S
Instant gratiﬁcation.’ Reabw?rld Web app
you can usé right away:

PHP & MySQL
Everyday Apps

FOIﬁI S
Six ready-to-use
apps on CD-ROM

A Reference
for the

Rest of Us!

FREE eTips at dummies.com®

Janet Valade

Author of PHP5 For Dummies and
PHP & MySQL For Dummies

PHP & MySQL®
Everyday Apps

FOR

DUMMIED

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL*
Everyday Apps

FOR

DUMMIED

PHP & MySQL®
Everyday Apps

FOR

DUMMIED

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL® Everyday Apps For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. MySQL is a registered trade-
mark of MySQL AB Limited Company. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005923782
ISBN-13: 978-0-7645-7587-7

ISBN-10: 0-7645-7587-2

Manufactured in the United States of America
109 87654321

10/SQ/QW/QV/IN

WILEY

About the Author

Janet Valade has 20 years of experience in the computing field. Her back-
ground includes work as a technical writer for several companies, as a Web
designer/programmer for an engineering firm, and as a systems analyst in a
university environment where, for over ten years, she supervised the installa-
tion and operation of computing resources, designed and developed a state-
wide data archive, provided technical support to faculty and staff, wrote
numerous technical papers and documentation, and designed and presented
seminars and workshops on a variety of technology topics.

Janet currently has two published books: PHP & MySQL For Dummies, 2nd
Edition, and PHP 5 For Dummies. In addition, she has authored chapters for
several Linux and Web development books.

Dedication

This book is dedicated to anyone who finds it useful.

Author’s Acknowledgments

[wish to express my appreciation to the entire Open Source community.
Without those people who give their time and talent, there would be no cool
PHP for me to write about. Furthermore, I never would have learned this soft-
ware without the PHP lists where people generously spend their time answer-
ing foolish questions from beginners. Many ideas have come from reading
questions and answers on the lists.

[want to thank my mother for passing on a writing gene and a good work
ethic. Anything I accomplish has its roots in my beginnings. And, of course,
thank you to my children who manage to remain close, though far away, and
nourish my spirit.

And, of course, I want to thank the professionals who made it all possible.

Without my agent, my editors, and all the other people at Wiley, this book

would not exist. Because they all do their jobs so well, I can contribute my
part to this joint project.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, Composition Services
and Media Development

Project Editor: Nicole Sholly Layout and Graphics: Andrea Dahl,
Acquisitions Editor: Terri Varveris Joyce Haughey, Clint Lahnen,

Barry Offringa, Lynsey Osborn,
Melanee Prendergast, Heather Ryan

Project Coordinator: Nancee Reeves

Copy Editor: Virginia Sanders

Technical Editor: Craig Lukasik
echiica 1tor: Lralg Lukasl Proofreaders: Leeann Harney, Jessica Kramer,

Editorial Manager: Kevin Kirschner Carl William Pierce, TECHBOOKS

Permissions Editor: Laura Moss Production Services

Media Development Specialist: Travis Silvers Indexer: TECHBOOKS Production Services

Media Development Manager: Special Help: Kim Darosett, Andy Hollandbeck
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JNEOAUCTTONceeneeeeeaeeeeeeeeeeaeeeeeeeeeaaaaaaaaaaannnnnnnneeeeeeeeees 1
Part I: Introducing Application Development 7
Chapter 1: Building Your Applicationcocceceevirnienenininieeeeeeseee e 9
Chapter 2: Building in Application SECUritycccoceevierieiierieeeceee e 23

Part 1I: Building a User Authentication Application43

Chapter 3: User Authentication with HTTPcccccooiiiiiiiiieee e, 45
Chapter 4: User Login APPliCAtioncccceevieviieciiiiinieseccciceeeeeee et 77
Part l11: Building Online Sales Applications 129
Chapter 5: Online Catalog APpliCcationcceceiiiviirininiineeeee e 131
Chapter 6: Shopping Cart AppliCationcccccceecieiierienieceeeeee et 159
Part 1U: Building Other Useful Applications233
Chapter 7: Building a Content Management SysStemcccccoccevvvervienienieneenennienns 235
Chapter 8: Hosting Discussions with a Web Forumccccocevviniiniininnieniennn, 309
Part U: The Part of Tensccccceeeecaceeeceasaseeeecesneees 373
Chapter 9: Ten Hints for Application Developmentc.ccoceieiininininicnneeiene 375
Chapter 10: Ten Sources of PHP COdEcccceeviriiniecieiiceeieeeecee st 379

Part Ul: Appendixescccccueeccceeicccceeieicnececeens 383

Appendix A: Introducing Object-Oriented Programmingccccevvvvvievvienveennenne. 385
Appendix B: Object-Oriented Programming with PHPccccoccoviinninninnnnnne. 391
Appendix C: The MySQL and MySQL Improved Extensionsccccceceveereeeeenen. 407
Appendix D: ADOUt the CDcceeeiiiiicicceceeeeeee ettt e 411

JRACK «....eennneeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaannnnnneneeeeeees B 1T

Table of Contents

JOEPOAUCTION «..aaeeeeaeeeeeeeaeeeeeennaaaeeeennasaeeesnnnseeessnnsseeeens]

ADOoUt This BOOK ...c..oiiiiiiiiiiiiieeettett et 1
Conventions Used in This BOOKccccccoeciieiieeieniinieceecieeeeeeeeeeee e 1
Foolish ASSUMPIONScccviiiiiiiiiiecicieeecteeee ettt et eeens 2
How This BOOK Is Organizedccccceeviiriiriienienieiieneesieeieeieeeeseesieeniens 3
Part I: Introducing Application Developmentc.cccocvvviercveneenen. 3
Part II: Building a User Authentication Applicationcccccueeeee. 4
Part III: Building Online Sales Applicationsc.ccccccoeeevvevieevenneennen. 4
Part IV: Building Other Useful Applicationscccoceeveveeieceevennene. 4
Part V: The Part of TENSccccvevieviieiieieceeeceeeeeee e 4
Part VI: ADPENAIXEScc.ovvivierieniieiiesieeieeie ettt esveevesaeeaesneesneas 4
ADOUL the CD ...ttt 5
Icons Used in This BOOKccccceviriririeieeeeeeeeeeeee e 5
Where to GO from HErecoccoviiiiiiiieieieeeeeeeeeeee e 5

Part I: Introducing Application Development7

Chapter 1: Building Your Application 9
Understanding PHP and MySQL Versionscccceceeveeviercienienieeneenennne. 10
IMYSQL ettt ettt ettt 11

PHP ettt ettt ettt 11

PHP and MySQL togethercocoovieiiinienenineeeeeeeeseeeeeee 12

Using the Application Source Codeccovevieriienieneenieeieeieeeeeeeeieenes 13
ChooSIiNg a 10CAtION ...cccviviirieeieieeeeeeee e 13
Understanding the PHP codeccccoovieiiiniiiniiniiiiecieciecieeeee 14
Procedural versus object-oriented programscccceceervuercveneenne 15

Modifying the Source Codecooueviieeiieiiecieeieeieseeeee e 16
Programming €ditOrsccccoceviiiiiiiniinieneeteeeeeeeee e 17

Integrated Development Environment (IDE)ccccecievieniennnns 18

Planning Your Applicationc.ccocceviieiiiriiiriienienieneeieeie e 19
Planning the softwareccccooviiviiniininiieceeeeeeee e 20
Additional planningccccecceevieniiinienieeneeeeee e 20

Chapter 2: Building in Application Security 23
Understanding Security RiSKScccccovirviiriiiniiiniiiniiicecieeeeeeeee, 24
Building Security into Your PHP Scriptsccccccoevevieiieieeiecieeeeeeeeenee, 24
Don’t trust any information from an outside source 25

Storing iNformationc.ccceeceeiiiieriieseee e 30

Xi[PHP & MySOL Everyday Apps For Dummies

Using system CallSccoceeieriiniiiiiniiieneceteteeeeee et 31
Handling €YTOTSccoeuieiiieieeeeeeeeteete ettt 32
MYSQL SECUTILY ..eouveniiiiriieiieiteieteere ettt 33
Setting up accounts and PasSWOIdSccccceevvereeneerieesieeriesiieneenns 33
Accessing MySQL from PHP SCriptsccccoccevviiviiencienieeneiicecieeene 37
Understanding SQL injection attacksccccccovvvveivenniinnieniiencennns 38
Backing up your databasescccccoveeveriiiniiinienieeeeeeeeeeee 40
Using a Secure Web SErveriecieciecieeieeeseeeee e 41

Part 1I: Building a User Authentication Application43

Chapter 3: User Authentication with HTTP 45
Understanding HTTP Authenticationccccocevvieniininiiniiniinicnceene, 46
Understanding how the WWW worksccccoveviiniininiinniennienennne 46
Requesting a password-protected fileccoccovviviniiniinieniennenne 47
AUthOTIZING ACCESSvveiieiieiecieceeeeeeeee e 48
Using HTTP Authentication with Apacheccccccoviviiviniiniinieeeeee, 49
Configuring APAChEcocivieiiiniiieeccccceeee e 49
Creating the .htaccess filecccoceveeiecierenicee e 50
Creating the password fileccccooviriiniiniiniincceeeeeeee 51
Apache HTTP authentication in actioncccceceevecienencnenennenne. 52
Designing an HTTP Authentication Application in PHP 52
Creating a User Databasecccceveevieeiiiriiieieniesecseee et 54
Designing the user databasecoceveevienciiniiiniienieeeeeeeeeeeee 54
Creating the user databaseccccecvevievierierineeeeeee e 55
Accessing the user databasec.ccocecveeievevenenceneeee e 55
Building the Authentication Application in PHP:
The Procedural APProachcccocvecieeieeiiinienieceeeeeee et 56
Building the Authentication Application in PHP:

The Object-Oriented APProachccccoceevieviinienienieeeeeeeeeeeeeene 60
Developing the ObJectsccoocvviiiiiiiiiiceceeceee e 60
Writing the PasswordPrompter classccccvvevvieneenennenncnniennen. 61
Writing the Database €lasscccocvveeieienienenereceee e 62
Writing the Account Classcccccevverieniecieecieeeeeeceee e 66
Writing the WebPage Classcccocvevieviieiiincieeiesieceeceeneeee e 71
Writing the Auth-OO SCIipt ...ccccooviiriiiiieieiiceeeeeeeeee e 73

Chapter 4: User Login Application 17
Designing the Login Applicationccccoccevvienieniieniieneeneciecieeeeseeieene, 78
Creating the User Databasecccccoccevviiriiiniieniinienieeciecieceeseeeee e 78

Designing the databaseccccooceeviriiiiiniiniiniceeeeee 79
Building the databaseccccociririiiienereeeeeee e 80
Accessing the databaseccccoecveeieeiecieciiceeeceeeee e 81

Adding data to the databaseccccoeceevieviieciieciiccieceeeeeeeeeee 81

Table of Contents

Building the Login Web Page ..ottt 82
Designing the login Web pagecccocevievinininceeeeeeeeeeee 82
Writing the code for the login pagecccceeeveevieeviecienierieeeeee 83
Displaying the login Web pagecccoceevieriinienieneeceeieciecieeeee 91

Building the Login Application: The Procedural Approach 91
Writing the application SCriptccccoecievirviiniiniinientceeeeeeeee 92
Protecting your Web pagescccoccevvieriiniiniinennieenieeieeeeeeee 100

Building the Login Application: The Object-Oriented Approach 101
Developing the ObJECtSccvcvvieciieiieiicieceeeeeeee e 101
Writing the WebForm Classccoovveveevieeciiniienieseeseeeesieeee e 102
Writing the Database Classccccooveeveeviiriiiniinicncceeeceee e 110
Writing the Account Classccoceveeveriiiniiiniienientceeeeeeee e 111
Writing the Session Classccccooivviiveniiniiinieieeeeeeeeeeeee e 114
Writing the Email Classccccooceiiiniininiiniiieeceeeeeeeeeee 117
Writing the login application scriptccccoccevvieviiiiiiienieeieeee, 119
Protecting your Web pagesccccceevievienieniieneeceeeeeeieeee e 126

Adding Features to the Applicationccccocevviiviinienennienienieeeeeeen 126

Part 111: Building Online Sales Applications129

Chapter 5: Online Catalog Application 131
Designing the Online Catalog Applicationc.coccecevevinenenenieeniennns 131
Creating the Catalog Databaseccccocevieiienieneenieciecieceeeeeee e 132

Designing the Catalog databasecccccocevviiniiininiennencienienee, 132
Building the Catalog databaseccccoccovvieviiiniininninnenienieneee 134
Accessing the food databasecc.coceeverviiniiiniiiniiniiieeee 134
Adding data to the databaseccccooeecieciieciieiecieeeeeee 135
Building the Catalog Web Pagescccecevivinininiiniiereeeececeeeens 135
Designing the catalog Web pagesccccecveevieveeneeniennieevieeieeeene 136
Writing the code for the index pageccccevevieeieneenennenieneene, 138
Writing the code for the products pagecccceeveevvvvinnenciennenne. 140
Displaying the catalog Web pagesccccocevvievirvinninsensienieneenes 145
Building the Online Catalog Application: Procedural Approach 145
Building the Online Catalog Application: The Object-Oriented
ADPPYOACH ..ot e 149
Developing the ODJECtScccvvvivvievciiniinieeieeecccece e 149
Writing the Catalog Classccccoceeceeiecieniineceeeeeeeeee e 150
Writing the catalog application scriptcccccecvvevevvnccnccneenen, 155
Growing the Catalog Classccocevieviererinieeeeeere e 157

Chapter 6: Shopping Cart Application 159

Designing the Shopping Cart Applicationccccecceeerievenenenenceenienens 159
Basic application design deciSionscccoceeveeveeviievieesieeieeneene 159

Application functionality designccccceccveviercenienieneeneeieee 161

X

XIU PHP &MySOL Everyday Apps For Dummies

Creating the Shopping Cart Databasecccccocevverveniiniiniienienieeeen, 162
Designing the shopping cart databasecccccoecevvinivnnienneneenne. 162
Building the shopping cart databaseccccoeceeeieviiecieeciecieennnne, 164
Accessing the shopping cart databaseccccceevvevieviivieniennnnne, 165
Adding data to the shopping cart databasecccccoecveviervennnnnne. 165

Building the Shopping Cart Web Pagesccocovevviriiniiniienienieeeens 166
Designing the shopping cart Web pagescccccocvvenvvnviennienennne. 166
Writing the code for the product information page 171
Writing the code for the shopping cart Web page 175
Writing the code for the shipping information form 182
Writing the code for the summary pageccocceeveeveeveenierceennenne 187

Building the Shopping Cart Application: The Procedural Approach ...193
Writing ShopCatalog.php ...c.ccooceeviiriiiriirieeee e 193
Writing ShoppingCart.phpccceceveeevieiierineceeeeeeeee e 197
Writing ProcessOrder.phpccccceeeeeeieecieeiieciecieceeseee e 200

Building the Shopping Cart Application:

The Object-Oriented Approachcccceccevvieviinienieniniineeeeceereeen 207
Developing the ObJectscccocevvivciiniiiniinienteceeee e 207
Writing the Catalog Classccccovevviiveeiiniiinieceeeeeeeee e 208
Writing the [tem Classcccoovieircieieieieeeeee e 210
Writing the ShoppingCart classccccoveveveririinienerereceeeenee, 212
Writing the Database Classccccceeveeveviineceeiceeeeee e 215
Writing the Order Classccoecvevievieneeienieciereeeceee e 216
Writing the WebForm classcccccoocevvevviniiniiiniienieececieeeeeeene 221
Writing the WebPage Classccccovevveiiiniiiniienieicececeeeeeee e 222
Writing the Email Classcccocoevireiriiinieniineceeeeeeee e 223
Writing the shopping cart application scriptccccceeeeveennnee. 223

Adding Features to the Applicationccccocevviiviiniieneeceeieceeeeceeen 231

Part 1V: Building Other Useful Applications233

Chapter 7: Building a Content Management System 235
Designing the CMS Applicationcoccoceverenininieerieerereeeeeeeeeens 235
Creating the CMS Databaseccccoceeiiieiienienininieeeeeseese e 236

Designing the CMS databaseccccecevvirienieneeniecieeieeiecee e 237
Building the CMS databaseccccccevvevieniiniienieneceeeeieeeeeee e 240
Accessing the CMS databaseccccoocevveviiiriiiniiineenieieeeeeeeene 243
Designing the CMS Web Pagesoccovieviiniiniiniieeieneneeeeeseeeeen 243
Building the CMS Application: Procedural Approachccccoecveennee. 246
Writing the 10gin Codecoovviiiiiiieieiceceeeeee e 246
Writing CompanyHome.php, a data retrieval file 253
Writing company.inc, the main HTML display file 262
Writing the content detail codecccocevviirviiniiniininiieriee, 265

Writing Admin.php, the data manipulation code 269

Table of Contents }(/

Building the CMS Application: Object-Oriented Approach 275
Writing the object modelccocoeieiiiininieee e 275
Writing a basic data Classcoceveeveniiniinniniceeeeeee 277
Writing the Department Classccccceeceeciiriencienieneeneeeeieeee e 279
Writing the ContentType classccoceveerciiriienieneeneeeeeeeeeeee 281
Writing the Contentltem classcocevvevviiriiiniieniienicieeeieeeee 283
Writing the ContentDownload classccccocevieniivinninnieniieneenne. 289
Writing the Database Classccceceevievierenenieeeeeeee e 291
Writing the WebForm Classcccoeeveeeiieiiiecieeieceeeeeeeeie e 292
Writing the code for the login pagec.ccccoevevvievienieneeniecieee 293
Writing fields_content.inc and content_form.inccccccucu....... 294
Writing the display COdecocvviiniininiiiniiiiiieeeeeeeeee e 294
Writing Admin-OO.php, the data manipulation code 303

Enhancing the Content Management Systemc.ccceeeevveeieeeeenneennen. 307

Chapter 8: Hosting Discussions with a Web Forum 309

Designing the Forum Applicationccccoevererininieenienienereseeeeeeeeene 309

Creating the Forum Databasecc.coceceeiieneninininieeeeeeeeeeeene 310
Designing the Forum databaseccccccovvvevieniecinciinciieieeieeeee, 311
Building the forum tablescccocivviiniiiniiniicceeeeee 314
Accessing the forum tablescccoveviiniiniiniiinieee 315
Adding data to the databaseccccoocevviriiiniiiniiniieeee 316

Building the Forum Web Pagescccocieiivieiininineeeeeeeeeeene 317
Designing the Forum Web pagescccccvvieiniiviciincieenieeeeeeeen. 317
Writing the code for the Forums pagec.ccceceveevivcievieniennnnnne. 321
Writing the code for the Threads pageccceceeeveeveeriernienceennenne. 324
Writing the code for the Messages pageccceceeveevivevienceeneenne 328
Writing the code for the New Message pagecccceevevviereenneenne. 331
Writing the code for the Reply pageccccocevvevievieciiecieeieee, 334

Building the Forum Application: Procedural Approach 337
Writing viewForums.phpcccocvieiieviniiniicieececeeeee e 337
Writing vieWTOPIC.PRP ...ooveviiiiieeecceceeece e 338
Writing viewThread.phpccoeceviiiiininiinitetceceeee e 338
Writing postMessage.php ..c...ooceevvivriinieniiiniinieeteeeeeeeee e 339
Writing posStREPLY.DIP ...ooiiiiiiiiieeee e 342
Writing the supporting functionsccccceveeceevienienieseeieeeee, 345

Building the Forum Application: The Object-Oriented Approach 347
Developing the 0bJectsccocvvveeviinciiniinieeceeeee e 348
Writing the TableAcCessOor Classccccocevviervienienienieenieeieneeneene 349
Writing the Thread Classcccocevcervieeienenereeeeeeee e 353
Writing the Post Classccoovvivircieieeieeeeeee e 355
Writing the Database Classccccocveeveeciieciiecieecieceeeeeee e 357
Writing the WebForm classcccoeveeevieinieeeeeeeeeeeeeene, 358
Writing the Forum application scriptscccecvevveevervenvienceennenne. 359
Writing the supporting functionsc..ccccevevvieniieninniennencieneene 368

Possible Enhancementsccccoovveieeiiiiiiiieicceeecceeee et 371

XVl PHP &MySOL Everyday Apps For Dummies

Part U: The Part of Tenscccccceeeeeiaceeeccaaceeeeeeaaaees 373

Chapter 9: Ten Hints for Application Development 375
PLAN FIFST ooeeeiiceceeeeeeee ettt sttt et s sre e e aennans 375
Be CONSISLENT ...ccuviiiiiieiieieceeeeecceeee ettt s 376
Test Code Incrementallyc.ccocevviiniinieniinietecceceee e 376
Remember Those Who FOLlOWccoceviiiiiiiiiiiiieeeceeee 376
USE CONSTANLES ..cvvieiiiieiieiieeieeieeie e ete ettt esteesteesaeeteebeebesaaesssessnesseeseas 376
Write Reusable COdecciiiiiiiriiiieiecieciectecee e 377
Separate Page Layout from Functionccccoeeeeveeviniiniincenciecceneee, 377
Don’t Reinvent the Wheel ..o 377
Use the Discussion Lists Frequently, but Wiselycccccovvvvieninnnnnnen. 378
Document EVerythingcccccoeoiiiiiieiiicieeteeee e 378

Chapter 10: Ten Sources of PHP Code 3719
SOUICEFOIZE.MNEL ..o 379
WEDEIDEV ...ttt ettt ettt e s ae e et e e sae e e e e enae e 380
PHP CIaSSESuveeuiiciieiieiiiesieeieete e cteeteeieeste et esteesaeeveesseetesssassaessnesseessnan 380
COAEWALKETS ..ottt ettt ettt et e e te et e sabe s e e ssneneeen 380
PHP BUILAETooiiiiiiiieeeeeeeeceee ettt st s 381
HOtSCrIPES.COM ..ooiiiiiiiiceee e 381
ZENA ..ottt ettt b et sbe st e ae e b s 381
o 5 Lol O T | S 382
PX: The PHP Code EXChangecccccceeievieiienienieiececie e 382
Free PHP and MySQL Hosting Directorycccccoceeveeveecienciencienceeneennen. 382

Part Ul: Appendixesccceecceeiereeeieeescrecsaseeeaes 383

Appendix A: Introducing Object-Oriented Programming 385
Understanding Object-Oriented Programming Concepts 385
Objects and ClASSEScceeciiecieeiieeieeie ettt ae e ene 386

PrOPEILIES ...oocviieiieieeeeceeeeeeeeee et e 386

MELNOAS ..ottt 387
ADSEIACION ..ooviiiiiiieiieieeeee e e 387
INHETTANCE ..oeiiiiiiiii e e e 388
Information hidingcccooeriririiiieeeee e 389

Creating and Using the Classccccoceevienienienieneeiecieeie e 390
Appendix B: Object-Oriented Programming with PHP 391
Writing a Class Statementccceceeviieiiieiiecieccceeceee e 391

The class statementccccoceeviecieniiinieeieseeceee e 391

Naming the Classccoccoviiiiiiiiiireee e 392

Adding the class COdecooiriiiiiniirieieee e 392

Table of Contents X(/ii

Setting Propertiesccoeivirrerieniienereteeeeee e 392
Adding Methodsccocieierierieiieeeeeee e 394
Accessing properties and methodscccccceeeveeieiiiiieniecieennnne, 395
Writing the CONStrUCLOYcccocoviiiiiiiieiieiiceceeeeeee e 396
Putting it all togetherccovveviviiniineee e 397
Using inheritance in your classc.cccccevvieniiineininnennensienieneene 398
USING @ ClaSS ...eevuieiiiiiiiiiieeieeteete ettt ettt ettt st st st sbe s 399
Creating an ODJECEcccivvieierieieeee e 399
Using Methodscooiiviiiiiiiiiiiiieeteeeee e 399
AcCCeSSING PrOPErtiescccceecieiierieniieieeieeeerese e 400
USING EXCEPLIONSoooviiiiiiieiieiieieciectestestet ettt s 400
COPYING ODJECES ..ouviiiiiiiiiieieeieeiesee ettt sttt s 401
Destroying ODJECEScociiviiiriiiienieiieeteteect ettt st 402
Using ADStract ClaSSEScoeevvieciiiiieieeieceenieesieesie et ereeae e eeas 403
Using INtErfacescccooeeieiiiiiieeieee et 404
Testing an ODJECTcooveeeeeieieieceeeeeeeeee et 405
Object-Oriented Concepts That PHP 5 Omitscccccecvevvevineneneenennnns 405
Appendix C: The MySQL and MySQL Improved Extensions 407
Appendix D: AbouttheCDcccoiiiiiiiiiatn, an
System ReqUIrEMENTScccceeviieiiiiiiiiieiereere et ere et ere v eeees 411
USING the CD .ottt ettt sttt s 412
What You Can Find on the CDc.ccoeviiiiiiiininiincecceeneeeceeeees 412
Source code files ..o 412
Links to useful PHP and MySQL informationcccceceveveveenenn. 413

A DONUS ChAPLETooiieiiiececeeeeee e 414
TroubleShOOtINGcooiiiiiiiieiieiececeeeee et es 414

JOACK «neeeeeeeeaaeeeeeeeeeeaeaaaaeneneeeanaeaasnnnnseeessaeeanannneens B 1T

X(/[” PHP & MySOL Everyday Apps For Dummies

Introduction

B ecause you're looking at a book called PHP & MySQL Everyday Apps For
Dummies, I assume you want to build a Web application with the PHP
scripting language and a MySQL backend database. If you need to build a
dynamic Web application for a specific purpose, you're in the right place.
You will find six popular applications in this book and one additional applica-
tion chapter on the CD. If the exact application you need isn’t here, you can
probably adapt one of the applications to suit your needs.

About This Book

This book is a practical introduction to dynamic Web applications. It provides
the code and information needed to build several of the most popular appli-
cations on the Web. The applications in this book allow you to
v Restrict your Web site or part of your Web site to authorized users
v Sell products on your Web site
v Provide a place where users can communicate with each other online
v Allow users to publish and edit their documents on a Web site
v Manage mailing lists
You can use these applications as is, modify them for use on your Web site,

or build your own application by using techniques that I show you in these
applications.

Conventions Used in This Book

This book includes many listings of PHP code. Line numbers appear at the end
of some of the lines in the listings. [explain the code after the code listing.
The line numbers in the explanation refer to the specific line in the code.

2 PHP & MySQL Everyday Apps For Dummies

In MySQL queries in the code listings, the SQL commands and key words
appear in uppercase letters. The parameters specific to your application,
such as the database name and field names, use their specific names, usually
lowercase letters or, sometimes, lowercase letters with a beginning upper-
case letter. For example, look at the following SQL query:

SELECT name FROM Customer WHERE account_number="$acc_no"

The all-uppercase words are SQL commands and keywords, which must be
spelled exactly as shown. The words with lowercase letters are the names of
items in your database, such as the table name and field names.

A continuation symbol (D) appears at the end of some lines of code to indi-
cate when a line is too long to fit in its allotted space on the printed page.

Foolish Assumptions

[assume that:

+ You’re building your Web application in an environment that includes
access to PHP and MySQL. This might be your own computer or a Web
hosting company. This book doesn’t include instructions for installing
PHP or MySQL. I assume that your environment is already installed and
working.

+* You have some experience with PHP. You don’t need to be an expert
PHP coder. You don’t need advanced PHP skills. You only need a basic
understanding of how PHP works and its basic features, such as if state-
ments and foreach loops.

When I explain the code in the listings, | don’t explain each line in detail.
I provide a general description of the tasks performed by the script and
tasks performed by specific loops. I provide a detailed explanation only
for parts of the script that are specialized or potentially confusing.

Even if you don’t have experience with PHP, if you have programming
experience in another language, such as Perl or C, you might be able to
understand and use the applications in this book. PHP is close to C syntax
and is designed to be easy to use. Its features are quite familiar to anyone
with programming experience.

+* You have a basic understanding of MySQL. [don’t explain how to create
MySQL databases. I don’t provide any description of SQL. I do provide
SQL queries that you can use to create each database, but assume that
you know how to use the SQL query.

Introduction 3

v You know HTML and a little CSS. If you have experience with PHP, you
necessarily have experience with HTML. I also assume a slight acquain-
tance with CSS. The applications in this book display some Web pages,
such as the catalog or the login screen, so HTML and CSS are included in
the code listings. I keep the HTML as simple as possible so that it doesn’t
interfere with your understanding of the PHP. However, some HTML is
necessary. In general, I use in-line CSS code to format the HTML. [don’t
explain the HTML or CSS.

How This Book Is Organized

This book is divided into six parts, with two chapters in each part. Chapters 3
through 8 present applications. An additional bonus application chapter
is included on the CD. Each application chapter includes the following
information:

v Discussion of issues

v Structure of the database

v Code listings

v~ Explanation of the code

Each application chapter presents both procedural code and object-oriented
code for the application.

The additional chapters provide information that’s useful when building
applications (for example, | demystify security considerations).

Part I: Introducing Application
Development

Chapter 1 in this part provides the information needed to use the applications
in this book. It discusses PHP and MySQL versions, installing and modifying
applications, and procedural versus object-oriented programming. In Chapter 2,
you find out how to write secure code.

4

PHP & MySOL Everyday Apps For Dummies

Part I1: Building a User Authentication
Application

This part provides information and code to build a user login application.

[present two types of applications: user authentication using HTTP authenti-
cation (Chapter 3) and a user login application that allows users to register
their own accounts, as well as log in to a secure Web site (Chapter 4).

Part l11: Building Online
Sales Applications

This part provides information and code for online sales applications. In
Chapter 5, you find out how to write code for an application that provides an
online catalog. Chapter 6 covers writing an application that allows customers
to buy products from the catalog.

Part 1U: Building Other
Useful Applications

In Part IV, I present two other applications that you may find useful. In
Chapter 7, I describe how to build a content management system (CMS).
[describe how to build a Web forum in Chapter 8.

Part U: The Part of Tens

This part provides a useful list of important things to keep in mind when build-
ing an application (Chapter 9). I also provide a list of Web sites offering useful
resources, such as code libraries, tutorials, articles, and so on (Chapter 10).

Part Vl: Appendixes

This part provides instructions for object-oriented programming. Appendix

A provides an introduction to the object-oriented programming features of
PHP for people who know PHP, but are unfamiliar with the concepts and termi-
nology of object-oriented programming. Appendix B describes the syntax of
PHP object-oriented features for those who are familiar with object-oriented

Introduction

programming in another language. Appendix C provides information on PHP
functions used to interact with MySQL. It provides tables for converting from
mysql functions to mysqli functions and/or mysqli objects. Appendix D
describes in detail what you can find on the CD accompanying this book.

About the CD

The CD at the back of this book contains all the source code you need to

run the applications that I describe throughout. You also find a list of links to
Web sites that offer PHP-related code libraries, tutorials, and articles. Lastly, I
include a bonus chapter on the CD that simply wouldn'’t fit in the book. The
bonus chapter covers building and managing a mailing list.

Icons Used in This Book

WING/
&

WBER
‘x&
&

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

Always read the warnings. Warnings emphasize actions that you must take or
must avoid to prevent dire consequences.

This icon is a sticky note of sorts, highlighting information that’s worth com-
mitting to memory.

Where to Go from Here

This book is organized around the applications. My suggested approach is to
install an application from the CD and get it working. Then when it’s working

as is, modify it by making one small change at a time. Get each change working
before starting on another change. The first chapter provides the information
that you need to install, run, and customize the applications in this book.

If you're interested in object-oriented programming in PHP, using the new
object-oriented features added in PHP 5, you might want to check out the
appropriate appendixes first. Appendixes A and B describe the syntax and
features of PHP available for object-oriented programming.

O PHP & MySOL Everyday Apps For Dummies

If you modify an application for use on your own Web site or build your
own application by using the book applications as a pattern, you need to
consider security issues. Security is a major issue for Web applications.
Chapter 2 explains the security issues and describes how to write secure
programs in PHP.

Part|
Introducing
Application

Development

The 5th Wave By Rich Tennant

ORICHTENNANT

In this part . . .

Fis part contains the information that you need for
implementing the applications in this book. Here you
find details about the applications, how to find them,
where to put them, how to understand them, and how

to modify them.

When building Web applications, you also need to keep
security in mind. These chapters explain security issues
and show how to write secure code.

Chapter 1
Building Your Application

In This Chapter
Understanding PHP and MySQL versions
Installing applications files from the CD
Setting up your programming environment
Customizing the applications in the book

Planning your application

ou know PHP. Or at least you've been introduced and have spent some

quality time together. You know PHP syntax, control structures, and some
built-in functions. You can display a form and retrieve the information from it.
You can interact with a database. You have the basics down.

Or, perhaps you're an expert programmer in another language. You've been
using C for years. You know the basics of programming. You don’t know
exactly how the familiar programming features are implemented in PHP, but
you believe you can understand quickly from seeing examples. After all, a for
loop is a for loop and an if statement is an if statement. Other programmers
have told you how easy PHP is and how similar it is to C.

Now, you want to write a practical application. You need an application quickly.
Perhaps you need to provide a login application to protect a Web site or part
of a Web site. Perhaps you need to provide an online catalog for a store.
Perhaps you need to implement a forum on your Web site where your cus-
tomers can interact.

This book provides complete applications. Chapters 3 through 8 provide all
the code for six popular applications. An additional bonus chapter on the CD
provides a seventh application. You can copy the code from the CD to your
Web site and have a working application. Of course, nothing is ever quite that
simple. You probably need to modify the application; you might need to make
a small modification, such as adding your company logo, or a larger modifica-
tion, such as removing or adding features to an application. Thus, I provide

’ 0 Part I: Introducing Application Development

explanations with the code so that you can more easily modify it. The appli-
cations are

v User authentication: The user authentication application uses HTTP
(Hypertext Transfer Protocol) authentication. This feature is built in and
useful for simple user/password authentication. It is quick and easy, but
also limited and not very flexible. (See Chapter 3.)

v User login: In the user login application, the user/password authentication
is written from scratch in PHP. This application allows users to register
and set up their own user IDs and passwords, as well as log in to the
Web site. (See Chapter 4.)

v Online catalog: Displays product information stored in a MySQL data-
base on a Web site where customers can view it. (See Chapter 5.)

1 Shopping cart: This application allows customers to purchase the prod-
ucts that they find in an online catalog. (See Chapter 6.)

v Content management system: This application allows users to post,
delete, and edit information on a Web site. (See Chapter 7.)

v Web forum: This application functions as a public bulletin board. Users
can read the posted messages and post messages of their own or
responses to current messages. (See Chapter 8.)

» Mailing list management: This application allows users to subscribe
to one or more mailing lists. An authorized administrator can use the

application to create new mailing lists. (See the Bonus Chapter on
the CD.)

You can copy an application from the CD to your Web site and have a working
application instantly — well, assuming you have the correct versions of PHP
and MySQL. In the first section (“Understanding PHP and MySQL Versions”),
you find out more information about the versions that I use in this book. You
also have to put the application files in the correct place, and I tell you how
to do that in the “Using the Application Source Code” section.

Understanding PHP and MySOL Versions

Because PHP and MySQL are open-source software, new versions are released
often and sometimes without much warning. Sometimes new releases include
changes in the way the software works or the installation procedure that require
changes to your application — not often, but occasionally. The software devel-
opers try to maintain backward compatibility (meaning old programs can run
on the new versions), but sometimes it’s just not possible. Consequently, you
need to be aware of versions and keep informed about PHP and MySQL ver-
sions, changes, and problems.

Chapter 1: Building Your Application

MySOL

Currently, MySQL offers three versions: MySQL 4.0, MySQL 4.1, and MySQL
5.0. At this time, MySQL 5.0 is a developmental version, not recommended for
production uses. It’s fine for testing or experimenting, but if you have a Web
site that users are accessing, | recommend not using a developmental version.

MySQL 4.0 and 4.1 are stable versions, recommended for use on active Web
sites. MySQL is maintaining and improving both versions. The current versions
are MySQL 4.0.24 and 4.1.11.

Version 4.1 added many new features and is the currently recommended ver-
sion. If you don’t have an existing MySQL server, install MySQL 4.1.

If you upgrade from version 4.0 to version 4.1, one change, starting with ver-
sion 4.1.1, is longer passwords for MySQL accounts. That is, when you set a
password for a new account using SET PASSWORD, PASSWORD (), Or GRANT, the
password is longer (and more secure) in 4.1 than in 4.0. Therefore, after you
upgrade, you need to run the mysqgl_fix_privilege_tables script that is
provided with the MySQL installation. This script changes the tables in MySQL
that hold the account and password information, making the password column
wider to hold the new, longer passwords. In addition, you need to access the
database with a client that understands MySQL 4.1 passwords, such as the
mysql client provided with MySQL version 4.1. (See http://dev.mysql.com/
doc/mysql/en/password-hashing.html for more information on passwords
in version 4.1.)

This book avoids the use of complex SQL queries, making the applications as
easy to read and understand as possible. All SQL queries used in the applica-
tions in this book can run with either version 4.0 or 4.1. However, the functions
used in PHP might or might not run correctly. See the following section for
information on PHP versions.

PHP

Currently, PHP is maintaining two versions: PHP 4 and PHP 5. The current
versions are PHP 4.3.11 and PHP 5.0.4.

PHP 5 is a major change from PHP 4. Enhancing object-oriented programming
features was an important goal in the development of PHP 5. The creation
and use of objects runs much faster, many object-oriented features have
been added, and exceptions are introduced. Programmers who prefer object-
oriented programming will be much happier with PHP 5. Most object-oriented
programs that run with PHP 4 can run under PHP 5.

11

’ 2 Part I: Introducing Application Development

With PHP 5, the directory structure was changed. The executable programs
have different names. The extension files are located in a different directory.
Functions were added or enhanced. (For a complete list of new functions, see
www . php.net/manual/en/migration5. functions.php.)

Each application provides procedural scripts and object-oriented programs.
The procedural scripts in this book run with either PHP 4 or PHP 5, with the
exception of the MySQL function calls. See the following section, “PHP and
MySQL together,” for further information on the MySQL function calls. The
object-oriented programs in this book run only with PHP 5.

PHP and MySQL together

PHP interacts with MySQL by using built-in functions. Currently, PHP provides
two sets of functions for use when accessing MySQL databases: the MySQL
extension and the MySQL Improved extension. The MySQL Improved exten-
sion was made available with PHP 5 for use with MySQL 4.1.

When you install PHP, you activate either the MySQL or the MySQL Improved
extension. PHP 4 activates MySQL automatically during installation. You
don’t need to activate it yourself. PHP 4 activates the MySQL extension.

The MySQL Improved extension isn’t available with PHP 4. You can use

the MySQL extension with MySQL 4.1; you just can’t use some of the new
version 4.1 features.

PHP 5 doesn’t activate MySQL automatically. You need to enable MySQL
support yourself either by using the installation option — with-mysql or
with-mysqli — on Linux/Mac or by uncommenting one of the following lines
in php.ini:

;extension=php mysql.dll

;extension=php_mysqgli.dll

In general, it’s best to use mysql with MySQL version 4.0 and mysqli with
MySQL version 4.1.

