But Perl has much more advanced
functions as well, such as one that provides the basic infrastructure for implementing
arbitrary data transformations,1 which can be a great productivity enhancer.

In contrast, the Unix shells have only a few built-in commands (cd, echo,
export, etc.), because they’re designed to obtain most of their services from Unix
utility programs (such as grep and sort).

Other things being equal, programs written in languages having rich sets of built-
in functions, such as Perl, run more quickly and are much more OS-independent than
those that rely on external utilities (as does the Shell). But as you learned in part 1,

1 The map function, covered later in this chapter.
205

other things are generally unequal in comparisons between Perl’s built-in resources
and Unix’s utilities—in particular, Perl’s facilities tend to be distinctly superior.2

This combination of characteristics gives Perl programs a significant advantage
over Shell programs—not only are Perl’s facilities better, but they’re also faster and
more OS-independent, due to their built-in status.

This chapter teaches you how to use Perl’s most important built-in functions so
you can parse text, convert data types, make random decisions, tell time, manage files,
and sort, filter, and transform data. With this background, you’ll be prepared to write
many kinds of useful programs, and to understand the roles these functions play in
the more complex scripts featured later in part 2.

Another thing you’ll learn—which may come as a shock, albeit a pleasant one—
is that some components of Perl programs are able to sense the “context” (scalar or
list) in which they’re used, and modify their behavior appropriately.

In keeping with this scalar/list distinction, which is deeply ingrained in Perl,
we’ll cover functions oriented toward scalar data and list data separately. Later, we’ll
discuss the use of file-management functions, which come in both scalar and list-
oriented varieties.

Before delving into these topics, we first need to discuss Perl’s unusual context-
sensing feature, which is called evaluation context.

7.1 UNDERSTANDING AND MANAGING
EVALUATION CONTEXT

Perl was developed by a linguist, who strongly feels that it’s the role of computer-
language designers to make things easy for programmers—rather than the role of
programmers to endure whatever makes things easiest for language designers (the
guiding principle behind certain historical languages!).

One way that Perl provides the all important property of DWIMity (“doing what
I mean”) is through its recognition of evaluation context. This means that the way an
expression is used can signify whether it should be evaluated in scalar context or list
context, with its results being adjusted accordingly.

Consider this assignment statement, which will be familiar from earlier chapters:

$num_fields=@F; # NOTE: @F contains three fields

This is a request for a scalar variable to be loaded with a value derived from an array,
which in this case contains three elements of the “field” type (see section 5.3). How-
ever, because a scalar can store only a single item, Perl must characterize the contents

2 Some Perl facilities that are superior to their Unix counterparts: the matching operator vs. the grep
command, the substitution operator vs. the sed command, and some file operators vs. options of the
find command.
206 CHAPTER 7 BUILT-IN FUNCTIONS

of the array as a single value. Its policy is to use the array’s number of elements in such
cases, resulting in the number 3 being assigned to $num_fields.

But what about this assignment statement,

 @all_fields=@F;

or this one?

 ($f1, $f2)=@F;

Although these examples have the same right-hand side (@F) as the earlier one that
initialized $num_fields, in these cases Perl represents @F as a list of its component
elements rather than the number of its elements. This results in the @all_fields
array becoming an exact copy of @F, and $f1 and $f2 being assigned the first two ele-
ments of @F.

Have you surmised how Perl knows what the programmer wants in these exam-
ples, so it can treat @F appropriately in the different cases?

Unlike you, Perl can’t look for clues in the names of the target variables of the
assignment, so there must be some other indicator. All it does is check what’s on
the left-hand side of the assignment! If it’s a scalar variable, the scalar representa-
tion of @F (its element count) is used. If it’s an array variable3 or a parenthesized
list of variables, the list representation is used.

This means that you control evaluation context by the way you write your pro-
gram, as discussed next.

7.1.1 Determinants and effects of evaluation context

Evaluation context is important! And you, the programmer, are responsible for speci-
fying the context you want for a particular expression. For these reasons, it’s vital for
you to understand what effects various contexts have, and how they can be requested.
This information is provided next, along with illustrative examples.

List context can be requested by

• assigning to a list variable:
 @all_fields=@F;

• assigning to variables within a parenthesized list:
 ($first, @rest)=@F;

• placing an expression in a function’s argument list:
 print @F; # prints the array's elements

Effects of list context:

• Allows a list of values to be treated as a list of values

• Causes some functions to return a list rather than a scalar

3 Or a hash variable, as discussed in section 9.2.
UNDERSTANDING AND MANAGING EVALUATION CONTEXT 207

2

• Has no effect on a scalar value, such as 'Fred':
 @names='Fred'; # assigns Fred, list context

 $names='Fred'; # assigns Fred, scalar context

Scalar context can be requested by

• typing scalar before an expression:
 print scalar @F; # prints the number of elements

• assigning to a scalar variable:
 $num_fields=@F;

• using an expression with an operator that provides a scalar context:
 @ARGV or warn "No arguments!\n";

 @ARGV > 1 and warn "Too many arguments\n";

• using an expression to subscript a variable (i.e., using an index):4
 $F[@F]='New last value';

Effects of scalar context:

• Causes a list to be converted to its scalar representation

• Causes some functions to return a scalar rather than a list

• Has no effect on a scalar value

Perl programmers have some special tools for working with evaluation contexts, as
you’ll see next.

7.1.2 Making use of evaluation context

It’s important to understand how to override the list context that otherwise applies in
cases like print @array_name, which is accomplished by placing scalar before
the list variable. Doing so imposes a scalar context on the argument, causing it to be
converted to its scalar form:5

print scalar @array_name; # print the number of arguments

Although the element count is Perl’s standard way of representing a list in scalar con-
text, it’s not the only possible representation. For example, the built-in localtime
function (covered later in this chapter) returns a list of numbers in list context, but a
string that looks like the output of the date command in scalar context.

Moreover, as you’ll see in chapter 11, programmers have the ability to define any
type of list-to-scalar conversion (or vice versa) that they please. For example, a user-

4 Assuming the array @F initially had two values, stored under the indices of 0 and 1, the subscripting
expression would cause the string to be associated with the index of 2 (@F’s value), which was initially
beyond the end of the array but becomes its new end.

5 This works because functions in a series are processed from right to left, causing the scalar conversion
of @array_name to be processed first, leaving its (scalar) result to be (un)affected by the list context
provided by print.
08 CHAPTER 7 BUILT-IN FUNCTIONS

defined function called april_precip might return the precipitation recorded for
each day as a list of 30 numbers—when called in list context. But in scalar context, it
could return a number indicating the total precipitation for the month—or even a
PDF file containing a discussion of how this April’s rainfall compared with last year’s,
illustrated with daily precipitation graphs.

We’ll look at Perl’s most fundamental facilities for converting scalars to lists, and
vice versa, next.

Converting data types

Table 7.1 lists two Perl facilities for converting scalars to lists and three for converting
lists to scalars.

As a counterpart to the scalar function, you might expect there to be a function
called list for converting a scalar to a list. There is such a function, but as the table
shows, it’s called split, because it “splits” an arbitrary string into a list of its consti-
tuent elements. We’ll cover it in detail in section 7.2.1.

As demonstrated in section 5.3.1, option clusters incorporating the n or p
option—along with the a option—provide convenient ways of doing scalar-to-list
conversion for records processed by Perl’s implicit input-reading loop. For list-to-
scalar conversion, double quotes can be used to join array elements with spaces (or
whatever else is in ‘$"’; see table 2.8) and form the result into a string, as illustrated
by this code fragment:

"@ARGV" # means "arg1 arg2 arg3"

In this statement, the left-hand side calls for a scalar value, but because a quoted string
is already a scalar, no conversion is needed:

$args="@ARGV"; # assign space-separated arguments to $args

That’s a lot different from the following case, whose right-hand side is of the list type
and therefore needs to be converted to a scalar prior to the assignment:

$num_args=@ARGV; # assigns number of elements to variable

The following example may look a lot different from the one that assigned to $args,
but it receives similar treatment:

print "@ARGV"; # prints space-separated arguments

Table 7.1 Tools for data-type conversion

Scalar to list List to scalar

The split function
The –wnla and –wpla option clusters

The scalar function
Double quotes
The join function
UNDERSTANDING AND MANAGING EVALUATION CONTEXT 209

The double quotes around the argument are processed first, forming a string from the
space-separated list elements; then, the list context provided by the function is applied
to that result. But a quoted string is a scalar, and list context doesn’t affect scalars, so
the existing string is left unmodified as print’s argument.

The join function listed in table 7.1 provides the same service as the combination
of ‘$"’ and double quotes and is provided as a convenience for those who prefer to
pass arguments to a function rather than to set a variable and double quote a string.
We’ll discuss this function later in this chapter.

Now you understand the basic principles of evaluation context and the tools
used for converting data types. With this background in mind, we’ll examine some
important Perl functions that deal with scalar data next, such as split. Then, in
section 7.3 we’ll discuss functions that deal with list data, such as join.

7.2 PROGRAMMING WITH FUNCTIONS THAT
GENERATE OR PROCESS SCALARS

Table 7.2 describes some especially useful built-in functions that generate or process
scalar values, which weren’t already discussed in part 1.

Table 7.2 Useful Perl functions for scalars, and their nearest relatives in Unix

Perl built-in

function
Unix relative(s) Purpose Effects

split The cut command;
AWK’s split function;
the Shell’s IFS variable

Converting
scalars to lists

Takes a string and optionally a set of
delimiters, and extracts and returns
the delimited substrings.The default
delimiter is any sequence of whitespace
characters.

localtime The date command Accessing
current date
and time

Returns a string that resembles the
output of the Unix date command.

stat

lstat

The ls –lL command

The ls -l command

Accessing file
information

Provides information about the file
referred to by stat’s argument, or the
symbolic link presented as lstat’s
argument.

chomp N/A Removing
newlines in
data

Removes trailing input record
separators from strings, using newline
as the default. (With Unix utilities and
Shell built-in commands, newlines are
always removed automatically.)

rand The Shell’s RANDOM
variable; AWK’s rand
function

Generating
random
numbers

Generates random numbers that can be
used for decision-making in simulations,
games, etc.
210 CHAPTER 7 BUILT-IN FUNCTIONS

The counterparts to those functions found in Unix or the Shell are also indicated in
the table. These provide related services, but in ways that are generally not as conve-
nient or useful as their Perl alternatives.6

For example, although split looks at A<TAB><TAB>B as you do, seeing the
fields A and B, the Unix cut command sees three fields there by default—including
an imaginary empty one between the tabs! As you might guess, this discrepancy has
caused many people to have difficulty using cut properly. As another example, the
default behavior of Perl’s split is to return a list of whitespace-separated words, but
obtaining that result by manipulating the Shell’s IFS variable requires advanced
skills—and courage.7

We’ll now turn to detailed consideration of each of the functions listed in table 7.2
and demonstrate how they can be effectively used in typical applications.

7.2.1 Using split

split is typically used to extract a list of fields from a string, using the coding tech-
niques shown in table 7.3.

split’s optional first argument is a matching operator whose regex specifies the
delimiter(s) to be used in extracting fields from the string. The optional second argu-
ment overrides the default of $_ by specifying a different string to be split.

6 Perl has the advantage of being a modern descendant of the ancient Unix tradition, so Larry was able
to address and correct many of its deficiencies while creating Perl.

7 Why courage? Because if the programmer neglects to reinstate the IFS variable’s original contents after
modifying it, a mild-mannered Shell script can easily mutate into its evil twin from another dimension
and wreak all kinds of havoc.

Table 7.3 The split function

Typical invocation formats
a

 @fields=split;
 @fields=split /RE/;
 @fields=split /RE/, string;

Example Explanation

@fields=split; Splits $_ into whitespace-delimited “words,” and
assigns the resulting list to @fields (as do the
examples that follow).

@fields=split /,/; Splits $_ using individual commas as delimiters.

@fields=split /\s+/, $line; Splits $line using whitespace sequences as delimiters.

@fields=split /[^\040\t_]+/,
 $line;

Splits $line using sequences of one or more non-
“space, tab, or underscore characters” as delimiters.

a. Matching modifiers (e.g., i for case insensitivity) can be appended after the closing delimiter of the matching
operator, and a custom regex delimiter can be specified after m (e.g., split m:/:;).
PROGRAMMING WITH FUNCTIONS THAT GENERATE OR PROCESS SCALARS 211

In the simplest case, shown in the table’s first invocation format, split can be
invoked without any arguments to split $_ using whitespace delimiters. However,
when input records need to be split into fields, it’s more convenient to use the n
and a invocation options to automatically load fields into @F, as discussed in part 1.
For this reason, split is primarily used in Minimal Perl for secondary splitting. For
instance, input lines could first be split into fields using whitespace delimiters via
the -wnla standard option cluster, and then one of those fields could be split fur-
ther using another delimiter to extract its subfields.

Here’s a demonstration of a script that uses this technique to show the time in a
custom format:

$ mytime # reformats date-style output

The time is 7:32 PM.

$ cat mytime

#! /bin/sh

Sample output from date: Thu Apr 6 16:12:05 PST 2006

Index numbers for @F: 0 1 2 3 4 5

date |

 perl -wnla -e '$hms=$F[3]; # copy time field into named variable

 ($hour, $minute)=split /:/, $hms; # no $seconds

 $am_pm='AM';

 $hour > 12 and $am_pm='PM' and $hour=$hour-12;

 print "The time is $hour:$minute $am_pm.";

 '

mytime is implemented as a Shell script, to simplify the delivery of date’s output
as input to the Perl command.8 Perl’s automatic field splitting option is used (via
–wnla) to load date’s output into the elements of @F, and then the array element9

containing the hour:minutes:seconds field ($F[3]) is copied into the $hms vari-
able (for readability). $hms is then split on the “:” delimiter, and its hour and
minute fields are assigned to variables. What about the seconds? The programmer
didn’t consider them to be of interest, so despite the fact that split returns a
three-element list here, the third subfield’s value isn’t used in the program. Next,
the script adds an AM/PM field, and prints the reworked date output in the cus-
tom format.

In addition to splitting-out subfields from time fields, you can use split in many
other applications. For example, you could carve up IP addresses into their individual

8 An alternative technique based on command interpolation (like the Shell's command substitution) is
shown in section 8.5.

9 The expression $F[3] uses array indexing (introduced in table 5.9) to access the fourth field. The
named-variable approach could be used instead, with some additional typing:
(undef, undef, undef, $hms)=@F;
212 CHAPTER 7 BUILT-IN FUNCTIONS

numeric components using “.” as the delimiter, but remember that you need to back-
slash that character to make it literal:

@IPa_parts=split /\./, $IPa; # 216.239.57.99 --> 216, 239, 57, 99

You can also use split to extract schemes (such as http) and domains from URLs,
using “://” as the delimiter:

$URL='http://a.b.org';

($scheme, $domain)=split m|://|, $URL; # 'http', 'a.b.org'

Notice the use of the m syntax of the matching operator to specify a non-slash delim-
iter, to avoid conflicts with the slashes in the regex field.

Tips on using split

One common mistake with split is forgetting the proper order of the arguments:

@words=split $data, /:/; # string, RE: WRONG!

@words=split /:/, $data; # RE, string: Right!

Another typical mistake is the incorrect specification of split’s field delimiters, usu-
ally by accidentally describing a particular sequence of delimiters rather than any
sequence of them.

For example, this invocation of split says that each occurrence of the indicated
character sequence is a single delimiter:

$_='Hoboken::NJ,:Exit 14c';

@fields=split /,:/, $data; # Extracts two fields

The result is that “Hoboken::NJ” and “Exit 14c” are assigned to the array.
This alternative says that any sequence of one or more of the specified characters

counts as a single delimiter, which results in “NJ” being extracted as a separate field:

$_='Hoboken::NJ,:Exit 14c';

@fields=split /[,:]+/, $data; # Extracts three fields

This second type of delimiter specification is more commonly used than the first
kind, but of course what’s correct in a specific case depends on the format of the data
being examined.

Although split is a valuable tool, it’s not indispensable. That’s because its func-
tionality can generally be duplicated through use of a matching operator in list con-
text, which can also extract substrings from a string. But there’s an important
difference—with split, you define the data delimiters in the regex, whereas with a
matching operator, you define the delimited data there.

How do you decide whether to use split or the matching operator when parsing
fields? It’s simple—split is preferred for cases where it’s easier to describe the delim-
iters than to describe the delimited data, whereas a matching operator using capturing
parentheses (see table 3.8) is preferred for the cases where it’s easier to describe the data
than the delimiters..
PROGRAMMING WITH FUNCTIONS THAT GENERATE OR PROCESS SCALARS 213

Remember the mytime script? Did its design as a Shell script rather than a Perl
script, and its use of date to deliver the current time to a Perl command, surprise
you? If so, you’ll be happy to hear that Perl doesn’t really need the date command
to tell it what time it is; Perl’s own localtime function, which we’ll cover next, pro-
vides that service.

7.2.2 Using localtime

You can use Perl’s localtime function to obtain time and date information in an
OS-independent manner, using invocation formats shown in table 7.4. As indicated,
localtime provides different types of output according to its context.

Here is a command that’s adapted from the first example of the table. It produces
a date-like time report by forcing a scalar context for localtime, which would
otherwise be in the list context provided by print:

$ perl -wl -e 'print scalar localtime;'

Tue Feb 14 19:32:03 2006

Another way to use localtime is shown in the example in the table’s third row,
which involves capturing and interpreting a set of time-related numbers. But in

Table 7.4 The localtime function

Typical invocation formats

 $time_string=localtime;
 $time_string=localtime timestamp;
 @time_component_numbers=localtime;
 $time_component_number=(localtime)[index];

Example Explanation

$time=localtime;
print $time;
Or
print scalar localtime;

In scalar context, localtime returns the current
date and time in a format similar to that of the
date command (but without the timezone field).

print scalar localtime
 ((stat filename)[9]);

localtime can be used to convert a numeric
timestamp, as returned by stat, into a string
formatted like date’s output. The example shows
the time when filename was last modified.

($sec, $min, $hour, $dayofmonth,
 $month, $year, $dayofweek,
 $dayofyear, $isdst)=localtime;

In list context, localtime returns nine values
representing the current time. Most of the date-
related values are 0-based, so $dayofweek, for
example, ranges from 0–6. But $year counts from
1900, representing the year 2000 as 100.

$dayofyear=(localtime)[7] + 1;
print "Day of year: $dayofyear";

As with any list-returning function, the call to
localtime can be parenthesized and then
subscripted as if it were an array. Because the
dayofyear field is 0-based, it needs to be
incremented by 1 for human consumption.
214 CHAPTER 7 BUILT-IN FUNCTIONS

simple cases, you can parenthesize the call to localtime and index into it as if it
were an array, as in the “day of year” example of the table’s last row.

Here’s a rewrite of the mytime script shown earlier, which converts it to use
localtime instead of date:

$ cat mytime2

#! /usr/bin/perl -wl

(undef, $minutes, $hour)=localtime; # we don't care about seconds

$am_pm='AM';

$hour > 12 and $am_pm='PM' and $hour=$hour-12;

print "The time is $hour:$minutes $am_pm.";

$ mytime2

The time is 7:42 PM.

This new version is both more efficient and more OS-portable than the original,
which makes it twice as good!

Tips on using localtime

Here’s an especially productivity-enhancing tip. When you need to load localtime’s
output into that set of nine variables shown in table 7.4’s third row, don’t try to type
them in. Instead, run perldoc –f localtime in one window, and cut and paste the
following paragraph from that screen into your program’s window:

0 1 2 3 4 5 6 7 8

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

 localtime(time);

Then, edit that assignment as needed by replacing some variables with undef, remov-
ing localtime’s argument, etc.

You’ll see examples featuring stat next, like the one shown in the second row
of table 7.4.

7.2.3 Using stat

One of the most frequently used Unix commands is the humble but absolutely indis-
pensable ls -l. It provides access to the wealth of data stored in a file’s inode, which
holds everything Unix knows about a file.10

Perl provides access to that per-file data repository using the function called stat
(for “file status”), which takes its name from a related UNIX resource. Table 7.5 sum-
marizes the syntax of stat and shows some typical uses.

10 Well, almost everything; the file’s name resides in its directory.
PROGRAMMING WITH FUNCTIONS THAT GENERATE OR PROCESS SCALARS 215

stat is most commonly used for simple tasks like those shown in the table’s
examples, such as determining the UID or inode number of a file. You’ll see a more
interesting example next.

Emulating the Shell’s –nt operator

Let’s see how you can use Perl to duplicate the functionality of the Korn and Bash
shells’ -nt (newer-than) operator, which is heavily used—and greatly appreciated—by
Unix file-wranglers. Here’s a Shell command that tests whether the file on the left of
–nt is newer than the file on its right:

[[$file1 -nt $file2]] &&

 echo "$file1 was more recently modified than $file2"

The Perl equivalent is easily written using stat:

(stat $file1)[9] > (stat $file2)[9] and

 print "$file1 was more recently modified than $file2";

The numeric comparison (>) is appropriate because the values in the atime (for
access), mtime (for modification), and ctime (for change) fields are just big integer
numbers, ticking off elapsed seconds from a reference point in the distant past.
Accordingly, the difference between two mtime values reveals the difference in their
files’ modification times, to the second.

Unlike the functions seen thus far, there are many ways stat can fail—for
example, the existing file /a/b could be mistyped as the non-existent /a/d, or the
program’s user could be denied the permissions needed on /a to run stat on its
files. For this reason, it’s a good idea to call stat in a separate statement for each

Table 7.5 The stat function

Typical invocation formats

 ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev, $size,
 $atime, $mtime, $ctime, $blksize, $blocks)=stat filename;

 $extracted_element=(stat)[index];

Example Explanation

(undef, undef, undef, undef, $uid)=
 stat '/etc/passwd';
print "passwd is owned by UID: $uid\n";

The file’s numeric user ID is returned as
the fifth element of stat’s list, so after
initializing the named variables as
shown, it’s available in $uid.

print "File $f's inode is: ",
 (stat $f)[1];

The call to stat can be parenthesized and
indexed as if it were an array. The example
accesses the second element (labeled
$ino in the format shown above), which
is the file’s inode number.
216 CHAPTER 7 BUILT-IN FUNCTIONS

file, so you can print file-specific OS error messages (from “$!”; see appendix A) if
there’s a problem.

Following this advice, we can upgrade the code that emulates the Shell’s –nt oper-
ator to this more robust form:

$mtime1=(stat $file1)[9] or die "$0: stat of $file1 failed; $!";

$mtime2=(stat $file2)[9] or die "$0: stat of $file2 failed; $!";

$mtime1 > $mtime2 and

 print "$file1 was more recently modified than $file2";

The benefit of this new version is that it can issue separate, detailed messages for a
failed stat on either file, like this one issued by the nt_tester script:11

nt_tester: stat of /a/d failed; No such file or directory

stat can also help in the emulation of certain Unix commands, as you’ll see next.

Emulating ls with the listfile script

We’ll now consider a script called listfile, which shows how stat can be used to
generate simple reports on files like those produced by ls –l. First, let’s compare their
results:

$ ls –l rygel

-rwxr-xr-x 1 yumpy users 415 2006-05-14 19:32 rygel

$ listfile rygell

-rwxr-xr-x 1 yumpy users 415 Sun May 14 19:32:05 2006 rygel

The format of listfile’s time string doesn’t match that of ls. However, it’s an
arguably more user-friendly format, and it’s much easier to generate this way, so the
programmer deemed the difference an enhancement rather than a bug.

Listing 7.1 shows the script, with the most significant elements highlighted.
Line 6 loads the CPAN module that provides the format_mode function used on

Line 17.

 1 #! /usr/bin/perl -wl

 2

 3 # load CPAN module whose "format_mode" function converts

 4 # octal-mode --> "-rw-r--r--" format

 5

 6 use Stat::lsMode;

 7

11 In contrast, the original version would report that $file1 was more recently modified than $file2
even if the latter didn't exist, because the “undefined” value (see section 8.1.1) that stat would return
is treated as a 0 in numeric context.

Listing 7.1 The listfile script
PROGRAMMING WITH FUNCTIONS THAT GENERATE OR PROCESS SCALARS 217

 8 @ARGV == 1 or die "Usage: $0 filename\n";

 9 $filename=shift;

 10

 11 (undef, undef, $mode, $nlink, $uid, $gid,

 12 undef, $size, undef, $mtime)=stat $filename;

 13

 14 $time=localtime $mtime; # convert seconds to time string

 15 $uid_name=getpwuid $uid; # convert UID-number to string

 16 $gid_name=getgrgid $gid; # convert GID-number to string

 17 $rwx=format_mode $mode; # convert octal mode to rwx format

 18

 19 printf "%s %4d %3s %9s %12d %s %s\n",

 20 $rwx, $nlink, $uid_name, $gid_name, $size, $time, $filename;

Line 12 assigns stat’s output to a list consisting of variables and undef placeholders
that ends with $mtime, the rightmost element of interest from the complete set of 13
elements. This sets up the six variables needed in Lines 14–20.

On Line 14, the $mtime argument to localtime gets converted into a date-
like time string (a related example is shown in row two of table 7.4.)

Lines 15 and 16, respectively, convert the UID and GID numbers provided by
stat into their corresponding user and group names, using special Perl built-in func-
tions (see man perlfunc). The functions are called getpwuid, and getgrgid
because they get the user or group name by looking up the record having the supplied
numeric UID or GID in the Unix password file (“pw”) or group file (“gr”).12

Line 17 converts the octal $mode value to an ls-style permissions string, using the
imported format_mode function.

The printf function is used to format all the output, because it allows a data type
and field width—such as “%9s”, which means display a string in nine columns—to
be specified for each of its arguments.

As mentioned earlier, the way localtime formats the time-string is different
from the format produced by the Linux ls command, so some Unix users might
prefer to use the real ls. On the other hand, listfile provides a good starting
point for those using other OSs who wish to develop an ls-like command.13

Tips on using stat

For over three decades, untold legions of Shell programmers have—according to local
custom—groused , whinged , and/or kvetched about the need to repeatedly respecify the
filename in statements like these:

12 As usual, it’s no coincidence that these Perl functions have the same names as their Unix counterparts,
which are C-language library functions.

13 The first enhancement might be to use the looping techniques demonstrated in chapter 10 to upgrade
listfile to listfiles.
218 CHAPTER 7 BUILT-IN FUNCTIONS

 [-f "$file" -a -r "$file" -a -s "$file"] || exit 42;

[[-f $file && -r $file && -s $file]] || exit 42;

To give those who’ve migrated to Perlistan some much-deserved comfort and succor,
Perl supports the use of the underscore character as a shorthand reference to the last
filename used with stat or a file-test operator (within a particular code block).

Accordingly, the Perl counterpart to the previous Shell command—which tests that
a file is regular, readable, and has a size greater than 0 bytes—can be written like so:

-f $file and -r _ and -s _ or exit 42;

Here’s an example of economizing on typing by using the underscore with the
stat function:

(stat $filename)[5] == (stat _)[7] and

 warn "File's GID equals its size; could this mean something?";

To get the size of a file, it’s easier to use –s $file (see table 6.2) than the equivalent
stat invocation, which is (stat $file)[7].

As a final tip, when you need to load stat’s output into those 13 time variables,
don’t try to type them in; run perldoc –t stat in one window, cut and paste the
following paragraph from that screen into your program’s window, and edit as needed:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,

 $atime,$mtime,$ctime,$blksize,$blocks)

 = stat($filename);

Next, we’ll look at the chomp function, which is used to strip trailing newlines from
input that’s read manually, rather than through the auspices of the implicit input-
reading loop.

7.2.4 Using chomp

In Minimal Perl, routine use of the l option, along with n or p, frees you from
worrying about trailing newlines fouling-up string comparisons involving input
lines. That’s because the l option provides automatic chomping—removal of trailing
newlines—on the records read by the implicit loop.14 For this reason, if you want
your program to terminate on encountering a line consisting of “DONE”, you can
conveniently code the equality test like this:

$_ eq 'DONE' and exit; # using option n or p, along with l

That’s easier to type and less error-prone than what you’d have to write if you weren’t
using the l option:

$_ eq "DONE\n" and exit; # using option n or p, without l

14 See table 7.6 for a more precise definition of what chomp does.
PROGRAMMING WITH FUNCTIONS THAT GENERATE OR PROCESS SCALARS 219

As useful as it is, the implicit loop isn’t the only input-reading mechanism you’ll ever
need. An alternative, typically employed for interacting with users, is to read input
directly from the standard input channel:

$size=<STDIN>; # let user type in her size

The angle brackets represent Perl’s input operator, and STDIN directs it to read input
from the standard input channel (typically connected to the user’s keyboard).

However, input read using this manual approach doesn’t get chomped by the l
option, so if you want chomping, it’s up to you to make it happen. As you may have
guessed, the function called chomp, summarized in table 7.6, manually removes trail-
ing newlines from strings.

The first example in the table shows the usual prompting, input collecting, and
chomping operations involved in preparing to work with a string obtained from a
user. After the string has been chomped, the programmer is free to do equality tests on
it and print its contents without worrying about a newline fouling things up.

As a case in point, the following statement’s output looks pretty nasty if $size
hasn’t been chomped, due to the inappropriate intrusion of $size’s trailing newline
within the printed string:

print "Please confirm: Your size is $size; right?"

Please confirm: Your size is 42

; right?"

The table’s second example shows that strings stored in multiple scalar variables and
even arrays can all be handled with one chomp. However, it’s important to realize that
chomp is an exception to the general rule that parentheses around argument lists are

Table 7.6 The chomp function

Typical invocation formats
a

 chomp $var;
 chomp @var;
 chomp ($var1, $var2, @var, ...);

Example Explanation

printf 'Enter your size: ';
$size=<STDIN>;
chomp $size;
now we can use $size without
fear of "newline interference"

An input line read as shown has a trailing
newline attached, which complicates string
comparisons; chomp removes it.

chomp ($flavor, $freshness, @lines); chomp can accept multiple variables as
arguments, if they’re surrounded by
parentheses.

a. The value returned by chomp indicates how many trailing occurrences of the input record separator
character(s), defined in $/ as an OS-specific newline by default, were found and removed.
220 CHAPTER 7 BUILT-IN FUNCTIONS

optional in Perl. Specifically, although parentheses may be omitted when chomp has a
single argument, they must be provided when it has multiple arguments.15

Tips on using chomp

Watch out for a warning of the following type, which may signify (among other
things) that you have violated the rule about parenthesizing multiple arguments
to chomp:

chomp $one, $two; # WRONG!

Useless use of a variable in void context at -e line 1.

In this case, the warning means that Perl understood that $one was intended as
chomp’s argument, but it didn’t know what to do with $two.

Here’s another common mistake, which looks reasonable enough but is neverthe-
less tragically wrong:

$line=chomp $line; # Store chomped string back in $line? WRONG!

This is also a bad idea:

print chomp $line; # WRONG!

That last example prints nothing other than a 1 or 0, neither of which is likely to be
very satisfying. The problem is that chomp doesn’t return the chomped argument
string that you might expect , but instead a numerical code (see table 7.6). In conse-
quence, chomp’s return value wouldn’t generally be printed, let alone used to overwrite
the storage for the freshly chomped string (as in the example that assigns to $line).

But surprises aren’t always undesirable. Having just discussed how to avoid them
with chomp, we’ll now shift our attention to a mathematical function that’s designed
especially to increase the unpredictability of your programs!

7.2.5 Using rand

The rand function, described in table 7.7, is commonly used in code testing, simula-
tions, and games to introduce an element of unpredictability into a program’s behavior.
The table’s first example loads a (pseudo-)random, positive, floating-point number,
less than 1, into $num. Let’s look at a sample result:

$ perl –wl –e '$num=rand; print $num;'
0.80377197265625

You generally won’t need this much precision in your random numbers, and integers
are easier to work with than floating-point numbers anyway, so rand allows you to
provide a scaling factor as an argument. Using this, you can get a bit closer to working
with integers:

$ perl –wl –e '$num=rand 10; print $num;' # Range: 0 <= $num < 10
4.93939208984375

15 See section 7.6 for more details on parenthesization.
PROGRAMMING WITH FUNCTIONS THAT GENERATE OR PROCESS SCALARS 221

If you modified this command to discard the decimal portion of each random num-
ber, it would print integers in the range 0 to 9 (inclusive). To shift them into the
range 1–10, you’d use the algorithm shown in the table’s second example. It works by
first truncating the decimal portion of each random number with the int function
and then incrementing its value by 1,16 thereby converting the obtained range from
0.x–9.x to 1–10.

As an example, the following code snippet has 1 chance in 100 of awarding a prize
each time it’s run:

int (rand 100) + 1 == 42 and # range is 1-100

 print 'You\'ve won $MILLIONS$!',

 ' But first, we need your bank account number: ';

The third example in table 7.7 takes advantage of Perl’s 0-based array subscripts, and
the facts that @ARGV in scalar context returns the argument count and the int func-
tion is automatically applied to subscripting expressions. The result is the random
selection of an element from the specified array,17 with very little coding.

In section 8.3, we’ll cover if/else, which can be controlled by rand to make
random decisions about what to do next in a program.

In the next section, we’ll shift our discussion to list-oriented functions and dem-
onstrate, among other things, how rand can be used with grep to do random filtering.

Table 7.7 The rand function

Typical invocation formats

 $random_tiny_number=rand;
 $random_larger_number=rand N;
 $random_element=$some_array[rand @some_array];

Example Explanation

$num=rand; Assigns a floating-point number N, in the range 0 <= N
< 1, to $num.

$num=int (rand 10) + 1; Assigns an integer number N in the range 1 <= N <= 10
to $num.

$element=$ARGV[rand @ARGV]; Assigns to $element a randomly selected element from
the indicated array. In this case, it’s a random argument
from the script’s argument list.

16 The parentheses around rand 10 prevent it from getting 11 (10 + 1) as its argument. See section 7.6
for more information on the proper use of parentheses.

17 You’ll see this technique used in a practical application in section 9.1.4.
222 CHAPTER 7 BUILT-IN FUNCTIONS

7.3 PROGRAMMING WITH FUNCTIONS
THAT PROCESS LISTS

Table 7.8 lists some of Perl’s most useful functions for list processing—which provide
reordering, joining, filtering, and transforming services, respectively, for lists. The
table also shows each function’s nearest relative in Unix or the Shell.

You shouldn’t read too much into the family relationships indicated in the table,
because the designated Unix relatives all work rather differently than their Perl coun-
terparts. For example, although the Unix egrep command reads files and displays
lines that match a pattern, Perl’s grep is a general-purpose filtering tool that doesn’t
necessarily read, match, or display anything! As you’ll soon see, Perl’s grep can indeed
be used to obtain egrep-like effects, but it’s capable of much more than its Unix rela-
tive—as are the other functions listed in table 7.8.

Next, we’ll discuss the similarities and differences in how data flows between com-
mands and functions.

7.3.1 Comparing Unix pipelines and Perl functions

Although there are distinct similarities between Unix command pipelines and Perl
functions, we need to discuss one glaring difference to avoid confusion. Specifically,
data flow in pipelines is from left to right, but it’s in the opposite direction with Perl
functions, as illustrated in table 7.9.

You’ll learn how Perl’s sort and grep functions work soon, but for now, all you
need to know is that the Perl examples in the table do the same kinds of processing
as their Unix counterparts. Note in particular that with Perl, a data stream is passed
from one function to another just by putting their names in a series (e.g., sort grep

Table 7.8 Useful Perl functions for lists, and their nearest relatives in Unix

Built-in Perl

function
Unix relative(s) Purpose Effects

sort The Unix sort command List sorting Takes a list, and returns a
sorted list.

reverse Linux’s tac command List reversal Reverses the order of items in a
list. Primarily used with sort.

join The Unix printf
command; AWK’s
sprintf function

List-to-scalar
conversion

Returns a scalar containing all the
elements of a list, joined by a
specified string.

grep The Unix egrep
a

command
List filtration Returns selected elements from

a list.

map The Unix sed command List transformation Returns modified versions of
elements from a list.

a. It’s like grep, too, but egrep’s regex dialect is more akin to Perl’s.
PROGRAMMING WITH FUNCTIONS THAT PROCESS LISTS 223

in table 7.9); there’s no need for an explicit connector of any kind, equivalent to the
Shell’s “|” symbol.

With that background in mind, we’ll now examine the functions of table 7.8 one
at a time.

7.3.2 Using sort

The sort function, described in table 7.10, does what its name implies to the ele-
ments of a list.

As shown in the table’s first set of examples, all it takes is a few characters of coding
to convert an array’s elements into ascending alphanumeric order. The second exam-

Table 7.9 Data flow in Unix pipelines vs. Perl functions

Unix pipeline Perl function

Input J command(s) J Output Output  function(s)  Input

 Examples

ls | grep 'X' > X_files @X_files= grep { /X/ } @fnames;

ls | grep 'X' | sort > X_files.s @X_files_s=sort grep { /X/ } @fnames;

Table 7.10 The sort function

Typical invocation formats
a

sort LIST
reverse sort LIST
sort { CODE-BLOCK } LIST
reverse sort { CODE-BLOCK } LIST

Example Explanation

@A=sort @A; # A-Z order

Explicit version of above
@A=sort { $a cmp $b } @A;

Reversal of above; Z-A order
@A=reverse sort @A;

The first example rearranges the elements
of @A into alphanumeric order. The second
shows the explicit way of requesting the same
result by stating the default sorting rule,
which uses the cmp string-comparison
operator. reverse rearranges list elements
from ascending order to descending order,
and vice versa.

@B=sort { $a <=> $b } @B;

@B=reverse sort { $a <=> $b } @B;

Modifies array @B to have elements
reordered according to numeric sorting
rules using the numeric comparison
operator. reverse reorders the list into
descending order.

$,="\n";
print sort @C;

Displays elements of @C in alphanumerically
sorted order, one per line.

a. In the common case where CODE-BLOCK consists of a single statement, it’s customary to omit the trailing
semicolon.
224 CHAPTER 7 BUILT-IN FUNCTIONS

ple shows explicitly the CODE-BLOCK that the first example uses by default, which
defines the sorting rule that’s used. To understand what that CODE-BLOCK does, and
how to write your own custom code blocks, you have to know how sorting rules are
processed.

Here’s how it works. For each pairwise comparison of elements in LIST, sort

• loads one element into $a and the other into $b;

• evaluates the CODE-BLOCK, and if the result is

– < 0, it places $a’s element before $b’s;

– 0, it considers the elements to be tied;

– > 0, it places $a’s element after $b’s.

Perl’s string (cmp) and numeric (<=>) comparison operators18 return -1, 0, or 1 to indi-
cate that the value on the left (such as $a) is respectively less than, equal to, or greater
than the one on the right ($b). Because these are exactly the values that a sort CODE-
BLOCK must provide, these operators are frequently used in sorting rules.

To convert lists in ascending order to descending order and vice versa, you can use
the reverse function after sorting, as shown in the third example of table 7.10.

The table’s second set of examples shows comparisons based on the numeric form
of the comparison operator, <=>, which is used for sorting numbers. As a practical
example of numeric sorting, the intra_line_sort script uses split and sort to
reorder and print input lines containing a series of numbers:

$ cat integers

111 10 19 88 43 55 81 23 04 40 12 2 1

2 1 10 91 88 43 55 18 23 40 17 21 000

$ intra_line_sort integers

1 2 04 10 12 19 23 40 43 55 81 88 111

000 1 2 10 17 18 21 23 40 43 55 88 91

The effect of the sorting is easier to see when the script’s -debug switch is used:
$ intra_line_sort -debug integers

111 10 19 88 43 55 81 23 04 40 12 2 1 <- Original

1 2 04 10 12 19 23 40 43 55 81 88 111 <- Sorted

2 1 10 91 88 43 55 18 23 40 17 21 000 <- Original

000 1 2 10 17 18 21 23 40 43 55 88 91 <- Sorted

Listing 7.2 shows the script.19

18 Introduced in table 5.11.
19 When the execution of two or more statements must depend on a single condition, the if construct,

covered in section 8.3, is preferred to repeated independent uses of the logical and (as shown).
PROGRAMMING WITH FUNCTIONS THAT PROCESS LISTS 225

#! /usr/bin/perl -s -wn

our ($debug); # make switch optional

$debug and chomp; # so "<-" appears on same line as $_

$debug and print "$_ <- Original\n";

$,=' '; # separate printed words by a space

split lines of numbers on whitespace, and sort them

print sort { $a <=> $b } split; # numeric sort

$debug and print " <- Sorted\n";

print "\n"; # separate records in output

Do you notice anything unusual about the shebang line of this script? It’s one of only
a handful in this book that doesn’t include the l option for automatic line-end pro-
cessing. That’s because it needs to print the sorted list of numbers without a newline
being appended, so that the “<- Sorted” string can appear on the same line.20

You have complete control over how Perl sorts your data, allowing special effects,
as you’ll see next.

Sorting randomly

Just so you don’t get the idea that either cmp or <=> must always be used in sorting
rules, here’s an example that uses rand to reorder the letters of the alphabet:

$ perl –wl –e ' $,=" "; # set list-element separator to space

> print sort { int((rand 2)+.5)-1 } "a".."z"; '

b g e a c p d f o h i k j l q n s r m t w u y z x v

The two dots between “a” and “z” are the range operator we used in chapter 5, for
matching pattern ranges. But here we’re using its list-context capability of generating
intermediate values between two endpoints to avoid the work of typing all 26 letters
of the alphabet. It works for integer values too, in expressions such as 1..42 (consult
man perlop).

To arrange for the sorting rule to yield the sort-compliant values of -1, 0, and 1,
rand’s result in the range 0 to <1 is first scaled up by a factor of two, yielding a num-
ber in the range 0 to <2. Then that value is incremented by .5, shifting the range to

Listing 7.2 The intra_line_sort script

20 We can’t use printf rather than print to avoid the l option’s automatic newline, because that only
works when there's a single argument to be printed (see section 2.1.6). For this reason, the script omits
the l option and does its own newline management.
226 CHAPTER 7 BUILT-IN FUNCTIONS

0.5 to <2.5, in preparation for the truncation of decimal places by int. The resulting
value of 0, 1, or 2 is then decremented by 1, to yield -1, 0, or 1 as the result.21

Tips on using sort

A commonly needed variation on alphanumeric sorting is case insensitive sorting,
which you obtain by converting both the $a and $b values to the same case before
comparing them with cmp. Here’s a sorting rule of this type, which is adapted from
the first example of table 7.10 by converting $a to "\L$a" and $b to "\L$b":

@A=sort { "\L$a" cmp "\L$b" } @A; # case-insensitive sorting

In cases like these where everything in the double-quoted string is to be case-con-
verted, \L (for lowercase conversion, see table 4.5) can be used without its \E termi-
nator to reduce visual clutter. Note also that the effects of the case conversion are
confined to the double-quoted strings used in the comparison; therefore, they don’t
affect the strings ultimately returned by sort.

Having already learned in chapter 3 about Perl’s powerful and versatile matching
operator, which can be used to write grep-like programs, you may be surprised to
hear that Perl also has a grep function. As you’ll see in the next section, Perl’s grep
certainly does have some properties in common with its Unix namesake, but it’s an
even more valuable resource.

7.3.3 Using grep

This section discusses Perl’s grep function, which, despite what its name suggests,
isn’t just a built-in version of a Unix grep command. Table 7.11 illustrates some uses
of grep. Like its Unix namesake, it can selectively return records that match a pat-
tern. But one difference is that it obtains those records from its argument list, not by
reading them from a file or STDIN.

Unlike its namesake, Perl’s grep is a programmable, general-purpose filtering
utility. It works by temporarily assigning the first element of LIST to $_, executing
the CODE-BLOCK, returning $_ if a True result was obtained, and then repeating
these actions until all elements of LIST have been processed. The CODE-BLOCK is
therefore essentially a programmable filter, determining which elements of LIST will
appear in the function’s return list.

The first example in the table shows how to use a matching operator to select the
desired elements from @A for copying into @B. Unlike the case with the grep
command , the second example shows that other operators, such as the directory-test-
ing –d, can also be used to implement filters with Perl’s grep.

21 As an alternative to using sort for shuffling list elements, most JAPHs would use the shuffle func-
tion of the standard List::Util module. Modules are discussed in chapter 12.
PROGRAMMING WITH FUNCTIONS THAT PROCESS LISTS 227

As shown in the table’s other examples, filters can also be defined to select elements
according to the number of characters they contain, or even to select them at random,
among myriad other possibilities.

The last example of the table shows that the “$,” variable (introduced in table 2.8)
comes in handy for separating list elements that would otherwise be squashed together,
when grep’s output is passed on to print.

Remember the textfiles script from chapter 6? It reads filenames from
STDIN and filters out the ones that don’t contain just text, as determined by Perl’s
-T operator. Here’s the script again, to refresh your memory:

$ cat textfiles

#! /usr/bin/perl -wnl

If file named on input line contains text, print its name

-T and print;

Because this script is meant to obtain its filenames from a pipe, it doesn’t handle file-
names presented directly as arguments, as a user might expect:

$ textfiles /bin/cat /etc/hosts # incorrect invocation!

$

With this invocation, the script extracts lines from each of the named files and treats
each one as a filename to be tested. The lack of output indicates that no line in
any file was recognized as the name of a text file—which is understandable, because
the file /bin/cat contains binary instructions for the CPU, and /etc/hosts
contains IP addresses paired with hostnames!

But a script for reporting which filename arguments are themselves the names of
text files can be easily written using grep:

$ cat textfile_args

#! /usr/bin/perl -wl

Table 7.11 The grep function

Typical invocation formats
a

grep { CODE-BLOCK } LIST

Example Explanation

@B=grep { /^[a-z]/i } @A; Stores in @B elements from @A that begin with a letter.

@B=grep { -d } @A; Stores in @B elements from @A that are names of
directory files.

@B=grep { rand >= .5 } @A; Prints elements from @A that are randomly selected
(rand returns a number from 0 to almost 1).

$,="\n";
print grep { length > 3 } @A;

Prints elements from @A that are longer than three
characters.

a. In the common case where CODE-BLOCK consists of a single statement, it’s customary to omit the trailing
semicolon.
228 CHAPTER 7 BUILT-IN FUNCTIONS

If file named as argument contains text, print its name

$,="\n"; # print one filename per line

print grep { -T } @ARGV;

$ textfile_args /bin/cat /etc/hosts

/etc/hosts

Notice that the n option is absent from the script’s shebang line, because this script
needs to do manual processing of its arguments, rather than having the n or p option
automatically read input from the files they name.

The programmer saved a few keystrokes by taking advantage of the fact that $_,
which contains the list item being currently processed by grep, is also the default
argument for -T (as it is for many other operators and functions). The setting of
“$,” to newline causes print to insert that string between each pair of the argu-
ments it gets from grep, which results in each of the selected filenames appearing
on its own line.

You’ll see additional examples of how grep can be used for filtering arguments in
chapter 8, including scripts that perform sanity-checking on their own arguments.

Next, we’ll discuss the function that’s the opposite of the split function we dis-
cussed in section 7.2.1.

7.3.4 Using join

Table 7.12 shows typical uses of the join function, which you use to combine multi-
ple scalars into a single scalar. The multiple scalars may be specified separately, as
shown in the table’s first example, or provided by a list variable (e.g., an array), as
shown in the other examples. (You’ll learn more about arrays in section 9.1.)

Table 7.12 The join function

Typical Invocation Format

join STRING, LIST

Example
a Explanation

$properties=join '/',
$size, $shape, $color;

Joins the values of the scalar variables
into a single string, with a slash
character between each pair of
elements. Sample result in
$properties: huge/irregular/clear.

$string_with_NLs=join "",
 @strings_with_NLs;

$string_with_NLs=join "\n",
 @strings_without_NLs;

Joins the individual elements of the
array into a single string of newline-
terminated records, by inserting an
empty string between each pair of
elements (for strings already
terminated with newlines) or by
inserting a newline between them (for
strings lacking newlines), respectively.

a. NLs stands for newlines.
PROGRAMMING WITH FUNCTIONS THAT PROCESS LISTS 229

The first example in the table shows individual scalars being joined together with a
slash. A classic variation on this technique is to assemble a Unix password-file record
by joining its separate components with the colon character, which acts as the field
separator in that file:

$new_pw_entry=join ':', $name, $passwd, $uid, $gid,

 $comment, $home, $shell;

print $new_pw_entry;

snort:x:73:68:Snort network monitor:/var/lib/snort:/bin/bash

The examples in the table’s second row join an array of strings into a single new string.
You’ll see an example that demonstrates a use for this type of conversion next.

Matching against list variables

Here’s a common mistake made by Perl novices, along with the warning message
it triggers:

@bunch_of_strings =~ s/old/new/g; # WRONG!

Applying substitution (s///) to @array will act on scalar(@array)

The warning informs you that the substitution operator imposes a scalar context on
the array expression, which means if there are 42 elements in the array, the code is
effectively trying to change old to new in—the number 42!

This result is obtained because the matching and substitution operators only work
on scalar values. You therefore have to choose whether you want to process the ele-
ments of the list individually,22 or to combine them into a single scalar and process
them collectively. The former approach is appropriate when all the matches of inter-
est can be found within the individual elements, and the latter when matches that
span consecutive list elements (i.e., start in one and end in another) are of interest.

A typical task that requires the collective-processing approach is that of doing
matches or substitutions across the line boundaries in a text file. For example, you
might initially read the lines of a file, store them in an array, and strip them of their
newlines (using chomp; see section 7.2.4), in preparation for some kind of line-ori-
ented processing. Then, to look for line-spanning matches, you would create a file
image by joining each adjacent pair of elements with a newline, and then match
against that scalar variable:

$file=join "\n", @lines_without_NLs; # join lines into file form

$file =~ /\bUnix(\s)system\b/ and # match against file image

 print 'The phrase was found';

22 This could be done using the map function discussed in section 7.3.5 or the looping techniques dis-
cussed in chapter 10.
230 CHAPTER 7 BUILT-IN FUNCTIONS

Notice that that any whitespace character (\s) is allowed—including newline—to
appear between the words, to allow for “Unix” at the end of one line, and “system” at
the beginning of the next.

You could also perform substitutions throughout the text of the file that preserve
the whitespace character that was matched within the capturing parentheses around
\s, by referencing the associated numbered-variable in the replacement string:23

$file =~ s/\bUnix(\s)system\b/Linux$1OS/g; # 1st set of parens-->$1

After doing the matches and substitutions, you could once again convert the file-
image string into its constituent lines, if desired, using split:

@lines_without_NLs=split /\n/, $file; # split file image into lines

TIP The matching and substitution operators only work with scalars, so when
you need to find matches that span the consecutive elements of a list, use
join to convert them into a scalar first.

Next, you’ll see how join can help in the generation of HTML code.

Developing HTML documents with join:

The fields2lists script

The fields2list script converts the tab-separated fields of each input line into the
HTML code for a separate unordered (i.e., bullet) list.24 Here’s a sample run:

$ cat list_data

Wallace<TAB>Gromit

Wanda Sykes

$ fields2lists list_data > lists.html

$ cat lists.html

<P>

Wallace

Gromit

<P>

Wanda Sykes

23 Capturing parentheses and numbered variables are discussed in section 3.10.
24 The CGI module provides prefab functions that create HTML lists—see section 12.3.5.
PROGRAMMING WITH FUNCTIONS THAT PROCESS LISTS 231

$ w3m lists.html # check results, using text-mode browser

* Wallace

* Gromit

* Wanda Sykes

The script uses the a option for automatic field processing and a BEGIN block to ini-
tialize some variables before constructing each line’s list from its constituent fields:

$ cat fields2lists

#! /usr/bin/perl –wnlaF'\t'

BEGIN {

 $list_start=join "\n", '<P>','', '';

 $list_end="";

}

Convert the fields of each input line into the elements of a list

$list_elements=join "\n\n", @F;

Now send the list to the output

print "$list_start\n$list_elements\n$list_end\n";

As anybody who maintains it will be quick to tell you, it’s much easier for humans to
read HTML code when newlines are placed between the elements. The trick, of
course, is to achieve this result without repeatedly typing the newlines. Accordingly,
the script uses join to insert a newline between each pair of HTML tags it loads into
$list_start, and also to insert “\n\n” between each pair of the current line’s
fields while loading $list_elements. After newlines are appended to the variables
in print’s argument string, the code for the HTML lists is ready for displaying on the
screen, or storing in a file.25

Next, we’ll discuss Perl’s general-purpose data-transformation function.

7.3.5 Using map

The map function provides a list transformation service. Its syntax is similar to grep’s,
and both have the property of evaluating the code block for each of the list elements.
Where they differ is that grep determines whether to return each element on the
basis of that evaluation, whereas map returns the result of that evaluation itself—
which effects the transformation.

Table 7.13 shows map’s syntax and several transformations that you can perform
with it. Although the results of the first two examples appear only in @B, it’s possible
to have the transformations affect the original list, as shown in the third example.
You accomplish this simply by storing the transformed results back in the original
array (i.e., @A).

25 We could alternatively have written this script without join by switching the setting of “$,” from
“\n” to “\n\n” and back again while printing the various substrings, but that approach yields
code that’s a bit more difficult to write and harder to read.
232 CHAPTER 7 BUILT-IN FUNCTIONS

The bottommost example displays each element of a list within single quotes. Note
the use of double quotes in the code block to remove the special meanings of the inner
single quotes.

Next, you’ll see how to convert numbers in a file using map.

Converting Celsius to Fahrenheit: The c2f script

The c2f script converts Celsius temperatures to Fahrenheit ones, using map:

$ cat celsius # Celsius temperatures

0 16 32 48

$ c2f celsius # Fahrenheit temperatures

32 60.8 89.6 118.4

Here’s the script:

$ cat c2f

#! /usr/bin/perl -wnla

Converts Celsius to Fahrenheit

BEGIN { $,=' '; } # separate each of print's arguments by a space

print map { $_ * (9 / 5) + 32 } @F; # transform each field

After each line is read by the implicit loop, its fields are extracted and loaded into @F
(courtesy of the a option), and then each field is transformed by map and delivered as
an argument to print.26

Now that you’re familiar with some typical uses of map, we need to discuss a prob-
lem you’ll surely have with it sometime soon.

Table 7.13 The map function

Typical invocation format
a

map { CODE-BLOCK } LIST

Example Explanation

@B=map { sqrt } @A;
@B=map { "\L$_" } @A;

Stores the square root or lowercase conversion, respectively, of
each element of @A in @B.

@A=map { "$_\n" } @A; Stores the newline-appended conversion of each element of @A
back in @A (i.e., converts @A’s values to have appended newlines).

$,=' ';
print map { "'$_'" } @A;

Prints each element of @A enclosed in single quotes and
separated by spaces (due to the setting of print’s “$,” variable).

a. In the common case where CODE-BLOCK consists of a single statement, it’s customary to omit the trailing
semicolon.

26 As demonstrated by the m2k script of section 4.9.1, this type of processing can also be accomplished
using a matching-based approach with a substitution operator. Which is best depends on the relative
difficulties of extracting the fields of interest with a regex, and specifying what delimits them with a
field separator.
PROGRAMMING WITH FUNCTIONS THAT PROCESS LISTS 233

Tips on using map

Because map returns the value of the last expression evaluated within its code block,
you sometimes have to make special arrangements to get the result you want. Con-
sider this command, which is meant to convert semicolons in its arguments to colons:

$ perl –wl –e ' $,="\n";
> print map { s/;/:/g } @ARGV; ' '1st; Think' '2nd; Act'
1
1

Weird, isn’t it? All that came out was a bunch of 1s !
Get used to seeing that result, because as your adventures in Perlistan continue,

one of your own programs will eventually manifest this classic “Column of Ones” bug.
The good new is that the underlying cause is always the same, so the single cure we’re
going to discuss will fix the bug in all its myriad forms.27

The confusion stems from the fact that the output of the sed 's/;/:/g' com-
mand—which looks a lot like a Perl substitution operator—is in fact the modified
string, whereas the substitution operator returns something very different—a report
of the number of successful substitutions (see table 4.2).

What’s the cure? Simply to arrange for map to return the (possibly modified) $_
value, by using $_ as the final statement in map’s code block:28 It may look strange
at first to see $_ just dangling there before the closing curly brace, but with map,
that’s sometimes required to obtain the desired transformation:

$ perl –wl –e ' $,="\n";
> print map { s/;/:/g; $_ } @ARGV; ' '1st; Think' '2nd; Act'
1st: Think
2nd: Act

Transforming data, even with a tool as nifty as map, can strain your brain. Accord-
ingly, we’ll look next at an operator that generates its own output, which will let us
relax as we shift our perspectives from that of data manufacturers to data consumers.

7.4 GLOBBING FOR FILENAMES

The Shell has the valuable capability of generating filenames from “wildcard” charac-
ters. This facility is known as filename generation (FNG) in traditional AT&T UNIX
culture and file globbing in Berkeley UNIX.29

27 Are you experiencing “Déjà vu all over again”? That’s appropriate, because this is essentially the same
bug we discussed in “Tips on using chomp” under section 7.2.4.

28 As mentioned previously, it’s considered good form to use semicolons within a grep or map CODE-
BLOCK sparingly, to make it easier to spot the more important one at the end of the surrounding state-
ment. In this case, we can’t leave out the one separating the statements, but we can omit the one after $_.

29 To me, globbing is a more fitting name for what happens to the shoes of a small child on a hot summer
day when he holds his ice cream cone at an inappropriate angle for too long. But of course the obvious
name file matching was too mundane for those wacky Berkeley types (I know; I was one of them!).
234 CHAPTER 7 BUILT-IN FUNCTIONS

In Perl, the language feature that generates filenames is called the globbing opera-
tor, and the act of generating filenames is referred to as globbing. In addition to these
terms, we’ll use FNG to describe the notation that’s used to construct the filename-
generating patterns.

TIP The globbing operator brings the Unix filename-generation service to all sys-
tems that have Perl.

With its globbing operator and FNG notation, Perl duplicates the filename-generation
service provided by the UNIX shells. But because Perl does this using built-in func-
tions, Perl programmers can do globbing on any system equipped with Perl.

The globbing operator is invoked by putting (unquoted) angle brackets around a file-
name specification. Table 7.14 shows the operator’s syntax and some usage examples.

As indicated in the table, the filenames returned by a globbing operator are generally
stored in an array for later access, or else sent to the output by print.

When you don’t want to get your matching filenames from the current directory,
you can specify an alternative directory within the globbing operator:

@html_files=</local/web/*.html>;

When a single pattern won’t suffice to describe all the files of interest, you can use a
parenthesized, comma-separated list of globbing operators instead:

@temporary_files=(</tmp/*>, </var/tmp/*>);

Table 7.14 The globbing operator

Typical invocation formats

 <pattern>
 <pattern1>, <pattern2>, etc.

Example Explanation

@files=<pattern>; Stores filenames matching pattern in @files.

@files=(<pattern1>, <pattern2>); Stores filenames matching pattern1 or
pattern2 in @files. When assigning globbing
results directly to a variable, separate multiple
globbing operators by commas and parenthesize
the group.

$,="\n";
print <pattern1>, <pattern2>;

print sort <pattern1>, <pattern2>;

Prints filenames matching pattern1 or pattern2
with "\n" between them. The matches for
pattern1 are printed first in alphanumeric order,
followed by pattern2’s matches in alphanumeric
order. The second example sorts the entire set of
matching filenames before printing.
GLOBBING FOR FILENAMES 235

Variables can also be used in globbing, as can special directory names such as “..”,
which stands for the parent directory:

$html_dir='/local/web';

$html='htm';

$text='txt';

@files=(<$html_dir/*.$html>, <../*.$text>);

Table 7.15 describes the meanings of the FNG metacharacters used in globbing,
including “*”, and shows illustrative examples of the filenames that would be matched
by different patterns.

Note that the wildcard expressions in the table’s Example column look just like they
would in Shell programming, apart from being surrounded by angle brackets. For
example, within the square brackets of the character class, a hyphen between two
other characters can be used to represent a range of consecutive characters. Moreover,
the filenames generated by each globbing operator are returned in alphanumerically
sorted order, as in the Shell.

As a practical application of globbing, a program that works on the HTML files of
its current directory might start like this, to free the user from having to specify the
filenames as command-line arguments:30

Table 7.15 The globbing operator’s FNG metacharacters

Metacharacter
a Meaning

b Example Sample matches

? Any (one) character <f?.txt>

<.?>

f2.txt, fX.txt

.., .a, .9

[xyz]

[c1-c2]

[!xyz]

[!c1-c2]

Any character explicitly listed
in the square brackets (called
a character class), implicitly
indicated by being in the
range c1-c2 (inclusive), or
indicated by being omitted
from the characters listed
after a leading "!", which
complements the list

<[abc].txt>

<f[0-9].txt>

<f[!0-9].txt>

a.txt, b.txt, c.txt

f2.txt, f8.txt

fX.txt, f%.txt

* Any character(s), or no
characters (“anything goes”)

<*.txt>

<f*>

f2.txt, fX.txt, H.txt

f2.txt, fX.txt, fud

a. c1, c2, x, y, and z are placeholders; c1 must come before c2 in sorting order.
b. No metacharacter is allowed to match a leading “.”, which on Unix systems is the mark of a hidden file. Within a

character class, all standard metacharacters lose their normal meanings, and two take on new special
meanings: “–” as a range specifier, and “!” as a list complementer.

30 Additional techniques for generating arguments in the BEGIN block are shown in section 8.2.3.
236 CHAPTER 7 BUILT-IN FUNCTIONS

BEGIN { # get names of HTML files

 @ARGV=<*.html> or warn "$0: No html files!\n" and exit 255;

}

The matching filenames (if any) are first loaded into the argument array (@ARGV),
and then that array is evaluated for non-emptiness in the scalar context provided
by the or operator. The resulting True/False value controls the execution of warn
and exit.

7.4.1 Tips on globbing

Because the angle-bracket symbols play more than one role in Perl, you’ll run into a
problem if you put your entire FNG pattern into a single variable:

$pattern='/local/web/*.html'; print <$pattern> # WRONG!

readline() on unopened filehandle ...

The solution is to surround the variable name with (unquoted) spaces, which won't
affect the file specification:

print < $pattern > # Right.

Because Perl incorporates most of the syntax of the UNIX regular expression (regex)
and filename generation (FNG) notations, Perl programmers need to be wary of the
same pitfalls that Shell programmers do. In particular, the strong similarities between
the two non-identical notations can sometimes create confusion over which symbol to
use. As a case in point, beginners often mistakenly attempt to use “*” in regex nota-
tion to mean “anything goes”.31 But that’s its meaning in the FNG notation—in the
regex notation, “.*” is used for that effect.

Programmers who write a lot of FNG patterns may eventually fall into the trap of
attempting to use “!” to complement the list of a regex character class:

/[!aeiou]$/ and print "Line ends with non-vowel"; # WRONG!

That statement prints the lines that do end with vowels—or with a “!” symbol! This
is a particularly undesirable kind of error, because the Perl compiler can’t help by spot-
ting it for you. The fix is to employ the complementing character that’s correct for the
regex notation, ^, by writing

/[^aeiou]$/ and print "Line ends with non-vowel"; # Right.

To help you keep the notations straight, table 7.16 shows the different yet equiva-
lent expressions that are most commonly confused. The top panel of the table

31 If you make this mistake, you may get a “quantifier follows nothing” error from Perl—or not. It de-
pends on the context.
GLOBBING FOR FILENAMES 237

focuses on differences between metacharacters, and the second deals with differences
related to anchoring.

The differences shown in the top panel of the table are based on the use of different
symbols to perform the same function (e.g., “?” vs. “.”), whereas those in the second
panel reflect the fact that only FNG expressions have implicit anchoring. For example,
A means “starts and ends with A” in FNG, due to its implicit anchoring, but in regex
notation, it takes ^A$ to express that idea.