To access MySQL from a PHP script, you use the appropriate functions,
depending on which extension you enabled. The functions are similar to
the following:

mysqgl_ connect ($host, $userid, $password) ;
mysqgli_connect ($host, $userid, $password) ;

$cxn
$cxn

Chapter 1: Building Your Application

The applications in this book use the mysqli functions. Consequently, you must
use PHP 5 to run these scripts in their current format. However, if you need
to run the applications with PHP 4, you just need to use the mysql function
calls instead of the mysqli calls. If you revise the script and change the mysqli
functions to mysql, you need to change the format of some of the functions.

In the preceding mysql_connect functions, the syntax of the two function
calls is the same. However, many of the function calls differ slightly, such as
the following:

$db
$db

mysql_select_db("dbname");
mysqgli_select_db($cxn, "dbname");

The mysqli function requires a database connection parameter before the
database name. Other functions require similar minor changes. Appendix C
shows the differences between mysql and mysqli syntax for the functions
used in this book.

Using the Application Source Code

All the code for the applications in this book is provided on the CD. Each
application is in its own directory. If you copy all the files from a specific
directory to your Web space, you can run the application in your browser.

Choosing a location

Copy all the files from the CD directory to your Web space. You might want to
put all the files into a subdirectory in your Web space, such as c: \program
files\apache group\apache\http\catalog. The files include three types
of files:

v PHP scripts: The files contain the scripts with the PHP code that provides
the application functionality. PHP script files end with a .php extension.

v Include files: The files are called by using include statements in the
PHP scripts. Include files end with a . inc extension.

v Classes: The files contain class definitions for object-oriented programs.
The files are called at the beginning of the PHP scripts using include
statements. Class files end with a . class extension.

13

14

Part I: Introducing Application Development

WMBER
@ﬁ
&

If all the files are together in a single directory, the application runs. However,
you might want to organize the files by putting them in subdirectories. If you
put the files in subdirectories, you need to modify the script to use the cor-
rect path when including or calling the files.

One of the include files, named vars. inc, contains the sensitive information
needed to access the MySQL database. You should secure this file by putting
it into your include directory — a directory where PHP looks for the files spec-
ified in an include statement. The include directory can be located outside
your Web space, where visitors to your Web page cannot access it. You set
up your include directory in the php. ini file. Look for the include_path
setting. If the line starts with a semicolon (;), remove the semicolon. Add the
path to the directory you want to use as your include directory. For example,
you could use one of the following statements:

include_path=".;c:\include"; #Windows
include_ path=".:/include"; #Linux

Both of these statements specify two directories where PHP looks for include
files. The first directory is dot (meaning the current directory), followed by
the second directory path. You can specify as many include directories as
you want, and PHP searches through them for the include file in the order in
which they are listed. The directory paths are separated by a semicolon for
Windows and a colon for Linux.

If you don’t have access to php. ini, you can set the path in each individual
script by using the following statement:

ini_ set("include_path","c:\hidden");

This statement sets the include_path to the specified directory only while
the program is running. It doesn’t set the directory for your entire Web site.

The catalog application in the book includes images, but the images aren’t
included on the CD. Any catalog you implement will need specific product
pictures. The application expects to find image files in a subdirectory named
images.

Understanding the PHP code

The PHP code in the applications consists of only basic PHP statements. It
doesn’t use advanced PHP concepts or statements. Anyone who has a basic
understanding of PHP can understand the code in the applications. You don’t
need to be an expert.

Chapter 1: Building Your Application

In the application, most of the code is included in the main PHP script(s).
When building PHP scripts for an application, good programming practice
dictates that you look for opportunities to use functions. Any time you find
yourself using the same code more than once, you can place the code in a
function and call the function at the appropriate locations in the script.

In the applications in this book, [don’t use functions nearly as often as I
could (or should). I believe that you can understand the code and follow its
flow more easily when the code is in a single file, rather than when you must
jump from page to page and back again, looking for the listing of functions.
So, I present the code in the listings in a less disjointed manner — in fewer
files showing the code in a top-down listing. In the explanation of the code,

[point out locations where functions would be better coding style.

After each listing, I explain the code. Numbers in the explanation refer to line
numbers shown in the code listing. | assume you know how control structures
work in PHP and can follow the program flow. I provide some general descrip-
tion and some detailed description for more difficult or complex coding blocks.

Procedural versus object-oriented programs

Each application in this book is built with both procedural code and object-
oriented code. That means that the CD contains two sets of independent
programs for each application in the book. The mailing list application,
described in the bonus chapter on the CD, however, is provided only with
procedural code.

[am providing both types of code with the intention of producing a useful
book for the following readers:

v Inexperienced PHP programmers who have written only procedural
code and who need to build an application for a real-world Web site:
You can install and use the procedural version of the application.

v Programmers experienced with procedural programs in PHP who
want to find out how to write object-oriented code in PHP: You can
compare the two versions to understand how to build object-oriented
code. Appendixes A and B provide the concepts and syntax of object-
oriented programming.

v Programmers experienced in writing object-oriented code in another
language who want to build an object-oriented application in PHP:
You can install and use the object-oriented version of the application.
Appendix B describes the syntax of object-oriented programming in PHP.

15

’ 6 Part I: Introducing Application Development

Procedural and object-oriented methods are more than simply different syntax.
As I describe in Appendix A, object-oriented programming is a different way
of approaching programming projects. In the object-oriented approach, the
programming problem is modeled with objects that represent the components
of the programming problem. The objects store information and can perform
needed tasks. The code that defines the object is stored in a class, which can
then be used anywhere in the application that it’s useful. The programmer
using the class doesn’t need to know anything about what’s happening inside
the class or how the class performs its tasks. The programmer can just use it.
Thus, one programmer can develop a class that works in programs for many
other programmers.

Developing really large, complex applications, involving several programmers
or teams of programmers, is pretty difficult without using object-oriented
programming. With object-oriented programming, programmers can develop
their parts of the application independently. In addition, if something needs
to be changed later, only the class with the change is affected. The other
components of the application need not change. For the same reasons,
maintenance of the application is much easier.

Modifying the Source Code

A\\J

In most cases, you need to modify the application code. For one thing, the
Web page design is very plain. Nothing in the page design will excite visitors
or win you that Designer of the Year award. So, you undoubtedly want to cus-
tomize the look and feel of the page. If you're adding one of these applications
to an existing Web site, you can modify these pages to look like the existing
page. Or, you might want to design something creative to impress your cus-
tomers. If nothing else, you surely want to add your logo.

Because the source code provided with this book is a simple text file, you
can use your favorite text-editing tool to modify the PHP source code files.
You wouldn’t be the first person to create scripts with vi, Notepad, or
WordPad. However, you can find tools that make script editing much easier.

Check out programming editors and Integrated Development Environments
before creating your PHP scripts. These tools offer features that can save you
enormous amounts of time when building your application. So download some
demos, try out the software, and select the one that suits you best. You can
take a vacation on the time you save later.

Chapter 1: Building Your Application ’ 7

Programming editors

Programming editors offer many features specifically for writing programs.
The following features are offered by most programming editors:

1 Color highlighting: Highlight parts of the script — such as HTML tags,
text strings, keywords, and comments — in different colors so they’re
easy to identify.

v Indentation: Automatically indent inside parentheses and curly braces
to make scripts easier to read.

v Line numbers: Add temporary line numbers. This is important because
PHP error messages specify the line where the error was encountered.
It would be cumbersome to have to count 872 lines from the top of the
file to the line that PHP says is a problem.

»~ Multiple files: You can have more than one file open at once.

1 Easy code inserting: Buttons for inserting code, such as HTML tags or
PHP statements or functions are available.

v Code library: Save snippets of your own code that can be inserted by
clicking a button.

Many programming editors are available on the Internet for free or for a low
price. Some of the more popular editors include the following:

v Arachnophilia: This multiplatform editor is written in Java. It’s
CareWare, which means it doesn’t cost any money.

www .arachnoid.com/arachnophilia

v+~ BBEdit: This editor is designed for use on a Mac. BBEdit sells for $199.00.
Development and support have been discontinued for BBEdit Lite, which
is free, but you can still find it and legally use it.

www . barebones.com/products/bbedit/index.shtml

v EditPlus: This editor is designed for use on a Windows machine.
EditPlus is shareware, and the license is $30.

www.editplus.com
v Emacs: Emacs works with Windows, Linux, and UNIX, and it’s free.

www.gnu.org/software/emacs/emacs.html

’ 8 Part I: Introducing Application Development

v HomeSite: HomeSite is designed for use with Windows and will run
you $99.00.

www.macromedia.com/software/homesite
v HTML-Kit: This is another Windows editor that you can pick up for free.
www . chami.com/html-kit

v TextWrangler: This editor is designed for use on a Mac. It’s developed
and published by the same company that sells BBEdit. TextWrangler has
fewer features than BBEdit, but has most of the major features useful for
programmers, such as syntax highlighting and automatic indenting. And
it’s much cheaper than BBEdit — as in free.

www . barebones.com/products/textwrangler/index.shtml

v Vim: These free, enhanced versions of vi can be used with Windows,
Linux, UNIX, and Mac OS.

www.vim.org

Integrated Development
Environment (IDE)

An Integrated Development Environment (IDE) is an entire workspace for
developing applications. It includes a programming editor as well as other
features. Some features included by most IDEs are the following:

+ Debugging: Has built-in debugging features.
1 Previewing: Displays the Web page output by the script.

v~ Testing: Has built-in testing features for your scripts.

v FTP: Has built-in ability to connect, upload, and download via FTP. It
also keeps track of which files belong in which Web site and keeps the
Web site up to date.

1 Project management: Organizes scripts into projects, manages the files
in the project, and includes file checkout and check-in features.

v Backups: Makes automatic backups of your Web site at periodic intervals.

IDEs are more difficult to get familiar with than programming editors. Some
are fairly expensive, but their wealth of features can be worth it. IDEs are
particularly useful when several people will be writing scripts for the same
application. An IDE can make project coordination much simpler and make
the code more compatible.

Chapter 1: Building Your Application ’ 9

The following are popular IDEs:

v Dreamweaver MX: This IDE is available for the Windows and Mac
platforms. It provides visual layout tools so you can create a Web page
by dragging elements around and clicking buttons to insert elements.
Dreamweaver can write the HTML code for you. It includes the HomeSite
editor so you can write code. It also supports PHP. Dreamweaver will set
you back $399.00.

www .macromedia.com/dreamweaver

v Komodo: Komodo is offered for the Linux and Windows platforms. It’s
an IDE for open-source languages, including Perl and Python, as well as
PHP. It’s offered for $29.95 for personal or educational use, and $295.00
for commercial use.

www.activestate.com/Products/Komodo

v Maguma: Maguma is available for Windows only. It’s an IDE for Apache,
PHP, and MySQL on Windows and comes in two versions at different
costs: Maguma Studio Desktop and Maguma Studio Enterprise, which
offers features for huge sites with multiple servers. Maguma Studio for
PHP is a free version with support for PHP only.

wWww . maguma . com
v PHPEdit: This free IDE is available only for Windows.
www . phpedit.net/products/PHPEdit

v Zend Studio: Zend Studio is offered for the Linux and Windows platforms.
This IDE was developed by the people who developed the Zend engine,
which is the engine under the hood of PHP. These people know PHP
extremely well. Zend Studio will cost you $195.00.

www . zend . com/store/products/zend-studio.php

Planning Your Application

Planning is an essential part of building your application. The application
design is the blueprint for building your application. Your plan should be
complete enough to keep your project on track toward its goal and to ensure
that all the needed elements and features are included in the plan.

Even if you're using one of the applications in this book, you need to develop
your own plan first. With your plan as a guide, you can see whether the applica-
tion meets all your needs as is or whether you need to modify the application,
adding or removing features so the application fits your needs perfectly.

20 Part I: Introducing Application Development

“\gN\BEI? The larger and more complex your application is, the more planning is

& required. An application that displays Hello World on the screen, with five
lines in the script, built by one person, requires little planning. The Amazon
Web site requires mammoth planning.

Planning the software

Planning the application software includes the following steps:

1. Identify the goal or goals of the application.

Is the application intended to collect information from users? Sell prod-
ucts to users? Entertain users? Create a community of users?

2. Develop a list of tasks that the application needs to perform in order
to meet the goal.

For instance, if the goal is to sell products, the application needs to,

at the least, display the products information, provide a means for the
customer to select a product, collect the information needed to fill the
order, and charge the customer for the product.

3. Plan the database.

Decide what information needs to be stored. Decide how to store it for
quick and easy access.

4. Develop a detailed plan for the methods to use in carrying out the
general behavior tasks that you develop in Step 2.

For instance, “collect the information needed to fill the order” can
expand to:

a. Display a form.
b. Verify the information submitted in the form.
c. Store the information in a database.

5. Plan the Web pages.

How many Web pages need to be displayed? For instance, do you need a
form and a feedback page? A product information page? A page that looks
like a chess board? Design the look and feel of the Web pages.

Additional planning

The application plan is a basis for other project planning. You need to develop
a schedule for your project. You also need to develop a resource plan.

Chapter 1: Building Your Application 2 ’

A\

Developing a schedule

The most important date for your project is the date the application goes
live. That is, the date when outside users can begin using the application. In
some cases, you are given the date, and you need to determine the resources
you need to meet the date. In other cases, you have finite resources and you
must estimate the date when the application will be ready to go live.

You can use the application plan to estimate the number of man hours needed
to build the application. The calendar time required depends on how many
programmers are working on the application. A project that takes 100 hours
will take one programmer 2% weeks to finish, assuming the programmer makes
optimum use of every hour of a 40-hour week. Two programmers can finish
the application (theoretically) in 14 weeks.

When scheduling, be sure to allow some time for those tasks required by
Murphy’s Law — rewriting vanished code, time lost due to bubonic plague,
electric outages caused by lightening, and so forth. Also, be sure to allow
time for testing and writing documentation.

When planning your timeline, remember that some tasks can proceed simul-
taneously, but other tasks must proceed sequentially. For instance, if one of
your tasks is to buy a computer, the programming can’t start until after the
computer arrives.

Project management software can be useful when developing a schedule. It
keeps track of the tasks, the resources, and the critical events along the way.
It charts the tasks into a timeline, showing the critical path — the series of
tasks that must be completed on time in order for the project to be completed
on time.

Planning the resources

Resources include both human and material resources. Your software plan
and the project delivery date determine the human resources required. Your
plan needs to schedule the availability of the human resources. If you need to
hire more people, include that time in your schedule. If you plan to use exist-
ing staff, plan the project time into their schedules.

Make sure that material resources are available when they’re needed. For
instance, if you need to buy a new computer for the project, you need to start
the purchasing process so that the computer will arrive before it’s needed.
For the applications in this book, you need PHP and MySQL, so you need

to plan their availability. Is the software currently installed? Does it need
upgrading? If it’s not installed, who will install and administer it? When can
the administrator have it available?

22 Part I: Introducing Application Development

Include a list of resources needed, both human and material, as part of your
project plan. For projects such as the applications in this book, personnel
and computers are required resources. However, for your specific project,
many other resources might be needed. For instance, artwork or photos of
products may be required. Written copy for an online catalog might be needed.
You might want a reference book or two. A list of resources can help prevent
dead time spent waiting for needed resources.

Chapter 2
Building in Application Security

In This Chapter

Identifying security risks

Checking and filtering data from outside sources
Stopping SQL injection attacks

Backing up your database

Security is an important issue for computing in general and Web sites in
particular. Security is not an on/off condition; it’s a continuum ranging
from no security to total security. No security is a computer set up in the
middle of a mall where anyone can use it. Total security is a computer locked
in a safe where no one can use it.

Your Web site security is somewhere between the two extremes. Your Web
site must be available for access from the Internet; otherwise, no one can see
your Web pages. Your goal is to limit what visitors to your Web site can do
while allowing them to download your Web pages and, for the applications in
this book, to enter information into a form. However, you certainly don’t want
visitors to be able to reformat your hard disk or delete all the files on your
Web site.

Web site security is a tradeoff between security measures and ease of use.
For instance, if you require visitors to log in, the Web site is more difficult for
them to use. They must enter user IDs and passwords, which means that they
must remember their user IDs and passwords (or at least remember where
they put the papers where they wrote that information down). Some Web sites
require a login for security, however, even though the site becomes more diffi-
cult to use. Just be sure that the login is really necessary. Some visitors might
not use the site because of the login requirement.

24 Part I: Introducing Application Development

The more security you add, the more difficult the site is to use, so you don’t
want to use more security than necessary. One consideration in deciding how
tight your security needs to be is the importance of the information you are
protecting. If you're storing top-secret government information or a treasure
trove of credit card numbers, you must implement a high level of security. If
you’re saving family recipes, however, you probably need very little security.

PHP and MySQL each has its own security features and issues. [discuss these
issues in detail in this chapter. In addition, there are security issues concern-
ing the computer that houses your Web site and the Internet connection to
your Web site. Computer and Internet security issues are the domain of the
system administrator, not the programmer. This is a book about building
applications, so I don’t discuss system security.

Understanding Security Risks

Security is another word for protection. Just as you protect your home from
invasion, you protect your computer from invasion. Although the majority of
visitors to your Web site are customers with no intention beyond using the
services you offer, not all people are honest and well-intentioned. Some are
bad guys with nefarious purposes, such as:

v~ Stealing stuff: The intruder hopes to find a file sitting around full of valid
credit card numbers or the secret formula for eternal youth.

v Trashing your Web site: The miscreant wants to destroy your Web site.
Or add graffiti to it. Some people think this is funny. Some people do it to
prove that they can. Or, you may have really annoyed someone.

v Harming your visitors: A malicious person can add things to your Web
site that harm or steal from the people who visit your site.

When you design your Web site, you must consider security issues. You must
design security as well as functionality. You need to consider the possible
misuses of your Web site and design prevention for identified misuses into
your site.

Building Security into Your PHP Scripts

PHP is used to build dynamic Web sites. Web sites are by definition accessi-
ble from the Internet, making them open to possible infiltration and theft.
In addition, the dynamic aspect of PHP allows users to add information —
possibly malicious information — to your Web site. However, alert and
informed programming can minimize the security risks on your Web site.

WMBER
@&
&

Chapter 2: Building in Application Security 25

Don’t trust any information
from an outside source

Don'’t store or use any information from an outside source without checking
whether it contains the expected information. This is your number one com-
mandment. If you remember this commandment, the applications you write
won'’t be vulnerable to the common security problems present in many appli-
cations.

Identifying outside sources
Information in your PHP scripts is stored and used in variables. Your script
assigns values to variables with statements of the following format:

$varname = value;
The value can be one of the following types:

v~ A literal value: A number or a string, as shown in a statement as follows:

$num = 1;
$strl = "Hello";

The information originates in the script, not outside the script. This type
of value is safe and can be used as is, without checking.

v A variable: Information from one variable is stored in another variable,
as shown in the following statement:

$varname2 = $varnamel;

This statement might be safe if $varnamel originates in the script.
However, if $varnamel contains information from an outside source, it
must be treated as suspicious information. Check it before storing or
using it.

Some outside information sources are the following:

+* URLs: PHP reads information from the end of the URL when a file is
downloaded. The information consists of variable name/value pairs.

v posT data: PHP reads data that is submitted via the POST method.

v Cookies: PHP reads data from cookies. Cookies are information that’s
stored on the user’s computer and sent to the server when the user
accesses your site.

Information received from outside sources can contain anything, including
information that can damage or compromise your Web site. All information
from outside sources needs to be checked and filtered. The remainder of this
section discusses some ways of checking and filtering the information.

26 Part I: Introducing Application Development

WMBER
@&
&

Specifying the source of the information

When you use information from a source outside the script, be sure it’s
coming from the expected source. For instance, if you pass information in a
hidden variable in a form, be sure you get the information from the $_posT
array. For instance, suppose your application logs in a customer and then
passes the authorization variable, such as 1ogin=yes, in a hidden variable in
the form. When you check whether a user is authorized to view a Web page,
you need to use code such as the following:

if(!$_POST['login'] == "yes")
{

echo "You are not logged in";
}

Then, if a user tried to access your Web site with the following URL:
http://www.yoursite.com?login=yes

the user would not be able to see the page because the authorization variable
isin $_GET['login'], notin $_POST['login'].

Getting form variables from the $_pPOST array is the most secure method.

If you check the authorization variable in $_REQUEST['login'], the user
would appear to be logged in because the elements of both the $_posT and
the $_GET arrays are included in $_REQUEST.

Another method is to turn the register_globals setting on in php.ini.
Then, a variable called $1ogin would be available. You could use the
following check:

if($login != "yes")
{

}

echo "You are not logged in";

However, this code also doesn’t check where the information came from.
If the user accessed your site with the login variable in the URL, the user
would appear to be logged in.

The most secure programming checks the source of the information. You
should leave register_globals turned off, which is the default, and get the
information from the appropriate superglobal array. This alone isn’t enough
for secure programming. However, it can help make your application more
secure.

Checking the data type of outside information

Your PHP script should check all information received from an outside source
to be sure it contains the expected information.

\\3

Chapter 2: Building in Application Security 2 7

You can check the type of information contained in a variable. PHP provides
functions that check information. For instance, if you expect the information
to be an integer, you can check it as follows:

if(!is_int($_POST['age'l]l))
{

echo "Data is not an integer";
}

PHP provides several functions that check data type, such as is_array,
is_bool, is_double, is_float, is_numeric, is_scalar, is_string, and
others. Use these functions to check information from outside sources.

Cleaning outside information

A lot of the outside information is in strings. Strings can contain any charac-
ters, including characters that can cause problems for your application, your
database, or visitors to your Web site. For instance, HTML tags can poten-
tially cause problems. A user might enter script tags, such as <script>. The
script can execute and perform actions, such as deleting all files or dropping
a database.

PHP provides two functions that can clean the data, thus rendering it harmless:

v strip_tags: This function removes all text enclosed by < and > from
the data. It looks for an opening < and removes it and everything else,
until it finds a closing > or reaches the end of the string. You can include
specific tags that you want to allow. For instance, the following statement
removes all tags from a character string except and <i>:

$last_name = strip_ tags($last_name, "<i>");

v htmlspecialchars: This function changes some special characters with
meaning to HTML into an HTML format that allows them to be displayed
without any special meaning. The changes are

e < becomes &1t ;
® > becomes > ;
* & becomes samp;

In this way, the characters < and > can be displayed on a Web page with-
out being interpreted by HTML as tags. The following statement changes
these special characters:

$last_name = htmlspecialchars($last_name);

If you're positive that you don’t want to allow your users to type any < or >
characters into a form field, use strip_tags. However, if you want to allow
< or > characters, you can safely store them after they have been processed
by htmlspecialchars.

28 Part I: Introducing Application Development

Checking outside information with reqular expressions

You can use regular expressions to check whether data is in a reasonable
format. If the information doesn’t make sense, it’s probably not something
that you want to store in your database. For instance, if the user types a
name into a form, you can check whether it seems like a real name by match-
ing patterns. You know that a name consists mainly of letters and spaces.
Other valid characters might be a hyphen (-), as in the name Smith-Jones,
and a single quote ('), as in O’Hara. You can check the name by setting

up a pattern that’s a string containing only letters, spaces, hyphens, and
single quotes and then matching the name to the pattern. If the name doesn’t
match — that is, if it contains characters not in the pattern, such as numerals
or a question mark (?) — it’s not a real name.

Regular expressions consist of literal characters and special characters.
Literal characters are normal characters, with no other special meaning. A c is
a ¢ with no meaning other than it’s one of the 26 letters in the English alphabet.
Special characters have special meaning in the pattern, such as the asterisk
(*) when used as a wild card. Table 2-1 shows the special characters used in
regular expressions.

Table 2-1 Special Characters Used in Patterns
Character Meaning Example Match Not a Match
~ Beginning of line. ~c cat my cat
$ End of line. cs tic stick
Any single .. Any string a,l
character. that contains
at least two
characters
? Preceding charac- mea?n mean, men moan

ter is optional.

() Groups literal m(ea)n mean men, mn
characters into a
string that must be
matched exactly.

[1] Encloses a set of mlealn men, man mean, mn
optional literal
characters.

Chapter 2: Building in Application Security 29

Character Meaning Example Match Not a Match
- Represents all the mla-c]n man, mbn, mdn, mun,
characters between mcn maan

two characters.

+ One or more ofthe door[1-31+ doorlll, door, door55
preceding items. door131

* Zero or more ofthe door[1-3]1* door, door311 door4,
preceding items. door445

{ , } Thestartingand a{2,5} aa, aaaaa a, Xx3

ending number of a
range of repetitions.

\ The following char- m*n m*n men, mean
acter is literal.

(| |) Asetofalternate (Tom|Tommy) Tom, Tommy Thomas, To
strings.

Literal and special characters are combined to make patterns, which are
sometimes long, complicated patterns. A string is compared to the pattern,
and if it matches, the comparison is true.

PHP provides functions that compare strings to regular expressions. You can
use the function ereg (), as follows:

ereg ("regexp", $varname) ;
The following code fragment tests whether the information is a valid zip code:

$regexp = "A[0-9]1{5}(\-[0-9]{4})?$"
if (!ereg($regexp, $_POST['zip']l))
{

echo "Not a valid zip code
";
}

The regular expression breaks down as follows:

~[0-91{5} — Any string that begins with five numbers
\- — A literal hyphen
[0-9]{4} — Any string of numbers that is four digits long

() ? — Groups the last two parts of the pattern and makes them optional

30 Part I: Introducing Application Development

Another useful code fragment might be:

$Sregexp = "A.+@.+\.com$"
if (!ereg($regexp,$ POST['email']))
{

echo "Not a valid email address
";
}

This code accepts only e-mail addresses that end with . com. (E-mail addresses
can end with other characters.) Another regular expression is used in this code:

$regexp = "A[A-Za-z' -]1{1-50}$"
if! (ereg($regexp,$ POST['last_name']))
{

echo "Not a valid name
";

}

This regular expression accepts only letters, single quotes, blank spaces,
and hyphens. If any other character shows up in the string, the last name
is rejected as invalid.

PHP also provides Perl-compatible regular expressions for people who are
familiar with Perl. You can use the function preg_match with Perl-compatible
regular expressions.

Storing information

In your scripts, you frequently need to store and retrieve information. For
instance, in an online ordering application (such as the one in Chapter 6), you
need to store the customer information, such as name and address, for ship-
ping the order, and you also need to store the items that the customer orders.
You can store information by using any of the following mechanisms:

v Text file: You can store information in a text file on the Web server. This
solution is fast and easy. However, anyone who has access to the Web
server can access the text file.

v Cookies: Small amounts of information can be stored in a cookie. However,
the information is stored on the user’s computer, not on the Web server,
which means that it can be changed. In addition, bad guys have tech-
niques for stealing cookies, obtaining the information stored in them.

v~ Session variables: PHP session information is stored in a file on the Web
server. The file is stored outside the Web space, so no one can access
the session file from the Web.

v Database: You can store the information in a database. This is the most
secure method because the database has security features of its own in
addition to the security features provided by PHP. However, this method
requires the most work and the most overhead.

Chapter 2: Building in Application Security 3 ’

gMBER You must protect the information you store. The protection measures needed
depend on the importance of the information stored. If you're storing a credit
card number or social security number, you need much greater protection for
the data than if you're storing the customer’s favorite color.

Using system calls

Some scripts require you to access the operating system. None of the appli-
cations in this book need to use operating system commands, but some
applications do, such as applications that manage files or disk space. You can
perform tasks that access your disk space in either of the following ways:

v PHP functions: PHP provides many functions for use with files and direc-
tories, such as copy, rename, delete, mkdir, readfile, and many others.

v Executing system commands: PHP allows you to execute system com-
mands. That is, you can enter a system command, just as if you were
working in the operating system. You can put the command in backticks
(" ") or use one of three PHP functions: system(), exec (), or passthru ().

As long as you execute commands by using only information from within the
script, the commands are safe. However, if you use information from any out-
side source, the potential for damage is high. You certainly don’t want your
users to be able to execute a command such as rm *, which deletes all files
in the current directory.

Executing system commands is more dangerous. For instance, suppose you
want to allow your user to rename a file. You might allow the user to enter
the filename to change in a form and then build the following statement in
your script:

system("mv §_ POST['oldname'] $_ POST['newname'] ");
Then, suppose your user typed the following into the form fields:

filel.txt
file2.txt;rm *

The statement you build and execute is the following:

system("mv filel.txt file2.txt;rm *");

When the command executes, all the files in the directory are deleted.
Clearly, if you're going to execute system commands containing information
from an outside source, you must check the information carefully. You find

techniques for checking and cleaning data in the section “Don’t trust any
information from an outside source” earlier in this chapter.

32 Part I: Introducing Application Development

Using PHP file system functions is much safer than executing system com-
mands with the system functions. For instance, the previous operation could
be done using a statement like the following:

rename ($_POST['oldname'], $ POST['newname']);

The function accepts only valid filenames, and so it is much more secure.
Use a PHP function whenever you can find one that does what you need

to do. Use the general function that lets you execute any system command
only when absolutely necessary. And check any outside information very
carefully.

Handling errors

Error messages display information when errors are encountered. Some of
this information can be very useful to bad guys. The more a bad buy knows
about your system, the more likely he is to figure out a way to break into it.
For instance, an error message can tell the bad guy which database you're
using or how the Web page is programmed or designed.

When you’re developing your application, you want PHP to give you as much
information as possible to help you identify problems in your script. However,
when your Web site is available to the public, you no longer want this infor-
mation displayed.

One way to handle errors is to shut off the error functions in php. ini.
Using PHP settings, you can stop error messages from being displayed in
your Web pages. If you want, you can log errors into a file that you can
review. Then, you can turn the error display functions on for specific files
only. That is, when you’re developing a script, you can turn errors on for
that script only.

The following settings in php.ini are related to error message display:

display errors = On (displays error messages in a Web page)
log errors = Off (sends error messages to a log file)
error_log = filename (specifies the log file name)

Bad guys can deliberately send errors to your Web site, causing error mes-
sages to display useful information. The following settings are more secure
than the preceding settings:

display errors = Off
log errors = On
error_log = /var/log/php_error_ log

Chapter 2: Building in Application Security

Setting display_errors to off prevents error messages from being displayed
in your Web page. When you turn 1log_errors on, it sends the error messages
to the log file. The error_1log setting defines the log file.

When you’re developing a script, you can put the following line in the top of
the script:

ini_ set("display errors","On");
This statement in a script displays errors for this script only. Thus, you can

see errors while developing, but you can remove the statement when your
script becomes available to the public.

MySOL Security

s

Data in databases is more secure than in flat files, cookies, or sessions
because DBMS (Database Management System) software provides its

own security features. MySQL provides a security system for protecting
your data that restricts access based on account names and passwords.

In addition, each account has permission settings that specify what the

user can do when using the account to access MySQL. MySQL security might
seem complicated, but its security features provide valuable protection for
your data.

Setting up accounts and passwords

Accessing a MySQL database is a two-step process:

1. Connect to the MySQL server.
This step requires a valid user account and password.

The MySQL server might be located on the same computer you are using
to access it or on another computer that you access over a network.

It’s more secure to locate MySQL on a separate computer. Ideally, the
MySQL computer is behind a firewall. If the MySQL computer accepts
only internal traffic, such as traffic from your Web server, and not traffic
from outside your organization, it’'s much more secure.

2. Access the data in the database.

An SQL query is used for this step. MySQL provides a system of permis-
sions that specify what an account can do to the data. For instance, an
account might be set up so that users can select data but cannot insert
nor update data.

33

34 Part I: Introducing Application Development

When MySQL is installed, some accounts are set up by default. The infor-
mation used to control access to your data is stored in a MySQL database
named mysqgl.

Understanding the MySOL security database

When MySQL is installed, it automatically creates a database called mysqgl.
All the information used to protect your data is stored in this database,
including account names, hostnames, passwords, and permissions.

Permissions are stored in columns. The format of each column name is
permission_priv, where permission is one of the query permissions you
can set for MySQL. For instance, the column containing ALTER permissions is
named alter_priv. The value in each permission column is Y or N, meaning
yes or no. So, for instance, in the user table (which I describe in the following
list), you would find a row for an account and a column for alter_priv. If the
account field for alter_priv contains v, the account can be used to execute
an ALTER query. If alter_priv contains N, the account doesn’t have permis-
sion to execute an ALTER query.

The mysgl database has the following tables:

v~ user table: This table stores permissions that apply to all the databases
and tables. It contains a row for each valid account with user name,
hostname, and password. The MySQL server will reject a connection
for an account that doesn’t exist in this table.

v db table: This table stores permissions that apply to a particular data-
base. It contains a row for the database, which gives permissions to an
account name and hostname. The account must exist in the user table
for the permissions to be granted. Permissions that are given in the user
table overrule permissions in this table.

1 host table: This table controls access to a database depending on the
host. The host table works with the db table. If a row in the db table has
an empty field for the host, MySQL checks the host table to see whether
the db has a row there. In this way, you can allow access to a db from some
hosts but not from others. For instance, say you have two databases:
dbl and db2. The dbl database has information that is very sensitive, so
you want only certain people to see it. The db2 database has information
that you want everyone to see. If you have a row in the db table for db1
with a blank host field, you can have two rows for db1 in the host table.
One row can give all permissions to users connecting from a specific host,
whereas another row can deny privileges to users connecting from any
other host.

Chapter 2: Building in Application Security

” tables_priv table: This table stores permissions that apply to specific
tables.

v columns_priv table: This table stores permissions that apply to spe-
cific columns.

You can see and change the tables in mysql directly if you're using an
account that has the necessary permissions. You can use SQL queries
such as SELECT, INSERT, UPDATE, and others.

Setting up accounts

MySQL is installed with default accounts, one of which is the root account.
In some cases, the root account is installed without a password. In other
cases, the installation procedure requests you to enter a password for the
root account. The root account needs a password. If it is installed without a
password, you should give it one immediately. The root account is well known,
and a bad guy might try the root account on your system just to see whether
it’s there and unprotected.

The root account is set up with all possible permissions, including the ability
to shut down your server. You should restrict access to this powerful account.
Never allow users to access your database with this account.

You should set up specific accounts for the purpose of accessing your data-
bases from PHP. Give the accounts only the permissions they really need. If
your script will only retrieve data from the database, only SELECT permission
is needed by the account that accesses the database. You can provide even
more security by using different accounts for different purposes. You can set
up one account with SELECT permission only and a different account for use
with INSERT queries that doesn’t have SELECT permission. Thus, if one account
is compromised, the damage it can do is limited.

When you set up an account, you specify the password, the name of the com-
puter allowed to access the database using this account, and the permissions.
However, you can change these at any time.

You can add or modify an account by changing the mysgl database directly
with INSERT and UPDATE queries. Or you can use the GRANT query, an SQL
query for adding or modifying accounts.

Adding accounts with the GRANT query
Here is the general format for a GRANT query:

GRANT permission (columns) ON tablename
TO accountname@hostname IDENTIFIED BY ’'password’

35

36 Part I: Introducing Application Development

You must fill in the following information:

Vv permission (columns):You must list at least one permission. You can
limit each permission to one or more columns by listing the column name
in parentheses following the permission. If no column name is listed, the
permission is granted on all columns in the table(s). You can list as many
permission and columns as needed, separated by commas. See the MySQL
manual for a list of all permissions (dev.mysql.com/doc/mysqgl/en/
privileges-provided.html). For instance, a GRANT query might start
with this:

GRANT select (firstName,lastName), update,
insert (birthdate) ...

v tablename: This indicates which tables the permission is granted on.
At least one table is required. You can list several tables, separated by
commas. The possible values for tablename are

® tablename: The entire table named tablename in the current data-
base. You can use an asterisk (*) to mean all tables in the current
database. If you use an asterisk and no current database is selected,
the privilege will be granted to all tables on all databases.

¢ databasename. tablename: The entire table named tablename in
databasename. You can use an asterisk (*) for either the database
name or the table name to mean all. Using * . * grants the permis-
sion on all tables in all databases.

V¥ accountname@hostname: If the account already exists, it is given the
indicated permissions. If the account doesn’t exist, it’s added. The account
is identified by the accountname and hostname as a pair. If an account
exists with the specified account name but a different hostname, the
existing account isn’t changed; a new one is created.

v password: This is the password that you're adding or changing. A pass-
word isn’t required. If you don’t want to add or change a password for
this account, leave out the entire phrase IDENTIFIED BY 'password'.

The GRANT query to add a new account for use in the PHP programs for a
database named Ccatalog might be

GRANT select ON Catalog.* TO phpuser@localhost
IDENTIFIED BY 'mysecretpassword'

If an account already exists, you can add or change passwords with the fol-
lowing GRANT query:

GRANT select ON * TO phpuser@hostname
IDENTIFIED BY ''

The existing password is replaced with a blank, leaving the account with no
password — and that isn’t usually a good idea.

Chapter 2: Building in Application Security

Accessing MySOL from PHP scripts

To access MySQL from PHP scripts, you need to use the account name and
password that you have set up for use in your PHP scripts. Consequently, the
account information must be available to your scripts. You need to protect
this information as well as possible.

Don’t put the account information in the script. Store the information in a
separate file. For instance, you might use a file similar to the following:

<?php

$host = "localhost";
$user = "phpuser";
$password = "asdf321";
$database = "Catalog";
?>

You can then include the file in your script, so that your MySQL connect
statement would look as follows:

$connect = mysqgli_ connect ($host, $user, $password, $database) ;

You can store the file in a secure location outside your Web space so that no
one can access it from the Web. PHP allows you to specify a directory for
include files. When you use the include statement in your script, PHP looks
for the file in the include directory.

You specify the include directory in the php. ini file, as follows:

include_path
include_path

", :/php/includes" (Linux, Unix)
".;c:\php\includes" (Windows)

You can specify as many paths as you want. The preceding statements both
specify two paths: dot (.), which means the current directory, and /php/
includes. The paths are separated by a colon (:) for Linux and a semicolon
(;) for Windows.

You can store your file containing the account information in the include
directory and access it in the script with the following statement:

include("Vars.inc");

PHP searches for vars. inc in the paths specified in the include_path state-
ment, searching the directories in the order they are listed.

37

38 Part I: Introducing Application Development

Understanding SOL injection attacks

When you use information from an outside source to build an SQL query, you
might be vulnerable to an SQL injection attack. In an SQL injection attack, a
bad guy inserts characters into an SQL query, changing it into a query that
affects your application.

Using quotes to change your query

When you use unchecked data from a form to build an SQL query, you pro-
vide the bad guy with a golden opportunity to create an SQL statement that
serves his purposes. For instance, suppose you used the following code to
allow a user to log in:

$user = $_POST['user_id']l;
$password = $_ POST['password'];
$sql = "SELECT COUNT(*) FROM Customer
WHERE user_id='$user' and password='$password'";

If the SQL query returns any count higher than 0, the user_id and password
exist in the database and the user is logged in. In this case, the data entered
into the form by the user is used without any checking. Suppose a user entered
the following user name into the form:

' or 1=1 --
Your SQL query would then be:

SELECT COUNT(*) FROM Customer WHERE user_ id='"' or 1l=1 --
and password='$password’

This query will always return a count higher than 1 because 1=1 is always
true. In addition, the -- makes the rest of the query into a comment, which
is ignored by SQL. Consequently, this user is now logged in.

Unauthorized access is bad enough. Depending on the structure of your data-
base, however, a bad guy might be able to construct queries that seriously
damage your database. For instance, a query might be changed into two or
more queries, adding a damaging query. The use of multiple queries is dis-
cussed in the next section.

Building multiple queries

Many databases allow more than one query to be executed at a time, usually
separated by a semicolon (;). A bad guy might be able to enter data into a
field that creates a malicious SQL query. Suppose you're building a query
from information the user enters into a form. The query you’re building is:

SELECT email FROM Member WHERE last_name='$_ POST|['name'] '

Chapter 2: Building in Application Security

Suppose the user enters the following into the name field in the form:

Smith';DROP TABLE Member --

Your query would then be:

SELECT email FROM Member
WHERE last_name='Smith';DROP TABLE Member --

After you execute this query, you are left wondering where your database
table went.

Adding a query that harms your application is less of a danger in MySQL than
in other databases. Until MySQL 4.1, MySQL didn’t accept multiple queries in

a single request. Beginning with MySQL 4.1, multiple queries can be executed,
but you must use a specific function, mysqgli_multi_guery, to send multiple

queries. If you don’t use this function, users can’t use the type of attack shown
in the preceding query.

Escaping quotes

One measure to protect your database is to escape the quotes in any informa-
tion that is going to be sent to your database. With a \ in front of a quote, it is
treated as a literal character by the database, not as a special character with
special meaning. The quote is stored in the database as a character, rather
than triggering the database to take an action. For example, if the example in
the preceding section were escaped, it would look as follows:

SELECT COUNT(*) FROM Customer WHERE user_id='\' or 1=1 --
and password='$password’

SQL would see the \ ' as any other character, not as the quote that closes the
user_id field. It would interpret the entire string until the quote in front of
$password as the user_id. The query is not valid SQL in this form. The query
would cause an error.

PHP provides two features useful for escaping quotes, as follows:

v Magic quotes: A setting in your php. ini file that is turned on by default.
When magic quotes is turned on, information received by the PHP script
is automatically escaped. In other words, when you retrieve information
from the $_POST array, any quotes are already escaped.

v The addslashes function: A PHP function that escapes quotes. A match-
ing stripslashes function removes the slashes when needed, such
as when you want to display the information on the Web page, without
displaying a bunch of ugly slashes.

40 Part I: Introducing Application Development

Magic quotes are turned on by default. However, not all data is meant to be
sent to the database. When you display data, without storing it in the data-
base, the slashes must be removed. In general, tuning magic quotes off is
preferable. While magic quotes are handy to prevent beginners from making
dangerous mistakes, adding/removing slashes with the functions allows you
more control over your script. Just remember to add slashes to any data you
send to your database.

Checking and filtering information
Escaping the quotes in data sent to the database is not enough to prevent all

SQL injection attacks. The bad guys can be very creative. You need to check
all data received from outside sources. (Heard that somewhere before?)

At the very least, you need to check for semicolons. Semicolons are seldom
required in legitimate data. I know no one named Jo;ann. In most cases, you
can check that the information is in a reasonable format. For more informa-
tion about checking your data, see the section “Don’t trust any information
from an outside source” earlier in this chapter.

Backing up your databases

You must back up your databases. If an attack destroys your databases, you
must be able to replace them quickly. MySQL provides a utility that creates
backups for you.

To back up your database, use the mysgldump utility located in the bin subdi-
rectory of the directory where MySQL is installed. You start mysqgldump by
typing a command. If you're using Windows, you need to open a command
prompt window.

Use one of the following commands to back up a database:

mysqldump --user=accountname --password=password databasename
>path/backupfilename

You can change into the bin directory to type the command. Or, you can type
the path to mysgldump when entering the command, such as:

c:\mysql\bin\mysgldump ...

For example, to back up a database named Ccatalog, you might use the fol-
lowing command:

Chapter 2: Building in Application Security

mysgldump --user=phpuser --password=bigsecret Catalog
>../backups/Catalog.bak

After running mysqgldump, the file /backups/Catalog.bak contains all the
SQL queries needed to re-create Catalog.

Backups should be made at certain times — at least once per day. If your data-
base changes frequently, you might want to back up more often. For example,
you might want to back up to the backup directory hourly, but back up to
another computer once a day. In fact, for monumentally important data, you
should have more than one backup and store one backup off-site, in case the
building burns down.

Using a Secure Web Server

A\

Your Web server and the browsers of its visitors communicate by sending
messages. The browser requests a file that contains the HTML for a Web page.
The server sends the information in the file. The communication between
server and browser is not secure. Someone on the Internet between you and
the person requesting your Web pages can read the messages that are being
sent. If your site collects or sends credit card numbers or other secret infor-
mation, you must use a secure Web server to protect this data.

Secure Web servers use Security Sockets Layer (SSL) to protect communication
sent to and received from browsers. This is similar to the scrambled tele-
phone calls that you hear about in spy movies. The information is encrypted
(translated into coded strings) before it is sent across the Web. The receiving
software decrypts it into its original content. In addition, your Web site uses a
certificate that verifies your identity. Using a secure Web server is extra work,
but it’s necessary for some applications.

You can tell when you’re communicating using SSL. The URL begins with
HTTPS, rather than HTTP.

Information about secure Web servers is specific to the Web server that
you're using. To find out more about using SSL, look at the Web site for the
Web server that you're using. For instance, if you're using Apache, check out
two open-source projects that implement SSL for Apache at www.modss1.org
and www . apache-ss1.org. Commercial software is also available that provides
a secure server based on the Apache Web server. If you're using Microsoft
Internet Information Server (IIS), search for SSL on the Microsoft Web site at
www.microsoft.com.

41

4 2 Part I: Introducing Application Development

Part i

Building a User
Authentication
Application

The 5th Wave By Rich Tennant
(ERIG [ENNANT

"Rt T looking o e yramic TEp ApPCAEIONS
and content, not Web innvendoes and intent "

In this part . . .

In this part, I provide two applications that restrict Web
sites (or sections of Web sites) to authorized users only.
The two applications use two different methods — proce-
dural and object oriented — to authorize users.

Chapter 3
User Authentication with HTTP

In This Chapter
Understanding how HTTP headers work
Using HTTP authentication with Apache

Designing a PHP script that uses HTTP authentication for user login

Building a PHP script that uses HTTP authentication for user login

M any applications require the user to log in. For example, most applica-
tions for online shopping require the user to log in before purchasing

merchandise or services. Sometimes users can’t view any pages in the Web
site without entering a password, and sometimes only part of the Web site is
password-protected.

Because requiring users to enter a user ID and a password before viewing Web
pages is needed so often, user authentication is built into HTTP (Hypertext
Transfer Protocol), the language that Web servers and browsers use to commu-
nicate when transferring Web page content. I provide a short refresher on the
WWW (World Wide Web) and HTTP in the following section, “Understanding
HTTP Authentication.”

You can use HTTP’s built-in user authentication features or build your own
login application from scratch. HTTP authentication is quicker and easier
because it’s ready and able to collect and verify user IDs and passwords; you
don’t have to write code for this task. However, HTTP authentication has some
disadvantages, as I describe in the following list:

v Look and feel: The screen that requests password info is presented by
your browser. It’s a simple gray screen where the user enters a user ID
and a password. You can’t control its appearance.

1+ Behavior: The response to valid and invalid user IDs and passwords is set
and controlled by the browser. For example, Internet Explorer allows only
three invalid entries and then stops, whereas Netscape allows the user
to reenter the information forever. You can’t change the set behavior.

4 6 Part ll: Building a User Authentication Application

v Passwords: Valid user IDs and passwords must be provided in advance.
The HTTP authentication function checks the user information against
stored valid information to verify the user ID and password. HTTP
authentication provides no facility for users to register online.

HTTP authentication is most useful for simple applications. For example, you
might want to protect sections of your intranet, making them viewable only
by staff members from a specific department, such as accounting or sales.
Simple password protection in which a user enters a password provided by
the department head might work well for such an application. Because the
Web page is internal, its appearance might be less important than the appear-
ance of Web pages presented to potential customers. In this chapter, [show
you how to develop an application by using HTTP authentication.

If you want a more complicated application, such as one in which users can
register online, or if the look and feel of the application are important, you
probably want to build the application by writing your own code for all the
functions. In Chapter 4, you find out how to build a user authentication appli-
cation from scratch.

Understanding HTTP Authentication

HTTP authentication is built into HTTP (Hypertext Transfer Protocol). HTTP
is the language that browsers and Web servers use to communicate. HTTP is
the foundation that makes the WWW work.

Understanding how the WWW works

When a user types a URL into a browser, the browser sends an HTTP mes-
sage out onto the WWW, requesting to view the file specified by the URL.
The HTTP request might look like the following:

GET /Index.php HTTP/1.1

In addition to the initial request for the file, other HTTP messages, called
HTTP headers, can be sent. For instance, a header is sent specifying where
the file is to be found, as follows:

GET /index.php HTTP/1.1
Host: www.myowncompany.com

Chapter 3: User Authentication with HTTP

When the Web server at www.myowncompany . com receives the request, it
searches the root directory of its Web space for a file named index.php. If it
finds the file, the Web server sends some HTTP headers to the requesting
browser containing information about what is being sent, followed by the
contents of index.php. For instance, the Web server sends a status line such
as the following:

HTTP/1.1 200 OK

This status line informs the browser that the file was found. If the file isn’t
found, the following status line is sent:

HTTP/1.1 404 Not found

In addition, other headers can be sent following the status line, as shown in
this example:

HTTP/1.1 200 OK

Date: Mon, 31 May 2004 10:05:44 GMT
Content-Type: text/html
Content-length: 210

The headers provide the current date and time and tell the browser what
type of information to expect and the length of the file contents. After the
HTTP headers are sent, the content of the requested file is sent.

Requesting a password-protected file

In some cases, when the Web server receives a request for a file, it finds the
file but determines that the file is password-protected. For example, when
you use the Apache Web server, you can specify to Apache that all the files
in a directory require the user to enter a password before Apache can send
the file contents to the browser. The details of designating files as password-
protected are discussed later in this chapter.

When the Web server receives a request for a protected file, it responds with
the following status line:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="Realm"

When the browser receives the authenticate header line, it displays a dialog
box requesting the user to enter a user name and password. The display dif-
fers somewhat by browser, but all are similar. Figure 3-1 shows the dialog box
displayed by Internet Explorer.

b7

48 Part ll: Building a User Authentication Application

|
Figure 3-1:
The Enter
Network
Password
dialog box
requests
auser

name and
password.
|

Connect to localhost 2led
—
> :
R
secret section
Liser name: [5 v

Passwaord:

[Iremember my passward

I OK l [Cancel

When the user enters a user name and password, the browser sends a second
request for the file, followed by a header that contains the user name and
password entered by the user, as follows:

GET /SecretFile.php HTTP/1.1
Host: www.myowncompany.com
Authorization: Basic stringofcharacters

stringofcharacters is the user ID and password, encoded and separated
by a colon. The user ID and password are encoded for transmission, not
encrypted for security. If you're building a high security application, you
need to use SSL (Secure Sockets Layer) to protect the information during
transmission, which I discuss in Chapter 2.

Authorizing access

When the Web server receives the file request with the authorization header,
the included user name and password must be tested to determine whether
they’re valid. Apache automatically checks the password based on Apache
directives that tell Apache what user name/password combinations are valid.
If the information is valid, the contents of the requested file are displayed.

If the user name/password combination is not valid, the user is given the
opportunity to reenter the information one or more times, depending on which
browser is being used. Setting up your Web site for Apache HTTP authoriza-
tion is described in the section “Using HTTP Authentication with Apache.”

Alternatively, you can write code in your PHP script that checks the user
name/password information in the authorization header. The information is
available in your PHP script in $_SERVER[' PHP_USER_AUTH'] and $_SERVER
['PHP_USER_PW']. I show you how to build a login application with this method
in the sections that describe designing and building the application with PHP,
later in this chapter.

Chapter 3: User Authentication with HTTP £} §)

Using HTTP Authentication with Apache

You can set up HTTP authentication by using Apache alone, without PHP or
MySQL. After you use this approach to set up authentication, Apache auto-
matically prompts for a user name and password and checks the information
that the user enters against a list of valid user names and passwords. Although
this approach is quick and easy to set up, it’s also simplistic, inflexible,
restricted in scope and function, and slow if you have a large number of valid
user names and passwords. However, it’s perfect for some types of user login,
allowing quick and easy authentication for situations with a restricted number
of users and that don’t require anything more complicated. For instance, you
might want to set up a password-protected directory on your intranet for each
department, providing the department staff members with a user name and
password for their specific areas.

You use instructions to Apache, called directives, to set up your authentication
application. Directives allow you to specify the files that are password-protected
and the valid user names and IDs. The simplest way to use Apache directives
for authentication is to create a file called .htaccess (notice the period at
the beginning of the filename).

Configuring Apache

When Apache starts, it executes the directives in its configuration file,
usually called httpd.conf, located in a subdirectory called conf in the
directory where Apache is installed. This configuration file generally allows
access to all the Web pages stored in files in your Web space — htdocs by
default, unless the location was changed in the Apache configuration file. To
restrict access to certain files, you put a file called .htaccess, which con-
tains Apache directives that specify authentication, into the directory that
you want to password-protect. The Apache directives in the .htaccess file
override the directives in the configuration file that were executed when
Apache started. However, an Apache directive in the configuration file can
tell Apache to ignore the commands in the .htaccess file. Before you can
password-protect directories with an .htaccess file, you must be sure that
Apache can execute the directives in the .htaccess file.

To make sure that Apache can execute directives in the .htaccess file, open
the file httpd. conf. In Windows, choose Start>Programs=>Apache HTTPD
Server=>Configure Apache Server. Look through the file for a line similar to
the following line that identifies the top directory in your Web space:

<Directory "C:/Program Files/Apache Group/Apache/htdocs">

This line means that the following Apache directives apply to this directory
only. Shortly after this line, you might find a line similar to the following:

50 Part ll: Building a User Authentication Application

a\\S

AllowOverride None

This line tells Apache to ignore all the directives in any .htaccess file. You
can change this line to the following line:

AllowOverride Authconfig

This line tells Apache to allow the directives in the .htaccess file that are
related to HTTP authentication to override the authentication directives exe-
cuted when Apache was started.

Creating the .htaccess file

The .htaccess file contains the Apache directives needed for HTTP authen-
tication. Create a file called .htaccess (notice the filename begins with a
period) in the directory that you want to password-protect. The .htaccess
file specifies directives that apply to the directory where it’s located and all
subdirectories under its directory. The contents of the file should be as follows:

AuthUserFile "c:\secret\.htpass
AuthGroupFile /dev/null
AuthName "Accounting Department"
AuthType Basic

Require valid-user

Here’s a closer look at the file contents:

v The first line specifies a file containing the list of valid users for this
directory. The procedures for creating the password file are discussed
in the next section, “Creating the password file.”

Store the password file in a directory outside of your Web space. It’s
much more secure there than in a directory that visitors from the Web
can access. In this case, the directory is in c: \secret, not anywhere
under htdocs.

v The second line specifies a group file; in this case, no group file exists
(designated by /dev/null). A group file contains a list of groups that
are allowed to access the files in this directory.

v AuthName is the name of the section that is protected. This name can be
anything you want and is displayed in the window where the user enters
a user name and password.

v AuthType is specified as Basic. Digest is the other type of authentication,
which is more secure but also more complicated. [don’t discuss Digest
authentication in this book.

v The last line states that only a valid user — a user found in the file speci-
fied on the first line — can access files in this directory.

Chapter 3: User Authentication with HTTP

WING/
&

The .htaccess file applies to the directory where it resides and all subdirec-
tories of this directory. However, another .htaccess file in a subdirectory of
this directory would override the directives in this .htaccess file.

Creating the password file

The password file contains all the valid user name/password pairs. Apache
provides a program to use to create the password file. The program, called
htpasswd, is automatically installed in the bin subdirectory in the directory
where Apache is installed, such as c: \Apache\bin\htpasswd. exe.

To create a password file, type a command similar to the following at the
command line (the command prompt in Windows):

c:\Apache\bin\htpasswd -c c:\secret\.htpass janet

This command creates a file called .htpass in the directory c:\secret. It
adds one line to the file for the user name janet and prompts you to enter a
password for the user name janet. The -c in the command line stands for
create and should be used only when you’re creating the file. You can add
user name/password lines to the file as follows:

c:\Apache\bin\htpasswd c:\secret\.htpass boss

If you use -c with the command to add a line to an existing password file, the
file is overwritten by a new file with the same name; any lines in the existing
file are gone. Don’t use -c unless you want to create a new file.

You can name the file that contains the valid user names anything you want.
The name .htpass is commonly used but isn’t required. The information is
stored in the file and looks like this:

janet:$aprl$Hr...... $DS8EPQBQbgxRXt 9hUFoqg3/

Notice that the password isn’t stored in a form that humans can read.
Although you can store the password file anywhere on your computer, it’s
best to store it outside your Web space so that it’s more secure. You tell
Apache where the file is located with a line similar to the following line in
your .htaccess file, as discussed in the preceding section:

AuthUserFile /usr/local/apache/secret/.htpass

This command tells Apache to look for valid user names in the file
/usr/local/apache/secret/.htpass.

51

52 Part ll: Building a User Authentication Application

Apache HTTP authentication in action

After you create the .htaccess and password files, Apache implements user
authentication without any further intervention by you. When Apache receives
arequest to view a file in a directory containing your .htaccess file, the dialog
box requesting a user name and password is automatically displayed. When
the user clicks the button to submit a user name and password, Apache com-
pares the information entered to the list of valid user name/password pairs in
your password file. If it finds a match, it sends the Web page contents to the
user’s browser.

The behavior when the user name and password are not found in the password
file depends on the browser. For instance, Internet Explorer allows the user
to try three times and then stops, displaying the message Authorization
Required. Netscape, on the other hand, displays a message that says
Authorization Failed. Try Again? and provides an OK button and a
Cancel button. Netscape allows the user to keep clicking OK and reentering
user name and password combinations forever or until the user clicks the
Cancel button.

Most browsers offer the user the option to cancel by clicking a button.
When the user clicks Cancel, the message authorization Required is
displayed.

After the user has entered a valid user name/password combination, the user
is authorized to view all the password-protected Web pages during the ses-
sion. The user does not have to reenter the password every time a new file is
requested. The authorization is valid until the browser is closed, ending the
browser session.

Designing an HTTP Authentication
Application in PHP

In the rest of this chapter, I discuss using HTTP authentication in a PHP script.
The basic function of the HTTP authentication application is to protect files.
Only users who have entered valid user names and passwords are allowed to
view the protected pages. The HTTP authentication application requires an
existing set of stored user names and passwords. The application compares
the provided user name and password to the stored list of valid information,
and if the provided user name and password match a stored pair, the user is
granted access to the protected files.

Chapter 3: User Authentication with HTTP

Using HTTP authentication with PHP on Windows

A PHP authentication script that uses HTTP head-
ers to prompt for login information from the user
won't work unless PHP is installed as an Apache
module, not as CGl. If you currently have a work-
ing installation of PHP, you can determine which
mode your PHP is starting with by checking your
Apache configuration file ht tpd.conf. This
file is usually installed in the subdirectory conf
inthe directory where Apache is installed, such
as c:\Program Files\Apache Group\
Apache\conf\httpd.conf.

Open httpd.conf. You can usually open it by
selecting a menu item on your Start->Programs
menu. For example, on Windows 2000, choose
Start=>Programs=>Apache HTTPD Server>
Configure Apache Serverc>Edit the httpd.conf
Configuration File. The configuration file is opened
in a default editor, such as Notepad or WordPad.
Look for one or both of the following lines:

LoadModule php5_module
"c:/php/php5apache.dll"
Action application/x-httpd-php

/php/php-cgi . exe

If you're using Apache 2, the LoadModule line
might look like:

LoadModule php5_module
"c:/php/php5apache2.dll"

The LoadModule Apache configuration directive
starts PHP as an Apache module. The Action
directive starts PHP in CGl mode. In many
cases, both directives are in the httpd. conf
file, but one starts with a # which means it's a
comment and not an active directive.

If the Action directive is currently active (that
is, the LoadModule directive is either missing or
has a # as its first character), your PHP is installed
as a CGl. You must change PHP to an Apache

module before HTTP authentication will work in
your PHP scripts. To change PHP to an Apache
module, follow these steps:

1. Find the LoadModule line mentioned pre-
viously in your httpd.conf file. If you
find it with a # at the beginning of the line,
remove the #. If you don‘t find the line, add it.

2. Find the Action line mentioned previously
and insert a # at the beginning of the line.

3. Find the following line in your ht tpd . conf
file and remove the # from the beginning of
the line. If you don't find this line in your
httpd.conf file, add it — without the #.

#AddModule mod_php5.c

4. Be sure your php. ini file is in your system
directory (Win98/XP: windows; Win2000:
Winnt).

5. Be sure your php_mysqgl.dll or php_
mysqli.dll file is in your system direc-
tory (Win98: windows \ system; Win2000:
winnt\system32; WinXP: windows\
system32). If your MySQL d11 file isn't
currently in your system directory, check
your php.ini file to see which one is
active in your current installation and copy
the correct file to the system directory.

6. Restart Apache.

You should be able to find a menu item on
your start menu, such as Start=>Programs=>
Apache HTTP Server=>Control Apache
Server=>Restart.

If you're using a PHP 4 installation, the steps are
slightly different. For instance, the module d11 is
named php4_apache.dl11. See the PHP Web
site, www . php . net, for instructions for PHP 4.

53

54 Part ll: Building a User Authentication Application

WING/

&@‘

To design the application, you specify in detail the functionality of the appli-
cation, as follows:

1. Check to see whether a user ID and password have been sent by the
browser with the request for the protected Web page.

2. If a user name and password are not included in the request for the Web
page, prompt the user to enter a user name and password.

3. When the user enters a user name and password, resend the Web page
request, adding a header containing the user name and password entered
by the user.

4. When a user name and password are included with the Web page request,
check whether the user name and password are in the list of valid user
information. If not, display an error message and give the user the oppor-
tunity to enter another user name and password.

5. If the user has entered a valid user name and password, display the con-
tents of the Web page in the user’s browser.

To use HTTP authentication with PHP on Windows, you must have PHP
installed as an Apache module, not as CGI. For more information, see the
nearby sidebar, “Using HTTP authentication with PHP on Windows.”

Creating a User Database

In the HTTP authentication application, a list of valid user names and pass-
words is stored, and the user name and password provided by the user are
compared to the stored information to check whether they’re valid. The list
of valid information can be stored in flat files or in your favorite database.
In this example, the valid user information is stored in a MySQL database.
In the next few sections, I explain how to create the database.

Designing the user database

The database design is simple: It needs to contain only a user name and a
password for each user account. The date on which the account was created
is also useful information.

For this design, the database is named UserAccount. It contains one table
called valid_uUser, and the table design is shown in Table 3-1. The table
contains three fields: user_name, password, and create_date. All the fields
are required; none is allowed to be blank. The primary key is user_name.

Chapter 3: User Authentication with HTTP 5§

Table 3-1 Database Table: Valid_User

Variable Name Type Description

user_name CHAR (10) User name for the user account
(primary key)

password CHAR (255) Password for the account

create_date DATE Date when the account was added
to the table

Creating the user database

The following SQL statement creates the user database:
CREATE DATABASE UserAccount;
The following SQL statement creates the table:

CREATE TABLE Valid_User (

user_name CHAR(10) NOT NULL,
password CHAR(255) NOT NULL,
create_date DATE NOT NULL,

PRIMARY KEY(user_name));

Accessing the user database

You can access the database from your PHP script with the MySQL functions
that are built into PHP. You can use either the mysql functions or the mysqli
functions, depending on which version of PHP and MySQL you are using and
which function module is activated in your php. ini file. In this book, the
applications use the mysqli functions. I explain the version differences for
PHP and MySQL in Chapter 1.

You need to provide the information that the MySQL functions need, such as
a MySQL account name and password. This is not related to any other
account name or password that you have, such as a password to log on to
the system.

q\“\NG!

& If you're using PHP 4, the mysqli functions aren’t available. You need to use

the mysql functions. The syntax is slightly different. You find out about the

difference between the mysql and mysqli functions in Appendix C.

56 Part ll: Building a User Authentication Application

NNG/
S

In this application, [have stored the information needed by the PHP mysqli
functions in a separate file called vars. inc. This file is stored in a directory
outside my Web space, for security reasons. The file contains information
similar to the following:

<?php

$host = "localhost";

$user = "admin";

$passwd = "";

$database = "UserAccount";
?>

Notice the PHP tags at the beginning (<?php) and the end (?>) of the file. If
these tags aren’t included, the information might display on the Web page for
the whole world to see, which is not what you want.

Building the Authentication Application
in PHP: The Procedural Approach

One script can provide all the functionality needed for this application. When
the script Auth.php is first accessed, it prompts the user for a user name and
password. After the user types a user name and password and clicks the
button to submit them, the program tests whether the user name/password
combination is valid.

The flow of the application script is controlled by an if statement that tests
whether a user name and password have been entered. The following is the
general design of the application script:

if (user name and password have not been submitted)
Prompt the user to enter a user name and password

else (user name and password have been submitted)
1 Test whether user name and password match a user
name and password in the valid user database.
2 If user name and password are valid, display the
content of the protected Web page.
3 If user name and/or password are not wvalid,
prompt the user again for login information.

The HTTP authentication application script (Auth.php) is shown in Listing 3-1.

Chapter 3: User Authentication with HTTP ~ § 7

LisTING 3-1: THE ScRIPT THAT CoLLECTS AND TESTS THE USER NAME AND PASSWORD

<?php
/* Program: Auth.php
* Desc: Program that prompts for a user name and
* password from the user using HTTP authentication.
* The program then tests whether the user
* name and password match a user name and password
* pair stored in a MySQL database.
*/
//Testing whether the user has been prompted for a user name
if(!isset ($_SERVER['PHP AUTH USER'])) #10
{
header ('WWW-Authenticate: Basic realm="secret section"');
header ('HTTP/1.0 401 Unauthorized'):; #13
exit ("This page requires authentication!"); #14
} #15
// Testing the user name and password entered by the user
else #18
{
include("Vars.inc"); #20
$user name = trim($_SERVER['PHP AUTH USER']):; #21
$user password = trim($_SERVER['PHP_AUTH PW']);
$connection = mysql_connect ($host, $user, $password)
or die ("Couldn't connect to server."); #24
$db = mysql_select_db($database, $connection)
or die ("Couldn't select database.");
$sgl = "SELECT user_ name FROM Valid User
WHERE user_name = 'S$user name'
AND password = md5('S$user password')";
$result = mysql_ query($sql)
or die("Couldn't execute query."):; #31
$num = mysqgl num rows ($result); #32
if ($num < 1) // user name/password not found #33
{
exit ("The User Name or password you entered
is not valid.
");
} #37
} #38
// Web page content. #39
include ("Welcome.inc"); #40
?>

Some of the lines in Listing 3-1 end with line numbers. The following discus-
sion refers to the line numbers in the listing to discuss the script and how it
works:

#10 Begins an if block that executes when the script first starts, before
the user has entered a user name and password. The if statement
tests whether a user name has been entered by testing whether the

58 Part ll: Building a User Authentication Application

#14
#15
#18

#20

#32

#33

#37

#38
#39

element PHP_AUTH_USER exists in the $_SERVER superglobal array. If
it does not exist, the user has not entered a user name, and the i f
block executes. The i f block sends two HTTP headers (lines 12 and
13) that tell the Web server that this file is password-protected. The
Web server then sends the headers that tell the browser to prompt
for a user name and password.

Is executed only if the user clicks the Cancel button.
Ends the if block.

Begins an else block that executes when the user has been prompted
for a user name and password. The else block executes if the ele-
ment PHP_AUTH_USER exists in the $_SERVER superglobal array. When
the user clicks the button to submit a user name and password, the
element is created. Even if the user didn’t type anything in the user
name field, the element is created containing a blank string, causing
the else block to execute.

Lines 20 to 31 create and execute the SQL query that tests whether
the user name and password exist in the MySQL database of valid
user name/password combinations.

#20 Includes the file vars. inc that contains the information neces-
sary to access the database.

#21 Gets the user name from the $_SERVER superglobal array. Trims
the value to remove any blank spaces typed by the user. Line 22
does the same for the password submitted by the user.

#27 Lines 27 to 29 create the SQL query that tests the user name
and password. Notice that the password supplied by the user is
put into a mds () function. This is a MySQL function that
encrypts the password for security reasons. The password
stored in the database is encrypted with the MySQL md5 func-
tion. Therefore, when you test the password entered by the
user, you need to use md5 () on it before you compare it to the
password in the database.

Creates $num, which contains the number of records found containing
the user name and password combination entered by the user.

Begins an if block that executes if the user name and password
entered are not found in the database. This if block prints a message
and then stops the script.

Ends the invalid user name if block.
Ends the else block.

The script from this line executes if the user name and password are
valid. The contents of the Web page go here. This script just displays a
welcome message. You can put anything you want on your Web page,
such as a list of links to the Web pages in your password-protected
area.

Chapter 3: User Authentication with TP~ §¢

#40 Includes the file that contains the contents of the Web page. In this
case, the file is named Welcome. inc. Listing 3-2 shows the contents
of Welcome.inc.

When the script in Listing 3-1 first executes, it displays a window that prompts
for your password (Lines 10 to 15). The exact appearance and function of the
window depend on the browser. Figure 3-2 shows the dialog box displayed by
Firefox with the user name and password already typed by the user.

Prompt %]

Figure 3-2:
The Firefox i 1 Enter usemame and password for "secret section” at hitp.#localhost
' User Mame:

dialog box
that Password:
requests a .
user name
and
password. [ok][cancel
|

janet

[Use Password Manager to remember this password.

After the user types a correct user name and password, the Web page is dis-
played. In this application, a simple welcome page is displayed, using a PHP
variable containing the user name. Listing 3-2 shows the code that displays
the welcome page.

LisTING 3-2: THE CoDE THAT DispLAYS THE WELCOME WEB PAGE

<?php
/* File: Welcome.inc
* Desc: HTML code that displays the Welcome Web page.

* Uses one PHP variable, $user_ name.

*/

echo "<html><head><title>Welcome</title></head>\n
<body>

<p align='center'>Hello, $user_ name</p>\n
<p align='center'>Welcome to my secret page</p>\n
</body></html>";

When the user enters a valid user name and password, the Web page shown
in Figure 3-3 is displayed.

60

Part II: Building a User Authentication Application

|
Figure 3-3:
The Web
page that

displays |

when a user
enters a
valid user
name and

password. |

)
)
&

\E Welcome - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

& - - & O [0 htptriocanost v G

Hello, janet

Welcome to may secret page

Building the Authentication Application
in PHP: The Object-Oriented Approach

Object-oriented programming requires that you create and use objects to
provide the application’s functionality. You first identify the objects needed
for the application, and then you write the classes that define the objects,
including the methods that the application needs. When the objects are
ready, you write the application script that creates and uses the objects.

Developing the objects

This HTTP authentication application must prompt for the user’s login name
and password. After the user submits the login information, the application
must compare the information submitted against the user account informa-
tion stored in a database. If the user name and password are valid, the appli-
cation displays the contents of the Web page. The following objects are
needed for the application:

v passwordPrompter: Prompts for and collects the user’s login
information.

v Database: Container that stores the data for the application.

v Account: User account with its associated user information.

1 WebPage: Web page to be displayed by a browser.

The details for each object are discussed in the next sections.

Chapter 3: User Authentication with TP~ O]

Writing the PasswordPrompter class

The PasswordPrompter object, which displays the prompt window where
the user enters a user name and password, is central to the application. The
PasswordPrompter object uses the built-in HTTP authentication features to
display the window. When the user submits the information, it’s available in
the PHP script in the $_SERVER superglobal array.

The properties
The PasswordPrompter class requires only one property.

private $realm;

$realmis a string of your choosing that is displayed when the application
prompts for the user name and password.

The code

Listing 3-3 contains the complete code for the PasswordPrompter class.
The constructor and the single method are discussed in detail after the code
listing. Notice the line numbers at the ends of some of the lines of code. The
discussion following the listing refers to the line numbers.

LisTiING 3-3: THE CoDE FOR THE PASSWORDPROMPTER CLASS

/* Class: PasswordPrompter
* Desc: Class that displays a window that requests

* a user password. The user name and password
* typed into the window are returned to the
* script in the superglobal array $_ SERVER.
*/
class PasswordPrompter
{
private $realm; // String passed to constructor
function __construct ($realm) #12
{
if(is_string($realm))
{
$this->realm = $realm;
}
else
{
throw new Exception("Argument must be a string.");
}

Continued

62 Part ll: Building a User Authentication Application

LisTiNG 3-3: (Continued)

function displayPrompt ()

{
header
("Www-Authenticate: Basic realm=\"$this->realm\"");
header ('HTTP/1.1 401 Unauthorized'); #28
// The following code executes when the user cancels.
exit ("This Web page requires authentication."); #30
}

The constructor

The constructor expects a string to be passed into it. The string is stored

as the realm (see line 12), the name of the section of the Web site that is
password-protected. The name can be any string. It’s displayed in the dialog
box that prompts users for their login information. If the information passed
is not a string, an exception is thrown with a message.

displayPrompt
Lines 26 to 28 send HTTP headers to the Web server. The Web server

responds with headers that cause the browser to display a window that
prompts for a user name and password.

The code on line 30 executes only if the user clicks the Cancel button.
Using the PasswordPrompter class
You can create a PasswordPrompter object as follows:

$prompt = new PasswordPrompter ("secret place");

If the parameter passed isn’t a string, an exception is thrown, with a message.

Writing the Database class

In order to authenticate the login information entered by the user, a list of
valid user name/password combinations must be available. The Database
class defines an object where the data is stored. In this application, it’s a
MySQL database. Listing 3-4 shows the code for the Database class.

Chapter 3: User Authentication with HTTP) 3

The properties
The Database properties information needed to connect to the database.

private $connection;
private $database_name;
private $host;

private $user;

private $password;

$connection contains an object that represents the connection to the data-
base. $database_name contains the name of the currently selected database.
If no database has been selected, $database_name is NULL. The host, user,
and password aren’t required by the class as defined here; these properties
aren’t used. However, for a different application, additional methods might
require these properties.

The code

Listing 3-4 contains the complete code for the Database class. The construc-
tor and both of the methods are discussed in detail after the code listing.
Notice the line numbers at the ends of some of the lines of code. The discus-
sion following the listing refers to the line numbers.

LisTING 3-4: THE CODE FOR THE DATABASE CLASS

<?php
/* Class: Database
* Desc: Class that connects to a MySQL database.
*/
class Database
{
private $cxn; // database connection object
private $database_name;
private S$host;
private $user;
private $password;

function __construct($filename)

{
include("$filename");
if (!$this->cxn = new mysqli ($host, $user, $passwd)) #16
{
throw new Exception("Database is not available.
Try again later.");
email ("dbadmin@ourplace.com", "DB Problem",
"MySQL server is not responding. ".
$this->cxn->error());
exit();
}

Continued

64 Part ll: Building a User Authentication Application

LisTING 3-4: (Continued)

$this->host = $host; #25
$this->user = $user;
$this->password = $passwd;

}

function useDatabase ($dbname)
{
if (!$result = $this->cxn->query("SHOW DATABASES")) #32
{
throw new Exception("Database is not available.
Try again later");
email ("dbadmin@ourplace.com", "DB Problem",
"MySQL server is not responding. "
.$this->cxn->error());
exit();
}
else #41

while($row = $result->fetch_row())

$databases[] = $row[0];
}
}
if (in_array($dbname, $databases)
in_array(strtolower ($dbname), $databases)) #49
{
$this->database _name = $dbname;
$this->cxn->select_db($dbname) ;
return TRUE;
}
else #55
{
throw new Exception("Database $dbname not found.");
return FALSE;
}
}

function getConnection()
{

return $this->cxn;

The constructor

The constructor creates the connection and stores the properties. The host,
user, and password must be passed when the new Database object is created
so that the connection can be made. The following numbers refer to line num-
bers in the code in Listing 3-4:

Chapter 3: User Authentication with TP~ 0§

#16 Begins an if block that executes if the database connection fails. The
block throws a new exception with a message, e-mails the database
administrator that the database is down, and exits.

#25 Lines 25 to 27 execute if the database connection is successful. The
lines store the properties in the object.

The connection ($cxn) is stored in a property so that it can be used when-
ever the database connection is needed.

useDatabase

The useDatabase method selects a database. The name of the database is
passed when the method is executed. The method checks to make sure that
the specified database exists before selecting it.

The following discussion refers to line numbers in Listing 3-4:

#32 Begins an if block that executes if the database query fails. The
block throws a new exception with a message, e-mails the database
administrator that the database is down, and exits.

#41 Begins an else block that executes when the query runs successfully.
The query returns a list of available databases in the result set. This
block stores the database names in an array named $databases.

#48 Begins an if block that executes if the database the user wants to
select exists. The database name is stored in a property. The data-
base is selected. The method returns TRUE.

#55 Beings an else block that executes if the database passed in the
method isn’t found. An exception is thrown, with a message stating
that the database isn’t found. The method returns FALSE.

getConnection

The getConnection method returns the value stored in the $connection
property — the connection for the database. This can be used wherever the
connection to the database is needed.

Using the Database class
You can create a Database object as follows:
$filename = "Vars.inc";

$db = new Database($filename);
$select = $db->useDatabase("UserAccount");

If the new statement can’t create a new Database object, it throws an excep-
tion with the following message:

Database is not available. Try again later.

66 Part ll: Building a User Authentication Application

After the statements, $select contains FALSE if the database doesn’t exist. If
the database is successfully selected, $select contains TRUE.

The database selected remains in effect until you select a different database
or the script ends. You can change the database selected at any time by using
the useDatabase method again.

Writing the Account class

The Account class stores and retrieves the information about a user. In this
application, the user account contains only three bits of information: the user
name, password, and date the account was created. For other applications,
the user account might store more information, such as the user’s address,
phone, and credit card number. In the database for this application
(described earlier in this chapter in “Creating a User Database”), the user’s
information is uniquely identified by the user_name.

The properties

The Account properties store the information needed to access the account
row in the database.

private $userID = NULL;
private $cxn;

private $table_name;
private $message;

$userID is the field that identifies the account information in the table.
$userID stores the information from the user_name field in the database.
$table_name stores the name of the table in the database where the account
information is located.

$cxn stores an object that represents the connection to the database where
the account information is stored.

$message is a string that is stored by some methods when they execute.

The code

Listing 3-5 contains the complete code for the Account class. I discuss the
constructor and each of the three methods in detail after the code listing.
Notice the line numbers at the ends of some of the lines of code. The discus-
sion following the listing refers to the line numbers.