Another concern, signified by “N/A” in the table’s bottom panel, is that there are poten-
tially bothersome limits on what you can accomplish with the humble FNG notation,
which is considerably less expressive and powerful than its regex cousin. The solution
in such cases is to use regex notation to enhance your globbing, as discussed next.

Employing regex notation for filtering filenames

As we discussed earlier in connection with the find command (section 6.3.2), you
can arrange to do your globbing with the regex rather than the FNG notation. You
begin by performing a rough selection of filename candidates using FNG with the
globbing operator, and then you employ the more sophisticated regex notation to do
additional filtering, using grep with a matching operator.

For example, we can use this regex with a matching operator to specify more pre-
cisely the filenames we want from the globbing operator’s rough initial selection:

@files=grep { /^80[23]?86$/ } <80*86>; # files for certain old CPUs

As a result, @files is loaded with any filenames from the desired set of 8086,
80286, and 80386 that are present in the current directory—but not with other

Table 7.16 Corresponding expressions for the FNG and regex notations

FNG Regex Meaning

 ? . One character
a

 * .* 0 or more characters
a

[a-z] [a-z] One lowercase letter

[!a-z] [^a-z] One character that’s not a lowercase letter
a

a* ^a Starting with “a”

*a a$ Ending with “a”

abc ^abc$ Exactly “abc”

N/A X?, X*, X+ 0 or 1, 0 or more, or 1 or more successive Xs

a. FNG metacharacters aren’t allowed to match a leading dot in a filename, to prevent accidental references to
hidden files. Regex metacharacters don’t have this limitation.
238 CHAPTER 7 BUILT-IN FUNCTIONS

filenames that would also be matched by the FNG pattern itself, such as 80486
and 80586.32

Now that you’ve seen examples of the globbing operator being used in relative iso-
lation, you’ll see some typical ways it’s used with functions that supply file manage-
ment services.

7.5 MANAGING FILES WITH FUNCTIONS

Perl is heavily used for general-purpose file wrangling—by system administrators and
others—using built-in Perl functions that provide the functionality of their Unix coun-
terparts. As tables 7.17 and 7.18 show, most of these functions have names similar to
their Unix relatives; an exception is unlink, which does the job of rm. Another dif-
ference is that there’s no chgrp function corresponding to the Unix chgrp command,
because Perl’s chown can change both the UID and GID for a file.33

Table 7.17 shows the invocation format for functions that process directories. It con-
tains an or die clause, because when these functions fail, it’s generally undesirable to
proceed with the program.

For example, imagine how many files you’d have left in your current directory
after executing this code, which is meant to remove files from /tmp/playpen but
unfortunately isn’t restricted to operating in that directory:

$dirname='/temp/playpen';

chdir $dirname; # I hope this chdir works!

unlink <*>; # Search and Destroy!

32 Actually, the FNG pattern would even match “800 868-6886” and “80 + 6 = 86”, but we’re assuming
that only CPU model numbers appear in the filenames of this directory.

Table 7.17 Functions for managing directories

Function
Unix

relative
Invocation format Explanation

chdir cd

Function dirname or

 die "$0: Function failed: ", $!;

Depending on Function,
changes to (chdir), creates
(mkdir), or removes (rmdir)
the directory dirname—or
terminates the program (via
die). For rmdir to succeed,
the directory must be empty.
A True/False value is returned
to indicate success or failure.

mkdir mkdir

rmdir rmdir

33 Just like the Berkeley-derived versions of the Unix chown command can do.
MANAGING FILES WITH FUNCTIONS 239

Perl’s unlink (see table 7.18) removes the specified filenames by ruthlessly—and irre-
versibly—removing them from their directories (just as Unix’s rm does). Unfortu-
nately, after chdir fails to change to the misspelled directory, this program will
blithely proceed to unlink the files of the current directory instead!

All it takes to prevent such disasters is to add an appropriate or die clause, as
shown in table 7.17, whose use is strongly recommended:

chdir $dirname or die "$0: Couldn't chdir to $dirname: $!";

Next, you’ll see how to handle functions whose return values aren’t simple True/
False codes.

7.5.1 Handling multi-valued return codes

Like chdir, mkdir, and rmdir, the functions depicted in the middle panel of
table 7.18 also require special handling, but of a different type. That’s because they

Table 7.18 Functions for managing files

Function
Unix

relative
Format, or sample invocation Explanation

a

umask umask umask 0022; # +w only for owner

printf "Umask is: %04O\n",

 umask;

Sets (or reports) the octal bit-mask
that removes permissions granted
by default to newly created files.
0022 denies the group and others
write permission.

chmod chmod $successes=chmod perm_num,

 file(s);
Combines octal permission
specification perm_num (e.g.,
0755) with umask value to set
permissions for file(s).

chown chown,

chgrp

$successes=chown UID_num,

 GID_num,file(s);
Associates file(s)with owner
UID_num and group GID_num.

unlink rm $successes=unlink file(s); Removes names of file(s)
from their directories.b

rename mv rename old, new or

 die "$0: rename failed: $!";
Renames existing file old to new.
move is more dependable and OS-
portable.

move mv use File::Copy; # load module

move old, new or

 die "$0: move failed: $!";

Moves existing file old to new in
an efficient and OS-portable
manner.

copy cp use File::Copy; # load module

copy old, new or

 die "$0: copy failed: $!";

Copies existing file old to new in
an efficient and OS-portable
manner.

a. umask returns its previous setting if invoked with an argument, otherwise its current setting. The functions in
the middle panel return the number of files that were successfully processed, whereas those in the bottom
panel return True/False to indicate success or failure.

b. As with the rm command, the file itself will live on until its last hard-linked directory entry is removed.
240 CHAPTER 7 BUILT-IN FUNCTIONS

return the number of successfully processed files—rather than a simple binary Success/
Failure code—when supplied multiple filename arguments.

This kind of multi-valued return code therefore represents a point on a continuum
ranging from complete failure (0) to complete success (>0), with the latter result
achieved only when the return code equals the number of filename arguments.
For this reason, with the functions chmod, chown, and unlink, this approach

$successes=function @files or die;

will only terminate a program when none of the files named in @files is success-
fully processed (i.e., when $successes is 0), because any non-zero number is
equally True.

In contrast, the following approach arranges for the program to continue only if
all files are successfully processed:

@files=<*.txt>;

$num_files=@files or exit; # exit if no files to work on

$successes=chmod 0600, @files; # $successes contains success count

$successes == $num_files or

 die "chmod only succeeded for $successes of $num_files files\n";

Code for remaining processing goes here

The program will terminate with a message of the following form unless it succeeds in
setting the permissions of every *.txt file in the current directory:

chmod only succeeded for 3 of 7 files

But how can we report the names of the files that were associated with the failed pro-
cessing attempts? That’s a problem, because that information isn’t be provided by
unlink. To handle this situation, in section 10.4.1 we’ll demonstrate a technique
based on looping that presents each filename as the lone argument to the desired func-
tion (e.g., unlink, chmod, etc.). This approach allows a detailed error message—
which includes the file’s name—to be generated if the operation fails.

Tips on file-management functions

Perl has many additional file-oriented functions that provide useful services, but some
(e.g., open, pipe, glob) are of marginal interest to programmers who already know
their more convenient alternatives favored in Minimal Perl (viz., the n and p options,
command interpolation, and <FNG>).

Now that you know how to use built-in functions, you need to know something
else—where to use parentheses around their argument lists to prevent Perl from mis-
interpreting your intentions. That’s our next topic for discussion.
MANAGING FILES WITH FUNCTIONS 241

7.6 PARENTHESIZING FUNCTION ARGUMENTS

In Perl, you can usually omit parentheses around argument lists, because the language
is smart enough to understand what you want and to do the right thing without them.
However, there are certain situations where Perl just can’t read your mind, so you need
to handle them properly to avoid trouble. To help you understand the problems of the
JAPHly population at large, we’ll look first at a vexing problem that bothers many Perl
programmers—but not those following the Minimal Perl approach.

7.6.1 Controlling argument-gobbling functions

Consider this statement:

print sort @F, "\n";

Because functions are greedy in gobbling up their arguments—and those on the right
get to eat first—that newline won’t be allocated to print as its final argument, as
intended. Instead, it’s treated as the final argument to sort. In consequence, the new-
line won’t be printed to the right of the sorted @F values, as you might expect, unless
alphanumeric sorting puts it in that position.

We’ll demonstrate the problem in the following program, which prints markers
before and after the output of interest to make the misplaced newline (represented by
“ ”) easier to spot (@F contains the values A, B, and C):

$,=' '; # separate values by a space; -l not in effect

print "Start:\n"; print sort @F, "\n"; print "End:\n";

Start

 A B CEnd

The newline argument of the middle print came out first in sorted order, giv-
ing a double-spacing effect when combined with the newline at the end of the
“Start:” string. The “A” gets indented because a space was automatically inserted
between it and the newline that sort placed before it, as requested by the “$,”
setting.

As always in such cases, explicitly limiting sort’s argument list with parentheses
is the solution to allocating arguments to functions in the desired manner:

print "Start:\n"; print sort (@F), "\n"; print "End:\n"; # -l off

Start

A B C

End

You can tell that Minimal Perl’s strategies for insulating you from unnecessary compli-
cations are working, because we’ve successfully avoided this pesky issue of argument
parenthesization for hundreds of pages thus far. The l option deserves most of the
credit, because it eliminates the most common source of this problem—interference
between the trailing newline argument on a print statement and nearby function

➦
➦

242 CHAPTER 7 BUILT-IN FUNCTIONS

arguments. As a case in point, enabling the l option allows us to rewrite the earlier
code in a more intuitive manner:

$,=' ';

print "Start"; print sort @F; print "End"; # –l on

Start

A B C

End

In addition to its manifestations with print, this argument-gobbling problem can
occur anywhere functions are used in series. For instance, this line has three functions:

$string=join "\n", reverse sort @F, 'another value';

This statement is interpreted to mean that “another value” should be sort’s last argu-
ment. But what if that string was meant to be reverse’s last argument instead? In
that case, parentheses would be needed around sort’s intended arguments to prevent
it from claiming “another value”:34

$string=join "\t", reverse sort (@F), 'another value';

On the other hand, if that string were meant to be join’s last argument, the following
syntax would be needed, to arrange for all the values resulting from the parenthesized
segment to be delivered to join before “another value”:

$string=join "\t", (reverse sort @F), 'another value';

The upshot of this discussion is that if you use the l option as Minimal Perl prescribes,
you’ll avoid the most common situations involving print that require parenthesiza-
tion of function arguments. But for expressions involving a series of functions, you
may need to add parentheses to help Perl identify a function’s intended arguments.

To help you write your programs correctly, helpful guidelines on the use of paren-
theses, are provided in appendix B.

7.7 SUMMARY

Perl has a rich collection of built-in functions, and many provide enhancements to
facilities found in Unix and the Shell. The especially valuable property of being sensi-
tive to context allows a function to behave differently in situations that call for a singu-
lar result, or a plural one, and effectively lets a single function do the work of two
separate but related ones. (When you learn how to write your own functions in chap-
ter 11, you’ll appreciate how Perl’s sensitivity to context can really boost a program-
mer’s productivity.)

34 Another approach would be to use a more conventional style of parenthesization, in which the argu-
ment lists for the various functions are explicitly indicated. It requires more typing, and is arguably
harder to read, but it’s possibly easier to comprehend:
$string=join ("\t", reverse (sort (@F), 'another value'));
SUMMARY 243

Some of Perl’s functions, such as localtime, stat, and sort, can serve as
built-in alternatives to related Unix commands (date, ls, and sort), leading to
programs that are not only more efficient but also OS independent. Other functions,
such as map, provide unusual yet valuable services that have no direct counterpart in
the Unix toolkit.

The split function separates a string into a list of its constituent fields, using
whitespace delimiters by default, or else the delimiters provided in an optional argu-
ment. Because the a invocation option in conjunction with n or p automatically pro-
vides this service for input records, split is generally used for secondary splitting in
Minimal Perl, to extract subfields from input fields using different delimiters.

The localtime function allows programmers to access information describing
the current time and date in an OS-independent manner. It can provide a nicely for-
matted report that resembles the Unix date command’s output.

The stat function provides a wealth of administrative information about the
specified file, which on Unix consists of all the data residing in the file’s inode. It can
be used to write programs that mimic the behavior of the Unix ls –l command, as
demonstrated in the listfile script.

Trailing newlines on input records can foil string-equality tests and disturb the
formatting of output messages. This is why Minimal Perl routinely uses the l invo-
cation option to automatically strip newlines while input is being read by the implicit
loop of the n and p options. For input read through other methods, such as from
<STDIN>, newlines can be stripped by using chomp.

Unpredictability is usually an undesirable trait in computer programs. Neverthe-
less, a capability for making pseudo-random decisions is often needed in programs that
do source-code quality-control tests, simulations, or games. Perl’s random number
generator is called rand; you’ll see it used to select random “fortunes” in section 9.1.4.

As the counterpart to the Unix sort command, Perl has its own function called
sort. But Perl’s version is unique in giving the programmer complete control over
where each element $a—in a pairwise comparison of list elements—goes relative to
element $b. A reverse function is also supplied, to allow convenient conversion of
lists in ascending order to descending order, and vice versa.

As the mirror image of split, which does scalar to list conversions for strings,
Perl’s join function performs list to scalar conversions. It inserts a specified delimiter
between each adjacent pair of the strings provided, to create a new composite string.

Perl’s grep takes its lead from its Unix namesake, but it goes where no grep has
gone before! It’s a programmable, general-purpose filtering tool that passes to its out-
put the elements of a list that produce True outcomes for a specified code block.
Although it can be used to write grep-like commands, that’s more easily accom-
plished with the /RE/ and print approach shown in section 3.3.1.
244 CHAPTER 7 BUILT-IN FUNCTIONS

The map function is a programmable, general-purpose tool for transforming the
elements of a list into another form. It can be used, for example, to convert a list of
strings to lowercase by using "\L$_" in its code block.

Perl’s globbing operator and FNG notation are also valuable resources, allow-
ing programmers to use Unix filename-generation techniques in an OS-portable
manner.35

We ended this chapter with a discussion of the proper use of parentheses in Perl,
which are sometimes needed to override default groupings of code elements pre-
scribed by Perl’s operator precedence levels. Although JAPHs can generally omit
almost all the parentheses that would be required in other languages, there are certain
situations in Perl where they must be used to obtain correct results, as described in
section 7.6 and appendix B.

Because Perl is a rather unusual language, and we’re delving more deeply into
“Perlocity” here in part 2, it’s likely that some of the concepts and principles revealed
in this chapter came as a surprise to you. But like the immigrants to Perlistan who
came before you, you’ll soon find yourself wondering how you ever put up with lan-
guages that were insensitive to contextual cues, or lacked grep and map and an OS-
portable FNG notation, or made you put parentheses in your programs in places
where any compiler worth its salt would have already known they belonged!

Directions for further study

To obtain specific documentation on particular functions (sort, grep, chmod, etc.)
or named operators (e.g., scalar, but not “+”), replace name in the following com-
mand with the name of the desired resource:

• perldoc -f name # specific coverage of "name"

You have to use special techniques to retrieve the documentation for certain functions.
In particular, documentation for the globbing operator is found under glob—which
is the name of the function underlying the <FNG> syntax, and documentation for
printf is best obtained from your Unix system, using one of these commands:

• man –s3 printf # for some UNIX systems

• man –s3c printf # for other UNIX systems

• man 3 printf # for Linux systems and their relatives

We’ll discuss some additional functions that are generally used only in scripts in
chapter 8 (e.g., eval). But Perl provides many other functions (and operators) as
well, which provide more specialized services. You can see them listed by category

35 See http://TeachMePerl.com/Perl_on_non-Unix_systems.html for more details on OS-portable pro-
gramming with Perl.
SUMMARY 245

in table 5.13, and you’ll find detailed documentation on them in these man pages, in
which they’re covered in alphabetical order:36

• man perlfunc # coverage of perl functions

• man perlop # coverage of perl operators

As useful as they are, Perl’s built-in functions can’t anticipate all your needs, so you’ll
learn in chapter 12 how to extend Perl’s capabilities by importing functions written by
other JAPHs from the voluminous CPAN archives, as well as how to write your own
custom subroutines to handle your unique requirements in chapter 11.

36 The functions vs. operator distinction is fuzzy in Perl, so some operators are documented in perlfunc
and some functions in perlop, so it’s best to try perldoc –f name before resorting to looking for
name in the perlfunc or perlop man pages.
246 CHAPTER 7 BUILT-IN FUNCTIONS

C H A P T E R 8

Scripting techniques

8.1 Exploiting script-oriented

functions 248
8.2 Pre-processing arguments 256
8.3 Executing code conditionally

with if/else 259
8.4 Wrangling strings with concatena-

tion and repetition operators 265

8.5 Interpolating command output into
source code 269

8.6 Executing OS commands using
system 275

8.7 Evaluating code using eval 283
8.8 Summary 292
Those nifty one-line commands you saw in part 1 are easy to type, and they’re ade-
quate for an impressively wide variety of common tasks. And gosh darn it, you might
even say they’re cute, if not downright elegant.

But sooner or later, you’ll need to write programs that can validate their argu-
ments, handle arguments that aren’t filenames, capture and manipulate outputs from
Unix commands, process inputs from interactive users, select particular branches of
code to execute, or even compose and execute new Perl programs on the fly. This
chapter teaches you the language features and programming techniques that are used
to perform such tasks.

For instance, you’ll learn how to write programs that accept arguments, and the
benefits of doing so. As a case in point, the following grep commands can look for
different patterns in different places—despite the fact that they’re all running the
same program—because grep accepts arguments:

grep 'SpamMeister@scumbags\.com' inbox
grep 'Mr\. Waldo Goodbar' WhereCouldHeBe
grep 'Loofabob Circletrousers' bikini_bottom_of_another_dimension
247

http://godot.com)

Arguments can also be used in emulating a familiar user interface. For example,
we’ll discuss a grep-like script called perlgrep that accepts the search pattern as
its first argument:

perlgrep 'RE' filename

That’s a more natural user interface for a grepper than this switch-oriented one we
employed in section 3.13.2:

greperl -pattern='RE' filename

Another technique you’ll learn is how to run Shell commands from within Perl pro-
grams, using the system function or Perl’s version of the Shell’s command-substitution
facility. Although using these techniques reduces a script’s OS portability, it’s some-
times the best way—or the only way—to obtain certain kinds of vital information.

For example, what if you need to know if there is enough disk space in the current
directory’s partition to accommodate the needs of your program? Executing this Perl
statement in a program running on Unix will help you make that determination,
using command interpolation1 to capture the output of the back-quoted df command:

$free_space=`df –k .`;

The system function also runs OS commands, but it works differently. For this rea-
son, system 'df –k .' would not be an alternative way to obtain the same informa-
tion. Accordingly, you’ll learn where each technique should be used in preference to
the other.

When you combine the scripting techniques you’ll learn in this chapter with the
built-in functions of the previous one—and the techniques for data storage and
retrieval you’ll learn in the next one—you’ll be able to write scripts that are more
robust, versatile, and advanced than those featured in part 1, as well as more OS-
portable and efficient than Shell scripts.

We’ll begin by discussing some special functions and variables that are primarily
used in scripts.

8.1 EXPLOITING SCRIPT-ORIENTED FUNCTIONS

Certain built-in functions are used more commonly in scripts than in one-line com-
mands like those you saw in part 1. These include Perl’s shift and exit functions,
which resemble their Shell namesakes, and defined, which is unique to Perl. We’ll
discuss the applications and benefits of these functions next, so you’ll understand how
they’re used in the scripts that appear later in this chapter.

1 Which is Perl’s name for what the Shell calls command substitution.
248 CHAPTER 8 SCRIPTING TECHNIQUES

8.1.1 Defining defined

To help you appreciate the value of defined, we’ll first illustrate a common problem
that it can solve. Consider these lines from some-script, which might appear at the
top of a script that requires arguments:

@ARGV > 0 or warn "$0: No arguments!\n" and exit 255;
$pattern=$ARGV[0];

If the program reaches the assignment statement, we know for sure that at least one
argument was provided. But to handle the case where that argument is present but
empty, we might want to add this third statement:

$pattern or warn "$0: Bad first argument!\n" and exit 250;

This extra precaution detects potential slip-ups like the following one, which, through
a combination of conscientious quoting and bad typing, winds up invoking the script
with an empty first argument:

$ RE='helium'; # set the variable
$ some-script "$ER" hynerians # pass $RE's contents as arg1
some-script: Bad first argument!

But what does an expression of the form $pattern or something do? It deter-
mines whether something will be evaluated on the basis of the True/False value of
$pattern (see section 2.4.2). The warn message is triggered in this case because the
null string that gets assigned to $pattern is one of Perl’s False values (the other is 0).

However, there’s a complication. Some scripts may want to accept a False
value—especially 0—as a legitimate argument. After all, with a grep-like script,
shouldn’t the user be allowed to look for records containing zeroes? This one disal-
lows that:

$ some-script '0' luxans # pass 0 as pattern argument
some-script: Bad first argument!

Unlike most languages, Perl provides an elegant solution to this problem, by allow-
ing you to conduct separate tests to identify undefined, empty, and False values.
This gives you the ability to treat certain Falsely-valued expressions—such as those
associated with missing or empty arguments—differently than others, such as an
argument of 0.

False values can be sensed using logical operators ($pattern or whatever),
and empty values can be identified using the string comparison operator
($something ne "" or warn; see table 5.11). The property of being defined , on
the other hand, is determined using the defined function, which returns a True/
False value according to the status of its argument.

What does it mean to be “defined”? Simply that the expression (usually a variable)
has been assigned a value. If it hasn’t—e.g., because it’s accidentally being used before
it’s been initialized—a warning is triggered:
EXPLOITING SCRIPT-ORIENTED FUNCTIONS 249

print $name; # What's in a $name?
$name='Willy Nilly';

Use of uninitialized value in print ...

With this background in mind, let’s look at a practical example that can benefit from
the use of defined:

$tip=shift; # tip amount is in argument
$tip or die "Usage: $0 tip_to_waiter_in_dollars\n";

That code must have been commissioned by the Waiters Union! It forces the diner to
tip the waiter a non-zero amount, because an argument of 0 is False and therefore
causes die to terminate the script.

Instead of asking the question “Does $tip have a True value?” the code should ask
these two questions: “Does $tip have a value?” and if so, “Is its value non-empty?”

Here’s an improved version that applies these tests and doesn’t reject a null tip for
a bad waiter (the improvements are in bold):

$tip=shift;
defined $tip and $tip ne "" or

 die "Usage: $0 tip_to_waiter_in_dollars (0 or more)\n";
Now report the tip to the IRS

If defined returns False (because no argument was provided), the or-branch is exe-
cuted, which terminates the program. If defined returns True, the next test is
whether $tip contains something other than a null string. If it does—even if it’s just
the (False) number 0—the program lives on. On the other hand, if a null-string argu-
ment is provided (as demonstrated earlier), the program terminates—as it should.2

That, in a nutshell, is why we need Perl’s defined function—so we can test
whether an expression has a value, independently of whether that value is True or
False. You’ll find a more detailed explanation of how Perl treats undefined values in
the next section, but feel free to skip it for now if you wish.

Using defined for keyboard input

As shown earlier (in table 7.6), you can read input from the standard input channel by
using the angle brackets of the input operator with STDIN. In such cases, a prompt is
typically used to solicit the input, leading to a printf/variable-assignment sequence
like this one:

printf 'Email resignation letter? YES to confirm, <^D> to exit: ';
$answer=<STDIN>;

In cases like this where you’re dealing with a live user providing input from a key-
board, you have to be ready for these possibilities:

2 The following additional test could be added before the or keyword, to ensure that a positive integer
number was provided: and $tip =~ /^\d+$/.
250 CHAPTER 8 SCRIPTING TECHNIQUES

http://perltidy.sourceforge.net
http://perltidy.sourceforge.net

1 The user types some characters, such as “maybe”, and then presses <ENTER>.
Because $answer contains “maybe\n”, which isn’t a null string, its string-value
is True (see section 2.4.2).

2 The user just presses <ENTER>. Because $answer contains “\n”, which isn’t a
null string either, it’s also True.

3 The user presses <^D>, which signifies the “end of file” condition for typed
input. In this special case, $answer receives nothing but is marked as “unde-
fined”, which makes it a False string.

4 The user kills the program by pressing <^C> (or some other fatal-signal-
generating character), which terminates the program immediately—thereby
liberating the programmer from concerns about handling user input!

The programmer would identify the case at hand by conducting various tests on
$answer and then provide an appropriate response.

One obvious approach would look something like this:

#! /usr/bin/perl -wl

printf 'Email resignation letter? YES to confirm, <^D> to exit: ';
$answer=<STDIN>; # omitting chomp to simplify

$answer ne "YES\n" and # This is line 6
 die "\n$0: Hasty resignation averted\n";

print 'Sending email'; # (emailing code unshown)

This technique works nicely for cases A and B, which result in something usable being
stored in $answer (a newline or more).

But with case C, this output is produced:

Email resignation letter? YES to confirm, <^D> to exit: <^D>
Use of uninitialized value in string ne at line 6.
...

The good news is that the user still has time to reconsider her resignation, because the
undefined value in $answer didn’t equate to “YES\n”, thereby causing the program
to die.

But what about that warning message? That’s Perl’s way of telling you that one of
the operands for the string inequality operator (ne) did not have a defined value—and
you know that it can’t be complaining about “YES\n”, so it must be $answer. The
program is allowed to continue, but Perl fudges in a null string as $answer’s value
to allow the comparison to be performed. That’s why it issues a warning—so you’ll
know it’s working with “best- guess” data rather than the real thing.

Here’s what’s happening behind the scenes. When Perl encounters an end-of-file
immediately upon reading input, it returns a special value called “undefined” to sig-
nify that no usable value was obtained. Accordingly, when $answer=<STDIN> calls
on Perl to assign the value returned by the input operator to $answer, Perl marks
EXPLOITING SCRIPT-ORIENTED FUNCTIONS 251

$answer as undefined This signifies that the variable has been brought into exist-
ence, but not yet given a usable value.

The solution is to add an additional check using the defined function, like so:

(! defined $answer or $answer ne "YES\n") and
 die "\n$0: Hasty resignation averted\n";

This ensures that the program will die if $answer is undefined, and also that
$answer won’t be compared to “YES\n” unless it has a defined value. That last prop-
erty circumvents the use of a fabricated value in the inequality comparison, and the
“uninitialized value” warning that goes with it.

With this adjustment, if $answer is undefined, the program can terminate with-
out a scary-looking warning disturbing the user.3

The rule for avoiding the accidental use of undefined values, and triggering the
warnings they generate, is this:

Always test a value that might be undefined, for being defined, before attempting
to use that value.

But there is an exception—copying a value, as in $got_switch, never triggers a warn-
ing—even when $answer is undefined. That’s because moving undefined values
around, as opposed to using them in significant ways, is considered a harmless activity.

Tips on using defined

The following statement attempts to set $got_switch to a True/False value, accord-
ing to whether any (or all) of the script’s switches was provided on the command line:

$got_switch=defined $debug or defined $verbose; # WRONG!

Here’s the warning it generates:

Useless use of defined operator in void context

That message arises because the assignment operator (=) has higher precedence than
the logical or, causing the statement to be interpreted as if it had been typed like this:4

($got_switch=defined $debug) or defined $verbose;

Perl’s warning tells the programmer that it was useless to include the or defined part,
because there’s no way for its result to be used anywhere (i.e., it’s in a void context). As
with other problems based on operator precedence, the fix is to add explicit parenthe-
ses to indicate which expressions need to be evaluated before others:

$got_switch=(defined $debug or defined $verbose); # Right.

3 Which might result in you being paged at 3 a.m.—prompting you to consider your own resignation!
4 The Minimal Perl approach minimizes precedence problems, but they’ll still crop up with logical op-

erators now and then (see “Tips” at the end of section 2.4.5, appendix B, and man perlop).
252 CHAPTER 8 SCRIPTING TECHNIQUES

In many cases, a Perl program ends up terminating by running out of statements to
process. But in other cases, the programmer needs to force an earlier exit, which you’ll
learn how to do next.

8.1.2 Exiting with exit

As in the Shell, the exit command is used to terminate a script—but before doing
so, it executes the END block, if there is one (like AWK). Table 8.1 compares the way
the Shell and Perl versions of exit behave when they’re invoked without an argument
or with a numeric argument from 0 to 255.

As indicated in the table, Perl’s exit generally works like that of the Shell, except it
uses 0 as the default exit value, rather than the exit value of the last command.

Although the languages agree that 0 signifies success, neither has established con-
ventions concerning the meanings of other exit values—apart from them all indicating
error conditions. This leaves you free to associate 1, for example, with a “required
arguments missing” error, and 2 with an “invalid input format” error, if desired.

As discussed in section 2.4.4, Perl’s die command provides an alternative to exit
for terminating a program. It differs by printing an error message before exiting with
the value of 255 (by default), as if you had executed warn "message" and exit
255. (But remember, in Minimal Perl we use the warn and exit combination rather
than die in BEGIN blocks, to avoid the unsightly warning messages about aborted
compilations that a die in BEGIN elicits.)

The following illustrates proper uses of the exit and die functions in a script
that has a BEGIN block, as well as how to specify die’s exit value by setting the “$!”
variable,5 to load the desired value into the parent shell’s "$?" variable:

Table 8.1 The exit function

Shell Perl Explanation

exit exit; With no argument, the Shell’s exit returns the latest value
of its "$?" variable to its parent process, to indicate the
program’s success or failure. Perl returns 0 by default, to
indicate success.a

exit 0 exit 0; The argument 0 signifies a successful run of the script to
the parent.

exit 1-255 exit 1-255; A number in the range 1–255 signifies a failed run of the script
to the parent.

a. Because it’s justifiably more optimistic than the Shell.

5 Later in this chapter, you’ll learn how to use Perl’s if construct, which is better than the logical and
for making the setting of “$!”, and the execution of die, jointly dependent on the success of the
matching operator.
EXPLOITING SCRIPT-ORIENTED FUNCTIONS 253

$ cat massage_data
#! /usr/bin/perl –wnl

BEGIN {
 @ARGV == 1 or warn "Usage: $0 filename\n" and exit 1;
}
/^#/ and $!=2 and die "$0: Comments not allowed in data file\n";
...

$ massage_data
Usage: massage_data filename
$ echo $?
1

$ massage_data file # correct invocation; 0 is default exit value
$ echo $?
0

$ echo '# comment' | massage_data - # "-" means read from STDIN
massage_data: Comments not allowed in data file
$ echo $?
2

We’ll look next at another important function shared by the Shell and Perl.

8.1.3 Shifting with shift

Both the Shell and Perl have a function called shift, which is used to manage
command-line arguments. Its job is to shift argument values leftward relative to the
storage locations that hold them, which has the side effect of discarding the original
first argument.6

Figure 8.1 shows how shift affects the allocation of arguments to a Shell script’s
positional parameter variables, or to the indices of Perl’s @ARGV array.

6 A common programming technique used with early UNIX shells was to process $1 and then execute
shift, and repeat that cycle until every argument had taken a turn as $1. It’s discussed in section10.2.1.

Figure 8.1

Effect of shift in the

Shell and Perl
254 CHAPTER 8 SCRIPTING TECHNIQUES

As the figure illustrates, after shift is executed in the Shell, the value initially stored
in $1 (A) gets discarded, the one in $2 (B) gets relocated to $1, and the one in $3 gets
relocated to $2. The same migration of values across storage locations occurs in Perl,
except the movement is from $ARGV[1] to $ARGV[0], and so forth. Naturally, the
affected Perl variables (@ARGV and $#ARGV) are updated automatically after shift,
just as “$*”, “$@”, and “$#” are updated in the Shell.

Although Perl’s shift provides the same basic functionality as the Shell’s, it also
provides two new features, at the expense of losing one standard Shell feature (see
table 8.2). The new feature—shown in the table’s second row—is that Perl’s shift
returns the value that’s removed from the array, so it can be saved for later access.

That allows Perl programmers to write this simple statement:

$arg1=shift; # save first arg's value, then remove it from @ARGV

where Shell programmers would have to write

arg1="$1" # save first arg's value before it's lost forever!
shift # now remove it from argument list

Another improvement is that Perl’s shift takes an optional argument that specifies
the array to be shifted, which the Shell doesn’t support. However, by attaching this
new interpretation to shift’s argument, Perl sacrificed the ability to recognize it as a
numeric “amount of shifting” specification, which is the meaning shift’s argument
has in the Shell.

Table 8.2 Using shift and unshift in the Shell and Perl

Shell Perl Explanation

shift shift; shift removes the leftmost argument and
moves any others one position leftward to fill the
void.

N/A $variable=shift; In Perl, the removed parameter is returned by
shift, allowing it to be stored in a variable.

shift 2 shift; shift;
OR
$arg1=shift;
$arg2=shift;

The Shell’s shift takes an optional numeric
argument, indicating the number of values to be
shifted away. That effect is achieved in Perl by
invoking shift multiple times.

N/A shift @any_array; Perl’s shift takes an optional argument of an
array name, which specifies the one it should
modify instead of the default (normally @ARGV,
but @_ if within a subroutine).

N/A unshift @array1, @array2; Perl’s unshift reinitializes @array1 to contain
the contents of @array2 before the initial
contents of @array1. For example, if @array1
in the example contained (a,b) and @array2
contained (1,2), @array1 would end up
with(1,2,a,b).
EXPLOITING SCRIPT-ORIENTED FUNCTIONS 255

Now that you’ve learned how to use defined, shift, and exit in Perl, we’ll use
these tools to improve on certain techniques you saw in part 1 and to demonstrate
some of their other useful applications. We’ll begin by discussing how they can be
used in the pre-processing of script arguments.

8.2 PRE-PROCESSING ARGUMENTS

Many kinds of scripts need to pre-process their arguments before they can get on with
their work. We’ll cover some typical cases, such as extracting non-filename arguments,
filtering out undesirable arguments, and generating arguments automatically.

8.2.1 Accommodating non-filename arguments

with implicit loops

The greperl script of section 3.13.2 obtains its pattern argument from a command-
line switch:

greperl -pattern='RE' filename

When this invocation format is used with a script having the s option on the she-
bang line, Perl automatically assigns RE to the script’s $pattern variable and then
discards the switch argument. This approach certainly makes switch-handling scripts
easy to write!

But what if you want to provide a user interface that feels more natural to the
users, based on the interface of the traditional grep?

grep 'RE' filename

The complication is that filter programs are most conveniently written using the n
invocation option, which causes all command-line arguments (except switches) to be
treated as filenames—including a grep-like script’s pattern argument:

$ perlgrep.bad 'root' /etc/passwd # Hey! "root" is my RE!
Can't open root: No such file or directory

Don’t despair, because there’s a simple way of fixing this program, based on an under-
standing of how the implicit loop works.

Specifically, the n option doesn’t start treating arguments as filenames until the
implicit input-reading loop starts running, and that doesn’t occur until after the BEGIN
block (if present) has finished executing. This means initial non-filename arguments
can happily coexist with filenames in the argument list—on one condition:

You must remove non-filename arguments from @ARGV in a BEGIN block, so they’ll
be gone by the time the input-reading loop starts executing.

The following example illustrates the coding for this technique, which isn’t diffi-
cult. In fact, all it takes to harvest the pattern argument is a single line; the rest is
all error checking:
256 CHAPTER 8 SCRIPTING TECHNIQUES

$ cat perlgrep
#! /usr/bin/perl -wnl

BEGIN {
 $Usage="Usage: $0 'RE' [file ...]";

 @ARGV > 0 or warn "$Usage\n" and exit 31; # 31 means no arg

 $pattern=shift; # Remove arg1 and load into $pattern
 defined $pattern and $pattern ne "" or
 warn "$Usage\n" and exit 27; # arg1 undefined, or empty
}
Now -n loop takes input from files named in @ARGV, or from STDIN

/$pattern/ and print; # if match, print record

Here’s a sample run, which shows that this script succeeds where its predecessor
perlgrep.bad failed:

$ perlgrep 'root' /etc/passwd
root:x:0:0:root:/root:/bin/bash

The programmer even defined some custom exit codes (see section 8.1.2), which may
come in handy sometime:

$ perlgrep "$EMPTY" /etc/passwd
Usage: perlgrep 'RE' [file ...]
$ echo $? # Show exit code
27

Once you understand how to code the requisite shift statement(s) in the BEGIN
block, it’s easy to write programs that allow initial non-filename arguments to precede
filename arguments, which is necessary to emulate the user interface of many tradi-
tional Unix commands.

But don’t get the idea that perlgrep is the final installment in our series of
grep-like programs that are both educational and practical. Not by a long shot!
There’s an option-rich preg script lurking at the end of this chapter, waiting to
impress you with its versatility.

We’ll talk next about some other kinds of pre-processing, such as reordering and
removing arguments.

8.2.2 Filtering arguments

The filter programs featured in part 1 employ Perl’s AWKish n or p option, to handle
filename arguments automatically. That’s nice, but what if you want to exert some
influence over that handling—such as processing files in alphanumeric order?

As indicated previously, you can do anything you want with a filter-script’s argu-
ments, so long as you do it in a BEGIN block. For example, this code is all that’s
needed to sort a script’s arguments:
PRE-PROCESSING ARGUMENTS 257

BEGIN {
 @ARGV=sort @ARGV; # rearrange into sorted order
}
Normal argument processing starts here

It’s no secret that users can’t always be trusted to provide the correct arguments to
commands, so a script may want to remove inappropriate arguments.

Consider the following invocation of change_file, which was presented in
chapter 4:

change_file -old='problems' -new='issues' *

The purpose of this script is to change occurrences of “problems” to “issues” in the
text files whose names are presented as arguments. But of course, the “*” metacharac-
ter doesn’t know that, so if any non-text files reside in the current directory, the script
will process them as well. This could lead to trouble, because a binary file might hap-
pen to contain the bit sequence that corresponds to the word “problems”—or any
other word, for that matter! Imagine the havoc that could ensue if the superuser were
to accidentally modify the ls command’s file—or, even worse, the Unix kernel’s
file—through such an error!

To help us sleep better, the following code silently removes non-text-file argu-
ments, on the assumption that the user probably didn’t realize they were included in
the first place:

BEGIN {
 @ARGV=grep { -T } @ARGV; # retain only text-file arguments
}
Normal argument processing starts here

grep selects the text-file (-T; see table 6.1) arguments from @ARGV, and then they’re
assigned as the new contents of that array. The resulting effect is as if the unacceptable
arguments had never been there.

A more informational approach would be to report the filenames that were
deleted. This can be accomplished by selecting them with ! -T (which means
“non-text files”), storing them in an array for later access, and then printing their
names (if any):

BEGIN {
 @non_text=grep { ! –T } @ARGV; # select NON-text-file arguments
 @non_text and
 warn "$0: Omitting these non-text-files: @non_text\n";
 @ARGV=grep { -T } @ARGV; # retain text-file arguments
}
Normal argument processing starts here

But an ounce of prevention is still worth at least a pound of cure, so it’s best to free the
user from typing arguments wherever possible, as we’ll discuss next.
258 CHAPTER 8 SCRIPTING TECHNIQUES

8.2.3 Generating arguments

It’s senseless to require a user to painstakingly type in lots of filename arguments—
which in turn burdens the programmer with screening out the invalid ones—in cases
where the program could generate the appropriate arguments on its own.

For example, Uma, a professional icon-designer, needs to copy every regular file in
her working directory to a CD before she leaves work. However, the subdirectories of
that directory should not be archived. Accordingly, she uses the following code to gen-
erate the names of all the (non-hidden) regular files in the current directory that are
readable by the current user (that permission is required for her to copy them):

BEGIN {
 # Simulate user supplying all suitable regular
 # filenames from current directory as arguments
 @ARGV=grep { -f and -r } <*>;
}
Real work of script begins below

The <*> expression is a use of the globbing operator (see table 7.14) to generate an
initial set of filenames, which are then filtered by grep for the desired attributes.

Other expressions commonly used to generate argument lists in Perl (and the
Shell) are shown in section 9.3, which will give you additional ideas of what you
could plug into a script’s BEGIN block. You can’t always automatically generate the
desired arguments for every script, but for those cases where you can, you should keep
these techniques in mind.

Next, you’ll learn about an important control structure that’s provided in every
programming language. We’ve managed without it thus far, due to the ease of using
Perl’s logical operators in its place, but now you’ll see how to arrange for conditional
execution in a more general way.

8.3 Executing code conditionally
with if/else
The logical or and logical and operators were adequate to our needs for controlling
execution in part 1, where you saw many statements like this one:

$pattern or warn "Usage: $0 -pattern='RE' filename\n" and exit 255;

However, this technique of using the True/False value of a variable ($pattern) to
conditionally execute two functions (warn and exit) has limitations. Most impor-
tant, it doesn’t deal well with cases where a True result should execute one set of state-
ments and a False result a different set.

So now it’s time to learn about more widely applicable techniques for controlling
two-way and multi-way branching. Table 8.3 shows the Shell and Perl syntaxes for
two-way branching using if/else, with layouts that are representative of current
programming practices. The top panel shows the complete syntax, which includes
branches for both the True (“then”) and False (else) cases of the condition. In
EXECUTING CODE CONDITIONALLY WITH if/else 259

both languages, the else branch is optional, allowing that keyword and its associated
components to be omitted. The table’s bottom panel shows condensed forms of these
control structures, which save space in cases where they’ll fit on one line.

We’ll examine a realistic programming example that uses if/else next, and com-
pare it to its and/or alternative.

8.3.1 Employing if/else vs. and/or

Here’s a code snippet that provides a default argument for a script when it’s invoked
without the required one, and terminates with an error message if too many argu-
ments are supplied:

if (@ARGV == 0) {
 warn "$0: Using default argument\n";
 @ARGV=('King Tut');
}

else {
 if (@ARGV > 1) { # nested if
 warn "Usage: $0 song_name\n";
 exit 255;
 }
}

For comparison, here’s an equivalent chunk of code written using the logical and/or
approach. It employs a style of indentation that emphasizes the dependency of each
subsequent expression on the prior one:

@ARGV == 0 and
 warn "$0: Using default arguments\n" and
 @ARGV=('King Tut') or
 @ARGV > 1 and
 warn "Usage: $0 song_name\n" and
 exit 255;

This example illustrates the folly of stretching the utility of and/or beyond reason-
able limits, which makes the code unnecessarily hard to read and maintain. Moreover,

Table 8.3 The if/else construct

Shell
a Perl

if condition
then commands
else commands
fi

if (condition) {
 code;
}
else {
 code;
}

if cond; then cmds; else cmds; fi if (cond) { code; } else { code; }

a. In the bottom panel, cond stands for condition and cmds stands for commands.
260 CHAPTER 8 SCRIPTING TECHNIQUES

matters would get even worse if you needed to parenthesize some groups of expres-
sions in order to obtain the desired result.

The moral of this comparison is that branching specifications that go beyond the
trivial cases are better handled with if/else than with and/or—which of course is
why the language provides if/else as an alternative.

Perl permits additional if/elses to be included within if and else branches,
which is called nesting (as depicted in the left side of table 8.4). However, in cases
where tests are performed one after another to select one branch out of several for exe-
cution, readability can be enhanced and typing can be minimized by using the elsif
contraction for “else { if” (see the table’s right column).

Just remember that Perl’s keyword is elsif, not elif, as it is in the Shell.
Next, we’ll look at an example of a script that does lots of conditional branching,

using both techniques.

8.3.2 Mixing branching techniques: The cd_report script

The purpose of cd_report is to let the user select and display input records that rep-
resent CDs by matching against the various fields within those records. Through use
of the following command-line switches, the user can limit his regexes to match
within various portions of a record, and request a report of the average rating for the
group of selected CDs:

Table 8.4 Nested if/else vs. elsif

if/else within else elsif alternative

if (A) {
 print 'A case';
}
else { # this brace disappears -->
 if (B) {
 print 'B case';
 }
 else {
 print 'other case';
 }
} # this brace disappears -->

if (A) {
 print 'A case';
}

elsif (B) {
 print 'B case';
}
else {
 print 'other case';
}

• -search='RE' Search for RE anywhere in record

• -a='RE' Search for RE in the Artist field

• -t='RE' Search for RE in the Title field

• -r Report average rating for selected CDs

• (default) Print all records, under column headings
EXECUTING CODE CONDITIONALLY WITH if/else 261

Let’s try some sample runs:

$ cd_report rock # prints whole file, below column-headings
TITLE ARTIST RATING
Dark Horse George Harrison 3
Electric Ladyland Jimi Hendrix 5
Dark Side of the Moon Pink Floyd 4
Tommy The Who 4
Weasels Ripped my Flesh Frank Zappa 2

Processed 5 CD records

That invocation printed the entire rock file, because by default all records are
selected. This next run asks for a report of CDs that have the word “dark” in their
Title field:

$ cd_report -t='\bdark\b' rock
TITLE ARTIST RATING
Dark Horse George Harrison 3
Dark Side of the Moon Pink Floyd 4

Processed 5 CD records

As you can tell from what got matched and printed, the script ignores case differences.
The next invocation requests CDs having “hendrix” in the Artist field or “weasel”

anywhere within the record, along with an average-rating report:

$ cd_report -a='hendrix' -search=weasel -r rock
TITLE ARTIST RATING
Electric Ladyland Jimi Hendrix 5
Weasels Ripped my Flesh Frank Zappa 2

 Average Rating for 2 CDs: 3.5

Processed 5 CD records

Now that I’ve piqued your interest, take a peek at the script, shown in listing 8.1.
Notice its strategic use of the if/else and logical and/or facilities, to exploit the
unique advantages of each. For example, if/else is used for selecting blocks of code
for execution (e.g., Lines 18–20, 21–33), logical and is used for making matching
operations conditional on the defined status of their associated switch variables
(Lines 23–25), and logical or is used for terminating a series of tests (Lines 23–25) as
soon as the True/False result is known.

Let’s examine this script in greater detail. First, the shebang line includes the pri-
mary option cluster for “field processing with custom separators” (using tabs), plus
the s option for switch processing (see table 2.9).

Then, the initialization on Line 6 tells the program how many tab-separated fields
to expect to find in each input record, so it can issue warnings for improperly format-
ted ones. The next line sets $sel_cds to 0, because if Line 29 isn’t executed, it
would otherwise still be undefined by Line 38 and trigger a warning there.
262 CHAPTER 8 SCRIPTING TECHNIQUES

 1 #! /usr/bin/perl -s -wnlaF'\t+'
 2
 3 our ($search, $a, $t, $r); # make switches optional
 4
 5 BEGIN {
 6 $num_fields=3; # number of fields per line
 7 $sel_cds=0; # so won't be undefined in END, if no selections
 8
 9 $options=(defined $r or defined $a or # any options?
10 defined $t or defined $search);
11
12 print "TITLE\t\t\tARTIST\t\tRATING"; # print column headings
13 }
14
15 ##### BODY OF PROGRAM, EXECUTED FOR EACH LINE OF INPUT #####
16 ($title, $artist, $rating)=@F; # load fields into variables
17 $fcount=@F; # get field-count for line
18 if ($fcount != $num_fields) { # line improperly formatted
19 warn "\n\tBad field count of $fcount on line #$.; skipping!";

20 }
21 else { # line properly formatted
22 $selected=(# T/F to indicate status of current record
23 defined $t and $title =~ /$t/i or # match with title?
24 defined $a and $artist =~ /$a/i or # match with artist?
25 defined $search and /$search/i or # match with record?
26 ! $options # without options, all records selected
27);
28 if ($selected) { # the current CD was selected
29 $sel_cds++; # increment #CDs_selected
30 $sum_ratings+=$rating; # needed for -r option
31 print; # print the selected line
32 }
33 }
34 END {
35 $num_cds=$.; # maximum line number = #lines read
36 if ($r and $sel_cds > 0) {
37 $ave_rating=$sum_ratings / $sel_cds;
38 print "\n\tAverage Rating for $sel_cds CDs: $ave_rating";
39 }
40 print "\nProcessed $num_cds CD records"; # report stats
41 }

Line 9 sets the variable $options to a True or False value to indicate whether the
user supplied any switches.

The BEGIN block ends with Line 12, which prints column headings to label the
upcoming output.

Listing 8.1 The cd_report script
EXECUTING CODE CONDITIONALLY WITH if/else 263

Line 16, the first one that’s executed for each input record, loads its fields into
suitably named variables. Then, the field count is loaded into $fcount, so it can be
easily compared to the expected value in $num_fields and a warning can be issued
on Line 19, if the record is improperly formatted.

If the “then” branch containing that warning is executed, the else branch com-
prising the rest of the program’s body is skipped, causing the next line to be read and
execution to continue from Line 16. But if the record is determined to have three
fields on Line 18, the else branch on Line 21 is taken, and a series of conditional
tests is conducted to see whether the current record should be selected for printing—
as indicated by $selected being set to True (Line 22).

Let’s look more closely at these tests. Line 23 senses whether the “search in the
Title field” option was provided; if so, it employs the user-supplied pattern to test for
a match with $title. If that fails, matches are next looked for in the $artist and
$_ variables—if requested by the user’s switches. Because logical ors connect this
series of “defined and match” clauses, the first True result (if any) circumvents the
remaining tests. If no option was provided by the user, execution descends through
the “defined and match” clauses and evaluates the ! $options test on Line 26,
which sets $selected to True to cause the current CD’s record to be selected.

If the current record was selected, Line 29 increments the count of selected
CDs, and its rating is added to the running total before the record is printed on
Line 31.

The cycle of processing then resumes from Line 16 with the next record, until all
input has been processed.

Because an average can’t be computed until all the individual ratings have been
totaled, that calculation must be relegated to the END block. Line 36 checks whether
an average rating report was requested (via the -r switch); if that’s so, and at least one
CD was selected, the average rating is computed and printed.

As a final step, the script reports the number of records read. To enhance readabil-
ity, the value of “$.” is copied into a suitably named variable on Line 35 before its
value is printed on Line 40.

8.3.3 Tips on using if/else

The most common mistake with the if/else construct is a syntax error: leaving out
the closing right-hand brace that’s needed to match the opening left-hand brace, or
vice versa. In common parlance, this is called not balancing the curly braces (or having
an imbalance of them). Users of the vi editor can get help with this problem by plac-
ing the cursor on a curly brace and pressing the % key, which causes the cursor to
momentarily jump to the matching brace (if any).

Another common mistake beginners make is appending a semicolon after the
final curly brace of if/else. That’s somewhat gratifying to their teacher, because
this reveals their awareness that semicolons are required terminators for Perl state-
ments and critical elements of syntax. However, curly-brace delimited code blocks
264 CHAPTER 8 SCRIPTING TECHNIQUES

are constructs that encase statements, rather than statements themselves, so they
don’t rate the semicolon treatment.

For help in spotting these syntax errors and others, try running your code through
a beautifier. You can learn about and download the standard Perl beautifier from
http://perltidy.sourceforge.net.7

As a final note, Perl, unlike some of its relatives, doesn’t permit the omission of the
curly braces in cases where only a single statement is associated with a condition:

if (condition) statement; # WRONG!

if (condition) { statement; } # {}s are mandatory in Perl

So get used to typing those curly braces—without terminating semicolons!
Having just discussed an important flow-control structure that’s highly con-

ventional—which is an unusual occurrence in a Perl book—we will regain our
Perlistic footing by looking next at some valuable yet unconventional operators
for string manipulation.

8.4 WRANGLING STRINGS WITH CONCATENATION
AND REPETITION OPERATORS

Table 8.5 shows some handy operators for strings that we haven’t discussed yet. The
concatenation operator joins together the strings on its left and right. It comes in handy
when you need to assemble a longer string from shorter ones, or easily reorder the
components of a string (as you’ll see shortly).

The repetition operator duplicates the specified string the indicated number of
times. It can save you a lot of work when, for example, you want to generate a row of
dashes across the screen—without typing every one of them.

The concatenation operator doesn’t get much use in Minimal Perl, for two rea-
sons. First, our routine use of the l option eliminates the most common need for it

7 To learn about the first Perl beautifier, see http://TeachMePerl.com/perl_beautifier.html.

Table 8.5 String operators for concatenation and repetition

Name Symbol Example Result Explanation

Concatenation
operator

. $ab='A' . 'B';
$abc=$ab . 'C';

$abc='A';
$abc.='B';
$abc.='C';

AB
ABC

A
AB
ABC

The concatenation operator joins
together (concatenates) the strings on
its left and right sides. When used in
its compound form with the
assignment operator (.=), it causes
the string on the right to be appended
to the one on the left.

Repetition
operator

x $dashes='-' x 4;
$spaces=' ' x 2;

---- The repetition operator causes the
string on its left to be repeated the
number of times indicated on its right.
WRANGLING STRINGS WITH CONCATENATION AND REPETITION OPERATORS 265

http://TeachMePerl.com/perl_beautifier.html

that others have. Second, in other cases where this operator is commonly used, it’s
often simpler to use quotes to get the same result.

For example, consider this code sample, in which random_kind_of_chow is
an imaginary user-defined function that returns a “chow” type (“mein”, “fun”,
“Purina”, etc.):

$kind=random_kind_of_chow;
$order="large chow $kind"; # e.g., "large chow mein"

That last statement, which uses double quotes to join the words together, is easier to
read and type than this equivalent concatenation-based alternative:

$order='large ' . 'chow ' . $kind;

But you can’t call functions from within quotes, so the concatenation approach is used
in cases like this one, where the words returned by two functions need to be joined
with an intervening space:

$order=random_preparation . ' ' . random_food; # flambéed Vegemite?

On the other hand, concatenation using the compound version (.=) of the concate-
nation operator8 is preferred over quoting for lines that would otherwise be incon-
veniently long.

For instance, this long assignment statement

$good_fast_things='cars computers action delivery recovery
reimbursement replies';

is less manageable than this equivalent pair of shorter ones:

$good_fast_things='cars computers action delivery';
$good_fast_things.=' recovery reimbursement replies';

The syntax used in that last statement

$var.=' new stuff';

appends ' new stuff' to the end of the variable’s existing contents.
The compound form of the concatenation operator is sometimes also used with

short strings, in applications where it may later be necessary to independently change,
conditionally select, or reorder them. For instance, here’s a case where the tail end of
a message needs to be conditionally selected, to optimally tailor the description of a
product for different groups of shoppers:

$sale_item='ONE HOUR SALE on:';
if ($funky_web_site) {
 $sale_item.=' pre-weathered raw-hemp "gangsta" boxers';

}
else { # for posh sites
 $sale_item.=' hand-rubbed organic natural-fiber underpants';
}

8 See the last panel of table 5.12 for more information.
266 CHAPTER 8 SCRIPTING TECHNIQUES

This use of the concatenation operator is also helpful for aggregating strings that
become available at different times during execution, as you’ll see next.

8.4.1 Enhancing the most_recent_file script

Remember the most_recent_file script, which provides a robust replacement for
find | xargs ls -lrdt when sorting large numbers of filenames?9 It suffers from
the limitation of showing only a single filename as the “most recent,” when others are
tied with it for that status.

This shortcoming is easily overcome. Specifically, all that’s required to enhance
most_recent_file to handle ties properly is to take its original code

if ($mtime > $newest) { # If current file is newest yet seen,
 $newest=$mtime; # remember file's modification time, and
 $name=$_; # remember file's name
}

and add to it the following elsif clause, which arranges for each filename having the
same modification time to be appended to the $name variable (after a newline for sep-
aration), using the compound-assignment form of the concatenation operator:

elsif ($mtime == $newest) { # If current file ties newest yet seen
 $name.="\n$_"; # append new tied filename after existing one(s)
}

Next we’ll look at a code snippet that, when used as intended, will annoy law-abiding
Netizens with its deceitful claims and awphul shpelink mistakes. Its redeeming quali-
ties are that it illustrates some important points about the relative precedence of the
concatenation and repetition operators, and the code-maintenance advantages of
using the concatenation operator.

8.4.2 Using concatenation and repetition operators together

Here’s a code snippet that uses both the repetition and concatenation operators in
their simple forms, as well as the concatenation operator in its compound assign-
ment form:

$pitch=($greedy_border='$' x 68 . "\n"); # initializes both variables

$pitch.="\t\t You con belief me, becauze I am laywers. \n";
$pitch.="\t\tYou can reely MAKE MONEY FA\$T with our cystem!\n";
$pitch.= $greedy_border;

print $pitch;

In the first statement, because the string repetition operator (x) has higher prece-
dence than the concatenation operator, the $ symbol gets repeated 68 times before

9 See listing 6.1.
WRANGLING STRINGS WITH CONCATENATION AND REPETITION OPERATORS 267

the newline is appended to it. Then that string is assigned to $greedy_border,
and also to $pitch.

Here’s the output from print $pitch:

$$$
 You con belief me, becauze I am laywers.
 You can reely MAKE MONEY FA$T with our cystem!
$$$

The $greedy_border variable is used to draw a line of $ signs across the screen,
using the string repetition operator.10 Note that newlines must be added to all but the
last line appended to the variable $pitch, because the l invocation option only sup-
plies a single newline at the end of print’s argument list.

So, you ask, what’s so great about this piecemeal-concatenation approach to string
building that makes it so popular with HTML jockeys? Simply this: If a later report
from a focus group indicates that the “MAKE MONEY FA$T” line would work better
coming before the “laywers” claim, the affected sentences can be reordered by simply
exchanging the associated code lines:11

Before exchange:
$pitch.="\t\t You con belief me, becauze I am laywers. \n";
$pitch.="\t\tYou can reely MAKE MONEY FA\$T with our cystem!\n";

After exchange:
$pitch.="\t\tYou can reely MAKE MONEY FA\$T with our cystem!\n";
$pitch.="\t\t You con belief me, becauze I am laywers. \n";

See chapter 12’s listing 12.7 for an example of building up a complete HTML docu-
ment using this piecemeal-concatenation approach.

8.4.3 Tips on using the concatenation operator

The most common mistake when using the concatenation operator to build up a
string one piece at a time is this: accidentally using a plain assignment operator when
you should use the compound concatenation operator instead. For example, the sec-
ond statement of this pair correctly appends a second string after the first one in the
variable $Usage to build up the desired usage message:

$Usage="Usage: $0 [-f] [-i] [-l] [-v] [-n] [-d]";
$Usage.=" [-p|-c] [-m] [-s] [-r] 'RE' [file...]\n"; # Right.

10 With a slight change, you can determine the current window-size of an emulated terminal (such as an
xterm) and supply the appropriate repetition value automatically (see listing 8.4).

11 In vi, for example, all it takes is three keystrokes (ddp) to switch these lines, after placing the cursor
on the upper line.
268 CHAPTER 8 SCRIPTING TECHNIQUES

But this mistaken variation overwrites the first string with the second one:

$Usage="Usage: $0 [-f] [-i] [-l] [-v] [-n] [-d]";
$Usage=" [-p|-c] [-m] [-s] [-r] 'RE' [file...]\n"; # WRONG!

So when you’re using this coding technique and you find that the earlier portions of
the built-up string have mysteriously disappeared, here’s how to fix the problem. Locate
the assignment statement that loads what appears at the beginning of the incomplete
string (in this case, “ [-p|-c] ...”), and change its “=” to the required “.=”.

Next, we’ll discuss an especially useful programming feature that Perl inherited
from the Shell, which allows the output of OS commands to be manipulated within
Perl programs.

8.5 INTERPOLATING COMMAND OUTPUT
INTO SOURCE CODE

The Shell inherited a wonderful feature from the venerable MULTICS OS that it calls
command substitution. It allows the output of a command to be captured and inserted
into its surrounding command line, as if the programmer had typed that output there
in the first place. In a sense, it’s a special form of output redirection, with the current
command line being the target of the redirection.

Let’s say you needed a Shell script to report the current year every time it’s run.
One way to implement this would be to hard-wire the (currently) current year in an
echo command, like so:

echo 'The year is 2006' # Output: The year is 2006

But to prevent the frenetic refrain of your beeper from rudely awakening you the next
time January rolls around, you’d be better off writing that line as follows:

echo "The year is `date +%Y`"

Here’s how it works. The back-quotes (or grave accents) and the string they enclose
constitute a command-substitution request. It’s job is to write date’s output over
itself, making this the command that’s ultimately executed:

echo "The year is 2006" # `date ...` replaced by its own output

The benefit is that a script that derives the year through command substitution always
knows the current year—allowing its maintainer to sleep through the night.

Perl also provides this valuable service, but under the slightly different name of
command interpolation. Table 8.6 shows the syntax for typical uses of this facility in
the Shell and Perl.12

12 As indicated in the left column of the table, the Bash and Korn shells simultaneously support an alter-
native to the back-quote syntax for command substitution, of the form $(command).
INTERPOLATING COMMAND OUTPUT INTO SOURCE CODE 269

When a Unix shell processes a command substitution, a shell of the same type (Bash,
C-shell, etc.) interprets the command. In contrast, with Perl, an OS-designated com-
mand interpreter (/bin/sh on Unix) is used.

As indicated in the third row of the table, when command substitution (or inter-
polation) is used to provide arguments to another command (or function), the argu-
ments are constructed differently in the two languages. The Shell normally presents
each word separately, but it will use the entire output string as a single argument if
the command substitution is double quoted. Perl, on the other hand, presents each
record as a separate argument in list context, or all records as a single argument in sca-
lar context.

Another difference is that the Shell automatically strips off the trailing newline
from the command’s output, and Perl doesn’t. To make Perl act like the Shell, you
can assign the output to a variable and then chomp it (see section 7.2.4).

Because of these differences, the corresponding Shell and Perl examples shown in
table 8.6 don’t behave in exactly the same way. However, Perl can generally be trusted

Table 8.6 Command substitution/interpolation in the Shell and Perl

Shell
a Perl Explanation

var=`cmd`
OR
var=$(cmd)

$var=`cmd` The cmd is processed for variable
substitutions as if it were in double quotes,
and then it’s executed, with the output
being assigned in its entirety to the
variable. cmd ’s exit value is stored in the
“$?” variable.

array=(`cmd`)
OR
array=($(cmd))

@array=`cmd` cmd ’s output is processed as described
above, and then “words” (for the Shell) or
$/ separated records (for Perl) are
assigned to the array.

cmd2 `cmd`
OR
cmd2 $(cmd)

function `cmd`
OR
function scalar `cmd`

cmd is processed, and then, in the Shell
case, the individual words of the output are
supplied to cmd2 as arguments. In Perl’s
list context, each record of the output is
submitted to function as a separate
argument, whereas in scalar context, all
output is presented as a single argument.

"`cmd`"
OR
"$(cmd)"

`cmd` In the Shell, double quotes are needed to
protect cmd ’s output from further
processing. In Perl, that protection is always
provided, and double quotes aren’t allowed
around command interpolations. The Shell
examples yield all of cmd ’s output as one
line, whereas the Perl example yields a list
of $/ separated records.

a. cmd and cmd2 represent OS commands, var/$var and array/@array Shell/Perl variable names, and
function a Perl function name.
270 CHAPTER 8 SCRIPTING TECHNIQUES

to give you what you want by default—and anything else you may need, with a little
more coaxing.13

The major differences in the results provided by the languages are, as usual, due
to the Shell’s propensity for doing additional post-processing of the results of substi-
tutions (as discussed earlier). We’ll discuss this issue in greater depth as we examine
some sample programs in upcoming sections.

The command we’ll discuss next is held in high esteem by Shell programmers,
because it makes output sent to terminal-type devices look a lot fancier—and, conse-
quently, makes those writing the associated scripts seem a lot cleverer!

8.5.1 Using the tput command

The Unix utility called tput can play an important role in Shell scripts designed to
run on computer terminals or their emulated equivalents (e.g., an xterm or
dtterm). For instance, tput can render a script’s error messages in reverse video, or
make a prompt blink to encourage the user to supply the requested information.

Through use of command interpolation, Perl programmers writing scripts for
Unix systems can also use this valuable tool.14

The top panel of table 8.7 lists the most commonly used options for the tput
command. For your convenience, the ones that work on the widest variety of termi-
nals (and emulators) are listed nearest the top of each of the table’s panels.

13 I was put off by these disparities when I first sat down to learn Perl, but now I can’t imagine how I ever
put up with the Shell, and I’m pleased as punch with Perl.

14 There’s a Perl module (Term::Cap) that bypasses the tput command to access the Unix terminal in-
formation database directly, but it’s much easier to run the Unix command via command interpolation
than to use the module.

Table 8.7 Controlling and interrogating screen displays using tput options

Display mode Enabling option Disabling option

standout smso rmso

underline smul rmul

bold bold sgr0

dim dim sgr0

blink blink sgr0

Terminal information Option Explanation

columns cols Reports number of columns.

lines lines Reports number of lines.
INTERPOLATING COMMAND OUTPUT INTO SOURCE CODE 271

Highlighting trailing whitespaces with tput

People who do a lot of grepping in their jobs have two things in common: They’re fas-
tidious about properly quoting grep’s pattern argument (otherwise they’d wind up
unemployed), and they hate text files that have stray whitespace characters at their
ends. You’ll see how tput can help them in a moment. But first, why do they view
files having dangling whitespaces with contempt? Because such files thwart attempts
that would otherwise be successful to match patterns at the ends of their lines:

grep 'The end!$' naughty_file # Hope there's no dangling space/tab!

Because the $ metacharacter anchors the match to the end of the line, there’s no pro-
vision for extra space or tab characters to be present there. For this reason, the lack of
any matches could mean either that no line ends with “The end!” or that the lines that
do visibly end with that string have invisible whitespace(s) afterwards.

Figure 8.2 shows how tput can help with a simple script that makes the presence
of dangling whitespace characters excruciatingly clear. It uses “standout” mode to
draw the user’s attention to the lines that need to be pruned, to make them safe for
grepping.

Listing 8.2 presents the script. As with many of the sed-like scripts covered in
chapter 4, this one uses the p option to automatically print the input lines after the
substitution operator processes them.

 1 #! /usr/bin/perl -wpl
 2
 3 BEGIN {
 4 $ON =`tput smso`; # start mode "standout"
 5 $OFF=`tput rmso`; # remove mode "standout"
 6 }
 7 # Show "<WHITESPACE>" in reverse video, to attract eyeballs
 8 s/[<SPACE>\t]+$/$ON<WHITESPACE>$OFF/g;

The script works by replacing trailing sequences of spaces and/or tabs with the string
“<WHITESPACE>”, which is rendered in standout mode (usually reverse video) for
additional emphasis.15 Once the presence of dangling whitespace has been revealed by

Figure 8.2

Output from the

highlight_trailing_ws script

Listing 8.2 The highlight_trailing_ws script

15 You might think it sufficient to highlight the offending whitespace characters themselves, rather than
an inserted word, but reverse video mode doesn’t affect the display of tabs on most terminals.
272 CHAPTER 8 SCRIPTING TECHNIQUES

this tool, the “data hygiene” team could give some refresher training to the “data
entry” team and have them correct the offending lines.

This is a good example of using tput to draw the user’s attention to important
information on the screen, and I’m sure you’ll find other places to use it in your own
programming.

Command interpolation is used to solve many other pesky problems in the IT
workplace. In the next section, you’ll see how it can be used to write a grep-like
script that handles directory arguments sensibly, by searching for matches in the files
within them.

8.5.2 Grepping recursively: The rgrep script

As mentioned in chapter 6, a recursive grep, which automatically descends into sub-
directories to search the files within them, can be a useful tool. Although the GNU
grep provides this capability through an invocation option, a Perl-based grepper has
several intrinsic advantages, as discussed in section 3.2. What’s more, writing a script
that provides recursive grepping will allow us to demonstrate some additional fea-
tures of Perl that are worth knowing.

For starters, let’s observe a sample run of the rgrep script, whose code we’ll exam-
ine shortly. In the situation depicted, the Linux superuser was having trouble with a
floppy disk, and knew that some file(s) in the /var/log directory would contain
error reports—but he wasn’t sure which ones:

$ rgrep '\bfloppy\b' /var/log # output edited for fit
/var/log/warn:
kernel: floppy0: data CRC error: track 1, head 1, sector 14
/var/log/messages:
kernel: I/O error, dev 02:00 (floppy)

These reports, which were extracted from the indicated files under the user-specified
directory, indicate that the diskette was not capable of correctly storing data in certain
sectors.16 The script can be examined in listing 8.3.

 1 #! /usr/bin/perl -wnl
 2
 3 BEGIN {
 4 $Usage="Usage: $0 'pattern' dir1 [dir2 ...]";
 5 @ARGV >= 2 or warn "$Usage\n" and exit 255;
 6
 7 $pattern=shift; # preserve pattern argument
 8
 9 # `@ARGV` treated like "@ARGV"; elements space-separated
10 @files=grep { chomp; -r and -T } # <-- find feeds files
11 `find @ARGV -follow -type f -print`;

16 Which is one reason this venerable but unreliable storage technology has become nearly obsolete.

Listing 8.3 The rgrep script
INTERPOLATING COMMAND OUTPUT INTO SOURCE CODE 273

12 @files or warn "$0: No files to search\n" and exit 1;
13 @ARGV=@files; # search for $pattern within these files
14 }
15 # Because it's very likely that we'll search more than one file,
16 # prepend filename to each matching line with printf
17
18 /$pattern/ and printf "$ARGV: " and print;

Because this script requires a pattern argument and at least one directory argument,
the argument count is checked in Line 5 to determine if a warning and early termina-
tion are in order. Then, Line 7 shifts the pattern argument out of the array, leaving
only directory names within it.

The find command on Line 11 appears within the back quotes of command inter-
polation, but these quotes are treated like double quotes as far as variable interpolations
are concerned. The result is that @ARGV is turned into a series of space-separated direc-
tory names, allowing the Shell to see each as a separate argument to find, as desired.
The -follow option of find ensures that arguments that are symbolic links (such
as /bin on modern UNIX systems) will be followed to their targets (such as /usr/
bin), allowing the actual files to be processed. The result is the conversion of the user-
specified directories into a list of the regular files that reside within them (or their sub-
directories), and the presentation of that list to grep as its argument list.

In Line 10, grep filters out the filenames emitted by find that are not readable
text files.17 But before applying the -T test to $_, which holds each filename in turn,
chomp is employed to remove the newline that find appends to each filename.

Line 12 ensures that there’s at least one searchable filename before proceeding, to
avoid surprising the user by defaulting to STDIN for input—which would be highly
unexpected behavior for a program that takes directory arguments!

Finally, Line 18 attempts the pattern match, and on success, it prints the name of
the file—because multiple files will usually be searched—along with the matching line.

Although this script is useful and educational, you won’t be seeing it again.
That’s because it will be assimilated by a grander, more versatile Perl grepper, later
in this chapter.

8.5.3 Tips on using command interpolation

Perl’s command-interpolation mechanism is different in some fundamental ways from
the Shell’s command substitution. For one thing, the Shell’s version works within
double quotes, allowing literal characters and variables to be mixed within the back-
quoted command:

$ echo "Testing: `tput smul`Shell"
Testing: Shell

17 The –T operator has to read the file to characterize its contents, so it doesn’t return True unless the file
is readable—making –r redundant. Accordingly, we won’t show –r with –T from here on.
274 CHAPTER 8 SCRIPTING TECHNIQUES

In contrast, Perl treats back-quotes within double quotes as literal characters, requir-
ing individual components to be separately quoted:

print 'Testing: ', `tput smul`, 'Perl';

Testing: Perl

Another difference is that what’s tested for a back-quoted command in conditional
context is the True/False value of its output in Perl, but of the command’s exit value in
the Shell:

o=`command` || echo 'message' >&2 # warns if command’s $? False

$o=`command` or warn "message\n"; # warns if output in $o False

You can arrange for Perl to do what the Shell does, but because the languages have
opposite definitions of True and False, this involves complementing command’s exit
value. With this in mind, here’s the Perl counterpart for the previous Shell example:

$o=`command` ; ! $? or warn 'message'; # warns if $? False

And here’s the same thing written as an if:

if ($o=`command`; ! $?){ warn 'message'; } # warns if $? False

As mentioned earlier, Perl has a simpler processing model than the Shell for quoted
strings, which has the benefit of making the final result easier to predict.18 One con-
spicuous side-effect of that tradeoff is Perl’s inability to allow command interpolation
requests to be nested within double quotes—but that’s a compromise worth making.

Next, we’ll talk about the system function, because no matter how richly
endowed with built-in resources your programming language may be, you’ll still want
to run OS commands from it now and again.

8.6 EXECUTING OS COMMANDS USING system
In cases where you want to use an OS command in a way that doesn’t involve captur-
ing its output within the Perl program—such as simply displaying its output on the
screen—the system function is the tool of choice. Table 8.8 shows sample invoca-
tions of system, which is used to submit a command to the OS-dependent com-
mand interpreter (/bin/sh on Unix) for execution.

18 See http://TeachMePerl.com/DQs_in_shell_vs_perl.html for further details.

Shell

Perl
EXECUTING OS COMMANDS USING system 275

http://TeachMePerl.com/DQs_in_shell_vs_perl.html

As indicated in the table, it’s important to carefully quote the command presented as
system’s argument, because

• special characters within the command may otherwise cause Perl syntax errors;

• judicious use of single quotes, double quotes, and/or backslashes may be
required to have the command reach the Shell in the proper form.

Let’s say you want to do a long listing on a filename that resides in a Perl variable. For
safety, the filename should appear in single quotes at the Shell level, so if it contains
whitespace characters, it won’t be interpreted as multiple filenames.

The appropriate invocation of system for this case is

system "ls -l '$filename'"; # filename contains: ruby tuesday.mp3

which arranges for the Shell to see this:

ls -l 'ruby tuesday.mp3'

The double quotes around system’s argument allow the $filename variable to be
expanded by Perl, while ensuring that the single quotes surrounding it are treated as
literal characters. When the Shell scans the resulting string, the (now unquoted) single
quotes disable word-splitting on any embedded whitespace, as desired.19

As shown in the last row of table 8.8, when you need to test whether a system-
launched command has succeeded or failed, there is a complication—on Unix, the
value returned by system (and simultaneously placed in “$?”) is based on the Shell’s
definitions of True and False, which are the opposite of Perl’s.

The recommended workaround is to complement that return value using the “!”
operator and then write your branching instructions in the normal manner. For example:

system "grep 'stuff' 'file'";
! $? or warn "Sorry, no stuff\n";

Table 8.8 The system function

Example Explanation

system 'command(s)'; command(s) in single quotes are submitted without modification
for execution.

system "command(s)"; command(s) in double quotes are subjected to variable
interpolation before being executed. In some cases, single quotes
may be required around command arguments to prevent the Shell
from modifying them.

system 'command(s)';
! $? or warn 'failed';

Just as “function or warn” reports the failure of a Perl
function, ”! $? or warn” reports a failed command run by
system. The ”!” converts the Unix True/False value to a Perl-
compatible one.

19 For a more detailed treatment of the art of multi-level quoting, see http://TeachMeUnix.com/
quoting.html.
276 CHAPTER 8 SCRIPTING TECHNIQUES

http://TeachMeUnix.com/quoting.html
http://TeachMeUnix.com/quoting.html

Next, we’ll look at two programs that use system to format “news flashes” on
the screen.

8.6.1 Generating reports

Instead of returning a string that adjusts the terminal’s display mode, tput’s lines
and cols options (see table 8.7, bottom panel) return the number of lines and col-
umns on the terminal. The latter option is useful for drawing borders across the
screen, among other things. These options also work with many terminal emulators
(such as xterms) to report their current dimensions.

Figure 8.3 shows two sample runs of the news_flash script, which uses tput to
print a heading across the width of the user’s terminal. As you can see, the heading is
centered within each of the differently sized windows, and the dashed lines occupy
each window’s full width.

Listing 8.4 shows the script.

 1 #! /usr/bin/perl -wl
 2
 3 $width=(`tput cols` or 80); # supply a reasonable default
 4 $line='-' x $width; # make a line the width of screen
 5
 6 $heading='NEWS FLASH:';
 7 $heading.=' ' . `date '+%X'`; # append date's formatted output
 8 chomp $heading; # remove date-added newline
 9
10 # Calculate offset from left, to center the string
11 $heading_length=length $heading;
12 $offset=($width - $heading_length) / 2;
13
14 # Offset may have decimal component, but Perl will
15 # convert to integer automatically for use with "x" operator
16 $padding=' ' x $offset; # generate spaces for calculated offset
17
18 print "$line"; # dashed line
19 print "$padding$heading"; # the centered heading
20 print "$line\n"; # dashed line

Figure 8.3

Output from the news_flash script

Listing 8.4 The news_flash script
EXECUTING OS COMMANDS USING system 277

The script uses command interpolation rather than the implicit loop to obtain the
information it needs, so it doesn’t need the n option or its associated BEGIN block. It
works by constructing a dashed line that’s the width of the screen (Lines 3–4), build-
ing a heading string (Lines 6–8), determining its length (Line 11), calculating the off-
set needed to center it (Line 12), and then printing the left-padded heading string
(Line 19) between dashed lines (Lines 18, 20).

By being more creative in the use of tput, and with a little help from system, we
can make the heading look even fancier. Figure 8.4 shows an enhanced version, which
uses both reverse video and underlining to decorate the heading, and formats the text
of a news article to fit within the screen width.20

The script is shown in listing 8.5.
As indicated in the shebang line, the script supports a command-line switch (via

-s) called -debug, which is declared on Line 3. It checks for a first argument that’s
the name of a text file in Line 6, and it issues a “Usage:” message and dies if it doesn’t
get one.

1 #! /usr/bin/perl -s -wl
2
3 our ($debug); # make switch optional
4
5 $file=shift; # get filename of news article
6 if (! defined $file or ! -T $file) {
7 die "Usage: $0 filename\n";
8 }
9

20 The Text::Autoformat module could reformat the string, but our emphasis in this section is on
demonstrating the use of Shell-based processing options rather than pure-Perl ones.

Figure 8.4 Output from the news_flash2 script

Listing 8.5 The news_flash2 script
278 CHAPTER 8 SCRIPTING TECHNIQUES

10 # Get the display control sequences
11 $REV=(`tput smso` or ""); # use null string by default
12 $NO_REV=(`tput rmso` or "");
13 $UL=(`tput smul` or "");
14 $NO_UL=(`tput rmul` or "");
15
16 # Get the terminal's width
17 $width=(`tput cols` or 80); # supply standard default
18 chomp $width; # remove tput's newline
19 $line='-' x $width; # make a line the width of screen
20
21 $heading='NEWS FLASH:'; # store heading string
22 $date=`date '+%X'`; # store date string
23 chomp $date; # remove date's newline
24
25 # Calculate needed offset from left, to center the string
26 $msg_length=length "$heading $date";
27 $offset=($width - $msg_length) / 2;
28
29 # Offset may have decimal component, but Perl will
30 # convert to integer automatically for use with "x" operator
31 $padding=' ' x $offset; # generate spaces for calculated offset
32

Then the script sets some variables for controlling the user’s display, taking into
account the possibility that tput might not succeed in obtaining the requested dis-
play-control string for the user’s terminal. Specifically, for each display attribute,
tput’s return value is tested for being False (to detect the “undefined” value), in
which case a null string is assigned to the variable instead.21 This allows those
variables to be used without triggering any warnings about uninitialized values, with
null-strings standing-in for any requested (but unavailable) display-control strings.

The parentheses are needed in those assignments (Lines 11–14) because the
assignment operator has higher precedence than the logical or. In consequence,
tput’s output would be assigned to each variable directly without them, leaving the
or "" portions just dangling there uselessly.

In the case of the $width variable, we can do better than fudging in a null string
for its value if tput cols returns False, so it’s set in Line 17 to the standard width
of a terminal.

The two parts of the heading line are stored in variables on Lines 21 and 22. They’re
kept separate so that the different display-control sequences can later be inserted
around them (Lines 34–35). After the usual calculations are performed to center the
heading string, it’s printed between the dashed lines generated on Lines 33 and 36.

21 There’s no need in this case to check tput’s output for being merely defined as opposed to True,
because the number 0 could never be a display-control string anyway. But here’s how the defined-
based coding would look:
$REV=`tput smso`; defined $REV or $REV="";
EXECUTING OS COMMANDS USING system 279

33 print $line; # dashed line
34 print $padding, $REV, $heading, $NO_REV, " ",
35 $UL, $date, $NO_UL; # the heading
36 print $line; # dashed line
37
38 # Assemble command in string
39 $command="fmt -$width '$file'"; # e.g., "fmt -62 Reuters.txt"
40
41 $debug and warn "Command is:\n\t$command\n\n" and
42 $command="set -x; $command"; # enable Shell execution trace
43
44 system $command; # format to fit on screen
45
46 # show error if necessary
47 ! $? or warn "$0: This command failed: $command\n";

The next step (Line 39) is to construct the Shell command that reformats the contents
of $file to fit within the terminal’s width, using the Unix fmt command. As you’ll
see in an upcoming example, storing the command in a variable is better for debug-
ging purposes than passing the command as a direct argument to system. Note that
$file is placed between Shell-level single quotes, to guard against the possibility that
it may contain characters that are special to the Shell.

The command is executed on Line 44. If it fails, a warning is issued on Line 47.
The news_flash2 script’s use of system to run fmt file is appropriate,

because it lets the command’s output flow to the screen. However, if a script needs to
repeatedly reenable reverse-video type, it’s more economical to run tput smso once
using command interpolation and save its output for later reuse, than to repeatedly
run system 'tput smso'.

In the next section, we’ll first discuss some general techniques for debugging Shell
commands issued by Perl programs, and then you’ll learn how to debug an actual prob-
lem that once afflicted news_flash2.

8.6.2 Tips on using system

The first and most important tip on successfully using system, as mentioned
before, is to make sure you provide the necessary quotes at the Shell level to allow
your command to be interpreted correctly. But no matter how hard you try, you may
mess that up, so an even more important tip is to write your script with ease of
debugging in mind.

In listing 8.5, you may have wondered why the system command for
news_flash2 was coded (Lines 39, 44) as

$command="fmt -$width '$file'";
...
system $command;
280 CHAPTER 8 SCRIPTING TECHNIQUES

rather than more directly as

system "fmt -$width '$file'";

Using a variable to hold system’s command has much to recommend it, because it
facilitates

• printing the text of the command for inspection before running it (Line 41);

• showing the text of the command in a diagnostic message (Line 47);

• conditionally enabling the Shell’s execution-trace mode for debugging purposes
(Lines 41– 42).

As a case in point, when I first tested this program, one of the lines currently visible in
listing 8.5 had gone missing (as in all such cases, I blamed vi—bad editor!). This caused
the script to print the heading, and then just stall (or hang), as shown in Figure 8.5.

I’ve been goofing up commands on Unix systems for decades—so I know that when a
program appears to be stalled, it’s not taking a siesta, but waiting patiently for the user
to type some input. So, I typed the “Huh?” line shown in figure 8.5 and pressed
<^D>. That same line was immediately sent back to the screen, followed by a message
indicating that the permissions were incorrect for the file peace. So I checked to see
if that file was readable by me, and indeed it was!

Examining the output more carefully, I took comfort in seeing that the last line on
the screen confirmed that the command, fmt -42 peace, was indeed the one I
intended—even though the filename peace had wrapped around at the screen
boundary (more on this in a moment).

Because I had written the script with debugging in mind, my next step was to run
it again using the -debug switch, as shown in figure 8.6.

The first thing that caught my eye was the strange formatting of the output under
“Command is:”. Checking the listing (Line 41), I confirmed that there was supposed
to be a newline-tab combination before the command appeared, but there definitely
shouldn’t have been a newline between the -42 option to fmt and that command’s

Figure 8.5

Strange behavior of the

news_flash2 script
EXECUTING OS COMMANDS USING system 281

intended filename argument. The Shell sees that as two separate commands, rather
than one with a final argument of 'peace'.

The Shell’s execution-trace mode,22 which was enabled by the –debug-based code
prepending set -x; to $command (Line 42), showed that the (“+”-prefixed) com-
mand being executed was just fmt -42. And that’s the problem: In the absence of the
intended filename argument, fmt was waiting for input from STDIN! After I signaled
the end of input with <^D>, the Shell tried to run a second command whose name
was peace, while reading from “line 2” of its input.

Finally—making the script’s defect even more apparent—the “command failed”
warning hit the screen-edge differently this time, allowing me to clearly see that the
filename argument (peace) had a newline before it within $command.

The reported “permission problem” was now also clear, signifying that peace
wasn’t executable, as any self-respecting command (which it isn’t) would be. I felt a
momentary urge to set its execute bit (impulsive attempts for quick fixes can be so
appealing), but I decided it would be wiser to deal with the pesky newline between
$width and the filename instead, which was the real culprit.

The remedy is to insert the chomp $width statement shown on Line 18 of
listing 8.5, which wasn’t there during my initial testing. Doing so removes the trail-
ing newline from the variable if tput’s output initializes it, without doing any harm
to the newline-free value of 80 if that is used as the initializer instead.

You can find other tips on using system, including techniques for increasing
security by preventing /bin/sh from interpreting its arguments, and for recovering

22 Execution-trace mode shows the (potentially modified) text of the original command after it’s been
subjected to nearly a dozen stages of processing, allowing the programmer to see the actual command
that’s about to be executed. Perl’s processing model is much simpler, obviating the need for any simi-
lar mechanism.

Figure 8.6

Debugging the

news_flash2 script
282 CHAPTER 8 SCRIPTING TECHNIQUES

the actual Shell exit codes from the values that are encoded in “$?”, by running
perldoc -f system.

One of the most useful and powerful services that a script can provide is to com-
pile and execute programs that it constructs on the fly—or that the user provides—
while it is already running. We’ll discuss Perl’s support for this service next.

8.7 EVALUATING CODE USING eval
Like the Shell, Perl has a code-evaluation facility. It’s called eval, and its job is to
compile and execute (i.e., “evaluate”) Perl code that becomes available during a pro-
gram’s execution.

That might sound like a description of the nexpr_p script we discussed in
chapter 5, which evaluates an expression formed from arguments supplied by the
user, but there’s a big difference.

To jog your memory, here’s nexpr_p:

#! /bin/sh
perl -wl -e "print $*;" # nexpr_p '2 * 21' —-> print 2 * 21

It uses the Shell to construct a Perl program, which Perl runs in the usual way. As an
alternative, the Perl program could have been designed to accept the specification for
the desired program as an argument and to run it on its own. That’s where the judi-
cious use of eval would be required.

Why is eval needed in such cases? Because programs contain special keywords
and symbols that are only recognized during the program’s compilation phase, which
has completed by the time the program starts running. Accordingly, the benefit of
eval is that it lets your running program handle code that wasn’t present during that
program’s initial compilation.

Examples of tokens that require eval for recognition are keywords, operators,
function names, matching and substitution operators, backslashes, quotes, commas,
and semicolons. Table 8.9 shows the syntax for eval in both the Shell and Perl.

A similarity is that eval’s argument is shown in quotes for both languages in table 8.9,
because proper quoting—with single quotes, double quotes, and/or backslashes—is
often required for success.

Some differences are that the Shell provides an integer exit code for the eval’d
command, whereas Perl provides a null string or a diagnostic message in the “$@”

Table 8.9 The eval function in the Shell and Perl

Shell Perl

eval 'command'
error=$?
(($error > 0)) &&
 echo "failed: $error" >&2

eval 'stuff'; # sets $@

$@ ne "" and
 warn "failed: $@";

N/A eval; # evaluates code in $_
EVALUATING CODE USING eval 283

variable. Also, there’s no need to make a copy of Perl’s “$@” to avoid losing access to
it, because it’s not overwritten in Perl by every subsequently evaluated expression—
as “$?” is in the Shell by every subsequently executed command. Another difference
is that only Perl allows the invocation of eval without an argument (as shown in the
table’s bottom panel), in which case it defaults to using $_.

We’ll look next at a simple yet surprisingly powerful application of eval that can
be used to good advantage by every JAPH. It’s based on a script I developed for one
of our training courses (like most of the examples in this book).

8.7.1 Using a Perl shell: The psh script

The psh script is a dramatic example of how easy it can be to write useful scripts with
eval that could never work without its help. psh, a Perl shell , prompts the user for a
Perl statement, compiles and executes that statement, returns any errors that it gener-
ated, and then continues the cycle until <^D> or exit is entered. Its major benefit is
that it lets you quickly try some Perl code without writing a script first to do so.

Some of psh’s applications are as follows:

• Rapidly developing a prototype of a small program

• Determining the proper syntax for a particular language feature

• Helping teachers demonstrate the error messages associated with certain mistakes

A sample psh session is shown in Figure 8.7.
The student whose psh session is depicted in the figure was learning how to code

the printing of a sorted list of numbers. The syntax error that Perl reported was caused
by the understandable tendency to place a comma after sort’s code-block argument
(see table 7.10). She corrected that mistake in the next line, only to find that the num-
bers were being squished together on output, which reminded her to set the “$,”
variable to a suitable separator. But this adjustment revealed that sort’s arguments
were being treated as strings rather than as numbers, leading to the replacement of the
string comparison operator by its numeric counterpart, <=> (see table 5.11).

Figure 8.7

The Perl shell as a

learning tool
284 CHAPTER 8 SCRIPTING TECHNIQUES

Voilà! The student figured out how to print a sorted list of numbers without
engaging in the cycle of repeatedly editing a file, saving it, and submitting it for exe-
cution. That makes psh a valuable tool for explorations of this type.23

Listing 8.6 shows the psh script. As with many sophisticated and powerful Perl
programs, there’s almost nothing to it!

 1 #! /usr/bin/perl -wnl
 2
 3 BEGIN {
 4 $ON=`tput smso`;
 5 $OFF=`tput rmso`;
 6 $prompt="${ON}psh>$OFF ";
 7 printf $prompt; # print initial prompt
 8 }
 9
10 eval; # uses $_ as argument, loaded by -n loop
11
12 $@ ne "" and warn $@; # if eval produced error, show it
13
14 printf $prompt; # print prompt for next input
15
16 END {
17 # If user pressed <^D> to the prompt, which leaves $_
18 # undefined, we need to print a newline so the shell's
19 # prompt will start on a fresh line.
20
21 ! defined and print ""; # -l appends newline after ""
22 }

In Lines 4–5, the back quotes of command interpolation are used around each
tput command to capture its output for assignment to a variable. Then those vari-
ables are used to render psh’s prompt in reverse video (Line 6), to make it stand out
(see figure 8.7).

Line 7 issues the first prompt. Then, for each line of input the user provides,
eval compiles and executes it (Line 10). If necessary, a diagnostic message is printed
on Line 12.

The prompt for the next input is then issued (Line 14), and the cycle of reading
and evaluating input continues until <^D>—or an input consisting of exit—requests
termination. For the exit case, the user-supplied <ENTER> serves to position the

23 In contrast, the somewhat similar Perl debugger (invoked via –d) has some very non-Perlish properties,
which—unlike psh—may require you to stop thinking Perlishly when you use it! For this reason, I
prefer to debug most problems using print statements for information gathering (as Larry does)—
with an occasional dash of psh.

Listing 8.6 The psh script
EVALUATING CODE USING eval 285

Shell’s upcoming prompt on a fresh line of the terminal, but with <^D>, the program
must supply a newline on its own. That’s handled on Line 21, where the programmer
saved some typing by exploiting the fact that $_ is the default argument for defined.

And now, without further ado, it’s time to reveal our much-ballyhooed compre-
hensive Perl grepper—which sports a name worthy of an obstetrician’s pet ferret.

8.7.2 Appreciating a multi-faceted Perl grepper:

The preg script

There’s no getting around the fact that grep is one of the most important and popu-
lar Unix utilities, despite its limitations. That’s why we’ve discussed so many Perl pro-
grams that behave like grep or one of its cousins, fgrep and egrep.

But do we really need to carry all of greperl, text_grep, perlgrep, and
rgrep around in our toolkits?24 That’s too much of a good thing. Wouldn’t it be bet-
ter to have a single script that could provide the services of any of those specialized
versions through options? It sure would, but there’s a reason you haven’t seen that
script thus far—eval is needed to make it work.

preg, short for “Perlish relative of enhanced grep”, is a veritable “Swiss Army
knife” of Perl greppers compared to what you’ve seen thus far. It supports the
following options, each of which enables a special kind of grep-like (or grep-
eclipsing) functionality:

Here are some sample runs, matching against a short version of the UNIX “fortune
cookie” file, to give you an idea of preg’s versatility:

24 Respectively covered in sections 3.13.2, 6.4.1, 8.2.1, and 8.5.2.

 -f: fgrep style; disable metacharacters in the pattern.

 -i: Ignore case differences.

 -l: List filenames that have matches (not their matching records).

 -v: Only show records that don’t contain matches.

 -n: Prepend record numbers to the records that are shown.

 -d: Display matches within their records using screen’s standout mode.

 -p: Paragraph mode; use blank lines as record separators.

 -c='S': Custom delimiter mode; use string S as a record separator.

 -m: Multi-line mode; ^ and $ match ends of lines, not ends of record (used with -p or -c).

 -s: Single-line mode; “.” matches newline.

 -r: Recursive search; descend into arguments that are directories.
286 CHAPTER 8 SCRIPTING TECHNIQUES

The output of the last command indicates that Waldo and also Godot (no relation to
http://godot.com) were found in the indicated files that reside under the directory
testing.25

Now it’s time to ogle the code! The script is shown in listing 8.7.

 1 #! /usr/bin/perl -s -wnl
 2 our ($f, $i, $l, $v, $n, $d, $p, $m, $s, $r); # switch vars
 3
 4 BEGIN {
 5 $Usage="Usage: $0 [-f] [-i] [-l] [-v] [-n] [-d]";
 6 $Usage.=" [-p|-c] [-m] [-s] [-r] 'RE' [file...]\n";
 7
 # Must at least have pattern argument
 9 @ARGV > 0 or warn "$Usage" and exit 255;
10
11 # Can't have mutually-exclusive switches
12 defined $p and defined $c and
13 warn "$Usage\n\tCan't have -p and -c\n" and exit 1;
14
15 $X='g'; # set modifier to perform all substitutions
16 $ON=$OFF=""; # by default, don't highlight matches
17
18 if ($d) { # for match-displaying with -d
19 $ON=(`tput smso` or ""); $OFF=(`tput rmso` or "");

25 See sections 3.2.3 and 3.3.1 for information on what various grep commands do when given directory
arguments.

Listing 8.7 The preg script
EVALUATING CODE USING eval 287

20 };
21
22 $p and $/=""; # paragraph mode
23 $c and $/=$c; # custom record separator mode
24 $i and $X.='i'; # ignore case; add to modifiers in $X
25 $m and $X.='m'; # multi-line mode
26 $s and $X.='s'; # single-line mode
27
28 $pattern=shift @ARGV; # remaining args are filenames
29 $f and $pattern='\Q' . $pattern . '\E'; # "quote" metachars
30
31 $r and @ARGV=grep { chomp; -T }
32 `find @ARGV -follow -type f -print`;
33 $multifiles=@ARGV > 1; # controls "filenames:match" format
34
35 $matcher="s/$pattern/$ON\$&$OFF/$X";
36 $v and $matcher="! $matcher"; # complement match result
37 }
38 ##### BODY OF PROGRAM, EXECUTED FOR EACH LINE OF INPUT #####
39 $found_match=eval $matcher; # run sub-op, to try for match
40 if ($@ ne "") { # show eval's error
41 warn "\n$0: Eval failed for pattern: '$matcher'\n\n";
42 die "Perl says:\n$@\n";
43 }
44 elsif ($found_match) {
45 if ($l) { print $ARGV; close ARGV; } # print filename\n
46 elsif ($multifiles) { printf "$ARGV:"; } # print filename:
47 if (! $l){ # don't show match if listing filenames
48 $n and printf "$.:"; # prepend line number to record
49 print; # show selected record
50 $p and print ""; # separate paragraphs by blank line
51 }
52 }

The shebang line includes the s option for automatic switch processing, which is used
heavily in this script—so it begins by calling our on all the variables corresponding to
its optional switches.

In the BEGIN block, the $Usage variable is constructed in two steps to keep
the lines short, with the help of the compound-assignment version of the concate-
nation operator.

Like grep, this script requires at least a “pattern” argument, so it issues a warning
and exits on Line 9 if it’s missing. In similar fashion, Line 12 checks for an attempt
to simultaneously use mutually exclusive switches, and exits the script if appropriate.

Line 15 initializes the variable that holds the match modifiers with the g (for
/g) that is the script’s default, in preparation for other modifiers being appended
to it later.
288 CHAPTER 8 SCRIPTING TECHNIQUES

If the match-displaying switch was chosen, the screen-highlighting variables ini-
tialized to null strings in Line 16 are overwritten in Line 19 with the appropriate ter-
minal escape sequences (see section 8.5.1 for details on tput).

Lines 22–26 check for switches, and set their associated variables as needed.
Line 28 extracts the pattern argument from @ARGV, leaving only filenames as its

contents (or nothing at all, to obtain input from STDIN).
If the -f (fixed-string, like fgrep) switch was chosen, the next line places

$pattern between \Q and \E metacharacters, to render any metacharacters within
it as literal. The concatenation operator is a good choice here, because the double-
quoted alternative is more error prone, requiring doubled-backslashes to get single
ones into the variable:

$pattern="\\Q$pattern\\E"; # stores: \Q ... \E

If the “recursive” switch was used, Line 32 uses find26 to convert any arguments that
are directories into a list of the regular files residing within or below them, while pre-
serving any arguments that are regular files. Then grep extracts the text-files from
that list (Line 31) and stores the results back in @ARGV.

For example, given initial arguments of

/home/plankton

and

/tmp/neptunes_crown.txt

the final contents of @ARGV might become

/home/plankton/todo_list.doc

and

/home/plankton/world_domination_plan.stw

along with the originally specified

/tmp/neptunes_crown.txt

Line 33 sets a variable to True or False according to the number of filenames to be
searched, so that grep’s functionality of prepending filenames to matched records can
be conditionally provided in Line 46.

Line 35 assembles the text of the expression that will do the matching. A substi-
tution operator is used, because matching-plus-replacement is required to support the
“display matches” feature of the -d switch, and it can also handle the other cases.

26 The use of command interpolation to provide arguments to a script, as in script `find ...`, is
subject in extreme cases to buffer-overflow problems requiring an xargs-style remedy (as discussed in
section 6.5). However, in this case, the output of find is delivered to the already-running process
through other channels, so these concerns don’t apply.
EVALUATING CODE USING eval 289

For example, with -d, the substitution operator replaces the match by the values
of ON&$OFF to highlight the match; without -d, it replaces the match by itself
($&), because $ON and $OFF have null values in that case. Either way, the substitution
operator returns a True/False value on Line 39 to indicate the success or failure of the
substitution (and, by extension, the match), and that’s used to control the reporting
of results (on Line 44).

Back in Line 35, the backslashing of the $& variable’s dollar symbol delays the
variable’s expansion until the matching text has been stored within $&, which hap-
pens during the eval on Line 39. In contrast, the values of the $pattern, $ON,
$OFF, and $X variables are immediately placed into the string on Line 35, because
they’re already available and won’t change during execution. Also notice that the con-
tents of $X are appended after the substitution operator’s closing delimiter, which is
how the script communicates the user’s choices for match modifiers to that operator.

Line 36 prepends the complementing operator (!) to the contents of $matcher,
if the (grep-like) -v switch for displaying non-matching lines was supplied.

And that’s the end of the BEGIN block! Now all that remains to be done is—the
real work of the program.

On Line 39, our old friend eval is used to evaluate the string representing a sub-
stitution operator that’s stored in $matcher. This is required because it includes
tokens that can only be recognized as having special meanings at compile-time. The
substitution operator returns the number of substitutions it performed, which equals
the number of matches it found, and eval assigns that value to $found_match.
This allows the code block following elsif ($found_match) on Line 44 to be exe-
cuted only if a match is found.

But first, Line 40 checks whether eval had problems with the $matcher code.
If it did, the offending code is displayed, along with Perl’s diagnostic message. This
situation shouldn’t arise as long as the user provides a syntactically correct pattern and
the script assembles the substitution operator properly, but to make sure the diagnos-
tic message doesn’t go unnoticed, die terminates the script after printing the message
found in $@.

If a match was found, the conditional statements starting on Line 44 are evalu-
ated next; if not, the next input record is fetched, and the processing cycle contin-
ues from Line 39.

On Line 45, if the “filename listings” switch was provided, the filename (only) for
the matched record is printed. As with grep’s -l option, the filename should only be
printed once, no matter how many matches it might contain. This means there’s no
point in looking for additional matches after finding this first one, so the current file-
handle is closed, which triggers the opening of the next file named in @ARGV (if any;
see section 3.8).

Line 46 checks whether multiple files are to be searched; if so, it prints the
matched record’s filename followed by a colon (just as grep does), with no following
newline (thanks to printf).
290 CHAPTER 8 SCRIPTING TECHNIQUES

Line 47 ensures that “filename listing” mode isn’t in effect, because if it is, all the
output for the current match is already on the screen. Then, if the user asked for line
numbers, the current record’s number is printed using printf. The matched record
itself is then printed, on the same physical line to which the printf on Line 46 may
have already made a contribution.

If paragraph mode is in effect, Line 50 prints a blank line to provide separation
between this record and the next.

It may all sound rather complicated when scrutinized at this level, but don’t lose
sight of how straightforward the processing is in the simplest situation, when there are
no switches and only one input file. In that case, after finding a True result on Line 44,
Line 49 prints the record. Then, the next input record is fetched, and the cycle con-
tinues from Line 39.

I use this multi-faceted, Perlishly enhanced grepper all the time, and I trust
you’ll find it as useful as I do. But you need to be aware of a few gotchas, which are
covered next.

Tips on using preg

Consider this attempt to run preg with an improperly constructed pattern argument,
and the associated diagnostic message:

$ ps auxw | preg '?' # syntax error; ? needs \
preg: Eval failed; sub-op is: 's/?/$&/g'

Perl says:
Quantifier follows nothing in regex; marked by
 <-- HERE in m/? <-- HERE / at (eval 1) line 1, <> line 1.

What’s happening? Well, when eval fails while compiling and/or running the code it
was given, preg displays the text of the substitution operator (sub-op) it constructed,
because that’s where the error has got to be. preg also shows Perl’s diagnostic message,
and, as you can see, the <--HERE pointer makes it abundantly clear that the quanti-
fier metacharacter “?” caused the trouble. Why? Because when it appears in the sub-
stitution operator’s regex field, it’s supposed to be preceded by the element whose
quantity it’s specifying—but it wasn’t.27

To fix the problem, you can either backslash the “?” to remove its special meaning
as a quantifier or use the -f switch, which enables fgrep-like automatic quoting of
all metacharacters:

$ ps auxw | preg -f '?' # show terminal-less processes; edited
root 1 0.0 0.0 448 64 ? S Dec08 0:04 init
root 411 0.0 0.0 1356 220 ? S Dec08 0:09 /sbin/syslogd
bin 586 0.0 0.0 1292 0 ? SW Dec08 0:00 /sbin/portmap
root 795 0.0 0.0 1416 128 ? S Dec08 0:00 /usr/sbin/cron
...

27 For example, X? would allow 0 or 1 occurrences of X; see table 3.9 for details.

➦

EVALUATING CODE USING eval 291

The command shows reports on processes that are not attached to terminals, as indi-
cated by the “?” character in the seventh field.

One more word of caution on using preg: If your pattern includes a slash char-
acter, you’ll have to backslash it, even when using the -f switch, because preg uses
that character as the delimiter for the substitution operator itself:

preg -f 'TCP/IP?' # WRONG!
preg -f 'TCP\/IP?' # Right.

Now you’re ready to use this powerful and OS-portable grepper, in place of: grep,
fgrep, egrep, rgrep, text_grep, greperl, and perlgrep28!

8.8 SUMMARY

Perl provides a variety of tools that are principally used in the kinds of programs that
are sufficiently large to be worth storing in a file, which we call scripts.

You saw how defined is used to test for the mere existence of a value, indepen-
dently of its True/False status. As a general rule, you should always use defined to
ensure that a variable that might be unset actually has a value, before you attempt to
use that value. We reviewed examples showing how defined is used with other oper-
ators in validating arguments (e.g., as readable text files) and in proofreading interac-
tive input from users (e.g., as a confirming “Yes”).

We discussed how non-filenames—such as a pattern—can coexist with filenames
in a script’s argument list, as long as the non-filenames are removed from @ARGV by
shift in a BEGIN block. An advantage of Perl’s shift over the Shell’s is that it
returns the value being removed from the array, making it easy to preserve that value
for later access.

You also learned how to pre-process script arguments in various ways, such as using
grep to filter out the ones that have the wrong properties, and using sort to reorder
them. The generation of filename arguments, by using the globbing operator in a
BEGIN block, was also illustrated.

Perl’s exit does the same basic job as the Shell’s, but it differs by returning the
“success” code of 0 by default.29

Perl’s die function, which is like warn 'message' coupled with exit 255, pro-
vides an alternative to exit for terminating a script. In cases where a custom exit
code is desired, you can set “$!”to the required number before calling die, to over-
ride the default of 255.

28 You can download this script, along with the others featured in this book, at this web site:
http://manning.com/maher.

29 This is appropriate because, IMHO, Perl—as a better-designed, easier-to-use, harder-to-abuse, and
more DWIMerrific language than the Shell—has more reason to be optimistic about its scripts com-
pleting successfully than the Shell does!
292 CHAPTER 8 SCRIPTING TECHNIQUES

We showed the limitations of the logical and/or for controlling non-trivial
conditional execution requirements, and how to control multi-way branching in
such cases by using if/else instead. The cd_report script demonstrated the use
of if/else to handle a program’s large-scale branching needs, while using and/or
to construct compound tests, so that the unique benefits of each facility could be
realized.

The string-concatenation operator comes in handy for joining short strings into
longer ones, which can make programs easier to read and maintain. It’s also used to
store newly acquired data after existing data, by appending to the contents of a vari-
able. We demonstrated that technique in an upgrade to most_recent_file, which
allows it to properly handle files whose modification times are tied.

You learned about a special benefit of the compound-assignment form of the con-
catenation operator—it allows the statements that were used to build up the contents
of a variable to be easily reordered, if desired, to change the order in which the sub-
strings are loaded. This capability was exploited in the example that promises to help
web surfers MAKE MONEY FA$T.

You can easily live without the string-repetition operator, but only if you’re willing
to do a lot of unnecessary typing to do so. It specializes in replicating strings, and you
saw it used to construct a string consisting of a series of dashes, which was displayed
across the width of a terminal.

Command interpolation and system are valuable tools that let Perl run com-
mands provided by the host OS. You saw how judicious use of these tools obviates the
need to re-invent the functionality of existing OS resources, at the expense of reducing
a program’s portability to other OSs. Command interpolation is used when a Perl
script needs to capture an OS-command’s output so it can be manipulated in some
way. In contrast, system is used when it’s sufficient merely to run the command
without any access to its output.

A Unix command that’s especially useful for scripts running on terminals is tput,
which—by making it easy to control display modes such as reverse video, underline,
and bold—can really spruce up an otherwise drab display of characters on the screen.
tput can also report the terminal’s current height and width, which is valuable
information for scripts running in re-sizable windows. This capability was used by
news_flash to draw full-width lines across windows having uncertain dimensions.

During our examination of news_flash2, we discussed the Shell’s execution-
trace mode, which shows exactly what each command looks like before it’s executed.
You saw how enabling this facility in a Perl script can help debug mysterious prob-
lems with commands run by system.

Like its Shell namesake, Perl’s eval function is a powerful utility for compiling
and executing code that’s acquired or manufactured during a script’s own execution.
Through use of eval, programs can be endowed with advanced capabilities—as illus-
trated by psh, the Perl shell, and preg, a multi-faceted Perl grepper. Keep psh in
mind during your further adventures with Perl, because it will come in handy when
SUMMARY 293

you want to quickly try out some Perl code—without the bother of first creating a
script to do so.

Directions for further study

To obtain information about specific Perl functions covered in this chapter, such as
defined, exit, shift, or system, you can either browse through the output of
man perlfunc (not recommended) or use perldoc to zero in on the documenta-
tion for each specific function:

• perldoc -f function-name # coverage of "function-name"

For additional information on other topics covered here, you may wish to access these
online resources:

• man perlop # operators, and command interpolation

• man perlsyn # basic syntax, including if/else

• man tput # command that retrieves terminal information

• man Term::ANSIColor # module for coloring terminal text
294 CHAPTER 8 SCRIPTING TECHNIQUES

C H A P T E R 9

List variables

9.1 Using array variables 296
9.2 Using hash variables 308
9.3 Comparing list generators in the Shell and Perl 325
9.4 Summary 328
By this point, you’ve learned how to use Perl’s most important built-in functions and
the special techniques employed in scripts. So you’re nearly ready to start slinging
around huge quantities of data and wrangling their values until you get what you’re
after—like a professional data munger!

But first, you need to learn how to classify, store, and retrieve those copious
amounts of data. This brings us to the topic of list variables.

The main property that distinguishes list variables from the scalar variables we’ve
already discussed is how many distinct items of data each can hold. The limit for a
scalar variable is one, but a list variable can hold many thousands of items, each of
which is—guess what?—a scalar value.

NOTE The essential job of a list variable is to provide each of the elements in a data
collection with a private cubbyhole having its own address.

List variables come in two types, distinguished by their characteristic symbols. We’ve
already discussed array variables, such as @F and @ARGV, and we’ll discuss hash vari-
ables, such as %ENV, later in this chapter.
295

List variables are important because they let you easily manage a collection of
data elements as a whole, while still allowing you to process them one at a time
when you please.1

In addition to variables of the array and hash types, lists also appear in other forms
in Perl. One important form is what we call an explicit list , which consists of one or
more items appearing within parentheses:

($pizza_size, $crust_type)=@F;

Does that look familiar? That’s the syntax introduced in chapter 5 for initializing a list
of scalar variables with values from the field array (@F), which is automatically loaded
with the fields of the current record when the n and a options are used. The statement
shown causes the first value in the array to be copied into the scalar variable
$pizza_size and the second to be copied into $crust_type.

Another variation puts the explicit list on the other side of the assignment, to ini-
tialize the array with the indicated values:

@drink_order=($flavor, $packaging);

Literal strings could also be assigned, instead of values taken from variables:

@drink_order=('ginseng', 'carry-out');

The special property of a hash (known as an associative array in AWK) is that it associ-
ates a key with each stored value, rather than an integer number (0, 1, etc.) as an array
does. You can use this property to make programs more readable and manageable, as
shown in this hash-based version of the earlier array example:

%drink_order=(flavor => 'ginseng', packaging => 'carry-out');

Note the use of the special arrow operator (=>), which links each key with its associ-
ated value.

Now that you’ve had a taste of what’s in store, we’ll look more closely at how
arrays and hashes work in Perl and see representative examples of their many uses. For
example, you’ll see a program that tabulates word frequencies for web pages like popu-
lar search engines do, another that generates reports from simple databases, and even
a program that retrieves random quotes from the classic Star Trek series.

We’ll begin by exploring array variables, which you already know something
about, in greater detail.

9.1 USING ARRAY VARIABLES

The array is the classic data structure for storing separate but related pieces of infor-
mation in a single named variable. The distinctive properties of an array are that its

1 With a little help from other language features, such as the loops discussed in chapter 10.
296 CHAPTER 9 LIST VARIABLES

values are maintained in a particular order, and they’re associated with integer indices
ranging from 0 to N-1 (where N is the number of array elements).

Consider this assignment statement:

@stooges=('Larry', 'Moe', 'Curly');

It loads the names in order, causing them to be stored under the indices 0 to 2, as
indicated in table 9.1.

Array names can be fashioned from any combination of letters, digits, and under-
scores, but a digit can’t come immediately after the @ symbol. That’s why this array is
called @stooges rather than the more obvious (but disallowed) @3stooges.

You can retrieve the complete set of an array’s values by using its name in a list
context or in a double-quoted string. Here’s an example of the latter case, which
makes use of the fact that the values of an array whose name appears within double
quotes are separated by the space character (by default):

print "@stooges";

Larry Moe Curly

When you need to extract an individual value from an array, indexing into it with a
subscript is the most direct approach. Doing so requires the use of the $ symbol in
place of @ (because an individual value of an array is a scalar data type) and square
brackets around the index:

print "Who'd have thunk it? $stooges[1] hit $stooges[0] again!";

Who'd have thunk it? Moe hit Larry again!

Table 9.2 contrasts the Shell and Perl ways of initializing arrays and retrieving values
from them.

The major syntactic differences between the languages in array usage are these:

• In Perl, curly braces aren’t used around an array name and its subscript.

• Perl normally requires commas between array initializers, rather than white-
space alone.

• Perl only uses the $ symbol before an array’s name when it’s being subscripted
with a single index—otherwise, @ is used.

Table 9.1 Indices and values for the @stooges array

@stooges

Index Value

0 Larry

1 Moe

2 Curly
USING ARRAY VARIABLES 297

As shown in the table’s last row, the Shell uses the special @ index to retrieve all values,
preserve any whitespace within them, and separate them from each other by a space.
As usual, double quotes are also required if further processing of the extracted values
isn’t desired.

With Perl, on the other hand, all values are retrieved by using the array name with-
out an index. The only effect of the double quotes is to separate the values on output
with the contents of the ‘$"’ variable—they’re not needed to suppress further process-
ing of the extracted values, because that doesn’t happen anyway.2

Next, we’ll look at different ways to initialize arrays.

Table 9.2 Syntax for using arrays in the Shell and Perl

Shell Perl
a Remarks

Assigning a value n[0]=13 $n[0]=13; In Perl, the $ symbol is always
used with the variable name
when referring to a scalar value.
With the Shell, it’s only used
when retrieving a value.

Retrieving and

displaying a value

echo ${n[0]} print $n[0]; The Shell requires the array name
and index to be enclosed in curly
braces.

Deleting a value unset n[0] delete $n[0]; The Shell deletes the designated
element, but Perl maintains the
element’s slot after marking its
value as undefined.

Assigning multiple

values

n=(13 42) @n=(13, 42);

@n=qw/13 42/;
@n=qw!\ | /!;

The Shell recognizes whitespace
as separators in the parenthe-
sized list of initializers. By default,
Perl requires a comma, and
allows additional whitespace.
With the qwX syntax, only
whitespace separators are recog-
nized between paired occur-
rences of the X delimiter.b

Retrieving and

displaying all values

echo "${n[@]}" print "@n"; See text for explanation.

a. The examples using print assume the use of Perl’s l invocation option.
b. Examples of the qwX quoting syntax are shown in chapter 12.

2 See http://TeachMePerl.com/DQs_in_shell_vs_perl.html for details on the comparative use of double
quotes in the two languages.
298 CHAPTER 9 LIST VARIABLES

9.1.1 Initializing arrays with piecemeal

assignments and push

As shown in the top row of table 9.2, you can initialize arrays in piecemeal fashion:

$stooges[2]='Curly';
$stooges[0]='Moe';
$stooges[1]='Larry';

Alternatively, you can use explicit lists on both sides of the assignment operator:

($stooges[2], $stooges[0], $stooges[1])=('Curly', 'Moe', 'Larry');

When it’s acceptable to add new elements to the end of an array, you can avoid man-
aging an array index by using push @arrayname, 'new value'. This technique
is used in the shell_types script, which categorizes Unix accounts into those
having human-usable shells (such as /usr/bin/ksh) or “inhuman” shells (such as
/sbin/shutdown):

$ shell_types | fmt -68 # format to fit on screen

THESE ACCOUNTS USE HUMAN SHELLS: root, bin, daemon, lp, games,
wwwrun, named, nobody, ftp, man, news, uucp, at, tim, yeshe, info,
contix, linux, spug, mailman, snort, stu01

THESE ACCOUNTS USE INHUMAN SHELLS: mail, sshd, postfix, ntp, vscan

Because the listing of “human” account names produces a very long line, the Unix
fmt command is used to reformat the text to fit within the width of the screen.

The script’s shebang line (see listing 9.1) arranges for input lines to be automati-
cally split into fields on the basis of individual colons, because that’s the field separa-
tor used in the /etc/passwd file, which associates shells with user accounts.

The matching operator on Line 8 checks the last field of each line for the pattern
characteristic of “human” shells and stores the associated account names in @human
using push. Alternatively, Line 12 arranges for the names of the accounts that fail the
test to be stored in @inhuman.

 1 #! /usr/bin/perl -wnlaF':'
 2
 3 BEGIN {
 4 @ARGV=('/etc/passwd'); # Specify input file
 5 }
 6
 7 # Separate users of "human" oriented shells from others
 8 if ($F[-1] =~ /sh$/) {
 9 push @human, $F[0];
10 }
11 else {
12 push @inhuman, $F[0];
13 }

Listing 9.1 The shell_types script
USING ARRAY VARIABLES 299

14 END {
15 $"=', ';
16 print "\UThese accounts use human shells: \E\n@human\n";
17 print "\UThese accounts use inhuman shells:\E\n@inhuman";
18 }

To make the output more presentable, Line 15 sets the ‘$"’ variable to a comma-space
sequence, and \U is used to convert the output headings to uppercase.

In programs like this, where you don’t care what position a data element is allo-
cated in the array, it’s more convenient to push them onto the array’s end than to
manage an index. In other cases, it may be more appropriate to do piecemeal array-
initializations using indexing (see, e.g., section 10.5), to maintain control over where
an element is stored.

Next, we’ll look at the syntax and rules for using more advanced indexing
techniques.

9.1.2 Understanding advanced array indexing

Table 9.3 shows the association between array values and indices of both the positive
and negative varieties, both of which are usable in Perl. Negative indexing counts
backward from the end of the array and is most commonly used to access an array’s
last element. Another way to do that is by using an array’s maximum index variable,
whose name is $#arrayname.

Table 9.3 Syntax for advanced array indexing

Initialization @X=('A', 'B', 'C', 'D');

Stored value A B C D

Ordinal Position 1 2 3 4

Positive indexing $X[0] $X[1] $X[2] $X[3]

Negative indexing $X[-4] $X[-3] $X[-2] $X[-1]

Indexing with maximum-index variable $X[$#X]

Result A B C D

Slice indexing @X[2,3] "@X[2,0..1]" @X[3,0..2]

Result CD C A B DABC
300 CHAPTER 9 LIST VARIABLES

As an alternative to repeatedly indexing into an array to access several values, Perl
allows a collection of values—called an array slice3—to be addressed in one indexing
expression (as shown in the table’s bottom panel). You do this by arranging the
comma-separated indices within square brackets in the order desired for retrieval (or
assignment) and putting @arrayname before that expression. The @ symbol is used
rather than $, because multiple indices extract a list of values, not a single scalar value.

You can also specify a range of consecutive indices by placing the range operator
(..) between the end points, allowing the use of 3..5, for instance, as a shortcut for
3, 4, 5.

The following Perl command retrieves multiple values from an array using a slice:

$ cat newage_contacts # field number exceeds index by 1
(510) 246-7890 sadhu3@nirvana.org
(225) 424-4242 guru@enlighten.com
(928) 312-5789 shaman@healing.net
 1/0 2/1 3/2

$ perl -wnla -e 'print "@F[2,0,1]";' newage_contacts
sadhu3@nirvana.org (510) 246-7890
guru@enlighten.com (225) 424-4242
shaman@healing.net (928) 312-5789

We could have written the Perl command without using an array slice, by typing
print "$F[2] $F[0] $F[1]" in place of print "@F[2,0,1]". But that involves
a lot of extra typing, so it’s not Lazy enough!

Because each array slice is itself a list, you can set the ‘$"’ formatting variable to
insert a custom separator between the list elements:

$ perl -wnla -e '$"=":\t"; print "@F[0,2]";' newage_contacts
(510): sadhu3@nirvana.org
(225): guru@enlighten.com
(928): shaman@healing.net

We’ll continue with this theme of finding friendlier ways to write array-indexing
expressions in the next section, where you’ll see how a script that lets the user think
like a human makes access to fields a lot easier.

9.1.3 Extracting fields in a friendlier fashion

Sooner or later, every Perl programmer makes the mistake of attempting to use 1 as the
index to extract the first value from an array—rather than 0—because humans natu-
rally count from 1. But with a little creative coding, you can indulge this tendency.

3 The indexed elements needn’t be adjacent, and subsequent slices needn’t run parallel to earlier ones (as
with bread slices), so a better name for this feature might be an index group.

Field numbers / indices
USING ARRAY VARIABLES 301

As a case in point, the show_fields2 script allows the user to select fields for dis-
play using human-oriented numbers, which start from 1:

$ cat zappa_floyd
Weasels Ripped my Flesh Frank Zappa
Dark Side of the Moon Pink Floyd

$ show_fields2 '1' zappa_floyd # 1 means first field
Weasels
Dark

It works by using unshift (introduced in table 8.2) to prepend a new value to the
array, which shifts the existing values rightward. As a result, the value originally stored
under the index of N gets moved to N+1.

As depicted in Figure 9.1, if 0 was the original index for the value A, after
unshift prepends one new item, A would then be found under 1.

The show_fields2 script also supports index ranges and array slices:

$ cat zappa_floyd # field numbers added
Weasels Ripped my Flesh Frank Zappa
 1 2 3 4 5 6
Dark Side of the Moon Pink Floyd
 1 2 3 4 5 6 7

$ cat zappa_floyd | show_fields2 '2..4,1' # indices 1..3,0
Ripped my Flesh Weasels
Side of the Dark

It even issues a warning if the user attempts to access (the illegitimate) field 0:

$ show_fields2 '0' zappa_floyd # WRONG!
Usage: show_fields2 '2,1,4..7, etc.' [file1 ...]
 There's no field #0! The first is #1.

The show_fields2 script, which uses several advanced array-handling techniques,
is shown in listing 9.2.

Line 7 pulls the argument containing the field specifications out of @ARGV and
saves it in the $fields variable. Then, a matching operator is used to ask whether

Figure 9.1 Effect of unshift

Field numbers
302 CHAPTER 9 LIST VARIABLES

$fields contains only the permitted characters: digits, commas, and periods.4 If the
answer is “no,” the program terminates on Line 11 after showing the usage message.

 1 #! /usr/bin/perl -wnla
 2
 3 BEGIN {
 4 $Usage="Usage: $0 '2,1,4..7, etc.' [file1 ...]";
 5 # Order of field numbers dictates print order;
 6 # the first field is specified as 1
 7 $fields=shift;
 8
 9 # Proofread field specifications
10 defined $fields and $fields =~ /^[\d,.]+$/g or
11 warn "$Usage\n" and exit 1;
12
13 # Convert 5,2..4 => 5,2,3,4
14 # and load those index numbers into @fields
15 @fields=eval " ($fields) ";
16 }
17
18 if (@F > 0) { # only process lines that have fields
19 # Load warning message into 0th slot, to flag errors
20 unshift @F,
21 "$Usage\n\tThere's no field #0! The first is #1.\n";
22 print "@F[@fields]"; # DQs yield space-separated values
23 }

The next step is to turn the user’s field specification into one that Perl can understand,
which requires some special processing. The easy part is arranging for the request for
field 1 to produce the value for the element having index 0. This is accomplished (on
Line 20) by using unshift to shift the original values one position rightward within
the array. A combined usage and warning message is then placed in the freshly vacated
first position so that the program automatically prints a warning if the user requests
the (illegitimate) field #0.

Now for the tricky part. In Line 15, the user’s field specification—for instance
1,3..5—needs to be converted into the corresponding list—in this case
(1,3,4,5). You may think that placing $fields into an explicit list and assigning
the result to an array would do the trick, using @fields=($fields), but it
doesn’t. The reason is that commas and double-dots arising from variable interpola-
tion are treated as literal characters, rather than being recognized as the comma opera-
tor and the range operator.

4 The “.” becomes a literal character within square brackets, like most metacharacters (see chapter 3).

Listing 9.2 The show_fields2 script
USING ARRAY VARIABLES 303

Accordingly, after the variable interpolation permitted by the surrounding dou-
ble quotes in Line 15 yields the contents of $fields, the expression (1,3..5)
must be processed by eval—to allow recognition of “..” as the range operator
and the comma as the list-element separator.5 The end result is exactly as if
@fields=(1,3..5) had appeared on Line 15 in the first place,6 resulting in the
assignment of the desired index numbers to the @fields array.

Line 18 checks the field count, to exempt empty lines from the processing that
follows. As mentioned earlier, unshift loads a special message into the now illegit-
imate 0th position of the array; then, the contents of the @fields array are
inserted into the subscripting expression for use as indices, to pull out the desired
values for printing.

Having just seen a demonstration of how to carefully control indexing so that the
wrong number can produce the right result, we’ll next throw caution to the wind, for-
sake all control over indexing, and see what fortune has in store for those who ran-
domly access arrays.

9.1.4 Telling fortunes: The fcookie script

In the early days of UNIX we were easily entertained, which was good because the
multi-media capabilities of the computers of that era were quite rudimentary. As a
case in point, I remember being called over one December day by a beaming system
administrator to gawk in amazement with my colleagues at a long sheet of paper
taped to the wall. It was a fan-fold printout of a Christmas tree, with slashes and back-
slashes representing the needles and pound signs representing ornaments. Shortly
after this milestone in the development of ASCII art was achieved, “comedy” arrived
on our computers in the form of a command called fortune, which displayed a
humorous message like you might find in a verbose fortune cookie.

We’ll pay homage to that comedic technological breakthrough by seeing how Perl
scripts can be used not only to emulate the behavior of the fortune program, but
also to do its job even better.

But before we can use them for our script, we need to understand how fortunes
are stored in their data files. Let’s examine a file devoted to Star Trek quips:

$ head -7 /usr/share/fortune/startrek
A father doesn't destroy his children.
 -- Lt. Carolyn Palamas, "Who Mourns for Adonais?",
 stardate 3468.1.
%

5 eval evaluates code starting with the compilation phase, allowing it to detect special tokens that can-
not otherwise be recognized during a program’s execution (see section 8.7).

6 Allowing a user to effectively paste source code into an eval’d statement could lead to abuses, al-
though the argument validation performed on Line 10 of show_fields2 is a good initial safeguard.
For more on Perl security, including Perl’s remarkable taint-checking mode, see man perlsec.
304 CHAPTER 9 LIST VARIABLES

A little suffering is good for the soul.
 -- Kirk, "The Corbomite Maneuver", stardate 1514.0
%
...

As you can see, each fortune’s record is terminated by a line containing only a % sym-
bol. Armed with this knowledge, it’s easy to write a script that loads each fortune into
an array and then displays a randomly selected one on the screen (see listing 9.3).

Using the implicit loop, the script reads one record ending in % at a time, as
instructed by the setting of the $/ variable, and installs it in the @fortunes array. A
suitable array index for each record could be derived from the record number variable
($.), as shown in the commented-out Line 8, but it’s easier to use push (Line 9) to
build up the array. Then, a random array element is selected for printing, using the
standard technique of providing rand with the array’s number of elements as its argu-
ment (see table 7.7), and using its returned value as the index.

 1 #! /usr/bin/perl -wnl

 2
 3 BEGIN {
 4 @ARGV=('/usr/share/fortune/startrek');
 5 $/='%'; # set input record separator for "fortune" files
 6 }
 7
 8 # $fortunes[$. -1]=$_; # store fortune in (record-number -1)
 9 push @fortunes, $_; # easier way
10
11 END {
12 print $fortunes[rand @fortunes]; # print random fortune
13 }

Here are some test runs:

$ fcookie
A man will tell his bartender things he'll never tell his doctor.
 -- Dr. Phillip Boyce, "The Menagerie", stardate unknown

$ fcookie
It is a human characteristic to love little animals, especially if
they're attractive in some way.
 -- McCoy, "The Trouble with Tribbles", stardate 4525.6

Yep, that’s space-grade profundity all right. But I crave more! And I don’t want to
reissue the command every time I want to see another fortune—nor do I want to see
any reruns.