Chapter 3: User Authentication with HTTP O 7

LisTiING 3-5: THE CODE FOR THE ACCOUNT CLASS

<?php
/* Class: Account
* Desc: A user account stored in a database. Represents
* the account information stored in one record
* in a table.
*/
class Account
{

private $userID = NULL;

private $cxn; // database connection object
private $table_ name;

private $message;

function __construct(mysqli $cxn, $table)
{
$this->cxn = $cxn;
if(is_string($table)) #17
{
$sgl = "SHOW TABLES LIKE 'S$table'"; #19
$result = $this->cxn->query($sql);
if($result->num rows > 0) #21
{
$this->table _name = $table;
}
else #25
{
throw new Exception("$table is not a table
in the database");
return FALSE;
}
}
else #32
{
throw new Exception("Second parameter is not a
valid table name");
return FALSE;
}
}

function selectAccount ($userID)
{
$userID = trim($userID); #42
$sql = "SELECT user_name FROM $this->table_name
WHERE user name ='$userID'"; #44
if(!$result = $this->cxn->query($sql))
{
throw new Exception("Couldn't execute query: "
.$this->cxn->error());
return FALSE;
}

Continued

68 Part ll: Building a User Authentication Application

LisTiNG 3-5: (Continued)

if ($result->num rows < 1) #51
{

$this->message = "Account S$userID

does not exist!";

return FALSE;
}
else #57
{

$this->userID = $userID;

return TRUE;

}
}
function comparePassword($form password)
{
if (!isset ($this->userID)) #66
{
throw new Exception("No account currently selected");
exit();
} #70
$sql = "SELECT user_name FROM $this->table_name
WHERE user_name ='S$this->userID' AND
password = md5('$form password')";
if (!$result = $this->cxn->query($sql)) #74
{
throw new Exception("Couldn't execute query: "
.mysql_error());
exit();
}
if ($result->num rows < 1) #80
{
$this->message = "Incorrect password for
account $this->userID!";
return FALSE;
}
else #86
return TRUE;
}
function getMessage()
{
return $this->message;
}
}
?>

The constructor

The constructor tests the connection and the table name that are passed to it
to ensure that the parameters are in the proper format and stores them in
properties. There is no default for these values; the values must be passed
when the Account object is created.

Chapter 3: User Authentication with HTTP @

#16 Stores the database connection in the property.

#17 Begins an if block that executes if the table name passed is a string.
The table name is checked to see whether it exists.

#19 Lines 19 to 20 create and execute an SQL query that tests
whether a table exists with the name that was passed to the
constructor.

#21 Begins an if block that executes if the table exists. The table
name is stored in the $table property.

#25 Begins an else block that executes when the table does not
exist. The script throws an exception with a message and
returns FALSE.

#32 Begins an else block that executes if the table name is not a string.
The script throws an exception with a message and returns FALSE.

selectAccount

This method stores the user_name of the currently active account. The user
name is passed when selectAccount is called. The method checks whether
the user name exists in the database. If it’s found, the user name is stored in
SuserID.

#42 The userID passed to selectAccount is trimmed to remove any
blank spaces accidentally typed by the user before or after the user
name.

#43 Lines 43 and 44 create an SQL query to select an account that has a
user _name that matches the user name passed in useriD. The table
name property is used in the SQL query.

#45 Begins an i f block that executes when the query fails. An exception
is thrown, with a message, and the method returns FALSE.

#51 Begins an if block that executes when the number of rows returned
by the query is less than 1, meaning that the user name passed to the
method was not found in the database table. A message is stored in
$message, and FALSE is returned.

#57 Begins an else block that executes when the number of rows returned
by the query is not less than 1, meaning that the user name was found
in the database table. The method stores the user name in the
$userID property and returns TRUE.

comparePassword

This method compares the password passed to the method with the pass-
word stored in the database for the current account. This method fails if no
account has been selected.

70 Part ll: Building a User Authentication Application

#66 Begins an if block that executes when no account has been selected.
If no user name is stored in the $userID property, the script throws
an exception with a message and exits.

#71 Lines 71 to 73 construct an SQL query that selects a record with the
user name for the current account and the password passed to the
method.

#74 Begins an if block that executes if the query does not execute suc-
cessfully. The script throws an exception with a message and exits.

#80 Begins an if block that executes if the password provided by the
user doesn’t match the password stored in the database. That is, if
the query returned less than 1 row. The method stores a message and
returns FALSE.

#86 Begins the else block that executes if the password supplied by the
user matches the password stored in the database table. The else
block returns TRUE.

getMessage
This method returns the content of the $message property.

Using the Account class

To use the Account class, you must pass it a database connection. In addi-
tion, the correct database must be selected. Therefore, to create an account
object, you can use statements similar to the following:

$db = new Database("Vars.inc");
$db->useDatabase ("UserAccount");
$acct = new Account ($db->getConnection(),"vValid User");

When the new Account object is created, a previously created database con-

nection object is passed to it, along with the name of the table where the
account information is stored.

In most cases, you want to select a specific account from the database with a
statement similar to the following:

$acct->selectAccount ("janet");

If the user name janet doesn’t exist in the database table, FALSE is returned.
An account must be selected before you can use comparePassword, as
follows:

$acct->comparePassword("secret");

If you use comparePassword before selecting an account, the script throws
an exception and exits.

Chapter 3: User Authentication with HTTP /]

Writing the WebPage class

The webPage class is used frequently throughout this book whenever a Web
page needs to be displayed. The webPage class has a single function: to dis-
play a Web page. The class expects the name of a file that contains the code
that defines the Web page to be passed. If the Web page displays any informa-
tion stored in PHP variables, an array of the data to be displayed in the Web
page must also be passed.

The properties
The webPage properties store the information needed to display the Web page.

private $filename;
private $data;

$filename is the name of the file that contains the code that defines the Web
page — HTML code and perhaps some PHP code for parts of the Web page
that use PHP variables. The file that defines the Web page for the authentica-
tion application presented in this chapter is named wWelcome. inc. The same
file is used for the procedural code and is shown in Listing 3-2.

$data is an array that contains the PHP variables for the Web page. If infor-
mation contained in PHP variables is displayed on the page, the PHP vari-
ables must be passed in an array. If no PHP variables are displayed, $data
can be NULL.

The code

Listing 3-6 contains the complete code for the webrage class. The construc-
tor and the single displayPage method are discussed in detail after the code
listing. Notice the line numbers at the ends of some of the lines of code. The
discussion following the listing refers to the line numbers.

LisTiING 3-6: THE CoDE FOR THE WEBPAGE CLASS

<?php

/* Class: WebPage
* Desc: Class that stores the information needed to
* display a Web page.
*/
class WebPage

{
private $filename;
private $data;
function __construct($filename, $data=NULL) #11

Continued

72 Part ll: Building a User Authentication Application

LisTING 3-6: (Continued)

if(is_string($filename)) #13
{

}
else

{

$this->filename = $filename;

throw new Exception("Filename must be a string"):;

;f($data == NULL or is_array($data)) #21
{ $this->data = $data;
ilse #25
¢ throw new Exception("Data must be passed

in an array"):;

}

function displayPage()

{
@extract ($this->data); #34
include($this->filename); #35

The constructor

When a ebPage object is instantiated, the filename and the data that are
passed to the constructor are stored in the properties.

#11 The constructor definition includes a default value for $data: NULL. If
no value is passed for data, NULL is stored in the $data property. This
gives the object the flexibility to store and display Web pages that are
only HTML as well as Web pages that contain PHP variables.

#13 Begins an if/else statement that tests whether the filename passed
is a string. If it’s a string, it’s stored in a property. If it’s not a string,
the else block executes, which throws an exception and exits.

#21 Begins an if/else statement that tests whether the data passed is in
an array. The if statement executes if the data is NULL or is an array
and stores the data passed to the constructor in the sdata property.
The else block that begins on line 26 executes when the data is not
passed in an array. A new exception is thrown with a message, and
the program exits.

Chapter 3: User Authentication with HTTP

displayPage
This method displays the Web page based on the information stored in the
properties.

#34 Extracts the PHP variables for the $data array. If no PHP variables are
used in the Web page, no data was passed, and $data is NULL. To pre-
vent a notice from being displayed when $data is NULL, an @ is used
before the extract function.

#35 Includes a file that defines the Web page based on the filename stored
in the $filename property.

Using the WebPage class

A webpPage object is created with a statement similar to one of the following:

new WebPage ("Welcome.inc");
new WebPage ("Welcome.inc", $data);

$pagel =
$page2 =
You can use the first statement to create a webPage object when the Web
page contains only HTML code and no PHP variables. The second statement
creates an object that contains PHP variables to display in the Web page.

When the second parameter is passed, it must be an array. If a second parame-
ter is included that is not an array (for instance, just a string or an integer), an
exception is thrown with the following message:

Data must be passed in an array

Writing the Auth-00 script

The application script creates and uses the objects to provide the applica-
tion’s functionality. For the HTTP authentication application, the script must
prompt the user to enter a user name and password and then check whether
the user name and password are valid. Listing 3-7 shows the application
script Auth-00. php.

The flow of the application script is controlled by an if statement that tests
whether a user name and password have been entered, by testing whether
the $_SERVER array contains the user name. The following is the general
design of the application script:

if (user name and password have not been submitted)
Prompt the user to enter a user name and password

else (user name and password have been submitted)
1 Test whether user name and password match a user
name and password in the valid user database.
2 If user name and password are valid, display the

/3

74 Part ll: Building a User Authentication Application

content of the protected Web page.
3 If user name and/or password are not wvalid,
prompt the user again for login information.

LisTING 3-7: THE APPLICATION ScRIPT THAT CREATES AND USES OBJECTS

<?php
/* Program: Auth-00.php
* Desc: Program that prompts for a user name and password
* from the user using HTTP authentication. The
* program then tests whether the user name and
* password match a user name and password pair
* stored in a MySQL database.
*/
require_ once ("PasswordPrompter.class"); #10

require_once("Database.class");
require_once("Account.class");
require_once ("WebPage.class");

//Testing whether the user has been prompted for a user name
if (!isset ($_SERVER['PHP_AUTH USER'])) #16
{
try
{
$prompter = new PasswordPrompter ("secret section");
$prompter->displayPrompt () ;

}

catch (Exception $e)

{
echo $e->getMessage();
exit();

}

}

// Testing the user name and password entered by the user

else #31
{
try #33
{
$db = new Database("Vars.inc"); #35
$db->useDatabase ("UserAccount"); #36
}
catch(Exception $e)
{
echo $e->getMessage();
exit();
} #42
try #43

$acct = new
Account ($db->getConnection(), "Valid User"); #46

Chapter 3: User Authentication with HTTP /4§

if (!$acct->selectAccount ($_SERVER['PHP AUTH USER']))
{
$mess = $acct->getMessage();
echo $mess."
";
exit();
} #52
if (!$acct->comparePassword($_SERVER['PHP AUTH PW']))
{
$mess = $acct->getMessage();
echo $mess."
";
exit();
} #58
}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
} #65
$data['user name'] = $ SERVER['PHP_ AUTH USER']; #66
try #67
{
$welcome_page = new WebPage ("Welcome.inc", $data); #69
$welcome_page->displayPage(); #70
}
catch(Exception $e)
{
echo $e->getMessage();
exit();

The application program has a single if/else statement to prompt for and
test a user name/password pair. If the user has not submitted login informa-
tion, the script prompts for a user name and password. When the user sub-
mits the login information, the user name and password are compared to the
valid user accounts stored in the MySQL database. If the information is valid,
the contents of the Web page are sent to the user. (The following discussion
refers to line numbers in Listing 3-7.)

#10 Lines 10 to 13 include the files that contain the classes needed for the
application. require_once is used so that the class is not acciden-
tally included more than once.

#16 Begins an if block that executes if the user has not submitted a user
name. If $_ SERVER[' PHP_AUTH_USER'] isn’t set, the user hasn’t sub-
mitted a password, so a PasswordPrompter object is created and dis-
played, resulting in a window that prompts for a user name and
password.

76 Part ll: Building a User Authentication Application

#31 Begins an else block that executes when the user enters login infor-
mation in the HTTP password window. The user name and password
submitted by the user are available to the script in the $_SERVER
superglobal array in the elements PHP_AUTH_USER and PHP_AUTH_ PW.

#35 Creates a Database object.

#36 Selects the database that contains the user account informa-
tion. If useDatabase fails (returns FALSE) because
"UserAccount" doesn’t exist, a message is displayed, and the
scripts stops.

#45 Lines 45 and 46 create an Account object.

#47 Begins an if block that selects the account based on the user
name submitted by the user. If selectAccount fails (returns
FALSE) because the user name isn’t found in the database, a
message is displayed, and the scripts stops.

#52 Ends the if block that selects the account.

#53 Begins an if block that compares the password submitted by
the user with the password stored in the database. If the pass-
words don’t match (the method returns FALSE), a message is
displayed, and the script exits.

#58 End of the i f block the compares the passwords.

#65 End of the else block that tests the user login information
against the valid login information in the database. The script
goes past this line only if the login information submitted by
the user is valid.

#66 Creates an array of data to be displayed on the Web page. The array
contains only one element: user_name.

#69 Creates a new WebPage object containing the welcome Web page. The
filename passed to the wWebrage object is Welcome. inc. This is the
same file that is used for the procedural script shown previously in
Listing 3-2.

#70 Displays the welcome webPage. The Web page that is displayed is the
same welcome page displayed by the procedural script (refer to
Figure 3-3).

Notice that many of the lines in the script are in try blocks. Methods that can
throw an exception should be in try blocks. If an object method throws an
exception that you don’t catch, you get a fatal error similar to the following:

Fatal error: Uncaught exception 'Exception' with message
'Database is not available.' in c:\Database.class:18

Chapter 4
User Login Application

In This Chapter
Designing the login Web page

Building the database to store user information
Writing procedural code for the login application

Developing and using objects to program the login application

M any Web sites are secret or have secret sections. Such Web sites require
users to log in before they can see the secret information. Here are a
two examples of when Web sites might restrict access:

»* Many online merchants require customers to log in so that their informa-
tion can be stored for future transactions. These companies must pro-
tect the customers’ information, particularly financial information, from
public view.

v Many Web sites grant access only to certain people. For example, com-
pany information might be restricted to company staff or members of a
certain department. Another example is when information is available
for sale, so the information must be restricted to people who have paid
for it.

If you have a Web site that needs protection, be sure to implement a user
login application. User login applications can be quite simple, such as an
application in which the administrator sets up a list of valid users. Anyone
who tries to access a protected file is prompted to enter a user name and
password that is checked against the list of valid users. A login application
can also be much more complicated. It can allow Web site visitors to register
for access, setting up their own accounts. The application might collect infor-
mation from customers as they register. The application might provide the
ability for users to manage their own accounts. The features that a login
application can provide are wide and varied.

A user login application is one of the most common applications on the Web,
so I'm sure you've had the experience of logging in to one. In this chapter, I
show you how to build your own user login application.

78 Part ll: Building a User Authentication Application

If you need only a simple login screen, the application that [provide in
Chapter 3 might be sufficient for your needs; it uses the built-in HTTP authen-
tication features of browsers. The login application in this chapter is more
complex. It allows users to register or to log in if they’re already registered
and collects and stores information from users when they register. It provides
a fairly complex login Web page with two forms: one for login and one for reg-
istration. If you need to provide this additional functionality and control the
look and feel of your login application, this chapter is for you.

Designing the Login Application

The basic function of the login application is to allow registered users to
enter the Web site and to block access to users who have not registered.
The application also allows users to register, storing their information in
a database. To meet this functionality, the user login application should
do the following:

v Give customers the option to register for Web site access or to log into
the Web site if they're already registered.

v Display a registration form that allows new customers to type their reg-
istration information.

I discuss the information you need to collect in the form in the following
section, “Creating the User Database.”

v Validate the information submitted in the form.

Make sure the required fields are not blank and the submitted informa-
tion is in the correct format.

v Store the validated information in the database.

v Display a login form that asks for the registered customer’s user name
and password.

v Compare the user name and password that a user enters with the user
names and passwords in the database. If a match is found, send a Web
page from the site to the customer. If no match is found, give the cus-
tomer the opportunity to try to log in again.

Creating the User Database

The application design calls for a database that stores user information. The
database is the core of this application. A login application must store user
names and passwords, at the very least, but often you’ll want to store addi-
tional information as well.

Chapter 4: User Login Application

Designing the database

Your first design task is to decide what information you want to store. At a
minimum, you need to store a user name and password that the user can use
to log in. It’s also useful to know when the user account was created. In decid-
ing what information to collect during user registration, you need to balance
your urge to collect all the potentially useful information that you can think
of against your users’ urge to avoid time-consuming forms and reluctance to
give out personal information. One compromise is to ask for some optional
information; users who don’t mind will enter it, and those who object can just
leave it blank.

Some information is required for your Web site to perform its function. For
instance, users can readily see that a site that will be sending them something
needs to collect their names and addresses. However, they might not see

why it’s necessary for you to have their phone numbers. Even if you require a
phone number, users sometimes enter fake ones. So unless you have a captive
audience, such as your employees, who must give you everything you ask for,
think carefully about what information to collect. It’s easy for irritated users to
leave your Web site. It’s not like they drove miles to your store and looked
hours for a parking space. They can leave with just a click.

For the sample application in this chapter, the Web site is an online store that
sells products. Thus, you need to collect the customers’ contact information,
and you need their phone numbers in case you need to contact them about
their orders. Most customers are willing to provide phone numbers to rep-
utable online retailers, recognizing that problems with an order might neces-
sitate the merchant contacting them. The remainder of this section discusses
the details of the information and its storage in a MySQL database.

The database contains only one table. The customer information is stored in
the table, one record (row) for each customer. The fields needed for the table
are shown in Table 4-1. The table contains 12 fields. The first three fields,
user_name, password, and create_date, are required and cannot be blank.
The remaining fields contain the customer’s name, address, phone number,
and fax number and are allowed to be blank. The first field, user_name, is the
primary key.

Table 4-1 Database Table: Customer
Variable Name Type Description
user_name VARCHAR (20) User name for the user

account (primary key)

create_date DATE Date when the account was
added to the table

(continued)

79

80 Part ll: Building a User Authentication Application

Table 4-1 (continued)

Variable Name Type Description

password VARCHAR (255) Password for the account
email VARCHAR (50) Customer’s e-mail address
last_name VARCHAR (50) Customer’s last name
first_name VARCHAR (40) Customer’s first name

street VARCHAR (50) Customer’s street address
city VARCHAR (50) City where customer lives
state CHAR (2) Two-letter state code

zip CHAR (10) Zip code, five numbers or zip + 4
phone CHAR (15) Phone number where customer

can be reached

fax CHAR (15) Customer’s fax number

Building the database

You can create the MySQL database with the following SQL statement:
CREATE DATABASE CustomerDirectory;
The following SQL statement creates the table:

CREATE TABLE Customer (

user_name VARCHAR (20) NOT NULL,
create_date DATE NOT NULL,
password VARCHAR (255) NOT NULL,
last_name VARCHAR (50),

first_name VARCHAR (40),

street VARCHAR(50),

city VARCHAR(50),

state CHAR(2),

zip CHAR(10),

email VARCHAR (50),

phone CHAR(15),

fax CHAR(15),

PRIMARY KEY (user_ name));

Chapter 4: User Login Application 8 ’

WING/

&

\NG/
Vg‘\\

Accessing the database

PHP provides MySQL functions for accessing your database from your PHP
script. The MySQL functions are passed the information that’s needed to
access the database, such as a MySQL account name and password. This is
not related to any other account name or password that you have, such as a
password to log in to the system.

Several new features became available with MySQL 4.1. To access the new
features, you must use the mysqli functions, rather than the mysql functions.
To use the mysqli functions, you must use PHP 5. The mysqli functions are
not available with PHP 4. You can still use the mysql functions and PHP 4 to
interact with MySQL 4.1, but you can’t use some of the new features. The
mysqli functions are very similar to the mysql functions, but some differ-
ences exist. Read about MySQL and PHP versions in Chapter 1. Read about
mysql/mysqli functions in Appendix C. Read about the mysqli (MySQL
Improved) module at www.php .net/manual/en/ref .mysqli.php.

In this application, I have stored the information needed by the PHP mysql
functions in a separate file called vars. inc. This file is stored in a directory
outside my Web space, for security reasons. The file contains information
similar to the following:

<?php
$host = "localhost";
$user = "admin";
$passwd = "";
$database = "CustomerDirectory";

?>

Notice the PHP tags at the beginning (<?php) and the end (?>) of the file. If
these tags are not included, the information might display on the Web page
for the whole world to see, which is not at all what you want.

Adding data to the database

This database is intended to hold data entered by customers — not by you.
When the application is first made available to customers, it’s empty until
customers add data. When you test your application programs, the scripts
add a row to the database. You might want to add a row with a user name and
password for your own use when testing the scripts.

82 Part ll: Building a User Authentication Application

Building the Login Web Page

|
Figure 4-1:
The login
Web page
displayed

by the

user login
application.
|

Customers log in to your protected Web site via an HTML form on a Web
page. The login application design, developed earlier in this chapter, calls for
two forms: one form to allow new customers to register and another form to
allow registered customers to log in. You need to develop the login Web page,
making decisions on its functionality and its look and feel.

Designing the login Web page

In your Web travels, you’'ve probably seen many different designs for login
pages. You might already have ideas for your login page. The design pre-
sented here is not the only possible one, just one I like. Feel free to change
any part of it.

In this design, both forms are presented on a single Web page. The forms are
displayed in two sections, side by side. Each form has its own section head-
ing, form fields, and submit button. The login form allows people to enter
their user names and passwords; the registration form requests much more
information from customers. Figure 4-1 shows what the login Web page looks
like when it’s displayed in a browser.

4} Customer Login Page - Microsoft Internet Explorer

| eBack v 5 - Q2] 4| QSeach (Favories ($Histoy | File Edit View Favorites Tools He” [
| Address [£] http://tocalhost/Apps/Login-00.php > @60
—L‘
Returning Customers: Login here || New Customers: Regiger here
User Name User Name
Password Password
Email Address |
M First Name |
Last Name |
Street |
City |
State | Alsbama 'I
Zip
Phone
Fax
Register
Send questions and corments to admin@ourplace com _|
&) Done ’_ ’_ @‘E Local intranet -

Chapter 4: User Login Application 83

The code for the login Web page is the same whether you’re using the proce-
dural approach or the object-oriented approach to build your application.
The code for the login Web page is stored in separate files that are included
when the application needs to display the login page. Thus, the code that
defines the Web page is separate from the PHP code that provides the logic
of the application.

The code for the login page consists of two files: the code that defines the
look and feel of the page and the code that provides the specific information
for the page.

Writing the code for the login page

The login Web page provides two forms: a login form and a registration
form, side by side. The code that creates the page is in two separate files,
as follows:

v double_form. inc: Contains the code that defines the look and feel of
the Web page. It produces a Web page with two side-by-side forms and
can be used to create any Web page that needs two side-by-side forms.
This file does not include specific information, such as the names and
values of the text fields displayed in the forms. You must use another file
in conjunction with this file to create the Web page. The other file con-
tains the specific information, such as field names, for the Web page.

v fields_login.inc: Contains the specific information for the login Web
page. When used with double_form. inc, it displays a customer login
Web page. A different file with different fields can be used with double_
form. inc to create a Web page that displays forms with fields unrelated
to customer logins.

The remainder of this section shows the details of these files. The second
file is short and easier to understand, so I discuss it first in Listing 4-1. Then
when explaining the first file (double_form. inc) in Listing 4-2, I refer to the
information contained in fields_login.inc.

Writing fields_login.inc
The file shown in Listing 4-1 provides seven arrays that contain the specific
information displayed in the login Web page. The arrays are as follows:

v $page: Elements that are displayed at the top and bottom of the page.
These elements span the entire page, not just one of the forms.

v Selements_1: Elements that are displayed at the top and bottom of the
first form (the form on the left). This array contains text to display at the
top and bottom of the form and the text to display on the submit button.

84 Part ll: Building a User Authentication Application

V¥ Selements_2: Similar elements for the second form (the form on the
right).

v $fields_1: The names and labels for the fields to be displayed in the
first form. The array keys are the field names in the form and the array
values are the labels that are displayed in the form next to the fields.

v $length_1: The lengths of the fields in the first form. It’s not necessary
to define lengths for the fields, but you can if you want. For example, you
can make all the fields the same length. I prefer to define lengths for
fields as a security measure; it restricts the number of characters that a
user can type into a field, limiting some of the opportunities for a bad
guy to enter evil things into your forms.

v $fields_2: The names and labels for the fields in the second form. The
array keys are the field names. Because these fields are stored in the data-
base, the array keys are the same names used in the database table. The
array values are the labels that are displayed in the form next to the fields.
For instance, the field name used in the database is first_name, but the
label in the form is much clearer and more attractive as First Name.

v $length_2: The lengths of the fields in the second form. The length of
the fields is the same as the length of the fields defined in the database.

Setting up your elements and fields in this separate file, rather than including
them in the file with the HTML code for the form, greatly simplifies the design
and maintenance of the form. You can easily see the fields and elements in
this separate file, as well as easily edit and modify them.

LisTING 4-1: THE FiLE THAT CONTAINS THE ARRAYS NEEDED FOR THE LOGIN PAGE

<?php
/* File: fields_login.inc
* Desc: Contains arrays with the field names and form
* elements for the login Web page. The arrays named
* with 1 are displayed in form 1 and those named
* with 2 are displayed in form 2. The forms are
* defined in the file double_form.inc.
*/
$page = array("title" => "Customer Login Page",
n top n = > n n ’

"bottom" => "Send questions and comments
to admin@ourplace.com",

)

$elements_1 = array("top" => "Returning Customers:
<span style=\"font-size: 80%;
font-weight: 100%\">
<i>Login here</i>",
llbottomll => nn ’
"submit" => "Login"

Chapter 4: User Login Application 85

);
$elements_2 = array("top" => "New Customers:

<span style=\"font-size: 80%;
font-weight: 100%\">
<i>Register here</i>",

Ilbottomll => nn ’

"submit" => "Register"

)i

$fields_ 1 = array("fusername" => "User Name",
"fpassword" => "Password"
)i
$length 1 = array("fusername" => "10",
"fpassword" => "10"
)i
$fields 2 = array("user_ name" => "User Name",
"password" => "Password",
"email™" => "Email Address",
"first_name" => "First Name",
"last_name" => "Last Name",
"street" => "Street",
Ilcityll => ncityn'
"state” => "State",
Ilzipll => ||zip||’
"phone" => "Phone",
Ilfaxll => "Fax"
)i
$length 2 = array("user_ name" => "20",
"password" => "8,
"email" => "55",
"first_name" => "40",
"last_name" => "40",
"street" => "55",
Ilcityll => ||40||'
Ilzipll => IllOlI'
n phone n => n 15 n ’
Ilfaxll => II15II
);:
?>

Notice that the arrays are defined in a structured format. You could use much
less space to define the arrays, but this format makes the values clear and
easy to change if necessary.

Notice that some of the values are blank, such as $element_1["bottom"]="".
In this particular Web page, I didn’t want to include any text at the top of the
page or at the bottom of the forms. However, for another form using double_
form. inc, you might want to include values for these elements.

86 Part ll: Building a User Authentication Application

Writing double_form.inc

The script double_form. inc, shown in Listing 4-2, contains the code that
defines how the Web page looks. It includes HTML code for the forms and for
tables to organize the page. The code includes variables where specific infor-
mation is needed. The variable values are provided in the previous file,
fields_login.inc. For example, the script includes the following line that
defines the Web page title:

<head><title><?php echo $page['title']?></title></head>

The variable $page['title'] is found in the file fields_login. inc, where
it is set to "Customer Login Page".

LisTING 4-2: THE ScRIPT THAT DEFINES Two SIDE-BY-SIDE HTML Forms

<?php
/* File: double_ form.inc
* Desc: Contains the code for a Web page that displays

* two HTML forms, side by side in a table.

*/
include("functions.inc"); #6
?>

<head><title><?php echo $page['title']?></title></head>
<body style="margin: 0">
<hl align="center"><?php echo $page['top'] ?></hl>
<hr size="10" noshade>
<table border="0" cellpadding="5" cellspacing="0">
<?php
#HH A
Form 1
#H#H S #16
?>
<tr>
<td width="33%" valign="top">
<p style="font-size: 110%; font-weight: bold">
<?php echo $elements_1l['top'l?></p>
<!-- Beginning of form 1 (left) -->
<form action=<?php echo $_SERVER['PHP_ SELF']?>
method="POST" >
<table border="0">

<?php #26
if (isset ($GLOBALS['message_1']1)) #27
{

echo "<tr>
<td colspan='2"'
style=\"font-weight: bold;
font-style: italic;
font-size: 90%; color: red\">
{$GLOBALS['message_1']}<p></td></tr>\n";
}
foreach($fields_1 as $field => $value) #36

Chapter 4: User Login Application 8 7

{
if (ereg("pass", $field)) #38
$type = "password";
else
$type = "text";

echo "<tr><td style=\"text-align: right;
font-weight: bold\">$value</td>
<td><input type='S$type' name='$field’
value='".@$$field. !
size='{$length 1[$field]}"
maxsize='{$length 1[$field]}'>
</td></tr>\n";
} #49
?>
<tr>
<td colspan="2" style="text-align: center" >

<input type="submit" name="Button"
value="<?php echo $elements_1['submit']?>">
</td></txr>
</table>
</form>
</td>

<!=-- Column that separates the two forms -->
<td style="background-color: gray"></td>
<?php #63
##H S
Form 2
S #66
?>
<td width="67%">
<p style="font-size: 110%; font-weight: bold">
<?php echo $elements 2['top']?>
<!-- Beginning of Form 1 (right side) -->
<form action=<?php echo $_SERVER['PHP_ SELF']?>
method="POST" >

<p>
<table border="0" width="100%">
<?php #76
if (isset ($GLOBALS['message 2'])) #77

{
echo "<tr>
<td colspan='2"
style=\"font-weight: bold; font-style: italic;
font-size: 90%; color: red\">
{$GLOBALS ['message_2']}<p></td></tr>";

} #84
foreach($fields 2 as $field => $value) #85
{
if($field == "state") #87
{

Continued

88 Part ll: Building a User Authentication Application

LisTING 4-2: (Continued)

echo "<tr><td style=\"text-align: right;
font-weight: bold\">State</td>
<td><select name='state'>";

$stateName=getStateName () ; #92
$stateCode=getStateCode();
for ($n=1;$%$n<=50;%n++) #94
{

$state=$stateName[$n]; #96

$scode=$stateCode[$n];

echo "<option value='$scode'";

if ($scode== @$_POST['state'l])
echo " selected";

echo ">$state\n";

}
echo "</select>";
} #104
else
{
if (ereg("pass",$field))
$type = "password";
else
$type = "text"; #110

echo "<tr><td style=\"text-align: right;
font-weight: bold\">$value</td>
<td><input type='S$type' name='$field’
value=\"".@$$field."\"
size='{$length 2[$field]}"
maxsize="'{$length 2[$field]}'>

</td></tr>"; #117
} #118
} #119
?>
<tr><td colspan="2" style="text-align: center">
<p style="margin-top: .05in">
<input type="submit" name="Button"
value="<?php echo $elements_2['submit']?>">
</td></tr>
</table>
</form>
</td>
</tr>
</table>

<hr size="10" noshade>

<div style="text-align: center; font-size: 75%">
<?php echo $page['bottom']?>

</body></html>

The following numbers refer to the line numbers in Listing 4-2:

#6 Includes a file containing functions used in this script. The file
functions.inc is shown in Listing 4-3.

Chapter 4: User Login Application 89

#8

#18

#26
#27

#36

#51

#62
#67

#76
#77

#85

Lines 8 to 12 are an HTML section. The HTML code defines the top of
the Web page. Lines 8 and 10 have a small PHP section that echoes a
variable. The variable values are found in the fields_login. inc file.
Line 12 begins the table that organizes the Web page.

Lines 18 to 25 contain HTML code that opens the first table cell, dis-
plays the text at the top of the cell, and produces the form tag. A
second table, inside this first cell, is started to hold the form fields.

Opens the PHP section that produces the form fields.

Begins an i f block that displays a message. If the item "message_1"
exists in the GLOBALS array, message_1 is displayed. The message is
set into the global array in the application script when errors are
found in the information entered by the user. If the form is displayed
for the first time, before the user enters anything, or if no errors
occur, the GLOBALS element message_1 doesn’t exist.

Lines 36 to 49 contain a foreach block that displays all the fields in
the form. The foreach statement walks through the $fields_1 array
that is set in the file fields_login.inc.

#38 Starts an if statement that sets a value for $type — a variable
used in the input field code. The input field is type text for all
fields except the password field, which is type password.

#42 Lines 42 to 48 contain the echo statement that outputs the
HTML code for the field. The echo statement is executed once
for each element in the $fields_1 array. PHP variables are
used for the specific information, such as field names, in the
statement.

Starts an HTML section (lines 51 to 59) that displays the submit
button for form 1 and closes the tags for form 1.

HTML code that displays a column that separates the two forms.

An HTML section (lines 67 to 75) that opens the second table cell,
displays the text at the top of the cell, and produces the form tag.
A second table, inside this second cell, is started to hold the form
fields.

Opens the PHP section that produces the form fields.

Begins an if block that displays a message. If the item "message_2"
exists in the GLOBALS array, message_2 is displayed. The message

is set into the global array in the application script when errors are
found in the information entered by the user. If the form is displayed
for the first time, before the user enters anything, or if no errors
occur, the GLOBALS element message_2 doesn’t exist.

Lines 85 to 119 contain a foreach block that displays all the fields in
the form. The foreach statement walks through the $fields_2 array
that is set in the file fields_login. inc.

90 Part ll: Building a User Authentication Application

#87 Starts an if block that executes only for the state field. A
drop-down list of states is displayed rather than the simple text
field that is displayed for all the other fields. Lines 96 to 97 use
the functions included on line 6.

#105 Starts an else block that executes for all fields except the
state field.

#107 Starts an if statement that sets a value for $type — a variable
used in the input field code. The input field is type text for all
fields except the password field, which is type password.

#111 Lines 111 to 117 contain the echo statement that outputs the
HTML code for the field. The echo statement is executed once
for each element in the $fields_2 array. PHP variables are
used for the specific information, such as field names, in the
statement.

#121 Starts an HTML section that displays the submit button for form 2,
closes the tags for form 2, and displays the page text at the bottom of
the Web page.

In double_form.inc, the state field in form 2 is a drop-down list. The code

that creates the list uses two functions stored in the functions. inc file
that’s included on line 6. Listing 4-3 shows the code for the two functions.

LisTING 4-3: FuncTioNs THAT CREATE ARRAYS OF STATE NAMES AND CODES

<?php
function getStateCode()
{
$stateCode = array(l=> "AL" ,
IIAKII ’
IIAZII ’
ey
return $stateCode;
}
function getStateName ()
{
$stateName = array(l=> "Alabama",

"Alaska",

"Arizona",

"Wyoming");
return $stateName;

?>

Chapter 4: User Login Application 9 ’

The functions are called on lines 92 and 93 of Listing 4-2. The arrays created
by these functions are used to create the drop-down list of states in the for
statement that starts on line 94 of Listing 4-2.

Displaying the login Web page

The file double_form.inc is used in conjunction with fields_login.inc to
display the login Web page. Although the approach to displaying the form
might be different in the procedural script versus the object-oriented script,
the code that displays the form is the same, as follows:

include("fields_login.inc");
include("double form.inc");

The file containing the arrays of information used when the form is displayed
must be included first so that the arrays are available when needed.

If you want to display any information in the form fields, the information
must also be available. For instance, if the user submits a form with an error
and you redisplay the form, you want the redisplayed form to contain the
information the user typed. To do this, you use a variable in the value para-
meter of the input tag, such as value="$first_name". The variables you use
in the input tags must be available.

When the customer submits the form, the information the user typed is
passed to the script in the $_POST superglobal array. If you redisplay the
form, you can get the information from this array to display in the form by
using the PHP extract function, as follows:

extract ($_POST) ;
In this case, the following code displays the form:
extract ($_POST) ;

include("fields_login.inc");
include("double_form.inc");

Building the Login Application:
The Procedural Approach

The login application has one main script that’s organized into three basic
sections:

v A section that executes the first time the login page is displayed, before
the user clicks a button

92 Part ll: Building a User Authentication Application

v A second section that executes when the user clicks the Login button

v A third section that executes when the user clicks the Register button

A switch statement controls the program flow based on which button is
clicked. The following is an overview of the script’s structure:

switch (Button)

case "Login":
1 Test whether the user name is in the database. If
not, redisplay the form with an error message.
2 Test whether the password is correct. If not,
redisplay the form with an error message.
3 When login succeeds, display the protected Web

page.

case "Register":

1 Test whether all the fields are filled in. If not,
redisplay the form with an error message.

2 Test whether the information is in the correct
format. If not, redisplay form with an error
message.

3 When information is correct, store it in database.

4 When registration succeeds, display the protected
Web page.

case "default":
Display the Login Web Page with blank form fields.

The default case executes if neither the Login button nor the Register button
is clicked.

Writing the application script

Listing 4-4 shows the code for the login application script.

LisTING 4-4: LoGIN APPLICATION CODE

<?php
/* Program: Login.php
* Desc: Main application script for the User Login

* application. It provides two options: (1) login
* using an existing User Name and (2) register
* a new user name. User Names and passwords are
* stored in a MySQL database.