These problems will be solved in the next episode.

Listing 9.3 The fcookie script
USING ARRAY VARIABLES 305

fcookie2: The sequel

fcookie2 is an enhancement that responds to the newfound needs of the increas-
ingly demanding user community (consisting of me, at least). It illustrates the use of a
dual input-mode technique that first reads fortunes from a file and stores them in an
array, and then takes each <ENTER> from the keyboard as a request to print another
randomly selected fortune.

Here’s a test run that uses the Unix yes command to feed the script lots of
y<ENTER> inputs, simulating the key presses of an inexhaustible fortune seeker:

$ yes | fcookie2
Press <ENTER> for a fortune, or <^D>:
There is a multi-legged creature crawling on your shoulder.
 -- Spock, "A Taste of Armageddon", stardate 3193.9
...
Vulcans never bluff.
 -- Spock, "The Doomsday Machine", stardate 4202.1
...

fcookie2: How unfortunate; out of fortunes!

You can do a “full sensor scan” of the script in listing 9.4.

 1 #! /usr/bin/perl -wnl
 2 # Interactive fortune-cookie displayer, with no repeats
 3
 4 BEGIN {
 5 @ARGV or # provide default fortune file
 6 @ARGV=('/usr/share/fortune/startrek');
 7 push @ARGV, '-'; # Read STDIN next, for interactive mode
 8 $/='%'; # Set input record separator for fortunes
 9 $initializing=1; # Start in "initializing the array" mode
10 }
11 ############# Load Fortunes into Array #############
12 if ($initializing) {
13 push @fortunes, $_; # add next fortune to list
14 if (eof) { # on end-of-file, switch to input from STDIN
15 $initializing=0; # signify end of initializing mode
16 $/="\n"; # set input record separator for keyboard
17 printf 'Press <ENTER> for a fortune, or <^D>: ';
18 }
19 }
20 ############# Present Fortunes to User #############
21 else {
22 # Use random sampling without replacement. After a fortune is
23 # displayed, mark its array element as "undefined" using
24 # "delete", then prune it from array using "grep"
25
26 $index=rand @fortunes; # select random index

Listing 9.4 The fcookie2 script
306 CHAPTER 9 LIST VARIABLES

27 printf $fortunes[$index]; # print random fortune
28 delete $fortunes[$index]; # mark fortune undefined
29 @fortunes=grep { defined } @fortunes; # remove used ones
30 @fortunes or # terminate after all used
31 die "\n$0: How unfortunate; out of fortunes!\n";
32 }

The BEGIN block starts by assigning the pathname of the startrek file to @ARGV
if that array is empty, to establish a default data source. Next, it adds “-” as the
final argument, so the program will read from STDIN after reading (and storing)
all the fortunes.

Lines 8–9 set the input record separator to % and the $initializing variable
to the (True) value of 1, so the script begins by loading fortunes into the array
(Lines 12–13).

As with all scripts of this type, it’s necessary to detect the end of the initial-
ization phase by sensing “end of file” (using eof, Line 14) and then to reset
$initializing to a False value, set the appropriate input record separator for
the user-interaction phase, and prompt the user for input.

Line 26 obtains a random index for the array and saves it in a variable, which is
used in the next statement to extract and print the selected fortune. printf is used
for the printing rather than print, because the fortune already has a trailing new-
line,7 and print (in conjunction with the l option) would add another one.

Line 28 then runs delete (see table 9.2) on the array element, which isn’t quite
as lethal as it sounds—all it does is mark its value as undefined.8 The actual removal
of that element is accomplished by using grep to filter it out of @fortunes and
reinitialize the array (see section 7.3.3), using

@fortunes=grep { defined } @fortunes;

That’s all the coding it takes, because defined operates on $_ by default, and grep
stores the list element that it’s currently processing in that same variable.

If the user has sufficient stamina, he’ll eventually see all the fortunes, so Line 30
checks the remaining size of the array and calls die when it’s depleted. Alternatively,
because the implicit loop is reading the user’s input, the program can be terminated
by responding to the prompt with <^D>.

One final word of caution, for you to file away under “debugging tips”: Any dual
input-mode script will behave strangely if you neglect to reset the “$/” variable to

7 Why does it have a trailing newline? The input record separator ($/) was defined as %, so that’s what
the l option stripped from each input record, leaving the newline that came before it untouched. An
alternative approach would be to set “$/” to “\n%” to get them both stripped off and to use print to
replace the newline on output.

8 In contrast, delete removes both the index and its value when used on a hash element, as we’ll
discuss shortly.
USING ARRAY VARIABLES 307

newline before entering the interactive phase. As a case in point, fcookie2 will keep
gobbling up the lines of your response to the first Press <ENTER> prompt until you
happen to press the % key—if ever! So whenever you set “$/” to a custom value in a
program that later needs to read keyboard input, make sure you reset it to newline
before the user-interaction phase begins.

9.1.5 Tips on using arrays

Use push to populate arrays whenever possible. Doing so eliminates the need for you
to manage an index, without imposing any restrictions on how you may later access
the stored values (i.e., you can still use indexing to retrieve them).

You’re supposed to change the @ symbol in an array’s name (and the % in a
hash’s) to a $ when using a single subscript, but that’s not a serious error—Perl
will do what you wanted it to anyway, after mildly rebuking you with a warning of
this form:

Scalar value @array_name[0] better written as $array_name[0]

NOTE Arrays aren’t used as frequently in Perl as they are in other languages,
because we have the option of using a more versatile data type for managing
lists instead—the hash.

We’ll now turn our attention to that other variety of list variable, the hash.

9.2 USING HASH VARIABLES

As useful as arrays are, it’s very limiting for a programmer to be restricted to storing
and retrieving data using integer subscripts. For example, if you were developing a sys-
tem to keep track of the repair records for your organization’s computers, don’t you
think it would be more user-friendly to employ the computers’ names as identifiers
(“ELVIS”, “AREA-51”, etc.), rather than their 27-digit (integer) serial numbers?

To support this kind of association between data elements, Perl provides a data
structure called a hash, which maps string-based indices to scalar values.9 Hashes are
somewhat like arrays, but they’re superior in certain ways. To realize their potential,
you need to adopt different ways of thinking about mechanisms for data storage and
retrieval, and learn some specialized techniques.

We’ll begin by considering a small hash called %phone, which has two key/value
pairs, as depicted in table 9.4.

This tabular representation does a good job of conveying the message that non-
integer indices are permitted in hashes. However, the table’s implication that Joe’s

9 The name derives from the use of “hash table” data structures in Perl’s hash implementation. AWK
calls its related facility an associative array. The 1993 Korn shell introduced limited support for as-
sociative arrays, but most Shell programmers haven’t used them, so we won’t assume that knowl-
edge here.
308 CHAPTER 9 LIST VARIABLES

phone number is stored in the first slot and Jan’s in the second slot is misleading,
because hash elements aren’t stored like that. But “who’s on first” is irrelevant,
because with hashes, what’s important isn’t where a value resides in the underlying
data structure—instead, it’s which key is associated with that value.

For instance, it would be of little use to know that “somebody’s” phone number
is 789-9834, but it might be very useful to know that it’s Joe’s number. You could
determine this using the following coding:10

print "Joe's number is $phone{Joe}"

Joe's number is 789-9834

Note that using an array to manage the information in table 9.4 would require the use
of more elaborate strategies than just using the key “Joe” to retrieve the associated
value from the hash. For example, one technique would involve the creation of an
array of phone-owners’ names, as shown in table 9.5.

To find Joe’s phone number, we’d search the values of this array to find “Joe” and then
use the corresponding index (0) with a paired second array (see table 9.6) to retrieve
his number.

Table 9.4 Storing phone numbers in a hash

 %phone

Key Value

Joe 789-9834

Jan 897-7164

10 Hashes use curly braces rather than square brackets around their subscripts, as shown in table 9.7.

Table 9.5 Array of phone-owners’ names

 @phone_owners

Index Value

0 Joe

1 Jan

Table 9.6 Array of phone numbers for phone owners

 @phone_numbers

Index Value

0 789-9834

1 897-7164
USING HASH VARIABLES 309

The processing steps would therefore involve first looking up the entries of interest in
the specified arrays and then retrieving the desired values:

@phone_owners: Joe -> 0

@phone_numbers: 0 -> 789-9834

Of course, you’d have to be careful not to disturb the precise synchronization between
the arrays when making modifications to them, or else the storage/retrieval system
would break down.

Because an array-based approach is so inconvenient, error-prone, and burden-
some, hashes are the data structure of choice for associating strings with values. As
shown in table 9.7, hashes are used like arrays, except % replaces @, and curly braces
are used rather than square brackets as indexing symbols. Their names follow the
same rules as those for arrays, which means a digit can’t come first after the variable’s
identifying symbol (%).

Table 9.7 Syntax for using hashes in Perl

Examples
a Remarks

Assigning a

value

$h{A}=1;
$h{'B C'}=2;

The $ symbol is used when referring
to a single scalar value in a hash.
Multi-word keys must be quoted.

Retrieving and

displaying

values

print $h{A}; # prints 1
print $h{'B C'}; # prints 2
OR
exists $h{A} and print $h{A};

If there’s any doubt about whether a
hash has a particular key, its presence
can first be tested with exists.

Deleting entries delete $h{A};
delete $h{'B C'};

The delete function causes the
indicated key and its value to be
deleted from the hash.

Assigning

multiple values

%h=(A => 1,
 'B C' => 2);
OR
%h=list_generator;

A hash can be initialized with an
explicit list of comma-separated key
=> value pairs. A variety of other
expressions (called list generators)
can also be used to initialize hashes
(see section 9.3).

Retrieving and

displaying all

elements

$,="\n";

print sort values %h;
print sort keys %h;

print map { "$_=$h{$_}" }
 sort keys %h;
OR
foreach $key (sort keys %h) {
 print "$key=$h{$key}";
}

The values and keys functions are
used to extract elements from the
hash, with sort added to impose
order on their results. The map
operator or foreach loop is typically
used to print hash elements in the
“key=value” format.

a. The examples using print assume the use of the l invocation option.
310 CHAPTER 9 LIST VARIABLES

Unlike the case with arrays (see table 9.2), when delete is used on a hash, it actually
removes all traces of the specified element. This obviates the need to reinitialize the
data structure after removing its deleted values, as fcookie2 (listing 9.4, Line 29)
has to do with its @fortunes array.

Next, we’ll discuss hash initialization techniques.

9.2.1 Initializing hashes

As with arrays, you can initialize hashes using an aggregate syntax or a piecemeal syn-
tax (see table 9.7). Here’s an example of piecemeal initialization for a hash called
%stooges_by_hairstyle. For each of those wacky morons of the silver screen, his
distinctive hairstyle-type is used as the key for storing his name. Note the use of curly
braces around the indices, rather than the square brackets used with arrays, and the
need to quote the multi-word key:

$stooges_by_hairstyle{bald}='Curly';
$stooges_by_hairstyle{'soup bowl'}='Moe';
$stooges_by_hairstyle{fuzzy}='Larry';

Here’s an equivalent way of creating the same hash using aggregate initialization:

%stooges_by_hairstyle=(
 bald => 'Curly',
 'soup bowl' => 'Moe',
 fuzzy => 'Larry',
);

The commas after 'Curly' and 'Moe' are required, because they come between
key/value pairs. In contrast, the one after 'Larry' isn’t required, and would even be
a syntax error in most programming languages. But it’s good that Perl allows it,
because that gives you the freedom to reorder the lines without having to worry about
adding or removing trailing commas.

NOTE Hashes have no counterpart to the push function of arrays, because there’s
no “next key” for storing each newly added value.

Tips on initializing hashes

It’s a common mistake to replace the parentheses in aggregate hash initializations with
curly braces, due to the association of those symbols with hashes:

%wrong={ key1 => 'value1', key2 => 'value2' }; # WRONG!

%right=(key1 => 'value1', key2 => 'value2'); # Right.

Unfortunately, rather than triggering a fatal syntax error, this mistake just causes Perl
to assign a more exotic interpretation to the statement than you had in mind, which
USING HASH VARIABLES 311

makes your program behave strangely. If you make this mistake with warnings
enabled (as they routinely should be, via -w), you’ll see a warning of one of the follow-
ing types:

• Reference found where even-sized list expected

• Odd number of initializers

You’ll learn next how to slice a hash, and why that’s not considered a hostile act.

9.2.2 Understanding advanced hash indexing

Table 9.8 shows the indexing techniques most commonly used with hashes. Note that
there’s no concept of a range of indices as with arrays, because hash keys aren’t
restricted to integer values.

You code hash slices by supplying multiple keys within the curly braces of the sub-
script. The result is a list of values, so the $ symbol that would be used with a single
index gets changed to @, just as it does with array slices.

When the keys and values functions are used to extract their namesakes from
a hash, those items may emerge in an undesirable order. (The order is a consistent
and repeatable one, but it may appear to be random to a casual observer.) However,
you can completely control the retrieval order of hash values by using a pre-ordered
set of keys with a hash slice.

For example, here’s a script that presents the names of the Fab Four in their
default hash-retrieval order, and then in the conventional order:

$ beatles # Everybody knows them as John, Paul, George, & Ringo
UNCONTROLLED ordering:
PAUL JOHN GEORGE RINGO
Bass Guitar Guitar Drums

CONTROLLED ordering:
JOHN PAUL GEORGE RINGO
Guitar Bass Guitar Drums

Table 9.8 Syntax for basic and advanced hash indexing

Initialization %X=(A => 1, B => 2, C => 3);

Stored value 1 2 3

Indexing $X{A} $X{B} $X{C}

Result 1 2 3

Slice indexing @X{A,B} "@X{C,A,B}" @X{C,B,A}

Result 12 3 1 2 321
312 CHAPTER 9 LIST VARIABLES

Here’s the source code:

$ cat beatles
#! /usr/bin/perl –wl

%musicians=(JOHN => 'Guitar', PAUL => 'Bass',

 GEORGE => 'Guitar', RINGO => 'Drums');
$,="\t";
print 'UNCONTROLLED ordering:';
print keys %musicians; # Disorderly column headings
print values %musicians;

print "\nCONTROLLED ordering:";
@names_in_order=('JOHN', 'PAUL', 'GEORGE', 'RINGO');
print @names_in_order; # Orderly column headings
print @musicians{ @names_in_order };

At first glance, the script’s last line may look like it’s referring to two arrays, but the
curly braces indicate that it’s extracting a slice from the %musicians hash using keys
provided by the @names_in_order array.

That’s a good example of a situation where you’d want to supply a set of indices
to a hash by using an array. But the syntax doesn’t look as different as you might
expect when you index into an array by using another array. Here’s the comparison:

@array3[@ordered_array_of_array_indices]; # indexing an array

@hash42{ @ordered_array_of_hash_indices }; # indexing a hash

Note that it’s the indexing symbols—square brackets or curly braces—that tell you
whether the variable being indexed is an array or hash. That’s because in both cases,
the result of slice-indexing is an ordered list of values—requiring the use of the initial
@ symbol with the variable’s name, whether it’s a hash or an array!

In summary, here are the codings for the three basic ways of retrieving data
from hashes:

%hash # no indices; yields all key/value pairs
$hash{ key } # single index; yields scalar
@hash{ key1, key2 } # multiple indices; yields ordered list (slice)
@hash{ @key_list } # multiple indices via array; same as previous

Next, we’ll talk about an important built-in hash that’s chock full of useful information.

9.2.3 Understanding the built-in %ENV hash

By the time the Shell gives you your first prompt of the day, several environment
variables—including TERM and PATH—have been initialized on your behalf. These
variables convey information to the programs you subsequently run, which may affect
the way they behave. For example, the vi editor will send different escape sequences
to remove deleted characters from your screen if TERM is set to “xterm” versus “adm3a”.
USING HASH VARIABLES 313

Perl makes these environment variables available through its %ENV hash, in which
the names of the variables serve as the keys. As a simple usage example, here are the
corresponding Shell and Perl ways of printing the value of the LOGNAME variable, and
the whole environment:

echo "$LOGNAME, your ENV is: "; env

joe, your ENV is:
TERM=xterm
PATH=/bin
LOGNAME=joe
...

print "$ENV{LOGNAME}, your ENV is:\n", %ENV;

joe, your ENV is:
TERMxtermPATH/binLOGNAMEjoe
...

As the Perl output demonstrates, you wouldn’t normally want to print a hash using
print %somehash, because that approach tends to make the output hard to inter-
pret. In fact, if the keys of the hash weren’t all capitalized in this case, we’d have a
difficult time identifying where each one ends and its associated value begins.

You’ll see better ways to print hashes next.

9.2.4 Printing hashes

We can make the output of print %ENV look more like that of the Shell’s env com-
mand by being more clever about how we format the results. One approach is based
on map (see section 7.3.5), as shown in the last row of table 9.7:

$,="\n";

print map { "$_=$ENV{$_}" } sort keys %ENV;

LOGNAME=joe
PATH=/bin
TERM=xterm
...

How does it work? The map function delivers key-sorted “key=value” arguments into
print’s argument list, and the “$,” setting inserts newlines between them. Then, a
final newline is provided at the end of print’s argument list by the shebang line’s l
option (unshown).

Another option for printing key/value pairs, also shown in table 9.7, is to use
the foreach loop. It’s similar to the Shell’s for loop, in that it assigns a value
from a list to the designated loop variable for each iteration through a block of state-
ments. Here’s the way it would be used to produce output identical to that of the
map example:

Shell

Perl
314 CHAPTER 9 LIST VARIABLES

foreach $key (sort keys %ENV) {
 print "$_=$ENV{$_}";
}

Because this approach runs a separate print for each “key=value” string, the newline
provided for each print by the l option separates the strings on output. For this rea-
son, there’s no need to manipulate the “$,” variable, as in the map-based version.11

We’ll cover the foreach loop in detail in section 10.4.
Next, we’ll explore a valuable use for environment variables in Perl programming.

9.2.5 Using %ENV in place of switches

You can use a command-line switch of the form -debug or -debug=value to trig-
ger optional diagnostic messages in a script, if you include the s option for automatic
switch processing on the shebang line (see section 2.4.3). Alternatively, that effect can
be obtained by passing an environment variable to the script, which has certain
advantages over the switch-based alternative.

There are two ways to do it:

$ DEBUG_script27='anything' script27 # export from script27

or

$ export DEBUG_script27='anything' # export from current shell
$ script27

The second example sets the variable in the current shell, for delivery to all its subse-
quently executed commands until it’s removed from the environment by unset. In
contrast, the first one sets the variable in the process running script27, for use by
that script and its descendants. By restricting the change to a smaller group of pro-
cesses, the latter method minimizes the possibility that setting the variable will affect
unintended programs.12

You can employ the usual Perl techniques in script27 to detect and respond to
the environment variable’s contents (whether or not the s option is enabled), such as

defined $ENV{DEBUG_script27} and warn "$0: So far so good!\n";

...

defined $ENV{DEBUG_script27} and
 $ENV{DEBUG_script27} eq 'verbose' and
 warn "$0: Entering output section at ", scalar localtime;

11 On the other hand, this approach has the drawback of requiring one call to print for each variable,
whereas the map version uses a single print to handle all variables. You can use the standard
Benchmark module to determine which version runs faster, if that’s of interest.

12 Those unintended influences are especially likely if generic names like DEBUG and VERBOSE are used.
USING HASH VARIABLES 315

A potential benefit of using an environment variable is that it’s available to the script’s
offspring, whereas a switch variable affects only the script itself. Therefore, in Perl
scripts that start up other scripts, the environment-variable approach may be prefer-
able to its switch-based alternative.

Next, you’ll learn why, thanks to hashes, Perl doesn’t need a built-in function simi-
lar to Unix’s uniq command.

9.2.6 Obtaining uniqueness with hashes

Just as arrays store their values under unique indices, hashes store their values under
unique keys. For this reason, if you assign a value for the same key (or index) more
than once, the prior value is overwritten, leaving only the most recently assigned value
available for retrieval. You’ll see how this property can be used for “unique-ifying”
arguments and inputs in the next sections.

Rendering arguments unique

The fact that hashes have unique keys can be used to good advantage. For example,
consider a script that sends a message to each email address provided as an argument.
To avoid sending email to any address more than once, such a script might first want
to eliminate duplicates from its argument list.

Here’s a sample run of a script that performs that service:

$ DEBUG_unique_args='yes' \
> unique_args a b c a b a
unique_args: Initial arguments (sorted):
 a
 a
 a
 b
 b
 c

unique_args: Final arguments:

 a
 b
 c

Listing 9.5 shows unique_args, which provides the foundation for any script that
needs to render its arguments unique before processing them further.13

13 The unique-ifying code would go in a BEGIN block in a program using the n or p option (as shown),
or before the custom argument-handling loop of a program that doesn’t (see table 10.3).
316 CHAPTER 9 LIST VARIABLES

 1 #! /usr/bin/perl -wnl
 2
 3 BEGIN {
 4 $debug=defined $ENV{DEBUG_unique_args};
 5
 6 if ($debug) { # use shorter variable name
 7 $,="\n\t"; # indent output for better visibility
 8 print "$0: Initial arguments (sorted): ", sort @ARGV;
 9 print ""; # separate from following output
10 }
11
12 foreach $arg (@ARGV) {
13 # following line supplied automatically
14 # ! defined $unique{$arg} and $unique{$arg}=0;
15 $unique{$arg}++; # count each argument's occurrences
16 }
17 @ARGV=sort keys %unique; # retain unique args
18
19 if ($debug) {

20 print "\n$0: Final arguments: ", @ARGV;
21 exit 0; # terminate here during debugging
22 }
23 }
24 # BODY OF PROGRAM GOES HERE

The job of the foreach loop14 that starts on Line 12 is to count how many times
each argument has occurred. But the first time a particular $arg is used as an index
for the %unique hash (Line 15), it will not yet have an associated value there.15

An obvious way to handle this situation would be to write the statement shown in
Line 14, which initializes the key’s associated value to 0 if it wasn’t already defined.
However, this situation comes up so frequently in Perl that it’s handled automatically,
so such a statement isn’t needed.

In Line 17, the (necessarily unique) keys are extracted from the hash, sorted, and
assigned back to @ARGV, eliminating any duplicates that may have been present.

If the user requests debugging information by setting the relevant environment
variable, the script prints the initial arguments and final arguments (Lines 8, 20), to
reveal the effects of the processing.16

Listing 9.5 The unique_args script

14 Covered in detail in section 10.4.
15 Attempting to access a variable that doesn’t exist is sure to instill dread in the heart of a squared JAPH,

because in C, such a program would crash—but not before spewing blinking graphics characters all
over the screen to obscure any error messages.

16 By default, changing “$,” (on Line 7) affects all subsequent uses of print, which is generally unde-
sirable; section 11.4.4 shows how to localize such changes to a particular program region.
USING HASH VARIABLES 317

Related but somewhat different techniques are used to render input records unique,
as discussed next.

Rendering inputs unique

Listing 9.6 shows another script that unique-ifies data, but this one works on input
lines, rather than arguments. Unlike its argument-wrangling predecessor, unique_
inputs is a complete program, designed to duplicate the functionality of certain
Unix commands.

 1 #! /usr/bin/perl -wnl
 2
 3 $unique{$_}++; # increment counter for each input
 4
 5 END {
 6 @inputs=sort keys %unique; # determine unique inputs
 7 if (defined $ENV{DEBUG_unique_inputs}) {
 8 foreach $input (@inputs) {

 9 $unique{$input} > 1 and
10 print "$0: '$input' appeared $unique{$input} times";
11 }
12 print ""; # for spacing
13 }
14 # Now print the sorted, unique, inputs
15 $,="\n"; # re-supply newlines stripped by -l
16 print @inputs;
17 }

We’ll test this script by having it show the unique list of currently logged-in users on
a Linux system, with its input provided by who’s output:

forrest :0 Dec 6 09:07 (console)
forrest pts/0 Dec 6 09:08
forrest tty1 Dec 6 09:37
willy tty2 Dec 6 09:43
willy tty3 Dec 6 09:48
gloria pts/1 Dec 6 17:03
gloria pts/5 Dec 8 09:36

But first, that output will be reduced by an awk command17 to its first column, to iso-
late the user names:

Listing 9.6 The unique_inputs script

17 Although Perl has many advantages over AWK (see chapter 5), this AWK solution is just as good here
and considerably more compact than the equivalent perl –wnla –e 'print $F[0];'.
318 CHAPTER 9 LIST VARIABLES

$ who | awk '{ print $1 }' | unique_inputs
forrest
gloria
willy

The script produces the same result as the UNIX sort –u command, as it should:

$ who | awk '{ print $1 }' | sort -u
forrest
gloria
willy

But unlike sort, unique_inputs has a debugging mode that includes in the report
the number of times each unique line was seen in the input:

$ who | awk '{print $1}' | DEBUG_unique_inputs='yes' unique_inputs
unique_inputs: 'forrest' appeared 3 times
unique_inputs: 'gloria' appeared 2 times
unique_inputs: 'willy' appeared 2 times

forrest
gloria
willy

Although the format is different, that’s the same information sort | uniq –c pro-
vides:

$ who | awk '{ print $1 }' | sort | uniq -c
 3 forrest
 2 gloria
 2 willy

Of course, the value of unique_inputs is not that it duplicates the functionality of
certain combinations of Unix commands, but rather that it shows a general technique
for unique-ifying inputs using Perl’s resources alone.

Another place where hashes are commonly used is in the implementation of sim-
ple database systems, as you’ll see next.

9.2.7 Employing a hash as a simple database:

The user_lookup script

Due to their innate abilities to associate indices with values, arrays and hashes are
often used in simple database (i.e., storage/retrieval) applications. The fcookie*
scripts of section 9.1.4 are examples, in the sense that each accesses a database of for-
tunes while providing its services. The script we discuss here is similar—but more
likely to impress its users. Why? Because its ability to associate keys with values is
more apparent.

The user_lookup script provides a report of a Unix user’s passwd-file entry in
response to input of a login ID—or a numeric user ID:
USING HASH VARIABLES 319

$ user_lookup

Enter login-ID or UID: spug

 ID: spug
 UID: 256
 GID: 104
 NAME: Seattle Perl Users Group account
 HOME: /home/spug
 SHELL: /bin/bash

Enter login-ID or UID: plankton

No such user: 'plankton'

Notice that the script was smart enough to know that it didn’t have a record for
“plankton”. Making this determination requires the use of a special technique that
wasn’t needed in the fcookie* scripts, which you’ll soon see.

The script is shown in listing 9.7. As is appropriate for the /etc/passwd file—
which supplies all the information the script reports—the shebang line sets the field
separator to a colon.

Like the fcookie2 script discussed earlier, this one has two phases of opera-
tion: data storage and data retrieval. The current processing phase is signified by the
value of the $initializing variable, which is initialized to a True value in the
BEGIN block.

Line 9 sets some variables—whose names refer to the fields of passwd-file
records—to the integers from 0 to 6, using a special service provided by the range
operator (introduced in table 5.10). These variables are used later as indices for the @F
array, to make the indexing operations more understandable.

Line 12 loads the pathname of the passwd file and the “-” symbol into
@ARGV, which tells the implicit loop to read from STDIN after passwd so user
input can be accepted.

Line 14 loads the prompt string into a variable, because prompts have to be issued
from two places, and it would be undesirable to duplicate the message string.

Once the BEGIN block has finished executing, the script reads input lines and
either uses them as hash initializers (Lines 17–34) or interprets them as data-
retrieval requests (Lines 38–46), depending on the processing phase indicated
by $initializing.

While initializing, the program constructs a report for each user by assembling
fields pulled out of the @F array (Lines 23–28) into a string, which is then loaded into
the %user hash under two keys: the numeric UID (Line 22) and the alphabetic login
ID (Line 21).

Why record each value under two keys? Because it’s more convenient for the
user if either specification can be used to retrieve the record, and it’s hardly any
additional work for the programmer. The double initialization (Lines 21–22) is
accomplished using a hash-based variation on the $b=$a=1 syntax shown earlier
(in table 2.3).

256 would work too
320 CHAPTER 9 LIST VARIABLES

 1 #! /usr/bin/perl -wnlaF':'
 2 # Prints report of passwd-file data for users specified
 3 # interactively, via login-ID or numeric UID
 4
 5 BEGIN {
 6 $initializing=1; # start with TRUE value
 7
 8 # Use field-name variables for field-number indices
 9 ($id, undef, $uid, $gid, $name, $home, $shell)=(0..6);
10
11 # Read passwd file first, then STDIN (-) for user input
12 @ARGV=('/etc/passwd', '-');
13
14 $prompt="\nEnter login-ID or UID: "; # Prompt string
15 }
16
17 if ($initializing) {
18
19 # Assign formatted string to both ID and UID keys
20 # E.g., for "root", store under both '0' and 'root'
21 $user{ $F[$id] }=
22 $user{ $F[$uid] }="
23 ID: $F[$id]
24 UID: $F[$uid]
25 GID: $F[$gid]
26 NAME: $F[$name]
27 HOME: $F[$home]
28 SHELL: $F[$shell]";
29
30 if (eof) {
31 $initializing=0; # Signifies start of retrieval mode,
32 printf $prompt; # so prompt for user's first input
33 }
34 }
35
36 # Finished loading hash from file, now interact with user
37
38 else {
39 if (exists $user{$_}) { # Avoid attempts to use bad IDs
40 print $user{$_};
41 }
42 else {
43 warn "No such user: '$_'\n";
44 }
45 printf $prompt; # Prompt for next input
46 }
47
48 # On entry of <^D>, program comes here before exiting
49 END {
50 print ""; # Ensure newline before Shell's next prompt
51 }

Listing 9.7 The user_lookup script
USING HASH VARIABLES 321

Now, let’s examine the humble but critical Line 30. Its job is to detect the
point at which all the lines from passwd have been read, by using eof to test
for the “end of file” condition (as in section 9.1.4’s fcookie2). If the result is
True, the $initializing variable is set to a False value to signal the begin-
ning of the interactive phase, during which the user can retrieve the stored reports
for user accounts.

Line 32 supplies the prompt for the user’s first input. After the user presses
<ENTER>, Line 39 is executed on the next iteration of the implicit loop, which tests
whether the user’s input is a registered key in the hash by using the exists function
(see table 9.7).18 If it is, the associated value is printed, and if it isn’t, a warning is
issued (Line 43).

Line 45 prints the prompt for the next input, and then the program continues
prompting and reporting until the user presses <^D>. As with any interactive program
using dangling prompts, this script needs to print a newline before turning control
over to the Shell; this is accomplished in Line 50 by printing a null string (which will
be followed by an automatic newline, courtesy of the l option).

So that’s how it works. But I can already hear the user community clamoring for
an upgrade! Why? Because hash keys are case sensitive, which means that an attempt
to look up “SPUG” (instead of “spug”) will fail with this program. However, that
problem is easily fixed by coercing all inputs into a standard case before using them
as keys. This can be achieved by changing the current Line 21

$user{ $F[$id] }="...";

into a form that lowercases the field value before it’s used as an index:

$user{ "\L$F[$id]" }="...";

We also have to coerce the user’s input into the same case, by adding the following line
before the current Line 39:

$_="\L$_";

The techniques illustrated in this program are general ones that are relevant to a
wide variety of applications. For example, some system administrators might wish to
define hostnames and/or IP addresses as keys, to allow users to retrieve reports about
those hosts. Or a manager might wish to retrieve project-related information, a car
dealer inventory information, or a student lecture notes, using programs based on
this model.

Next, you’ll learn one way that hashes are used in Internet search engines.

18 The exists function is used less frequently with arrays, because uncertainty about indices is more
prevalent in hash-based programs. The script under discussion is an excellent example, because its in-
dices are determined by the contents of a file—not by the programmer.
322 CHAPTER 9 LIST VARIABLES

9.2.8 Counting word frequencies in web pages:

The count_words script

Ever wonder how Google does such a good job of instantly directing you to relevant
web pages on the basis of your search terms? A lot of it has to do with the prior char-
acterization of those pages according to relative word frequencies. That’s why when
you ask for pages related to “rocky road”, you might see results dedicated to off-road
driving, ice cream, or even songs by Weird Al Yankovic, depending on which pages
have those words occurring in the largest proportions. Guess what? Many Internet
search engines use Perl to prepare these statistics, because its hashes make word count-
ing so easy.

As an example, here’s a sample run of a script that breaks each input line into
words, and shows each word’s frequency of occurrence as a proportion of all words on
the page:

$ echo 'Testing, testing ... is this thing on?' | count_words
 WORD FREQUENCY
 is 0.166667
 on 0.166667
 testing 0.333333
 thing 0.166667
 this 0.166667

Let’s try the script on the text of a web page, using lwp-request (see section 3.12.2)
to fetch it. We’ll sort the output so the words that appear most frequently come
out first:

$ lwp-request -o text ukuleleworld.com | # output edited
> count_words |
> sort –r -n +1 | # reverse numeric sort, skip over WORD field
 WORD FREQUENCY
 ukulele 0.047442
 uke 0.012093
 or 0.010233
 music 0.010233
 paypal 0.009302
 of 0.009302
 a 0.009302
 us 0.008372
 hawaiian 0.004409
...

You’d be correct to infer that this web page would be of interest to those who want to
order a ukulele (uke) or Hawaiian music online, from a merchant that accepts pay-
ments by the PayPal service.

The script is shown in listing 9.8, with the lines that do the bulk of the
work highlighted.
USING HASH VARIABLES 323

 1 #! /usr/bin/perl -wnlaF'\W+'
 2
 3 foreach $word (@F) {
 4 # Use word as hash index, and increment its count
 5 # but coerce to lowercase, to ignore case-differences
 6 $lc_word="\L$word";
 7 $count{$lc_word}++; # count another occurrence of this word
 8
 9 $total++; # keep running count of word total
10 }
11
12 END { # Show frequency for each word, in word-sorted order
13 printf "%20s%14s\n", 'WORD', 'FREQUENCY';
14 foreach $word (sort keys %count) {
15 $frequency=$count{$word} / $total;
16 # Print $word as string in 20-char field,
17 # $frequency as floating-point number in 14-char field
18 printf "%20s%14f\n", $word, $frequency;
19 }

20 }

The script’s shebang line specifies that any sequence of one or more non word-
characters (spaces, commas, periods, etc.) constitutes a delimiter (see table 3.5).
This definition is used rather than the default of whitespace characters, because
we don’t want punctuation symbols to remain attached to the extracted words
(i.e., we want “spam”, not “*%#&spam!!”).

In Line 3, foreach assigns each of the fields of the current line from @F to the
$word variable in turn, for one iteration of the loop. Line 6 converts the current word
to lowercase, so we can treat “THE” and “the” as instances of the same word. Line 7
counts another occurrence of the current word. To facilitate the later calculation of
relative word frequencies, Line 9 keeps track of the total number of words processed
thus far.

After all the words have been counted, control transfers to the END block, which
prints the column headings. The formatting specifications on Line 13 say, “Print
WORD and FREQUENCY right-justified in adjacent fields of 20 and 14 characters, as
strings (%20s, %14s), followed by a newline (\n).” That newline is needed because
the l option affects only print, not printf also (see section 2.1.6).

Line 18 uses a similar format, but it specifies that the second value ($frequency)
should be printed as a floating-point (f) number (i.e., one with decimal places) rather
than as a string, as the word itself and the column headings are printed.

As this script demonstrates, it’s easy to calculate relative word frequencies with
Perl—the most involved part is printing the results! Now you understand why Perl is

Listing 9.8 The count_words script
324 CHAPTER 9 LIST VARIABLES

so widely used for this type of activity, in web-crawling robots and the search engines
they supply with data.

At this point, we’ve finished our coverage of the essential features of arrays and
hashes and how they’re used with special programming techniques in representative
applications. We’ll conclude this chapter by comparing Shell and Perl techniques for
generating lists, so you’ll be familiar with the Perl counterparts to the Shell idioms
you may already know.

9.3 COMPARING LIST GENERATORS
IN THE SHELL AND PERL

Shell programming terrifies me. ... Is it trying to remember what the rules are for all the differ-
ent quotes? Is it having to look up the multi-phased interaction between filename expansion,
shell variables, quotation, backslashes and alias expansion?

—Olin Shivers, author of scsh, 1994

As many have noticed, it can be a challenge to understand all the intricacies of the way
the Shell processes command lines. Fortunately, Perl’s approach is much simpler—
without being less powerful—and it’s also easier to comprehend.

In this section, which is aimed at intermediate to advanced Shell programmers,
we’ll review the commonly used Shell idioms for generating lists and show you their
closest Perl counterparts. This knowledge will help you transfer your Shell skills into
the Perl domain and make you a more proficient Perl programmer.

Lists can be generated through variable, command, or filename substitution (or
interpolation, in Perltalk) in both languages. The Shell may then perform additional
substitutions on the results of variable or command substitutions, before re-parsing
the final result in the processing stage called word-splitting.19 As the name implies,
the major effect of this processing stage is to convert a string into a list of its constit-
uent “words”.

Because the programmer needs to control which substitutions will be subjected to
these additional processing steps, the Shell provides a mechanism for selectively dis-
abling them: quoting. But you don’t need quoting for this purpose in Perl, because it
doesn’t perform those additional processing steps anyway. Conversely, emulating the
Shell’s treatment of unquoted substitutions with Perl often requires additional pro-
cessing steps to be explicitly requested (using, for example, split).

For your convenience, table 9.9 presents examples of the most common types of
list-generators used in Shell programming, along with their closest Perl equivalents.

19 This is also called IFS (for Internal Field Separator) processing, after the Shell variable of the same name.
COMPARING LIST GENERATORS IN THE SHELL AND PERL 325

You can use this table to select the Perl counterparts for the Shell expressions you
already know, without the burden of working out the Perl equivalents yourself.

We’ll discuss the Perl counterparts to the three different types of Shell processing cov-
ered in that table—filename generation, command substitution, and variable
substitution—in the sections that follow.

9.3.1 Filename generation/globbing

The first row of table 9.9 compares techniques for generating filenames. As discussed
in chapter 8, filename generation (FNG) metacharacters, such as “*”, must appear
within the angled brackets of the globbing operator to be recognized in Perl. Another
difference between the languages is that the metacharacter that complements a char-
acter class is “!” in the Shell but “^” in Perl (see table 7.16).

Now we’ll discuss differences between the languages in the way that command
output is imported into programs.

Table 9.9 Common list generators in the Shell and their Perl counterparts

Shell name Perl name Shell examples Perl examples
b

Filename
generation

Globbing *
[!a]*.txt

<*>
<[^a]*.txt>

Command
substitution

Command
interpolation

`cat memo`
$(cat memo)

(TRICKY)*
`find . -print`

split /\s+/, `cat memo`

`cat memo`
See File::Find in chapter 12.

Variable
substitution

Variable
interpolation

"$@"
"${names[@]}"

$*
${names[*]}
$names

@ARGV
split /\s+/, "@ARGV"

@names
split /\s+/, "@names"
split /\s+/, $names

N/A Input operator N/A <>
<STDIN>

N/A Matching
operator

N/A /\w+/g

a. TRICKY means that it may be possible to arrange a result in the Shell that matches that of the Perl example, but
it’s not necessarily easy.

b. List context is assumed where required.
326 CHAPTER 9 LIST VARIABLES

9.3.2 Command substitution/interpolation

Although Perl shares one of the Shell’s syntaxes for command substitution/interpola-
tion (`command`; see the table’s second row), the languages may nevertheless treat
command’s output differently. For example, the result provided by `cat memo` in
the Shell is a list of the file’s whitespace-separated “words”, but in Perl it’s a list of its
lines instead. If desired, you can use split to convert those lines into words (see sec-
tion 7.2.1), as shown in row 2 of table 9.9.

However, even after that conversion, the languages might not have the same words
in their lists! This is possible because if any FNG metacharacters (?, *, etc.) are present
within the words, the Shell might replace them with filenames.20

Another disparity is that the result provided by `cat memo` in Perl—which by
default is the eminently sensible “each line is one list element”—has no direct
counterpart in the Shell, which returns a list of individual words for an unquoted
command substitution, or a single string containing all the original data for a dou-
ble-quoted one.21

Next, we’ll discuss some differences in the way the languages handle requests for
the values of variables.

9.3.3 Variable substitution/interpolation

Thanks to the special behaviors exhibited by certain built-in variables and array indi-
ces when they’re double-quoted in the Shell, the upper examples of table 9.9’s third
row produce identical results in the two languages. However, the Shell’s infamous
propensity for doing further processing on the results of most types of substitutions
(filename generation is the exception) means that the Perl list generators shown in
the bottom examples of the third row can’t be trusted to behave identically—in all
cases—to their indicated Shell counterparts.

For instance, if any of those unquoted Shell examples of variable substitution were
to yield a “*”, that character would be replaced by all the (non-hidden) filenames in
the current directory. In contrast, the “*” would remain unchanged in the Perl coun-
terparts to those examples.

For what it’s worth, I—like many other immigrants to Perlistan—prefer Perl’s “no
surprises” approach to the uncertainties of the Shell’s processing model.

Conclusion

It’s fortunate that most files and script arguments don’t contain FNG metacharacters,
because there’s no easy way to defend against their unwanted conversion to filenames

20 E.g., if “Jos?” were in the file, the Shell would convert it to “Jose” and “Josh”—if files with those names
were present in the current directory. The same result could be arranged in Perl, but it wouldn’t happen
by accident, as it may in the Shell.

21 Although with sufficient manipulation of the Shell’s IFS variable and intermediate storage of output
into temporary variables, the same effect might be achievable.
COMPARING LIST GENERATORS IN THE SHELL AND PERL 327

in the Shell. Why? Because the only tool you’ve got for disabling substitutions on
results of prior substitutions is double quoting—but that also prevents word-splitting,
which might be required!

Nevertheless, for the majority of cases you’ll encounter in common programming
practice, the Perl counterparts shown in table 9.9 for Shell list-generating commands
will serve as functional equivalents.

9.4 SUMMARY

Perl’s arrays allow multiple data values to be stored in—and retrieved from—named
variables, using integer indices that refer to individual storage locations within the
array. Unlike most languages, Perl lets you use negative indexing to access elements
relative to the array’s end (as in the shell_types script), and to use groups of indi-
ces to store or retrieve multiple values (“slices”) in one operation (as in show_
fields2, section 9.1.3).

In cases where it’s acceptable for new values to be appended at an array’s
end, you can use the push function, which lets Perl generate the appropriate
indices automatically.

With some applications, a method for retrieving values from arrays that resembles
the extraction of lottery numbers from a fishbowl is appropriate, as illustrated by
fcookie (section 9.1.4), which extracts random “fortunes” from an array that func-
tions as a simple database.

Perl’s hashes (called associative arrays in AWK) expand on the concept of arrays by
allowing strings to be used as indices. Because the essential services performed by
hashes and arrays are the same—data storage and retrieval—hashes tend to be used
more frequently than arrays in Perl, because strings generally make more convenient
indices than integers.

Array indices range from 0 to one less than the number of elements in the array,
which makes it easy to extract every stored value in a methodical manner. In contrast,
the keys of a hash (42, ‘AC/DC’, ‘slurm’) aren’t necessarily predictable or restricted to
a pre-determined range. For this reason, functions called keys and values are pro-
vided to facilitate the extraction of their namesake elements from a hash, often with
the aid of the foreach loop (see section 10.4), which makes it easy to process each
element in turn.

A common application of hashes is the removal of duplicates from a list, as you
saw in the unique_args and unique_inputs scripts. This technique could be
used, for example, to avoid the mistake of sending a particular email to the same
address more than once.

Hashes are well suited to tasks such as word counting, where each word acts as a
key and its corresponding value is the number of times it appears in the input. You
saw how simple scripts like count_words (section 9.2.8) can generate statistical
328 CHAPTER 9 LIST VARIABLES

reports like those used by Internet search engines, for recommending web pages on
the basis of search terms.

The user_lookup script (section 9.2.7) uses a hash to retrieve the passwd-file
data for the indicated user. Because numbers and strings can both be used as keys in
the same hash, the user of that script can specify a Unix user by either his numeric
UID or his alphabetic login name, which is a valuable feature that’s difficult to imple-
ment with arrays.

Arrays and hashes are often used together, such as when an array supplies an
ordered list of keys for extracting a slice of values out of a hash in a pre-determined
order (as in the beatles script of section 9.2.2).

Although unindexed arrays and hashes have different initial symbols (@stuff vs.
%stuff), those are both replaced by the $ character when the variables are singly
indexed. But Perl can still tell the data types apart, because arrays and hashes use dif-
ferent symbols around their subscripts (e.g., $stuff[$array_index], $stuff
{$hash_index}).

The %ENV hash provides access to a program’s environment variables, such as
PATH and DISPLAY on Unix systems. You saw how environment variables can be
used in place of command-line switches to affect a program’s behavior, in scripts such
as unique_args (section 9.2.6).

In the Shell, lists of values can be obtained from filename generation, command
substitution, or variable substitution requests. We discussed the closest Perl counter-
part for each type of Shell list-generator (e.g., <*> vs. *) and the Shell’s propensity for
doing additional processing on the results of prior substitutions—which can some-
times be more of a liability than an asset. You can program Perl to emulate the Shell’s
behavior, but unwanted substitutions don’t occur by accident in Perl, as they may in
the Shell.

Directions for further study

To obtain information about specific Perl functions covered in this chapter, such as
keys, values, shift, unshift, delete, exists, or printf, you can use that
function’s name in a command of this form:

• perldoc -f function-name # coverage of "function-name"

The following document provides additional information on Perl’s data types:

• man perldata # discusses scalar, array, and hash variables

The standard List::Util module provides several useful utility functions for lists of
all kinds—explicit lists, arrays, and hashes. For example, it provides functions that
shuffle (randomly reorder) a list’s values, and that return their minimum and maxi-
mum values. Run the following command for additional details:

• man List::Util # describes utility functions for lists
SUMMARY 329

C H A P T E R 1 0

Looping facilities

10.1 Looping facilities in the Shell

and Perl 331
10.2 Looping with while/until 333
10.3 Looping with do while/until 338
10.4 Looping with foreach 340

10.5 Looping with for 345
10.6 Using loop-control directives 349
10.7 The CPAN’s select loop

for Perl 355
10.8 Summary 360
Recapitulation. Repetition! Redundancy!! The redundancy of repetition. The repeti-
tive monotony of redundancy. The monotony of endlessly repeating a mundane
task—repetitively!

Repetition is annoying—and dangerous. It can drive people crazy! Fortunately,
civilization has evolved to the point where we have unfeeling mechanical agents who
exist just to perform an endless variety of mind-numbingly repetitive tasks for us. The
ones we call computers can process operations repetitively through a process called
looping, which refers to the repeated execution of program code.

Before we discuss how looping in Perl relates to looping in the Shell, let’s consider
a typical kind of activity that looping makes a lot easier.

As you know, most Unix commands can handle multiple arguments. That’s why
you can get a long listing of every file that ends in .txt for the current directory by
using this command:

ls -l *.txt

There’s no need to run the command separately for each of the files, because the com-
mand processes the filename arguments supplied by *.txt one after another—using
a loop.
330

But adventurous Shell programmers will eventually encounter standard Unix
commands that don’t work this way. For example, both tr and col1 are designed to
read only from STDIN, not from filename arguments, so processing multiple files
with them requires different techniques.

The following command shows a common use of tr. It converts each character in
a file from upper- to lowercase, using redirection of the command’s input from an
existing file, and redirection of its output to a new file:

tr '[A-Z]' '[a-z]' < memo.txt > lc_memo.txt

This approach is fine for a single file, but what if you needed to convert all the *.txt
files in the current directory? That would require execution of the tr command with
different input and output files each time. This goal could be conveniently accom-
plished with some help from the Shell’s for loop:

for file in *.txt; do tr '[A-Z]' '[a-z]' < $file > lc_$file; done

Each filename that matches the pattern *.txt, such as memo.txt, has its input con-
verted to lowercase and then written to a related filename, in this case lc_memo.txt.
The loop variable (file) holds each filename in turn, allowing the command’s invo-
cation to be customized for each filename through variable substitution for $file.
Looping makes the job easier by allowing the programmer to specify the operation
only once, but to have it applied as many times as necessary to handle the files at hand.

Think of the alternative—if 100 files needed this processing, and you didn’t know
how to use a loop, you would have to compose and submit 100 tr commands (one
per filename) to get all the work done. Monotony!

This is why every serious programming language provides a facility for looping,
and Perl, despite its carefree nature, is no exception. But Perl is exceptional in having
such a complete collection of looping facilities. (We have the eclectic flair and good
taste of Perl’s creator, Larry, to thank for that.)

In this chapter, we’ll discuss how Perl’s standard looping facilities compare to
those of the Shell. In addition, you’ll see how the Shell’s select loop, arguably its
friendliest feature, can also be used in Perl programs—despite the fact that it isn’t a
part of the Perl language!

10.1 LOOPING FACILITIES IN THE SHELL AND PERL

Loops are generally classified according to whether they iterate over a list of items, or
until a condition produces a True (or False) value. For loops of the second type, an
additional distinction is whether the condition is tested before or after the code block
has been executed (i.e., top- or bottom-tested).

1 The tr command can transliterate characters from one listed set to another, or delete specified char-
acters. The col command can delete control characters; it’s been used to remove over-striking from
man pages prior to grepping: man whatever | col –bx | grep –i 'something'.
LOOPING FACILITIES IN THE SHELL AND PERL 331

The Unix shells offer three kinds of loops:

• The functionally similar foreach (from the C shell) and for (from the other
Shells), which are top-tested list-handling loops

• The closely related while and until, which are condition-evaluating loops
that support both top and bottom tests

• The select loop, which is a uniquely useful hybrid that provides menu-
oriented list-handling in a top-tested, condition-evaluating loop

Perl provides four loops:

• foreach, which is like the Shell’s for

• while/until and do while/until, which together cover the same ground
as the Shell’s while/until loop

• for, inherited from the C language, which is a top-tested, condition-evaluating
loop that’s especially useful for handling arrays in certain ways

This chapter compares each Shell loop to its Perl counterpart and shows translations
of representative Shell examples into Perl. In some cases, both literal and figurative
translations are provided, to respectively show a direct mapping of features as well as a
more idiomatic way of expressing the code in Perl.

Both languages allow flexibility in how the elements of loops are laid out. To help
you gain familiarity with two representative formats, we show typical expanded and
condensed code layouts for each loop, which differ only in whitespace characters (e.g.,
see table 10.2).

To help you relate what you already know to Perl, table 10.1 summarizes the fun-
damental similarities and differences between the languages in looping-related con-
cepts, terms, and syntax.

Most of the table’s entries are self-explanatory, but Perl’s concept that list versus scalar
contexts provide different meanings to @ARGV (see section 7.1) is worth a quick review.
Essentially, if you’re using an array name in a context that calls for a single value (i.e.,
a scalar result), such as @ARGV > 0, Perl provides the number of elements in the array.

Table 10.1 Looping-related differences between the Shell and Perl

Feature Shell Perl

Code block delimiters do done { }

Contents of code block Commands Statements

Individual script arguments $1, $2, ... $ARGV[0], $ARGV[1], ...

Collective script arguments $* "$@" @ARGV (in list context)

Number of script arguments $# @ARGV (in scalar context)

Explicit list of literal values 'Pat' 'Kim' ('Pat', 'Kim')
332 CHAPTER 10 LOOPING FACILITIES

But in a context that calls for a list of values, such as print @ARGV, Perl provides the
elements themselves. Other differences listed in table 10.1 will be discussed in more
detail in connection with upcoming examples.

We’ll begin our examination of Perl’s loops with while and until, which iterate
until the required True/False result is obtained.

10.2 LOOPING WITH while /until
These two variations on one loop continue executing the code block until the termi-
nation criterion is met, based on the True/False value provided by the command
before do (called the controlling condition, or condition for short). The loops differ
only in while iterating while the condition remains True, and until iterating until
it becomes True.

The while/until loops of both languages are shown in table 10.2. The
expanded forms are shown in the top panel, and the compressed forms, suitable for
loops that will fit on one line, are on the bottom.

You can see that semicolons are required in the Shell’s condensed format to provide
the punctuation given by the return character in the expanded format, although no
such adjustment is required with Perl.2

Next, you’ll see an example of a Shell while loop performing a simple mathemat-
ical task, along with its Perl counterpart.

10.2.1 Totaling numeric arguments

In the terminology of Shell programming, positional parameters are a special class of
variables. They hold copies of the script’s arguments—the words the user typed after
the script’s name on the command line.

Table 10.2 The while/until loop

Shella Perl

while
 condition
do
 code
done

while (condition) {
 code;
}

while condition; do code; done while (condition) { code; }

a. condition is a placeholder for the True/False expression that controls looping, and code for the block of one
or more commands/statements processed on each iteration. The until variations look the same, apart from
the until keyword replacing while.

2 A semicolon isn’t used after the closing curly brace that marks the end of Perl’s code block (although
many beginners are inclined to place one there).
LOOPING WITH while /until 333

A common technique for processing all positional parameters is to process the first
one ($1) and then execute shift3 to discard it, which moves the remaining parame-
ters one position leftward. Those steps are then repeated using a while loop until
every argument has taken its turn residing in $1.

The following program uses this technique to sum the numbers in its argument list:

while
 [[$# -gt 0]] # while an argument remains
do
 ((total=$total + $1)) # each parameter takes turn as $1
 shift # $2 becomes $1, $3 becomes $2, etc.
done
echo "The sum is $total"

The condition tests whether the current number of positional parameters ($#) is
greater than 0. If so, the value of the first argument (in $1) is added to the prior total
and stored back in the total variable. Next, $1 is discarded, and the remaining argu-
ments are moved leftward one position via shift, with the former $2 becoming the
new $1, and so forth. Then the number of positional parameters is tested again, and
the next argument is added to the total, until all arguments have been processed.

The Perl version is similar, apart from the syntactic variations discussed earlier and the
usual difference that the variable $total never appears without its $ symbol:

#! /usr/bin/perl -wl
while (@ARGV > 0) { # while an argument remains
 $total=$total + $ARGV[0]; # each argument takes turn as #0
 shift; # $2 becomes $1, etc.
}
print "The sum is $total";

If the test of the argument count yields a True result, the first argument is obtained
from the array using a zero-based index and added to the running total. In contrast,
the Shell stores its arguments in individual variables whose names correspond to their
ordinal positions on the command line (see table 10.1). This leads to the use of
$ARGV[0] in Perl versus $1 in the Shell to access the first argument.

Tips on using while for list processing

Although the looping approach shown in the argument-totaling example will be
refreshingly familiar to many Shell programmers, Perl’s foreach loop is generally pre-
ferred to while for list processing tasks, because it’s easier to use (see section 10.4).

3 Covered in section 8.1.3.

Shell

Perl
334 CHAPTER 10 LOOPING FACILITIES

We’ll look at another application of while next, where it’s used to manage data
compression for image files.

10.2.2 Reducing the size of an image

Consider Ivan’s plight. Having finally conceded that email is here to stay, he decides to
liquidate his vast collection of exotic postage stamps and start collecting “From:”
headers on foreign spam messages instead. But after scanning his stamps and compar-
ing the total disk usage of the resulting files to the amount of storage he’ll be allocated
on his favorite auction site, he realizes they won’t fit.

Ivan knows all about data compression, but he thinks it’s best reserved for text. He
shudders to think how his lovely stamps would look with JPEG artifacts superimposed
on their colorful scenes of soaring birds, magnificent palaces, and scowling dictators.
Nevertheless, he has to raise money for the new disk farm to house his From–header
collection; so, as a compromise, he resolves to compress each image to the minimum
degree possible. After doing some quick math with a Perl one-liner,4 he determines
that each image can use up to 25KB of storage.

Then he writes a program to progressively compress an original image until its size
falls below that threshold. Because this is clearly a case of iterating until a criterion is
achieved, he chooses a while loop to do the job.

Here’s what the program looks like in action:

$ compress_image -fname=tibet-lhasa.jpg
Size of tibet-lhasa.jpg: 31072 bytes
Size of tibet-lhasa.jpg: 28084 bytes
Size of tibet-lhasa.jpg: 24701 bytes

As you can see, the program stopped automatically once the compressed size fell
below the 25KB mark, to preserve as much of the image’s initial quality as possible.
Listing 10.1 shows the script.5

The program begins by copying the image file to the /tmp directory, which
requires complementing the value returned by system before testing it in the usual
Perlish way for a failed result (Line 9; see section 8.6). Then, if its size (determined via
–s; see table 6.2) exceeds the target size (Line 14), the image is compressed to “quality”
level $qual using the convert command of the ImageMagick package (Line 16).6

4 Of the following form:
perl –wl –e 'print "Max bytes for file: ", space / num_stamps;'

5 For filenames containing special characters, proper Shell-level quoting would be required in the calls
to system, as demonstrated in section 8.6.

6 See http://www.imagemagick.org.
LOOPING WITH while /until 335

 1 #! /usr/bin/perl –s -wl
 2
 3 $DEBUG=1; # for extra feedback during testing
 4 $qual=80; # starting quality value
 5
 6 $fname or die "Usage: $0 -fname=imagefile\n";
 7
 8 # Copy original image to another directory
 9 ! system "cp $fname /tmp/$fname" or die "$0: cp failed\n";
10
11 $DEBUG and # show initial size
12 print "Size of $fname: ", -s $fname, ' bytes';
13
14 while (-s $fname > 25_000) { # 25_000 means 25,000 in Perl
15 # Compress copy using $qual; store under original name
16 ! system "convert -quality $qual /tmp/$fname jpg:$fname" or
17 die "$0: convert failed\n";
18
19 $DEBUG and # show new size

20 print "Size of $fname: ", -s $fname, ' bytes';
21
22 $qual=$qual - 5; # reduce for next iteration
23 }

convert writes its results in the format specified by the prefix on its last argument
(jpg) to the filename specified in that argument, which in this case is the original
file. Additional iterations are executed as needed until an acceptable size has been
reached, by compressing the unaltered data in the copy of the original file (named
/tmp/$fname) to a larger degree (Line 22) and storing the result once again in
the original file.

After reviewing the results for a few images, Ivan is pleased with the quality pro-
duced by his “just sufficient” compression strategy. But now he needs a way to process
the hundreds of remaining images that doesn’t involve typing hundreds of com-
mands! We’ll help him solve that problem a little later, when we discuss foreach.7

In the meantime, we’ll discuss the use of while, along with its companion each,
in the printing of hashes.

10.2.3 Printing key/value pairs from a hash using each

In Perl, the environment variables provided by the OS are accessible through the %ENV
hash (see section 9.2.3) Here’s a simple script based on a while loop that shows the
contents of any environment variable whose name contains the string “PATH”. In the

Listing 10.1 The compress_image script

7 In the meantime, Ivan should remember that the Shell can help via
for image in *.jpg; do compress_image -fname="$image"; done
336 CHAPTER 10 LOOPING FACILITIES

lingo of hash processing,8 the script searches each key for that string and then prints
the matching keys along with their associated values:

$ cat show_pvars
#! /usr/bin/perl –wl

while (($key, $value)=each %ENV) {
 $key =~ /PATH/ and print "$key=$value";
}

The each function returns another key/value pair from the hash each time it’s called,
and after all pairs have been returned, a False condition is detected by while. The
returned values are typically assigned to an explicit list of two scalars (as shown), pro-
viding easy access to the key and value in the body of the loop. Here’s a sample run of
the program, with “PATH” strings within keys highlighted:

$ show_pvars
PATH=/usr/local/bin:/usr/bin:/usr/X11R6/bin:/bin:/opt/gnome/bin
MANPATH=/usr/local/man:/usr/share/man:/usr/X11R6/man:/opt/gnome/man
INFOPATH=/usr/local/info:/usr/share/info:/usr/info

As you can see, the output lines aren’t sorted according to either keys or values, which
is one of the limitations of this approach. In consequence, each tends to be used
when the convenience of directly accessing key/value pairs via simple scalar variables
(such as $key and $value) is more important than processing the elements in
sorted order.

In section 10.4 on the foreach loop, you’ll see examples that illustrate the oppo-
site tradeoff—they benefit from the ability to sort keys at the expense of having to use
indexing (e.g., $ENV{$key}) to obtain their corresponding values.

Now that you’ve seen the while loop used in several representative applications,
we’ll peek under Perl’s hood and see what fuels the handy n and p invocation options.

10.2.4 Understanding the implicit loop

Among the most useful of Perl’s invocation options is n (covered in part 1). Now
that you understand the while loop, you’re in a position to understand what that
option really does, which is to wrap the following implicit loop around the bulk of
your program:

while (<>) {
 PROGRAMMER'S CODE GOES HERE
}

The empty input operator (<>) tells Perl to look for input in the files named as argu-
ments to the script or, in their absence, to read input from STDIN. Most Perl pro-
grams that need to process input are happy to comply with these Unix conventions
for input acquisition, so it’s convenient to get this loop for free by using the n option.

8 See section 9.2.
LOOPING WITH while /until 337

When you use that option, the entire program is enclosed in the implicit loop by
default, although you can use BEGIN and/or END to specify code blocks that should
be executed before or after that loop. The same effect can be achieved with an explicit
loop simply by positioning the desired code above or below it, as shown in table 10.3.

For completeness, the explicit loop in the table is labeled LINE, just as the implicit
loop (invisibly) is, which allows the programmer to employ loop-control directives
such as next and last on it via that label (covered later in section 10.6).

The next looping facility we’ll examine is an upside-down variation on the while/
until loop, which comes in handy when the information that’s meant to control
looping isn’t available up front.

10.3 LOOPING WITH do while/until
The Shell’s while loop executes the code block between do and done while the con-
dition returns True. But some situations require commands to be executed before each
test of the condition, rather than after. That’s why Perl has do while and do until,
which position the test at the loop’s bottom (see table 10.4).

The Shell lacks upside-down variations on while and until, but that hasn’t
stopped crafty programmers from rolling their own. The unusual format shown for
the Shell’s while in table 10.4 arranges for its preliminary code to be executed before
the condition, repeatedly, until the condition stops returning True. The null

Table 10.3 Pre- and post-processing in implicit and explicit loops

Implicit loop (provided by –n) Explicit loop

BEGIN { Pre-input code goes here }

LINE: while (<>) {
 INPUT-HANDLING CODE GOES HERE
}

END { Post-input code goes here }

Pre-input code goes here

LINE: while (<>) {
 INPUT-HANDLING CODE GOES HERE
}

Post-input code goes here

Table 10.4 Perl’s do while loop and its Shell equivalent

Shella Perl

while
 prelim_code
 condition
do
 : # null command
done

do {
 prelim_code;
} while (condition);

while commands; do :; done do { prelim_code; } while(condition);

a. prelim_code stands for “preliminary code”; commands represents the combination of prelim_code
and condition.
338 CHAPTER 10 LOOPING FACILITIES

command (:) does nothing, as its name implies, apart from providing a syntactically
required command between do and done.

Testing a loop at its bottom is achieved in Perl by using do while or do until,
as illustrated in the right column of the table.

With both languages, you achieve the do until effect—which causes iteration to
continue until the condition returns True—by replacing the while keyword with
until and adjusting the logic of the condition

TIP A common, fatal error is omitting the semicolon that’s required after the
parenthesized condition at the end of do while/until.

Next, we’ll look at a typical case where you’d use a bottom-tested loop.

10.3.1 Prompting for input

Interacting with a live user is always a challenge, but in some cases it’s absolutely nec-
essary—such as when you need to confirm that the user really wants an irreversible,
destructive action to be performed. Here’s a code fragment written for the Shell that
seeks confirmation for such a case:

while
 echo 'Remove all files? [y/n]'
 read answer
 [[$answer != 'y' && $answer != 'n']]
do
 : # null command
done
Code to handle y/n choice goes here

This bottom-tested Shell while loop issues a prompt, loads the answer into a vari-
able, and then repeats those operations while the answer isn’t “y” or “n”.

The equivalent Perl loop needs to remove the trailing newline character from
$answer before testing the acceptability of the input:9

do {
 printf 'Remove all files? [y/n] ';
 $answer=<STDIN>;
 chomp $answer; # remove newline
} while ($answer ne 'y' and $answer ne 'n');
Code to handle y/n choice goes here

9 Remember, the l option strips trailing newlines only from input read via the implicit loop of the n or
p option, not from input read by the input operator.

Shell

Perl
LOOPING WITH do while /until 339

The do until variation is very similar, apart from using equality (eq) rather than
inequality (ne) tests in its condition, and a logical or rather than and to connect
them. Most would probably agree that this variation reads most naturally for this
application:

do {
 printf 'Remove all files? [y/n] ';
 $answer=<STDIN>;
 chomp $answer; # remove newline
} until ($answer eq 'y' or $answer eq 'n');
Code to handle y/n choice goes here

The three loops you’ve just seen will all repeatedly prompt the user until they get what
they need. But what if you want to let the user leave the loop on input of <^D>, which
is a Unix convention for requesting release from an input-reading program?

The conventional Shell solution would be to rewrite the read answer command
as read answer || break. Unfortunately, no analogous adjustment will work for
Perl’s do while or do until—because neither responds to loop-control directives!
We’ll revisit this issue in section 10.6.2, and see how to deal with it.

Next, we’ll look at everybody’s favorite Perl loop, which is also one of the few fea-
tures it adapted from the C shell.

10.4 LOOPING WITH foreach

QUESTION: What’s the best loop in Perl?
ANSWER: As any JAPH worth his camel jerky will tell you, it’s foreach.

The while and do while loops discussed thus far continue iterating while the con-
dition’s True/False value permits it. In contrast, the distinctive property of the for
and foreach loops is that they continue iterating until they run out of list elements
to assign to the loop variable.

The syntax for the Shell’s for loop is shown in table 10.5 alongside that of its Perl
counterpart, foreach.

Table 10.5 The Shell’s for loop and Perl’s foreach loop

Shella Perl

for var in LIST
do
 code
done

foreach $var (LIST) {
 code;
}

for var in LIST; do code; done foreach $var (LIST) {code;}

a. var and $var are placeholders for the name of the loop variable, LIST for its associated list of values, and
code for the code block to be processed on each iteration. The elements shown in the ghost font are optional.
340 CHAPTER 10 LOOPING FACILITIES

Various commands (in the Shell) or expressions (in Perl) can be used to generate the
LIST.10 If in LIST is omitted with the Shell, the script’s double quoted arguments
("$@") are used by default. Perl requires LIST to be present, but it allows the loop
variable to be omitted and uses $_ in that case, which is a convenient feature.11

We’ll look at some practical applications of foreach next, starting with an
upgrade to a script from an earlier chapter.

10.4.1 Unlinking files: the rm_files script

As discussed in section 7.5.1, when you run unlink with multiple filename arguments,
you can’t get detailed explanations for why particular files couldn’t be removed.12 But
now that you know about foreach, you can easily rectify that problem by unlinking
files one at a time:

$ rm_files junk shangri-la kumari-devi # only junk gets trashed
rm_files: Unlink failed on 'shangri-la'; No such file or directory
rm_files: Unlink failed on 'kumari-devi'; Permission denied

There’s not much to the script, because foreach makes it so simple:

$ cat rm_files
#! /usr/bin/perl -wl

foreach (@ARGV) {
 unlink $_ or warn "$0: Unlink failed on: '$_'; $!\n";
}

A loop like this one could come in handy in a script that creates temporary files and
wants to report any problems later when removing them.

It’s much easier to process files a line at a time with Perl’s foreach loop than it
is with the Shell’s for, as you’ll see next.

10.4.2 Reading a line at a time

Shell scripts that need to process lines from files typically use command substitution
(see section 8.5) on the cat command to provide the LIST used by the for loop.
The tricky part is that some special manipulations of the IFS variable are required to
arrange for cat’s output to be parsed into lines, rather than the default of words:

10 Section 9.3 shows expressions commonly used to generate lists in the Shell and Perl. On the web,
http://TeachMePerl.com/DQs_in_shell_vs_perl.html documents the effects of double quotes in the
two languages. You may wish to consult these resources while reading this section.

11 The Perl programmer also has the option of providing a scope-defining declaration for the loop variable
(see section 11.3).

12 That’s because the OS-error message variable, “$!”, can only hold a single error message at a time.
LOOPING WITH foreach 341

OIFS="$IFS" # save for restoration
IFS='
' # Internal Field Separator is now "carriage return"
for line in `cat somefile` # or: `cmd1 | cmd2`, etc.
do
 IFS="$OIFS" # reinstate original setting ASAP
 echo "Processing $line"
 # Processing code goes here
done

A savvy JAPH wouldn’t usually write a loop to handle this scenario, because the n
option provides a more convenient solution. However, that approach can’t always be
used—e.g., the filename might not be available from the user until after the script is
already running, when it’s too late to provide that information as an argument.

Here’s a Perl solution that you can use in such cases:

printf 'Enter filename: '; # prompt for input
$filename=<STDIN>; # store the filename
defined $filename or exit; # exit on <^D>
chomp $filename; # strip trailing newline
–T $filename or die; # test for readable, text contents

foreach $line (`cat $filename `) { # Or: `cmd1 | cmd2`, etc.
 print "Processing $line";
 # processing code goes here
}

After the filename has been obtained and validated, the rest of the coding is consider-
ably simpler than the Shell version. That’s because Perl processes the output of com-
mand interpolation one line at a time by default, whereas the Shell’s default is to
process it one word at a time (necessitating the tricky IFS manipulations).13

Next, you’ll see how to print hashes using a foreach loop, which offers certain
advantages.

10.4.3 Printing a hash

Because hashes return their key/value pairs in a seemingly haphazard order,14 a
common application of foreach is to print each pair in key-sorted order. The
following loop prints the variable-name/value pairs of the environment variables,
which are provided by the Shell to its child processes (such as this code’s pro-
gram), in alphanumeric order:

13 See section 9.3 for a detailed comparison of the languages with respect to list generators.

Shell

Perl

14 The order in which keys and values are returned is a consistent and repeatable one, but it seems hap-
hazard because of its unpredictability (see table 9.7 and section 9.2.2).
342 CHAPTER 10 LOOPING FACILITIES

foreach $variable_name (sort keys %ENV) { # show variables/values
 print "$variable_name => $ENV{$variable_name}";
}

Here’s some sample output from a Linux system; note that the keys are in alphanu-
meric order:

COLUMNS => 80
EDITOR => vim
HOME => /ward/bond

To pay for the privilege of sorting the keys, we assume the responsibility of indexing
to get their values—which are the opposite tradeoffs to those obtained by using each
in a while loop (see section 10.2.3).

Next, you’ll see how Perl can—IMHO, help you—AFAIK, to decipher those cryp-
tic acronyms—FWIW, in your email messages. HTH!

10.4.4 Demystifying acronyms: The expand_acronyms script

Many people save keystrokes and thwart carpal-tunnel syndrome by using cryptic
acronyms in email messages. But Gabriella got frustrated trying to decipher the ones
she didn’t understand, so she wrote an “acronym expander” to explain them. Because
it needs to map strings like “FWIW” into their expanded equivalents, she uses a hash
to associate each acronym with its expansion, as shown in listing 10.2.

#! /usr/bin/perl -wpl

BEGIN {
 %expansion=(
 FWIW => "for what it's worth",
 IMHO => 'in my humble opinion',
 AFAIK => 'as far as I know',
 YMMV => 'your mileage may vary',
 JAPH => 'Just Another Perl Hacker',
);
}

foreach $acronym (keys %expansion) {
 s/\b$acronym\b/$expansion{$acronym}/ig;
}

This script reads a line at a time using the p option, and then it uses the foreach
loop to attempt a case-insensitive global substitution in the current line for each
acronym in turn. Once that’s done, the resulting line is printed automatically
(courtesy of the p option).

Listing 10.2 The expand_acronyms script
LOOPING WITH foreach 343

Here’s a sample run with a suitable file:

$ cat jive_talkin
FWIW, IMHO,
YMMV, AFAIK.

- JAPH

$ expand_acronyms jive_talkin
for what it's worth, in my humble opinion,
your mileage may vary, as far as I know.

- Just Another Perl Hacker

Having just learned how to process hash keys in sorted order, you might be surprised
to see that keys isn’t preceded by sort in the list of the foreach loop. But that
wouldn’t offer any advantage in this program, because the order in which the substi-
tutions are made is unimportant.

Remember Ivan, the guy who’s switching hobbies from stamp collection to email-
header collection? He’s got a problem, which foreach can help solve.

10.4.5 Reducing image sizes: The compress_image2 script

Ivan is currently typing the twenty-seventh invocation of his image-compressing
script, this time for the stamp memorializing Franco Zappato’s famous tweezer collec-
tion. He needs to work smarter ! In particular, his compress_image script needs to
be enhanced with a foreach loop so it can compress all files named as arguments,
allowing Ivan to process all his images with one invocation of this form:

$ compress_image2 *.jpg # processes 242 *.jpg files
...
Size of Idi_Amin_medals.jpg: 33272 bytes
Size of Idi_Amin_medals.jpg: 29184 bytes
Size of Idi_Amin_medals.jpg: 24889 bytes
Size of Imelda_flip-flops.jpg: 36782 bytes
...

As highlighted in listing 10.3, the significant changes to the original script are the
addition of Lines 7 and 25 to provide the enclosing foreach loop, and the removal
of the -s option from the shebang line. Although that option made it easy for him to
specify the filename using the -fname=filename switch with the earlier script, it
also limited that script to processing one file per invocation, which has become an
undesirable restriction.

The new version still uses the $fname variable, but now it’s reset to the next file-
name from the list at the beginning of each iteration, courtesy of the foreach loop.
That makes life a lot easier for Ivan, who’s got better things to do than re-issue hun-
dreds of commands by hand.

Now it’s time to talk about Perl’s for loop, which is valued in cases where the
programmer needs to deal directly with array indices.
344 CHAPTER 10 LOOPING FACILITIES

 1 #! /usr/bin/perl -wl
 2 # Usage: compress_image2 image [image2 ...]
 3
 4 $DEBUG=1; # for extra feedback during testing
 5 $qual=80; # starting quality value
 6
 7 foreach $fname (@ARGV) {
 8 # Copy original image to another directory
 9 ! system "cp '$fname' '/tmp/$fname'" or
 10 die "$0: cp failed; $!\n";
 11 $DEBUG and # show initial size
 12 print "Size of $fname: ", -s $fname, ' bytes';
 13
 14 while (-s $fname > 25_000) { # 25_000 means 25,000
 15 # Compress copy using $qual; store under original name
 16 ! system "convert -quality $qual " .
 17 " '/tmp/$fname' 'jpg:$fname' " or # Shell-quote fname
 18 die "$0: convert failed\n";
 19

 20 $DEBUG and # show new size
 21 print "Size of $fname: ", -s $fname, ' bytes';
 22
 23 $qual=$qual - 5; # reduce for next iteration
 24 }
 25 }

NOTE The Shell’s for loop is similar to Perl’s foreach loop, not Perl’s
for loop.

10.5 LOOPING WITH for
Although the Shell’s for is like Perl’s foreach, Perl does have a for loop of its own,
derived from the C language. It conveniently bundles together the initialization, con-
dition-testing, and incrementing steps typically used to process arrays in that lan-
guage. Table 10.6 shows its syntax.

Listing 10.3 The compress_image2 script

Table 10.6 Perl’s for loopa

for (init; condition; increment) {
 code;
}

for (init; condition; increment) { code; }

a. init is a placeholder for a variable initialization, condition for the True/False expression that controls
iteration, increment for an expression that increments the loop variable, and code for the statements
processed on each iteration.
LOOPING WITH for 345

The for loop processes its elements as follows:

1 It executes init (which typically initializes the loop variable);

2 It executes condition, using scalar context;

3 If condition is True, the loop executes code; if not, the loop is finished;

4 It executes increment (which typically increments the loop variable by 1);
then, it returns to step 2.

Here’s a simple example that prints each of a script’s arguments. It uses the handy
$index++ notation (see table 5.12) to increment the loop variable by 1 after
each iteration:

for ($index=0; $index < @ARGV; $index++) {
 print $ARGV[$index];
}

The condition checks that the current value of $index is still less than the number of
elements in the array, which is appropriate because $index starts from 0.15

Now that you understand how the for loop works, you should know something
even more important about it: It isn’t used very often for list processing in Perl! To
understand why, consider the following alternative to the for loop just shown:

foreach $arg (@ARGV) {
 print $arg;
}

Which would you rather type?
From a C language perspective, the for loop helps the programmer by bun-

dling together the elements required to micro-manage the minutiae of array pro-
cessing. In contrast, the Perlthink perspective is that in many cases, for represents
the hard way to iterate over a list of values, as a comparison of the previous code
samples demonstrates. For this reason, foreach is generally preferred to for in
Perl for list processing.

However, there certainly are programs that can benefit from the use of Perl’s for
loop. These include programs that need to keep count of the number of iterations
they have performed, and programs that need to search for particular elements in
arrays and retain their indices for later use.

We’ll look next at a list-processing program that benefits from for’s support
for indices.

15 An alternative way to phrase the test would be $index <= $#ARGV, using the special variable that con-
tains the number of elements in its associated array. But that requires two characters of additional typ-
ing (= and #), so I recommend the shorter approach.
346 CHAPTER 10 LOOPING FACILITIES

10.5.1 Exploiting for’s support for indexing: the raffle script

During a period when The Perl Foundation (TPF) was funding such amazing guys as
Larry Wall, Damian Conway, and Dan Sugalski to work full-time on Perl, we had fre-
quent TPF fund-raising events at the meetings of the Seattle Perl Users Group
(SPUG). These included such activities as auctioning Perl books autographed by their
actual authors (when convenient),16 and the selling of raffle tickets to those wishing to
compete for geekworthy prizes.

We couldn’t use the old technology of dropping business cards in a fishbowl in
running these raffles, because we wanted the chances of winning to be proportional
to the numbers of dollars contributed—and there were precious few SPUGsters pack-
ing mass quantities of business cards. So, we decided to simulate the fishbowl elec-
tronically, using Perl. The program I wrote ended up having two for loops, which
makes it an excellent example to show you now.

Here’s a test run with the -debug switch enabled for extra feedback, for a hypo-
thetical raffle in which Andy contributes $3, and Dora $2:

$ raffle -debug andy 3 dora 2 # Debugging run

Inserting 3 tickets for ANDY
Inserting 2 tickets for DORA

Fishbowl contains: ANDY ANDY ANDY DORA DORA

Selecting a ticket ...

And the winning ticket is #4, owned by "DORA"

Here’s a production run, showing what would appear on the auditorium’s big screen
during an actual raffle:

$ raffle andy 39 dora 42 colin 40 ingy 41 # Production run

Selecting a ticket ...

And the winning ticket is #108, owned by "COLIN"

Listing 10.4 shows the raffle script.
This program requires some explaining, so we’ll walk through the interesting parts

while referring to the following invocation, which shows argument numbers along
with their corresponding indices in the @ARGV array:

 1 2 3 4
$ raffle andy 3 dora 2
 0 1 2 3

16 Having live access to a book’s actual author wasn’t always possible, so on certain magical evenings, you
could bid on a copy of Damian Conway’s Object Oriented Perl signed by none other than renowned
SPUGster Brian Ingerson!

Pregnant pause here

Argument number

Index number
LOOPING WITH for 347

 1 #! /usr/bin/perl –s -wl
 2 # Simulates "hand in fishbowl" method of picking raffle winner
 3
 4 $Usage="Usage: $0 [-debug] name1 num_tickets1 ...";
 5
 6 # Process args in pairs; requires incrementing by two
 7 for ($index=0; $index < @ARGV; $index+=2) {
 8 $name="\U$ARGV[$index]"; # uppercased contestant name
 9 $tickets=$ARGV[$index+1]; # arg after name is count
 10
 11 # Given "andy 3 dora 2", fishbowl gets 3 ANDYs, 2 DORAs
 12 $debug and
 13 warn "Inserting $tickets tickets for $name\n";
 14
 15 for ($tcount=1; $tcount <= $tickets; $tcount++) {
 16 push @fishbowl, $name; # put in another "$name"
 17 }
 18 }
 19 @fishbowl or die "$Usage\n"; # empty fishbowl, no drawing
 20 $debug and print "\nFishbowl contains: @fishbowl";
 21
 22 print "\nSelecting a ticket ...";
 23 $rand_num=int rand @fishbowl; # range is 0,#elements-1
 24
 25 $debug or sleep 2; # Engender suspense (unless debugging)
 26 print "\nAnd the winning ticket is #$rand_num,",
 27 " owned by: \"$fishbowl[$rand_num]\"";

The first for loop starts on Line 7. Its job is to process one contestant’s name and
donation on each iteration, so it needs to process two arguments at a time. The initiali-
zation expression sets $index to 0, to start with the first argument, as you’d expect.
However, the incrementing expression is unusual because it has to increase the argu-
ment counter by two, which is accomplished using the compound assignment opera-
tor (see table 5.12). In this way, the first iteration processes andy via $ARGV[0] (and
3 via $ARGV[1]), and the second processes dora via $ARGV[2] (and 2 via
$ARGV[3]). As dictated by the condition on Line 7, the loop finishes when $index
reaches 4, the number of arguments provided.

To enhance readability and avoid repeated indexing, Lines 8 and 9 load variables
named $tickets and $name with the associated values pulled out of the argument
array. Note that the $tickets value is obtained by using the current $index plus
1, to access its following ticket count (3 for andy). For additional dramatic impact on
the big screen, the $name variable is loaded with the uppercased (via \U) name of the
contestant on Line 8.

The second, nested for loop starts on Line 15. Its job is to load three instances
of ANDY and two of DORA into the simulated fishbowl, so that their probabilities of
winning will be proportional to the number of tickets they’ve purchased. The

Listing 10.4 The SPUG raffle script
348 CHAPTER 10 LOOPING FACILITIES

initialization and incrementing expressions for this loop ensure that the number of
ticket-granting iterations for the current contestant is equal to the number of tick-
ets purchased, by stopping after $tcount (the ticket counter) equals the number
of tickets purchased (because we’re counting from 1 this time).

The fishbowl is loaded by using push (Line 16) to add additional elements at the
end of the @fishbowl array.17

Line 19 does a sanity check and bails out (via die) if there aren’t any tickets in the
fishbowl. If everything is okay, Line 20 shows the fishbowl’s contents, if debugging
mode is enabled (via the –debug command-line switch).

Line 23 uses the customary technique for selecting a random index for an array,
based on rand @arrayname (see table 7.7).

All that’s left is a suspenseful pause of two seconds on Line 25, to get the audience
excited, and then the winner is announced.

This program makes good use of the special capabilities of for by manipulating
$index to process pairs of arguments in the outer loop, and $count to issue the cor-
rect number of tickets to the current contestant in the inner loop.

Now that we’ve covered all of Perl’s standard loops, we’ll turn our attention to its
special directives for exerting additional kinds of control over loops.

NOTE Some former C programmers are inclined to habitually use for in place of
foreach. But having already escaped from the tyrannical Land of C and
arrived in Perlistan, they can now let down their guard and exploit such
labor saving shortcuts with impunity.

10.6 USING LOOP-CONTROL DIRECTIVES

Like the Shell, Perl provides facilities to control iteration in loops, as shown in
table 10.7.

The Shell’s continue is like Perl’s next, forcing the completion of the current iter-
ation, and break is like Perl’s last, forcing the loop’s termination. But the loop of
interest is specified in Perl in a different and more practical way—instead of counting
nesting levels to get the loop-number, as Shell programmers must do, Perl programmers
refer to loops using descriptive loop-labels, such as PROCESS_URLS and WRITE_
OUTPUT_LINES.

17 We don’t care where the contestants end up in the array, and there’s no other advantage to working
with indices here, so push is the best choice (see section 9.1.1).

Table 10.7 Corresponding loop-control directives for the Shell and Perl

Shell Perl

continue loop-number next loop-label

break loop-number last loop-label
USING LOOP-CONTROL DIRECTIVES 349

As a Perl programmer, you have a valuable option triggered by next that’s
unavailable in the Shell: You can define a continue block whose statements are exe-
cuted before the start of the next iteration (covered in section 10.6.4). This is useful
in cases where additional work must be done—such as incrementing a variable, clos-
ing a file, or printing user feedback—before each subsequent iteration can begin.

Okay, I’ve held my tongue as long as I could—now it’s time to reveal one of Perl’s
dirty secrets. do while/until isn’t a real loop, and for that reason it can’t respond
to loop-control directives! But with a language this powerful, there are always alter-
native ways of getting things done, so you’ll see a general technique for implementing
a fully-functional bottom-tested loop in section 10.6.4.

Loops often appear in groups in which some are located within others, like nested
Russian dolls. Next, you’ll learn some special loop-control directives that let you spec-
ify which loop in a nested set you want the CPU to visit—or to leave.

10.6.1 Nesting loops within loops

When you’re working with nested loops—loops within other loops—it’s important to
be able to designate the one that’s meant to be the target of a particular loop-control
directive. The Shell programmer does this using a number related to the nesting
depth, which varies for a given loop according to the location of the reference. For
example, the while loop in listing 10.5 can be exited via break 2 on Line 9, or
break 1 on Line 12.

 1 while
 2 COMMAND_RETURNS_TRUE
 3 do
 4 for item in LIST
 5 do # MEANING:
 6 TRUE_CONDITION && continue 1 # next iteration: for
 7 TRUE_CONDITION && continue 2 # next iteration: while
 8 TRUE_CONDITION && break 1 # leave: for
 9 TRUE_CONDITION && break 2 # leave: while
 10 done
 11 # "leave: for" comes here
 12 TRUE_CONDITION && break 1 # leave: while
 13 done
 14 # "leave: while" comes here

In contrast, the Perl programmer uses unchanging labels in referring to loops, as
shown in listing 10.6, which is the Perl counterpart to the pseudo-code program of
listing 10.5. To create a label, you use a Perl identifier followed by a colon; to refer to
that label, you use the identifier without the colon along with a loop-control directive.
The identifier is subject to the same rules as variable names, meaning it can use letters,
digits, and underscores, but it can’t start with a digit. Lines 1 and 4 of listing 10.6,
respectively, illustrate the setting and using of the while loop label called OUTER.

Listing 10.5 Shell syntax for loop-control directives
350 CHAPTER 10 LOOPING FACILITIES

 1 OUTER: while (COMMAND_RETURNS_TRUE) {
 2 INNER: foreach $item (LIST) { # MEANING:
 3 TRUE_CONDITION and next INNER; # next iteration: foreach
 4 TRUE_CONDITION and next OUTER; # next iteration: while
 5 TRUE_CONDITION and last INNER; # leave: foreach
 6 TRUE_CONDITION and last OUTER; # leave: while
 7 }
 8 # "leave: foreach" comes here
 9 # following exits while; same effect and coding as Line 6
 10 TRUE_CONDITION and last OUTER; # leave: while
 11 }
 12 # "leave: while" comes here

For heightened visibility, loop labels consisting of capital letters are recommended, as
shown in listing 10.6.

In both languages, you can omit the loop specifier—the Shell’s number or Perl’s
label—if your intent is to affect the innermost enclosing loop.

Don’t you like the Perl approach better? I certainly do, because there’s no ambi-
guity about the meaning of a statement like last OUTER. In contrast, the Shell’s
break 2 and break 1 may mean different things—or the same thing—depending
on the position at which each appears in the code! Moreover, it’s easier to make the
mistake of typing break 1 when you mean break 2 than to type something more
meaningful like PROCESS_ROW when you mean PROCESS_COLUMN.

Next, you’ll see how to use these loop-control directives in representative Perl
programs.

10.6.2 Enabling loop-control directives in bottom-tested loops

As stated previously, Perl’s do while/until doesn’t respond to loop-control direc-
tives, which makes it unsuitable for use in any but the most trivial loops requiring
bottom-tested conditions. So no matter how desperately you may need to do so, you
can’t code a do while loop like this:

 do {
 preliminary_code;
 condition1 and next; # start next iteration
 condition2 and last; # leave loop
 } while (condition);

But here’s a workaround that uses an infinite while loop—one whose condition is
always True—to manage the iterations, along with a bottom-tested condition linked
to a loop-control directive to arrange for the loop’s termination:18

Listing 10.6 Perl syntax for loop-control directives

18 The parentheses shown around the controlling condition prevent precedence interactions between the
or/and after the condition and other operators within the condition itself. Even better, they make that
line look more like an official loop-control statement!
USING LOOP-CONTROL DIRECTIVES 351

while (1) { # or, until(0)
 preliminary_code;
 condition1 and next; # start next iteration
 condition2 and last; # leaves loop
 # Here's the "controlling condition"
 (condition) or last; # leaves loop when condition False
}

The until variation differs only by starting with until (0) and ending with
(condition) and last.

This looping format provides the basic behavior of do while, but with the added
benefit of functioning loop-control directives. Next, we’ll consider some applications
where this kind of loop can be used to good advantage.

10.6.3 Prompting for input

It’s impolite to hold a user captive to an interactive session that he might want to
escape, so it’s conventional to recognize input of <^D> as a request for program termi-
nation. In the Shell, you can provide an escape from a prompting loop by executing
exit when read returns False, which happens on input of <^D> from the keyboard.
Here’s an example, with loop-control directives highlighted:19

while
 echo 'Remove all files? [y/n] '
 read answer || exit # terminate on <^D>
 [[$answer = ""]] && continue
 [["$answer" != 'y' -a "$answer" != 'n']]
do
 :
done
Code to handle y/n choice goes here

This loop continues prompting for a y/n answer until it gets one or the user presses
<^D>. Note that if $answer is empty, continue starts the next iteration immedi-
ately, bypassing the next set of tests.

Here’s the Perl counterpart to the Shell example:

while (1) {
 printf 'Remove all files? [y/n] ';
 $answer=<STDIN>;
 defined $answer or exit; # terminate on <^D>

19 For simplicity, we’re omitting newline-suppression for the echo command, because the syntax differs
between shells. There’s little benefit from next, or the comparable continue in its Shell counterpart,
because the empty answer will fail the string-equality tests anyway. But in other cases, it might be bene-
ficial to use next as shown to avoid executing the controlling condition.

Shell

Perl
352 CHAPTER 10 LOOPING FACILITIES

 chomp $answer; # remove newline
 $answer eq "" and next; # re-prompt if only <ENTER> typed
 ($answer ne 'y' and $answer ne 'n') or last;
}
Code to handle y/n choice goes here

Next, you’ll see a way to obtain even greater versatility from this kind of bottom-
tested loop.

10.6.4 Enhancing loops with continue blocks:

the confirmation script

An unusual and valuable feature of the Shell’s while/until loop is that it permits an
arbitrary number of commands to appear between the opening keyword and do, as
well as between do and done. This makes it easy to implement solutions that require
preliminary code to be executed before the condition is tested, and then for other
code to be conditionally executed afterward.

Table 10.8 shows the full syntax for the Shell’s while/until loop, along with its
closest Perl counterpart.

As a variation on an earlier example (see section 10.3.1), the following loop uses an
echo command between do and done where there was previously a null (:) command:

while
 echo 'Remove all files? [y/n] '
 read answer || exit # terminate on <^D>
 # [[$answer = ""]] && continue
 [["$answer" != 'y' -a "$answer" != 'n']]
do
 echo "Please respond with 'y' or 'n'"
done
Code to handle y/n choice goes here

The added echo command (highlighted) arranges for an instructional message to be
provided when the user supplies incorrect input. The command from the original ver-
sion that checks $answer for a null value is now commented-out, because executing
continue would start the next iteration immediately, bypassing the newly added
instructional message.

Table 10.8 Enhanced while/until loops for the Shell and Perl

Shell Perl

while # or until
 preliminary_code
 condition
do
 conditional_code
done

while (1) { # or until(0)
 preliminary_code;
 (condition) or last;
}
continue {
 continuation_code;
}

Shell
USING LOOP-CONTROL DIRECTIVES 353

Perl doesn’t provide a looping mechanism that’s entirely equivalent to the full syntax
of the Shell’s while/until. However, it does let you attach a continue block—
which contains code to be executed before the loop’s next iteration—to any loop.
Using this feature lets you match the functionality of the Shell’s enhanced while/
until loop and achieve additional benefits as well.

The right column of table 10.8 shows the syntax for this “enhanced” Perl while/
until loop. It’s set up as an infinite loop (see section 10.6.2) with a bottom-tested
condition that causes either the continue block to be executed (for the True case)
or the loop to be exited via last (for False).

We can use this loop to duplicate the functionality of the earlier Shell example, as
shown in the confirmation script. The program components that can trigger the
execution of the continue block are highlighted:

$ cat confirmation
#! /usr/bin/perl –wl

while (1) { # seek confirmation
 printf 'Are you sure? [y/n] ';
 $answer=<STDIN>;
 defined $answer or exit; # exit on <^D>
 chomp $answer; # remove newline
 $answer eq "" and next; # execute continue; re-prompt
 ($answer ne 'y' and $answer ne 'n') or last;
}
continue { # executed before all prompts after first
 print "\nPlease respond with 'y' or 'n'";
}
code to handle y/n choice goes here

The next directive is conditionally executed for inputs that are empty after
chomping, which results from the user pressing only <ENTER>. That causes execution
of the continue block, as does a True value for the bottom-tested condition.

Here’s what the script looks like in action:

$ confirmation
Are you sure? [y/n] Say what?

Please respond with 'y' or 'n'
Are you sure? [y/n] <ENTER>

Please respond with 'y' or 'n'
Are you sure? [y/n] N

Please respond with 'y' or 'n'
Are you sure? [y/n] n

Perl

Program proceeds to next phase
354 CHAPTER 10 LOOPING FACILITIES

Note that when the user responds to the prompt with only <ENTER>, the continue
block is executed via next within the preliminary code, without the condition even
being evaluated.20 That’s a desirable effect in cases where the continuation code is
needed to make the required preparations for the next iteration, no matter how its exe-
cution is triggered. Unfortunately, the Shell’s while doesn’t provide this service.

Let’s review! Adding a continue block to a bottom-tested while/until loop
provides two improvements over Perl’s do while/until loop:

• It allows loop-control directives to work;

• It allows a continue code-block to be executed before each subsequent execu-
tion of the preliminary code.

In some applications, such as the one that interactively seeks confirmation of a choice,
this is exactly the behavior you need.

You’ve now learned about all of Perl’s “native” loops, but the best is yet to come.
It’s a loop that was implemented especially for this chapter!

10.7 THE CPAN’S select LOOP FOR PERL

The select loop of the Korn and Bash shells is unique in several ways. It’s the
friendliest control feature in any Unix shell, it’s the only Shell loop that’s missing from
standard Perl, and it’s one of the few flow-control features for Perl that’s ever been
implemented as a module-based enhancement.

But what does a select loop do? Given a list of values, it generates a numbered
menu of selections, prompts the user to select one by number, and then executes a
code block with a variable set to that selection. In other words, it automatically pro-
vides the infrastructure needed to write terminal-based menu-oriented programs.

Here’s an example that lets a user select a *.txt file for more-ification using the
Shell’s select:

$ select fname in *.txt
> do
> more $fname
> done
1) awk.txt
2) bash.txt
3) ksh.txt
#? 2
BASH(1) BASH(1)

NAME

 bash - GNU Bourne-Again SHell
...
#? <^D>
$

20 Hence the use of the term continuation code, rather than conditional code, for this loop in table 10.8.
THE CPAN’S select LOOP FOR PERL 355

From a Perlish perspective, you can think of select as a special kind of interactive
variation on a foreach loop. But rather than having each list-value assigned auto-
matically to the loop variable for one iteration, select only assigns values as they are
selected by the user.

Next, you’ll see how you can avoid “re-inventing wheels” by using this loop.

10.7.1 Avoiding the re-invention of the

“choose-from-a-menu” wheel

Although Perl has no counterpart to the Shell’s handy select loop, its functionality
is provided by a CPAN module called Shell::POSIX::Select.21 It provides its
services through source-code filtering, which means it extracts the select loops from
your program and rewrites them using native Perl features. As a result, you can use a
feature that’s missing from Perl as if it were there!

The benefit of bringing the select loop to Perl is that it obviates the need for ter-
minal applications to provide their own implementations of the choose-from-a-menu
code, which indulges the programmer’s noble craving for Laziness—and thereby
increases productivity.

Table 10.9 shows the syntax variations for the Shell’s version of the select loop.

If in LIST is omitted (as in Form 0), in "$@" is used by default to provide automatic
processing of the script’s (or function’s) argument list.

Some of the major forms of Perl’s select loop are shown in table 10.10. These
take their inspiration from the Shell and then add enhancements for greater friendli-
ness and, well, Perlishness.

As you can see, Perl’s select lets you omit any or even all of its components (apart
from the punctuation symbols). For example, if the loop variable is omitted, as in
Forms 0, 1, and 2, $_ is used by default. If the LIST is omitted, as in Forms 0 and 1,
the appropriate arguments are used by default (i.e., those provided to the script or the

21 Written by yours truly, a long-time Shell programmer turned Perl proponent, while writing this chap-
ter—so I wouldn't have to say “the best Shell loop is missing from Perl”.

Table 10.9 The Shell’s select loop

select var ; do commands; done # Form 0
select var in LIST; do commands; done # Form 1

Table 10.10 The select loop for Perl

use Shell::POSIX::Select;
select () { } # Form 0
select () { CODE; } # Form 1
select (LIST) { CODE; } # Form 2
select $var (LIST) { CODE; } # Form 3
356 CHAPTER 10 LOOPING FACILITIES

enclosing subroutine), as with its Shell counterpart. And if CODE is omitted (as in
Form 0), a statement that prints the loop variable is used as the default code block.

Because system administrators have the responsibility for monitoring user activity
on their systems, they might find the following application of select to be of par-
ticular interest.

10.7.2 Monitoring user activity: the show_user script

This program allows the user to obtain a system-activity report for users who are cur-
rently logged in:

$ cat show_user
#! /usr/bin/perl –wl

use Shell::POSIX::Select;

Get list of who's logged in
@users=`who | perl -wnla -e ' print \$F[0]; ' | sort -u`;
chomp @users; # remove newlines

Let program's user select Unix user to monitor
select (@users) { system "w $_"; }

This script uses the who command to get the list of current users, and then a separate
Perl command to isolate their names from the first column of that report. Note the
need to backslash the $ to prevent the Perl script from providing its own (null) value
for $F[0] before the who | perl | sort pipeline is launched. sort is used with the
“unique lines” option to remove duplicate user names for those logged in more than
once. The w command, which reports the selected user’s activity, won’t appreciate
finding newlines attached to the ends of those names, so the @users array is chomp’d
to remove them.

Here’s a sample run of the script:

$ show_user

1) phroot 2) tim

Enter number of choice: 2

 3:51pm up 4 days, 17:57, 7 users, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
tim pts/1 lumpy Mon10am 3days 18.91s 1.19s -bash
tim pts/3 stumpy Mon10am 28:16m 0.48s 0.48s bash -login
tim tty5 grumpy Sun 3pm 28:16m 1.71s 1.04s slogin lumpy
tim pts/0 bumpy Sun 4pm 1.00s 4.03s 0.14s w tim
<ENTER>

1) phroot 2) tim

Enter number of choice: <^D>
THE CPAN’S select LOOP FOR PERL 357

Note that the user pressed <ENTER> to redisplay the menu and <^D> to exit the loop,
just as she’d do with the Shell’s select.22

Next, you’ll see how select can facilitate access to Perl’s huge collection of
online man pages.

10.7.3 Browsing man pages: the perlman script

One of the obstacles faced by all Perl programmers is determining which one of Perl’s
more than 130 cryptically named man pages covers a particular subject. To make this
task easier, I wrote a script that provides a menu interface to Perl’s online documentation.

Figure 10.1 shows the use of perlman, which lets the user choose a man page
from its description. For simplicity’s sake, only a few of Perl’s man pages are listed in
the figure, and only the initial lines of the selected page are displayed.23

22 For those who don’t like that behavior (including me), there’s an option that causes the menu to be
automatically redisplayed before each prompt. I wish the Shell’s select also had that feature!

23 The select loop is a good example of the benefits of Perl’s source-code filtering facility, which is de-
scribed in the selected man page, perlfilter.

Figure 10.1 Demonstration of the perlman script
358 CHAPTER 10 LOOPING FACILITIES

Before we delve into the script’s coding, let’s discuss what it does on a conceptual level.
The first thing to understand is that man perl doesn’t produce “the” definitive

man page on all things Perlish. On the contrary, its main purpose is to act as a table
of contents for Perl’s other man pages, which deal with specific topics.

Toward this end, man perl provides a listing in which each man page’s name is
paired with a short description of its subject, in this format:

 perlsyn Perl syntax

As illustrated in the figure, the role of perlman is to let the user select a man-page
name for viewing from its short description.

Listing 10.7 shows the script. Because it’s important to understand which of its
elements refer to the man-page names versus their corresponding descriptions, dis-
tinctive highlighting with bold type (for man-page names) and underlined type (for
descriptions) is used.

 1 #! /usr/bin/perl -w

 2
 3 use Shell::POSIX::Select;
 4
 5 $perlpage=`man perl`; # put name/description records into var
 6
 7 # Man-page name & description have this format in $perlpage:
 8 # perlsyn Perl syntax
 9
10 # Loop creates hash that maps man-page descriptions to names
11 while ($perlpage =~ /^\s+(perl\w+)\s+(.+)$/mg) { # get match
12
13 # Load ()-parts of regex, from $1 and $2, into hash
14 $desc2page{$2}=$1; # e.g., $hash{'Perl syntax'}='perlsyn'
15 }
16
17 select $page (sort keys %desc2page) { # display descriptions
18 system "man $desc2page{$page}"; # display requested page
19 }

The script begins by storing the output of man perl in $perlpage on Line 5. Then
a matching operator, as the controlling condition of a while loop (Line 11), is used
to find the first man-page name (using “perl\w+”) and its associated description
(using “.+”) in $perlpage. The m modifier on the matching operator allows the
pattern’s leading ^ to match the beginning, and its $ the end, of any of the lines
within the variable (see table 3.6 on multi-line mode).

Capturing parentheses (see table 3.8) are used in the regex (Line 11) to store
what the patterns matched in the special variables $1 and $2 (referring to the first

Listing 10.7 The perlman script
THE CPAN’S select LOOP FOR PERL 359

and second set of parentheses, respectively), so that in Line 14 the man-page name
can be stored in the %desc2page hash, using its associated description as the key.

The next iteration of the loop will look for another match after the end of the pre-
vious one, due to the use of the matching operator’s g modifier in the scalar context
of while’s condition.24

Finally, in Lines 17–19, select displays the numbered list of sorted man-page
descriptions in the form “7) Perl source filters”. Then it obtains the user’s selection,
retrieves its corresponding page name from the hash, and invokes man to display the
requested page (in the case of figure 10.1, “perlfilter”).

As you might imagine, this script is very popular with the students in our classes,
because it lets them find the documentation they need without first memorizing lots
of inscrutable man-page names (such as “perlcheat”, “perltoot”, and “perlguts”).

TIP You can use the only Shell loop that Larry left out of Perl by getting the
Shell::POSIX::Select module from the CPAN.

10.8 SUMMARY

Perl provides a rich collection of looping facilities, adapted from the Bourne shell, the
C shell, and the C language.

The closely-related while and until loops continue iterating until the control-
ling condition becomes False or True, respectively. You saw while used to incremen-
tally compress images until a target size was reached (in compress_image, section
10.2.2) and to extract and print key/value pairs from a hash with the assistance of the
each function (in show_pvars, section 10.2.3).

Perl also provides bottom-tested loops called do while and do until, which
perform one iteration before first testing the condition. Although these aren’t “real”
loops, the savvy programmer can construct functional replacements using while and
until with continue blocks to allow loop-control directives to function properly
(as shown in confirmation, section 10.6.4).

The foreach loop provides the easiest method for processing a list of values,
because it frees you from the burden of managing indices. You saw it used to remove
files (rm_files, section 10.4.1) and to perform text substitutions for deciphering
acronyms in email messages (expand_acronyms, section 10.4.4).

The relatively complex for loop should be used in cases where iteration can be con-
trolled by a condition, and which benefit from its index-management services. An exam-
ple is the raffle script (section 10.5.1), which needs to process its arguments in pairs.

24 The meaning of the matching operator’s g modifier is context dependent—in list context, it causes all
the matches (or else the captured sub-matches, if any) to be returned at once. But in scalar context, the
matches are returned one at a time.
360 CHAPTER 10 LOOPING FACILITIES

The implicit loop provided by the n (or p) option is a great convenience in many
small- to medium-sized programs, but larger or more complex ones may have special
needs that make the use of explicit loops more practical.25

You can use the only Shell loop that Larry left out of Perl by getting the
Shell::POSIX::Select module from the CPAN.26 It provides the select
loop, which prevents you from having to re-create the choose-from-a-menu code
for managing interactions with a terminal user. That loop was featured in pro-
grams for browsing Perl’s man pages (perlman, section 10.7.3) and monitoring
users (show_user, section 10.7.2), which were simplified considerably through
use of its services.

Directions for further study

This chapter provided an introduction to the select loop for Perl, which is a greatly
enhanced adaptation of the Shell’s select loop. For coverage of additional features
that weren’t described in this chapter, and for additional programming examples, see

• http://TeachMePerl.com/Select.html

The Shell allows I/O redirection requests to be attached to control structures, as
shown in these examples:

command | while ... done
for ... done > file

Although Perl doesn’t support an equivalent syntax, you can arrange similar effects
using open and Perl’s built-in select function, as explained in these online doc-
uments:27

• perldoc -f open

• perldoc -f select

• man perlopentut # tutorial on "open"

25 E.g., see the discussion on variable scoping in section 11.3.
26 The downloading procedure is discussed in section 12.2.3.
27 This function selects the default filehandle (see man perlopentut) for use in subsequent I/O op-

erations. The select keyword is also used by Shell::POSIX::Select for the select loop, but
the intended meaning can be discerned from the context.
SUMMARY 361

C H A P T E R 1 1

Subroutines and
variable scoping

11.1 Compartmentalizing code

with subroutines 363
11.2 Common problems with

variables 370

11.3 Controlling variable scoping 373
11.4 Variable Scoping Guidelines for

complex programs 376
11.5 Reusing a subroutine 386
11.6 Summary 387
Thinking logically may come naturally to Vulcans like Star Trek’s Mr. Spock, but
it’s a challenge for most earthlings. That’s what those millions of VCRs and micro-
wave-ovens blinking 12:00 … 12:00 … 12:00—since the 1980s —have been try-
ing to tell us.

What’s more, even those who excel in logical thinking can experience drastic degra-
dations in performance when subjected to time pressures, sleep deprivation, frequent
interruptions, tantalizing daydreams, or problems at home—i.e., under normal human
working conditions. So, being only human, even the best programmers can find it
challenging to design programs sensibly and to write code correctly.

Fortunately, computer languages have features that make it easier for earthlings to
program well. And any JAPH worth his camel jerky—like you—should milk these
features for all they’re worth.

One especially valuable programming tool is the subroutine, which is a special struc-
ture that stores and provides access to program code. The primary benefits of subrou-
tines to (non-Vulcan) programmers are these:
362

• They support a Tinkertoy programming mentality,1

– which encourages the decomposition of a complex programming task into
smaller and more easily-understandable pieces.

• They minimize the need to duplicate program code,
– because subroutines provide centralized access to frequently used chunks of

code.

• They make it easier to reuse code in other programs,
– through simple cutting and pasting.

In this chapter, you’ll first learn how to use subroutines to compartmentalize2 your
code, which paves the way for enjoying their many benefits.

Then, you’ll learn about the additional coding restrictions imposed by the com-
piler in strict mode and the ways they can—and can’t—help you write better programs.

We’ll also discuss Perl’s features for variable scoping, which prevent variables from
“leaking” into regions where they don’t belong, bumping into other variables, and
messing with their values. As we’ll demonstrate in sample programs, proper use of
variable-scoping techniques is essential to ensuring the proper functioning of complex
programs, such as those having subroutines.

During our explorations of these issues, we’ll convert a script from a prior chapter
to use a subroutine, and we’ll study cases of accidental variable masking and variable
clobberation, so you’ll know how to avoid those undesirable effects.

We’ll conclude the chapter by discussing our Variable Scoping Guidelines. These
tips—which we’ve developed over many years in our training classes—make it easy to
specify proper scopes for variables to preserve the integrity of the data they store.

11.1 COMPARTMENTALIZING CODE
WITH SUBROUTINES

A subroutine is a chunk of code packaged in a way that allows a program to do two
things with it. The program can call the subroutine, to execute its code, and the pro-
gram can optionally obtain a return value from it, to get information about its results.
Such information may range from a simple True/False code indicating success or fail-
ure, through a scalar value, to a list of values.

Subroutines are a valuable resource because they let you access the same code from
different regions of a program without duplicating it, and also reuse that code in
other programs.

1 Tinkertoys were wooden ancestors to Lego toys and their modern relatives. The mentality they all tap
into might be called “reductionistic thinking”.

2 The word modularize could be used instead, but in Perl that also means to repackage code as a module,
which is something different (see chapter 12).
COMPARTMENTALIZING CODE WITH SUBROUTINES 363

Table 11.1 summarizes the syntax for defining a subroutine, calling it, accessing its
arguments (if any), and returning values from it.3

Table 11.1 Syntax for defining and using subroutines

Operation Syntax
a Comments

Defining a

sub
sub name { code; } The sub declaration associates

the following name with code.

Calling a

sub
name(); # call without args
name(ARGS); # call with args

$Y=name(); # scalar context call
@X=name(ARGS); # list context call

A sub’s code is executed by
using its name followed by
parentheses. Arguments to be
passed to the sub are placed
within the parentheses.
 The VALUE(s) (see below)
returned by name are
automatically converted to scalar
form as needed (e.g., for
assigning a list to $Y, but not for
assigning a list to @X; see text).

Returning

values

return VALUE(s); # returns VALUE(s)

print get_time(); # prints time

sub get_time {
 scalar localtime;
} # returns formatted time-string

return sends VALUE(s) back
to the point of call, after
converting a list to a scalar if
necessary (see above cell). If
return has no argument, an
empty list or an undefined value
is returned (for list/scalar context,
respectively).
 Without return (see
get_time), the value of the last
expression evaluated is returned.

Sensing

context

if (wantarray) {
 return @numbers; # list value
}
else {
 return $average; # scalar value
}

wantarray yields True or False
according to the list or scalar
context of the call, allowing you
to return different values for calls
in different contexts.

Accessing

sub

arguments

($A, $B)=@_; print $B; # 2nd arg

print $_[1]; # 2nd arg

$A=shift;
$B=shift;
print $B; # 2nd arg

sub arguments are obtained from
the @_ array by copying or
shifting its values into named
variables, or else by indexing,
with $_[0] referencing the first
element of @_, $_[1] the
second, etc.b

a. ARGS stands for one or more values. VALUE(s) is typically a number or a variable.
b. The elements of @_ act like aliases to the arguments provided by the sub’s caller, allowing those arguments to

be changed in the sub; the copying/shifting approach prevents such changes.

3 We won’t contrast Perl subroutines with Shell user-defined functions , because functions are different in
many ways, and many Shell programmers aren’t familiar with them anyway.
364 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

For those familiar with the way subroutines work in other languages, the most note-
worthy aspects of Perl subroutines are these:

• A subroutine’s name must be followed by parentheses,4 even if no arguments are
provided.

• Subroutine definitions needn’t provide any information about their expected, or
required, arguments.

• All arguments to all subroutines are accessed from the array called @_.

Other features of Perl’s subroutine system are natural offshoots of its sensitivity
to context:

• For a call in scalar context, return automatically converts an argument that’s a
list variable to its corresponding scalar value. For example, return @AC_DC
returns the values of that list (e.g., “AC”, “DC”) for a call in list context, but it
returns that array’s number of values (2) for a call in scalar context.

• A subroutine can sense the context from which it’s called5 and tailor its return
value accordingly (see “Sensing Context” in table 11.1).

You’ll see all these features demonstrated in upcoming examples. But first, we’ll dis-
cuss how existing code is converted to the subroutine format.

11.1.1 Defining and using subroutines

Consider the script shown in listing 11.1, which centers and prints each line of its
input, using code adapted from news_flash in section 8.6.1.

 1 #! /usr/bin/perl -wnl
 2
 3 use Text::Tabs; # imports "expand" function
 4 BEGIN {
 5 $width=80; # or use `tput cols` to get width
 6 }
 7
 8 # Each tab will be counted by "length" as one character,
 9 # but it may act like more!
10
11 $_=expand $_; # rewrite line with tabs replaced by spaces
12
13 # Leading/trailing whitespace can make line look uncentered
14 s/^\s+//; # strip leading whitespace
15 s/\s+$//; # strip trailing whitespace

4 Assuming the programmer places sub definitions at the end of the script, which is customary.
5 Which we’ll henceforth call the caller’s context.

Listing 11.1 The center script
COMPARTMENTALIZING CODE WITH SUBROUTINES 365

16
17 # Now calculate left-padding required for centering.
18 # If string length is 10, (80-10)/2 = 35
19 # If string length is 11, (80-11)/2 = 34.5
20
21 $indent=($width - length)/2; # "length" means "length $_"
22 $indent < 0 and $indent=0; # avoid negative indents!
23
24 # Perl will truncate decimal portion of $indent
25 $padding=' ' x $indent; # generate spaces for left-padding
26 print "$padding$_"; # print, with padding for centering

This center script provides a useful service, but what if some other script needs to
center a string? Wouldn’t it be best if the centering code were in a form that would
facilitate its reuse, so it could be easily inserted into any Perl script?

The answer is—you guessed it—Yes!
Listing 11.2 shows the improved center2, with its most important differences

from center marked by underlined line numbers. Note that it uses a subroutine to
do its centering, and that it supports a -width=columns switch to let the user con-
figure its behavior (more on that later).

On Line 10, the current input line is passed as the argument to center_line,
and print displays the centered string that’s returned. Note the need to use paren-
theses around the user-defined subroutine’s argument—in contrast, they’re optional
when calling a built-in function.

The subroutine is defined in Line 12, using the sub declaration to associate a code
block having appropriate contents with the specified name. Notice that center_
line has use Text::Tabs at its top (Line 15), to load the module that provides the
expand function called on Line 25. That line could alternatively be placed at the top
of the script as in center, but it’s best to have such use directives within the sub-
routines that depend on them. This ensures that any script that includes center_
line will automatically import the module it requires.

 1 #! /usr/bin/perl -s -wnl
 2 # Usage: center2 [-width=columns] [file1 file2 ...]
 3
 4 our ($width); # makes this switch optional
 5
 6 BEGIN {
 7 $cl_width=$width; # center_line() validates $cl_width
 8 }
 9
10 print center_line($_); # $cl_width needn't be passed; is global
11

Listing 11.2 The center2 script
366 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

12 sub center_line {
13 # returns argument centered within field of size $cl_width
14
15 use Text::Tabs; # imports expand(); converts tabs to spaces
16
17 if (@_ != 1 or $_[0] eq "") { # needs one argument
18 warn "$0: Usage: center_line(string)\n";
19 $newstring=undef; # to return "undefined" value
20 }
21 else {
22 defined $cl_width and $cl_width > 2 or $cl_width=80;
23
24 $string=shift; # get sub’s argument
25 $string=expand $string; # convert tabs to spaces
26 $string =~ s/^\s+//; # remove leading whitespace
27 $string =~ s/\s+$//; # remove trailing whitespace
28
29 # calculate indentation
30 $indent=($cl_width - length $string)/2;
31 $padding=' ' x $indent;
32 $newstring="$padding$string";
33 }
34 return $newstring; # return centered string, or undef
35 }

The subroutine needs access to two pieces of information: the string to be centered,
and the column-width to be used for the centering. It accesses the string as an argu-
ment and the field width as a global variable.6 (Global variables are the type we’ve been
using in this book thus far; we’ll discuss their properties and those of other kinds of
variables later in this chapter).

Although the column-width specification arrives in the variable $width (Line 7),
the subroutine uses a slightly different name for its corresponding variable—formed
by prepending cl_ (from center_line) to width, to create $cl_width. This is
done to reduce the likelihood that the subroutine’s variable will clash with an identi-
cally named one used elsewhere the program. (You’ll see a more robust approach for
avoiding such name clashes in section 11.3.)

In cases where the optional -width switch is omitted by the user, the undefined
value associated with $width is copied to $cl_width on Line 7, and it’s detected
and replaced with a reasonable default value on Line 22 in the subroutine.

A subroutine that requires a specific kind of argument should provide the service
of reporting improper usage to its caller. Accordingly, center_line detects an
incorrect argument count or an empty argument on Line 17, and issues a warning if
necessary. Moreover, to ensure that any serious use of the value it returns on error will

6 Although both items could be accepted as arguments—or as widely scoped variables—for educational
purposes, we’re demonstrating the use of both methods.
COMPARTMENTALIZING CODE WITH SUBROUTINES 367

be flagged,7 the subroutine employs the undef function (Line 19) to attach the unde-
fined value to the variable $newstring. Any attempt to use that value after it’s
returned (by Line 34) will trigger a warning of the form “Use of uninitialized value
in print”, thus making the error apparent.

The line to be centered is loaded into $string using shift on Line 24, and then
centered, with the final result placed in $newstring.

You can see echoes of center’s Lines 11–25 in the else branch of listing 11.2’s
subroutine, but the coding is a little different. That’s because a well designed subrou-
tine should accept most of its inputs as arguments and copy them into descriptively
named variables—like $string—rather than assuming the needed data is already
available in a global variable—as center’s code does with respect to $_.

Now that you know how to use subroutines, we’ll shift our focus to the use of the
compiler’s special strict mode of operation, which can help you write better programs.

11.1.2 Understanding use strict
When you make many substantial changes to a script—such as those involved in con-
verting center to center2—there’s a good chance the new version won’t work right
away. If you can’t fix it yourself, an accepted way to obtain expert help is to post the
script to the mailing list of the local Perl Users Group (i.e., Perl Mongers affiliate; see
http://pm.org) and ask its members for assistance.

However, posting a script like center2 in its current form wouldn’t have the
desired effect. That’s because the first response of the seasoned JAPHs subscribing to
the group’s mailing list would undoubtedly be:8

Modify your script to compile without errors under use strict, and if it still doesn’t
work, post that version, and then we’ll be happy to help you!

You see, you can make the Perl compiler enforce stricter rules than usual by placing
“use strict;” near the top of your script. When running with these additional
strictures in effect, certain loose programming practices—which probably wouldn’t
trip you up in tiny scripts, but may do so in larger ones—suddenly become fatal errors
that prevent your script from running.

For this reason, a script that runs in strict mode is viewed as less likely to suffer
from certain common flaws that could prevent it from working properly. That’s why
your fellow programmers will be reluctant to spend their valuable time playing the
role of use strict for you; but once your script runs in that mode, they may be
willing to scrutinize it and give you the kinds of valuable feedback that only fellow
JAPHs can provide.

7 As mentioned earlier, non-“serious” uses of a value, such as copying it or testing it with defined, don’t
elicit warnings.

8 How can I be so sure what their response would be? Because I managed the mailing list for the 400+
member Seattle Perl Users Group for 6 years, that’s how!
368 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

Even if you have no intention of seeking help from other people, you might as
well avail yourself of the benefits of complying with the compiler’s strictures,
because the adjustments they necessitate might help you heal a misbehaving script
on your own.

We’ll talk next about what it takes to retrofit a script to run in strict mode.

Strictifying a script

With most Perl programs, you’re most likely to run afoul of the strictures having to do
with variable scoping. As a test case, let’s see what messages we get when we run
center2 in strict mode, and determine what it takes to squelch them.

A quick and easy way to do this—which is equivalent to (temporarily) inserting
“use strict;” at the top of the script—is to run the script using the convenient
perl -M'Module_name' syntax to load the strict module (see section 2.3):

$ perl -M'strict' center2 iron_chefs
Global symbol "$cl_width" requires explicit package name ... line 7
BEGIN not safe after errors--compilation aborted at center2 line 8

The compiler is obviously unhappy about the global symbol $cl_width, which
appears on Line 7. That’s because a global variable is accessible from anywhere in the
program, which can lead to trouble. You can address this concern by properly declar-
ing the script’s user-defined variables in accordance with the Variable Scoping Guide-
lines, which we’ll cover in section 11.4.

With a small script like center2, a few minor adjustments will usually suffice to
get it to run in strict mode. Listing 11.3 shows in bold type the four lines we had to
add to center2 to create its strict-ified version.

 1 #! /usr/bin/perl -s -wnl
 2 # Usage: center2.strict [-width=columns] [file1 file2 ...]
 3
 4 use strict;
 5
 6 our ($width); # makes this switch optional
 7 my ($cl_width); # "private", from here to file's end
 8
 9 BEGIN {
10 $cl_width=$width; # center_line() validates $cl_width
11 }
12
13 print center_line($_); # $cl_width needn't be passed
14
15 sub center_line {
16 # returns argument centered within field of size $cl_width
17
18 use Text::Tabs; # imports expand(); converts tabs to spaces
19

Listing 11.3 The center2.strict script
COMPARTMENTALIZING CODE WITH SUBROUTINES 369

20 my $newstring; # private, from here to file's end

21 if (@_ != 1 or $_[0] eq "") { # needs one argument
22 warn "$0: Usage: center_line(string)\n";
23 $newstring=undef; # to return "undefined" value
24 }
25 else {
26 defined $cl_width and $cl_width > 2 or $cl_width=80;
27
28 my ($string, $indent, $padding); # private, from here to }

29 $string=shift; # get required arg
30 $string=expand $string; # convert tabs to spaces
31 $string =~ s/^\s+//; # remove leading whitespace
32 $string =~ s/\s+$//; # remove trailing whitespace
33
34 # calculate indentation
35 $indent=($cl_width - length $string)/2;
36 $padding=' ' x $indent;
37 $newstring="$padding$string";
38 }
39 return $newstring; # return centered string, or undef
40 }

The most significant change is that variable declarations using my have been added to
restrict the scope of the user-defined variables to the relevant portions of the script,
which helps to avoid several kinds of problems.

So that you’ll understand how to make these adjustments to your own pro-
grams, we’ll discuss later in this chapter what variable declarations do, what variable
scoping is, and some recommended techniques for properly declaring and scoping
your variables.

But first, we’ll discuss some scoping problems that use strict can’t detect, so
you won’t be tempted to join the hordes of Perl newbies who drastically overestimate
this tool’s benefits.

11.2 COMMON PROBLEMS WITH VARIABLES

Most of the variables we’ve used in our programs thus far have had what’s loosely
called global scope, which is the default. The special property of these variables is that
they can be accessed by name from anywhere in the program.

Global variables are convenient to use and entirely appropriate for simple pro-
grams, but they are notorious for causing problems in more complex ones. Why?
Because you’re more likely to accidentally use a particular variable name—such as $_
or $total—a second time, for a different purpose, in program that is complex. This
can cause trouble, as you’ll see in the following case studies.
370 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

11.2.1 Clobbering variables: The phone_home script

Let’s look at the phone_home script, whose job is to dial the home phone number of
its author and user, Stieff Ozniak, while he’s traveling:

#! /usr/bin/perl –wl

$home='415 123-4567'; # store my home phone number
print 'Calling phone at: ",
 get_home_address(); # show my address
dial_phone($home); # dial my home phone

sub get_home_address {
 %name2address=(
 ozniak => '1234 Disk Drive, Pallid Alto, CA',
 # I'll add other addresses later
);
 $home=($name2address($ENV{LOGNAME}) or 'unknown');
 return $home;
}
sub dial_phone { ... } # left to the imagination

Did you notice that Oz is using the same variable ($home) to hold a postal address in
the main program and a home phone-number in the subroutine? In such cases, each
assignment to the variable in one part of the program accidentally overwrites the ear-
lier value of its twin. That’s a bad situation, as indicated by the violent connotations
of the terms clobbering and clobberation that are used to describe it.

In this case, the stored phone number will have been replaced by the address
retrieved from the hash by the time the subroutine returns. In consequence, the
dial_phone subroutine will cause Oz’s modem to dial the number “1234 Disk
Drive, Pallid Alto, CA”, which will be a long distance call—even if it is made from
Pallid Alto—because the 234 area code is in Ohio!

Was the problem caused by Oz neglecting to use strict? No! Although that was
unwise, using it would not have prevented this problem anyway.9

TIP Perl’s strict mode is not the magic shield against JAPHly mistakes that many
new programmers like to think it is!

However, when additional measures are combined with use strict, a program
can safely use the same variable name in the main program and a subroutine. You’ll
see a demonstration of this later when we discuss the phone_home2 script (in sec-
tion 11.4.6).

In the meantime, let’s hope Oz will be able to think up a different variable name
to use in the subroutine, which is all that’s needed to avoid the clobberation his script
is currently experiencing.

9 Because after enabling use strict, declaring the first reference to $home with my wouldn’t cure the
clobberation problem—but that’s all that would be required to let the program run (see section 11.4.6).
COMMON PROBLEMS WITH VARIABLES 371

In addition to being careful to avoid clobbering a variable’s value, which causes it
to be irretrievably lost, in some cases you must avoid masking a variable’s value, which
makes it temporarily inaccessible. We’ll discuss this issue next.

11.2.2 Masking variables: The 4letter_word script

The famous rapper, Diggity Dog, has a reputation to uphold. So, he understandably
wants to ensure that each of the songs on his new CD contains at least one four-letter
word. Toward this end, he’s written a script that analyzes a song file and reports its
first four-letter word along with the line in which it was found. The script can also
show each line before checking it, if the –verbose switch is given.

Diggity D, who has a talent for “keepin’ it real” and “tellin’ it like it is,” calls his
script 4letter_word:

#! /usr/bin/perl –s –wnl
Report first 4-letter word found in input,
along with the line in which it occurred

use strict;

defined $verbose and warn "Examining '$_'"; # $_ holds line

foreach (split) { # split line into words, and load each into $_
 /\b\w\w\w\w\b/ and
 print "Found '$_' in: '$_'\n" and # DOESN'T WORK!
 last;
}

Diggity may be raw—but he ain’t stupid, so he’s not surprised that his new script cor-
rectly finds the first four-letter word in each file and then terminates, as he intended.10

However, the output he’s getting from print is not what he was expecting.
Here’s a sample run of the script, which probes the pithy lyrics of his latest song:

$ 4letter_word –verbose FeedDaDiggity
Examining 'Don't be playin wit da Dog'
Examining 'Giv Diggity Dog da bone!'
Found 'bone' in: 'bone'

He’s not happy with that last line, because he wanted

print "Found '$_' in: '$_'\n"

to produce this output instead:

Found 'bone' in: 'Giv Diggity Dog da bone'

10 But if he were a bit cleverer, he’d look for profane words rather than four-letter words using the
Regexp::Common module, as does Lingua::EN::Namegame’s script that squelches profane lyrics
for verses of The Name Game song (see http://search.cpan.org/~yumpy).
372 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

But clearly, in a case where the first reference to $_ in print’s argument string yields
“bone”, it’s unreasonable to expect the second reference to that same variable in that
same string to yield something different—such as the contents of the current input
line, as $_ generated in the warn "Examining ..." statement.