*/

session_start():; #9

Chapter 4: User Login Application 93

include ("functions main.inc"); #10
$table_name = "Customer"; #11
$next_ program = "SecretPage.php";
switch (@$_POST['Button']) #14
{
case "Login": #16
$cxn = Connect_to_db("Vars.inc");
$sgl = "SELECT user_name FROM $table_name
WHERE user name='$_POST[fusername]'"; #19
$result = mysqli_ query($cxn, $sql)
or die("Couldn't execute query 1"); #21
$num = mysqgli_ num rows ($result); #22
if($num == 1) #23
{
$sql = "SELECT user_name FROM $table_name

WHERE user_name='$_POST[fusername]'
AND password=md5('$_POST[fpassword]')";
$result2 = mysqli_query($cxn, $sql)
or die("Couldn't execute query 2.");

$row = mysqgli_ fetch assoc($result2); #30
if ($row) #31
{
$_SESSIONI['auth']="yes"; #33
$_SESSION['logname'] = $_POST['fusername']; #34
header ("Location: $next_program"); #35
}
else #37
{

$message_ 1="The Login Name, '$_POST[fusername]'
exists, but you have not entered the
correct password! Please try again.
";

extract ($_POST) ;

include("fields_login.inc");

include("double_form.inc");

} #45
#46
elseif ($num == 0) // login name not found #47
{
$message_1 = "The User Name you entered does not
exist! Please try again.
";
include("fields_login.inc");
include ("double_form.inc");
}
break; #54
case "Register": #55
/* Check for blanks */
foreach($_POST as $field => $value) #57
{
if ($field != "fax")
{
if ($value == ""
{

Continued

94 Part ll: Building a User Authentication Application

LisTING 4-4: (Continued)
$blanks[] = $field;

}
}
} #66
if (isset ($blanks)) #67
{
$message 2 = "The following fields are blank.
Please enter the required information: ";
foreach($blanks as $value)
{
$message_2 .="$value, ";
}
extract ($_POST);
include("fields_login.inc");
include("double_form.inc");
exit();
} #79
/* validate data */
foreach($_POST as $field => $value) #81
{
if (!empty($value)) #83
{

if (eregi("name", $field) and
leregi("user",$field) and l!eregi("log",$field))

{
if (!ereg("*[A-Za-z' -]1{1,50}$",$value))
{
$errors[] = "$value is not a valid name.";
}
}

if (eregi("street",$field)or eregi("addr",$field) or
eregi ("city",$field))
{

if(!ereg("+*[A-Za-20-9.,"' -1{1,50}%",$value))
$errors[] = "$value is not a valid address
or city.";
}
}
if (eregi("state",$field))
{

if(!ereg(" [A-Za-z]",$value))

{
$errors[] = "$value is not a valid state.";
}
}
if (eregi("email",$field))
{

if(lereg("*.+@.+\\..+3$",$value))

$errors[] = "$value is not a valid email

Chapter 4: User Login Application 95

address.";

}
if (eregi("zip", $field))
{

if(lereg("~[0-9]1{5,5}(\-[0-91{4,4})?$",$value))
¢ $errors[] = "$value is not a valid zipcode.";
) }
if (eregi("phone", $field) or eregi("fax",$field))
¢ %f(!ereg(“A[O-Q)(xx -1{7,20}$",$value))

$errors[] = "$value is not a valid phone
number. ";

}
} #132
}
foreach($_POST as $field => $value) #134

{
if($field != "Button")

if($field == "password")
{

$password = strip_tags(trim($value));
}

else

$fields[]1=$field;

$value = strip_ tags(trim($value));
$values[]=addslashes($value);
$8field = $value;

}
}
if (@is_array($errors)) #151
{

$message 2 = "";

foreach($errors as $value)

{

}
include("fields_login.inc");
include("double form.inc");
exit();

$message_2 .= $value." Please try again
";

}

$user_name = $ POST['user name'l]; #162

/* check to see if user name already exists */
$cxn = Connect_to_db("Vars.inc");
$sql = "SELECT user_name FROM $table_name

Continued

96 Part ll: Building a User Authentication Application

LisTING 4-4: (Continued)

WHERE user_name='S$user_name'"; #158
$result = mysqli_query($cxn, $sql)
or die("Couldn't execute query.");
$num = mysqgli_ num rows (Sresult); #170
if ($num > 0) #171
{
$message 2 = "$user name already used. Select another
User Name.";
include("fields_login.inc");
include("double_form.inc");
exit();
}
else #179
{
$today = date("Y-m-4"); #181
$fields_str implode(",",$fields);
$values_str implode('", "', $values);
$fields_str .=",create_date";
$values_str .='"'.",",.'"' S$Stoday;
$fields_str .=",password";
$Values_str = W1 m , LI llmds non (LI LI $password. [[N]) n ;
$sgl = "INSERT INTO $table_name ";
$sql .= "(".$fields_str.")";
$sql .= " VALUES ";
$sq1 . " (II LU S $va1ues_str. ") " ;
mysqgli_query($cxn,$sqgl) or die(mysqgli_error($cxn));
$ SESSION['auth']="yes"; #193
$ SESSION['logname'] = $user_name; #194
/* send email to new Customer */
$emess = "You have successfully registered. ";
$emess "Your new user name and password are: ";
$emess "\n\n\t$user_ name\n\t";
$emess "password\n\n";
$emess "We appreciate your interest. \n\n";
$emess "If you have any questions or problems,";
$emess " email service@ourstore.com"; #202
$subj = "Your new customer registration"; #203
$mailsend=mail ("$email", "$subj", "$emess"); #204
header ("Location: $next_program"); #205

}
break; #207

default: #209
include("fields_login.inc");
include ("double_form.inc");

?>

Chapter 4: User Login Application 9 7

The numbers in the following explanation refer to the line numbers in
Listing 4-4:

#9 Starts a PHP session.

#10 Includes the file containing the function Connect_to_db, which is
used later in the script.

#11 Declares a variable that contains the name of the database table
where your customer information is stored.

#12 Declares a variable that contains the name of the script that is the
opening Web page of your protected Web site. The script executes
when your customer successfully logs in.

#14 Starts the switch statement that comprises the rest of the script. The
switch statement tests the value of the Button element in the $_PosT
superglobal array. The Button element exists only if a user has clicked
one of the Submit buttons in the forms.

#16 Begins the case that executes when the Button element has the value
of Login — that is, when the user clicked the submit button labeled
Login. The statements from line 14 to line 52 are part of the Login case.
This case block checks the user name and password submitted against
the user names and passwords stored in the database.

#17 Connects to the database by using the function included on line 10.

#18 Lines 18 to 21 build and execute an SQL query to select a record from
the database with the user name submitted by the user.

#22 Checks how many records were found that matched the user name
submitted by the user. Possible values are 0 or 1.

#23 Begins an if block that executes if 1 record was found. This block
checks whether the user entered the correct password.

#25 Lines 25 to 30 build and execute an SQL query to select a record
with the user name and password submitted by the user and,
after the query is executed, check how many records were
found.

#31 Begins an if block that executes if a record was found, meaning
that the password is correct. Two session variables are set, and
the protected Web page content is displayed.

#37 Begins an else block that executes if no record was found,
meaning that the password was incorrect. An error message is
created, and the login Web page is redisplayed with the error
message.

#47 Begins an elseif block that executes if no record was found with the
user name submitted by the user. An error message is created, and
the login Web page is redisplayed with the error message.

98 Part ll: Building a User Authentication Application

\NG/
g‘*‘“

#55

#57

#67

#81

#83

#134

#151

#165

Begins the case block that executes when Button has the value of
Register, meaning that the customer clicked the Register submit
button. The statements from line 53 to line 180 compose the
Register block.

Starts a foreach loop that checks whether each field of the form is
blank. If the field name is not fax (which is not a required field), the
field name of any field with a blank value is added to an array named
Sblanks.

Begins an if block that executes if $blanks is an array — that is, if
any fields had blank values. An error message is created that includes
the names of the blank fields, and the form is redisplayed with the
error message.

Starts a foreach loop that checks the format of the information in
each field.

Begins an if block that executes if the value is not blank. Lines 57 to
79 of the script processed the information for blank fields. Therefore,
any fields that are blank when they reach this line are fields that are
allowed to be blank because they’re not required. The format testing
is not needed on blank fields.

The if block (83 to 133) checks each of the fields with information to

ensure that the information is in an acceptable format. An i f block is

executed when specific field names are found and compares the value
in each field with a regular expression specific to the field. If the infor-
mation in the field doesn’t match the regular expression, an appropri-
ate error message is stored in the array called errors.

Starts a foreach loop that processes each field, removing any begin-
ning or trailing blank spaces and any HTML tags. The password is
stored in a variable named password. All other fields are stored in
two arrays. $fields contains the field names, which need no extra
processing. $values contains the values to be inserted into the data-
base, with any quotes escaped. In addition, each value is stored in a
variable named with the field name.

If you have magic quotes turned on in the php. ini file, you don’t
need to escape the quotes here. The quotes are escaped automati-
cally for the posT data. However, you have more control if you turn
magic quotes off and escape the quotes in the script. Whichever way
you do it, it’s important that the quotes be escaped before data is
stored in the database. See Chapter 2 for a discussion of escaping
quotes to protect against SQL Injection attacks.

Begins an if block that executes when the $errors array exists,
meaning that at least one error was found. An error message is cre-
ated, and the form is redisplayed with the error message.

Lines 165 to 170 create and execute a query to select a record with
the user name entered by the user. Duplicate user names are not
allowed in the database.

Chapter 4: User Login Application 99

#171 Begins an i f block that executes if a record is found, meaning that
the user name is already in use. An error message is created, and the
login page is redisplayed along with the error message.

#179 Begins an else block that executes if no record is found, meaning
that the user name is not in use — it’s available.

#181 Stores today’s date.

#182 Lines 182 to 192 build and execute the SQL query that inserts
the new record into the database. The $fields and $values
arrays are converted to strings with the implode function. The
strings are then used to create an INSERT query to add the
record for the newly registered user.

#193 Stores a session variable indicating the user successfully
logged in.

#194 Stores a session variable with the user’s new user name.

#196 Lines 196 to 204 create and send an e-mail message to the new
user.

#206 Displays the protected Web page content.

#209 Begins the default case block. This block executes if neither of the
two preceding cases is true. That is, this block executes if the user
didn’t click either the Login or Registration submit button. This block
displays the login Web page with blank form fields.

The login application script calls a function to connect to the database. The

file containing the function code is included on line 9. Listing 4-5 shows the
function code.

LisTING 4-5: THE CONNECT_TO_DB FUNCTION

<?php

/* Function: Connect_to_db
* Desc: Connects to a MySQL database. The name of
* a file containing the database variables
* is passed to the function.
*/
function Connect_to_db($filename)
{

include($filename) ;
$cxn = mysqgli_ connect ($host, $user, $passwd)

or die ("Couldn't connect to server.");
$db = mysqli_select_db($cxn, $database)

or die ("Couldn't select database.");

1 00 Part ll: Building a User Authentication Application

\NG/
@&

This function gets the information it needs from a separate file. The filename
is passed when the function is called. The file contents are something like the
following, with your own information, of course:

<?php

$host = "localhost";

$user = "admin";

$passwd = "";

$database = "CustomerDirectory";
?>

You should store this file outside your Web space for security reasons. If you
set your include_path in your php.ini file to a location outside your Web
space, you can store files there and include them without using a complete
pathname.

Protecting your Web pages

The Web pages in your protected Web site or section of your Web site are no
different than any other Web pages. You just want to restrict them to mem-
bers who are logged in. To do this, you start a session and check whether the
user is logged in at the top of every page.

If the user logs in through the Login.php application script described in the
previous section, a session is started, and the value "yes" is stored in a ses-
sion variable, as follows:

$_SESSION['auth'] = "yes";

You probably want to use your own variable name and value as well as your
own filename. vars. inc is fairly obvious, as is $auth = "yes".It’s better if the
name and value are less guessable. For instance, you might want to use some-
thing totally irrelevant and misleading, such as Flower. inc, $Brad="pritt". Of
course, now that these suggestions are published in a book, they aren’t good
choices either.

Thus, at the top of every script, you check to see whether the auth session
variable is set for the user. You must add the following statements to the top
of every script that you want available only to logged in users:

session_start():;
if (@$_SESSION['auth'] != "yes")
{
header ("Location: Login.php");
exit();
}

When session_start executes, PHP checks for an existing session. If one
exists, it sets up the session variables.

Chapter 4: User Login Application ’ 0 1

The if statement checks to see if the auth session variable is set to yes.

If it isn’t set to yes or if it doesn’t exist, it means the user is not logged in,
in which case the script displays the login Web page and exits. Otherwise,
if auth is set to yes, it means the user is logged in, and the script continues
to display the Web page.

Building the Login Application:
The Object-Oriented Approach

Object-oriented programming requires that you create and use objects to
provide the functionality. You first identify the objects needed for the applica-
tion, and then you write the classes that define the objects, including the
methods that the application needs. When the objects are ready, you write
the application script that creates and uses the objects.

Developing the objects
The login application needs to perform the following tasks:

v Collect and process information in a form
v Store information in a database when a customer registers
v Check a user’s password

v Allow the authenticated user to visit pages on the Web site during the
user session

v Send the user an e-mail
The following list of objects reflects the tasks this application must perform:

v WebForm: A form is central to this application. The form allows cus-
tomers to register or to enter their user names and passwords if they’re
already registered. The webForm class provides the form for the applica-
tion. It collects and processes the information typed by a user.

»” Database: The application stores the customer information in a data-
base. The Database class provides the container that stores the data.

v Account: The information entered by the customer needs to be associ-
ated with a customer account. The Account class stores and retrieves
the customer information.

v Session: Typically, you want customers to be able to view more than
one page during a visit without having to log in to each page. The time
period that a customer spends at your Web site, from when he logs in to

1 02 Part ll: Building a User Authentication Application

your Web site until he leaves it, is called a session. The Session class
allows a visitor to stay logged in for an entire session.

v Email: The application sends an e-mail to customers when they register,
to let them know that the registration was successful. The Email class
contains and manages the e-mail message.

The details for each object are discussed in the following sections.

Writing the WebForm class

One of the most important objects is the form. The definition for the form
object is coded in the WwebForm class. This class is a general class that can be
used to display any form and collect and process the data from any form, not
just from the login form used in this application.

The webForm class displays a form on a Web page, collects the information,
reformats the information, and validates the information format, redisplaying
the form when incorrect information is detected. WebForm contains four
properties, a constructor, and 13 methods.

The properties

The webForm properties store information needed to define and manage the
form and its data. The properties are as follows:

private $form;
private $fields;
private $data;
private $not_required;

The first two properties are the names of the files that are needed to display
the form. These files are described in the section “Writing the code for the
login page,” earlier in this chapter.

The last two properties are arrays. $data contains the information submitted
by the customer in the form. The key of each element is a field name — the
field name used in both the form and the database table. $not_required is
an array containing the field names of fields that are allowed to be blank.

The checkForBlanks method uses this array to identify the fields that are
not errors when left blank.

The code

Listing 4-6 contains the complete code for the webForm class. Each method
is discussed in detail after the code listing. Notice the line numbers at the
ends of some code lines. The discussion following the listing refers to the
line numbers.

Chapter 4: User Login Application ’ 03

LisTING 4-6: THE WEBFORM CLASS

<?php
/* Class: WebForm
* Desc: Class that collects, stores, and processes
* information in an HTML form.
*/

class WebForm

{
private $form; //£filename
private $fields; //£filename
private $data; //array
private $not_required; //array

function _ construct ($form, $fields, $data=NULL)
{

if(is_string($form) and is_string($fields)) #16
{
$this->form = $form;
$this->fields = $fields;
}
else #21
{
throw new Exception("First 2 parameters
must be filenames");
}
if ($data == NULL OR is_array($data)) #26
{
$this->data = $data;
}
else #30
{
throw new Exception("Form data must be passed
in an array"):;
}
}
function setFieldsNotRequired($not_required) #37
{
if(!is_array($not_required))
{
throw new Exception("Fields must be passed
in an array");
}
else
{
$this->not_required = $not_required;
}
}

Continued

’ 04 Part ll: Building a User Authentication Application

LisTING 4-6: (Continued)

function displayForm()

{
@extract ($this->data);
include ($this->fields);
include ($this->form);

}

function getAllFields()
{
return $this->data;

}

function checkForBlanks()
{
if (sizeof ($this->data) < 1) #64
throw new Exception("No form data available");

foreach($this->data as $key => $value) #67

if($value == "") #69
{
$match = false;
if(is_array($this->not_required)) #72
{
foreach($this->not_required as $field) #74
{
if($field == $key)
{
$match = true;
}
}
}
if ($match == false) #82

$blanks[] = $key;

}
}
if (isset ($blanks)) #88
return $blanks;
else
return TRUE;
}

function verifyData()
{
if (sizeof ($this->data) < 1) #96
throw new Exception("No form data available.");
foreach($this->data as $key => $value) #98
{
if (!empty($value)) #100
{
if (eregi("name", $key) and !eregi("log", $key)

Chapter 4: User Login Application ’ 05

and !eregi("user", $key)) #103
{

$result = $this->checkName ($value); #105

if(is_string($result))

$errors[$key] = $result; #107

} #108
if (eregi("addr", $key)or eregi("street", $key)

or eregi("city", $key)) #110
{

$result = $this->checkAddress($value);
if(is_string($result))
$errors[$key] = $result;

}
if (eregi("email", $key)) #116
{

$result = $this->checkEmail($value);

if (is_string($result))

$errors[$key] = $result;
}
if (eregi ("phone", $key)or ereg("fax", $key)) #122
{

$result = $this->checkPhone($value);
if(is_string($result))

$errors[$key] = $result;
}
if (eregi("zip", $key)) #128
{

$result = $this->checkZip($value);
if(is_string($result))

$errors[$key] = $result;
}
if (eregi("state", $key)) #134
{

$result = $this->checkState($value);
if(is_string($result))

$errors[$key] = $result;
}
}
}
if (isset ($errors)) #142
return $errors;
else
return TRUE;
}
function trimbata()
{
foreach($this->data as S$key => $value)
$data[$key] = trim($value);
}
$this->data = $data;
}

Continued

’ 06 Part ll: Building a User Authentication Application

LisTING 4-6: (Continued)

function stripTagsFromData/()

{
foreach($this->data as $key => $value)
{
$data[$key] = strip tags($value);
}
$this->data = $data;
}
function checkName ($field)
{
if(!ereg("*[A-Za-z' -]1{1,50}$",$field))
{
return "$field is not a valid name.
Please try again.";
}
else
return TRUE;
}
function checkAddress($field)
{
if(!ereg("*[A-Za-z0-9.,' -1{1,50}$",$field))
{
return "$field is not a valid address.
Please try again.";
}
else
return TRUE;
}
function checkZip($field)
{
if (lereg("~[0-9]1{5}(\-[0-9]{4})?",$field))
return "$field is not a valid zip code.
Please try again.";
else
return TRUE;
}
function checkPhone($field)
{
if(lereg("A[0-9) (Xx -1{7,20}$",$field))
return "$field is not a valid phone number.
Please try again.";
else
return TRUE;
}

function checkEmail($field)
{

Chapter 4: User Login Application ’ 0 7

if(lereg("*.+@.+\\..+$",$field))
return "$field is not a valid email address.
Please try again.";
else
return TRUE;
}

function checkState($field)
{
if(lereg("+*[A-Za-z]",$field))
return "$field is not a wvalid state.
Please try again.";

else
return TRUE;

The constructor

The constructor checks to see whether the information passed to the class is
the correct type of data. If it is, it stores the data. If it isn’t, it throws an excep-
tion with the appropriate message. On line 16, the constructor checks whether
the first two parameters, which need to be filenames, are strings. On line 26, it
checks whether the data that is passed in the third parameter is in an array.
The data is also allowed to be NULL, which allows the form to be displayed the
first time, before the customer has entered information and submitted it. Thus,
you can create a WebForm object with either of the following statements:

$form
$form

new WebForm("filel.inc","file2.inc",$_POST);
new WebForm("filel.inc","file2.inc");

If you use the second form, the $data property is NULL. This won’t cause an
error.

setFieldsNotRequired

The setFieldsNotRequired method checks to see whether the parameter
passed is an array. If it is, it stores it in a property. If not, it throws an excep-
tion with the appropriate message.

displayForm

This displayForm method displays the form. It extracts the data from the
$data property where it’s stored. An @ is used to suppress the error mes-
sages so that the form can be displayed without any data. The two files that
define the form are then included. These two files can define any type of form
with fields and elements you want to use. For this application, I use the files
described earlier in this chapter that define a login Web page with two forms.

1 08 Part ll: Building a User Authentication Application

WING/
&

getAllFields

The getallFields method returns the $data property array that contains
the data in the form.

checkForBlanks

The checkForBlanks method checks each field in the form to see whether it
contains information. If invalid blank fields are found, it returns an array con-
taining the field names of the blank fields. The following explanation refers to
line numbers in Listing 4-6:

#64 Checks whether $data contains an array of data. If not, it throws an
exception stating that no data is currently in the form.

#67 Starts a foreach loop that walks through the $data array. The
foreach loop checks for blank fields. An array is built that contains
the field names of all blank fields.

#69 Begins an if block that executes if the field is blank. The block ends
on line 86.

#71 Sets the variable $match equal to false.

#72 Starts an if block that executes if any field names are stored
in $not_required. If so, the current field is compared to each
value in $not_required, and if a match is found, $match is
set to true. After the current field is checked against the field
names in $not_required, line 82 checks whether a match was
found. If $match = false, the current field name is not in the
array of fields that can be blank, which means that the field is
not allowed to be blank, and the field name is added to an array
called sblanks.

#88 After all the blank fields are processed, an if statement checks
whether any field names were added to the array $blanks. If so,
the array is returned. Otherwise, if the $blanks array is empty,
the method returns TRUE, meaning that all the fields are okay:.

verifyData

The verifyData method checks each field to ensure that the information
submitted in the field is in a reasonable format. For instance, you know that
“hi you” is not a reasonable format for a zip code. A zip code must be in one
of two formats: either 12345 or 12345-6789. If you check the information sub-
mitted by your customer for reasonable formats, you can catch many typos.
You can also prevent the bad guys from entering malicious code into your
form fields.

Checking data is a balancing act. You want to catch as much bad information
as possible. However, you don’t want to stop legitimate information from get-
ting through. For instance, if you limit a phone number to numbers only, any
phone numbers with a hyphen or parentheses — as in (123) 555-6789 — or

Chapter 4: User Login Application , 09

other legitimate characters would be stopped as errors. Think carefully
about what information you want to allow or screen out for any field.

This method checks the information from specific fields against regular
expressions that match the information allowed in those fields. The following
explanation refers to line numbers in Listing 4-6:

#96

#98

#100

Checks whether $data contains any information. If not, the method
throws an exception with an appropriate message.

Starts a foreach loop that walks through the array in the $data prop-
erty. The foreach loop checks the format of all the data fields. Any
format errors found are added to an array called $errors.

Begins an if block that executes if the field is not blank. Blank fields
are not checked because they would always be incorrect, but some
fields are allowed to be blank. The method checkForBlanks is usu-
ally used before this method to catch any blank fields that are not
allowed to be blank. In this i f block, the information in each field is
checked against an appropriate regular expression.

#102 Begins an if block that executes if the field name contains
"name", such as first_name, and does not include "log" or
"user". The requirements for names are more restrictive than
for user names, so this statement excludes field names that
might be user names. On line 105, the information in the field is
passed to the checkName method, which compares the value to
the regular expression for names. If checkName approves the
value, it returns TRUE. If the value doesn’t match the regular
expression, checkName returns an informative message. The
checkName method is discussed later in this section.

Line 106 checks the value returned by checkName. If it's a
string, which means that the value didn’t pass muster, the
string is added to an array named $errors.

#109 Begins an if block that executes if the field name contains
"addr" or "street" or "city". It processes the field information
as described for line 102. The method checkaddress is called.

#116 Begins an if block that executes if the field name contains
"email". The method checkEmail is called.

#122 Begins an if block that executes if the field name contains
"phone" or "fax". The method checkPhone is called.

#128 Begins an if block that executes if the field name contains
"zip". The method checkzip is called.

#134 Begins an if block that executes if the field name contains
"state". The method checkstate is called. Even though the
state field is a drop down list, you need to check its format. Bad
guys can change the field to a text field and send it with some
malicious code in the field.

1 ’ 0 Part ll: Building a User Authentication Application

#142 After all the field values have been processed, the method checks
whether any strings were added to the array $errors. If so, the array
is returned. If not, meaning that all the field information is okay, the
method returns TRUE.

This WwebForm class verifies fields that are commonly collected in forms, such
as addresses and phone numbers. To use this class to verify data in a form
with less common fields, such as age or birthday or favorite hobbies, you
can add methods to the class that check your specific information.

Or, if you expect to use the different forms frequently, you can create classes
to represent the different forms you use. For instance, you can have a class
WebForm that contains all the methods in this WebForm class except the
methods that verify data. Then you can have two (or more) classes, such

as WebFormAddress and WebFormPersonal, that have WwebForm as a parent
and contain only the methods that verify data. For instance, you can define
WebFormAddress extends WebForm and WebFormPersonal extends WebForm.
In this case, the two child classes inherit all the methods of webForm, so they
don’t need to contain those methods themselves. They need to contain only
the methods for verifying data because those are the methods that are differ-
ent in WebFormaAddress than in WebFormPersonal.

trimData, stripTagsFromData

A PHP function is applied to each value in the $data property. The resulting
values are stored in $data. The trim function removes leading and trailing
blanks from a string. The strip_tags function removes any HTML tags from
the string, which is important for security.

checkName, checkAddress, checkZip,
checkPhone, checkEmail, checkState

These methods compare the values sent to them with regular expressions for
the type of data expected. For instance, checkzip checks the string passed
to it to see whether it consists of five numbers or five numbers followed by a
dash and four numbers.

If the comparison against the regular expression fails, a message is returned
stating that the field is invalid. If the string is okay, the method returns TRUE.

Writing the Database class

The Database class provides the connection to the database where the cus-
tomer information is stored. The Database class is developed is Chapter 3;
see Listing 3-4 for the Database class code.

Chapter 4: User Login Application

The methods provided by the Database class are as follows:

v The constructor: Creates a connection to a MySQL database. Expects to
be passed a file name, which contains the hostname, account name, and
password necessary to access MySQL. A Database object is created
with the following statement:

$db = new Database("Vars.inc");

V¥ useDatabase: Selects a database and stores the database name.
Expects to be passed a database name. Checks whether the database
exists and returns a message if the database doesn’t exist. The method
is used as follows:

$db->useDatabase ("Customer") ;

V¥ getConnection: Returns the connection that is established and stored
in the constructor. The method is used as follows:

$db->getConnection();

Writing the Account class

The account class specifies the record in the database table that contains
the customer account information. The Account class that is developed in
Chapter 3 is used in this application, but I've added a method in this chapter.
See Listing 3-5 for the Account class used in Chapter 3. In this chapter, the
method createNewAccount is added to the Account class. The code for this
new method is shown in Listing 4-7.

Summary of account methods
The methods provided by the Account class are as follows:

v The constructor: Creates a connection to a MySQL table where account
information is stored. Expects to be passed a database connection and a
table name. The method checks whether the parameters passed are in
the correct format. It also checks whether the database table exists.

An Account object is created with the following statement:
$acct = new Account ($connection, "tablename") ;

An Account object is often created for use with a Database object. You
can create it with the following statements:

$db = new Database("Vars.inc");
$acct = new Account ($db->getConnection, "tablename");

v selectAccount: This method stores the user_name of the currently
active account. The user name is passed when selectAccount is called.
The method checks whether the user name exists in the database. The
method is used with the following statement:

$acct->getConnection();

111

’ ’ 2 Part ll: Building a User Authentication Application

v getMessage: This method returns the content of the $message property.
The method is used with the following statement:

$acct->getMessage();

v comparePassword: This method compares the password passed to the
method with the password stored in the database for the current account.
This method fails if no account has been selected. Use selectAccount to
select an active account before using this method. The method is used
with the following statement:

$acct->comparePassword("secret");

v createNewAccount: This method stores customer information into a
new record in the database table, creating a new account. The informa-
tion is passed to this method in an array. This method assumes that the
data has already been cleaned and verified and is ready to be stored in
the database. The method is used with the following statement:

$acct->createNewAccount ($data_array);

createNewAccount

This method stores customer information into the database table in a new
record. This method accepts the data from an array and stores it without
checking it. The data should be cleaned and validated before it’s passed to
this method.

Each element in the array passed to this method stores the customer infor-
mation with the field name as the key. This method first creates two arrays:
one containing the keys and one containing the customer information. It then
reformats each array into a string. Finally, it builds the SQL query to insert
the new record, putting the strings in the appropriate location in the query,
and executes the query to create the new record.

The code for createNewAccount is shown in Listing 4-7.

LisTING 4-7: THE CoDE FOR THE CREATENEWAccOUNT METHOD

function createNewAccount ($data)
¢ if(!is_array($data)) #97
t throw new Exception("Data must be in an array."):;
return FALSE;
zoreach(sdata as $field => $value) #102
t %f($field 1= "password" and $field != "Button")

Chapter 4: User Login Application ’ ’3

s$fields[] = $field;
$values[] = addslashes($value); #107
}
}
$str fields = implode($fields,","); #110
$str values = '"!'.implode($values,'","'); #111
$today = date("Y-m-d"); #112

$str fields .=",create_date";
$str fields .=",password";
$str_values .="\",\"$today":

$str_values .="\",md5(\"{$data['password']}\")"; #116
$sqgl = "INSERT INTO $this->table_name ($str fields)

VALUES ($str_values)";
if (!$this->cxn->query($sql)) #119
{

throw new Exception("Can't execute query: "
.$this->cxn->error());
return FALSE;

}
else #125
{
return TRUE;
}

The numbers in the following discussion refer to the line numbers in
Listing 4-7:

#97 Starts an if block that executes if the data passed is not an array, in
which case an exception is thrown.

#102 Begins a foreach loop that walks through the array of data that was
passed. The loop creates two arrays: $fields, which contains the
field names, and $values, which contains the field data.

#104 Screens out the fields password, which gets special processing later,
and Button, which should not be added to the arrays because it’s not
really a field name.

#106 Builds the $fields array with the field names from the data array keys.

#107 Builds the svalues array. Because the values in this array are going
to be inserted into the database, quotes are escaped before the
values are added to the array.

V?‘“\NG! If you have magic quotes turned on in the php. ini file, you don’t
& need to escape the quotes here. The quotes are escaped automati-
cally for the posT data. However, you have more control if you turn
magic quotes off and escape the quotes in the script. Whichever way
you do it, it’s important that the quotes be escaped before data is
stored in the database. See Chapter 2 for a discussion of escaping
quotes to protect against SQL Injection attacks.

’ ’ 4 Part ll: Building a User Authentication Application

#110 Calls the PHP implode function, which turns the $fields array into a
string, with a comma between each field name.

#111 Calls the PHP implode function, which turns the $values array into a
string, with a quote, a comma, and a second quote (", ") between
each value. Notice that a double quote is added to the beginning of
the string. This string forms the VALUES section of the query, and the
values need to be enclosed in quotes.

#112 Stores the current date in $today.

#113 Lines 113 to 116 add the field names and values for the fields
create_date and password to the appropriate strings.

#117 Lines 117 and 118 create the SQL query that inserts the data into the
database table.

#119 Begins an if block that executes if the query fails. The if block
throws a new exception with the MySQL error message.

#125 Begins an else block that executes if the query succeeds in storing
the new account information. The block returns TRUE.

Writing the Session class

The session class is used so that the customer doesn’t have to log into
every page on the protected Web site. The Session class starts a PHP ses-
sion and stores session variables.

The properties

The session class needs only one property, which contains a message
stored by a method.

private $message;

The code

Listing 4-8 contains the complete code for the Session class. The construc-

tor and each of the four methods is discussed in detail after the code listing.
Notice the line numbers at the ends of some of the lines of code. The discus-
sion following the listing refers to the line numbers.

LisTING 4-8: THE CODE FOR THE SESSION CLASS

<?php
/* Class: Session
* Desc: Opens and maintains a PHP session.

Chapter 4: User Login Application ’ ’5

*/
class Session
{
private $message;

function _ construct()

{
session_start();
}
function getVariable ($varname)
{
if (isset ($_SESSION['$varname'])) #17
return $_SESSION['S$varname'];
else #19
{
$this->message = "No such variable in
this session";
return FALSE;
}
}
function storevVariable ($varname, $value)
{
if(!is_string($varname)) #29
{
throw new Exception("Parameter 1 is not a
valid variable name.");
return FALSE;
}
else #35
$_SESSION|['$varname'] = $value;
}
function getMessage()
{
return $this->message;
}
function login(Account S$acct, $password) #44
{
if (!$acct->comparePassword ($password)) #46
{
return FALSE;
}
$this->storevariable ("auth", "yes"); #47

return TRUE;

1 ’6 Part ll: Building a User Authentication Application

The constructor

The constructor starts the PHP session. The PHP session_start function
checks to see whether a session already exists. If not, it starts a new session.
If so, it continues the existing session. The constructor doesn’t expect any
information to be passed. Thus, the statement to create a Session object is

$sess = new Session();

getVariable

This method returns the value of a stored PHP session variable. It checks
whether the variable exists in the session. If it does, the method returns the
variable value. If the variable doesn’t exist, the method returns FALSE and
stores an informative message.

storelariable

This method stores a PHP session variable. The method expects two values:
a string that is the variable name and a value for the variable. The following
numbers refer to line numbers in Listing 4-8:

#29 Begins an if block that executes when the first parameter is not a
string. The block throws an exception with a message stating that the
parameter is not a valid variable name.

#35 Begins an else block that executes if the parameter is a string. The
block stores the information in the $_SESSTON superglobal array and
uses the variable name as the key:.

getMessage
This method returns the contents of the $message property.

login
This method logs an Account into the session.

#44 Notice that the method expects two arguments: an Account object
and a string that is a password. The name of the object that is
expected is included in the method signature. If $acct is not an
Account object, a fatal error occurs, as follows:

Fatal error: Argument 1 must be an object of class
Account in c:\Session.class on line 39

#46 Calls the comparePassword method of the Account object that was
passed to the 1ogin method. If the comparepPassword method fails,
the 1ogin method returns FALSE.

Chapter 4: User Login Application ’ ’ 7

#47 If the comparePassword method does not fail, the 1ogin method
stores a PHP session variable called auth with a value of "yes". This
variable can be checked on other pages in the session to see if the
user is logged in. You can change this method to store a different vari-
able name and value if you prefer. In fact, you can make the method
more general by having the name and value of the authorization vari-
able passed rather than coded right in the method.

#48 After storing the authorization variable, the login method returns
TRUE.

Writing the Email class

After a new customer successfully registers, the application sends a verifica-
tion e-mail message to the e-mail address provided by the customer.

The properties
The Email class stores the information needed to send an email message.

private $message;
private $addr;
private $subj;

$message contains the contents of the message. $addr contains the email
address to which the message will be sent. $subj contains the text line that
will be the subject line of the e-mail message.

The code

Listing 4-9 contains the complete code for the Email class. The four methods
are discussed in detail after the code listing. Notice the line numbers at the
ends of some of the lines of code. The discussion following the listing refers
to the line numbers.

LisTING 4-9: THE CODE FOR THE EMAIL CLASS

<?php

/* Class: Email

* Desc: Stores an email message.

*/

class Email

{

private $message;
private $addr;

Continued

’ ’ 8 Part ll: Building a User Authentication Application

LisTiNG 4-9: (Continued)
private $subj;

function setMessage ($message)
{
if(!is_string($message))
throw new Exception("Message must be a string");
else
{
$this->message = $message;
return TRUE;

}

function setAddr ($addr)
{
if(!is_string($addr))
{
throw new Exception("Address must be a string.");
return FALSE;
}
else
{
$this->addr = $addr;
return TRUE;

}

function setSubj ($subj)
{
if(!is_string($subj))
throw new Exception("Subject must be a string"):;
else
{
$this->subj = $subj;
return TRUE;

}

function sendEmail()
{
if (!'empty($this->subj) and #49
lempty($this->addr) and
lempty ($this->message))

if(!mail ($this->addr, $this->subj, $this->message))
throw new Exception("Email could not be sent.");
else
return TRUE;
}
else #58
{

Chapter 4: User Login Application , ’ 9

throw new Exception("Subject, Address, and message
are required. One or more is missing");
return FALSE; }

The constructor

The Email class doesn’t need a constructor because no actions need to be
performed when the Email object is created.

setSubj, setAddr, setMessage

These methods store the information needed to send the e-mail message.
Each method checks to see if the information passed is a string. If not, it
throws an exception with an informative message. If so, it stores the informa-
tion in the appropriate property and returns TRUE.

sendEmail
This method sends the e-mail message.

#49 Begins an if block that executes if all the required information is
available. If none of the required properties are empty, the e-mail is
sent. If the e-mail send is successful, the method returns TRUE. If the
send fails, an exception is thrown with a message.

#58 Begins an else block that executes if any of the properties are empty.
An exception is thrown with a message.

This Email class is very simple. You can easily see where additional methods
could be useful. For instance, a method that allows more than one e-mail
address to be saved might be useful. Another useful method could set e-mail
headers, such as a from header. However, for this application, the methods
are sufficient.

Writing the login application script

After writing all the class code needed for the login application, you write the
application script that creates and uses the objects to provide the application’s
functionality. The application script has the following general structure:

if (form has not been previously displayed and submitted)
Display the Login Web Page with blank form fields

else (if the form has been submitted by the user)

if (the user submitted the login form)

’ 20 Part ll: Building a User Authentication Application

1l Test whether all the fields are filled in. If not,
redisplay the form with an error message.

2 Test whether the user name is in the database. If
not, redisplay the form with an error message.

3 Test whether the password is correct. If not,
redisplay the form with an error message.

4 When login succeeds, display the protected Web
page.

elseif (the user submitted the registration form)
1 Test whether all the fields are filled in. If not,
redisplay the form with an error message.
2 Test whether the information is in the correct
format. If not, redisplay form with error message.
3 When information is correct, store it in database.
4 Display the protected Web page.

The application program creates objects and uses their methods to perform
these tasks. The application program script is shown in Listing 4-10.

LisTING 4-10: THE LOGIN APPLICATION SCRIPT

<?php
/* Program: Login-00.php
* Desc: User Login Application script. The program
* displays the Login Web page. New customer
* registration information is validated and
* stored in a database. Existing customers'
* passwords are compared to valid passwords.
*/
require_once ("WebForm.class"); #9

require_once("Account.class");
require_once("Database.class");
require once("Session.class");
require_once("Email.class");

try #15
{
$form =
new WebForm("double_ form.inc","fields_ login.inc",$_ POST);
}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
//First time form is displayed. Form is blank. //
if (!isset($_POST['Button'])) #26
{
$form->displayForm() ;
exit();
}
// Process form that has been submitted with user info //
else #32

Chapter 4: User Login Application ’ 2 1

$sess = new Session(); #34
try
{
$db = new Database("Vars.inc"); #37
$db->useDatabase ("CustomerDirectory"); #38
$acct = new Account ($db->getConnection(), "Customer");
}
catch(Exception $e)
{
echo $e->getMessage()."\n
";
exit();
}
// Login form was submitted //
if (@$_POST['Button'] == "Login") #48
{
try
{
$blanks = $form->checkForBlanks(); #52
}
catch(Exception $e)
{
echo $e->getMessage();
exit();
}
if (is_array($blanks)) #59
{
$GLOBALS['message_1'] =
"User name or Password was blank.
Please enter both.";
$form->displayForm() ;
exit();
}
try
{
if (!1$acct->selectAccount ($_POST['fusername'])) #69
{

$GLOBALS ['message_1'] = $acct->getMessage().
" Please try again.";
$form->displayForm() ;

exit();
}
if(!$sess->login($acct,$_POST['fpassword'])) #76
{

$GLOBALS ['message_1'] = $acct->getMessage().