What’s happening here is simply this: The scope of the implicit loop’s $_ variable
is the entire script, but that value is temporarily masked within foreach—because
that loop is presently using (the same) $_ to hold the words of the current line.11

It’s not possible for the program to have simultaneous access to the different values
that $_ holds within the implicit loop and its nested foreach loop, because those
loops are timesharing the variable—i.e., they’re taking turns storing their different val-
ues in that same place.

But the solution is easy: Diggity needs to employ a user-defined loop variable in
foreach rather than accepting the convenient—but in this case troublesome—
default loop variable of $_. Here’s a modified version of the foreach loop that pro-
duces the desired result, with the changes in bold:

foreach $word (split){ # split line into words; store each in $word
 $word =~ /\b\w\w\w\w\b/ and
 print "Found '$word' in: '$_'\n" and
 last;
}

Now that $word is the loop variable for foreach, there’s no obstacle to accessing the
surrounding implicit loop’s $_ from the foreach loop’s print statement.

Note that the script’s use of strict mode did nothing to prevent this particular
problem of variable usage from occurring. That’s because the compiler assumed that
Diggity D knew what he was doing when he accepted $_ as the loop variable for the
nested foreach, which wouldn’t necessarily lead to trouble.

11.2.3 Tips on avoiding problems with variables

To avoid most problems in the use of variables, avoid unnecessary reuse of common
names (such as $_ and $home), and employ the tools provided by the language to
confine a variable’s use to its intended scope. We’ll cover those tools next.

11.3 CONTROLLING VARIABLE SCOPING

The scope of a variable is the region of the program in which its name can be used to
retrieve its value. Specifying a variable’s scope involves the use of the my, our, or
local declaration, as shown in table 11.2.

11 Specifically, the foreach loop has its own localized (i.e., declared with local) variation on the $_
variable, which holds a different value.
CONTROLLING VARIABLE SCOPING 373

We’ll discuss the three types of declarations in turn.

11.3.1 Declaring variables with my

my creates a private variable, whose use by name is strictly confined to a particular
scope. This is the preferred declaration for most user-defined variables, and the one
that’s most commonly applied to a script’s global variables when it’s converted to
operate in strict mode.

The other declaration that may be needed is one that’s less selfish with its assets,
so it’s rightfully called our.

11.3.2 Declaring variables with our

Because global variables can be troublemakers, the compiler prevents you in strict
mode from accidentally creating them. For example, while attempting to increment
the value of the private variable $num, you might—with a little finger-fumbling—
accidentally request the creation of the global variable $yum:

my $num=41;

$yum++;

You won’t get away with this mistake, because your program will be terminated dur-
ing compilation with the following error message:

Global symbol "$yum" requires explicit package name at ...
Execution of scriptname aborted due to compilation errors.

Table 11.2 The my, our, and local variable declarations

Declaration Example Explanation

my my $A;
my $A=42;
my ($A, $B);
my ($A, $B)=@values;

The my declaration creates a private
variable, whose name works only within
the scope of its declaration. This is the
preferred declaration for most user-
defined variables in strict mode.

our our $A;
our $A=42;
our ($A, $B);
our ($A, $B)=@values;

In strict mode, our disables fatal errors
for accessing global variables within its
scope that use their simple names
(e.g., $A) rather than their full names
($main::A or the equivalent $::A).a
In Minimal Perl, this declaration is used
in strict mode for all switch variables and
variables exported by modules.

local { # new scope for modified "$,"
 local $,="\t";
 print @ARGV; # tab-separated
} # previous "$," restored

local arranges for the previous value of
the modified variable to be restored
when execution leaves the scope of the
declaration. local is most commonly
used with print's formatting variables
(“$,” and ‘$"’) in Minimal Perl.

a. Using our is like pushing the “hush button” on a smoke alarm, to temporarily silence it while you’re carefully
monitoring a smoke-generating activity.
374 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

But you can still use global variables in strict mode—as long as you make it clear that
you’re doing so deliberately, by declaring them with our.12 However, in most cases, it’s
a better practice to use a widely scoped private variable instead.

In part 1, we used the our declaration on switch variables (e.g., $debug) to iden-
tify their associated command-line switches (e.g., -debug) as optional (see table 2.5).
However, because all switch variables are global variables, they must be declared with
our in strict mode. (This means Perl can’t automatically issue a warning for a
required switch that’s missing in strict mode; but by now you’ve learned how to gen-
erate your own warnings for undefined variables (in section 8.1.1), so you no longer
need this crutch.

The our declaration is also used for variables exported by Perl modules (as you’ll
see in section 12.1.1).

In summary, for a script to be allowed to run under use strict, each of its user-
defined variables must be declared with either our or my. Although both declarations
permit abuses that are analogous to silencing a pesky smoke alarm by removing its
batteries,13 they have beneficial effects when used properly.

For completeness, we’ll discuss Perl’s other type of variable declaration next—
although it’s not used to satisfy strictures.

11.3.3 Declaring variables with local

local is used to conveniently make (and un-make) temporary changes to built-in
variables (see table 11.2). It doesn’t create a new variable, but instead a new scope in
which the original variable can have a different value.

local is very useful in certain contexts. As a case in point, this declaration is auto-
matically applied to $_ when it’s used as a default loop variable, which ensures that
the prior value of $_ (if any) will be reinstated when the loop finishes.14 Although this
special service can be a great convenience, the local declaration is never needed in
converting a script for strict-mode operation.

For the rest of this chapter, our focus will be on the use of special guidelines that
help programmers write better programs.

11.3.4 Introducing the Variable Scoping Guidelines

In programs that don’t use explicit variable declarations, certain declarations are still
in effect—the default ones. These can lead to unpleasant surprises, but by applying
our Variable Scoping Guidelines (Guidelines for short), you’ll be able to defend your

12 Global variables can always be accessed by their explicit package names ; the strictures we’re discussing
only disallow references using their simple names (see row two of table 11.2).

13 Such as declaring every variable in the script with our or my at the top of the file, which gives every
variable file scope. This may delude you into thinking that use strict is helping you sidestep the
pitfalls of variable usage, but in actuality you’ve disabled its benefits!

14 However, as Diggity D showed with 4letter_word (see section 11.2.2), a nested loop that needs
access to the loop variable of an outer loop needs to use a different name for its own loop variable.
CONTROLLING VARIABLE SCOPING 375

programs against common pitfalls. These Guidelines have been extensively tested and
refined to their present form using feedback from throngs of IT professionals who’ve
attended our training classes. They’re divided into two sets, which apply to programs
of different complexity levels.

SIMPLE PROGRAMS: Those that can be viewed in their entirety on your screen, and don’t
have subroutine definitions or nested loops.
COMPLEX PROGRAMS: All others.

Guidelines for simple programs

Variable scoping in Perl is a subject that’s more easily managed through the applica-
tion of Guidelines than by attempting to learn all its intricacies and applying that
understanding. To cite a well-known analogy from the world of Unix shell program-
ming, it’s a lot easier to fix a misbehaving command by “adding (or subtracting)
another backslash to see if that fixes it”, than it is to study the myriad ways in which
backslashed expressions can go wrong, and try to identify which case you’re dealing
with—before adding (or subtracting) another backslash to see if that fixes it!

The most important Guideline applies to programs that can be viewed in their
entirety on your screen, and that lack nested loops and subroutine definitions:

• Relax. Enjoy the friendliness, power, and freedom of Perl. Don’t use strict,
don’t declare variables, and don’t worry—be happy !

Although this advice may sound too good to be true, it really works. And you
know that, because none of the dozens of Perl programs we discussed in the previ-
ous chapters needed to declare or create a special scope for a variable, in order to
function correctly.

But life as a programmer isn’t always that carefree, so we’ll examine the Guidelines
that apply to more complex programs next.

11.4 VARIABLE SCOPING GUIDELINES
FOR COMPLEX PROGRAMS

These are the Guidelines, shown in the order in which you apply them, along with the
numbers we use in referring to them:

1 Enable use strict.

2 Declare user-defined variables and define their scopes:
a Use the my declaration on non-switch variables.
b Use the our declaration on switch variables and variables exported by modules.
c Don’t let variables leak into subroutines.

3 Pass data to subroutines using arguments.

4 Localize temporary changes to built-in variables using local.

5 Employ user-defined loop variables.
376 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

The Guidelines apply to any program that has one or more of these properties:

• It’s larger than one screenful.

• It has a nested loop.

• It has a subroutine definition.

They also apply to all files that define Perl modules (discussed in section 12.1).
We’ll show how these Guidelines are applied to existing scripts, so we can refer to

their specific deficiencies. However, you should ideally use the Guidelines from the
outset when developing scripts that are expected to become complex, or when devel-
oping modules.

TIP Following the Variable Scoping Guidelines will help you avoid trouble in
your programs.

Like Perl scripts themselves often do, we’ll begin with use strict.

11.4.1 Enable use strict

Put “use strict;” at the top of the file, but below the shebang line if present (a
module won’t have one). Congratulations! You’ve probably just broken your program,
until you make the modifications described in the following Guidelines.

But before we proceed, a word of warning is in order. It’s important that you resist
the temptation to cease applying the Guidelines prematurely, because the compiler
operating in strict mode15 may unleash your program after a variable declaration or
two has been added, but well before it has a chance to function correctly.16

We’ll discuss the proper use of variable declarations next.

11.4.2 Declare user-defined variables and define their scopes

Properly defining the scope of user-defined variables is a critical step in defending a
program against programmer oversights. You do so by declaring the variable at a cer-
tain position in the file, and in a certain relationship to enclosing curly braces.

Declarations that aren’t enclosed in curly braces are said to have file scope, which
means they apply from the point of the declaration to the file’s end. Other declara-
tions are restricted to the region that ends with the next enclosing right-hand curly
brace, yielding block scope.

In either case, you must take care to properly demarcate the variable’s scope,
which may require adding curly braces in some cases, or taking steps to avoid the
undesirable effects of existing curly braces in others.

Some declarations may be conveniently made within existing curly-brace delim-
ited code blocks, such as those enclosing the definition of a subroutine, an else

15 Henceforth referred to as the strictified compiler.
16 See the discussion of the phone_home script in section 11.2.1 for a dramatic example of this principle.
VARIABLE SCOPING GUIDELINES FOR COMPLEX PROGRAMS 377

branch, or a foreach loop. In other cases, you can freely add new curly braces to
define custom scopes for the variables you’ll declare within them.

Two types of declarations are used to convert a program for strict mode: my and
our. We’ll discuss each in turn.

Use the my declaration on non-switch variables

Most user-defined variables should be declared with my, which marks them as private
to their scope. One way to make such a declaration is to place my before the variable’s
name where it’s first used. Another approach is to provide declarations for a group of
variables at the top of the subroutine, main program, or code block in which they’re
used (as shown on Line 28 of listing 11.3).

For example, user-defined variables that will only be accessed within the BEGIN block
should be declared there with my (like $B in figure 11.1). However, variables used in
the BEGIN block that will also be accessed below it can’t be declared in BEGIN,
because its curly braces would restrict their scope. Instead, such a variable (e.g., $A
in figure 11.1) needs to be declared on a line before BEGIN, to include the BEGIN
block and the following region in its scope.

Our next Guideline is a critical one that helps prevent messy situations.

Program code Variable scope

#! /usr/bin/perl ... $A $B

use strict;

use SomeModule;

my $A=42;

BEGIN {

 my $B;

 ...

 print $A, $B;

}

print $A;

Figure 11.1

Illustration of variable scoping,

without subroutines
378 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

Don’t let variables leak into subroutines

Before delving into the details of this Guideline, we must first define a term. The
Main program (Main for short) is the core portion of a program. In a script having
BEGIN and END blocks, it’s the code that falls between those sections. In a script
lacking those blocks, Main is the collection of statements beginning after the initial
use statement(s) and ending just before the first subroutine definition or the end of
the file, whichever comes first.

One of the most dangerous mistakes that new Perl programmers make is to inad-
vertently let variables leak from Main into the subroutines defined below. But all it
takes to plug those leaks is to routinely enclose Main in curly braces in scripts that
have subroutines.17 The beneficial effect of this simple measure is to restrict the scope
of variables declared in Main, to Main.

This technique is illustrated in figure 11.2 and discussed in more detail in
section 11.4.6.

Notice in the figure’s right column that $A’s final scope is constrained by the loca-
tions of the curly braces that enclose its declaration, which exclude the subroutine.

If the script has BEGIN and/or END blocks, the same set of Main-enclosing curly
braces may be extended to include either or both of those regions as needed, with the
declarations being shifted to the top of the new scope.

For instance, example B of figure 11.3 allows variable $V to be accessed in the BEGIN
block, Main, and the END block—but not in the subroutines. In contrast, examples C

17 Unfortunately, this fact has not been well documented in the Perl literature (at least, until now).

Initial scope of $A Final scope of $A

#! /usr/bin/perl ... #! /usr/bin/perl ...

use strict; use strict;

use SomeModule; use SomeModule;

{

my $A=42; # Main my $A=42; # Main

print $A; # Main print $A; # Main

 }

sub C { } sub C { }

Figure 11.2

Preventing a variable from

leaking into subroutines by

enclosing Main in curly

braces
VARIABLE SCOPING GUIDELINES FOR COMPLEX PROGRAMS 379

and D allow access in Main and either BEGIN or END, respectively, whereas example E
only allows access to the variable in Main.

Note that examples D and E differ from the others in having their BEGIN blocks
above the new scope’s opening curly brace, whereas C and E have their END blocks
below the closing one. The guiding principle is to include only the desired program
regions within the variable’s scope-defining curly braces.

Example A of figure 11.3 shows a scoping arrangement that you should generally
avoid, because making the variable available to all program segments makes it suscep-
tible to name clashes and clobberations.18 However, the use of file scope, as this is called,
can be appropriate for variables that aren’t storing mission-critical information.19

18 As demonstrated with the phone_home script of section 11.2.1.
19 File scope can also be appropriate in Perl modules, which may contain little more than variable decla-

rations made for the benefit of their following subroutine definitions.

Variable scope

A: Entire
program

B: BEGIN,
Main,
and END

C: BEGIN and
Main

D: Main and
END

E: Main only

use strict; use strict; use strict; use strict; use strict;

BEGIN { } BEGIN { }

{ { { {

decl $V; decl $V; decl $V; decl $V; decl $V;

BEGIN { } BEGIN { } BEGIN { }

Main Main Main Main Main

} }

END { } END { } END { } END { } END { }

} }

subs subs subs subs subs

NOTE: Variable $V, declared with my or our (decl), is accessible by name only within the shaded
regions.

Figure 11.3 Effects of curly braces on variable scoping
380 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

Just as a sick person should finish his prescribed course of antibiotics even
though he suddenly feels better, you should complete the application of
all Variable Scoping Guidelines even if your script starts running after
you’ve merely applied the first few. Otherwise, you may not eradicate all
your bugs!

Next, we’ll discuss the other type of declaration that might be needed to let a script
run in strict mode.

Use the our declaration on switch variables

and variables exported by modules

All switch variables must be declared with our in strict mode.20 With the following
command format, this allows the value (“maximum”) provided with the command-
line switch (-urgency) to be accessed via its corresponding switch variable
($urgency) within the script:

$ scan4intruders –urgency='maximum'
...

As with my, the positioning of an our declaration and the optional curly braces sur-
rounding it define a variable’s scope. For example, to make the variable available
throughout the script, you would place the declaration below the use statements but
above the BEGIN block (see example A of figure 11.3). The file scope that results is
appropriate for making a $debug switch-variable available to all program segments—
for example, for the benefit of widely scattered statements like this one:

defined $debug and warn "$0: Entering the XYZ phase now\n";

On the other hand, for switch variables that will be accessed in all program segments
except subroutines (i.e., BEGIN, Main, and END), you should place a curly brace
before the declarations above BEGIN and one after END, as shown in example B of
the figure.

Figure 11.4 illustrates the use of variable scoping to restrict access to distinct pro-
gram regions for a number of variables, showing code that more closely resembles that
of a real (albeit rather ineffectual) script.

Note that neither $A nor $B can leak into sub conscious, because the outer-
most curly braces enclosing their declarations limit their scope to BEGIN, Main, and
END. The variables $C, $D, and $E have even tighter scopes, restricting their use to
BEGIN, END, and conscious, respectively.

20 As discussed in section 11.3, this directive applies to both optional and required switches.

HEALTH
WARNING!
VARIABLE SCOPING GUIDELINES FOR COMPLEX PROGRAMS 381

It’s important to keep in mind that scoping imposes limits on the use of variable
names, not on variable values. For this reason, the values of $A, $B, and $D in
figure 11.4 can be successfully passed as arguments to the subroutine conscious
from the call in the END block, despite those variables being inaccessible by name from
within that subroutine. In other words, although a subroutine can’t access variables
outside its scope, you still have the freedom to pass the value of any variable that’s in
scope at the location of the subroutine call to that subroutine.

Once you’ve applied private scopes to Main’s variables, you have to take explicit
steps to make their values available in subroutines, as we’ll discuss next.

Program code Variable scope

#! /usr/bin/perl ... $A $B $C $D $E

use strict;

use SomeModule;

{ # Beginning of special scope

 our ($A); # switch variable

 my $B;

 BEGIN {

 my $C;

 print $A, $B, $C;

 }

 print $A, $B; # Main program

 END {

 my $D;

 conscious($A, $B, $D);

 print $A, $B, $D;

 }

} # End of special scope

sub conscious {

 my $E;

 print $E;

 }

Figure 11.4 Illustration of variable scoping, with subroutines
382 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

11.4.3 Pass data to subroutines using arguments

With the measures implemented by the preceding Guidelines in effect, user-defined
variables won’t be able to accidentally leak into subroutines defined at the end of a
script. As a beneficial side effect, subroutines that knowingly (or unknowingly)
depended on data leakage will suddenly start generating “Use of uninitialized value on
line X ” messages. This signifies the need to modify the calls to those subroutines to
convey the data items they require as arguments.

In section 12.1, we’ll discuss the application of this Guideline to the design of cus-
tom modules, which may use special features to obtain information from the
programs using their subroutines. As an example, a variable could be exported from
a module for initialization within the user’s program, as an alternative to having the
call to the module’s subroutine convey the same information as an argument.

Next, we’ll discuss a good way to exploit the specialized behavior of the
local declaration.

11.4.4 Localize temporary changes

to built-in variables with local

As stated in table 11.2, a declaration with local causes a variable’s earlier value to be
automatically restored when execution leaves the scope of the declaration.21 To take
advantage of this useful feature, enclose temporary changes to Perl built-in variables
within curly braces, and declare those variables with local:

{

 local $,="\t";

 print @items_getting_tab_separation;
}
$, now reverts to value it had before "\t" was assigned
print @items_not_getting_tab_separation;

Following this Guideline will prevent you from someday wondering, for example,
why the print on Line 300 of your script is separating its arguments with tabs, only
to discover later that an assignment to the formatting variable “$,” on line 15—
which should have been temporary—is still in effect. Using local to ensure that such
“temporary” changes get properly undone will save you a lot of unnecessary anguish,
head scratching, and debugging time.

Another source of trouble is the reuse of the same variable for different purposes,
as you’ll see next.

11.4.5 Employ user-defined loop variables

For loops of the types shown here on the left that are nested within others—including
those nested within the easily overlooked implicit loop—make the user-defined loop-
variable private by adding the underlined text shown on the right:

21 This is how foreach declares its default loop variable, $_ (see section 11.2.2).
VARIABLE SCOPING GUIDELINES FOR COMPLEX PROGRAMS 383

foreach (LIST) J foreach my $V (LIST)
while (<>) J while (my $V= <>)
for ($V=0; <> ; $V++) J for (my $V=0; <> ; $V++)

Following this Guideline prevents masking of the outer loop’s $_ value by that of the
inner loop, which occurs in the 4letter_word script (see section 11.2.2).

Next, we’ll revisit an earlier example of a program that suffers from variable leak-
age and fix it by applying the Guidelines.

11.4.6 Applying the Guidelines: the phone_home2 script

Oz has been busy applying the Guidelines to his dysfunctional phone_home script
(discussed in section 11.2.1), so let’s inspect the new version, phone_home2:

#! /usr/bin/perl –wl

use strict;

my $home='415 123-4567'; # store my home phone number
print 'Calling phone at: ",
 get_home_address(); # show my address
dial_phone($home); # dial my home phone

sub get_home_address {
...
 $home=($name2address($ENV{LOGNAME}) or 'unknown');
...

Oz made the (highlighted) changes by following Guidelines 1 and 2a (see section 11.4).
He was a little upset when the addition of use strict prevented the script from run-
ning again, but after he responded to “Global symbol "$home" requires explicit pack-
age name” by declaring $home with my, it recovered. However—despite the fact that
it now complies with the compiler’s strictures—the script still doesn’t work correctly!

Here’s why. After Oz declared the first occurrence of $home with my, the other
occurrences of that variable (also underlined) were seen as falling within the (file)
scope of the new declaration and therefore as references to the same variable. That left
no global symbols (i.e., undeclared user-defined variables) for the strictified compiler
to complain about, so the script was allowed to run.

Of course, all the references to $home still access the same variable, so the only
thing that’s changed is that a private variable is being clobbered by the subroutine in
phone_home2, rather than the global variable of the original!

The bottom line is that the compiler has already given Oz all the help it has to
offer, but it’s not enough to correct the script’s fatal flaw. What’s the solution? Simply
for Oz to apply the remaining Guidelines, to correct his mistake of considering the
script’s rehabilitation complete after it started running in strict mode.

This script needs its Main program enclosed in curly braces so badly that it could
be the poster child for Guideline #2c—“Don’t let variables leak into subroutines” (dis-
cussed in section 11.4.2). That adjustment would restrict the scope of the my $home
384 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

declaration to Main and therefore cause the strictified compiler to require a separate
declaration for the subroutine’s $home—before permitting the script to run again.

The only remaining Guideline that applies to this program is the one about pass-
ing all data needed by subroutines as arguments, and the script is already doing that.

The changes that create phone_home3 from phone_home2 are shown in bold
type:

#! /usr/bin/perl –wl

use strict;

{ # Braces cause two $home’s to require separate declarations
 my $home='415 123-4567'; # store my home phone number
 print 'Calling phone at: ", # show my address
 get_home_address();
 dial_phone($home); # dial my home phone
}

sub get_home_address {

...
 my $home=($name2address($ENV{LOGNAME}) or 'unknown');

...

The end result of the modifications is that two private variables are created, hav-
ing totally independent scopes and values—despite the fact that they share the
same name.

Of course, in a tiny program like this one, it’s easy to spot the duplicated variable
name and pick a different one to avoid variable clobberation. But in larger programs,
you can’t keep track of everything so easily, so it’s a good practice for Main and every
subroutine to declare all their locally used variables as private, in order to prevent
name clashes.

TIP Complying with the requirements of use strict doesn’t guarantee that
your program isn’t doing dumb things with variables. To have greater assur-
ance that it’s correct, you need to apply the Variable Scoping Guidelines.

Tips on using Variable Scoping Guidelines

Some of the Guidelines involve coding techniques that are easier to implement from
the start than to retrofit after problems become apparent. Therefore, if you know in
advance that you’ll be using a subroutine or nested loops in a new program (which
will qualify it as “complex”), you should follow the Guidelines from the outset.
Alternatively, at the time you decide to add the first one of those features to your
program, you’d be wise to implement the Guidelines before doing so, to pave the
way for its arrival.

Don’t forget that our definition of program complexity also incorporates a size cri-
terion, so as soon as your script requires scrolling to be read on the screen, it’s time
to apply the Guidelines.
VARIABLE SCOPING GUIDELINES FOR COMPLEX PROGRAMS 385

Most important, don’t become overly paranoid—after all, this is Perl, a relatively
forgiving, easily programmed language. But an ounce of prevention is still worth sev-
eral pounds of cure, so keep these Guidelines in mind.

QUESTION: How well does use strict do the job of monitoring variable usage?
ANSWER: About as well as an automatic Bathroom Hand-Washing Monitor that won’t let
you leave until you’ve wet your hands—but can’t tell if you used any soap!

11.5 REUSING A SUBROUTINE

Once the Guidelines have been properly applied to a subroutine, you’ll be able to use
it in other scripts by pasting in its code and properly using its interface. For example,
here’s an enhanced version of the mytime2 script you saw in section 7.2.2, called
mytime3. It centers its output on the screen with the help of the center_line sub-
routine added at its end:

#! /usr/bin/perl –wl
Shows time in custom format centered on screen

(undef, $minutes, $hour)=localtime; # we don't care about seconds
$am_pm='AM';
$hour > 12 and $am_pm='PM' and $hour=$hour-12;
print center_line("The time is $hour:$minutes $am_pm.");

sub center_line {

...
 defined $cl_width and $cl_width > 2 or $cl_width=80;

...
 return $newstring;
}

The subroutine can be given a custom column-width setting, but because the pro-
grammer wanted to accept the default of 80 characters, he didn’t create the
$cl_width variable. Apart from inserting the subroutine’s code, the only other
change he made to mytime2 was to pass the time-string to center_line, to get it
centered before printing.

But what if the existing script already had a $cl_width variable—perhaps to
specify cherry lozenge widths—set at 9 (mm)? Then the programmer would have had
to take measures to prevent the subroutine from accidentally using 9 as the subrou-
tine’s column-width specification (e.g., by confining the clashing variable’s scope to
Main or renaming it $cl_meds_width).

Such name clashes are always a possibility when communicating information by
widely scoped variables—which is why subroutine designers must weigh their conve-
nience of use against the probability of future trouble, and choose to receive data by
arguments in many cases.

Reusing software through cutting and pasting certainly increases productivity, but
we can do better. We’ll spend the next chapter exploring the more convenient and
386 CHAPTER 11 SUBROUTINES AND VARIABLE SCOPING

sophisticated alternative of using Perl modules, which let you import subroutines and
variables from source code repositories.

11.6 SUMMARY

Subroutines, declared with sub, compartmentalize single-minded chunks of code to
allow them to be conveniently executed on request. This prevents duplication of code
that needs to be accessed from different program regions, and also provides a rudi-
mentary way of sharing code between programs. (But you’ll see an even better method
based on modules in chapter 12.)

Perl provides three types of variable declarations. Two of them—my and our—are
used to precisely define the program regions in which the names of specific variables
can be used. The other declaration, local, causes a variable to automatically recover
its former value when execution leaves a defined scope. This declaration is routinely
used when a formatting variable ($, or $") needs to be changed for a particular
print statement, without affecting all subsequent print statements.

The primary function of use strict is to prevent a program from running until
all its user-defined variables have been declared with my or our. Although this restric-
tion is meant to encourage you to define proper scopes for all your variables, all that
use strict actually requires is that you make variable declarations—not that you
make them intelligently.22 For this reason, use strict is not the magical tool for
warding off scoping problems that some think it is.

However, proper use of scoping techniques—along with judicious application of
our Variable Scoping Guidelines—can make your programs significantly more cor-
rect and trustworthy. The seven Guidelines for complex programs—ones that have
subroutines or nested loops or can’t fit on one screen—are discussed in section 11.4.
They prescribe modifications that defend your programs against typical problems,
such as variable masking and variable clobberation.

As helpful as those guidelines are, there’s another one that’s even more important
to keep in mind—the guideline for simple programs, which applies to the majority of
the programs featured in this book:

• Relax. Enjoy the friendliness, power, and freedom of Perl. Don’t use strict,
don’t declare variables, and don’t worry—be happy !

Directions for further study

The following resources provide additional information on the topics covered in
this chapter.

• man perlsub # how subroutines work

• man perlvar # how variable scoping works

22 The problem is not that use strict should be able to do its (very difficult) job any better, but rather
that wishful thinking leads programmers to overestimate its sophistication.
SUMMARY 387

C H A P T E R 1 2

Modules and the CPAN

12.1 Creating modules 389
12.2 Managing modules 398
12.3 Using modules 403
12.4 Summary 424
Scene: A Level 3 JAPH named Alexis is describing the fallout from her latest

��
customer demo to a sympathetic colleague.

You wouldn’t believe it! Just when I had finally satisfied all of the customer’s stated
requirements, he insisted on having Yet Another New Feature—specifically,
support for Precursive Frobination of Defragulations (PFD). So I went back to my
cubicle and started coding the algorithm, when I was struck by a strange feeling of
déjà vu …

Like Alexis, every programmer who sits down to write code will someday experience a
creepy feeling that she’s solved this problem before. There are at least three logical expla-
nations for this phenomenon, leading to different actions.

One possibility is that the programmer did indeed write the code already, in which
case she needs to browse through her source-code archives to locate it. If she succeeds
in that quest, she should convert the code into the form of a subroutine1 and give seri-
ous consideration to packaging it in a module.

1 If it isn’t in that form already; see chapter 11.
388

Why keep subroutines in modules? Because doing so lets you trade the cut-and-
paste method of importing subroutines for the more convenient and sophisticated
method based on the use function. As a result, you’ll be able to import components
from your own modules in the same way as you would from other modules:

use Text::Tabs; # imports Perl's standard "expand" sub
use Diggity::Utilities; # imports "4letter_word", "homeboy_george"

Another possibility is that Alexis never wrote the PFD code herself, but instead
imported it from a module on her system. If so, her new program can import it too,
also by employing use.

A third possibility is that she was mistaking some other phenomenon (perhaps
induced by too many carob-iced hemp biscotti) with déjà vu, and that she never
wrote, used, or even possessed the code. In the Perl world, this means her next step
would be to search for a freely reusable version of PFD in the form of a module avail-
able from the Comprehensive Perl Archive Network (CPAN).

One of the benefits of using an existing module—and it’s a substantial one—is that
you get to use the code you need, without having the burden of writing it yourself.

In this chapter, you’ll learn how to apply these techniques for managing your own
code and accessing code obtained from others. Specifically, you’ll learn how to create
your own modules, how to use existing modules from Perl’s standard distribution,
and how to locate, obtain, and install modules from the CPAN.

We’ll begin by showing you how to package the center_line subroutine of list-
ing 11.3 in the form of a module. We’ll end this chapter by examining practical appli-
cations built around a sampling of freely available modules—ranging from
Business::UPS, for estimating shipping charges, through File::Find, for writ-
ing OS-portable programs that replace the Unix find command, to CGI (Common
Gateway Interface), for generating web pages and processing web forms.

12.1 CREATING MODULES

With all of Perl’s standard modules out there for you to use, plus the thousands avail-
able from the CPAN, why would you want to write your own modules? For several
reasons, including these:

• To make it easier for you to reuse your own custom code

• To make it easier for you to share your custom code with others

We’ll discuss how you can create your own modules next, because chances are good
that you’ll need to do so at some point, and this is an easy skill to acquire.

The standard way for a Perl programmer to package code for easy reuse is through
an approach based on the Exporter.pm module, which is distributed with Perl. It
arranges for the importing of a set of default components from a module—or else the
ones that are explicitly requested—when the user’s program runs use Module_
name or use Module_name (components), respectively.
CREATING MODULES 389

We’ll discuss a simple method for creating such modules next.

TIP A common way to begin a new module is by editing a template that contains
the boilerplate code for a generic module.

12.1.1 Using the Simple Module Template

Several elements are required in the definition of a Perl module, and some may be
hard to remember. For this reason, a common way to begin a new module is by modi-
fying a template that contains the boilerplate code for a generic module.

Listing 12.1 shows our Simple Module Template (Template for short), which works
nicely for many applications.2 We’ll pay special attention to the lines with bold type,
because you must modify these according to the needs of the module being defined.

 1 package Module_name; # puts vars and subs in module's namespace
 2 use strict;
 3 use Carp; # identifies error locations from user's POV
 4
 5 our (@ISA, @EXPORT, @EXPORT_OK);
 6
 7 # List any variables or subs to be exported by module here
 8 our (module_vars, module_subs);
 9
10 require Exporter; @ISA=('Exporter'); # import/export services
11
12 # Classify module's exports as automatic or on-request
13 @EXPORT=qw(module_vars, module_subs); # automatic
14 @EXPORT_OK=qw(module_vars, module_subs); # on-request
15
16 # The code that implements the module's functionality follows
17
18 sub lime {
19 # Contents
20 }
21
22 sub stantial {
23 # Contents
24 }
25 # And so forth ...
26
27 1; # Indicate module's end, with True value

You’ll learn how to use this template next.

2 For a more detailed module template that handles the needs of more complex modules, see man
perlmod.

Listing 12.1 The Simple Module Template
390 CHAPTER 12 MODULES AND THE CPAN

Starting the new module

The italicized words in the Template’s source code are placeholders that need to be
replaced by the actual names of the items they represent. Starting at the top,
Module_name needs to be changed to the full name of the module being created,
which might be something like Chat::Secure, or more simply, Center. It’s vital
that the file containing the module definition be given a matching name and path,
which would be Secure.pm in a directory called Chat for the first case, but
Center.pm for the second one.

All modules should use strict, so that statement comes next (Line 2).
Line 3 imports the module called Carp, which provides the useful service of iden-

tifying the locations of errors from the point of view of the user, rather than the pro-
grammer. (The difference is demonstrated later in section 12.1.2.)

Line 5, which declares three variables that are part of the Template itself,3 should
not be modified.

The next step is to specify the module’s exports.

Specifying exported components

Line 8 of listing 12.1 specifies all the names of the variables and/or subroutines (the
components) that the module will export—for users to import. You allocate those com-
ponents to the two categories of exports by replacing the placeholders in the @EXPORT
and @EXPORT_OK initializations on Lines 13 and 14 with the desired names.

How do you decide which module-components to assign to which array? On the
basis of two considerations: ease of use, and likelihood of name clashes.4 For example,
if it’s inconceivable that anyone would want to use your (hypothetical) IQ module
without importing its subroutine called genius—because that’s all it has to offer—
then by all means place that name in @EXPORT, to automatically export it to the mod-
ule’s users.

On the other hand, it’s inconsiderate to export anything the user might not want,
because that increases the probability of name clashes. This is especially true for
components having common (and therefore clash-prone) names, such as $output,
$count, and @name for variables, or calculate, validate, and get_data for
subroutines.

For this reason, it might be best to provide IQ’s users with access to its
$statistics variable—which shows the percentages of people falling into different
IQ ranges—only on request, rather than automatically. That means its name should go
into @EXPORT_OK, rather than @EXPORT.

Lines 13 and 14 show a special quoting syntax using the qw operator (see
table 9.2). We haven’t needed it thus far, but it has distinct advantages in contexts

3 our, my, and local are special in that they receive the actual names of the variables provided as their
arguments, rather than the contents of those variables.

4 Discussed in section 11.2.
CREATING MODULES 391

http://search.cpan.org
http://search.cpan.org
http://TeachMePerl.com/Select.html

where variable names must be used as literal strings. Why? Because Shell-savvy pro-
grammers are understandably prone to automatically use double quotes in Perl state-
ments like this one, to allow variable substitution:

@EXPORT=("$var1", "$var2");

But variable substitution needs to be suppressed here, not allowed, so such people need
to “overcome their programming” and use single quotes instead. This allows the vari-
able names themselves to be presented as the array initializers, rather than the contents
of those variables:

@EXPORT=('$var1', '$var2');

But there’s an even better solution than using single quotes. The benefit of qw()—
which stands for “quote words”—is that it automatically applies single quotes to strings
separated by whitespace. This provides a more easily typed and less error-prone alter-
native to the earlier statement (see Lines 13–14 of listing 12.1):

@EXPORT=qw($var1 $var2);

If you wish, you can leave either the @EXPORT or the @EXPORT_OK array empty by
removing the Template’s placeholders from the parentheses:

@EXPORT=qw(); # no automatic exports

Now we need to define the module’s subroutines.

Defining subroutines

Lines 18–25 of the Template are placeholders for the subroutines that implement the
functionality of the module.

When you’re cutting subroutines from existing scripts and pasting them into a
new module, some modifications may be required. For instance, because the variables
the module is exporting will already be declared with file scope on Line 8, existing
subroutines need to be stripped of any redundant declarations for those variables that
also appear within them. Moreover, subroutines that previously obtained information
from a script’s global variables will have to be modified to accept that information via
arguments instead. That’s because subroutines residing in the module’s file won’t
have any other way to access, for example, the values of private variables residing in
the module-using program.

Now all we have left to do is to identify the module’s definition as complete.

Concluding the module with a “happy ending”

The final line of the Template (1;) may look nonsensical (see listing 12.1), but it’s a
vital part of the module file. It’s there to satisfy the need of the use function—which
loads the file—to find a success code at its end. It certainly couldn’t be much easier
to type!

Now that you know the procedure for defining a module, we’ll use the techniques
you’ve learned to package a subroutine from an earlier chapter in the module format.
392 CHAPTER 12 MODULES AND THE CPAN

12.1.2 Creating a module: Center.pm

Listing 12.2 shows the results of customizing our Template to create Center.pm,
which provides access to the (slightly modified) center_line subroutine of the
center2.strict program (see listing 11.3).

The package Center line at the top tells Perl to prefix all non-private user-defined
variables with Center::, which causes the full name of the variable declared on Line 8
to be $Center::cl_width. The benefit of having a unique namespace like this for
each module is that it prevents a non-exported variable (e.g., $piece, which is really
$Center::piece) from clashing with a variable having the same simple name
($piece) in the user’s program (where it’s really $main::piece by default).

But typing the module’s full name before every reference to its imported variables
would soon become tedious. For this reason, the program’s use directive arranges for
the simple name $cl_width to act as an alias for the variable’s full name in the mod-
ule ($main::cl_width J $Center::cl_width), providing a service for a variable
like the one a symbolic link provides for a Unix file.5

Lines 13 and 14, respectively, declare the names of the module’s components that
are exported automatically, and exported only on request. (Remember, from the
module-user’s point of view, these are the components that are imported automati-
cally, or only on request.)

On Line 21, $newstring is declared as private from there to the end of the sub-
routine, so it can be accessed within the “then” (Lines 23–26) and else (Lines 29–40)
branches of execution, as well as on Line 42 at the subroutine’s end.

Next, we’ll discuss the differences between warnings and carpings.

 1 package Center; # puts vars and subs in module's "namespace"
 2 use strict;
 3 use Carp; # identifies error locations from user's POV
 4
 5 our (@ISA, @EXPORT, @EXPORT_OK);
 6
 7 # List any variables exported by module here
 8 our ($cl_width);
 9
10 require Exporter; @ISA=qw(Exporter); # import/export services
11
12 # Classify module's exports as automatic or on request
13 @EXPORT=qw(center_line); # automatically exported
14 @EXPORT_OK=qw($cl_width); # exported only on request
15

5 But that could still lead to a name clash if the user program was already using a variable by the same
name, which is why we recommend more distinctive names for exported variables, such as the
$cl_width shown here, or even $Center_width.

Listing 12.2 The Center.pm module
CREATING MODULES 393

16 sub center_line {
17 # returns argument centered within field of size $cl_width
18
19 use Text::Tabs; # imports expand(); converts tabs to spaces
20
21 my $newstring; # private, from here to file's end
22 if (@_ != 1 or $_[0] eq "") { # needs one argument
23 # Use warn() during development, but carp() thereafter
24 # warn __PACKAGE__, ": Usage: center_line(line)"; # prog-POV
25 carp __PACKAGE__, ": Usage: center_line(line)"; # user-POV
26 $newstring=undef; # arrange to return "undefined" value
27 }
28 else {
29 defined $cl_width and $cl_width > 2 or $cl_width=80;
30
31 my ($string, $indent, $padding); # private, from here to }
32 $string = shift; # get required argument
33 $string=expand ($string); # convert tabs to spaces
34 $string =~ s/^\s+//; # remove leading whitespace
35 $string =~ s/\s+$//; # remove trailing whitespace
36
37 # calculate indentation
38 $indent=($cl_width - length $string)/2;
39 $padding=' ' x $indent;
40 $newstring="$padding$string";
41 }
42 return $newstring; # return centered string, or undef
43 }
44 1; # Obligatory "happy ending"

Using carp in production, warn during development

A usage message is generated if necessary from Line 24 or 25 of listing 12.2, to suit
the different needs of the module’s developer and the programmers who use the mod-
ule. Specifically, in cases where the center subroutine is invoked without correct
arguments (see Line 22), the developer wants the diagnostic message to be issued by
warn, because it identifies the location within the module where the error originated:

Center: Usage: ... at Center.pm line 24, <> line 7.  warn

But a module user who’s shown a message that refers to a location in a module
will probably react by emailing its author—in this case, with a request to fix the
bug on Line 24!

To avoid such outcomes, a module should employ the carp function for report-
ing errors rather than warn, once it has been debugged and released.6 That’s because
carp identifies the location in the module user’s program from which the imported

6 For the same reason, a released module should also use the Carp module’s croak rather than die.
394 CHAPTER 12 MODULES AND THE CPAN

subroutine was called, thereby directing the programmer’s attention to the code in his
own script, where the mistake usually lies:

Center: Usage: ... at user_script line 16  carp

This problem originated on Line 16 (the last line) of the script, where a bad argument
was passed to the imported center_line subroutine (see center3 in section 12.1.3).

It’s prudent to identify the source of a diagnostic message in the message itself,
so Perl’s special __PACKAGE__ keyword is used on Lines 24–25 (of listing 12.2) to
prefix the message with the module’s name, Center (as shown in the earlier output
from carp and warn).

As life may have already taught you, there are situations were argumentation is
best avoided, as you’ll see next.

Setting imported variables

rather than passing arguments

As discussed in Guideline #3 (section 11.4.3), there are sometimes advantages to con-
veying information to subroutines through use of variables rather than arguments.

For example, some programs using Center might want to call center_line
many times, to center different strings in fields of the same size. For this reason, the
module allows the user’s program to import and set the $cl_width variable to the
desired value once and for all, rather than requiring a second argument containing
that information to be passed on each call to center_line.7

The center3 script discussed in the next section, which covers module testing,
demonstrates this technique.

12.1.3 Testing a new module

Did you notice the lack of a shebang line in the Template? That’s because the code
of a module is not executed from its own file, but instead from the program that
imports it.

Eventually you’ll write a program to use your module, but during the module’s
development, you should check its file for warnings (w) and syntax errors (c), as shown:

$ perl -wc Center.pm
Center.pm syntax OK

Running this command after every significant change to the module ensures that you’ll
hear about mistakes as soon as possible after making them. However, this is only a
rudimentary form of testing, which is most sensitive to syntax errors. Accordingly,
once you know that your module compiles without warnings, it’s time to test it more
thoroughly by writing a custom program to use it.

7 Several standard modules, such as Text::Tabs and Text::Wrap, also use this technique.
CREATING MODULES 395

Testing Center with the center3 script

The center3 script is a variation on center2.strict (see listing 11.3) that
imports the center_line subroutine from the Center module, rather than includ-
ing the subroutine’s code in its own program file. Although it’s not necessary for such
a simple program, center3 has been written for compliance with our Variable Scop-
ing Guidelines for complex programs (see section 11.4), for educational purposes.
Let’s check it out:

#! /usr/bin/perl -s –wnl
center3: centers input lines using a module's function

Usage: center3 [-width=columns] [file1 file2 ...]

use strict;

our ($width); # switch variable

use Center qw(center_line $cl_width); # import sub, scalar

BEGIN {
 $cl_width=$width; # load value into Module's variable
}

print center_line $_; # Note: parentheses unnecessary

The use Center line imports the desired components from the module. Although
one of those—center_line—is automatically exported by virtue of being listed in
the @EXPORT array, the other ($cl_width) is exported only on request, because it’s
listed in @EXPORT_OK. You might think that providing $cl_width as the lone argu-
ment to use would cause both components to be imported, but it won’t. Here’s why:

If you provide the names of any components to use, you have to provide the names
of all the ones you want—even those that are exported automatically.

The statement in the BEGIN block copies the value of the switch variable to the
module’s exported $cl_width variable. center_line, both checks it and uses
the default of 80 columns if $cl_width is undefined or too small (see Line 29,
listing 12.2).

The script’s switch variable is called $width rather than $cl_width, both
because it’s easier for the user to remember, and to avoid a name-clash with the
$cl_width that’s created as an alias for the module’s variable.

Notice that no declaration has to be made for $cl_width, both in center3,
even though use strict is in effect. That’s because that variable’s properties were
already declared in the module’s file, from which it was imported.

Even if the module is written perfectly, it won’t be of any use if Perl can’t find it!
Next, you’ll learn how to tell Perl where it’s located.
396 CHAPTER 12 MODULES AND THE CPAN

Specifying the module’s location:

The PERL5LIB variable

It’s time to test the program:

$ center3
Can't locate Center.pm ... compilation aborted

Perl didn’t find the module, but that’s to be expected. Although it maintains a list
(in @INC) of system directories in which it searches for the modules named in
use directives, that list doesn’t include the directories in which users store their
personal modules.

You can remedy that situation by adding the appropriate directory’s pathname to
the environment variable PERL5LIB, which augments Perl’s search-list. Here’s an
example of appending the current directory, using the Shell’s PWD variable:

$ export PERL5LIB=$PERL5LIB:$PWD

And here’s how Diggity Dog could easily add his special directory, in which he keeps
the custom modules he “raps out” on his own:

$ export PERL5LIB=$PERL5LIB:$HOME/doghouse

But a less creative person might be inclined to use a more prosaic directory name, like
this one:

$ export PERL5LIB=$PERL5LIB:$HOME/mymodules

Either way, once PERL5LIB has been suitably adjusted and exported, Perl should be
able to find your personal modules, and you’ll be able to run your module-using program:

$ center3 marx_bros
Groucho
Harpo
Chico

$ center -width=11 marx_bros
 Groucho
 Harpo
 Chico

The module should also work when called from a Perl command, rather than a script:

$ grep 'French' iron_chefs | perl -M'Center' -wpl -e '$_=center $_'
Iron Chef French Hiroyuki Sakai

Although typing the export PERL5LIB command as shown earlier only affects the
current Shell session, you’ll probably want that variable’s setting to be in effect each
time you log in. To accomplish this, add that command to your Shell startup file (gen-
erally, .profile for the Korn shell and .bash_login for the Bash shell).
CREATING MODULES 397

Now that you know how to create, test, and use your own modules, you’ll see how
you can identify and obtain modules written by others that might make good addi-
tions to your collection.

12.2 MANAGING MODULES

Next, we’ll discuss how to determine which Perl modules you already have, and how
to locate those that you don’t in the CPAN. Then you’ll see how to use the simplest
standard method for downloading, building, testing, and installing the additional
modules you need.

12.2.1 Identifying the modules that you want

CPAN modules that do a good job of providing useful services tend to get noticed. For
this reason, it’s wise to begin your quest for the Perl software you need by posing a
question like the following to a knowledgeable colleague (or a relevant mailing list):

“What’s the best Perl module for converting holographic gruffles to
lasermorphic floobles?”

If such a module exists, and it’s one that has wide appeal (perhaps unlike the case in
the example), you can expect to get some useful advice in response to that question.

But in cases where you can’t discover the name of a relevant module through peer
recommendations, you should use the http://search.cpan.org web site, which does a
good job of reporting the modules that are associated with the keywords you specify.
We’ll demonstrate the use of this site next.

QUESTION: Where do you get the modules you don’t have?
ANSWER: From the Comprehensive Perl Archive Network—CPAN.

Searching for a module

that calculates UPS shipping charges

Let’s say you’re looking for code to incorporate into your online shopping site, to cal-
culate UPS shipping charges between warehouses and customer locations. You could
begin by entering the keywords “UPS shipping charges” in the screen shown in
figure 12.1 and then clicking the CPAN Search button.

The matches found by that search appear on your screen (see figure 12.2). Don’t
the top two listings, Business::UPS and Business::Shipping::UPS_XML,
sound promising?

NOTE Even if you don’t have rootly powers, you can still use the CPAN shell to
install modules.
398 CHAPTER 12 MODULES AND THE CPAN

Figure 12.1 Searching CPAN for “UPS shipping charges” using http://search.cpan.org

Figure 12.2 Results of searching CPAN for “UPS shipping charges” using http://search.cpan.org
MANAGING MODULES 399

Clicking Business::UPS displays that module’s manual page (see figure 12.3).
If you could scroll down the screen shown in figure 12.3, you’d be able to read the

documentation on the functions8 called getUPS and UPStrack, which provide ship-
ping and tracking information, respectively. The module seems to provide the desired
services, so the next step is to see if you already have it.

12.2.2 Determining whether you have a certain module

Sooner or later, you’ll hear about a module that sounds like it could be useful,
and you’ll want to try it. But how do you know whether or not you’ve already got
it on your system?

A simple approach is to ask Perl to load the module, and see what happens:9

8 Subroutines imported from modules are generally called functions, but if they’re written in the object-
oriented style, they’re called methods (see section 12.3.6).

Figure 12.3 Manual page for Business::UPS module

9 The accuracy of this test depends on the suitability of your PERL5LIB variable’s setting for your system
(see section 12.1.3).
400 CHAPTER 12 MODULES AND THE CPAN

$ perl -M'Text::Autoformat' -e 'exit;' # No news is good news!

$ perl -M'Business::UPS' -e 'exit;' # Output edited for fit
Can't locate Business/UPS.pm in @INC
(@INC contains:
/local/perl5/site_perl/5.8.7
/usr/lib/perl5/site_perl/5.8.7
...

It seems that you don’t have Business::UPS, so now you need to get it. That’s
where the CPAN access module comes into play, which is up next.

12.2.3 Installing modules from the CPAN

The best resource in the standard Perl distribution for managing your access to the
CPAN is the module aptly named—CPAN.10

If you have root privileges, you can run the CPAN module from that privileged
account and install modules in system directories where everyone can access them. But
if you only have non-rootly powers, you can still use CPAN to install modules in the
directories for which you have write permission. We’ll discuss the relevant configu-
ration details next.

Configuring CPAN

You can interact with the CPAN module by starting up your Internet connection
and then executing its shell function, using what’s known as the CPAN-shell
command:

perl -M'CPAN' -e 'shell;'

If you get the following response, CPAN is already configured for your system, and
you’re ready to go:

cpan shell -- CPAN exploration and modules installation
ReadLine support enabled
cpan>

However, if the response looks anything like this, additional preparations are needed:

Your configuration suggests "/root/.cpan" as your
CPAN.pm working directory. I could not create this directory due
to this error: mkdir /root/.cpan: Permission denied

This result indicates that the root user has already configured the CPAN access mod-
ule, and others don’t have permission to modify the existing system-wide settings.

If you are authorized to use the root account, this would be a good time to
switch to it, run the CPAN-shell command again, and proceed from that more
exalted footing.

10 A successor with many enhancements called CPANPLUS is also available from the CPAN.
MANAGING MODULES 401

But if you can’t run as root, you can still define CPAN settings for your personal
use. The first steps are to create a directory and load an empty assignment statement
into a special file:11

$ mkdir -p ~/.cpan/CPAN
$ echo '$CPAN::Config={ };' > ~/.cpan/CPAN/MyConfig.pm

Then, you run the CPAN-shell command again and answer a series of questions,
which fill up that $CPAN::Config variable with settings appropriate for your sys-
tem. For questions you don’t know how to answer, either accept the []-enclosed
defaults or ask for help from a more experienced Perl programmer, or a system or net-
work administrator.

It’s an easy process, but there are a few questions you should be prepared for. One
of them is

Policy on building prerequisites (follow, ask or ignore)? [ask] follow

Unless you want to be pestered for your approval every time a module needs to be
downloaded because it’s a prerequisite for another one, type “follow” for your answer,
rather than accepting the default of “ask”.

If your Internet access goes through proxy servers, you’ll need to know their details
to respond properly to the questions about FTP and HTTP services, which might take
some research on your part.

You’ll also be asked about your preferred CPAN mirror sites (mirrors), from which
CPAN will download your modules. It pays to select reliable mirrors that can provide
fast transfers to your location, so you might want to ask an informed colleague for
help in choosing the best ones for your locality from the list provided.

From this point onward, different procedures need to be followed by rootly and
non-rootly users, which we’ll walk through next.

Installing modules as the root user

Your interest in using CPAN will be fueled by your need to install a module, whose
name you probably identified through a CPAN search (as discussed earlier). If you’re
logged in as root, you can issue an install command as soon as you get the prompt
from the CPAN-shell command. For example:

cpan> install Vapour::Ware

If the indicated module exists (this one still doesn’t), it will automatically be down-
loaded, built, tested, and installed for you on the spot.

Life in the trenches of IT doesn’t get much better than that! Just be careful to type
the module’s name properly, because colons and case variations really matter.

11 Although I’ve never seen this procedure documented anywhere else, we’ve taught it in our classes
for years.
402 CHAPTER 12 MODULES AND THE CPAN

Even if you’re not root, you can still install CPAN modules. It just takes a bit more
typing for the initial setup, as you’ll see next.

Installing modules as a non-root user

After completing the initial CPAN configuration process, nonroot users need to type
the following additional commands prior to installing a module:

cpan> o conf makepl_arg "LIB=/your_home_dir/myperl/lib \
> INSTALLMAN1DIR=/your_home_dir/myperl/man/man1 \
> INSTALLMAN3DIR=/your_home_dir/myperl/man/man3"

cpan> o conf commit
cpan>

Those o conf commands specify your HOME directory’s myperl/lib (for library)
subdirectory as the storage location for the modules you install, and HOME’s subdirec-
tory myperl/man as the location for storing the man pages for the installed modules.

Now you’re ready to install a module, using the install Module-name com-
mand shown earlier, so give it a try.

But before you try to use any of your freshly installed modules, you’ll need to
update PERL5LIB appropriately (see section 12.1.3). To include the paths to your
CPAN-download area and also your personal module directory, you’d use an assign-
ment statement like this one:

$ PERL5LIB=$PERL5LIB:$HOME/myperl/lib:$HOME/mymodules

You can arrange for that variable setting to be established whenever you log in by put-
ting it in your .profile or .bash_profile.

In the next section, we’ll examine several scripts that take advantage of useful ser-
vices provided by freely available modules.

12.3 USING MODULES

Now that you understand how Perl modules work, you’ll benefit from seeing exam-
ples of industrial-grade modules being used to solve real problems. Well begin with a
script based on Business::UPS that calculates shipping charges, and then we’ll
examine scripts demonstrating modules used for Internet access, menu-oriented pro-
gramming, file-system maintenance, web-page creation, and processing forms sub-
mitted from web pages.

12.3.1 Business::UPS—the ups_shipping_price script

Now it’s time to take our freshly installed new module out for a spin! Listing 12.3 shows
a test program that I cobbled together in a few minutes after glancing at the module’s
manual page. It’s called ups_shipping_price, and it compares the prices of two

install command can be issued here
USING MODULES 403

different service options for shipping a package from the origin Zip Code to the des-
tination Zip Code in the USA.

Here’s a sample run, checking on the cost options for shipping a case of CDs and
autographed sweatsuits from Diggity Dog’s crib in Van Nuys, CA, to a fervent female
fan in Wilmington, DE:

$ ups_shipping_price -origin=91401 -dest=19808 -pounds=42
2DAL service to ship 42 pounds from 91401 to 19808 is $12.65
 1DM service to ship 42 pounds from 91401 to 19808 is $172.19

The script is fairly straightforward (see listing 12.3), apart from a few tricks that
we’ll discuss.

 1 #! /usr/bin/perl -s -wl
 2
 3 use strict; # needed because of nested loops
 4
 5 use Business::UPS;
 6
 7 our ($origin, $dest, $pounds); # switch variables
 8
 9 my $Usage="Usage: $0 -origin=zip -dest=zip -pounds=weight";
10
11 # Check for required switches
12 defined $origin and defined $dest and defined $pounds or
13 warn "$Usage\n" and exit 1;
14
15 my $pricey='1DM'; # 1DM delivers on morning of next day
16 my $cheap='2DAL'; # 2DAL delivers on second day
17
18 foreach my $service ($cheap, $pricey) {
19 my ($price, undef, $error)=
20 getUPS($service, $origin, $dest, $pounds);
21
22 if ($error) {
23 warn "$0: ERROR: $error\n";
24 }
25 else {
26 my $service2=$service;
27 length $service2 < 4 and $service2=" $service"; # align
28
29 print "$service2 service to ship $pounds pounds",
30 " from $origin to $dest is \$$price";
31 }
32 }

Listing 12.3 The ups_shipping_price script
404 CHAPTER 12 MODULES AND THE CPAN

The variables $cheap and $pricey, which represent different shipping services, are
declared on Lines 15–16, because they already need to be in scope by the time they’re
used in foreach’s list of values on Line 18.

As you can see, getUPS takes a list of four values (Line 20) and returns a list of
three values, of which $price and $error are of interest. Note the technique of
assigning the list returned by getUPS directly to the my operator’s list of variable
names (introduced in table 11.2). This saves the programmer the burden of typing
that list again in a separate assignment, after the declaration statement.

If all goes well, Lines 29–30 print the results, after the shorter “service-type” string
(in $pricey) is brought into alignment with the longer one on Line 27 (by prepend-
ing a space).

Next we’ll look at a script that will surely be of interest to web administrators.

12.3.2 LWP::Simple—the check_links script

In some cities, enterprising individuals wash the windshields of motorists who are
waiting for traffic lights to change, and then ask for tips. Those managing their own
web sites may receive attention of a similar kind from Internet entrepreneurs, who
patrol the Internet for web pages having bad links, report them to the responsible web
masters, and then ask for compensation.

After I got a few dozen such emails alerting me to a mistyped link on one of my
web sites, I decided to start washing my own windows—I mean policing my own web-
pages—more carefully. An easy way to do this is by using tools provided by the
CPAN’s LWP::Simple, which provides a simple interface to Perl’s Library for Web
Programming.12

Specifically, its lwp-request command (discussed in chapter 3) can be used to
easily download web pages and extract their links, and its head function—which
returns descriptive data for web pages (type, size, server, etc.)—can be used to differ-
entiate active links from dead ones.

Before we examine the code, look at these sample runs of the script, which were
conducted at different levels of verbosity for the same web site:13

$ check_links ukeworld.com
BAD: 'https://www.ukeworld.com/ppbutton2.gif', in 'ukeworld.com'

$ CL_VERBOSE=1 check_links ukeworld.com
Got 101 links for ukeworld.com
85 links are unique
BAD: 'https://www.ukeworld.com/ppbutton2.gif', in 'ukeworld.com'

12 More precisely, it provides a procedural interface to the resources of LWP, which itself is based on object-
oriented programming techniques (see section 12.3.6).

13 For the lower verbosity levels, the script even spins a nifty propeller on the screen to indicate that it’s
working (Lines 53-54, listing 12.4). That’s done by indexing into an explicit list of strings using the
remainder of an integer division provided by Perl’s modulus operator (%; see man perlop).
USING MODULES 405

$ CL_VERBOSE=2 check_links ukeworld.com
Got 101 links for ukeworld.com
85 links are unique
Checking 'http://ukeworld.com/?D=A': OKAY
Checking 'http://ukeworld.com/?M=A': OKAY
...
BAD: 'https://www.ukeworld.com/ppbutton2.gif', in 'ukeworld.com'

$ CL_VERBOSE=3 check_links ukeworld.com # Output edited to fit
Got 101 links for ukeworld.com
85 links are unique
Checking 'http://ukeworld.com/?D=A': OKAY
 Type: text/html Size: N/A Server: Apache/1.3.27 ...
Checking 'http://ukeworld.com/?M=A': OKAY
 Type: text/html Size: N/A Server: Apache/1.3.27 ...
...
BAD: 'https://www.ukeworld.com/ppbutton2.gif', in 'ukeworld.com'

Verbosity level 3 dumps out the data obtained by the head function from the web
server, if any; otherwise it reports the link being tested as “BAD”.

Now look at the script, which is presented in listing 12.4.
It begins by importing LWP::Simple, which exports the head function automat-

ically. It then checks for the variable CL_VERBOSE in the environment; if it has a num-
ber in it, that number is copied to the file-scoped variable $VERBOSE, so the requested
verbosity level can conveniently be determined from anywhere within the program.
On Line 25, the lwp-request command obtains the list of links found within the
current page, and then if tests the True/False value of the array @links to determine
whether links were found. Many pages contain multiple links to other pages, so Line
32 filters the duplicates out of @links (we’ll come back to this).

 1 #! /usr/local/bin/perl -wl
 2
 3 use strict;
 4 use LWP::Simple;
 5
 6 my $VERBOSE=0; # file scope
 7 defined $ENV{CL_VERBOSE} and $ENV{CL_VERBOSE} =~ /^\d+$/ and
 8 $VERBOSE=$ENV{CL_VERBOSE}; # if numeric value, assign
 9
10 { # MAIN program
11 foreach my $url (@ARGV) { check_link($url) };
12 }
13
14 END {
15 # If propeller was last thing written to screen,
16 # will need \n before shell's upcoming prompt to STDERR
17 print STDERR "";
18 }

Listing 12.4 The check_links script
406 CHAPTER 12 MODULES AND THE CPAN

19
20 sub check_link {
21 my ($url, @links, $link, @h, $counter, $output);
22 $url=shift;
23
24 # use lwp-request command, based on LWP, to get links
25 if(@links=`lwp-request -o links '$url'`) {
26 $VERBOSE and
27 print "\nGot ", scalar @links, " links for $url";
28 }
29 else {
30 warn "$!\n"; # show OS error message
31 }
32 @links=uniquify (@links); # eliminate duplicate links
33 $VERBOSE and @links and # if link count > 0, show count
34 print scalar @links, " links are unique";
35
36 foreach $link (@links) { # test each link
37 $link =~ /^(A|LINK)\s+mailto:/i and next; # skip mailto
38 $link =~ s/^\w+\s+//; # strip A/IMG in "A/IMG http://"
39 $link =~ s/\s+//g; # eliminate any remaining WS in link
40
41 $VERBOSE > 1 and printf "\nChecking '$link'";
42 if (@h=head $link) { # run LWP's head() on link
43 if ($VERBOSE > 1) {
44 print ": OKAY";
45 $VERBOSE > 2 and
46 printf " Type: %s\tSize: %s\tServer: %s\n",
47 $h[0], ($h[1] or "N/A"), $h[4];
48 }
49 else {
50 # Show "propeller" as activity indicator;
51 # printf prints backspace, then one of - \ | /
52 # to STDERR, so stays on screen if output redirected
53 printf STDERR "\b%s", # %s prints next arg as string
54 ('-', '\\', '|', '/')[$counter++ % 4];
55 }
56 }
57 else { # report links for which "head" request fails
58 $output = "\nBAD: '$link', in '$url'";
59 $output =~ s|http://||g; # save space by deleting http:
60 }
61 }
62 }

Then, head is called on each link in turn (Line 42). For those that yield results, a pro-
peller is spun, or the word “OKAY” is printed, or a detailed report on the link is
printed—according to the verbosity level. At levels above 2, head’s output is dis-
played after being formatted by printf (Lines 46–47). A logical or is used to substi-
tute “N/A” for a False value in $h[1] to provide printf ’s second data argument,
because with some web sites, a null string gets stored in that array element.
USING MODULES 407

63
64 sub uniquify { # sort and "uniquify" the arguments
65 my %unique;
66 foreach (@_) { $unique{$_}++; };
67 return sort keys %unique;
68 }

The subroutine used for unique-ification (Lines 64–68) uses the technique intro-
duced in section 9.2.6 of registering the items of interest as keys in a hash, and then
extracting the (necessarily unique) keys. The code is encapsulated in a subroutine to
facilitate later reuse.

Next, we’ll revisit an advanced module I wrote, which endows Perl with a new and
improved control structure adapted from the Shell.

12.3.3 Shell::POSIX::Select—the menu_ls script

Apart from its many other applications demonstrated in section 10.7, the menu-
oriented user interface provided by Shell::POSIX::Select can help you com-
pose Unix commands, as shown in figure 12.4. The menu_ls program presents you
with a series of choices for the ls command’s behavior, translates them into their
corresponding command options, and then runs the constructed command.

Figure 12.4 Sample run of the menu_ls script
408 CHAPTER 12 MODULES AND THE CPAN

NOTE This implementation of select lets you return to previous menus to
modify earlier selections.

In the session shown, the user initially selected the “regular” listing style from the
Style Menu, but had second thoughts about that choice after the File Menu had
already appeared. Responding to the prompt with <^D> took her back to the previ-
ous menu, where she revised her choice to “long”. Then, after choosing “all files”
from the File Menu, she was shown the command and given a chance to approve it
before running it.

Unlike the examples of the select loop shown in section 10.7, this script (see
listing 12.5) ignores the loop variable and focuses on the associated $Reply vari-
able instead. As it does in the Shell’s version of select, that variable contains the
user’s actual numerical response, which this program uses to index into the array of
options (see Lines 17 and 22).

For example, a choice for the “long” listing style gets mapped into -l by way of
the common index shared by the paired arrays @formats and @fmt_opts (see
Lines 6–7). The same holds true for the choice of “all files” and the option of -a,
which are related through the @types and @type_opt arrays. (Because the $Reply
value reflects the numerical choices of the user from the menu, a 1 needs to be sub-
tracted before using it as an index into the 0-based option arrays.)

In addition to $Reply, the $Heading, $Prompt, and $Eof variables are also
imported on Line 2, to allow for headings and prompts to be associated with menus,
and for easy detection of <^D> after a loop has been exited, respectively.14

Here’s how that works. When the FORMAT loop is entered on Line 16, the module
stores the settings of $Heading and $Prompt that are currently in effect (from Lines
14 and 15), and arranges for them to be shown when the loop is reentered, as hap-
pened in the sample session when the user exited the TYPE loop via <^D>.

 1 #! /usr/bin/perl -wl
 2 use Shell::POSIX::Select qw($Reply $Heading $Prompt $Eof);
 3
 4 # Would be more natural to associate choices with options via a
 5 # hash, but this approach better demonstrates $Reply variable
 6 @formats = ('regular', 'long');
 7 @fmt_opt = ('', '-l');
 8
 9 @types = ('only non-hidden', 'all files');
10 @typ_opt = ('', '-a');

11
12 print "\n COMMAND COMPOSER FOR: ls\n";
13
14 $Heading="\n**** Style Menu ****";

14 These features don’t exist in Shell versions of select, but I’ve always felt they should.

Listing 12.5 The menu_ls script
USING MODULES 409

15 $Prompt= 'Choose listing style:';
16 FORMAT: select (@formats) {
17 $user_format=$fmt_opt[$Reply - 1];
18
19 $Heading="\n**** File Menu ****";
20 $Prompt="Choose files to list:";
21 TYPE: select (@types) { # <^D> restarts FORMAT loop
22 $user_type=$typ_opt[$Reply - 1];
23 last FORMAT; # leave loops once final choice obtained
24 }
25 $Eof and next; # handle <^D> to TYPE loop
26 }
27 $Eof and exit; # handle <^D> to FORMAT loop
28
29 # Now construct user's command
30 $command="ls $user_format $user_type";
31
32 # Show command, for educational purposes
33 printf "Press <ENTER> to execute \"$command\" ";
34 # wait for input, then discard
35 defined <STDIN> or print "\n" and exit;
36
37 system $command ; # run the command

The purpose of the Eof variable is to resolve uncertainties about why the loop vari-
able is empty in the statement immediately following the loop (Line 25). The two
possibilities are that the loop was never entered (e.g., due to its list being empty), or
that it was exited via <^D>. Testing the $Eof variable for True detects the latter case,
allowing the script to respond to the user’s <^D> by reverting to the prior Style Menu
(as mentioned above).

On the other hand, we don’t want to hold the user hostage, so a <^D> submitted
to the FORMAT loop is treated by default as a request to exit the script (Line 27), as
is a <^D> response to the following “Press <ENTER>” prompt (Lines 33–35).
Finally, if Line 37 is reached, the assembled command is submitted to the OS for
execution by system.

Although this prototype menu_ls script handles only two of ls’ many options,
it nicely demonstrates your ability to write Shell-eclipsing menu-driven programs using
the Shell::POSIX::Select module (see chapter 10 for additional examples).

We’ll look next at a system-administration application of a module that lets Perl
programs emulate aspects of the Unix find command.
410 CHAPTER 12 MODULES AND THE CPAN

12.3.4 File::Find—the check_symlinks script

A filing system is supposed to provide for reliable storage and retrieval of information.
Because problems with file retrieval can have serious consequences, it’s important to
monitor computer file systems and take corrective action—for example, by replacing
a disk drive that’s going bad—as soon as problems start to appear.

One potentially vexing problem15 on Unix systems is that of broken symbolic
links—ones that formerly pointed to stored data but no longer do. To help in iden-
tifying them, the script called check_symlinks scans specified directories for sym-
bolic links whose target files don’t exist, and reports them in the ls -l style of
symlink J target.

Here’s a sample run that searches two directories on a Linux system:

check_symlinks /etc /lib # Running with root privileges

REPORTING BROKEN SYMLINKS UNDER: /etc
 /etc/X11/xdm/xdm-pid -> /var/run/xdm.pid

REPORTING BROKEN SYMLINKS UNDER: /lib
 /lib/modules/2.4.21/build -> /local/tmp/src/linux-2.4.21

 /lib/modules/2.4.19/build -> /usr/src/linux-2.4.19
 /lib/modules/2.4.19-4GB/build -> /usr/src/linux-2.4.19.SuSE

FILES BROKEN/EXAMINED: 4/6,797
TIME: 0:04 HR:MN
START: Sat Jan 28 20:35:48 2006 END: Sat Jan 28 20:39:18 2006

Although this run took only a few minutes, on a disk farm the script could run
for days at a time, which is why it was designed to produce such detailed reports
of its run times.

check_symlinks uses the find function from the standard File::Find mod-
ule for its directory-searching and file-finding services, to avoid re-inventing that
wheel. For each file that it finds under a specified directory, find calls a user-defined
subroutine with $_ set to the current file’s simple name (e.g., motd) and the module’s
variable $File::Find::name set to its full name (e.g., /etc/motd). Then the sub-
routine is free to process that file as needed.

You can see the script in listing 12.6. As shown on Line 24, find needs to be sup-
plied the address of the user’s file-handling subroutine, which is obtained by prepend-
ing the special \& operator to check_slinks’s name.16 Line 38 in that subroutine
checks whether the current file is a symbolic link, and if so, it gets the name of its target

15 I think it’s partly a longing for the data that may never be seen again, but mostly a feeling of being be-
trayed by a trusted ally, that bothers me so about such losses. But I suppose the betrayal angle is just
wishful thinking, because most broken symlinks seem to be caused by user error (e.g., rm-ing the target
file).

16 The address is needed because the user’s subroutine might not be readily accessible by name from the
File::Find namespace, but it can definitely be invoked by address.
USING MODULES 411

(Line 40) using the built-in readlink function. If the target file doesn’t exist, the full
pathname of the symlink and its target are printed to report the problem (Line 48).

It’s important to recognize that check_symlinks, like all scripts using find,
has to work within a special constraint. Specifically, because it’s find that calls
check_slinks—rather than the user’s script itself—check_slinks can’t use
return to send any information back to the script.

This leaves the programmer with two options for working with the information
that’s only available within check_slinks. He must either deal with it (e.g., print
it out) once and for all in that subroutine, or else store it in a place where it will still
be accessible (e.g., in a widely scoped variable) after find returns control to the
user’s program.

 1 #! /usr/bin/perl -wl
 2
 3 use strict;
 4 use File::Find;
 5
 6 { # Special scope for Main + check_slinks
 7
 8 my $Bad=0; # file scope; used in sub check_slinks()
 9 my $Total=0; # ditto
10
11 my $Usage="Usage: $0 dir1 [dir2 ...]\n";
12 @ARGV or die "$Usage";
13
14 my $start_time=time; # for run-time calculation at end
15
16 foreach my $startdir(@ARGV){
17 -d $startdir and -r _ and -x _ or
18 warn "$0: Bad directory argument: $startdir\n" and
19 next;
20
21 # find broken symlinks in or under $startdir
22
23 print "REPORTING BROKEN SYMLINKS UNDER: \E$startdir";
24 find \&check_slinks, $startdir; # call the function
25 print ""; # blank line
26 }
27
28 # Print final statistics, including program's run time
29 print "FILES BROKEN/EXAMINED: ",
30 commafy ($Bad), "/", commafy ($Total);
31 show_times ($start_time);
32
33 sub check_slinks {
34 my $isbad=0; # whether current symlink is bad
35 my $target; # where current symlink points
36 my $name=$File::Find::name; # make a shorter name

Listing 12.6 The check_symlinks script
412 CHAPTER 12 MODULES AND THE CPAN

37
38 if (-l) { # if file (in $_) is a sym-link,
39 # find what it's pointing to
40 $target=readlink $_;
41 if (! defined $target or $target eq "") {
42 warn "$0: check_slinks(): bad readlink value",
43 " on \"$name\": $!\n";
44 $isbad=1;
45 }
46 elsif (! -e $target) {
47 # target missing; broken link, OR NFS down!
48 print "\t$name -> $target";
49 $isbad=1;
50 }
51 }
52 # $Bad and $Total are still in scope
53 $isbad and $Bad++; # count another bad symlink
54 $Total++; # count another file examined
55 return; # goes back to "find", to be called for next file
56 }
57
58 } # end of special scope for Main + check_slinks
59
60 sub commafy { # insert commas into number strings
61 my $number=shift;
62
63 defined $number or die "$0: commafy(): no argument!";
64 while ($number =~ s/^(-?\d+)(\d{3})/$1,$2/) { ; }
65 return $number;
66 }
67

I chose to print the details of each bad symlink from within check_slinks, because
I knew the script wouldn’t need access to them later. However, I also needed to keep
counts of the total number of files examined and those verified as bad, which would
be needed later. I handled this by arranging for the scopes of $Bad and $Total to
run from Lines 8/9 to Line 58—to include both Main and the check_slinks
subroutine—and by incrementing those variables as needed within check_slinks.
(Capitalizing the initial letters of those variable names helps me remember that
they’re widely-scoped.)

These measures allow the print statement to access those variables on Line 30.
To enhance the readability of the printed ratio of bad files ($Bad) to all files examined
($Total), the commafy subroutine is used to insert commas at appropriate places
within those numbers.

The while loop on Line 64 of commafy repeats the substitution operator—
which does all the work of the loop—until it finds no more three-digit sequences to
commafy, which is why no statements are needed in the code block.
USING MODULES 413

68 sub show_times {
69 # argument is program's start time
70 my $stime=shift or
71 die "$0: show_times(): bad argument";
72 my $etime=time; # current (ending) time
73 my $dtime=$etime - $stime; # elapsed time
74
75 printf "\UTime:%2d:%02d HR:MN ",
76 int (($dtime / 3600) + .5),
77 (($dtime % 3600) / 60) + .5;
78 print "\nSTART: ", scalar localtime $stime,
79 " END: ", scalar localtime $etime;
80 }

The show_times subroutine prints the program’s start and end times and its run
time, which involves converting some large integers returned by the built-in time
function (Line 72) into formatted date strings (Lines 78–79) and calculating the
elapsed hours and minutes represented by the difference of those integers (Lines 73
and 76–77).

Because the commafy and show_times subroutines are not only difficult to write
but also likely to be needed again in other scripts, they’re excellent candidates for
inclusion with other valued tools in a programmer’s personal utilities module (e.
g., Diggitys::Utilities).

Now we’ll take a foray into the equally timely topic of web programming, using
Perl’s stalwart CGI module to do all the heavy lifting.

12.3.5 CGI—the survey.cgi script

In the 1990s, Perl’s strengths in the areas of text parsing, pattern matching, networking,
and OS independence led to it being embraced as the language of choice for web appli-
cations. Perl became especially popular for Common Gateway Interface (CGI)
programming, in which a program on a server machine receives a request from a
browser, handles that request, and then sends the appropriate response to the browser
for display.

For example, the user might request a graph of last week’s stock prices for Acme
Corp. by filling out an on-screen form and then clicking the SUBMIT button. The
CGI program on the web server would then

1 Retrieve the five daily stock prices from the stock-quote server;

2 Plot those prices in a pretty graph;

3 Construct a web page that contains that graph, along with a new form for the
user’s next request;

4 Send the constructed page back to the browser for display.
414 CHAPTER 12 MODULES AND THE CPAN

Further details on the inner workings of the CGI protocol are beyond the scope of this
book, but to give you an idea of how CGI applications can be written, we’ll look at a
simple example involving a web-based survey.

Figure 12.5 shows the web form that is produced by the survey.cgi script after
it already has been filled out by the user.

When the user clicks the SUBMIT button shown in figure 12.5, a page confirming
his answers to the survey questions appears next (see figure 12.6).

Figure 12.5

Initial screen of the survey.cgi script

Figure 12.6

Confirmation screen from the

survey.cgi script
USING MODULES 415

Listing 12.7 shows the script that generated the previous web pages. We’ll begin
our examination of it with some general comments, and then we’ll concentrate on
how the program works.

General comments on survey.cgi

The first thing to notice about this script is that the w and l options we’ve routinely
used throughout this book are missing from its shebang line. Although it’s generally
unwise to suppress warnings, doing so is proper for CGI programs running in produc-
tion mode, because warnings would disrupt the functioning of the web server.

What about the missing l option, which would automatically append newlines to
the output of print statements? Although it could have been used, it would have
been of little benefit. That’s because there are only two print statements in this
entire (70+ line) script, but dozens of places were newlines need to be inserted (more
on this later).
Another unusual feature of this script is that parentheses have been used around the
argument lists of the CGI functions. This isn’t required, but I find that they increase a
script’s readability when there are so many function having short names. (For exam-
ple, Line 24 might look like a typo without its parentheses.)

Next, we’ll consider some other aspects of the way functions are used in this script.

Using CGI functions in survey.cgi

A notable feature of this script is that it has almost one function call per line! (To help
you spot them, the functions provided by the CGI module are shown in bold type in
listing 12.7.) Although that characteristic would be highly unusual in general pro-
gramming, this is quite typical of a CGI script. That’s because its primary purpose is
to generate the HTML code for the web pages it needs to display, and with the CGI
module, each element of HTML code is obtained by calling a different function.

An advantage of this approach is that you’re only responsible for calling the func-
tions correctly (which comes easily to programmers), whereas the module has the
responsibility of generating the (possible gnarly) HTML code properly.

If you’re familiar with the markup elements of HTML coding, you’ll be happy
to learn that the CGI functions have identical names and are used in an intuitive
manner. For example, the code for rendering ADVICE as a level-one heading is
generated by executing h1 ('ADVICE'), which returns <h1>ADVICE</h1>.

The script requests a standard set of functions to be imported on Line 5, using the
“:standard” argument (called a tag) to the use CGI directive. This set includes
header and start_html, which generate the initial portions of the HTML code
(Lines 14–15); b (bold) and i (italic), which cause style changes in the font (see
Line 23); and p (paragraph, Line 24) which generates a blank line.

The use CGI::Carp statement on Line 8 imports the CGI module’s counter-
part to the standard Carp module (covered in section 12.1.2), which is instructed
416 CHAPTER 12 MODULES AND THE CPAN

(via fatalsToBrowser) to show fatal errors on the browser’s screen, which facili-
tates debugging.

The radio_group, check_box, and popup_menu functions (Lines 35, 41, 47)
generate the HTML that displays the various groups of buttons and menu selections
shown in figure 12.5.

 1 #! /usr/bin/perl
 2 # survey.cgi: Demonstrates use of HTML forms with CGI
 3
 4 use strict;
 5 use CGI qw(:standard); # request CGI.pm components
 6
 7 # Carp shows errors in browser window, to facilitate debugging
 8 use CGI::Carp qw(fatalsToBrowser);
 9
10 # Store HTML code in variable $form; gets printed on screen, if
11 # run normally, or gets sent to browser, in CGI mode
12

13 if (! param()) { # if no parameters, we're displaying form
14 my $form=header(); # prepare HTTP header for server
15 $form.=start_html(-title=>'CGI Module Demo',
16 -BGCOLOR=>'ivory');
17 $form.=h1('National Junk Food Survey');
18
19 # action='' means this script will handle the submitted form
20 $form.=startform(-method=>'GET', -action=>'');
21 $form.=hr() . "\n";
22
23 $form.=b('Please enter your first initial and surname:');
24 $form.=p();
25 $form.='Initial';
26 $form.=textfield(-name=>'init', -size=>1, -maxlength=>1);
27 $form.="\n";
28
29 $form.='Surname';
30 $form.=textfield(-name=>'name', -size=>12, -maxlength=>30);
31 $form.="\n" . hr() . "\n";
32
33 $form.=b('Please indicate your age group:');
34 $form.=p();
35 $form.=radio_group(-name=>'age',
36 -Values=>['Under 25', '25-40', 'Older']);
37 $form.=hr() . "\n";
38
39 $form.=b('What are your favorite ice-cream flavors?');
40 $form.=p();
41 $form.=checkbox_group(-name=>'flavor',
42 -Values=>['Chocolate', 'Vanilla', 'Other']);
43 $form.=hr() . "\n";

Listing 12.7 The survey.cgi script
USING MODULES 417

44
45 $form.=b('How many pizzas do you have monthly?');
46 $form.="\n";
47 $form.=popup_menu(-name=>'pizzas', -size=>2,
48 -Values=>['no pizzas','one to three','four or more']);
49 $form.=hr() . "\n";
50
51 $form.=submit(-name=>'button', -value=>'SUBMIT');
52 $form.="\n";
53 $form.=endform();
54 $form.=end_html();
55
56 print $form; # send HTML document to browser now
57 }
58
59 else { # If parameters present, we're handling submitted form
60
61 my $response=header();
62 $response.=start_html(-title=>'Survey Response',
63 -BGCOLOR=>'snow');
64 $response.=h1('National Junk Food Survey');
65 $response.=p();
66 $response.="You supplied these details:\n";
67 $response.=Dump();
68 $response.=p();
69 $response.=h2(i('Thank you for participating!'));
70 $response.=end_html();
71 # Now send HTML string describing web page to browser
72 print $response;
73 }

Now it’s time to talk about the script’s two modes of operation.

Understanding the operational modes of survey.cgi

This script has two operational modes—“form display” and “form processing”—
which are respectively associated with the “then” and else branches of the if con-
struct that begins on Line 13. How does the script know which mode it’s in? By check-
ing its parameters, which are like command-line arguments, but delivered through
other channels. The condition tested by the mode-selecting if is that parameters—
such as the user’s favorite ice-cream flavor—weren’t supplied to the script.

In “form display” mode, the script displays the form and awaits its submission.
When the user clicks SUBMIT after filling out the form, parameters are provided,
causing that invocation of the script to be run in “form processing” mode. This causes
the else branch that begins on Line 59 to be executed and the confirmation page
shown in figure 12.6 to be generated.

The Dump function on Line 67 creates the bulleted list of name/value pairs for dis-
playing the parameters in the confirmation page (see figure 12.6). Although the
418 CHAPTER 12 MODULES AND THE CPAN

inclusion of “button” and “SUBMIT” may seem strange from the point of view of the
user, these extra details can be helpful to programmers during debugging, and they can
be easily removed later.

NOTE A dual-mode CGI script knows what mode it’s in by checking its
parameters.

Next, you’ll see how the script generates its web pages.

Constructing the HTML documents

The first statement in each of the “then” and else branches (Lines 14, 61) initializes
a private variable with the header information that the HTTP server needs to find at
the beginning of the document. But rather than sending output from each function
to the server as it’s generated, the script incrementally builds up its eventual output by
appending (with .=) each additional piece to that same private variable—which is
called $form in one mode and $response in the other.17

As mentioned earlier, the script inserts lots of newlines into those output variables
(e.g., see Line 31). These are optional, as far as the browser and server are concerned,
and included solely for the benefit of the human reader (which will be you, when we
get to listing 12.8).

Next, we’ll examine the script’s output, which can be viewed in two forms: as raw
HTML code or as a display in a browser window.

Output from survey.cgi

When survey.cgi runs in its intended environment, its HTML output is interpreted
and displayed by a web browser for the user. But during the early stages of program
development, its author would run this CGI-based script like a conventional Perl script
and examine its output for evidence of problems. For example, the following invoca-
tion produces the HTML that displays the National Junk Food Survey form when it’s
sent to a web browser—but in this case, the HTML appears on the programmer’s screen:

$ survey.cgi
...
<h1>National Junk Food Survey</h1>
...

The script’s complete output is shown in listing 12.8, with the benefit of some light
editing and manual reformatting to enhance its readability. To assist you in relating
this listing to the display created by its HTML code as shown in figure 12.5, the text
marked for bold presentation is shown in bold, and the window title, field labels, but-
ton labels, and menu choices are underlined.

17 An alternative would be to print each of those pieces to the output one at a time, but it’s better to
keep the entire HTML document together so it can be sent to a printer, submitted to an HTML “beau-
tifier,” searched with grep, etc.
USING MODULES 419

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US">

 <head>
 <title>CGI Module Demo</title>
 <meta http-equiv="Content-Type" content="text/html" />
 </head>
 <body bgcolor="ivory">
 <h1>
 National Junk Food Survey
 </h1>

 <form method="get" action=""
 enctype="application/x-www-form-urlencoded">
 <hr />

 Please enter your first initial and surname:

 <p />
 Initial
 <input type="text" name="init" size="1" maxlength="1" />
 Surname
 <input type="text" name="name" size="12" maxlength="30" />
 <hr />

 Please indicate your age group:

 <p />
 <label>
 <input type="radio" name="age" value="
 Under 25" checked="checked" />Under 25
 </label>

 <label>
 <input type="radio" name="age" value="25-40" />25-40
 </label>

 <label>
 <input type="radio" name="age" value="Older" />Older
 </label>

 <hr />

 What are your favorite ice-cream flavors?

 <p />

Listing 12.8 Output from running survey.cgi in form-displaying mode
420 CHAPTER 12 MODULES AND THE CPAN

 <label>
 <input type="checkbox" name="flavor" value="Chocolate" />
 Chocolate
 </label>

 <label>
 <input type="checkbox" name="flavor" value="Vanilla" />
 Vanilla
 </label>

 <label>
 <input type="checkbox" name="flavor" value="Other" />
 Other
 </label>
 <hr />

 How many pizzas do you have monthly?

 <select name="pizzas" size="2">
 <option value="no pizzas">no pizzas</option>
 <option value="one to three">one to three</option>
 <option value="four or more">four or more</option>
 </select><hr />
 <input type="submit" name="button" value="SUBMIT" />
 </form>
 </body>
</html>

As you’ve undoubtedly noticed by now, there are lots of functions with odd names to
keep straight when you’re using the CGI module. Never fear—help is on the way!

The CGI cheatsheets

Table 12.1 shows a summary of the CGI module’s most essential functions, in approxi-
mate order of use in a program—all CGI programs use header and start_html
first, and end_html last, with other CGI functions occurring between those end-
points. Likewise, table 12.2 shows the CGI module’s more specialized functions used
with Forms, with start_form at the beginning and end_form at the end. I’m con-
fident that you, like the students in our classes, will benefit from having these “cheat-
sheets” by your side when doing CGI programming.

TIP When you need to know the syntax of an HTML form element—such as a
scrolling list—you’ll find table 12.2 a more convenient resource than the
CGI man page.

USING MODULES 421

We’ll wrap up our coverage of modules with some recommendations for dealing with
the “other kind” of Perl modules.

12.3.6 Tips on using Object-Oriented modules

In this book, you’ve learned to use Perl as a procedural programming language, because
its similarities to the Shell and Unix cultural traditions are most apparent when it’s
approached from this angle. However, Perl can also be used as an Object-Oriented
(OO) language, which may offer advantages for certain kinds of programming
projects.18 For this reason, its modules come in three flavors: procedural modules, OO
modules, and modules that support both programming styles (which are rare).

How can you tell the different kinds of modules apart? It’s easy, because a program
that uses an OO module first calls the function new to load a variable with its output,
and then it prepends that variable and an arrow (->) to the names of all of the mod-
ule’s subroutines that it calls. This syntax is distinctive and easy to spot in the mod-
ule’s documentation.

By way of illustration, let’s consider some examples adapted from the documenta-
tion for the CGI module, which is one that supports both the OO and the procedural

Table 12.1 Essential functions of the CGI module

Function syntax Function output

header('type') HTTP header, for specified document type, or
'text/html' by default

start_html(-title=>'Title',
-BGCOLOR=>'color')

HTML header and <body> tag, along with page’s title
and background color

pre('stuff') stuff, with browser reformatting of it disabled

hN ('Heading') Heading formatted for level N (1 highest, 6 lowest)

comment('text') text as an HTML comment

em('word') word rendered with emphasis (usually italics)

b('word') word rendered in bold

p() hr() br() Blank line; horizontal rule; start of a new line

ul(li('item1','item2')) Unordered (bullet) list, with two items; same format
for ordered (numbered) list, but use ol()

a({-href=>'URL'},'text') text as a link to URL

img({-src=>'URL',
-align=>'position'})

Image specified by URL with an optional position
specification (left, right for image itself; top,
middle, bottom for image's caption text)

end_html() HTML ending header, of </body></html>

18 See Object Oriented Perl by Damian Conway, (Manning, 2000).
422 CHAPTER 12 MODULES AND THE CPAN

programming styles. The following statement calls some CGI functions in the proce-
dural manner, with which you’re already familiar:

print header, # generate the HTTP header
 start_html 'hello world', # generate the initial HTML tags
 h1 'hello world', # generate a level 1 heading
 end_html; # generate the ending HTML tags

Here’s the same example rewritten in the OO style, with differences highlighted.
Notice that after first calling new, it uses the arrow-based method calls to access the
subroutines in place of the procedural approach’s function calls:

$q=new CGI; # or $q=CGI::new, or $q=CGI->new
print $q->header,
 $q->start_html 'hello world',

 $q->h1 'hello world',
 $q->end_html;

Although these two code snippets do the same job—printing the results of calling a
series subroutines from the CGI module—they’re written very differently.

Table 12.2 Form-related functions of the CGI module

Function syntax Function output

start_form(-method=>'type',
-action=>'URL')

Start of Form, for parameter delivery type of POST
(default) or GET. If -action is omitted, the current
script processes the results.

textfield(-name=>'Name',
-default=>'text',
-size=>num,
-maxlength=>num)

Field for text input; scrolls horizontally if
-maxlength’s num exceeds -size’s num.

scrolling_list(-name=>'Name',
-default=>'starting_value',
-Values=>['v1', 'v2'],
-size=>num)

Scrolling list; same format for popup_menu,
radio_group, checkbox, and checkbox_group,
except -size is only for popup_menu.
Specify NONE for no starting_value.

param()

param('name')

All parameter names from QUERY_STRING.

Value of name's parameter only.

Dump() Formatted list of QUERY_STRING parameters and
values; in older CGI versions, use CGI::dump()
instead.

submit(-name=>'name',
-value=>'value')

Form SUBMIT button.

image_button(-name=>'Name',
-src=>'URL',
-align=>'position')

Image as Form SUBMIT button. X/Y coordinates of
click are available as the parameters Name.x,
Name.y.

reset() Form RESET button.

end_form() End of Form.
USING MODULES 423

For your convenience, I recommend that you use procedural modules when pos-
sible, because you’re better prepared by this book to understand how they work, and
they’ll also save you some typing. To achieve this goal, avoid modules that show only
the tell-tale OO syntax ($variable->sub_name) in their documentation.

But in cases where there’s an OO module that will do the job but no procedural
alternative, just comply with the syntax of the examples shown in the module’s docu-
mentation in writing your program.

12.4 SUMMARY

In this chapter, you learned how to increase the modularity and reusability of
program code, use the CPAN, and exploit freely-available modules to enhance
your productivity.

Storing code in subroutines (discussed in chapter 11) is a good first step in the
right direction, but it’s even better to package your subroutines in modules. Why?
Because modules not only allow code to be easily imported, but they also provide an
extra layer of insulation between the module’s variables and those in the user’s pro-
gram (thanks to the package mechanism). This gives your module’s variables an
additional line of defense against scoping problems, which goes beyond what can be
accomplished with variable declarations alone.

All it takes to create a module is to start with the Simple Module Template of list-
ing 12.1, replace the placeholders at its top with the appropriate module-specific
names, and insert the necessary subroutines at its bottom. You can then check your
new module’s resulting *.pm file for syntax errors and compiler warnings using the
perl –wc Module_name command, prior to the more extensive testing that requires
importing the module into a program. But first, you might need to adjust the
PERL5LIB variable to include the name of the directory in which the module resides,
to let Perl locate your module (see section 12.1.3). 19

Thousands of extremely useful, industrial-grade modules are available from the
CPAN, whose archives can be searched at the http://search.cpan.org web site. Once
you’ve determined the name of the module you want, you can use the CPAN-access
module to find it, download it (along with its prerequisites), test it, and install it—
automatically! And you don’t even need special “rootly” privileges to do this.

As a demonstration of code development based on CPAN modules, you saw freely
available modules used to estimate shipping charges (ups_shipping_price,
section 12.3.1), to check web pages for broken (hyper-)links (check_links, section
12.3.2), to help users construct appropriate invocations of Unix commands
(menu_ls, section 12.3.3), and to check Unix file systems for broken symbolic links
(check_symlinks, section 12.3.4).

19 For additional information on creating custom modules, see Writing Perl Modules for CPAN, by Sam
Tregar (Apress, 2002).
424 CHAPTER 12 MODULES AND THE CPAN

The mainstay of web programming with Perl is the CGI module, which can be
used both to generate the HTML code for a fill-in form and also to parse its data after
the web-surfer clicks SUBMIT (as shown in survey.cgi, section 12.3.5). This mod-
ule can also handle cookies, file uploads, frames, cascading style sheets, and more, as
you can learn from its documentation.

The CPAN is a remarkable asset to the Perl community, and the envy of our col-
leagues who program in other languages. Enjoy it!

TIP Thousands of extremely useful, industrial-grade modules are available from
the CPAN.

Directions for further study

The following resources provide additional information on the topics covered in
this chapter:

• man perlmod # how modules work

• man perlmodlib # how to write your own modules

• http://search.cpan.org/faq.html # help on CPAN searches

• man CPAN # the CPAN-access module

• man lwp-request # scripted interface to LWP*

• http://TeachMePerl.com/Select.html # Perl's "select" loop

• man File::Find # the file-finding module

• man CGI # the CGI module

• man Business::UPS # getUPS(), trackUPS()*

• man LWP::Simple # lwp-request and head()*

* You’ll probably need to install these modules before you can run the indicated man
command successfully.
SUMMARY 425

426

epilogue

As you’ve learned from this book, Perl is a great language that’s just as happy to let
you code quick and dirty one-liners on the fly as it is to provide the more sophisti-
cated tools you need to write more robust applications. Most compiled languages,
such as C, C++, Java, Ruby, and Python—or interpreted languages, like AWK and the
Unix shells—only support programming on one end of this continuum. Perl covers
the full spectrum.

This means you can whip off useful one-liners at lightning speed with the tech-
niques learned in part 1 of this book, or carefully construct larger enterprise-grade
applications like those shown in part 2—all with the same language.

What more could you ask for, than

• Perl’s elegance of expression
• Its unique combination of power and succinctness
• Its portability to a wide range of operating systems
• Its ability to run the same program on a wide range of operating systems
• Its extension of the Shell-programming mindset into the 21st century
• Its wealth of freely available code from the CPAN

• Its great user community
• Its worldwide network of local Perl Mongers groups
• Its periodic international grass-roots YAPC conferences

And, we mustn’t forget

• Its free price!

In closing, I hope you enjoyed learning Minimal Perl, and I wish you lots of increased
productivity and enjoyment while using it.

And now, by the power invested in me by the Chief JAPH, I’m honored to say:

Welcome to Perlistan!

Just remember to boil the water before drinking it, stay away from black-market
money changers, avoid the python jerky, and you’ll be fine!

A P P E N D I X A

Perl special variables
cheatsheet

$_

• The most recently read input record.1

• Used automatically by print and many other built-in functions.

$"

• The string inserted between the elements of a hash or array whose @-name
appears within double quotes (e.g., “@ARGV”).

• Set to a space by default.

$,

• The string inserted between the elements of a hash or array whose unquoted
%-name or @-name appears in print’s argument list (e.g., print @ARGV).

• The string that replaces (unquoted) commas that appear in print’s argument
list (e.g., print 'NAME:', 'rygel').

• Empty by default.

$0

• The name by which the script was invoked (e.g., “pgrep”); for a Perl com-
mand, shows “-e”.

1 Requires use of the -n or -p option, while (<>) { … }, or foreach (… ; <>; …) { … }.
427

$$

• The process-ID number of the Shell or Perl program.

$.

• The ordinal number of the most recently read input record.2

• In END{ }, provides the total number of records read.2

$/

• A string that defines the characters (the input record separator) that mark the
end of an input record.

• Automatically stripped by the -l option from the end of each input record read
by the –n or -p option.

• By default, set to an OS-specific character sequence (represented by “\n”).

• $/='-*-' means input records are terminated by -*-.

• $/="" is a special case; means input records are terminated by one or more
blank lines (paragraph mode).

• $/=undef is a special case; means each file is one input record (file mode).

• The input record separator can also be set via the -0digits option.

$\

• A string that defines the characters (the output record separator) that are
appended after print’s last argument by the -l option.

• By default, set to an OS-specific character sequence (represented by “\n”).

• $\='-*-' means output records are terminated by -*-.

$?

• Contains the OS-specific exit code for the OS-command most recently run
via system or command interpolation (e.g., `date`)

• On Unix systems, contains an exit code that looks to Perl like False on success
and True on failure.

$!

• Contains the OS-specific exit code (when used in numeric context) or error
message (in string context) for the last failed command run via system or
command interpolation (e.g., system 'who').

• Shouldn’t be accessed unless “$?” indicates command failure, because “$!” isn’t
reset by successful commands.

2 Requires use of the -n or -p option, while (<>) { … }, or foreach (… ; <>; …) { … }.
428 APPENDIX A PERL SPECIAL VARIABLES CHEATSHEET

$a, $b

• When they appear within sort’s code block or sub, these are the global vari-
ables that contain the next pair of items to be compared.

$^I

• The variable that controls in-place editing.
• Its contents define the file extension used on the backup copy of the edited file.

• Typically set through use of the –i.ext option.

ARGV

• The filehandle3 of the file that most recently provided input.4

$ARGV

• The name of the file that most recently provided input.4

@ARGV

• The array that contains the program’s command-line arguments.
• Contents are interpreted as filenames in programs that read input automatically.4

$#array

• The maximum index usable with @array (one less than the current number
of elements).

@F

• The array that contains the fields of the most recently read input record
(requires options -n or –p, and -a).

%ENV

• The hash that contains the program’s environment variables (on Unix, keys
are HOME, PATH, etc.).

3 ARGV is a filehandle rather than a special variable, but it’s included here with its relatives @ARGV and
$ARGV for your convenience.

4 Requires use of the -n or -p option, while (<>) { … }, or foreach (… ; <>; …) { … }.
APPENDIX A PERL SPECIAL VARIABLES CHEATSHEET 429

A P P E N D I X B

Guidelines for
parenthesizing code
In this book, we’ve discussed several situations that require the use of parentheses
around code. For easy reference, we provide here a complete summary of the cases
that come up most frequently in Minimal Perl.

To demonstrate the benefit of adding your own parentheses, the parentheses you
effectively get by default are shown in the comments adjoining the code samples.

You should use parentheses:

1 Around a function’s arguments, to exclude following elements from that argu-
ment list:
print sort (@F), '!'; # Default: print sort (@F, '!');

2 Around any multi-element argument list for our or chomp:
chomp ($X, $Y); # Default: chomp ($X), $Y;

our ($X, $Y); # Default: our ($X), $Y;

3 Anywhere the higher precedence of the logical and over or would otherwise
cause your intentions to be misinterpreted:
(X or Y) and warn; # Default: X or (Y and warn);

4 Around assignments involving the logical and or logical or:
$both =(-r X and –r Y); # Default: ($both=-r X) and –r Y;

$either=(-r X or –r Y); # Default: ($either=-r X) or –r Y;
430

5 Around comma-separated list elements appearing on the right side of an assign-
ment to a list variable:
@array=(X, Y); # Default: (@array=X), Y;

6 Around variables (or undefs) on the left hand side of an assignment operator, if
list context is desired:
(undef, $Y)=@ARGV; # Default: undef, ($Y=@ARGV);

($first_field)=@F; # List context desired

$field_count=@F; # List context NOT desired!

7 After names of user-defined subroutines—whether or not there’s an associated
list of arguments—unless the sub definition precedes the call in the program:
my_sub(); # Call user-defined subroutine
APPENDIX B GUIDELINES FOR PARENTHESIZING CODE 431

glossary

argument. When used in the context of a Unix command line, this term refers to one
of the “words” separated by unquoted whitespace characters that may appear after
the command’s name. For example, the following ls command has two argu-
ments—one is an option, and the other a filename:
ls –l /tmp

The first echo command that follows has only one argument, because quoted
strings aren’t split into their constituent words by the Shell as unquoted ones are.
The second command has only four arguments, because redirection requests such
as “> filename” are removed by the Shell before arguments are allocated:
echo 'This is one string' # one argument
echo Here are four words > save # four arguments

When used in the context of a Perl function or a user-defined subroutine, this
term refers to the words provided after its name. For example, the following
print function has two arguments (the comma separator isn’t counted):
print 'Crikey!' , 'What a little beauty!' ;

AWK vs. awk. AWK refers to the language itself, and awk to the interpreter program
that implements it. For the purposes of this book, the various flavors of AWK
(such as awk, nawk, and gawk) are generally considered equivalent and generically
referred to as AWK and awk. However, when it’s necessary to distinguish between
the flavors, their proper names are used.

AWKish. This made-up adjective expresses a resemblance to the AWK language,
culture, or Pattern/Action programming model, as in “Here’s an AWKish Perl
program.”

backslash. This is the slanted-line character that looks like it’s falling backward while
moving from left to right: \. See also slash.

Bell System. This term, short for Bell Telephone System, refers to the companies that
were the sole providers of telephony services in the United States until the mid-
1980s—including the Bell Labs, Western Electric, and various divisions of AT&T.
432

Camel book. Because it has a camel on its cover, this is the shorthand name used in
Perl circles for the book entitled Programming Perl, which serves as the printed ref-
erence manual for the Perl language.

classic UNIX utility. Sometimes we need to differentiate between the versions of
UNIX utilities that have historically been found on UNIX systems, and their more
modern POSIX-compliant counterparts that are provided on modern Unix sys-
tems. We identify the former utilities by the word “classic,” as in classic grep, and
the latter by “POSIX,” as in POSIX grep. We also discuss GNU versions of Unix
utilities, which provide POSIX-compliant features as well as additional “GNU
enhancements.” For added clarity, when referring to a GNU utility that has a dif-
ferent name than its classic counterpart, we use it, leading to distinctions such as
“classic awk” versus “gawk.”

For reference purposes, we define the classic utilities as those distributed with
AT&T’s UNIX System V Release 0, as documented in the UNIX System User’s Man-
ual, Release 5.0 published by Western Electric in June, 1982.1

Our reference point for POSIX utilities is the set provided in the directory
/usr/xpg4/bin of Solaris 10.2

The GNU utilities we refer to are those distributed with SuSE Linux version 10,
which are v2.5.1 for grep, egrep, and fgrep; v4.1.4 for sed; v3.1.4 for gawk;
v4.2.3 for find; and v3.00.16(1) for bash. See also UNIX, Unix, GNU, POSIX.

clobberation. This made-up noun describes what happens to a file or variable when
its former contents are destroyed by a programmer accidentally writing other data
over it. See also masking.

command. We distinguish between two kinds of commands. A Perl command is
formed by interactively typing perl and any desired arguments to the Shell. A
Unix command is similar, but uses a program other than perl (echo, grep, ls,
etc.):
$ perl –wl –e 'print "Hello world!";' # Perl command
...
$ grep 'Waldo' hiding_places # Unix command
...

See also script, argument.

1 I taught for Western Electric’s “UNIX University” at the time and made many marginal notes in my
well-worn personal copy of that manual—which is still on my bookshelf!

2 As discussed in the output of man –s 5 standards on Solaris 10, these are the X/Open Common
Applications Environment Portability Guide Issue 4 extensions to the relevant POSIX standards from
1990 and 1992.
433

construct. A programming construct is a framework of keywords and/or symbols
into which you place expressions and statements, in order to exert control over
how they’re executed. For example, the if/else construct tests an expression for
a True/False value and then executes the branch of code for the True or False
case, accordingly.

directive. This term is used to identify a built-in function whose effect is principally
confined to making something happen, rather than generating data. For example,
the Shell’s continue directive starts the next iteration of a loop, and Perl’s use
directive imports components from a module. In contrast, Perl’s localtime func-
tion returns the current date and time (data), so it isn’t a directive. See also function.

<ENTER>. This represents the key that a user presses to submit a command to the
Shell for execution. To avoid cluttering up displays of screen sessions, this keypress
is depicted only in special cases.

explicit list. This type of list is created by parenthesizing a series of values in an
appropriate context. It’s typically used for initializing a list variable or copying val-
ues from a list variable into scalars:
@ARGV=('/etc/passwd', '/etc/host');
($one, $two)=@F;

As in the first example, sometimes the parentheses don’t create a list context—they
just allow comma-separated items to be treated as a list within an existing one. See
also undef.

expression. An expression is an element of a program, or a combination of related ele-
ments, that has an associated value.

In the following example, 1 and 2 are simple expressions having the values 1 and
2, respectively (duh!). There is also a value (of 3) associated with the larger expres-
sion that associates those elements through the addition operator. Moreover, sqrt
counts as an expression too, yielding the square root (1.732) of its argument (3).
sqrt 1 + 2

See also statement.

False. A False value is one considered by Perl (or the Shell, according to context) to
indicate the untruthfulness of an assertion or the failure of an operation. Note that
the Perl values that are considered False (or True) are opposite to those of the Shell
(see section 2.4.2). See also True.

file scope. This scope, which runs from the point of declaration to the end of the file,
applies to a variable declared outside any curly braces. See also scope.

function. This term refers to a subroutine that’s built into the Perl language (e.g.,
print). In contrast, the Shell counterpart to a function (e.g., echo) is called a
command.
434

See operator for an explanation of the purposeful lack of differentiation
between the terms function and operator in this book. See also subroutine, opera-
tor, command.

GNU. GNU (see http://www.gnu.org) stands for Gnu’s Not UNIX (really!) and is the
brand name for the software produced by the Free Software Foundation, headed
by ace programmer Richard Stallman (see http://www.gnu.org/fsf). GNU provides
enhanced versions of most UNIX utilities, such as grep, which are distributed
with UNIX-like systems including Linux, Mac OS/X, and FreeBSD. Because of
their superiority, these utilities are often installed on UNIX systems as well. In this
book, we sometimes need to distinguish between the different flavors of the Unix
utilities using phrases such as GNU grep, POSIX grep, and the classic grep. See
also POSIX, classic UNIX utility.

grepper, grepping. A grepper is a utility that extracts and displays matching records
(usually lines) from a data source; examples are grep and its relatives fgrep and
egrep. Grepping refers to the act of using a program that acts as a grepper.

identifier. An identifier is a string of characters that names a component of a Perl pro-
gram, such as a variable, a subroutine, a built-in function, or a loop. A user-
defined identifier can be constructed from mixtures of letters, digits, and under-
scores, but it can’t begin with a digit, and variable names must include a variable-
type symbol ($, @, or %) before the identifier. See also variable.

input operator. The input operator, often typed as <STDIN>, causes Perl to read
input. If STDIN is omitted, the input operator is said to be empty, which causes
Perl to read input from the program’s filename argument(s) or, in their absence,
from STDIN. Some people refer to the empty input operator (<>) as the diamond
operator. See also STDIN.

JAPH, JAPHly. JAPH, which stands for “Just Another Perl Hacker,” is a humorous
title used by many Perl advocates in their email signature (.sig) files. JAPHly is
the adjectival form of JAPH; for example, “In JAPHly parlance, <> is called the dia-
mond operator.”

Larry. Larry is Larry Wall, the revered creator of the Perl language. For more about
him, see the “Essential terminology” section of “About this book.”

local variable. This type of variable is declared with the local declaration. It’s
used in Minimal Perl to cause certain built-in variables, principally ‘$,’ and ‘$"’
(see appendix A), to automatically revert back to their earlier values after leaving a
defined scope.

Main. Main, short for the Main program, refers to the central portion of a program.
In a program lacking BEGIN and END blocks, it consists of the parts that would
435

normally be positioned after the initial use statements but before the first
subroutine definition (or the end-of-file, whichever comes first). In a program hav-
ing those blocks, it refers to the lines between them. See also scoping.

masking. This term describes a situation in which the value of a variable associated
with an outer scope is rendered temporarily unavailable due to a new local decla-
ration of the same variable within the current scope. See also clobberation.

metacharacter. A metacharacter is a character that stands for something other than
itself. For example, in a regular expression, the ^ character stands for the beginning
of a line, rather than the ^ character itself.

my variable. This type of variable is declared with the my declaration, which makes it
private to a particular scope. See also our variable, private variable.

newline. This term refers to the OS-specific character sequence that marks the end
of a line, as discussed further in the “Essential terminology” section of “About
this book.”

operator, operand. Operators are symbols or keywords that request the computer to
perform particular operations. The subject of the operation is the argument (or
arguments) provided to the operator, called the operand(s). For example, the fol-
lowing expressions request the addition (+) of two numeric operands and a com-
parison of two string operands, respectively:
2 + 2
$user_id eq 'root'

Note that the Camel book uses the term operator to refer to some things that we’ll
call functions, such as my and our. Larry, being a linguist by training, has a good
reason for the terminology he’s using, but the operator/function distinction is gen-
erally unimportant for our purposes. See also function.

OS. The software that controls the low-level activities of a computer is its operating
system (UNIX, Linux, Win/XP, etc.), or OS for short.

our variable. This type of variable is declared with our and has scope from that
point up to the nearest enclosing curly brace or, if there isn’t one, to the end of the
file. It’s used in Minimal Perl for declaring optional switch variables, when use
strict isn’t in effect, or all switch variables, when use strict is in effect. See
also private variable.

panel. This is a region of a table that appears below the column headings and is set
off by horizontal lines. See also row.

pattern. This term refers to the sequence of literal and/or metacharacters that’s used
to describe character sequences that are acceptable as matches, such as
\bERROR\b. In cases where multiple matches are searched for simultaneously, as
436

in \bERROR \b|\bWARNING\b, each of the alternative parts of the regex qualifies
as a separate pattern. See also regex.

Perl, perl. The word Perl refers to the language itself, whereas perl refers to the spe-
cial interpreter program that’s needed to run programs written in the Perl language.

Perlistan, Perlistani. Perlistan is the fabled land of the Perl-speaking JAPHs, as dis-
cussed in the “Essential terminology” section “About this book” and section 1.1 of
chapter 1. Perlistani is the adjectival form, used mostly in referring to the residents
of Perlistan.

POSIX. POSIX, the Portable Operating System Interface definition, refers to a family
of standards that describe the expected behavior of UNIX-like systems, including
their utility programs (such as grep and awk). We refer on occasion to the POSIX
versions of certain Unix utilities, to compare their capabilities with the classic
UNIX versions and Perl. Note that the GNU versions of UNIX utilities have many
enhanced features enabled by default, called GNU extensions. You can run some of
these utilities in a POSIX-compliant mode by using the --posix option to disable
those extensions. See also GNU.

private variable. This type of variable is declared with the my declaration and has
scope from the point of declaration up to the nearest enclosing curly brace or, if
there isn’t one, to the end of the file. In the case of private loop variables, the scope
begins with the opening keyword (e.g., foreach) and continues through the
loop’s opening curly brace to its closing one. See also my declaration.

RE. This is a placeholder showing where a regex would be inserted in a Shell com-
mand or Perl code. See also regex.

regex. Regex is short for regular expression, which is the name of the pattern-matching
notation used in Perl (and its UNIX forebears). This term refers to a particular
sequence of literal and/or metacharacters that is used to search for matches, such as
\bERROR\b. Note that a regex may consist of multiple patterns. See also pattern.

row. This is a horizontally defined region of a table that appears below the column
headings, and is set off by a blank line that runs the entire width of the table. See
also panel.

scope, scoping. The scope of a variable is the region in a program in which that vari-
able can be accessed by name. For variables declared with my, e.g., the region is a
consecutive series of lines consisting of statements and/or constructs. See also
Main, file scope, construct.

script, scriptification, scriptified. A script is a Shell or Perl program stored in a file,
equipped with a shebang line and execute permission. A program that has been
converted from the command form to the script form is said to have been scripti-
fied, through the process of scriptification. See also command, shebang.
437

shebang, shebang line. On Unix and related systems, the sequence “#!” on the first
line of an executable text-file is used to identify the pathname for that script’s
desired interpreter, along with desired invocation options. For example, a typical
Perl script might have the following first line:
#! /usr/bin/perl -wnl

Where did this peculiar name come from? In mathematical circles, the “!” charac-
ter is called bang, so perhaps some ancient UNIX code-warrior decided to name
the two-character sequence that starts a shell script the shebang and its associated
line the shebang line.

Shell. This term, as defined in the “Essential terminology” section of “About this
book,” refers to the Bourne, Korn, and Bash shells of UNIX and related OSs.

slash. This is the slanted-line character that looks like it’s falling forward while mov-
ing from left to right: /. It’s also called the “forward slash.” See also backslash.

space vs. <SPACE>. <SPACE> represents the key that generates the space character
and, in some cases, the presence of that character in screen displays. In the latter
case, a “ghost font” is used to make it clear that it’s the presence of a space charac-
ter that’s being depicted, not the literal character string <SPACE> or the key that
generates the space. See also tab vs. <TAB>.

standard input, standard output, standard error. These terms refer to the “standard”
channels used on Unix systems for conveying input and output to programs,
which have the benefit of working most conveniently with pipe and file redirec-
tions (symbolized by |, and < or >). See also STDIN, STDOUT, STDERR.

statement. A typical statement consists of one or more expressions followed by a semi-
colon, which identifies the expression(s) as a unit that’s ready for execution. The
first example that follows is just an expression, whereas the second is a statement:
print 1 + 2

print 1 + 2 ;

It’s important to understand that Perl will assemble a statement by gobbling up
subsequent lines until it finds a semicolon, so it’s a serious error to omit a required
semicolon. See also expression.

STDIN, STDOUT, STDERR. These terms traditionally refer to the three standard I/O
channels provided to every process on Unix systems. By extension, Perl uses them
also to refer to its input, output, and error-output channels. In Minimal Perl, a
line is sometimes “manually” read from the input and stored in a variable by
embedding STDIN within the angle-brackets of the input operator:
$input=<STDIN>;

See also standard input, standard output, standard error.
438

strict mode, stricture, strictified. Strict mode is a special mode of the Perl compiler
that’s enabled by the use strict directive. In this mode, the program must com-
ply with additional rules, called strictures—such as declaring all user-defined vari-
ables with my or our. A program that’s been modified to run in strict mode is said
to be strictified.

string. A sequence of characters used as data, such as 'Slarty Bartfast', is called
a character string, or just a string for short. Quoting symbols aren’t necessarily
involved.

subroutine. A Perl subroutine is a named chunk of code that’s executed when its
name is used.

switch, switch variable. A switch is an argument that follows a script’s name on the
command line that is processed automatically by the s option. It takes the form
-name, or -name=value. Although these might also be called “options,” some
could be optional whereas others might be mandatory, leading to such confusing
phrases as “mandatory options” and “optional options.” Using the more neutral
term switch relieves us of such confusion. Each switch argument is associated
with a corresponding switch variable, whose name is formed by replacing the
switch’s dash with a dollar sign; e.g., -name becomes $name.

tab vs. <TAB>. <TAB> represents the key that generates the tab character and, in
some cases, the presence of that character in screen displays. In the latter case, a
“ghost font” is used to make it clear that it’s the presence of a tab character that’s
being depicted, not the literal character string <TAB> or the key that generates the
tab. Here’s a sample usage:

To insert a tab within the quoted string, the user presses <TAB>, yielding:
 'Quantity:<TAB>42'

See also space vs. <SPACE>.

TMTOWTDI. This is acronym for one of Perl’s official mottoes, which celebrates
the flexibility Perl offers JAPHs in the coding of programs. It means “There’s More
than One Way to Do It.”

True. A True value is one considered by Perl (or the Shell) to indicate the truthfulness
of an assertion or the success of an operation. Note that the Perl values that are
considered True (or False) are opposite to those of the Shell (see section 2.4.2). See
also False.

undefined value, undef. The undefined value is a special value that Perl attaches to
variables that have not yet been initialized. The undef function can be used to
generate this value, allowing the programmer to assign it to a variable or return it
from a subroutine. undef is also used in subroutine calls to request the use of a
439

default value for its argument’s position, and in explicit lists to avoid assigning a
value to a variable:
sub42('duct', undef, 'roll') # accept default of 'tape' for 2nd arg

($size, undef, $shape)=@F; # don't copy the array's 2nd element

See also explicit list, value.

UNIX. In the rare cases when we need to differentiate actual UNIX systems (such as
Solaris) from UNIX-like systems (such as GNU/Linux), UNIX (always in capitals) is
used to make that distinction. See also Unix.

Unix. As used in this book, Unix (in mixed case) refers to actual UNIX systems, such
as Solaris and HP-UX, as well as their act-alikes, such as systems based on GNU/
Linux. It’s appropriate to lump them together, because they come equipped with a
similar set of basic utility programs, and from the point of view of a Shell user or
programmer, these systems feel a lot like UNIX. See also UNIX.

Unix people. These are users of Unix command-line utilities, ranging from novices
who have only used ls and grep, to senior programmers who write complex
scripts in the Shell language.

value. Variables are said to contain, or have, values, which are the data the variables
store. For example, the following line stores Klaatu in the scalar variable
$visitor:
$visitor='Klaatu';

Note that list variables—hashes and arrays—can store multiple values.

variable. A variable is a named location in the computer’s memory where its
value(s) are stored. See also value, private variable, my variable, our variable,
local variable.

whitespace. Characters that don’t deposit ink on paper when they’re typed on a type-
writer are called whitespace characters. These include the return, linefeed, formfeed,
space, and tab characters.

YAPC. This acronym stands for “Yet Another Perl Conference,” which is the name for
a collection of low-priced grassroots events held around the world for the benefit
of those who either can’t afford the expense of the more elaborately staged confer-
ences or just prefer the company of students and geeks to corporate IT types. See
http://yapc.pm.org for additional information.
440

how to use this index

Entries for language resources refer to Perl ones, unless otherwise indicated—e.g.,
“NR (AWK)” refers to an AWK resource. As an exception, entries for resources hav-
ing the same name in the Shell and Perl (e.g., “exit”) apply to both languages unless
otherwise indicated.

Entries for metacharacters are found in the Symbols section and refer to resources
of the regular expression notation, unless marked as FNG (for filename generation
notation).

Perl’s invocation options (such as “n” and “F”) are shown with leading dashes
(“–n”, “–F”), but they’re listed in alphabetical order as if the dashes weren’t present—
except options having a digit immediately after the dash, which are listed under
“Numeric Options.”

Variables, built-in functions, and Unix commands are listed under their own names.
Subroutines are listed under “subs,” and significant code snippets are listed by their

descriptions under that name.
All the one-line Perl commands discussed in the book are listed by description under

the heading “commands (Perl),” and all scripts are listed by name under “scripts.”
Perl modules are listed under “modules” and also under their own names (e.g.,

“modules: Center,” and “Center module”).
Featured characters are listed under their own names (e.g., Diggity Dog) as well as

under the heading “featured characters.”
Commands and scripts of special interest to System Administrators are cross-

referenced under the heading “system administration tools.”
442

index
Symbols

! (negation operator) 39
$ (dollar) (AWK)

only used for field
variables 126

$ (dollar) (Shell)
differences from Perl in use

with variable names 23, 25
$ (dollar) metacharacter 63

altered meaning with /m
modifier 69

$ (dollar), as identifying mark for
scalar variable 23

$! (OS error-number)
variable 341, 428

setting to define die’s exit
value 253, 292

$\ (output record separator)
variable 42, 127

used for multi-character record
separators 42

See also output record
separator

$" (string formatting)
variable 43, 300–301, 435

$# (argument count) variable
(Shell) 334

$#ARGV (maximum index) vari-
able for @ARGV array 346

$$ (process-ID) variable 112

$& (match) variable 63, 127
used in replacement field of

substitution operator 95
used to display the match

only 64
$' (post-match) variable 127
$() (Shell). See command

substitution
$, (print’s formatting)

variable 43, 435
used with grep 228–229
used with map 233

$. (record number) variable 20
contains number of last record

in END block 264
used with substitution opera-

tor for record-specific
substitutions 97

$/ (input record separator)
variable 42, 127, 307

need to reset in dual input-
mode scripts 308

used for multicharacter record
separators 42

See also input record separator
$? (command error)

variable 257, 428
$@ (eval error) variable 283–284
$^I (in-place edit) variable 429

used in clobber-proofing edit-
ing scripts 112

$_ (data) variable 126, 427
as default argument for file-test

operators 181
introduction to 24
may get masked in nested

loops 373
$` (pre-match) variable 127
$0 (record) variable (AWK) 126
$0 (script name) variable

used to show source of diag-
nostic message 36

used with warn and die 36
$1, etc. (field) variables

(AWK) 126
$1, etc. (numbered)

variables 71, 359
used in sed-like commands 99

$1, etc. (positional parameter)
variable (Shell) 334

compared to $ARGV[0] in
Perl 334

See also positional parameters
$a (sort item) variable 429

used in sort’s coding rules 225
$ARGV (filename) variable 42,

67, 127, 146, 191
definition of 42

$b (sort item) variable 429
used in sort’s coding rules 225

$F[n] (field) value 126
443

$SECONDS (Shell) variable,
used in clobber-proofing ed-
iting commands 112

% (modulus) operator 159, 405
%ENV (environment)

hash 313–314
as inter-process communica-

tion mechanism 313
using in place of

switches 315–316
&& (AWK) as similar to Perl’s

logical and 140
&& (Shell), as similar to Perl’s

logical and 35
() (parentheses) as

metacharacters 71, 359
* (multiplication) operator 159
* (star) metacharacter 73

vs. meaning of * in FNG 237
* (star) metacharacter

(FNG) 236, 259
+ (addition) operator 159
+ (plus) metacharacter 73, 109
++ (increment) operator 159,

346
- (range in character class) meta-

character (FNG) 236
- (range in character class)

metacharacter 63
- (subtraction) operator 159
-- (decrement) operator 159
. (dot) metacharacter 63

becomes literal character in
character class 303

. (string concatenation)
operator 265–268

syntax and examples 265
tips on using 268–269
used in enhancement to

most_recent_file 267
.. (range) operator, AWK-like

version 152–153
used in array indexing 301

... (range) operator, sed-like
version 152–153

used for logfile analysis 170

.= (string concatenation) com-
pound assignment
operator 265–267

common errors with 269
used to incrementally build

HTML document 419
/ (division) operator 159
/ (slash) 438

See also slash; backslash
// (matching) operator 60

capabilities of 58
introduction to 60–62
modifiers for 68–70
when to use split instead 213

/e (eval) substitution
modifier 95

for computed
replacements 114–118

for function-generated
replacements 116

/g (global) match modifier 69,
360

/g (global) substitution
modifier 95

/i (ignore case) match
modifier 69, 95, 187

/m (multi-line mode) match
modifier 69, 95, 359

/s (single-line mode) match
modifier 69, 95

/x (expanded format) match
modifier 69, 95, 110

: (null) command (Shell)
used in bottom-tested while/

until loops 338–339, 352
< > (globbing) operator

234–239
< > (input) operator

used in implicit loop 337
<=> (numeric comparison)

operator 157
used with sort 224

<> (globbing) operator
syntax and examples 235
tips on using 237–238

<ENTER> key
as needed but generally un-

shown in terminal
sessions xxviii

definition 434
<SPACE> key, definition 438
<TAB> key, definition 439
=~ (match-binding) operator 60,

69, 96
? (question mark)

metacharacter 99, 238
for stingy matching 124
for stingy matching,

advantages over
AWK 125

in Perl regex, for stingy
matching 73

? (question mark) metacharacter
(FNG) 236

@_ (sub argument) array 364
@ARGV (argument) array 42,

127
@EXPORT (default exports)

module array 391
when to use vs.

@EXPORT_OK 391
@EXPORT_OK (on-request ex-

ports) module array 391
when to use vs.

@EXPORT 391
@F (field) array 127, 131–132,

141, 145
when to access using indexing

vs. assignment to variable
list 145

See also $F[n]
@INC (include) array, relation

to PERL5LIB variable 397
[] (character class) metacharacter

(FNG) 63, 236
[!] (complemented character

class) metacharacter
(FNG) 236

[^] (complemented character
class) metacharacter 63
444 INDEX

\ (backslash) (Shell)
as line-continuation

character xxx
differences from Perl in effects

of 31
See also backslash; slash

\ (backslash) definition 432
\ (backslash) metacharacter 63

See also backslash; slash
\& (function-address)

operator 411
\(\) backslash (backslashed

parentheses)
metacharacters 71

\{ \} (backslashed braces)
metacharacters 73

\040 (space) string escape 105
\047 (single quote) string escape

used as nested single quote in
commands 62

\1, etc. (backslashed-number)
metacharacter 71

\b (word-boundary)
metacharacter 63

\d (digit) metacharacter 67, 115
\D (non-digit) metacharacter 67
\E (end-modification) string

modifier 113, 289
cases where it can be

omitted 227
See also \U; \L

\E (end-quoting)
metacharacter 63

See also \Q
\L, \l (lowercase) string modifiers

used to achieve case
insensitivity 113, 227, 322

\Q (start-quoting)
metacharacter 63

See also \E
\S (non-whitespace)

metacharacter 67
\s (whitespace) metacharacter 67
\U, \u (uppercase) string

modifiers 113, 146, 348
See also \E

\W (non-word)
metacharacter 67, 324

\w (word) metacharacter 67
^ (caret) metacharacter 63

altered meaning with /m
modifier 69

_ (underscore)
as reference to previously test-

ed file 219
_ _PACKAGE_ _ (package

name) keyword 395
` ` (Perl). See command interpo-

lation
` ` (Shell). See command substi-

tution
{ } (braces) metacharacter 73
| (vertical bar) metacharacter 71

Numeric Options

-00 (paragraph-mode) option 45
special setting of $/ as

equivalent 428
used in field processing 146

-0777 (file-mode) option 45
special setting of $/ as

equivalent 428
-0digits (input record separator)

option 17, 22, 428
only used for single-character

record separators 42
used to print records by

number 101
See also $/ (input record

separator) variable

A

a2p command
for translating AWK to

Perl 175
tips on using 175

address of function. See \& (func-
tion-address) operator

Alexis, featured character for
PFD project 388

aliases for Perl commands
perl_o, perl_io, etc. 46

amatch function
for approximate (“fuzzy”)

matching 85
See also String::Approx

analyzing log files 81
Andy “yDNA” Sweger.