" Please try again.";

$form->displayForm() ;

exit();
}
header ("Location: SecretPage.php"); #83
exit();

Continued

’ 22 Part II: Building a User Authentication Application

LisTiNG 4-10: (Continued)
}
catch(Exception $e)
{

}

echo $e->getMessage();

}

// Registration form was submitted //
elseif ($_POST['Button'] = "Register") #93
{
$not_required[] = "fax"; #95
try
{
$form->setFieldsNotRequired ($not_required); #98
$blanks = $form->checkForBlanks(); #99
}
catch(Exception $e)
{

}
if (is_array($blanks)) #105

{

echo $e->getMessage();

$GLOBALS['message_2'] =
"The following required fields were blank.
Please enter the required information: ";
foreach($blanks as $value)
{

}
$form->displayform();
exit();

$SGLOBALS|['message_2'] .="$value, ";

}
$form->trimbata() ; #117
$form->stripTagsFromData() ; #118
try
{

$errors = $form->verifyData(); #121
}
catch(Exception $e)
{

echo $e->getMessage();
}
if(is_array($errors)) #127
{

$GLOBALS|['message_2'] = "";

foreach($errors as $value)

{

SGLOBALS|['message_2'] .="$value
 ";

}

$form->displayform();

exit();
}
$newdata = $form->getAllFields(); #137

Chapter 4: User Login Application ’ 23

try

if ($acct->selectAccount ($newdatal'user_name'])) #140
{

$GLOBALS ['message_2'] =

"Member ID already used.
Select a new Member ID.";

$form->displayForm();

exit();
}
if (!$acct->createNewAccount ($newdata)) #148
{

echo "Couldn't create new account.

Try again later.";

exit();
}
$sess->storevVariable("auth", "yes"); #154
$sess->storeVariable("logname", $newdatal['user_name']);

$em = new Email(); #156
$em->setAddr ($newdatal['email']);

$em->setSubj ("Your new customer registration");
$emess = "Your new customer account has been setup.";

$emess .= " Your new user name and password are: ";
$emess .= "\n\n\t{$newdata['user_name']}\n\t";
$emess .= "{$newdatal['password’']}\n\n";
$emess .= "We appreciate your interest. \n\n";
$emess .= "If you have any questions or problems,";
$emess .= " email service@ourstore.com";
$em->setMessage ($emess);
$em->sendEmail () ; #167
}
catch(Exception $e)
{
echo $e->getMessage();
exit();
}

header ("Location: SecretPage.php");

Notice that many of the statements in this script are enclosed in try/catch
blocks. If a method throws an exception and the exception is not caught, a
fatal error occurs as follows:

Fatal error: Uncaught exception 'Exception' with message
'Database is not available.' in c:\Database.class:56

Therefore, you need to catch any exception thrown by a method either in the
method itself or in the script that uses the method.

1 24 Part ll: Building a User Authentication Application

The following explanation of the script refers to the line numbers in
Listing 4-10:

#9
#15
#26

#32

#34
#37

#39
#48

#93

Lines 9 to 16 include all the needed files.
Begins a try/catch block that creates the WwebForm object.

Begins an if block that executes if no button was clicked, meaning
the form has not yet been submitted. The block displays the login
Web page with blank form fields.

Begins an else block that executes if a button was clicked, meaning
the user submitted the form. This block does all the form processing
and password authentication.

Creates a Session object.

Lines 37 and 38 create a Database object and select the correct
database.

Creates an Account object.

Begins an if block that executes when the user submits the login
form. This block tests whether the user name and password submit-
ted are valid.

#52 Checks the login form fields for blanks. None can be blank.

#59 Begins an if block that executes if any fields are blank. An
error message is created, and the form is redisplayed. Notice
that the error message is stored in the $GLOBALS array so that
the webForm method has access to the message.

#69 Begins an if block that executes when the user name is not
found in the database. An error message is created, the form is
redisplayed, and the script exits.

#76 Begins an if block that executes when the password from the
form does not match the password stored in the database for
this user. An error message is created, and the form is redis-
played.

#83 Displays a protected Web page. The name SecretPage.php is
just a sample name. You want to use the name of a script on
your Web site that you want the customers to see when they
log in — in other words, the main, or home, page of your pro-
tected Web site.

Begins an elseif block that executes when the user submits the reg-
istration form. This block processes and stores the information from
the form fields.

#95 Creates an array containing the name of the field that is allowed
to be blank. In this case, fax is the only field that can be left
blank.

Chapter 4: User Login Application , 25

#98 Sets the name of the field that is allowed to be blank.

#99 Checks the form for blank fields. An array of the names of fields
that are blank is returned. If fax is blank, it is ignored.

#105 Begins an if block that executes if the $blank array contains
any elements — that is, if any fields are blank. An error message
is created, and the form is redisplayed. Notice that the error
message is stored in the SGLOBALS array so that the WwebForm
method has access to the message.

#117 Trims the data in all the fields.
#118 Removes any HTML tags from the data in the fields.

#121 Checks that the data is in the correct format. The methods
return an array of error messages if any data is incorrectly
formatted.

#127 Begins an if block that executes if the Serrors array contains
any elements — that is, if any fields contain bad data. An error
message is created, and the form is redisplayed with the error
message.

#137 Gets the data from the WwebForm object. You need to store the
data from the object. You don’t store the data from the $_poST
array that the user entered into the form because the data
might have been changed on lines 120 and 121.

#140 Begins an if block that executes if the user name was found in
the database. Duplicate user names are not allowed. An error
message is created, and the form is redisplayed.

#148 Begins an if block that executes if the createNewAccount
method fails. An error message is displayed, and the script
exits.

#154 Stores the session variable that indicates that the user success-
fully logged in. The script reaches this line only when no error
conditions were found.

#155 Stores the user name in a session variable for use later in the
session.

#156 Lines 156 to 167 create and send an e-mail message to the cus-
tomer that his or her new account has been successfully
installed.

#174 Displays a protected Web page. The name SecretPage.php is
just a sample name. You want to use the name of a script on
your Web site that you want the customers to see when they
log in — in other words, the main page (or home page) of your
protected Web site.

1 26 Part ll: Building a User Authentication Application

Protecting your Web pages

The Web pages in your protected Web site or protected section of your Web
site are no different than any other Web pages. You just want to restrict them
to users who are logged in. To do this, you check whether the user is logged
in at the top of every page.

If the user logs in via the Login-00.php application script described in the
preceding section, a session is started, and the value "yes" is stored in a ses-
sion variable, as follows:

$sess->setVariable("auth", "yes");

You can check this $auth session variable at the top of every protected Web
page to see if it’s set to "yes". If so, the user is logged in. You can add the
following statements to the top of every script to check the $auth session
variable:

require_once("Session.class");
$sess = new Session();
if ($sess->getVariable("auth") != "yes")
{
header ("Location: Login-00.php"):
exit();
}

When you create the session object, PHP checks to see whether a current
session exists for the user. If so, the current session variables are made avail-
able to the script.

The if statement tests whether the session variable sauth equals "yes". If
$auth is not set to "yes" or if $auth doesn’t exist, the user isn’t logged in,
and the if block is executed, taking the user to the login Web page and exit-
ing the current script. If $auth is set to "yes", the script continues to display
the Web page contents.

Adding Features to the Application

The login application in this chapter provides basic login functionality.
Additional features can be added. Some common features of login applica-
tions that are not provided in this chapter are:

 Forgotten password button: It’s almost guaranteed that users will forget
their passwords. Many applications provide a button that users can
click when they can’t remember their passwords. Some applications
e-mail the password to the user, and some provide a page where the
user can change the password.

Chapter 4: User Login Application , 2 7

A\

If you want to e-mail the user her password from the database, you need
to use a different password encryption function, because md5 (), used in
this application, is a one-way encryption function. You can'’t retrieve the
password in its original form. The password is protected from everyone,
even you. Many users feel more secure knowing that no one can find out
their password. If you want two-way encryption so that you can decrypt
the password and e-mail it to the user, check the AES and DES functions
in MySQL or the mcrypt function in PHP.

Rather than retrieve the password and e-mail it to the user, which is
basically an unsecure procedure, you can provide the users with a Web
page where they can change their passwords. However, you need to be
sure that only the actual account owner can change the password. Many
applications request and store the answer to a security question, such
as your mother’s maiden name, and require the correct answer before
making any changes to the account.

v Account management: Users move and change their phone numbers.
Their e-mail addresses can change. A feature that allows users to change
the information stored for their accounts is handy. Many login applica-
tions provide a “manage your account” button that provides Web pages
where a user can change his address, phone number, password, and so
forth.

You can add these common features or features that are very specific to your
Web site. But first, [suggest that you get the application working as it is.
Then, when it’s working, you can add features, one at a time. Don’t change
too many things at once. Troubleshooting one feature at a time is easiest.

In general, adding features to the object-oriented application is easier than
adding to the procedural application. One of the strengths of object-oriented
programming is that you can add code without needed to change the existing
code. If you believe your application is likely to grow in the future, you might
be wise to build the object-oriented application.

1 28 Part ll: Building a User Authentication Application

Part Il
Building Online
Sales Applications

The 5th Wave By Rich Tennani

@ RIUSTENNANT

£ :
“Ms. Lamont, how long have you been sending out
bills listing charges for ‘Freight’, ‘Handling’,
and ‘Sales Tax’, as “This’, “That’, and
‘ The Other Thing’ 7"

In this part . . .

n this part, I provide two applications related to online
sales. The first application displays a catalog of prod-
ucts (Chapter 5). The second application allows customers
to purchase products online (Chapter 6). For each applica-
tion, I show two different methods — procedural and

object oriented.

Chapter 5
Online Catalog Application

In This Chapter
Designing Web pages that display products

Building the database to store product information
Writing procedural code for the Catalog application

Developing and using objects to program the Catalog application

Fe online catalog application is one of the most common applications on
the Web. Whether the Web site is offered by an individual with a handful
of products or a huge company with gazillions of products, the principle is
the same. The customer needs to see the products and information about
them before buying anything.

On many Web sites with catalogs, customers can purchase the catalog items
online. In this chapter, I provide a catalog application that doesn’t include
online purchasing functionality. The application in this chapter only displays
the catalog. The application in Chapter 6 is an online purchasing application,
which provides the ability to purchase catalog items online.

Designing the Online Catalog Application

The basic function of the online catalog application is to display a store’s
products to the customers. If a store offers only a dozen products, you can
just display them all on one page. However, a store generally offers many
products, more than you can reasonably display on a single Web page.
Usually, the products are categorized. A small number of products can be suc-
cessfully categorized by one category level. If the store offers a large number
of products, however, you might need to use two, three, or more category
levels to successfully categorize the products into categories small enough
to be displayed. For instance, the example in this chapter is a store that sells
food products. I use two category levels for this example. Foods are catego-
rized first at the high category level, such as fruit, vegetables, herbs, and so
on. Second levels within the high level of fruit might be apple, orange, and
cherry. The product might be Delicious or Granny Smith, which would be in
the category fruit: apple.

132 Parti: Building Online Sales Applications

If your products are categorized, the online catalog typically first displays a
page showing the categories available. The customer can select a category to
see all the products in that category. If you have several levels of categories,
the customer might need to select successive categories before reaching the
product Web page.

Even with categories, some stores might have many products in a single
category. For instance, Sears probably has many products in the category
“Dresses” or even “Evening Dresses.” A common practice when displaying
a large number of products is to display only a certain number of products
(often ten) on a page. The customer clicks a button to see the next set of
products or the previous set of products.

To meet its basic functionality, the online catalog application should

v Display the product categories from which the user can select.

v~ Display the products in the category the user selects. It should display
all the product information (price, description, and so on) needed by the
customer. It should display the products one page at a time if the prod-
uct list is quite long.

Creating the Catalog Database

The application design calls for a database that stores product information.
The database is the catalog, the core of this application. The database stores
the product names, ordering numbers, description, price, and any other rele-
vant information, such as size, color, and so on.

Designing the Catalog database

Your first design task is to select the information you want to store. What you
store depends on the type of product. You need to store any information that
a customer might use when deciding which product to purchase. The store
owner, who knows the products and what customers need to know, can pro-
vide this information along with graphics of the products. Some possible
information to store might include

v Product name: Obviously, customers will need this information.

v Product ID: In most cases, the product name is not unique, so you usu-
ally need to store a product number, a unique number that identifies the
product to the purchaser.

v Product description: A text description of the product.

Chapter 5: Online Catalog Application ’33

v Size: A product might come in sizes. Even when only one size is avail-
able, customers need information about the size for some purposes. For
instance, you might have only one size coffee table for sale, but the cus-
tomers still need to know the size to know whether it will fit in their
living rooms.

v Color: A product might come in several colors.
v Price: Customers will surely want to know how much the products cost!

v Product availability: Customers might also like to know when the prod-
uct was added to the catalog, whether it’s in stock, or when it’s due to
arrive.

You can add information for your use only to your product entry in the data-
base. For instance, you might add information about the company that sup-
plies you with the product. This information is stored in the database, but
never displayed to customers.

The store in this example is called The Food Shop. It sells food items. At the
present time, it sells fruit and vegetables, but the store owners hope to
expand to other items soon.

The database contains only one table. The product information is stored one
row per product. The fields needed for the table are shown in Table 5-1.

Table 5-1 Database Table: Customer

Variable Name Type

Description

Product identification number,
assigned sequentially by MySQL

catalog_number INT(6)

(primary key).
name VARCHAR (40) Name of the individual product.
added_date DATE Date the product was added to the
catalog.
category VARCHAR (20) First-level category name.
type VARCHAR (20) Second-level category name.
description VARCHAR (255) Description of the product.
price DECIMAL(7,2) Price of the product. All prices are
entered at price per pound.
pix VARCHAR (20) Filename of the graphic file that

contains an image of the product.

134 Partin: Building Online Sales Applications

The table has eight fields. All fields except description are required and may
not be blank. The description field is allowed to be blank when the product
is entered. The description can be added later.

The catalog_number field is the product number that uniquely identifies the
product. This number is used when the customer orders the product. This is
an AUTO_INCREMENT field, so MySQL assigns numbers to it sequentially when
the product is added to the database. In some stores, a meaningful product
ID number is assigned and entered, rather than just a sequential number.

The pix field has a default filename. If no filename is entered, a default image
file (Missing. jpg) that says “image not available” is entered.

Building the Catalog database

The following SQL statement creates this database:
CREATE DATABASE FoodCatalog;
The following SQL statement creates the table:

CREATE TABLE Food (

catalog number INT(6) NOT NULL AUTO_INCREMENT,
name VARCHAR (20) NOT NULL,

added_date DATE NOT NULL,

category VARCHAR (20) NOT NULL,

type VARCHAR (20) NOT NULL,

description VARCHAR (255),

price DECIMAL(7,2) NOT NULL,

pix VARCHAR (20) NOT NULL DEFAULT "Missing.jpg",

PRIMARY KEY(catalog number));

Accessing the food database

PHP provides MySQL functions for accessing your database from your PHP
script. The MySQL functions are passed the information needed to access the
database, such as a MySQL account name and password. This is not related
to any other account name or password that you have, such as a password to
log onto the system.

PHP provides two different sets of MySQL functions, as follows:

¥ mysql: MySQL functions developed for MySQL versions up to 4.0.
Although you can continue to use these functions with newer versions of
MySQL, you can’t use some of the advanced features of MySQL. The func-
tions are in the format mysqgl_action(), such as mysgl_connect () and
mysqgl_qguery (). Because you have used PHP and MySQL prior to reading
this book, you should be familiar with these functions.

Chapter 5: Online Catalog Application

WING/

&

WING/
g‘?‘

v mysgli: MySQL Improved functions developed to use the advanced
features of MySQL 4.1 and later. The MySQL Improved extension is avail-
able only with PHP 5, not with PHP 4. The functions are in the format
mysqgli_action(), such as mysqgli_connect () and mysgli_query ().
In addition, the MySQL Improved extension includes some built-in
classes, so you can use objects when working with your database.

Because MySQL 4.1 is now the recommended version on the MySQL Web site,
[use the MySQL Improved functions in this chapter. I use the procedural
functions when building the procedural programs. I use the object-oriented
classes when building the object-oriented programs.

If you're using PHP 4 or for other reasons want to use the mysql functions —
rather than the mysqli functions — you might need to make small changes to
the syntax. The mysqli functions are very similar to the mysql functions, but
some differences exist. The syntax differences are shown in Appendix C. More
information about the functions is available in the PHP manual at www.php .net/
manual/en/ref.mysqli.php and www.php.net/manual/en/ref .mysql .php.

In this application, I have stored the information needed by the PHP mysqli
functions in a separate file called vars. inc. This file is stored in a directory
outside my Web space for security reasons. The file contains information sim-
ilar to the following:

<?php
$host = "localhost";
$user = "admin";
$passwd = "xy.34W";
$database = "FoodCatalog";
?>

Notice the PHP tags at the beginning (<?php) and the end (?>) of the file. If
you don’t include these tags, the information might display on the Web page
for the whole world to see, which isn’t what you want at all.

Adding data to the database

This database is intended to hold the information for all your products. You
can enter the product information in any way you normally enter rows into
your databases.

Building the Catalog Web Pages

The online catalog requires two types of Web pages. One page displays an
index of product categories, where customers select the category that inter-
ests them. If your catalog has subcategories, you may display the index page

135

136 Partin: Building Online Sales Applications

more than once — once for each level of categories. The second type of page
is the product page, which displays the product information for products in
the selected category.

Designing the catalog Web pages

Online catalogs abound on the Web. You've undoubtedly seen many, each
with a unique look and feel. However, different designs can provide the same
functionality. You might already know exactly what design you want, but keep
in mind that the most functional design for you depends a great deal on the
type and quantity of products that you have in your catalog.

The catalog in this chapter offers foods. The information to be displayed for
each product is the name, description, price, and a picture. The information
fits easily on one or two lines across the screen. Other products might require
more or less space on the screen. Some catalogs display one page per product.

You need to design two different types of pages: an index page that displays
categories and a product page that displays the products in a category.

Designing the index page

The index page needs to display categories in a form so that users can select
a category. In this design, the categories are displayed in a form with radio
buttons. Figure 5-1 shows what the index page of the online catalog looks like
when it’s displayed in a browser.

EThe Food Shep Catalog - Mozilla =]]
EEiIe Edit View Go Bookmarks Tools Window Help

[b -5 i
@ - a @ & ntp:iocalhost/Catalog/Catalog. php v || g2 Search P:it -
nn

Back Reload
e

-

The Food Shop Catalog

Fruit
’ © Apples
O Oranges
. | Vegetables
Figure 5-1: |
The index | OLettuce
age O Potatoes
i pag O Tomatoes
displayed by
the online ||| ((SelectCeategary]
Catalog Send S d ts to admin@xFoodSh
. - et ques Oofg &l comutents to al oo Op Cofm
application. | —

e % w2 ES) @2 Done [-

Chapter 5: Online Catalog Application

|
Figure 5-2:
The
products
page
displayed by
the online
catalog

application. |

The code for the index page is stored in separate files that are included when
the application needs to display the catalog index page. Thus, the code that
defines the Web page is separate from the PHP code that provides the logic of
the application.

The code for the catalog index page consists of two files: the code that
defines the look and feel of the page and the code that provides the specific
information for the page.

Designing the products page

The products page for a catalog needs to display products so that customers
can see all the information about the product. If all the products don'’t fit on a
page, the product page needs to display as many times as necessary to show
the customer all the products in the category. Some catalogs display just a
list of products with a link to a page containing more information, which can
sometimes be a complete page about one product.

In this design for the Food Shop, the information for the product fits on a line
or two so that several products can be displayed on a page. One page of prod-
ucts is displayed at a time. At the bottom of a page, a form is displayed with
submit buttons that users can press to see the next page, a previous page, or
to return to the categories page. Figure 5-2 shows the products page of the
online catalog displayed in a browser.

The code for the products page is stored in separate files, just like the code
for the index page: the file that defines the look and feel of the page and the
file that provides the specific information for the page.

EThe Food Shop Catalog - Mozilla =ned
— File Edit View Go Bookmarks Tools Window Help
et s L E 3
e, w a @ . . & .
Back Reload & httpiflocalhost/Catalog/Catalog. php v S m
\ 1
The Food Shop Catalog
Apples
s (5 products Found)
Cat No Food Food Description Price Picture
W
10 Gala Mellow taste, fresh, crisp. $1.25/6 w
9 Granny Swith Green, tart, crisp, fresh, solid. $1.20 /b H“u
b a
Select another category |_Frewvious
Send questions and comments to admin@:xFoodShop com
% N2 6B @ Done —]

137

13& Parti: Building Online Sales Applications

Writing the code for the index page

The catalog index page provides a simple form that contains a list of cate-
gories. The Food Shop catalog contains two levels of categories. However,
because the catalog doesn’t have a lot of categories at this time, both levels
of categories can be displayed on one index page. Some catalogs might have
so many categories that only the top-level categories are displayed on one
index page. The customer would need to click a top-level category to see the
second-level categories. In the Food Shop catalog, however, displaying the
category levels separately isn’t necessary.

The code that creates the index page is in two separate files:

V¥ catalog_index_page.inc: Contains the code that defines the look and
feel of the Web page. It produces a Web page with a form that lists the
categories. The first-level categories are headings. The second-level cate-
gories are listed under the related first-level category. Each second-level
category is a radio button choice, so the customer can click the cate-
gory of products he wants to see. This file doesn’t include specific infor-
mation, such as the category names displayed by the radio buttons.
Another file must be used in conjunction with this file to create the Web
page.

v fields_index_page.inc: Contains the specific information for the
Catalog Index Web page. When used with catalog_index_page.inc, it
displays a form where customers can select a category. A different file
could be used with catalog_index_page. inc to create a different Web
page.

The remainder of this section shows the details of these files. The second file is
short and easier to understand, so I discuss it first, in Listing 5-1. Then, when
explaining the first file, catalog_index_page.inc in Listing 5-2, I can refer to
the information contained in fields_index page.inc. The same two files are
used for both the procedural and the object-oriented applications.

Writing fields_index_page.inc
The file shown in Listing 5-1 provides information specific to the Web page.

For this page, only one array is needed. The $page array contains elements
that are displayed at the top and bottom of the entire page.

Setting up your elements and fields in this separate file, rather than including
them in the file with the HTML code for the form, greatly simplifies the design
and maintenance of the form. You can easily see and edit the fields and ele-
ments in this separate file.

Chapter 5: Online Catalog Application ’3 9

LisTING 5-1: THE FiLE THAT CoNTAINS THE ARRAYS NEEDED FOR THE INDEX PAGE

<?php
/* File: fields_index page.inc
* Desc: Builds the arrays needed to display the

* product categories for the catalog.

*/

$page = array("title" => "The Food Shop Catalog",
"top" => "The Food Shop Catalog",

"bottom" => "Send questions and comments
to admin@xFoodShop.com",

Notice that the $page array is defined in a structured format. The array could
be defined with much less space, but this format makes the values clear and
easy to change if necessary.

Writing catalog_index_page.inc

This script contains the code that defines how the Web page looks. It
includes HTML code for the forms and for tables to organize the page. The
code includes variables where specific information is needed. The variable
values are provided in the previous file, fields_index_page. inc. For exam-
ple, the script includes the following line that defines the Web page title:

<head><title><?php echo $page['title']?></title></head>

The variable $page['title'] is found in the file fields_index_page.inc,
where it is set to “The Food Shop Catalog”.

LisTING 5-2: THE ScRIPT THAT DEFINES THE CATALOG INDEX PAGE

<?php
/* File: catalog_index page.inc
* Desc: Displays the categories for the catalog.
*
?> /
<html>
<head><title><?php echo $page['title'] ?></title></head> #7
<body>
<?php
/* Display text before form */
echo "<div style='margin-left: .lin'>
<hl align='center'> {$pagel['top']l}</hl><hr>"; #12

Continued

140 Partin: Building Online Sales Applications

LisTING 5-2: (Continued)

{

{

/* Create form containing selection list */
echo "<form action='$_SERVER[PHP SELF]' method='POST'>\n";
foreach($food_categories as $key => $subarray) #16

echo "<h3>$key</h3>";
echo "";
foreach($subarray as $type) #20

echo "<input type='radio' name='interest'

value="'$type'>S$type
\n";

}
echo "";
} #26
echo "<p><input type='submit' name='Products’
value='Select Category'>\n
</form>\n"; #29
?>
</div>
<hr><?php echo $page['bottom'] ?> #32
</body></html>

The following numbers refer to the bold line numbers in Listing 5-2:

#7
#12

#15
#16

#27

#32

Includes a short PHP section that echoes the title.

Includes a short PHP section that echoes the top heading in the Web
page.

Echoes the HTML for the form tag that starts the form.

Starts a foreach loop that loops through the $food_categories
array. The loop displays the array. The outside loop displays the first-
level categories. The loop ends at line 26.

#20 Begins an inside foreach loop that displays the second level
categories.

Lines 27 to 29 echo the HTML that displays the submit button and
ends the form. The submit button is named Products because it’s a
button to display products.

Displays the “bottom” element from the $page array.

Writing the code for the products page

The catalog products page displays a list of product information. Products
are displayed one page at a time. A small form at the end of each page dis-

plays submit buttons for going to the next page, the previous page, and the
index page.

Chapter 5: Online Catalog Application ’ 4 ’

The code that creates the products page is in two separate files:

V¥ catalog_product_page.inc: Contains the code that defines the look
and feel of the Web page. This file produces a Web page that lists the
products in a table. After the tables, a small form is displayed with no
fields, just the submit buttons. Hidden fields in the form pass needed
information to the next page. This file doesn’t include the product infor-
mation. Another file must be used in conjunction with this file to create
the Web page.

This file is a little different for the procedural application and the object-
oriented application. The differences are pointed out following the code
listing.

v fields_product_page.inc: Contains the specific information for the
Catalog Products Web page. When used with catalog_product_page.
inc, this file displays the product information. A different file could be
used with catalog_product_page.inc to create a Web page that dis-
plays different product information.

This file is the same for the procedural application and the object-ori-
ented application.

The remainder of this section shows the details of these files. The second file
is short and easier to understand, so I discuss it first, in Listing 5-3. Then,
when explaining the first file, catalog_product_page.inc in Listing 5-4,
can refer to the information contained in fields_product_page.inc.

Writing fields_product_page.inc
The file shown in Listing 5-3 builds three arrays that contain the specific
information displayed in the product page. The arrays are:

v $page: Contains elements that are displayed at the top and the bottom
of the entire page.

v $table_heads: Contains elements that provide the headings for the
table that displays the products.

In this separate file, you can easily see and modify the fields and elements.

LisTING 5-3: THE FiLE THAT CONTAINS THE ARRAYS NEEDED FOR THE PRODUCT PAGE

fields_products_page.inc
* Desc: Builds the arrays needed to display the products
* page of the catalog.

*/

Continued

142 Partin: Building Online Sales Applications

LisTING 5-3: (Continued)

$page = array("title" => "The Food Shop Catalog",
"top" => "The Food Shop Catalog",
"bottom" => "Send questions and comments
to admin@xFoodShop.com",
)i

$table_heads array("catalog_number" => "Cat No",

"name" => "Food",
"description" => "Food Description",
npricen => “Price“,

"pix" => "Picture",

)i
?>

$page and $table_heads are created in structured array statements that are
easy to see and maintain.

Writing catalog_product_page.inc

Listing 5-4 shows the code for catalog_product_page.inc. Like the
catalog_index_page. inc file shown in Listing 5-2, this file defines the

look and feel of the Web page. It includes the HTML code that displays the
page. It also includes small sections that display the information from the file
fields_products_page.inc.

Listing 5-4 shows the file used for the procedural application. After the listing,
I discuss the changes that need to be made to use the file with the object-
oriented application.

LisTING 5-4: THE ScRIPT THAT DEFINES THE CATALOG PRODUCT PAGE

<?php
/* File: catalog_ product_page.inc
* Desc: Displays the products in the catalog for the
* selected category.
*
?> /
<html>
<head><title><?php echo $page['title'] ?></title></head>
<body>
<?php
echo "<div style='margin-left: .lin; margin-right: .lin'>
<hl align='center'>{$page['top']l}</hl>
<p>{$_POST['interest']}";
echo "<p align='right'>($n products products found)"; #14
echo "<table border = '0' cellpadding = '3' width = '100%'>";

Chapter 5: Online Catalog Application ’ 43

echo "<tr>";
foreach($table_heads as $heading) #17
{
echo "<th>$heading</th>";
}
echo "</tr>";
for ($i=%$n_start;$i<=$n end;$i++) #22
{
echo "<tr>";
echo "<td
align='right'>{$products[$i] ['catalog number']}</td>";
echo "<td>{$products[$i] ['name']}</td>";
echo "<td>{$products[$i] ['description']}</td>";
echo "<td style='text-align: center'>
\${$products[$i] ['price']}/1b</td>";
echo "<td style='text-align: center'>
<img src='images/{$products[$i]l['pix']}"
width='55" height='60'></td>";
echo "</tr>";
}
echo "<form action='$_SERVER[PHP_ SELF]' method='POST'>"; #35
echo "<input type='hidden' name='n_end' value='$n end'>";
echo "<input type='hidden' name='interest'
value='$_POST[interest] '>";
echo "<tr>
<td colspan='2'>
<input type='submit'’
value='Select another category'></td>
<td colspan='3' align='right'>";
if ($n_end > $n_per page) #44
{
echo "<input type='submit' name='Products'
value='Previous'>";

}
if($n_end < $n products) #49
{
echo "<input type='submit' name='Products’
value='Next $n per_ page'>";
}
echo "</td></form></tr></table>"; #54

echo "<p style='text-align: center; font-size: 75%'>
{$page['bottom']}";

?>
</div></body></html>

The following numbers refer to the bold line numbers in Listing 5-4:

#8 Includes a short PHP section that echoes the title.

#11 Lines 11 to 14 display the top section of the Web page, including a line
that shows the category being listed (lines 12 and 13) and a line that
shows how many total products were found for the category (line 14).

144 Partin: Building Online Sales Applications

#15 Displays the table tag that begins the product table.

#17 Starts a foreach loop that displays the table headers in the first row
of the table.

#22 Starts a for loop that loops through all the products in the
$products array. This loop creates a table row for each product.

#24 Lines 24 to 33 display each information item in the product row.

#35 Echoes the tag that starts the form. The form is the last row of the
product table and holds the next, previous, and new category buttons.

#36 Lines 36 to 38 create hidden variables that pass the information
needed on the next page: $n_end and the category being displayed.

#40 Creates a wide cell where the Select Another Category submit button
is displayed. The button is not given a name.

#43 Creates a wide cell on the right where the Next and Previous submit
buttons are displayed.

#44 Begins an i f statement that displays the Previous button. If the page
being displayed isn’t the first page, the previous button is displayed.
The Previous button is named Products.

#49 Begins an if statement that displays the Next button. If the last prod-
uct isn’t yet displayed, the Next button is displayed. The Next button
is named Products. Because both the Next and Previous buttons are
named Products, the application script can test for the value of
Products when deciding which products to display on the product
page.

#55 Displays information at the bottom of the page.

Changing catalog_product_page.inc
for the object-oriented application

The code in Listing 5-4 displays the products Web page when used with the
procedural code. The file needs changes to work correctly with the object-
oriented code.

Lines 24 to 33 display the product information on each row. In Listing 5-4, the
information is displayed from an array named sproducts. This array is built
from the information in the database in the catalog.php script, described in
Listing 5-5. For the object-oriented application, these lines need to be changed
to display the information from an object. The object is created in the script
Catalog-oo.php, shown in Listing 5-8.

To use the file with the object-oriented application, change lines 24 to 33 in
Listing 5-4 to the following lines and call the new file catalog_product_
page-00.inc.

echo "<tr>";
echo "<td align='right'>{$all[$i]->catalog_number}</td>\n";

Chapter 5: Online Catalog Application ’ 45

echo "<td>{$all[$i]->name}</td>\n";

echo "<td>{$all[$i]->description}</td>\n";

echo "<td>\${$all[$i]->price} /lb</td>\n";

echo "<td>pix}'></td>\n";
echo "</tr>";

Displaying the catalog Web pages

Two files are used in conjunction to display each Web page. The files

catalog_index_page.inc and fields_index_page.inc display the cate-
gory page; the files fields_products_page.inc and catalog_product_
page.inc (or catalog_product_page-oo.inc) display the products page

The index Web page is displayed with the following code:

include("fields_index page.inc");
include("catalog index page.inc");

The products Web page is displayed in the procedural application with the
following code:

include("fields_products_page.inc");
include("catalog product_page.inc");

The product page is displayed in the object-oriented application with the fol-
lowing code:

include("fields_products_page.inc");
include("catalog product_page-oo.inc");

The procedural script and the object-oriented script use slightly different
code, but the same general approach. One file contains the code for the look
and feel, appropriate for any catalog. The catalog-specific information is pro-
vided in a separate file that’s included when the “look and feel” file is
included.

Building the Online Catalog Application:
Procedural Approach

The Catalog application has one main script. The script is organized into two
basic sections: one section that displays the index page and one that displays
the products page. The index page section displays when the application first
runs, before any buttons have been clicked. When the user clicks a button,

146 Partin:Building Online Sales Applications

the script displays a Web page dependent on which button was pushed. The
following is an overview of the structure of the script:

if (Button)
The Product button was pushed,
1l Test whether a category was selected. If
not, redisplay the index page.
2 Display the products page.

The Product button was not pushed,
1 Display the index page.

Listing 5-5 shows the code for the online catalog application script.

LisTING 5-5: THE ONLINE CATALOG CODE

<?php
/* Program: Catalog.php
* Desc: Displays a catalog of products. Displays two
* different pages: an index page that shows
* categories and a product page that is displayed
* when the customer selects a category.
*/
include ("functions_main.inc"); #8
$n_per page = 2; #9
if (isset ($_POST['Products']l)) #10
{
if(!isset ($_POST['interest'])) #12
header("location: Catalog.php");
exit();
}
else #17
{
if(isset ($_POST['n_end'])) #19
{
if ($_POST['Products'] == "Previous") #21
{
$n start = $ POST['n_end']-($n_per_ page);
}
else #25
{
$n_start = $_POST['n_end'] + 1;
}
}
else #30
{
$n_start = 1;
}
$n _end = $n_start + $n_per_page -1; #35
$connect = connect_to _db("Vars.inc"); #36

$Squery food = "SELECT * FROM Food WHERE

Chapter 5: Online Catalog Application ’ 4 7

type='$_POST[interest]' ORDER BY name";
$result = mysqli_query($connect, $query food)

or die ("query food: ".mysqli_error($connect)); #39
$n=1;
while($row = mysqgli_fetch_ assoc($result)) #41
{

foreach($row as $field => $value) #43

{

$products[$n] [$field]=$value;

}

$n++;
}
$n_products = sizeof ($products); #49

if($n_end > $n_products)

$n _end = $n_products;

}
include("fields_products_page.inc"); #54
include("catalog product_page.inc");
}
}
else #58
{
$cxn = connect_to_db("Vars.inc"); #60
$query = "SELECT DISTINCT category,type FROM Food
ORDER BY category, type";
$result = mysqli_query($cxn, $query)
or die ("Couldn't execute query.
" .mysqli_error($cxn)); #65
while($row = mysqli fetch array($result)) #66
$food_categories|[$row['category']l]l[1=$row['type'];
}
include("fields_index page.inc"); #70
include("catalog index page.inc");
}
?>

The numbers in the following explanation refer to the line numbers in
Listing 5-5:

#8 Includes a file that contains the function Connect_to_db — a func-
tion used throughout the book. In this script, the function is used on
line 36 and line 60.

#9 Sets $n_per_page, the number of products to be displayed on a
single page. $n_per_page is set to 2, an unusually low number. It’s
more common to set the number to 10, but it depends on how many
products entries fit on a page. You can set this number to any integer.

#10 Begins an if statement that executes if the customer clicks the
submit button named Products.

148 Partin: Building Online Sales Applications

#12 Begins an i f statement that executes if the customer did not select a
category in the form. The category page is displayed again.

#17 Begins an else statement that executes if the customer selected a
category in the form. The products page is displayed.

#19 Begins an if statement that executes if this is not the first page
displayed. It checks which button was pressed. If the Previous
button was pressed, $n_start is set back to the beginning of
the previous page. If the Next button was pressed, the
$n_start is set to the product after the last product displayed
on the last page.

#30 Begins an else block that executes if this is the first time the
product page is displayed. It sets n_start to 1.

#35 Sets $n_end to $n_start plus the number of products to be
displayed on the page, minus one.

#36 Lines 36 to 39 build and execute a query that retrieves the prod-
uct information for all the products in the selected category.

#40 Lines 40 to 48 build an array named $products that contains all
the selected product information.

#49 Sets $n_products to the number of products in the category.

#50 Begins an if statement that makes sure $n_end is higher than
the number of products. If $n_end is more than the total
number of products, $n_end is set to the last product.

#54 Lines 54 to 55 display the product page.

#58 Starts an else block that executes if the Product button wasn’t
clicked. Either no button or the Select Another Category button was
clicked. This block displays the categories page.

#60 Lines 60 to 65 build and execute a query that retrieves all the
categories in the database.

#66 Lines 66 to 69 create an array of food categories.
#70 Lines 70 to 71 display the category page.
The online catalog application script calls a function to connect to the data-

base. The functions_main. inc file, called on line 8, contains the function
code. Listing 5-6 shows the function code.

LisTING 5-6: THE CONNECT_TO_DB FUNCTION

<?php

/* Function: Connect_to_db
* Desc: Connects to a MySQL database. The name of
* a file containing the database variables

Chapter 5: Online Catalog Application , 4 9

* is passed to the function.
*/

function Connect_ to_db($filename)

{

include($filename);
$cxn = mysqgli_connect ($host, $user, $passwd)

or die ("Couldn't connect to server."):;
$db = mysqgli_select_db($cxn, $database)

or die ("Couldn't select database.");
return $cxn;

This function gets the information it needs from a separate file. The filename
is passed when the function is called. The file contents are something like the
following:

<?php

$host "localhost";
S$user "admin";

$passwd = "";

$database = "FoodCatalog"
?>

Store this file outside your Web space for security reasons. If you set your
include_path in your php.ini file to a location outside your Web space,
you can store files there and include them without using a complete path

name.

Building the Online Catalog Application:
The Object-Oriented Approach

Object-oriented programming requires that you create and use objects to
provide the functionality of the application. You first identify the objects
needed for the application. Then you write the classes that define the
objects, including the methods that the application needs. When the objects
are ready, you write the application script that creates and uses the objects.

Developing the Objects

The online catalog application needs to display information from a database.
It needs to display two types of information from the database: a list of cate-
gories or a list of product information within a category. To display a catalog,

150 Partiii: Building Online Sales Applications

LisTING 5-7: THE CATALOG CLASS

<?php

the application needs only one object: a Catalog object. I discuss the details
for the catalog object in the following sections.

Writing the Catalog class

The definition for the catalog object is coded in the catalog class. This
class is a general class that you can use to display any catalog, not just the
food catalog used in this chapter.

The catalog class maintains a connection to the database where the product
information is stored and returns or displays product information as needed.
The catalog class contains five properties, a constructor, and five methods.

The properties

The Catalog properties store information needed to define and manage the
form and its data. The properties are

private $cxn;

private $catalog name;
private $host;

private Suser;
private $password;

The first property is the connection to the MySQL database server. The
second property is the catalog name, which is the name of the database
where the product information is stored. The remaining properties are the
information needed to access the database.

The code

Listing 5-7 contains the complete code for the Catalog class. I cover each
method in detail after the code listing. Notice the line numbers at the ends of
some of the lines of code. The discussion in the six subsections following the
listing refers to the bold line numbers in Listing 5-7.

/* Class: Catalog
* Desc: Class that contains product information.
*/

class Catalog
{

private $cxn;
private $catalog name;
private Shost;

Chapter 5: Online Catalog Application ’5 1

private $user;
private $password;
function __ construct($filename)

{
if(is_string($filename))
{
include("$filename");
}
else
{
throw new Exception("Parameter is not a filename");
}
$this->cxn = new mysqli ($host, $user, $passwd) ; #23
if (mysqli_connect_errno()) #24
{
throw new Exception("Database is not available.
Try again later.");
exit();
}
$this->host = $host;
$this->user = $user;
$this->password = $passwd;
}
function selectCatalog($database)
{
$db = $this->cxn->select_db($database); #37
if (mysqli_errno($this->cxn)) #38
{
if (mysqgli_errno($this->cxn) == 1049) #40
{
throw new Exception("$database does not exist");
exit();
}
else
{
throw new Exception("Database is not available.
Try again later");
exit();
}
}
$this->catalog_name = $database;
}

function getCategoriesAndTypes()
{
$sgql = "SELECT DISTINCT category,type FROM Food
ORDER BY category,type";
if (!$result = $this->cxn->query($sql))
{
throw new Exception(mysqgli_error($this->cxn));
exit();

Continued

152 Partiii: Building Online Sales Applications

LisTING 5-7: (Continued)

}

{

}

}

{

while ($row=$result->fetch _array())
{
$array cat_typel[S$Srow['category'l]l[]l=$row['type'l;
}
return $array_cat_type;

function getAllofType ($type)

if (is_string($type)) #73
{
$sgql = "SELECT * FROM Food WHERE type='S$type'’
ORDER BY name";
}
else
{
throw new Exception("$type is not a type.");
exit();
}
if (!$result = $this->cxn->query($sql)) #83
{
throw new Exception(mysqgli_error($this->cxn));
exit();
}
$n=1;
while ($row=$result->fetch_object()) #89
{
$array all[$n] = S$row;
$n++;
}

return $array all;

function displayCategories()

$food_categories = $this->getCategoriesAndTypes();
include("fields_index page.inc");
include("catalog index page.inc");

function displayAllofType ($type, $page)

if(is_string($type))

$all = $this->getAllofType($type):;

}

else

{
throw new Exception("$type is not a type.");
exit();

}

if (is_int ($page))
{

Chapter 5: Online Catalog Application ’53

$n_per_page = $page;

}
else
{
throw new Exception("$page is not an integer."):;
exit();
}
$n_products = sizeof($all);
if (isset ($_POST['n_end'])) #125
if ($_POST['Products'] == "Previous") #127
{
$n _start = $_POST['n_end']-($n_per_page);
}
else #131
{
$n_start = $§ POST['n end'] + 1;
}
}
else #136
{
$n_start = 1;
}
$n_end = $n_start + $n per page -1; #140
if($n_end >= $n products) #141
$n _end = $n_products;
}

include("fields_products_page.inc");
include("catalog product_page-oo.inc");

The constructor

The constructor creates a connection to the MySQL server. It gets the host-
name, account name, and password for MySQL from a file; the filename is
passed when the object is instantiated. The file can be stored in the include
directory, as specified in the php. ini file. The constructor checks whether
the information passed to the class is the correct type of data. If it is, it
includes the file; if not, it throws an exception.

The constructor creates a connection to MySQL. The objects provided by
the MySQL Improved (mysqli) extension are used. Line 23 creates a connec-
tion that is stored in the property $cxn. Line 24 begins an if statements that
checks whether the connection was successful. If it failed, an exception is
thrown.

The host name, account name, and password are stored in properties.

154 Partin: Building Online Sales Applications

You can create a Catalog object with the following statement:

$food_catalog = new Catalog("Vars.inc");

selectCatalog

The selectCatalog method sets the database to be used when accessing
MySQL. The database name is passed. The stored connection is used to set
the current database.

#37 Sets the database.

#38 Starts an if block that executes if the database was not successfully
selected. The block checks whether the error is Error 1049, which
would signal that the database doesn’t exist. If the error is 1049, an
exception is created that informs the user that the database name
given isn’t a valid database. If the error number isn’t 1049, an excep-
tion is created with a more generic error message.

This method can be used at any time to change the current database.

getCategoryAndTypes

The getCategoryAndTypes method gets all categories and types and returns
them in a multidimensional array. It creates and executes the appropriate
SELECT query. A while statement builds a multidimensional array from the
result set. The method returns the array.

getAllofType

The getallofType method gets all the product information for a given sub-
category (type). The type is passed to the method.

#73 Begins an if/else block that checks whether the type name passed
is a string. If so, the if block creates a SELECT query using the type
passed. If not, the else block throws an exception.

#83 Executes the query. If the query fails, a new exception is thrown.

#89 Begins a while loop that builds an array of objects from the result
set. Each product (row) is an object. The object properties are the
field names and contain the information in the cell.

displayCategories

The displayCategories method displays the category Web page. A multi-
dimensional array of product categories is created by using the method
getCategoriesAndTypes. The method displays the category page by includ-
ing two files: one file contains additional variables needed for the food cata-
log, and the other file contains the code that defines the look and feel of the
Web page. [discuss these two files in the “Building the Catalog Web Pages”
section.

Chapter 5: Online Catalog Application

displayAllofType

The displayallofType method displays all the products for a given type.
The method gets the product info using the method getallofType. The
method displays the products by including two separate files: one that pro-
vides some additional variables and one that provides the code to define the
look and feel of the Web page. The two files are discussed in the “Building the
Catalog Web Pages” section.

#125 Begins an i f statement that executes if this is not the first page dis-
played. It sets $n_start to a value based on which button —
Previous or Next — was pressed.

#127 Begins an if block that executes if the Previous button was
clicked. $n_start is set back to the beginning of the previous

page.

#131 Begins an else block that executes if the Previous button was
not clicked. The Next button was pressed. The $n_start is set
to the product after the last product displayed on the last page.

#136 Begins an else block that executes if this is the first time the product
page is displayed. It sets n_start to 1.

#140 Sets $n_end to $n_start plus the number of products to be dis-
played on the page, minus one.

#141 Begins an if statement that makes sure $n_end is higher than the
number of products. If $n_end is more than the total number of prod-
ucts, $n_end is set to the last product.

#145 Lines 145 to 146 display the product page.

Writing the catalog application script

After writing all the class code needed for the online catalog application,

you write the application script that creates and uses the objects to provide
the application functionality. The application script has the following general
structure:

if (Button)

The Products button was pushed,
1l Test whether a category was selected. If
not, redisplay the index page.
2 Display the products page.

The Products button was not pushed,
1 Display the index page.

The second choice (the Products button was not pushed) means that this is
either the first time the page is displayed or the user clicked the Select
Another Category button.

155

156 Parti: Building Online Sales Applications

The application program creates objects and uses their methods to perform
the tasks that I describe in the preceding section that describes the struc-
ture. The application program script is shown in Listing 5-8.

LisTING 5-8: THE LOGIN APPLICATION SCRIPT

<?php
/* Program: Catalog-oo.php
* Desc: Displays a catalog of products. Displays two
* different pages: an index page that shows
* categories and a product page that is displayed
* when the customer selects a category.
*/
require_once("Catalog.class");
if (isset ($_POST['Products'])) #9
{
if (!isset ($_POST['interest'])) #11
{
header ("location: Catalog-oo.php"):;
exit();
}
else #16
{
try
{
$foodcat = new Catalog("Vars.inc"); #20
$foodcat->selectCatalog("FoodCatalog") ;
$foodcat->displayAllofType($_POST['interest'],2);
}
catch(Exception $e)
{
echo $e->getMessage():
exit();
}
}
}
else #31
{
try
{
$foodcat = new Catalog("Vars.inc"); #35
$foodcat->selectCatalog ("FoodCatalog") ; #36
$foodcat->displayCategories(); #37
}
catch(Exception $e)
{
echo $e->getMessage();
exit();
}
}
?>

Chapter 5: Online Catalog Application

Notice that many of the statements in this script are enclosed in try/catch
blocks. If a method throws an exception and the exception isn’t caught, the
following fatal error occurs:

Fatal error: Uncaught exception 'Exception' with message
'Database is not available.' in c:\Database.class:56

Therefore, you need to catch any exception thrown by a method either in the
method itself or in the script that uses the method.

The following explanation of the script refers to the line numbers in Listing 5-8:

#9 Begins an i f statement that executes if a button named Products was
pushed.

#11 Begins an if block that executes if the customer did not check
a product category. The customer is returned to the category
Web page.

#16 Begins an else block that executes if the user selected a category.

#20 Lines 20 to 22 display the product Web page. Line 20 creates a
new Catalog object, line 21 selects the catalog to use, and line
22 displays the products.

#31 Begins an else block that executes if the user did not click a button
named Products. This block displays the categories page. It will dis-
play the first time the script is called, when the user hasn’t clicked
any button at all. It also executes when the user clicks the Select New
Category button on the products page because that button is not
named Products.

#35 Lines 35 to 37 display the categories Web page. Line 35 creates a new
Catalog object, line 36 selects the catalog to use, and line 37 displays
the categories.

Growing the Catalog class

The catalog class in this chapter provides the essential features for the exam-
ple application. However, you can easily see where additional methods would
be very useful, perhaps even required. For instance, the class needs a method
that gets individual fields for a particular food, so that you can retrieve the
price for bermuda onions or delicious apples. Such a method might be called
as follows:

getPrice ("bermuda")

157

158 Partiii: Building Online Sales Applications

Other useful methods might include a method that adds a product to the cat-
alog and another that removes products from the catalog.

One of the benefits of object-oriented programming is the ease of adding
functionality to applications. Adding a method for new functionality is as
simple as eatFood ("cake").

Chapter 6
Shopping Cart Application

In This Chapter
Designing the shopping cart application

Building the online order database
Writing procedural code for the shopping cart application
Developing and using objects to program the shopping cart application

Fe Internet provides endless opportunities to buy things. In this chapter,
[develop an online ordering system that provides product information in
a catalog and a shopping cart to purchase the items. In Chapter 5, you see an
online catalog application. The online catalog application provides informa-
tion about products to potential customers. In this chapter, the shopping cart
application provides the ability to buy the products in the catalog. The shop-
ping cart does not stand alone. It needs the catalog to provide products for
the customer to place in his or her shopping cart.

Designing the Shopping Cart Application

Shopping carts can be implemented in many ways. Your first task is to decide
how to implement yours.

Basic application design decisions

You must make some fundamental programming design decisions before
designing the user interface. Some basic considerations are:

v Customer login: Many stores require customers to register and log in
before they can purchase products. Customer registration provides the
store with information about its customers, such as phone numbers and
e-mail addresses. Requiring logins also allows features that can’t be pro-
vided without the login process. For instance, you can’t provide a fea-
ture that allows customers to track their orders without requiring that
the customer log in. If the customer isn’t required to log in, nothing pre-
vents customers from looking at each other’s orders.

16 Partini: Building Online Sales Applications

On the other hand, many customers avoid registrations. Some cus-
tomers are suspicious that their information might be used for nefarious
purposes, such as unwanted marketing calls or e-mails. Other customers
are impatient with the process, flitting away to an easier site. Therefore,
requiring a login might cost the store some sales.

The application in this chapter doesn’t require customer login. Anyone
can purchase the products. Chapters 3 and 4 provide login applications
that you can add to this application if you desire a customer login.

v Purchasing methods: How may customers purchase the products? The
easiest method is to send the order information in an e-mail to the sales
department and invoice the customer. Or, to require a check from the
user before shipping the products. However, most Web sites accept pay-
ment on the Web site. Web sites can quickly accept and approve credit
card payments. Some sites accept PayPal payments, either in addition
to or instead of credit card payments. PayPal is an Internet Web site that
provides accounts that people can use to send or receive money over
the Internet. For instance, a PayPal account can be used to pay for eBay
purchases. In addition to providing account setup, the PayPal Web site
provides merchant tools that you can use to accept payment easily via
PayPal. See www.paypal . com.

The application in this chapter accepts only credit cards.

v Credit card handling: Accepting credit card payments raises security
issues. If the customer is going to send you a credit card number, you
need to implement SSL (Secure Socket Layers) for security, as I discuss
in Chapter 2. If you store credit card numbers, you need to implement
strong security. Storing credit card numbers allows quicker and easier
purchasing for customers (because their credit information is on file)
but increases the opportunity for bad guys to steal important informa-
tion. In addition, some customers don’t want their credit information
stored on your Web site. One possible solution, used at some online
stores, is to allow customers to decide whether you store their credit
card information.

The application in this chapter doesn’t save credit card information. The
information is accepted, used, and then discarded, not stored in the
database.

v~ Shipping fees: Sending purchases to customers costs you money. The
easiest solution to implement is a single, standard shipping and handling
fee. Adding one amount to the total is a simple program step. The more
difficult solution is to try to compute the actual shipping charge, allow-
ing the customer to select the type of shipping used and computing the
shipping charge based on the distance from your zip code to the cus-
tomer’s zip code. The customers appreciate the more accurate cost,
but the programming takes more time and effort.

The application in this chapter charges a shipping fee that is a flat fee
per item.

Chapter 6: Shopping Cart Application ’ 6 1

v Shopping cart: You can use several mechanisms to store the shopping
cart while the customer continues to shop, before the order is submit-
ted. The customer needs to be able to add and remove items from the
shopping cart while putting together the final order. The most common
techniques for storing the shopping cart contents are

¢ Database table: More secure, but more overhead.
¢ Cookies: The customer might have cookies turned off.
¢ Session variables: Less secure on a shared server.
e Text file: Easy, but less secure.
Other, less common methods are sometimes used.

The application in this chapter stores the shopping cart two different
ways. The procedural program stores the shopping cart items in the
MySQL database. The object-oriented program stores the shopping cart
items in a session variable.

Application functionality design

The basic function of the shopping cart application is to collect the informa-
tion needed to complete a customer’s purchase. The application should

v Display the products so that the customer can select products to pur-
chase. This step is provided by the online catalog application, which I
describe in detail in Chapter 5. However, you need to add some addi-
tional features to the catalog to allow online purchasing. I cover the
additional features in this chapter.

v Keep track of the products selected by the customer. The customer
should be able to see what he has already selected at any time. The cus-
tomer should also be able to remove any selections.

v Collect the information needed to ship the product to the customer.
You need the customer’s name and address. Also, you need a phone
number in case of delivery problems. An e-mail address is useful for
communication. The application can also collect any information
required to compute shipping charges.

v Collect the information needed to charge the customer. The applica-
tion collects credit card information, a billing address, and the exact
name associated with the credit card. In this chapter, the shipping and
billing information are assumed to be the same. [do this to keep the
example simple. However, for a real-world Web site, you can’t assume
this.

v Provide feedback to the customer. The customer needs to see the infor-
mation that she entered at all steps along the way and be able to correct
information. Not everyone has perfect typing skills.

162 Partiit: Building Online Sales Applications

Creating the Shopping Cart Database

\NG/
Vg\“

The shopping cart database stores information about the orders. It stores
general information about the order, such as the customers’ names and
addresses, and the items selected for each order. Another important detail to
know is when the order was submitted. This application also requires that
the order store the product information, which appears in the online catalog.
The application in this chapter sells products from The Food Shop catalog,
which I describe in Chapter 5.

Designing the shopping cart database

The sample application in this chapter uses a database named onlineOrders.
The database contains two tables. One table stores information general

to the order, such as name and address, order number, and so on. The
second table stores a row for each item ordered, linked to the first table by
the order number.

In addition, because the application needs to display the products, it needs
access to the catalog database.

Designing the Customer_Order table

The table named customer_Order contains information related to the order
as a whole, as shown in Table 6-1.

You can’t name tables with MySQL-reserved words. This table seems like it
ought to be named Order, but that’s a MySQL-reserved word. If you name
your table Order, it generates a MySQL syntax error and you can spend
hours staring at the query, convinced that there’s nothing wrong. You can
see a list of reserved words at http: //dev.mysql.com/doc/mysqgl/en/
reserved-words.html.

Table 6-1 Database Table: Customer_Order

Variable Name Type Description

order_number INT (6) Integer assigned by
AUTO_INCREMENT (primary key)

order_date DATE Date when order was added to

table

shipping fee

DECIMAL(9,2)

Total shipping cost for the order

sales_tax

DECIMAL(9, 2)

Total sales tax for the order

Chapter 6: Shopping Cart Application ’ 63

Variable Name Type Description
submitted ENUM ('yes', Order status

'no')
ship_name VARCHAR (50) Ship to: name
ship_street VARCHAR (50) Street address
ship_city VARCHAR (50) City where the order is to be

shipped

ship_state CHAR (2) Two-letter state code
ship_zip CHAR (10) Zip code. (Five numbers or zip+4)
email CHAR (50) Customer’s e-mail address
phone CHAR (20) Customer’s phone number

In this design, the order number is an integer assigned sequentially by
MySQL. Some designs might use an order number with meaningful numbers
and/or letters, such as dates or department codes.

The shipping fee and sales tax are stored in the order. Although they can be
computed, the rates might change in the future. Therefore, when looking up
an order, you want to know what the charges were at the time of the order.

Designing the Order_Item table

The table named Order_Item contains information on each item in the order,
as shown in Table 6-2.

Table 6-2 Database Table: Order_Item

Variable Name Type Description

order_number INT (6) Link to Customer_Order
table (primary key 1)

item_ number INT (4) Number assigned to each
item (primary key 2)

catalog_number INT (8) Number assigned to the
product in the catalog

quantity DECIMAL(7,2) Amount ordered

price DECIMAL(9,2) Price of the item

164 Parti:Building Online Sales Applications

The Order_Item table has five fields. The first two fields together are the
primary key. The price is stored so the actual price paid for this item can
be recovered in the future, even if the price has changed.

Designing the Food table

The application uses the Food table from the online catalog that I design and
explain in Chapter 5. (Specifically, check out Table 5-1.) The application could
access the table from that database. However, | have added the Food table to
the onlineOrders database (which I design and explain in this chapter) to
simplify the design.

Building the shopping cart database

You can create the MySQL database using any of the methods that I discuss
in Chapter 1. The following SQL statement creates this database:

CREATE DATABASE OnlineOrders;
The following SQL statements create the tables:

CREATE TABLE Customer_Order (

order_number INT(6) NOT NULL AUTO_INCREMENT,
order_date DATE NOT NULL,
shipping fee DECIMAL(9,2),

sales_tax DECIMAL(9,2),

submitted ENUM("yes", 'no'),

ship name VARCHAR(50),

ship street VARCHAR(50),

ship_ city VARCHAR (50),

ship state VARCHAR(2),

ship_ zip VARCHAR(10),

email VARCHAR(50),

phone VARCHAR (20),

PRIMARY KEY (order_number));

All fields in the preceding code are required to complete the order process-
ing. However, only the first two fields are declared NOT NULL. When the appli-
cation first inserts the order into the database, values are inserted into only
the first two fields. The remaining fields are blank at that time; the values for
those fields are added later. Consequently, the remaining fields must be
allowed to be blank. The PHP application script must ensure that the fields
contain the appropriate information.

CREATE TABLE Order_Item (

order_number INT(6) NOT NULL,
item number INT(5) NOT NULL,
catalog number INT(6) NOT NULL,
quantity DECIMAL(7,2) NOT NULL,
price DECIMAL(9,2) NOT NULL,

PRIMARY KEY (order number, item number));

Chapter 6: Shopping Cart Application ’ 65

CMBER
S

NNG/
S

CREATE TABLE Food (

catalog number INT(6) NOT NULL AUTO_INCREMENT,
name VARCHAR (20) NOT NULL,

added_date DATE NOT NULL,

category VARCHAR (20) NOT NULL,

type VARCHAR (20) NOT NULL,

description VARCHAR (255) NOT NULL,

price DECIMAL(7,2) NOT NULL,

pix VARCHAR (20) NOT NULL DEFAULT

"Missing.jpg".,
PRIMARY KEY(catalog number));

Accessing the shopping cart database

PHP provides MySQL functions for accessing your database from your PHP
script. The MySQL functions are passed the information needed to access the
database, such as a MySQL account name and password. This account name
and password is not related to any other account name or password that you
have, such as a password to log onto the system.

PHP provides two different sets of MySQL functions: mysql functions and
mysqli functions. The mysqli functions are provided for access to features
added in MySQL version 4.1. You can use the mysql functions with version
4.1, but you don’t have access to the newer features. The mysql or mysqli
extension is activated when PHP is installed. You must use PHP 5 to use the
mysqli functions.

Because MySQL 4.1 is now the recommended version on the MySQL Web site,
[use the MySQL Improved (mysqli) functions in this chapter. I use the proce-
dural functions when building the procedural programs. I use the object-
oriented classes when building the object-oriented programs.

If you're using PHP 4 or for other reasons want to use the mysql functions,
rather than the mysqli functions, you might need to make small changes to the
syntax. The mysqli functions are very similar to the mysql functions, but some
differences exist. The PHP and MySQL versions are explained in Chapter 1. The
syntax differences are shown in Appendix C. More information about the func-
tions is available in the PHP manual at www.php.net/manual/en/ref .mysqgli.
php and www.php.net/manual/en/ref .mysql.php.

Adding data to the shopping cart database

The Food table contains the product information. You add this data to the
database yourself, outside this application. To add items to the Food catalog,
you can use the mysq]l client installed with MySQL, any MySQL administra-
tion application (such as phpmyadmin [www . phpmyadmin.net] or MySQL
Administrator, which you can download from MySQL

160 Partin: Building Online Sales Applications

[www.mysqgl.com/products/administrator/index.html]), or write your
own application in PHP.

The order information is added to the database by the shopping cart applica-
tion. When customers submit orders, the order and item information is
added to the appropriate table.

Building the Shopping Cart Web Pages

The shopping cart application provides the customer with product informa-
tion, displayed from an online catalog, similar to the online catalog applica-
tion discussed in Chapter 5. The customer selects items from the catalog and
puts them into a shopping cart. When the customer is satisfied with the con-
tents of the shopping cart and submits the order, the application builds the
order, collecting the shipping information and storing the chosen items.

Designing the shopping cart Web pages
The shopping cart application displays five Web pages, in the following order:

1. Product information: The application displays the product information
from an online catalog, as I describe in Chapter 5. The catalog actually
displays two different types of pages: the categories page and the prod-
uct information page. The categories page is the same page designed in
Chapter 5. The product page is similar, but has some added elements
that are necessary for online purchasing.

2. Shopping cart: The shopping cart Web page displays the items that are
currently in the shopping cart.

3. Shipping form: When the customer submits the order, the application dis-
plays a form to collect the shipping address and credit card information.

4. Summary page: The summary page displays all the order information,
including the address.

5. Confirmation page: When the credit information is approved, the appli-
cation displays a confirmation page, accepting the order and providing
any information the customer needs. Alternatively, if the customer can-
cels the order, a cancellation page is displayed.

Designing the product information Web page

In Chapter 5, I describe the online catalog application that displays items
from a catalog. The application in the current chapter also displays items
from a catalog. Two types of pages are displayed. One page is the product
categories page (refer to Figure 5-2). This page is the same for the shopping
cart application as for the online catalog application.

Chapter 6: Shopping Cart Application

Figure 6-1:
The product
page
displayed by
the online
orders
application.
|

The second type of page displays information for products in the selected
category. The product page for the shopping cart application is similar to the
product page described in the previous chapter (refer to Figure 5-2), but has
some added components, as shown in Figure 6-1.

Notice the following additions on this page:

v View Shopping Cart button: A new submit button — View Shopping
Cart — is added to the upper-right corner of the page that allows cus-
tomers to view the current contents of their shopping carts. This button
is also added to the categories page.

v The lbs column: This column allows customers to enter the quantity
they want for each item. The food catalog allows users to specify the
number of pounds desired. The items display with 0 (zero) pounds. The
customer can change the amount.

v Add Items to Shopping Cart button: A new submit button — Add Items
to Shopping Cart — is added.

The new elements on the page are added so the customer can select prod-
ucts to purchase.

[Ef The Food Shop Catalog - Mozilla BEE]

— File Edit View Go Bookmarks Tools Window Help

™ T B

: ‘ . = a Wi http:Alocalhostiorders/Catalog. phy v Search = M .
& hitp o php (3] |2 vt I

| Back Reload

o

-~

(View Shopping Cart
The Food Shop Catalog

Apples

(4 products found)

Cat No Food Food Description Price Pictwre Ibs

4 Delicions Bright red, sweet, fresh, crispy. $1.10 1b i]

$1.50 b 1"&‘ 0

11 Fuji Yellow, mellow, crisp, fresh.
N

[Select ancther category] [Add Itemns to Shopping Cart

Send questions and comments to admin@=F oodShop com

| % <Z £2 @@ Dane —

167

168 Partiit: Building Online Sales Applications

|
Figure 6-2:
The
shopping
cart
displayed

by the
shopping
cart
application.

Designing the shopping cart Web page
The application displays the items currently stored in the shopping cart, as
shown in Figure 6-2.

The shopping cart provides three buttons that the customer can click:

v+ Continue Shopping: Returns the customer to the first catalog page.

v Submit Order: Submits an order for the items that are in the shopping
cart.

1 Update Cart: Allows the customer to change the items in the cart. The
customer can change the number of pounds in the Amount column and
click this button. The shopping cart is redisplayed with the changed
amounts. If the number is changed to 0 (zero), the item is removed from
the shopping cart.

Notice that three items are currently in the cart. Only two items were
selected in the products page shown in Figure 6-1. The first item shown
in the cart was stored in the cart previously; the two items were added.

Designing the shipping form Web page
The application collects the information needed to process and ship the
order with the form shown in Figure 6-3.

EThe Food Shop Shopping Cart - Mozilla B[E[*]
EEiIe Edit Miew Go Bookmarks Tools Window Help

Elfc-k N R\eﬁm L & nitpsAocalhostionders/Shopping Cant. php | [_z_Semch Pift -
The Food Shop

Shopping Cart
t| Order Number: 47
Item Cat No Food Amount Price Total
bos 12 Roma Tomatoes 050 |lbs $0.99 per Ib. $0.50
6 4 Delicions Apples 125 lbg $1.10 per Ib. $1.38
7 11 Fuji Apples 150 |lbs $1.50 per Ib. $2.25

Total $4.12

[continue Shopping [Submit Order [Update Cart

ﬁ-. Y - Bl &2 Done =P=a '

Chapter 6: Shopping Cart Application ’ 69

Eﬁ Food Shop Order: Shipping Information - Mozilla BEE]
:—gEIIe Edit View Go Bookmarks Tools Window Help

— Q‘ - ;> a ‘33"” http:#localhost/orders/ProcessOrder. phpMrom=cart |» Search =5 > .
.. T " S .M

| Back Reload
IS :
Food Shop Order: Shipping Information
Please fill in the information below
Finail Address
Name
Street
— City
Figure 6-3: State | Alabama P
The | Zip
. Shlpp!ng Phone
information
Credit Card Type ‘isa -
form
displayed by Credit Card Number
the online Expiration Date | January & 1 & 2005 &
orders .
application. || [_Continue | L
—— b Ydib ~Z 2] @ | Done T

I've simplified the shipping information form for this sample application.
For your application, you will probably need to collect a billing name and
address, as well as a shipping name and address as shown. You also might
need to collect a shipping method and other information.

Designing the summary Web page
The application displays a summary of the order, so the customer can catch
any errors and correct them, as shown in Figure 6-4.

The summary page provides four buttons that the customer can click:
v Continue Shopping: Returns the customer to the first catalog page while

retaining the information in the order.

v~ Edit Shipping Information: Returns the customer to the shipping infor-
mation form where the customer can change the shipping information
as necessary.

v Cancel Order: Cancels the order.

* Submit Order: Submits the order on the summary page. The customer
is unable to make changes after this final submission.

] 70 Parti: Building Online Sales Applications

Figure 6-4:

The
summary
Web Page
displayed by
the online
orders

application. ||

lﬁ The Food Shop Order Summary - Mozilla

BE]

1234 Elm Street

El Paso, T2 72000
555-555-5555
customer(@xHappyHome com

: Order Number: 47

b Ydib ~Z 2] @ | Done

Item Cat No Food Amount
1 12 Roma Tomatoes 0.50
2 4 Delicious Apples 125
3 11 Fuji Apples 1.50
[Continue Shopping] [Edit Shipping Information

:—gElle Edit View Go Bookmarks Tooels Window Help
H 2] 1
Bj:‘k _ R?Dad L & httpAocalhostiordersiProcessOrder. php ¥ | | @B Search ;'_ﬁt -
—
The Food Shop Order Summary
Ship to: John Smith

Price Total
£0.9% perlb. $0.50
$£1.10perlb. §1.38
$1.50 perlb. §2.25
Subtotal $4.12
Sales Tax §0.2%
Shipping ~ $0.75
Total §5.16

b
) -l

The Food Shop must collect sales tax for customers living in Texas. Thus, the
summary page shows sales tax. If the address were in a different state, no

sales tax would be charged.

The Food Shop charges shipping at 25 cents per item. Thus, this three item
order is charged 75 cents. This simple amount was chosen to simplify the

example.

Designing the confirmation page

The confirmation page is specific to your store. It might simply be a repeat
of the summary page. A confirmation page tells the customer that the order
has been approved. It might also tell the customer when the order will be
shipped and often provides the order number that the customer can use to
track the order. I don’t develop a specific confirmation or cancellation page
in this chapter. [believe you can handle that without my help. I just show

you how to display it.

Chapter 6: Shopping Cart Application , 7 1

Writing the code for the product
information page

The catalog products page displays a list of product information. Products
are displayed one page at a time. Each page displays submit buttons for next,
previous, and return to the index page.

The code that creates the products page is in two separate files, as follows:

V¥ shopping_product_page. inc: Contains the code that defines the look
and feel of the Web page. It produces a page that lists the products in a
table. Another file must be used in conjunction with this file to create
the page. The other file contains the specific information for the page.

v fields_products_page.inc: Contains the specific information for the
Catalog Products Web page. When used with shopping_product_
page.inc, it displays the product information. A different file with
different products could be used with shopping_product_page.inc
(see Chapter 5) to create a page that displayed different products.

[describe these two files in detail in Chapter 5. For this chapter, add some
elements to the Web page to allow online orders. In this section, I describe
the added elements only.

Writing fields_products_page.inc

The fields_products_page.inc file is almost the same file that I describe
in Chapter 5. It builds two arrays that contain the specific information dis-
played in the product page. The arrays are

»” spage: Contains elements that are displayed at the top and the bottom
of the entire page.

V¥ Stable_heads: Contains elements that provide the headings for the
table that displays the products.

The only difference between this file and the file of the same name in Chapter 5
is one additional element in the $table_heads array. The extra element is
identified in the explanation following Listing 6-1.

The procedural and object-oriented files are the same.

] 72 Partili: Building Online Sales Applications

LisTING 6-1: THE FiLE THAT ConTAINS THE ARRAYS NEEDED FOR THE PRODUCT PAGE

<?php
/* File: fields__products_page.inc
* Desc: Defines the variables and builds the arrays needed

* to display the products page of the catalog.
*/
$page = array("title" => "The Food Shop Catalog",
"top" => "The Food Shop Catalog",

"bottom" => "Send questions and comments
to admin@xFoodShop.com",

)

$table_ heads array("catalog number" => "Cat No",
llnaIneII => IlFoodll’
"description" => "Food Description",
"price" => "Price",
"pix" => "Picture",
"amount" => "lbs",

)i

The products page has one additional column in the product information
row. The new column allows customers to enter the amount of the product
they want to order. Therefore, the new column is added to the $table_heads
array. The new column is the amount column.

Writing shopping_product_page.inc

The shopping product_page.inc and shopping product_page-o0o.inc
files are very similar to the catalog_product_page.inc and catalog_
product_page-oo.inc files in Chapter 5. However, a few additions are
required that allow the customer to order online. The file with the additions
is shown in Listing 6-2. [describe only the lines that are changed in this sec-
tion. For a complete description of all the lines, see the section “Writing the
code for the products page” in Chapter 5.

The file for the procedural application is slightly different than the file for the
object-oriented application. I first show the procedural file, and then I describe
the changes needed to use the file with the object-oriented application.

The file shown in Listing 6-2 defines the look and feel of the Product page.

LisTING 6-2: THE FiLE THAT DEFINES THE PRODUCT PAGE

<?php

/* File: shopping product_page.inc
* Desc: Displays the products in the catalog for the
* selected category.
*/

Chapter 6: Shopping Cart Application ’ 73

?>
<html>
<head><title><?php echo S$page['title'] ?></title></head>
<body>
<?php #10
echo "<form action='ShoppingCart.php' method='POST'>\n
<p style='text-align: right'>\n
<input type='submit' name='Cart’
value='View Shopping Cart'>\n
</form>\n"; #15
echo "<div style='margin-left: .lin; margin-right: .lin'>\n
<hl style='text-align: center'>{$pagel['top']}</hl>\n
<p style='font-size: 150%'>{$_POST['interest']}";
echo "<p align='right'>($n_products products found)\n";
echo "<table border='0' cellpadding='5' width='100%"'>\n";
echo "<tr>";
foreach($table_heads as $heading)
{

}

echo "</tr>\n";

echo "<form action='$_SERVER[PHP SELF]' method='POST'>\n";
for($i=9%$n_start;$i<=$n end;$i++)

echo "<th>$heading</th>";

echo "<tr>";
echo "<td align='right'>
{$products[$i] ['catalog number']}</td>\n";
echo "<td>{$products[$i] ['name']}</td>\n";
echo "<td>{$products[$i] ['description']}</td>\n";
echo "<td>\${$products[$i]l['price']} /lb</td>\n";
echo "<td>
</td>\n"; #37
echo "<td style='text-align: center'><input type='text'
name="'item{$products[$i] ['catalog_number']}"’
value='0"' size='4'></td>\n"; #40
echo "</tr>";
}
echo "<input type='hidden' name='n _end' value='$n_end'>\n";
echo "<input type='hidden' name='interest'
value='$_POST[interest] '>\n";
echo "<tr>
<td colspan='2'> <input type='submit'
value="'Select another category'></td>\n";
echo "<td colspan='2' style='text-align: center'>
<input type='submit' name='Products'
value='Add Items to Shopping Cart'>"; #51
echo "<td colspan='2' style='text-align: right'>\n";
if($n_end > $n_per page)
{
echo "<input type='submit' name='Products’
value='Previous'>\n";
}
if($n_end < $n_products)

Continued

174 Partin: Building Online Sales Applications

?>

LisTING 6-2: (Continued)

</div></body></html>

echo "<input type='submit' name='Products'’
value='Next $n_per_page'>\n";

echo "</td></form></tr></table>\n";
echo "<p style='font-size: 75%; text-align: center'>

{$page['bottom'] }\n";

The numbers in the following explanation refer to the line numbers in Listing
6-2. I discuss only the elements added to the file in this chapter. For informa-
tion about the original file, see the discussion that follows Listing 5-4.

#11

#38

#49

Lines 11 to 15 add the View Shopping Cart button in the upper-right
corner of the products page. The button displays the current con-
tents of the shopping cart.

Lines 38 to 40 add an input text field to each item where customers
can enter an amount to purchase. The name of the field is built using
the catalog number of the product. For instance, the name of the text
field might be iteml1 or item4002. The default value is 0 (zero). The
customer can change the value to the desired quantity. The name of
the field is passed in the $_POST array, along with the quantity, where
the processing program can obtain the catalog number from the field
name.

Lines 49 through 51 add an extra button named Products to the prod-
uct page, which is labeled Add Items to Shopping Cart.

Changing shopping_product_page.inc for
use with the object-oriented application
The code in Listing 6-2 displays the products Web page when used with the

procedural code. The file needs changes to work correctly with the object-
oriented code.

Lines 30 to 41 display the product information on each row. In Listing 6-2,
the information is displayed from an array named $products. This array is
built from the information in the database in the shopCatalog.php script,
described in Listing 6-11. For the object-oriented application, these lines
need to be changed to display the information from an object. The object
is created in the script Orders-oo.php, shown in Listing 6-18.

Chapter 6: Shopping Cart Application ’ 75

To use the file with the object-oriented application, change lines 30 to 41 in
Listing 6-2 to the following lines and call the new file shopping_product_
page-00.inc:

echo "<tr>";

echo "<td align='right'>{$all[$i]l- O
>catalog_number}</td>\n";

echo "<td>{$all[$i]->name}</td>\n";

echo "<td>{%$all[$i]->description}</td>\n";

echo "<td>\${$all[$i]l->price} /1lb</td>\n";

echo "<td align='center'><img src='images/{$all[$i]l- O
>pix}'></td>\n";

echo "<td style='text-align: center'><input D
type="'text'
name='item{$all[$i] ->catalog number}'
value='0' size='4'></td>\n"; #40

echo "</tr>";

As you can see, the variables are changed from arrays ($products[$i]
['name']) to objects ($all[$i]->name").

Writing the code for the
shopping cart Web page

The shopping cart page displays the items currently stored in the shopping
cart. The customer can change the quantity ordered. The customer can return
to the catalog to add more items or can submit the order.

In this chapter, the shopping cart is not implemented the same way in the
procedural code and the object-oriented code. To show both methods, I
implemented the shopping cart by storing the items in the MySQL table in
the procedural code, but stored the items in a SESSION variable in the object-
oriented code. As a result, the code that displays the Web pages is slightly
different. The following sections show the code for both methods.

Writing the shopping cart Web page files: The procedural method

The code that creates the shopping cart page is in two separate files, as
follows:

V¥ table_page.inc: Contains the code that defines the look and feel of the
Web page. It produces a page that lists the products in a table. Another
file must be used in conjunction with this file to create the page. The
other file contains the specific information for the page.

V» fields_cart.inc: Contains the specific information for the shopping
cart Web page. When used with table_page.inc, it displays the items
stored in the shopping cart.

’ 76 Part lll: Building Online Sales Applications

Writing fields_cart.inc

Listing 6-3 shows the file that defines the variables for the shopping cart Web
page.

LisTING 6-3: THE FiLE THAT CONTAINS THE VARIABLES FOR THE SHOPPING CART

<?php
/* File: fields_cart.inc
* Desc: Provides the information needed to display the

* cart.
*/
$page = array("title" => "The Food Shop Shopping Cart",
"top" => "The Food Shop",
"top2" => "Shopping Cart",
"bottom" => "Send questions or problems to

admin@xFoodShop.com"
);
$table_headers = array("Item","Cat No", "Food",
"Amount", "Price", "Total");

$order number = $_SESSION['order_number']; #14
$table _name = $order number;
$cxn = connect_to_db("vVars.inc"); #16
$sql_1 = "SELECT * FROM order item
WHERE order_number='$order number'";
$result = mysqli_query($cxn, $sqgl_1)
or die("sql 1: ".mysqgli_error($cxn));
$n_row = mysqgli_num rows(Sresult); #21
if($n_row < 1) #22
{
echo "Shopping Cart is currently empty
\n
Continue Shopping\n";
exit();
}
$n=1; #28
while ($row = mysqli_fetch_ assoc($result)) #29
{
foreach($row as $field => $value)
{
if($field != "order_number")
{
$items[$n] [$field]=$value;
if($field == "catalog number")
{
$sgl_2 = "SELECT name,type FROM food WHERE
catalog_number = '$rowl[catalog number]'";

$result2 = mysqli_query($cxn, $sql_2)
or die("sqgl 2: ".mysqli_error($cxn));

Chapter 6: Shopping Cart Application ’ 77

$row = mysqgli_fetch_ row($result2);
$items[$n] ["name"]=$row[0]." ".$row[l];

The line numbers called out in Listing 6-2 correspond to the numbered expla-
nations in the following bullets:

#14 Retrieves the order number from a session variable. The order
number was stored in the session variable when the order was stored
in the database, when the user clicked the Add Items to Shopping
Cart button. The order number identifies this order in the database.