See Sweger, Andy “yDNA”
ARGC (argument count) vari-

able (AWK) 126
argument generation 259

generating all readable, regular
files 259

argument pre-processing
256–259

filtering arguments 257–258
removing names of non-text

files 258
removing non-filename

arguments in BEGIN
block 256–257

sorting arguments 257
argument processing

dealing with multi-word
filenames 196–197

filtering out binary files
189–191

reporting names of non-text
files 258

using Perl to filter-out undesir-
able ones 188–192

argument, definition 432
ARGV (argument vector) vari-

able (AWK) 42, 126
ARGV filehandle 42

definition of 43
arithmetic operators

comparing AWK’s and
Perl’s 158–159

array indexing
syntax 145

arrays 296–308
illustration of storage in

memory 297
INDEX 445

arrays (continued)
indexing techniques 300–304
indexing with random

numbers 304–308
initialization methods

299–300
initialization using push 299
piecemeal initialization 299
Shell vs. Perl syntax

comparison 298
slices: better name would be

“index groups” 301
syntax for indexing 300
syntax for slice indexing 301
tips on using 308

ASCII 103
Ashanti, featured character for

line-specific substitution
command 98

associative array (AWK)
is like a Perl hash 296
See also hashes

automatic line-end processing.
See -l (in-place editing)
option

automatic looping. See -n (auto-
matic input-reading) op-
tion; -p (automatic input-
reading, with printing)

automatic printing. See -p (auto-
matic input-reading, with
printing) option

AWK
advantages vs. Perl 130
books on 123
definition 432
effects of delayed documen-

tation on popularity
123, 162

features compared to
Perl 123–130

flavors of 123
functions and Perl

equivalents 161
functions, list of 160

has a variable Perl doesn’t
have 123

history of 122–123
introduction to 121
special variables 126–128
summary of differences with

Perl 129–130
See also awk command;

GAWK; NAWK; POSIX
AWK

awk
definition 432
GNU version, defined 433

AWK commands. See commands
(AWK)

AWK scripts. See scripts
AWKish, definition 432

B

-B (binary) file test operator 182,
187

-b (block) file test operator 182
B. B. King, on KISS principle in

music 8
backslash, definition 432

See also \ (backslash); slash
Bali, web-scraping for travel tips

about 81
BEGIN block 338

as place to validate a script’s
arguments 40

equivalent coding for use when
implicit loop not used 338

introduction to 39
used to validate a script’s

arguments 109
Bell Labs rookie, featured charac-

ter for nexpr 163
Bell Labs veteran, featured char-

acter for nexpr xxvi, 163
Bell System 432
Benchmark module 315
Boulder, Fox, featured character

for rock-star biodata
system 133–138

break (loop control) directive
(Shell) 349

compared to Perl’s last 349
Brian “Ingy” Ingerson. See Inger-

son, Brian “Ingy”
bugs, Column of Ones 234
Business::UPS module 398–405

C

-c (character) file test
operator 182

-c (check-syntax) option 395
C language

approaches to Perl
programming 13

breeds mistrust in its
programmers 7, 349

C language refugees
are understandably phobic

about uninitialized
variables 317

C shell
excluded from coverage xxvii
fundamental differences from

Shell xxiv
Camel book, definition 433

See also glossary definition
carp function

advantages over warn in
modules 394–395

is provided by Carp
module 391

Carp module 391
See also carp function; croak

function
case conversions 113–114
cat command

emulating with Perl
command 12, 24

emulating with Perl script 29
cd command, Perl counterpart is

chdir 239
cell processing. See field process-

ing, extracting data from
tables
446 INDEX

Center module 393–395
CGI module 231, 414–422

:standard tag 416
cheatsheet for essential

functions 422
cheatsheet for form-related

functions 423
Dump function of 418
provides functions named after

HTML tags 416
tips on using 421
See also CGI programming

CGI programming
dual-mode programs

418–419
introduction to 414
testing programs without a

browser 419
-w option not used 416

CGI::Carp module
provides a CGI version of the

carp function 416
character sets 104
chdir function, Unix counterpart

is cd 239
check_links script 405
check_symlinks script 411, 414
chgrp command, related to Perl’s

chown 240
chmod function 240
Choi, Dora 347
chomp function 219–221

example of need for 220, 339,
357

requires parentheses around
multiple arguments 221

syntax and examples 220
tips on using 221
Unix relatives 210
used on find’s output 274
vs. using -l option 146

chown function 240
circle forehead marking. See fore-

head markings of Perlistanis
classic AWK 123, 126–127, 164

classic grep 54, 91
classic sed 91, 93
classic UNIX utilities

definition 433
clobberation of variables. See

variable clobberations
clobberation, definition 433
clobbering variables. See variable

clobberations
close function 68
cmp (string comparison)

operator 157
used with sort 224

code block
$_ as final statement in, with

map 234
used with grep 228
used with map 233

code blocks
coding rules for sort 225
used with sort 224

code snippets
allowing zero tip for waiter, us-

ing defined function 250
emulating env command using

%ENV hash 314
for avoiding variable masking

in nested loops 373
for conditionally appending

one of two strings to
another 266

for ensuring confirmation
from interactive user 352

for exiting script if no
arguments 249

for invoking command on dif-
ferent files using for
loop 336

for obtaining confirmation
from interactive user
339–340

for printing environment vari-
ables in sorted order 342

for removing non-text filena-
mes from arguments 258

for responding to environment
variables 315

for retrieving a phone number
from a hash 309

for selecting a filename from
a menu 355

for sorting arguments 257
for summing numeric

arguments 334
for using names of all readable,

regular files as
arguments 259

make_money_fast, demon-
strates repetition and
compound-assignment
concatenation
operators 267

providing default argument for
script 260

reporting names of non-text
files 258

requiring non-zero tip for
waiter 250

using local declaration to make
temporary change to “$,”
variable 383

coding conventions used in this
book xxxi

col command 331
doesn’t take filename

arguments 331
Colin “Shroomy” Meyer. See

Meyer, Colin “Shroomy”
command interpolation 189,

201, 269–275
compared to command

substitution 270
doesn’t work within

quotes 274
may require multi-level

quoting 357
returns output—not exit code,

as Shell does 275
tips on using 274–275
See also command substitution
INDEX 447

command substitution 189,
192, 269–275

alternative $(command)
syntax 269

compared to command
interpolation 270

returns exit code—not output,
as Perl does 275

used to provide validated argu-
ments to grep 189

See also command interpola-
tion

commands (AWK)
for printing rock-star

birthdays 130
Perl equivalents for simple

tasks 141
simple ones compared to Perl

equivalents 128
commands (Perl)

a one-line grepper 61
a one-line sed command 93
differences from scripts 11
emulating date command 214
emulating Shell’s –nt file test

operator 217
fix_newsletter 104
for calculating space allowance

for each file in
collection 335

for data validation 66
for editing files 105–107
for extracting “File doesn’t ex-

ist” errors from logfile 152
for extracting POD documen-

tation from scripts 156
for filtering find’s output 183
for finding JPEG-oriented

scripts 187
for generating a random

number 221–222
for line-specific

substitutions 96–97
for matching lines between

specified days 152

for numbering
paragraphs 150

for printing “Hello, world!”,
down-under version 49

for printing first 80 characters
of each line 161

for printing rock-star
biodata 134

for printing rock-star
birthdays 133

for printing square roots 161
for processing multi-word

filenames 197
for record-specific

substitutions 97–98
for web-scraping

slashdot.org 86
like scan4oops script 174
like scan4oops script, Felix’s

scathing review 174
make_meeting_page 102
matching a range of dates 154
of AWKish Pattern/Action

type 139
one-line 11, 14, 18
printing lines by number 100
printing records by

number 101
using field processing and

in-place editing 134
with nesting of single

quotes 62
See also -e (code) option

commands, definition 433
commas

permitted after last aggregate
initializer for list
variable 311

comments xxix
common mistakes 111
comparison operator

two forms of 158
comparison operators 157

See also cmp operator; <=>
operator

compartmentalize
as preferred term to modular-

ize when discussing
subroutines 363

compound assignment
operators 140, 158–159,
348

construct, definition 434
Consultix xxi
context sensitivity

advantages of 206
continue (loop control) directive

(Shell) 349
compared to Perl’s next 349

continue blocks 350, 353–355
give Perl loops an advantage

over Shell loops 355
control characters 104

string escapes for 56
convert command

(ImageMagick) 335
Conway, Damian xx, xxii, 347

as author of Perl Best Practices
book xxxii

as winner of Larry Wall
award 28

his foreword to this book xvii
See also Object Oriented Perl

book; Perl Best Practices
book

copy function, related to Unix
cp 240

cp command, related to Perl’s
copy 240

CPAN
is the envy of non-Perl

programmers 425
link to advice on searching for

modules 425
searching to find modules 398

CPAN module 401
using the shell function 401

CPANPLUS module
relation to CPAN

module 401
448 INDEX

creating modules
checking for warnings and

syntax errors 395
defining subroutines 392
specifying exports 391–392
testing with a command 397
testing with a script 396
using “1;” as last line 392
with the Simple Module

Template 390–392
croak function

provided by Carp module 394
vs. use of die in modules 394

Crocodile Hunter 49
cut command, Perl relatives 210

D

-d (directory) file test
operator 182

Dan Sugalski. See Sugalski, Dan
date command, Perl counterpart

is localtime 210
debugging strategies, adding/sub-

tracting another
backslash 376

default loop variables, are auto-
matically declared with
local 373, 383

defined function 249–252
advantages over testing values

for True/False 249
needed for testing values

before using them 251
tips on using 252
used for identifying empty

arguments 249
used for validating input from

keyboard 250–252
used to test for <^D> from

keyboard 251, 286
delete function

used on array elements 298,
307

used on hash elements
310–311

df command 248
diamond operator. See input op-

erator
die function

introduction to 35
preferred to warn and exit, out-

side BEGIN blocks 253
Diggity Dog

featured character for
4letter_word xxv, 372

featured character for
ups_shipping_price 404

directive, definition 434
directory management

functions 239
do until loop. See do while/until

loop
do while/until loop 338–340

arranging for working loop
control directives in bot-
tom-tested loops 351–352

compared to Shell
equivalent 338

doesn’t respond to loop-
control directives 340

tips on using 339
Don, featured character search-

ing for
epistle2dippy.txt 185

Dora Choi. See Choi, Dora
double quotes

for list to scalar
conversion 209

link to article on Shell vs. Perl
differences 298

permit command substitution
but not command
interpolation 274

used to suppress secondary
substitutions in Shell 325

double-quoted string
used as output-template for

print function 25
downloading the source code of

this book’s examples xxxii

Dump function
of CGI module 418

DWIMity 191, 206

E

-e (code) option 11, 17, 45
unused on Perl shebang

line 30
E0 (end of range) marker 153

used in scan4oops script 171
egrep command

improving on with Perl
70–72

Perl relatives 223
egrep, GNU version,

defined 433
elif keyword (Shell)

Perl counterpart is elsif 261
elsif keyword

Shell counterpart is elif 261
See also if/else

END block 338
equivalent coding for use when

implicit loop not used 338
introduction to 39
used for calculating average of

input data 264
used to print final report 324

English module
for using AWK variables in

Perl 126
entertainment value of this

book xxv–xxvi
env command

emulating with help from
%ENV 314

relation to %ENV hash 314
eof function 307, 322
eq (string equality)

operator 157, 340
errata page for this book xxxii
error messages

BEGIN not safe after errors—
compilation aborted 369
INDEX 449

error messages (continued)
Can’t locate

Some_Module.pm 397,
401

Can’t open (some_file): No
such file or directory 256

Execution of some_script
aborted due to compilation
errors 374

See also warning messages
eval function 283–292

as used in preg 290
examples and Shell vs. Perl

comparison 283
for handling user-supplied

array indices 304
need for 283
security concerns for eval’ing

user-submitted text 304
why it’s necessary 304

evaluation context
effects of 207–208
how programmer

controls 207–208
making use of 208–210
understanding and

managing 206–210
execution-trace mode

(Shell) 282
using to debug commands

submitted by Perl 282
exists function 322

used on hash elements 310
exit function 253–254

examples and Shell vs. Perl
comparison 253

meanings of numerical exit
values 253

expand function
(Text::Tabs) 366

explicit list, definition 434
export command

used to convey switch-like
variables to scripts 315

used with setting of
PERL5LIB variable 397

Exporter module
as basis for creating a new

module 389
expr command

shortcomings of 162
See also nexpr; expr_p

expression, definition 434

F

-F (custom field separator)
option 136–138

-f (regular) file test operator 182
False value

of Shell, converting to Perl’s
False 275

Shell and Perl definitions
of 32

False, definition 434
fatalsToBrowser

requests that error messages be
displayed by web
browser 417

See also CGI::Carp
featured character

Alexis, for PFD project 388
Ashanti, for line-specific sub-

stitution command 98
Bell Labs rookie, for

nexpr 163
Bell Labs veteran, for

nexpr xxvi, 163
Diggity Dog, for

4letter_word xxv, 372
Diggity Dog, for

ups_shipping_price 404
Don, searching for misplaced

file 185
Felix, for scan4oops xxv,

168–175
Fox Boulder, for rock-star bio-

data system 133–138
Gabriella, for

expand_acronyms 343
Guillermo, for city rainfall

comparison project
143–148

Ivan, for compress_image*
scripts xxvi, 335–336, 344

Martina, for Apache logfile
analysis 151–154

Murray, for scan4oops
project 175

Oscar, for scan4oops-like
command 174–175

Patrick, for city rainfall com-
parison project xxvi,
143–151

PerlDude, for find2perl
examples 200

Ramon, for check_length 116
Steffi, having “lingering

thumb” 186
TVM guy, rock-star biodata

system 137–138
Vitas, for city rainfall compari-

son project 143–149
WinDude, for find2perl

examples 200
Yoko, for fuzzy_match xxvi

Felix, featured character for
scan4oops xxv, 168–175

fgrep command
improving on with Perl 64
Perl relatives 223

fgrep, GNU version,
defined 433

field processing 130–138
accessing fields with Perl

131–132
extracting data from

tables 143–151
introduction to 130–132
printing fields with Perl

132–133
using undef in 131
with AWK 90
See also table processing

field separators
customizing 136–138
See also -F (custom field separa-

tor) option
450 INDEX

file management functions
239–241

tips on using 241
file mode, enabling by assign-

ment to $/ 428
file test operators

$_ as default argument 181
comparing find and Perl

180–184
syntax 181

file tests
comparison of find vs.

Perl 181
Perl better than find for

permissions 183
File::Copy module 240
File::Find module 411–414

relation to find
command 180, 201

filehandles, using with close
function 68

file-management functions
tips on using 241

FILENAME (filename)
variable (AWK) 42, 126

filename generation 235
See also FNG

filename generation operator.
See < > operator

filter programs 12
basics of implementing

12–14
cascading filters, using grep/

egrep 72
using one Perl command vs.

multiple grep/egrep
commands 75

financial calculations
compound interest 165–167
compound interest2 166–167
Rule of 72 for estimating in-

vestment growth through
compounding 165

find | xargs, problems with multi-
word filenames 196

find command
as aid for finding misplaced

files 179
as argument pre-processor for

Perl 197–198
as emulated by

find2perl 198–200
augmenting with Perl

183–184
enhancing by adding Perl

command 179
-exec option 192
-exec’s deficiences vs. xargs

alternative 193
filtering output of with

Perl 183
for finding recently modified

scripts 179
use of -follow option 274
used with xargs 192–197

find function (from
File::Find) 411

requires special handling 412
find, GNU version, defined 433
find2perl command

as OS-portable alternative to
find 198–200

supports -exec rm 200
finding files

by name matching 184–187
by pathname matching

187–188
having multi-word

names 186–187
fmt command 28, 280

emulating with Perl
command 28

improving on with
Text::Autoformat 28

See also Text::Autoformat
FNG (filename generation)

notation
corresponding metacharacters

from regex notation 238
FNR (file-specific record-num-

ber) variable (AWK) 126

footnotes, authors philosophy of
using xxv

for loop 345–349
good for index-oriented array

processing 345
for loop (Perl)

syntax of 345
for loop (Shell) 331

compared to Perl’s
foreach 340

foreach loop 340–344
compared to Shell’s for

loop 340
preferred to for loop for list

processing 346
preferred to while/until loop

for list processing 334
similarities to Perl’s select

loop 356
used in emulating env

command 314
used with unlink to get file-

specific error messages 341
forehead markings of

Perlistanis 6–7
format_mode function,

for converting permissions
strings 218

formatting variables
introduction to 43–44
 See also '$"' variable; '$,'

variable
Fox Boulder, featured character

for rock-star biodata
system 133–138

Fox Boulder, featured character
for rock-star programs

alien conspiracy theories
of 137

Free Software Foundation 435
FS (input field-separator) vari-

able (AWK) 126
function calls, compared with

method calls in CGI
example 423
INDEX 451

functions
data flows backwards vs. Unix

pipelines 223
definition 434
for directory

management 239
for file 241
for file management 239–241
for list processing 223–234
having multi-valued return

codes 240–241
in series are processed from

right to left 208
Shell vs. Perl functions 364
using built-in ones 159–164
vs. methods 400

functions of AWK, list of 160
functions of Perl, list of 160

G

-g (set-GID) file test
operator 182

Gabriella, featured character for
expand_acronyms 343

gawk 432
GAWK, capabilities of 125

See also gawk command;
AWK; NAWK; POSIX
AWK

ge (string greater-than or equal-
to) operator 157

getgrgid function 218
getpwuid function 218
global variables 367

accessing by simple vs. explicit
package names 374–375

globbing operator. See < >
operator

GNU AWK 123–124
See also GAWK

GNU find 180, 182
GNU grep 273

capabilities 58
GNU sed 92–93, 107

capabilities 91

GNU utilities versions used in
this book, defined 433

GNU, definition 435
grep command

capabilities compared to
Perl’s 58

diversity of regex dialects
for 55

emulating -i option with
Perl 70

emulating -l option with
Perl 67–68

emulating -v option with
Perl 65

for validating data 66
history of 53
origin of name 54
Perl equivalents for common

cases 87
Perl relatives 223
relationship to ed

command 54
screen corruption resulting

from binary matches 188,
190

shortcomings of 54–60
grep function 227–229

as ”gating” mechanism 227
compared to map 232
differences from grep

command 227
syntax and examples 228
Unix relatives 223

grep, GNU version, defined 433
grepper

capabilities compared to
Perl’s 57

definition 435
grepping, definition 435
gt (string greater-than)

operator 157
guidelines, for parenthesizing

code 430–431
Guillermo, featured character for

city rainfall comparison
project 143–148

H

hashes 296
advantages of printing with

foreach over while/
each 343

advantages of printing with
while/each over
foreach 337

aggregate initialization 311
as basis for simple database

systems 319–322
automatic initialization to zero

in numeric context 317
illustration of storage in

memory 309
indexing syntax 312
indexing techniques 312–313
initialization methods

311–312
introduction to 308–311
piecemeal initialization 311
preferred to arrays for associat-

ing strings with values 310
printing techniques 314–315
printing with foreach

342–343
printing with while/

each 336–337
slice-indexing a hash using an

array 313
slices used to impose ordering

on retrieved values 312
summary of indexing

methods 313
syntax and examples 310
tips on initializing 311
used as unique-ifiers 316–319
used for counting word

frequencies 323–325
used to reduce list to unique

elements 316
head command

as poorly suited for printing
specific lines 100
452 INDEX

head function (from
LWP::Simple) 405–406

hickory ruler
as motivator for grammatical

correctness 166
HTML

generating with CGI
module 419–422

listing of output generated by
survey.cgi 420

I

-i (in-place editing) option 45
backing up original file

111–113
editing pantaloony file 106
for clobber-proofing editing

commands 112
for clobber-proofing editing

scripts 112
for mass editing of HTML

files 107
pitfalls of using .bak

extension 111
used in AWKish

commands 134
using .bak extension 109

if/else 259–265
advantages over logical and/

or 260–261
comparison of Shell and Perl

syntaxes 260
curly braces can’t be

omitted 265
elsif keyword 261
mixing with and/or 261–264
nesting of 261
tips on using 264–265

IFS (internal field separators)
variable (Shell) 325, 327,
341

compared to split
function 211

Perl relatives 210

implicit loop 12
compared to equivalent explic-

it loop 338
how it works 337–338
LINE is label for 338
See also -n (automatic input-

reading) option; -p (auto-
matic input-reading, with
printing)

Ingerson, Brian “Ingy” 102, 347
inode (Unix), accessing with

stat 215
in-place editing 109–113
input operator 13

definition 435
input record separator

automatic stripping of with –l
option 20

definition of 20
example of 42
how to change 22
newline as default 20
See also $/ (input record sepa-

rator) variable
input/output variables ($/, $\)

introduction to 42–43
installing modules

configuring the CPAN
module 401–402

determining which ones you
have 400

using non-root
privileges 402–403

using root privileges 401–402
invocation options

advice on ordering 44, 47
effects of 17
for automatic input process-

ing. See -n (automatic input-
reading) option; -p (auto-
matic input-reading, with
printing) option

for automatic line-end process-
ing. See -l (line-end process-
ing) option

for automatic switch handling.
See -s (switch) option

for loading modules. See -M
(module-loading) option

for one-line commands. See -e
(code) option

for warning messages. See -w
(warnings) option

introduction to 17–23
option clusters 17
standard option clusters 17

Ivan
featured character for

compress_image*
scripts 335–336, 344

featured character for com-
pression of stamp
collection xxvi

J

jalebi (confection) 66
JAPH

as resident of Perlistan 5
definition 435

JAPHly
definition 435

join function 229–232
equivalent to using $" with

double quotes 210
for list to scalar

conversion 209
syntax and examples 229
tips on using 230
Unix relatives 223
used in constructing HTML

code 232
used in constructing passwd

file entry 230

K

-k (sticky) file test operator 182
keys function, retrieves all keys

from a hash 310
INDEX 453

King, B. B., on KISS principle in
music 8

ksymoops command
(Linux) 171

L

-l (line-end processing)
option 11, 17, 20

doesn’t affect input read from
<STDIN> 339

programs that omit it 226
using instead of "\n" 21

-l (symlink) file test operator 182
Larry, definition. See Wall, Larry
last (loop control) directive 349

compared to Shell’s break 349
Laziness

as a virtue 9
in programming practice 12,

15
le (string less-than or equal-to)

operator 157
Leaning Toothpick

Syndrome 60, 92
length function 116
Library for Web Programming.

See LWP::Simple
LINE, is label for implicit

loop 338
Lingua::EN::Inflect module

used to conditionally pluralize
nouns 167

Lingua::EN::Namegame 372
list context

effects of 207
ways to request 207

list generators
Shell vs. Perl techniques

325–327
Shell’s command substitution

vs. Perl’s command
interpolation 327

Shell’s FNG vs. Perl’s
globbing 326

Shell’s variable substitution vs.
Perl’s variable
interpolation 327

list to scalar conversion
method can be specified by

programmer 208
needed for matching against

arrays 230
tools for 209–210

list variables
introduction to 295–296
See also arrays; hashes

List::Util module 329
for shuffling list elements 227

listfile script 217
local declaration

arranges for the previous value
of a variable to be restored
later 374

introduction to 375
is automatically used for

default loop variables
373, 375

syntax and examples 374
used for temporary changes to

“$,” and “$"” 383
used with “$,” and “$"” 44
See also variable declarations

localtime function 214–215
syntax and examples 214
tips on using 215
Unix relatives 210

logfile analysis 81, 168–175
of Linux /var/log/messages

file 168
logical operators

introduction to and/or 37
Perl’s compared to Shell

counterparts 37
longest-anything pattern 78,

109, 114, 117, 359
longest-something pattern 78
loop control directives

Perl syntax example 351
Perl’s better than Shell’s for

nested loops 351

Shell syntax example 350
Shell vs. Perl comparison 349

looping
comparison of Shell vs. Perl

resources 331, 333
introduction to 330–331
Shell vs. Perl differences in

concepts, terms, and basic
syntax 332

loops
basic types of 332
nesting within others

350–351
using loop control

directives 349–355
ls command

emulating in Perl using
stat 217–218

Perl relatives 210
See also listfile script

lt (string less-than) operator 157
LWP::Simple module 405–408
lwp-request command 80–81,

405–406
used for web-scraping 323

M

-M (module-loading) option 27,
45

used only with commands, not
scripts 41

used to enable strict
mode 369

using to test availability of
module 400

m// (matching) operator 60
using custom delimiters

with 109, 188, 213
See also // (matching) operator

Main (program segment)
definition of 379, 435
 See also scoping

managing modules 398–403
map function 232–234

compared to grep 232
454 INDEX

map function (continued)
syntax and examples 233
Unix relatives 223
used in emulating env

command 314
Martina, featured character for

Apache logfile
analysis 151–154

masking of variables. See variable
masking

matching
across lines, step-by-step

guide 79
against arrays 230
against files 77
against paragraphs 75
disqualifying undesirable

matches 83
fuzzy matching with

String::Approx 85–86
in context, Perl’s superiority to

greppers for 75–77
range of records 151–157
record separators 125

metacharacter, definition 436
method calls, compared with

function calls in CGI
example 423

methods, vs. functions 400
Meyer, Colin “Shroomy” 347
Minimal Perl

as a simplified subset of Perl 8
isn’t a version of Perl 8
minimizes problems with op-

erator precedence 252
motivation for creating xix
practical and eclectic nature

of 9
public debut xx

mkdir function 239
modularize

means convert code to a Perl
module 363

vs. the term compartmentalize
when discussing
subroutines 363

module
definition of 27
meaning of double colons in

name 28
modules

advantages over
subroutines 389

and explicit package names for
variables 393

Benchmark 315
Business::UPS 398–405
Carp 391
Center 393–395
CGI 231, 414–422
CGI::Carp 416
comparison of procedural and

Object-Oriented 422–424
determining which ones you

have 400
Exporter 389
File::Copy 240
File::Find 201, 411–414
introduction to 388–389
Lingua::EN::Inflect 167
Lingua::EN::Namegame 372
List::Util 227, 329
LWP::Simple 405–408
provide aliases to their exports

for user convenience 393
Regexp::Common 372
Shell::POSIX::Select 356
Stat::IsMode 217
String::Approx 85–86
Term::ANSIColor 294
Term::Cap 271
Text::Autoformat 28, 116,

278
Text::Tabs 117, 366
Text::Wrap 395
See also using modules; creat-

ing modules; installing
modules; managaing mod-
ules; Simple Module Tem-
plate

move function, related to Unix
mv 240

MULTICS OS 269
Murray, featured character for

scan4oops project 175
mv command

related to Perl’s move 240
related to Perl’s rename 240

my declaration
definition 436
for defining a variable’s

scope 378
introduction to 374
is preferred declaration for

user-defined variables 374
syntax and examples 374
with aggregate assignment to

list of variables 405
See also our declaration

N

-n (automatic input-reading)
option 14, 17, 19

cases where it’s omitted 229
using non-filename arguments

with 256
See also implicit loop

name clashes
are more likely in larger

programs 385
are more likely with file-scoped

variables 380
as consideration in choosing

exports from modules 391
avoided by using package dec-

laration in modules 393
other techniques for

avoiding 367, 386, 393
natural language processing, con-

ditionally pluralizing
nouns 166–167

See also Lingua::EN::Inflect
nawk command 123, 432
NAWK. See nawk command;

AWK; GAWK; POSIX
AWK
INDEX 455

ne (string inequality)
operator 157

new AWK 123
See also NAWK

newline xxvi
definition 436
See also glossary

nexpr 163
not a complete replacement for

expr 163
the legend of 162–164
See also scripts, nexpr_p

next (loop control) directive 349
compared to Shell’s

continue 349
NF (number of fields) variable

(AWK) 127
NR (record-number) variable

(AWK) 126
-nt (newer-than) file test operator

(Shell), emulating in Perl us-
ing stat 216–217

O

-o (owned by effective ID) file
test operator 182

-O (owned by real ID) file test
operator 182

Object Oriented Perl book xx,
347

Object-Oriented modules
tips on using 422–424

Object-Oriented programming
vs. procedural

programming 405
octal numbers, left-padding with

zeroes 105
OFS (output field-separator)

variable (AWK) 126
open function 361
operand, definition 436
operating system, definition 436
operator precedence

use of parentheses to
override 38, 184, 252, 351

operator, definition 436
operators, vs. functions 436
ORS (output record-separator)

variable (AWK) 42, 126
OS, definition 436
Oscar, featured character for

scan4oops-like
command xxv, 174

our declaration
allows use of simple name for

global variable 374
for defining a variable’s

scope 381
for marking switch variable as

optional 35
introduction to 374–375
is used for all switch variables

in strict mode 375, 381
is used for global variables 375
is used for variables exported

by modules 375, 381
omitted for mandatory

switches 108
requires parentheses around

multiple arguments 33
syntax and examples 374
used for optional switches 117
See also my declaration

output record separator
automatic printing of 20
example of 42
newline as default 20

P

-p (automatic input-reading,
with printing) option
17, 19

used with sed-like
command 93

using non-filename arguments
with 256

See also implicit loop
-p (named-pipe) file test

operator 182
See also implicit loop

package declaration, why it’s used
in modules 393

paragraph mode, enabling by
assignment to $/ 428

parentheses
guidelines for using on

code 430–431
mandatory for our declaration

with multiple
arguments 33

optional use of 161
required for chomp with mul-

tiple arguments 221
required for our declaration

with multiple
arguments 374

used in explicit list 434
used to enclose all function

arguments 243
used with function

arguments 242–243
using to control allocation of

arguments to
functions 242–243

See also appendix B
Patrick, featured character for

city rainfall comparison
project xxvi, 143–151

pattern ranges
matching a range of

dates 153–154
matching multiple

ranges 155–157
syntax 153

pattern, definition 436
Pattern/Action programming

AWK vs. Perl syntax 139
combined with field

processing 143
introduction to 138–142

patterns
longest-anything 78, 109,

114, 117
longest-something 78
shortest-anything 78
shortest-something 78, 124
456 INDEX

patterns (AWK)
matching type 139
relational operator type 140

Perl
advantages over AWK 129
as argument pre-processor for

other commands 192
as derived from UNIX

utilities xvii
as the “Swiss Army

chainsaw” xvii
commands hybridized with

Unix commands 180
common problems of

beginners xxv
complexity of xix, 3, 51
cryptic programming styles

of 14
definition 437
dialects of 4, 9
efficiency advantages over

Shell 206
functions, list of 160
idiomatic programming style

of 6
link to article on OS-portable

programming
techniques 199, 201, 245

Object-Oriented program-
ming approach 8

redundancies of xix, 7
sensitivity to context 243
similarities to Yiddish 6
source-code beautifiers xx,

265
summary of advantages over

find command 201
summary of advantages vs.

AWK 129
summary of facilities superior

to Unix counterparts 206
syntax 10
See also perl

Perl Best Practices book xxxii
Perl commands. See commands

(Perl)

Perl functions. See functions
Perl Mongers xxii, 368
Perl scripts. See scripts
Perl shell. See scripts, psh
perl, definition 437

See also Perl
PERL5LIB (library search)

variable (Shell)
preserving setting in Shell

startup file 397–403
setting to help Perl find

modules 397–403
perldoc

advantages over man
command 51

-q option, for searching
FAQ 52

PerlDude, featured character for
find2perl examples 200

Perlistan xxvii, 3–5
definition 437
need for citizens to wear dialect

markings 6
PFD, as Precursive Frobination

of Defragulations 388
POD documentation, example of

script containing 155
positional parameters 198
POSIX AWK 124
POSIX find 186–187

capabilities 180, 186–187
POSIX grep, capabilities 58
POSIX sed 92

capabilities 91
POSIX, definition 437
Primary Option Cluster

for Input Processing 93
print function 10

differences from AWK’s
print 134–136

treats commas differently than
AWK’s print 134

with arithmetic expression as
argument 11

printf command, Perl
relatives 223

printf function 25, 407
% as special character with 22
for formatted printing 218
for printing without automatic

newlines 21
used for printing floating point

numbers 324
used for printing with fields of

fixed widths 324
used for prompts 21

printing, Shell’s echo vs. Perl’s
print 10

private variables, are declared
with my 374

procedural programming vs.
object-oriented
programming 405

processing input, a line at a time
using Shell vs. Perl
341–342

program segments, list of 381
Programming Perl book 433
programs, step-by-step construc-

tion technique 47–51
push function 305, 349

for initializing arrays 299
PWD (present working directo-

ry) variable (Shell) 397

Q

quoting
clever use in nexpr* scripts 164
differences between com-

mands and scripts 30
differences between Shell and

Perl 30, 341
introduction to 30
link to guidelines article

(Shell) 49, 136
nesting of single quotes using

backslash 62
of one-line commands 11
Shell-friendly Perl

techniques 136
qw (quote words) operator 391
INDEX 457

R

-r (readable by effective ID) file
test operator 182

unnecessary to use before -T
test 274

-R (readable by real ID) file test
operator 182

Ramon, featured character for
check_length 116

rand function 221–222
syntax and examples 222
Unix relatives 210
used to select random element

from array 305
RANDOM variable (Shell)

Perl relatives 210
Ravi, featured character for data

validation commands, and
jalebi consumption 66

RE (regular expression) notation
corresponding metacharacters

from FNG notation 238
using for matching

filenames 238
recursive grepping 191–192
redirection requests (Shell)

can be attached to constructs,
unlike case in Perl 361

reference value of this book xxiv
references. See \& operator
regex, definition 437
Regexp::Common module

using to identify profane
words 372

regular expressions
as superior to those of Unix

utilities 56
classic dialect (UNIX) 91
comparison of dialects 57
essential syntax 63–64
line-spanning 77–79
metacharacters for grouping,

and match capturing/
referencing 71

quantifier metacharacters 73
shortcut metacharacters 67

relational operators
comparing AWK’s and

Perl’s 157–158
used to define a range of

lines 97
rename function, related to Unix

mv 240
report generation

conditionally pluralizing
nouns 166–167

using system 277–280
return function 364

returned value automatically
converted for caller's
context 365

reverse function
Unix relatives 223
used with sort 225

reverse video terminal mode. See
tput command

rm command, related to Perl’s
unlink 240

rmdir function 239
rock-star biodata system

(AWK) 133–134
rock-star biodata system

(Perl) 134
RS (input record-separator) vari-

able (AWK) 42, 126
Rule of 72

for estimating investment
growth through
compounding 165

S

-s (non-empty) file test
operator 182, 197

easier to use than stat 219
-S (socket) file test operator 182
-s (switch) option 45, 278

used heavily in preg 288
s/// (substitution) operator

capabilities of 91

converting special characters
with 103–105

differences from sed 234
introduction to computed

replacements 91
modifiers for 95
syntax of 95
used to insert indentation 19
using backreferences and num-

bered variables with 99
using computed

replacements 114–118
using context addresses 96
using function-generated

replacements 116
s2p command, translates sed to

Perl 118
scalar (data type)

introduction to 23
scalar context

effects of 208
ways to request 208

scalar function, for overriding list
context 208

scalar to list conversion
tools for 209–210

scope, of type file, defined 434
scoping, definition 437
script, definition 437
scriptification, definition 437
scriptified, definition 437
scripts

4letter_word 372, 375, 383
a scripted grepper 84
advantages over

commands 247
award_cruises 32
award_cruises2 32–33
award_cruises3 38
beatles 313
c2f: Celsius to Fahrenheit 233
cd_report 261, 263
center 365
center2 366
center2.strict 369, 396
458 INDEX

scripts (continued)
center3 396–397
change_file 107, 198
check_length 116
check_length2 117
check_links 405–406
check_symlinks 411–412
compared to Shell scripts 29
compound_interest 165
compound_interest2 167
compress_image 336
compress_image2 345
confirmation 354
count_words 323–324
definition 29
double_space 40
expand_acronyms 343
expand_daynames 94
extract_cell 127, 147
extract_cell2 149
fcookie 305
fcookie2 306
fields2lists, converts input

fields into HTML bullet
items 231

for editing files 107–110
fuzzy_match 85
greperl 248, 286
highlight_trailing_ws 272
how nexpr* scripts work 164
incomplete 141
insert_contact_info 108
insert_contact_info2 110
intra_line_sort 226
introduction to 29–41,

247–248
listfile 217
m2k (miles to kilometers) 115
massage_data 254
mean_annual_precip 145
menu_ls 409
most_recent_file 195
most_recent_file2 267
mytime 212
mytime2 215

mytime3 386
news_flash 277
news_flash2 278, 281
nexpr (Shell/AWK) 164
nexpr_p 164, 283
of dual input-mode

variety 308, 320
perl_cat 30
perlgrep 248, 257, 286
perlman 358–360
phone_home 371, 377, 380
phone_home2 384
phone_home3 385
preg 286–287, 291–292
preg, as replacement for grep-

erl, text_grep, perlgrep, and
rgrep 286

psh 284–286
raffle, demonstrates nested for

loops 347–348
resignation_letter 251
rgrep 192, 273–274, 286
rm_files 341
running Shell commands from

Perl scripts 248
scan4oops 170
scan4oops2 173
shell_types 299
show_fields2 302–303
show_fields2_1 155
show_files 34
show_pvars 337
show_user 357–358
survey.cgi 414, 417, 420–421
text_grep 190, 286
textfile_args 228
textfiles 184, 190, 198, 228
unique_args 316
unique_inputs 318–319
ups_shipping_price 404
user_lookup 321
See also commands (Perl)

Seattle Perl Users Group xx, xxii,
347

link to interview with founder
Tim Maher xxii

subscribers to mailing list re-
quired “use strict” on sub-
mitted source code 368

Seattle.pm. See Seattle Perl Users
Group

sed command
as inferior to Perl for file

editing 110
capabilities compared to

Perl’s 91
differences from substitution

operator 234
eclipsed by AWK 90
emulating -f option with

Perl 94
history of 89–91
matching ranges of

records 152
-n option compared to

Perl’s -n 137
pattern-matching capabilities

compared to Perl’s
124–126

performing line-specific sub-
stitutions with 96

Perl equivalents for common
uses 119

Perl relatives 223
printing lines by number 100
relation to ed 90
shortcomings of 91–93
used to insert indentation 19
using “l” command, for special

listing format 137
was eclipsed by AWK 90

sed, GNU version, defined 433
select function 361

is unrelated to Perl’s select
loop 361

select loop (Perl) 355–360,
408–410

author’s motivation for
developing 356

enhancements over Shell
version 357–358, 361, 409
INDEX 459

select loop (Perl) (continued)
facilitates development of ter-

minal-based menu-oriented
scripts 355

syntax 356
See also Shell::POSIX::Select

select loop (Shell) 331
syntax 356

semicolon
as terminator of

statement 438
customarily omitted for one-

line code blocks 224
not needed at end of most

constructs 265, 333
required at end of do while/un-

til loop 339
use of 19
used in condensed if/else for-

mat (Shell) 260
used in condensed looping for-

mat (Shell) 333
vs. Shell’s <ENTER> as state-

ment terminator 10
Senator Quimby, featured char-

acter for “matching in con-
text” commands 76

shebang line
as used in Perl scripts 11
definition 438
is not used in module files 395

shebang, definition 438
Shell xxvii

bash version, defined 433
meaning vs. shell xxiii
See also glossary

Shell commands, running from
Perl scripts. See command
interpolation; system

Shell functions, vs. Perl
functions 364

Shell processing of command line
is difficult to understand 325

Shell programmer
as reader of this book xxiii

skills required for readers of
part 2 xxiv

Shell prompt
in command-with-output vs.

code-with-output
displays xxxi

primary prompt xxx
secondary prompt xxx

Shell scripts. See scripts
Shell::POSIX::Select

module 356
link to documentation 361,

425
provides the select loop for

Perl 408–410
Sherpa, Yeshe xxii
shift function 254–256

comparison of effects in
Shell and Perl 254

examples and Shell vs. Perl
comparison 255

illustration of effect on
arguments 254

See also unshift function
shortest-anything pattern 78
shortest-something pattern 78,

124
Simple Module Template 390
slash, definition 438

See also / (slash); backslash
Solaris 433
sort function 224–227

case-insensitive sorting 227
programmer defines sorting

rules 225
random sorting 226
random sorting with

List::Util 227
syntax and examples 224
Unix relatives 223
used in printing hashes 337,

343–344
uses $a and $b in comparing

list items 225

source-code filtering 358
as used in

Shell::POSIX::Select 356
space character, definition 438
special characters, converting

with substitution
operator 103–105

special variables 23
split function 211–213

compared to cut
command 211

compared to IFS variable 211
for scalar to list

conversion 209
syntax 211
tips on using 213, 227, 234
Unix relatives 210
used to supply iteration list to

foreach loop 372
when to use matching operator

instead 213
split function (AWK), Perl

counterpart is split 210
sprintf command, Perl

relatives 223
SPUG 347

links to web pages 101
needed meeting-announce-

ment software 101
 See also Seattle Perl Users

Group
square forehead marking.

See forehead markings of
Perlistanis

squared JAPHs
are understandably uneasy

about uninitialized
variables 317

standard error, definition 438
standard input, definition 438
standard option clusters, intro-

duction to 44–47
standard output, definition 438
stat function 181–182, 196,

201, 215–219
syntax and examples 216
460 INDEX

stat function (continued)
tips on using 218–219
Unix relatives 210
using to emulate ls

command 217–218
using to emulate Shell’s -nt

operator 216–217
Stat::lsMode module, for con-

verting permission
strings 217

statement, definition 438
STDERR (standard error),

definition 438
STDIN (standard input)

definition 438
STDIN (standard input)

filehandle 19, 220, 228,
250

as default input source for
script 289

avoiding as default input
source when user omits ar-
gument to script 274

STDOUT (standard output),
definition 438

Steffi, featured character having
“lingering thumb” 186

strict mode 363, 439
enabling using -M’strict’

option 369
See also use strict

strictified 439
stricture 439
string modifiers, for case

conversion 113
String::Approx module

for fuzzy matching 85–86
strings, definition 439
sub declaration 364
sub. See subroutines
subroutines

basics of 363–365
benefits of using 362
caller's context defined 365
defining and using 365–368

passing data through
arguments 367, 383, 392

passing data through global
variables 367, 395

return value can be specially
crafted for caller's
context 365

reusing in other
programs 386–387

syntax and examples 364
vs. Shell functions 364

subroutines and variable scoping,
introduction to 362–363

subs
center_line 367, 369, 386,

395–396
center_line, modularized 393
check_link (from check_links

script) 407
check_slinks (from

check_symlinks script) 412
commafy 413
conscious 382
dial_phone 371
get_home_address 371,

384–385
show_times 414
uniquify (from check_links

script) 408
Sugalski, Dan 347
Sweger, Andy “yDNA” 347
switch variable, definition 439
switch, definition 439
switches, introduction to 33
system administration tools

change_file script 107, 198
check_links script 405
check_symlinks 411, 414
command emulating Shell’s

-nt file test operator 217
command for extracting “File

doesn’t exist” errors from
logfile 152

command for filtering find’s
output 183

command for processing
multi-word filenames 197

command like scan4oops
script 174

highlight_trailing_ws
script 272

most_recent_file script 195
most_recent_file2 script 267
preg script 287
scan4oops script 170
scan4oops2 script 173
shell_types script 299
show_fields script 302
show_user script 357–358
unique_args script 316
unique_inputs script 318
user_lookup script 321
w command 357

system function 275–283, 410
converting Shell’s True/False

values to Perl’s 276, 335
debugging Shell commands

submitted by Perl 281–282
may require multi-level

quoting 335
requires multi-level

quoting 276
syntax and examples 276
tips on using 280–283
used in compress_image 336
using to generate reports

277–280

T

-T (text) file test operator 182,
184–185

incorporates -r (readability)
test 274

tab character, definition 439
table processing

using array indexing 145
with switch-driven scripts 147
 See also field processing

tac command (Linux), Perl
relatives 223
INDEX 461

tail command, as poorly suited
for printing specific
lines 100

taint-checking mode 304
template processing 101–103

advantages of Perl over
sed 103

replacing placeholders 102
See also Template Toolkit

Template Toolkit 103
Term::ANSIColor module 294
Term::Cap module, compared to

tput 271
text processing

quieting spam 113–114
upper/lowercase

conversions 113–114
text substitutions, comparisons of

sed vs. Perl 93–99
Text::Autoformat module 116,

278
as replacement for fmt

command 28
Text::Tabs module 117, 366

provides expand function 366
Text::Wrap module 395
The Perl Foundation 347
time function, returns current

time as large integer
number 414

Tinker toys 363
TMTOWTDI, definition 439
TPF. See The Perl Foundation
tput command 271–273

compared to Term::Cap
module 271

determining terminal’s dimen-
sions using lines and cols
options 271, 277

for displaying text in reverse-
video 285

for manipulating terminal dis-
play modes 271

for underlining text on
screen 275

testing output for error 279

tr command 113, 331
doesn’t take filename

arguments 331
training on Perl, minimal vs.

maximal approaches 7
Travelers tale 3–5, 14
triangle forehead marking.

See forehead markings of
Perlistanis

True value
of Shell, converting to Perl’s

True 275
Shell and Perl definitions

of 32
True, definition 439
Truthiness and Falsity 32
TVM guy, featured antagonist of

Fox Boulder 137–138
typographical conventions used

in this book xxvii–xxxi

U

-u (set-UID) file test
operator 182

umask function 240
undef function

definition 439
used in assignments to explicit

lists 132
used to return undefined value

from sub 368
undefined values

definition 439
detecting and replacing 367
only serious uses trigger

warnings 368
returning from sub 368

Unix
definition 440
skills required of readers xxiv
See also UNIX

Unix people, definition 440
Unix pipelines, data flows back-

wards vs. Perl
functions 223

Unix utilities, POSIX versions,
defined 437

UNIX, definition 440
See also Unix

unlink function 341
is irreversible like rm 240
related to Unix rm 240

unset command 315
unshift function 255,

303–304
illustration of effects 302
used to achieve friendlier

field numbers 302
See also shift function

until loop. See while/until loop
use directive

loading modules with 41
used with strict 439

use strict
as quality standard 368
as used in modules 391
efficacy compared to that

of myopic lavatory
attendant 386

implements strictures,
whose violations are
fatal errors 368

is very limited as a quality-
control tool 370–371,
373, 384–385, 387

poorly conceived declarations
undermine its benefits 375

proper placement in
script 377

purpose of 368–373
See also strict mode

user interaction, obtaining
confirmation 352–353

user-defined variables 25
using modules 403–424

augmenting Perl’s search path
by setting PERL5LIB 397

must import all desired com-
ponents, if not using
defaults 396
462 INDEX

using modules (continued)
preserving setting of

PERL5LIB in Shell startup
file 397, 403

using_defined_for_keyboard_in
put 250

using_re_notation_for_filename
_filtering 238

V

validating data, with grep
command 66

value, definition 440
values function, retrieves all val-

ues from a hash 310
variable assignment, aggregate as-

signment to list of variables
in declaration 405

variable clobberations 371
are more likely with file-scoped

variables 380
more easily avoided in small

programs 385
tips on avoiding 373

variable declarations, syntax and
examples 374–384

variable interpolation
Perl has, AWK lacks 128–129
with print, compared to

AWKish approach 128
variable masking 372–373

$_ may get masked in nested
loops 373

tips on avoiding 373
variable scoping

benefits of curly braces around
Main 379

block scope 377
effects of curly braces 377
employing user-defined loop

variables 383
example of widely-scoped

variable 413
file scope 377

graphical illustrations of
378–382

introduction to 373
loop scope 383
preventing variables from leak-

ing into subs 379
using my declaration 378
using our declaration 381
See also Variable Scoping

Guidelines
Variable Scoping

Guidelines 369
case study of applying:

phone_home2 384–385
for complex programs

376–386
for simple programs 376
introduction to 375
tips on using 385

variable declarations. See my
declaration; our declaration;
local declaration

variables
AWK variable names usable in

Perl 23
cases requiring explicit

initializations 142
common problems 370–373
data variable. See $_ (data)

variable
declarations for switch

type 436
declared with local,

defined 435
declared with my,

defined 436–437
declared with our,

defined 436
default initialization values 25
drawbacks of using spaces

around “=” in
assignment 27

introduction to 23
leakage of 363, 376, 381
list (data type), compared to

scalar 23

masking of, defined 436
Perl compared to AWK 126
record number variable. See $.

(record number) variable
scope, defined 437
See also special variables; user-

defined variables
variables, scalar (data type)

introduction to 23–27
Vitas, featured character for city

rainfall comparison
project 143–149

void context 252

W

-w (warnings) option 11, 17–18,
395

not used in CGI scripts 416
-w (writable by effective ID) file

test operator 182
-W (writable by real ID) file test

operator 182
w command 357
Wall, Larry 347

as apparition in Fox Boulders
dream 134

as creator of Perl xxii, xxvi,
6–7, 9, 14, 20, 51, 59,
93, 118, 123, 158, 175,
211, 436

as discreet critic of your
programs 18

debugs using print statements,
not Perl debugger 285

on relation of Perl to Unix xvii
pays homage to AWK 123
See also glossary

wantarray function 364
warn function

introduction to 35
plus exit preferred to die, in

BEGIN blocks 253
vs. use of carp in

modules 394–395
INDEX 463

warning messages
Applying substitution (s///) to

@array will act on
scalar(@array) 230

Can't open –
switch_var_name: No such
file or directory 34

Global symbol “$whatever”
requires explicit package
name 369, 374

Name
“main::switch_var_name”
used only once, possible
typo 35

odd number of initializers 312
quantifier follows nothing in

regex 237
readline() on unopened

filehandle 237
reference found where even-

sized list expected 312
Scalar value @some_name[0]

better written as
$some_name[0] 308

use of uninitialized value in
print 249, 368

use of uninitialized value in
string ne 251

use of uninitialized value on
line ... 383

used only once: possible
typo 18

useless use of a variable in void
context 221

useless use of defined operator
in void context 252

See also error messages
web scraping 86
while/until loop 333–338

comparison of Shell vs. Perl
syntax 333

tips on using 334
using “infinite” version in

replacement for do while/
until 351–352

while/until loop (Shell), emulat-
ing advanced features of in
Perl 353–354

whitespace, definition 440
Willy, featured character for

insert_contact_info 108
WinDude, featured character for

find2perl examples 200
-wl (output generation)

cluster 45
-wnl (input/output) cluster 45
-wnla (field processing)

cluster 45, 233
-wnlaF (custom field-processing)

cluster 45, 138, 185
word splitting (Shell) 325
-wpl (input/output with printing

cluster), used in sed-like
commands 97

X

-x (executable by effective ID) file
test operator 182

-X (executable by real ID) file test
operator 182

x (string repetition)
operator 265–267

syntax and examples 265
xargs command 195–198

advantages of Perl for sorting
applications 193–196

advantages over find’s -exec
option 193

not an alternative to find’s
-exec on all OSs 200

relation to command
substitution 189

used with find 192–197
XPG4 433

Y

YAPC xx
definition 440

Yet Another Perl Conference.
See YAPC

Yoko, featured character for
fuzzy_match xxvi, 85

Z

-z (empty) file test operator 182
464 INDEX

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Audience and organization
	Part 1: Perl for UNIX and Linux users
	Part 2: Perl for UNIX and Linux Shell programmers
	Reference materials

	Author’s approach
	Reference value
	Forewarned is forearmed
	Entertainment value

	Essential terminology
	Typographical conventions
	Constant width
	Constant width bold
	Italics
	Markup for highlighting and cross-referencing
	Special characters
	Shell and Perl comments

	Displays of commands or code with output
	Shell command-with-output displays
	Perl code-with-output displays
	Ellipsis marks

	Coding conventions
	Shell programs
	Perl programs

	Downloading the source code
	Default invocation options for Perl examples
	Depiction of optional material
	Errata
	Author Online
	About the authors

	about the cover illustration
	tables
	Part 1 Minimal Perl: for UNIX and Linux Users
	chapter 1 Introducing Minimal Perl
	1.1 A visit to Perlistan
	1.1.1 Sometimes you need a professional guide

	1.2 Perl can be simple
	1.3 About Minimal Perl
	1.3.1 What Minimal Perl isn’t
	1.3.2 What Minimal Perl is

	1.4 Laziness is a virtue
	1.5 A minimal dose of syntax
	1.5.1 Terminating statements with semicolons

	1.6 Writing one-line programs
	1.6.1 Balancing simplicity and readability
	1.6.2 Implementing simple filters

	1.7 Summary

	chapter 2 Perl essentials
	2.1 Perl’s invocation options
	2.1.1 One-line programming: -e
	2.1.2 Enabling warnings: -w
	2.1.3 Processing input: -n
	2.1.4 Processing input with automatic printing: -p
	2.1.5 Processing line-endings: -l
	2.1.6 Printing without newlines: printf
	2.1.7 Changing the input record separator: -0digits

	2.2 Using variables
	2.2.1 Using special variables
	2.2.2 Using the data variable: $_
	2.2.3 Using the record-number variable: $.
	2.2.4 Employing user-defined variables

	2.3 Loading modules: -M
	2.4 Writing simple scripts
	2.4.1 Quoting techniques
	2.4.2 True and False values
	2.4.3 Handling switches: -s
	2.4.4 Using warn and die
	2.4.5 Using logical and, logical or
	2.4.6 Programming with BEGIN and END blocks
	2.4.7 Loading modules with use

	2.5 Additional special variables
	2.5.1 Employing I/O variables
	2.5.2 Exploiting formatting variables

	2.6 Standard option clusters
	2.6.1 Using aliases for common types of Perl commands

	2.7 Constructing programs
	2.7.1 Constructing an output-only one-liner
	2.7.2 Constructing an input/output script

	2.8 Summary
	Directions for further study

	chapter 3 Perl as a (better) grep command
	3.1 A brief history of grep
	3.2 Shortcomings of grep
	3.2.1 Uncertain support for metacharacters
	3.2.2 Lack of string escapes for control characters
	3.2.3 Comparing capabilities of greppers and Perl

	3.3 Working with the matching operator
	3.3.1 The one-line Perl grepper

	3.4 Understanding Perl’s regex notation
	3.5 Perl as a better fgrep
	3.6 Displaying the match only, using $&
	3.7 Displaying unmatched records (like grep -v)
	3.7.1 Validating data
	3.7.2 Minimizing typing with shortcut metacharacters

	3.8 Displaying filenames only (like grep -l)
	3.9 Using matching modifiers
	3.9.1 Ignoring case (like grep -i)

	3.10 Perl as a better egrep
	3.10.1 Working with cascading filters

	3.11 Matching in context
	3.11.1 Paragraph mode
	3.11.2 File mode

	3.12 Spanning lines with regexes
	3.12.1 Matching across lines
	3.12.2 Using lwp-request
	3.12.3 Filtering lwp-request output

	3.13 Additional examples
	3.13.1 Log-file analysis
	3.13.2 A scripted grepper
	3.13.3 Fuzzy matching
	3.13.4 Web scraping

	3.14 Summary
	Directions for further study

	chapter 4 Perl as a (better) sed command
	4.1 A brief history of sed
	4.2 Shortcomings of sed
	4.3 Performing substitutions
	4.3.1 Performing line-specific substitutions: sed
	4.3.2 Performing line-specific substitutions: Perl
	4.3.3 Performing record-specific substitutions: Perl
	4.3.4 Using backreferences and numbered variables in substitutions

	4.4 Printing lines by number
	4.4.1 Printing lines by number: sed
	4.4.2 Printing lines by number: Perl
	4.4.3 Printing records by number: Perl

	4.5 Modifying templates
	4.6 Converting special characters
	4.7 Editing files
	4.7.1 Editing with commands
	4.7.2 Editing with scripts
	4.7.3 Safeguarding in-place editing

	4.8 Converting to lowercase or uppercase
	4.8.1 Quieting spam

	4.9 Substitutions with computed replacements
	4.9.1 Converting miles to kilometers
	4.9.2 Substitutions using function results

	4.10 The sed to Perl translator
	4.11 Summary
	Directions for further study

	chapter 5 Perl as a (better) awk command
	5.1 A brief history of AWK
	5.2 Comparing basic features of awk and Perl
	5.2.1 Pattern-matching capabilities
	5.2.2 Special variables
	5.2.3 Perl’s variable interpolation
	5.2.4 Other advantages of Perl over AWK
	5.2.5 Summary of differences in basic features

	5.3 Processing fields
	5.3.1 Accessing fields
	5.3.2 Printing fields
	5.3.3 Differences in syntax for print
	5.3.4 Using custom field separators in Perl

	5.4 Programming with Patterns and Actions
	5.4.1 Combining pattern matching with field processing
	5.4.2 Extracting data from tables
	5.4.3 Accessing cell data using array indexing

	5.5 Matching ranges of records
	5.5.1 Operators for single- and multi-record ranges
	5.5.2 Matching a range of dates
	5.5.3 Matching multiple ranges

	5.6 Using relational and arithmetic operators
	5.6.1 Relational operators
	5.6.2 Arithmetic operators

	5.7 Using built-in functions
	5.7.1 One-liners that use functions
	5.7.2 The legend of nexpr
	5.7.3 How the nexpr* programs work

	5.8 Additional examples
	5.8.1 Computing compound interest: compound_interest
	5.8.2 Conditionally pluralizing nouns: compound_interest2
	5.8.3 Analyzing log files: scan4oops

	5.9 Using the AWK-to-Perl translator: a2p
	5.9.1 Tips on using a2p

	5.10 Summary
	Directions for further study

	chapter 6 Perl as a (better) find command
	6.1 Introducing hybrid find / perl programs
	6.2 File testing capabilities of find vs. Perl
	6.2.1 Augmenting find with Perl

	6.3 Finding files
	6.3.1 Finding files by name matching
	6.3.2 Finding files by pathname matching

	6.4 Processing filename arguments
	6.4.1 Defending against grep’s messes
	6.4.2 Recursive grepping
	6.4.3 Perl as a generalized argument pre-processor

	6.5 Using find | xargs vs. Perl alternatives
	6.5.1 Using Perl for reliable timestamp sorting
	6.5.2 Dealing with multi-word filenames

	6.6 find as an argument pre-processor for Perl
	6.7 A Unix-like, OS-portable find command
	6.7.1 Making the most of find2perl
	6.7.2 Helping non-Unix friends with find2perl

	6.8 Summary
	Directions for further study

	Part 2 Minimal Perl: for UNIX and Linux Shell Programmers
	chapter 7 Built-in functions
	7.1 Understanding and managing evaluation context
	7.1.1 Determinants and effects of evaluation context
	7.1.2 Making use of evaluation context

	7.2 Programming with functions that generate or process scalars
	7.2.1 Using split
	7.2.2 Using localtime
	7.2.3 Using stat
	7.2.4 Using chomp
	7.2.5 Using rand

	7.3 Programming with functions that process lists
	7.3.1 Comparing Unix pipelines and Perl functions
	7.3.2 Using sort
	7.3.3 Using grep
	7.3.4 Using join
	7.3.5 Using map

	7.4 Globbing for filenames
	7.4.1 Tips on globbing

	7.5 Managing files with functions
	7.5.1 Handling multi-valued return codes

	7.6 Parenthesizing function arguments
	7.6.1 Controlling argument-gobbling functions

	7.7 Summary
	Directions for further study

	chapter 8 Scripting techniques
	8.1 Exploiting script-oriented functions
	8.1.1 Defining defined
	8.1.2 Exiting with exit
	8.1.3 Shifting with shift

	8.2 Pre-processing arguments
	8.2.1 Accommodating non-filename arguments with implicit loops
	8.2.2 Filtering arguments
	8.2.3 Generating arguments

	8.3 Executing code conditionally with if/else
	8.3.1 Employing if/else vs. and/or
	8.3.2 Mixing branching techniques: The cd_report script
	8.3.3 Tips on using if/else

	8.4 Wrangling strings with concatenation and repetition operators
	8.4.1 Enhancing the most_recent_file script
	8.4.2 Using concatenation and repetition operators together
	8.4.3 Tips on using the concatenation operator

	8.5 Interpolating command output into source code
	8.5.1 Using the tput command
	8.5.2 Grepping recursively: The rgrep script
	8.5.3 Tips on using command interpolation

	8.6 Executing OS commands using system
	8.6.1 Generating reports
	8.6.2 Tips on using system

	8.7 Evaluating code using eval
	8.7.1 Using a Perl shell: The psh script
	8.7.2 Appreciating a multi-faceted Perl grepper: The preg script

	8.8 Summary
	Directions for further study

	chapter 9 List variables
	9.1 Using array variables
	9.1.1 Initializing arrays with piecemeal assignments and push
	9.1.2 Understanding advanced array indexing
	9.1.3 Extracting fields in a friendlier fashion
	9.1.4 Telling fortunes: The fcookie script
	9.1.5 Tips on using arrays

	9.2 Using hash variables
	9.2.1 Initializing hashes
	9.2.2 Understanding advanced hash indexing
	9.2.3 Understanding the built-in %ENV hash
	9.2.4 Printing hashes
	9.2.5 Using %ENV in place of switches
	9.2.6 Obtaining uniqueness with hashes
	9.2.7 Employing a hash as a simple database: The user_lookup script
	9.2.8 Counting word frequencies in web pages: The count_words script

	9.3 Comparing list generators in the Shell and Perl
	9.3.1 Filename generation/globbing
	9.3.2 Command substitution/interpolation
	9.3.3 Variable substitution/interpolation

	9.4 Summary
	Directions for further study

	chapter 10 Looping facilities
	10.1 Looping facilities in the Shell and Perl
	10.2 Looping with while / until
	10.2.1 Totaling numeric arguments
	10.2.2 Reducing the size of an image
	10.2.3 Printing key/value pairs from a hash using each
	10.2.4 Understanding the implicit loop

	10.3 Looping with do while / until
	10.3.1 Prompting for input

	10.4 Looping with foreach
	10.4.1 Unlinking files: the rm_files script
	10.4.2 Reading a line at a time
	10.4.3 Printing a hash
	10.4.4 Demystifying acronyms: The expand_acronyms script
	10.4.5 Reducing image sizes: The compress_image2 script

	10.5 Looping with for
	10.5.1 Exploiting for’s support for indexing: the raffle script

	10.6 Using loop-control directives
	10.6.1 Nesting loops within loops
	10.6.2 Enabling loop-control directives in bottom-tested loops
	10.6.3 Prompting for input
	10.6.4 Enhancing loops with continue blocks: the confirmation script

	10.7 The CPAN’s select loop for Perl
	10.7.1 Avoiding the re-invention of the “choose-from-a-menu” wheel
	10.7.2 Monitoring user activity: the show_user script
	10.7.3 Browsing man pages: the perlman script

	10.8 Summary
	Directions for further study

	chapter 11 Subroutines and variable scoping
	11.1 Compartmentalizing code with subroutines
	11.1.1 Defining and using subroutines
	11.1.2 Understanding use strict

	11.2 Common problems with variables
	11.2.1 Clobbering variables: The phone_home script
	11.2.2 Masking variables: The 4letter_word script
	11.2.3 Tips on avoiding problems with variables

	11.3 Controlling variable scoping
	11.3.1 Declaring variables with my
	11.3.2 Declaring variables with our
	11.3.3 Declaring variables with local
	11.3.4 Introducing the Variable Scoping Guidelines

	11.4 Variable Scoping Guidelines for complex programs
	11.4.1 Enable use strict
	11.4.2 Declare user-defined variables and define their scopes
	11.4.3 Pass data to subroutines using arguments
	11.4.4 Localize temporary changes to built-in variables with local
	11.4.5 Employ user-defined loop variables
	11.4.6 Applying the Guidelines: the phone_home2 script

	11.5 Reusing a subroutine
	11.6 Summary
	Directions for further study

	chapter 12
	chapter 12 Modules and the CPAN
	12.1 Creating modules
	12.1.1 Using the Simple Module Template
	12.1.2 Creating a module: Center.pm
	12.1.3 Testing a new module

	12.2 Managing modules
	12.2.1 Identifying the modules that you want
	12.2.2 Determining whether you have a certain module
	12.2.3 Installing modules from the CPAN

	12.3 Using modules
	12.3.1 Business::UPS-the ups_shipping_price script
	12.3.2 LWP::Simple-the check_links script
	12.3.3 Shell::POSIX::Select-the menu_ls script
	12.3.4 File::Find-the check_symlinks script
	12.3.5 CGI-the survey.cgi script
	12.3.6 Tips on using Object-Oriented modules

	12.4 Summary
	Directions for further study

	epilogue
	appendix A
	Perl special variables cheatsheet
	appendix B
	Guidelines for parenthesizing code
	glossary

	how to use this index
	index