#16 Lines 16 to 20 retrieve all the items from the order_item table in the
database. (In other words, these lines retrieve all the items currently
stored in the shopping cart.)

#21 Sets $n_rows to the number of items found in the database for this
order.

#22 Starts an if block that displays a message and a link when there are
no items in the database for the specified order number.

#28 Sets a counter for the number of items.

#29 Starts awhile loop that creates an array named $items that contains
all the information about the items. The food name is retrieved from
the catalog and added to the array.

Writing table_page.inc

Listing 6-4 shows the file that defines the look and feel of the shopping cart
Web page.

LisTING 6-4: THE FiLE THAT DiSPLAYS THE SHOPPING CART

table page.inc

*Desc: Defines an HTML page that displays items in a

* table of items with prices. A column named

* quantity and a column named price are multiplied
* together to get the item total price. The item
* totals are summed.

*/

Continued

] 78 Parti: Building Online Sales Applications

LisTING 6-4: (Continued)

echo "<html>

<head><title>{$page['title']}</title></head>\n

<body>\n";
echo "<hl style='text-align: center'>{$page['top']}</hl>\n";
echo "<h2 style='text-align: center'>{$pagel'top2']}</h2>\n";
echo "<p style='font-weight: bold'>

Order Number: $table_name<hr>\n";

echo "<table border = '0' style='width: 100%'>\n";
echo "<form action='$_ SERVER[PHP SELF]' method='POST'>";
echo "<tr>";
foreach($table_headers as $header)

{

echo "<th>$header</th>\n";
}
echo "</tr>";
echo "<tr><td colspan='6'><hr></td></tr>\n";
for($i=1;$i<=sizeof ($items);$i++) #25
{

echo "<tr>";
echo "<td style='width: 10%'>
{$items[$i]['item number']}\n";
echo "<td style='width: 10%'>
{$items[$i] ['catalog number']}\n";
echo "<td >{$items[$i] ['name']}\n";
echo "<td style='text-align: center; width: 20%'>
<input type='text' name='quantityl[]'
value='{$items[$i] ['quantity']}"
size='4'> lbs</td>\n";
$f_price = number_ format($items[$i]['price'l,2);
echo "<td style='text-align: right; width: 17%'>$
$f price per 1lb.</td>\n";
$total = $items[$i] ['quantity']*$items[$i]['price']; #40
$f_total = number_format($total,2);
echo "<td style='text-align: right'>
$$f_total</td></tr>\n";

@$order_total = $order total + $total; #44
}
$f order total = number format ($order_ total,2);
?> #47

<tr><td colspan='5' style='text-align: right;
font-weight: bold'>Total</td>
<td style='text-align: right; line-height: 200%'> §$
<?php echo $f_order_total ?></td></tr>
<tr><td colspan='2' style='text-align: left'>
<input type='submit' name='Cart’
value='Continue Shopping'></td>
<td colspan='2' style='text-align: center'>
<input type='submit' name='Cart'’'
value='Submit Order'></td>
<td colspan='2' style='text-align: right'>
<input type='submit' name='Cart'
value='Update Cart'></td>
</tr></table></form></body></html>

Chapter 6: Shopping Cart Application ’ 79

The numbered items in the following list refer to the line numbers in Listing 6-4:

#25 Starts a for loop that loops through the $items array, displaying
each row in the shopping cart Web page. The loop ends on line 45.

#27 Lines 27 to 39 display each item in the row from the current
$item element. The price is formatted as a dollar amount.

#40 Lines 40 to 43 display the total price. Line 40 computes the total
cost, by computing price x quantity. Line 41 formats the total
cost as a dollar amount. Line 42 to 43 display the line in the
shopping cart Web page.

#44 Sums the item total to accumulate a total for the cart.

#48 Lines 48 to the end are HTML code that display the shopping cart
total and the submit buttons.

Writing the shopping cart Web page files: The object-oriented method

The code that creates the shopping cart page is in two separate files, as follows:

V¥ table_page-oo.inc: Contains the code that defines the look and feel
of the Web page. It produces a page that lists the products in a table.
Another file must be used in conjunction with this file to create the
page. The other file contains the specific information for the page.

v fields_cart-oo.inc: Contains the specific information for the shop-
ping cart Web page. When used with table_page-oo. inc, it displays
the items stored in the shopping cart.

Writing fields_cart-oo.inc

Listing 6-5 shows the file that defines the variables for the shopping cart Web
page.

LisTING 6-5: THE FiLE THAT CONTAINS THE VARIABLES FOR THE SHOPPING CART

<?php
/* File: fields_cart-oo.inc
* Desc: Builds the arrays needed to display the shopping

* cart.
*/
$page = array("title"™ => "Shopping Cart",
"top" => "The Food Shop",
"top2" => "Shopping Cart",

"bottom" => "Send questions or problems
to admin@xFoodShop.com"
)
$table _headers = array("Item","Cat No", "Food",
"Amount", "Price", "Total");
?>

180 partin: Buitding Online Sales Applications

Writing table-page-vo.inc

Listing 6-6 shows the file that defines the variables for the shopping cart Web
page.

LisTING 6-6: THE FILE THAT DiSPLAYS THE SHOPPING CART

*/
echo

echo
echo
echo
echo
echo
if(s
{

ec
fo
{

}
ec
ec
fo
{

ile: table_page-o0o.inc

*Desc: Defines an HTML page that displays items in a

table of items with prices. A column named
quantity and a column named price are multiplied
together to get the item total price. The item
totals are summed.

"<html>
<head><title>{$page['title']}</title></head>\n
<body>\n";
"<hl style='text-align: center'>{$page['top']l}</hl>\n";
"<h2 style='text-align: center'>{$page['top2']}</h2>\n";
"<p style='font-weight: bold'>$this->message<hr>\n";
"<table border = '0' style='width: 100%'\n";
"<form action='$_SERVER[PHP_SELF]' method='POST'>";

izeof ($this->items) > 0) #17

ho "<tr>";
reach($table_headers as $header)

echo "<th>$header</th>\n";

ho "</tr>";
ho "<tr><td colspan='6'><hr></td></tr>\n";
r($i=0;$i<sizeof ($this->items) ;$i++) #26

echo "<tr>";
echo "<td width='5%'>". ($i+1) ."</td>\n";
$cat = new catalog("Vars.inc"); #30
$cat->selectCatalog("OnlineOrders");
$cat_no = $this->items[$i]->getCatalogNumber () ;
$food _name = $cat->getName($cat_no);
echo "<td width='5%"'>$cat_no</td>\n"; #34
echo "<td>".$food_name."</td>\n";
echo "<td width='20%' style='text-align: center'>
<input size='4' type='text' name='item$cat_no’
value='".$this->items[$i]->getQuantity ().
"> lbs</td>\n";
echo "<td width='10%"' style='text-align: right'> §".
number_format ($this->items[$i]->getPrice(),2).
" per lb</td>\n";
$total = $this->items[$i]->getQuantity () *
$this->items[$i] ->getPrice(); #44
echo "<td style='text-align: right; width: 7%'> $".
number_ format ($total,2)."</td>\n";
@$order_total = $order_ total + S$Stotal;

Chapter 6: Shopping Cart Application ’ 8 1

} #48
$f_order_ total = number format ($order_total,2);
echo "<tr><td colspan='5"'
style='text-align: right;
font-weight: bold'>Total</td>
<td style='text-align: right;
line-height: 200%'>$$f order_ total</td></tr>\n";
echo "<tr><td colspan='2' style='text-align: left'>
<input type='submit'’
value='Continue Shopping'></td>\n";
echo " <td colspan='2' style='text-align: center'>
<input type='submit' name='Ship’
value='Submit Order'></td>\n";
echo " <td colspan='2' style='text-align: right'>
<input type='submit' name='Cart'
value='Update Cart'></td>\n";
echo "</tr>\n";

else #66

echo "<hr>";
echo "<tr><td colspan='5' style='text-align: left'>
<input type='submit'’
value='Continue Shopping'></td>\n";
}
?>
</table></form>

The following numbers refer to the line numbers in Listing 6-5:

#17 Begins an if block that executes if there are one or more items in the
shopping cart. The variable $items is an array of item objects, stored
in the shoppingCart class, which I discuss later in this chapter. The
ShoppingCart class is created in the orders application script. The
if block displays the shopping cart Web page. The if block ends on
line 65.

#26 Begins a for loop that loops through the $items array and dis-
plays the information for each item on the Web page. The for
loop ends on line 48.

#30 Lines 30 to 33 get some information using a catalog object. For
instance, line 33 gets the name of the item by using the getName
method in the Catalog class. Lines 34 to 35 display the infor-
mation obtained.

#44 Lines 43 to 44 accumulate the total for the shopping cart.

#49 Lines 49 through the end display the shopping cart total and
the shopping cart submit buttons.

182 partin: Building Online Sales Applications

#66 Begins an else block that executes when no items are stored in the
shopping cart. The block displays a button that returns the customer
to the catalog category page.

Writing the code for the shipping
information form

The shipping information form collects the information needed to ship the
product. It collects name, address, phone number, and other information.
The code that displays the form is in two separate files, as follows:

V¥ single_form. inc: Contains the code that defines the look and feel of
the Web form. You must use another file in conjunction with this file to
create the Web form. The other file contains the specific information
such as the field names.

v fields_ship_info.inc: Contains the arrays and variables that are
used by single_form. inc to display the shipping information Web
form.

Writing fields_ship_info.inc

The fields_ship_info.inc file provides the information needed to display
the shipping information Web form. The file shown in Listing 6-7 defines six
arrays that contain the specific information displayed in the shipping infor-
mation form. The arrays are

v $page: Contains elements that are displayed at the top and the bottom
of the entire page.

v $ship_info: Contains elements that provide the field names and labels
for the shipping information form. For instance, one field name is email.
The associated label that displays by the field in the form is Email
Address.

v $cc_types: Contains elements that provide the types of credit cards the
form accepts. The credit card types are displayed in a drop-down list in
the form.

v $length: Contains the lengths that are allowed for each field in the form.

v $elements: Contains elements that are displayed at the top and bottom of
the form. This array contains only text to display on the submit button.

v smonths: Contains the months of the year. The months are displayed in
a drop-down list for the credit card expiration date.

In addition, the file sets a variable that contains the current date and several
variables that contains the shipping information currently stored in the data-
base, which is displayed in the fields of the form.

Chapter 6: Shopping Cart Application ’ 83

The file used with the procedural script is slightly different from the file used
with the object-oriented script. Listing 6-7 shows the file to be used with in
the procedural application. After the listing, you find the changes required to
use this file in the object-oriented script.

LisTING 6-7: THE FiLE THAT CONTAINS THE VARIABLES FOR THE
SHIPPING INFORMATION FORM
<?php

/* File: fields_ship_info.inc
* Desc: Contains arrays with the field names and form

* elements for the login Web page.
*/
$page = array("title" => "Food Shop Order: Shipping
Information",
"top" => "Food Shop Order: Shipping
Information",
"top2" => "Please fill in the

information below",
"bottom" => "Send questions and comments
to admin@xFoodShop.com",
)i

$ship info = array("email" => "Email Address",
"ship_name" => "Name",
"ship street" => "Street",
"ship_city" => "City",
"ship_ state”" => "State",
n ship_zip“ => n zipll ,
"phone" => "Phone",
"cc_type" => "Credit Card Type",
"cc_number" => "Credit Card Number",
"cc_exp" => "Expiration Date"
)i
$cc_types = array("visa" => "Visa",
"mc" => "Master Card",
"amex" > "American Express"
);
$length = array("email" => u"55n,
"ship name" => "40",
"ship_ street" => "55n,
"ship city" => "40",
“ship_zip“ => "]10 II’
Ilphone n = > n 15 n ’
"cc_number" => "20"
)i
$elements = array("submit" => "Continue");
$months = array (1=> "January", "February", "March",

IlApril n ’ IIMayll ’ IlJune n ’ llJulyll ’
"August", "September",

Continued

184 Partin: Building Online Sales Applications

LisTING 6-7: (Continued)

"October", "November", "December"
)i
$today = time("Y-m-4");
if(!isset ($_POST))
{

$connect = connect_to_db("Vars.inc"); #47
$sql = "SELECT

ship name, ship_ street,ship city,ship_ state,ship_ zip,

phone,email FROM Customer Order WHERE

order_ number = '{$_SESSION['order_number']}'";
$result = mysqli_query($connect, $sql)

or die("Error: ".mysqli_ error($connect));

$n = mysqgli_ num rows ($result); #54
if($n > 0) #55
{

$row = mysqgli_fetch_assoc(S$Sresult);
extract ($row) ;

The numbers in the following explanation refer to the line numbers in
Listing 6-7:

#45 Starts an if block that executes if no POST data exists. No post data
exists when the user clicks the Edit Shipping Information button on
the summary page. This block gets the shipping information from the
database.

#47 Lines 47 to 53 create and execute an SQL query that selects the
shipping information from the database. Connect_to_dbis a
function used frequently throughout this book and described in
Chapter 3. The function is stored in a file named functions_
main.inc that is included in the three application scripts,
described in the section “Building the Shopping Cart Application:
The Procedural Approach.”

#54 Tests whether any shipping information was found.

#55 Starts an if block that executes if shipping information was
found. If so, the information is extracted into variables with the
field names.

Changing fields_ship_info.inc for use
in the object-oriented application

The first 44 lines of the file are the same for the procedural and object-oriented
versions.

Chapter 6: Shopping Cart Application ’ 85

The variables created in the remaining lines of the file are created in a class
in the object-oriented application, rather than in this file. Therefore, to use
the file in the object-oriented application, you need to remove the remaining
lines (45 to 57). Name the file with lines 45 to 57 removed fields_ship_
info-o0o0.1inc.

Writing single_form.inc

The fields_ship_info.inc or fields_ship_info-oo.inc file provides
the information needed to display the shipping information Web form. The
single_form. inc file defines the look and feel of the shipping form. Listing 6-8
shows the file. You use the same file for the procedural and object-oriented
scripts.

LisTING 6-8: THE FiLE THAT DEFINES THE SHIPPING INFORMATION FORM

<?php
/* File: single_form.inc
* Desc: Contains the code for a Web page that displays
* an HTML form.
*/
include("functions.inc");
echo "<head><title> {$page['title']} </title></head>\n
<h2 align='center'>{$pagel['top'l} </h2>\n
<p style='font-style: italic;
font-weight: bold'>{$pagel['top2']}\n
<form action='{$_SERVER['PHP SELF']}' method='POST'>
<table border='0' cellpadding='5' cellspacing='0'>\n";
if (isset ($GLOBALS['message'])) #13
{
echo "<tr>
<td colspan='2"
style=\"font-weight: bold; font-style: italic;
font-size: 90%; color: red\">
{$GLOBALS ['message'] }<p></td></tr>";

}
foreach($ship_ info as $field => $value) #21
{
if($field == "ship state") #23
{

echo "<tr><td style=\"text-align: right;
font-weight: bold\">State</td>
<td><select name='ship state'>";
$stateName=getStateName () ; #28
$stateCode=getStateCode();
for ($n=1;$n<=50;%$n++)

Continued

186 Partini: Building Online Sales Applications

LisTING 6-8: (Continued)

{
$state=$stateName[$n];
$scode=$stateCode([$n];
echo "<option value='$scode'";
if ($scode == @%_POST['state']l ||
$scode == @$ship_ state)
echo " selected";
echo ">$state\n";
}
echo "</select>";
}
elseif ($field == "cc_type") #42
{
echo "<tr><td style=\"text-align: right;
font-weight: bold\">Credit Card Type</td>
<td><select name='cc_type'>";
foreach($cc_types as $field => $value)
{
echo "<option value='$field'";
echo ">$value\n";
}
echo "</select>";
}
elseif ($field == "cc_exp") #54
{
echo "<tr><td style=\"text-align: right;
font-weight: bold\">Expiration Date</td>
<td><select name='cc_exp mo'>";
for ($n=1;$n<=12; $n++)
{
echo "<option
value='$n'>{$months[$n] }\n";
}
echo "</select>\n";
echo "<select name='cc_exp da'>";
for($n=1;%n<=31; $n++)
{
echo " <option value='$n'>$n\n";
}
echo "</select>\n";
echo "<select name='cc_exp yr'>";
$start_yr = date("Y", $today);
for($n=9%$start_yr;$n<=$start_yr+5;$n++)
{
echo " <option value='$n'>$n\n";
}
echo "</select>\n";
}
else #79
{
echo "<tr><td style=\"text-align: right;

Chapter 6: Shopping Cart Application , 8 7

font-weight: bold\">$value</td>
<td><input type='text' name='$field’
value='".@$$field. "’
size="'{$length[$field]}"
maxsize='{$length[$field]}'>
</td></tr>";
}
} #89
?>
<tr><td colspan="2" style="text-align: center">
<p style="margin-top: .05in">
<input type="submit" name="Summary"
value="<?php echo $elements['submit']?>">
</td></tr></table></form></body></html>

The following numbers in the explanation refer to the line numbers in
Listing 6-8:

#13 Starts an if block that checks whether a message is stored in the
$GLOBALS array. If so, the block displays the message at the beginning
of the form. The application script stores the message when an error
condition is encountered.

#21 Begins a foreach loop that loops through the $ship_info array. The
ship_info array is built in fields_ship_info.inc.

#23 Starts an if block that executes when the field name is
ship_state. Lines 23 to 39 display a drop-down list containing
the states. Lines 28 to 29 call functions stored in the file
functions. inc, which in included in line 6.

#42 Starts an elseif block that executes when the field name is
cc_type. Lines 41 to 52 create a drop-down list containing the
types of credit cards the customer can select.

#54 Starts an elseif block that executes when the field name is
cc_exp. (That field contains the credit card expiration date.)
Lines 53 through 77 create a drop-down list of dates the user
can select.

#79 Starts an else block that executes for any other fields. Text
input lines are displayed in the form for all remaining fields.

#91 The first line of an HTML section that displays the submit button and
the ending tags for the form.

Writing the code for the summary page

The summary Web page shows the final order to the customer. The customer
can review the selected items and shipping information. The customer can

]88 partin: Building Online Sales Applications

submit the displayed order or change it. The code that displays the summary
page is in two separate files, as follows:

v summary_form. inc: Contains the code that defines the look and feel of
the summary page. Another file must be used in conjunction with this
file to provide the specific information.

v fields_summary.inc: Contains the arrays and variables that are used
by summary_form.inc to display the summary page.

Writing fields_summary.inc

The fields_summary. inc file provides the information needed to display
the summary page. The file shown in Listing 6-9 defines two arrays that con-
tain the specific information displayed in the summary page. The arrays are

v spage: Contains elements that are displayed at the top and the bottom
of the entire page.

V¥ $table_headers: Contains the column heads for the table that displays
the order summary.

In addition, the file retrieves the order number from the session and stores it
in $order_number, sets a variable with the shipping rate for the order, and
sets a name for the table.

The file used with the procedural script is slightly different from the file used
with the object-oriented script. Listing 6-9 shows the file to be used in the
procedural application. After the listing, you find the changes required to use
this file with the object-oriented script.

LisTING 6-9: THE FiLE THAT PROVIDES THE INFORMATION FOR THE SUMMARY PAGE

<?php
/* File: fields_summary.inc
* Desc: Builds the arrays needed to display a summary

* of the order.
*/
$page = array("title" => "The Food Shop Order Summary",
"top" => "The Food Shop Order Summary",
"top2" => "Order Summary",
"table" => "Order Number: ",

"bottom" => "Send questions or problems
to admin@xFoodShop.com"
);
$table _headers = array("Item","Cat No", "Food",
"Amount", "Price", "Total");
$order number = $_SESSION['order_number']; #15
$shipping rate = .25; #16
$table _name = $order number; #17

Chapter 6: Shopping Cart Application ’ 89

$cxn = connect_to db("Vars.inc"); #18
$sgl_ord = "SELECT * FROM order_item
WHERE order_ number='$order number'";

$result = mysqli_query($cxn, $sql_ord)

or die("sqgl_ord: ".mysqli_error($cxn));
$n _row = mysqgli_ num rows (Sresult);
if($n_row < 1) #24
{

echo "Shopping Cart is currently empty
\n

Continue Shopping\n";

exit();
}
$n=1; #30
while($row = mysqli_fetch_assoc($result))
{
foreach($row as $field => $value)
{
if($field != "order number")
{
$items[$n] [$field]=$value;
if($field == "catalog number")
{
$sql_name = "SELECT name,type FROM food WHERE
catalog number = '$row[catalog number]'";
$result2 = mysqli_ query($cxn, $sqgql_name)
or die("sqgl _name: ".mysqli_ error($cxn));
$row = mysqgli_ fetch_row($result2);
$items[$n] ["name"]=$row[0]." ".$row[l];
}
}
}
$n++;
}
?>

The following numbers in the explanation refer to the line numbers in
Listing 6-9:

#15 Retrieves the order number from the session and stores it in
Sorder_number

#16 Stores the shipping rate in a variable.

#17 Stores a table name that is displayed in the summary page.

#18 Lines 18 to the end create an array of order information that is dis-
played in the summary form. Lines 18 to 22 connect to the order
database and select all the items currently in the order. Line 23 sets
$n_row to the number of items returned.

190 Parti: Building Online Sales Applications

#24 Starts an if block that executes if no items were found. The block
displays a message and provides a link that returns the user to the
catalog.

#30 Lines 30 to 50 create the $items array that contains all the item
information.

Changing fields_summary.inc for use
in the object-oriented application

The first 17 lines of the file are the same for the procedural and object-
oriented versions.

The variables created in the remaining lines of the file are created in a

class in the object-oriented application, rather than in this file. Therefore, to
use the file in the object-oriented application, you need to remove the
remaining lines (18 to 50). Name the file fields_summary-oo.inc after you
remove lines 18 to 50.

Writing summary_page.inc

The summary_page. inc file displays the summary Web page (see Listing 6-10).
You use the same file with the procedural and object-oriented scripts.

LisTING 6-10: THE FiLE THAT DEFINES THE SUMMARY PAGE

<?php

/*File: summary page.inc
*Desc: Defines an HTML page that displays a summary
* of the order.
*/

echo "<html>
<head><title>{$page['title']}</title></head>\n
<body>\n";
echo "<h2 style='text-align: center'>{$page['top']l}</h2>\n";
echo "<p style='position: absolute; margin-top: .25in;
font-weight: bold'>Ship to:</p>"; #11
echo "<p style='position: absolute; margin-top: .25in;
margin-left: .75in'>$ship name
";
echo "$ship street

$ship city, $ship state $ship zip

$phone

$email
"; #17
echo "<div style='margin-top: 1.5in'>";
echo "<p style='font-weight: bold'>
{$page['table']} $table name\n";
echo "<table border = '0' style='width: 100%'>\n";
echo "<form action='$_SERVER[PHP_SELF]' method='POST'>";
echo "<tr>";
foreach($table_headers as $header)
{

Chapter 6: Shopping Cart Application ’ 9 1

echo "<th>$header</th>\n";
}
echo "</tr>";
for($i=1;%$i <=sizeof($items);S$i++) #29
{
echo "<tr>";
echo "<td width='10%'>$i</td>";
echo "<td width='10%"'>
{$items[$i] ['catalog number']}</td>";
echo "<td>{$items[$i]['name']}</td>";
echo "<td>{$items[$i] ['quantity']}</td>";

$f_price = number_ format($items[$i]['price']l,2);

echo

"<td style='text-align: right; width: 17%'>
$$f price per lb.</td>\n";

$total = $items[$i] ['quantity'] * $items[$i] ['price'l]l;
$f_total = number_ format ($total,2);

echo "<td style='text-align: right'>$$f total</td>\n";

echo "</tr>";

@$order_subtotal = $order_subtotal + $total;
}
$f order subtotal = number format ($order subtotal,2); #46
if (substr($ship_zip,0,5) > 75000

&& substr($ship_ zip,0,5) < 80000) #48

{

$taxrate = .0700;
}
else
{

$taxrate = 0.0;
} #55
$sales_tax = $order subtotal * $taxrate; #56
$f_sales_tax = number_ format($sales_tax,2);
$shipping = $shipping rate * sizeof($items); #58
$f shipping = number format ($shipping,2);
$order total = $Sorder subtotal+$sales_tax+$shipping; #60
$f order total = number format ($order_ total,2); #61

echo "<tr><td colspan='5' style='text-align: right;

font-weight: bold'>Subtotal</td>
<td style='text-align: right; line-height: 200%'>
$$f_order_subtotal</td></tr>\n";

echo "<tr><td colspan='5"'

style='text-align: right; font-weight: bold'>
Sales Tax</td>

<td style='text-align: right; line-height: 50%'>
$$f sales_tax</td></tr>\n";

echo "<tr><td colspan='5' style='text-align: right;

font-weight: bold'>Shipping</td>
<td style='text-align: right; line-height: 50%'>
$$f shipping</td></tr>\n";

echo "<tr><td colspan='5"'

style='text-align: right; font-weight: bold'>
Total</td>
<td style='text-align: right; line-height: 300%'>

Continued

192 Partii: Building Online Sales Applications

LisTING 6-10: (Continued)

echo "

echo "

echo "

?>

$$f order total</td></tr>\n";

echo "<tr><td colspan='2' style='text-align: left'>

<input type='submit'
value='Continue Shopping'></td>\n";
<td colspan='1l' style='text-align: center'>
<input type='submit' name='Ship"’
value='Edit Shipping Information'></td>\n";
<td colspan='l' style='text-align: right'>
<input type='submit' name='Final'’
value='Cancel Order'></td>\n";
<td colspan='2' style='text-align: right'>
<input type='submit' name='Final'
value='Submit Order'></td>\n";

echo "</tr></table></form>\n";

The numbers in the following explanation refer to the line numbers in
Listing 6-10:

#10

#18

#29
#47

#55

#58

#60

#62

Lines 10 to 17 display the shipping information at the top of the sum-
mary page.

Lines 18 to 28 display the top of the form and the table column
names.

Lines 29 to 45 display the order items on the summary page.

Begins an if/else statement that sets the tax rate. Sales tax is
charged for shipping addresses in Texas only. The tax rate is set by
zip code. For orders with a Texas zip code, the tax rate is 0.07.
Otherwise, the tax rate is 0 (zero).

Sales tax is computed by multiplying the total cost of the items by the
tax rate.

The shipping cost is set by multiplying the number of items times the
shipping rate per item.

The order total is computed by summing the item total, the sales tax,
and the shipping cost.

The remaining lines display the item total, shipping cost, sales tax,
order total, and then display the four submit buttons.

Chapter 6: Shopping Cart Application ’ 93

Building the Shopping Cart Application:
The Procedural Approach

The shopping cart application has three application scripts, as follows:

v ShopCatalog.php: Manages and displays the catalog Web pages. When
the customer clicks the Add Items to Shopping Cart button, the item
information is stored in the database and the shopping cart is displayed.

V ShoppingCart .php: Manages and displays the shopping cart. Updates
the shopping cart when the customer clicks the Update Cart button.
When the customer clicks the Submit Order button, the application
script displays the shipping information form.

V¥ ProcessOrder .php: Processes the shipping information form, stores
order information in the database, and displays the summary form. It
processes the credit card and order information when the customer
clicks the Submit Order button.

Writing ShopCatalog.php

The first script for the shopping cart application displays the catalog and
stores the customer selections in the Shopping Cart. ShopCatalog.php is
organized in nested if statements, based on which submit button the cus-
tomer clicked, if any. The following is an overview of the structure of the
script:

if (button named Products was clicked)

if (button = "Add Items to Shopping Cart")
1. Determine the order number
If current order exists, get the number. If not,
create a new order in the database and set the
new order number to be the current order number.
2. Store selected items in the database.
3. Pass control to ShoppingCart.php, which displays
the shopping cart.
else (if button is not Add Items to Shopping Cart)
Display catalog product page

else (button named Products was not clicked)
display catalog categories page

This script runs when any of the following events happens:

v The customer enters the URL for shopCatalog.php in the browser.
Because this is the first script for the application, it runs correctly when
started in the browser. In this case, no button is clicked, so the script
drops to the final else statement and displays the catalog index page.

194 Parti: Building Online Sales Applications

v The customer clicks the Add Items to Shopping Cart button. This
button is named Products, so the script enters the first i £ block. The
second if checks the value of the button. The button matches so the
script enters the second if block, where it adds the items to an existing
order or creates a new order if no current order exists. It then starts the
second script, ShoppingCart.php, which displays the shopping cart.

v The customer clicks Next or Previous. These buttons are named
Products, so the script enters the first i £ block. However, the button
value doesn’t match the inner if statement, so the script enters the
inner else block where it displays the next or previous items in the cat-
alog product page.

v The customer clicks the Select Another Category button. This button
has no name, so the script drops to the final else statement and displays
the catalog index page.

Listing 6-11 shows the code for shopCatalog.php — the first application
script in the online orders application.

LisTING 6-11: THE FIRST APPLICATION SCRIPT FOR SHOPPING CART

<?php
/* Program: ShopCatalog.php
* Desc: Displays a catalog of products. Displays two
* different pages: an index page that shows
* categories and a product page that is displayed
* when the customer selects a category. This
* version is used with a shopping cart for
* purchasing items.
*/

$n_per_page = 2;

session_start();
include_once("functions_main.inc");
if (isset ($_POST['Products']) &&

isset ($_POST['interest'])) #15
{
if ($_POST['Products'] == "Add Items to Shopping Cart")
{
if(!isset ($_SESSION|['order number'])) #19
{

$connect = connect_to _db("Vars.inc");
$today = date("Y-m-4d");
$sql_order = "INSERT INTO Customer_ Order (order_date)
VALUES ('$today')";
$result = mysqli_query($connect, $sql_order)
or die("sql_ order".mysqli_ error($connect));
$order number = mysqgli_ insert_id($connect);
$_SESSION|['order_ number'] = $order_number;
$n_items = 0;

Chapter 6: Shopping Cart Application ’ 95

}
else #31
{
$order number = $_SESSION['order number'];
$n_items = $§_ SESSION['n items'];
}
foreach($_POST as $field => $value) #36
if (substr($field, 0,4) == "item" && $value > 0) #38
{
$n_items++;
$catalog number =
substr ($field, 4,strlen($field)-4); #42
$connect = connect_to_db("vars.inc");
$sql_price = "SELECT price FROM Food WHERE
catalog number='$catalog number'";
$result = mysqli_query($connect, $sql_price)
or die("sql price: ".mysqli_ error($connect));
$row = mysqli_ fetch assoc($result); #49
$sql_item = "INSERT INTO Order Item
(order_number, item number,catalog number,
quantity,price) VALUES
($order_number, $n_items, $catalog number,
$value, {$row['price'l})";
$result = mysqgli_ query($connect, $sql_item)
or die("sqgl_item: ".mysqli_ error($connect));
}
}
$_SESSION['n items'] = $n_items; #58
header ("Location: ShoppingCart.php");
exit();
}
else #62
{
if(isset ($_POST['n_end'])) #64
{
if($_POST['Products'] == "Previous") #66
{
$n_start = $_POST['n_end']-($n_per_page);
}
else #70
{
$n _start = $§ POST['n_end'] + 1;
}
}
else #75
{
$n_start = 1;
}
$n_end = $n_start + $n per page -1; #79
$connect = connect_to_db("Vars.inc"); #80
$Squery food = "SELECT * FROM Food WHERE

type='$_POST[interest]' ORDER BY name";

Continued

’ 96 Part lll: Building Online Sales Applications

LisTING 6-11: (Continued)

$result = mysqli_ query(S$Sconnect, $query food)

or die ("query food: ".mysqli_error($connect)); #84
$n=1;
while($row = mysqli_fetch_ assoc($result)) #86
{

foreach($row as $field => $value) #88

{

$products[$n] [$field]=$value;

}

$n++;
}
$n _products = sizeof ($products); #94

if($n_end > $n_products)

$n _end = $n_products;
}
include("fields_products_page.inc");
include ("shopping product_page.inc");

}

}

else

{
$connect = connect_to_db("Vars.inc"); #105
$sgl_cat = "SELECT DISTINCT category,type FROM Food

ORDER BY category,type";
$result = mysqli_query($Sconnect, $sql_cat)
or die("sql cat: ".mysqli_ error($connect));
while($row = mysqli_ fetch array($result)) #110

$food_categories|[$row['category']l]l[]l=$row['type'l];
}
include("fields_index page.inc");
include("catalog_index page.inc");

The following explains the line numbers that appear in Listing 6-11:

#10 Sets the number of items to be displayed on a page.

#12 Opens a session. The customer remains in a session throughout the
online ordering process.

#14 Lines 14 to 15 start an i f block that executes if the products button is
found in the $_posT array and if the customer selected a category.
The if block continues to line 102.

#17 Begins an if block that executes when the user clicks the Add Items
to Shopping Cart button. The if block continues to line 61.

Chapter 6: Shopping Cart Application , 9 7

#19 Starts an if/else statement that sets the order number and
the number of items in the cart. If no order number is found
in the session, the if block inserts a new order into the data-
base. The current date is inserted. MySQL inserts a sequential
order number. Line 27 stores the order number for the new
order in $order_number. Line 28 stores the new order number
in the session. No items have yet been added to the order, so
$n_items is set to 0 (zero). If an order number is found, the
else block retrieves the order number and the number of items
currently in the cart from the session.

#36 Starts a foreach loop that loops through the $_posT array. The
loop ends on line 57.

#38 Begins an if block that executes for any fields in the array that
contain the substring "item" in them and that have a value
greater than 0. The value is the quantity the user entered. The
field name contains the catalog number of the item. The i f
block enters the items into the order_item table. On line 37,
the catalog number is extracted from the field name. The price
is obtained from the catalog. The item information is inserted
into the database. The if block ends on line 56.

#58 Stores the new number of items in the session.

#59 Runs the ShoppingCart.php script, which displays the shop-
ping cart.

#62 Starts an else block that executes when the value of the
Products button isn’t Add Items to Shopping Cart. The value of
the button is Previous or Next. The block sets the item numbers
for the first and last items to be displayed and builds an array
that contains the product information ($products). The prod-
ucts page is displayed.

#103 Starts an else block that executes when the Products button isn’t
clicked. The user clicks either no button or a button with a different
name or no name. The catalog index page is displayed.

Writing ShoppingCart.php

The second script for the shopping cart application manages and displays
the shopping cart. The user can change the quantity for the displayed items.
If the quantity is changed to 0 (zero), the item is removed from the cart. The
script is organized by a switch statement, executing code depending on the
value of the button that the customer clicked. The following is an overview of
the structure of the script:

if (no order number exists in session)
Display message that cart is empty and a link that

198 Parti: Building Online Sales Applications

returns the user to the catalog index page.

switch (value of button named Cart)
case: Cart = "Continue Shopping"
start ShopCatalog.php, which will display
the first catalog index page.
case: Cart = Update Cart
1. Update quantities in the database.
2. Delete any items with 0 quantity.
3. Renumber the items with sequential numbers.
4. Redisplay the shopping cart.
case: Cart = Submit Order
Run the script ProcessOrder.php, which displays the
shipping information form
default:
display shopping cart

Listing 6-12 shows the code for ShoppingCart.php — the second application
script in the shopping cart application.

LISTING 6-12: THE SHOPPINGCART APPLICATION SCRIPT FOR SHOPPING CART

<?php
/* Program: ShoppingCart.php
* Desc: Manages and displays the Shopping Cart.
*/
session start(); #5

include ("functions_main.inc");
if(!isset ($_SESSION|['order_number'])

or empty($_SESSION['order number'])) #8
{
echo "Shopping Cart is currently empty
\n
Continue Shopping\n";
exit();
}
switch (@$_POST['Cart']) #14
{
case "Continue Shopping": #16
header ("Location: ShopCatalog.php"):
break;
case "Update Cart": #19

$connect = connect_to_db("Vars.inc");
$order_ number = $_SESSION['order_number'];

$n = 1;
/* Update quantities in database */ #23
foreach($_POST['quantity'] as $field => $value)
{
$sql_quant = "UPDATE Order_Item SET quantity='$value’

WHERE item number= '$n’'
AND order_number='S$order number'";
$result = mysqli_query($connect, $sql_qguant)
or die("sqgl_quant: ".mysqli error($connect));
Sn++;

Chapter 6: Shopping Cart Application ’ 99

}
/* Delete any items with zero quantity */ #33
$sql_del = "DELETE FROM Order_ Item
WHERE quantity= '0.00"
AND order_ number='$order number'";
$result = mysqli_query($Sconnect, $sql_del)
or die("sqgl_del: ".mysqli_ error($connect));

/* Renumber items in database. First, put items in an
array. Next, delete all items from the database. Then,
re-insert items with new item numbers. */ #41

$sql_getnew = "SELECT * from Order_Item
WHERE order number='$order number'";

$result = mysqgli_query(S$Sconnect, $sql_getnew)

or die("sql_getnew: ".mysqli_error($connect));
$n_rows = mysqgli_ num rows (S$Sresult);
if($n_rows < 1) #47
{

echo "Shopping Cart is currently empty
\n

Continue Shopping\n";

exit();
}
while ($row = mysqli_ fetch assoc($result)) #53
{

$items_new[]=$row;
} #56
$sqgl_del2 = "DELETE FROM Order Item

WHERE order number='$order number'";
$result = mysqli_query($connect, $sql_del2)

or die("sqgl_del2: ".mysqli_error($connect));
for($i=0;%$i<sizeof ($items_new);$i++) #61
{
$sgl_ord = "INSERT INTO Order_ Item
(order_number, item number,catalog number,
quantity,price) VALUES
($order_number, $i+1,
{$items_new[$i] ['catalog number']},
{$items_new[$i] ['quantity']},
{$items_new([$i] ['price'l})";
$result = mysqli_ query($Sconnect, $sql_ord)
or die("sqgl_ord: ".mysqli_ error($connect));
} #72
$_SESSION['n items'] = $i; #73
include("fields_cart.inc"); #74
include("table_page.inc");
break;
case "Submit Order": #77
header ("Location: ProcessOrder.php?from=cart");
exit();
break;
default: #81

include("fields_cart.inc");
include("table_page.inc");
break;

20 () Partin: Building Online Sales Applications

In the following discussion, the numbers refer to line numbers in Listing 6-12:

#5 Starts a session, maintaining the order for the user.

#7 Begins an i f block that executes when no current order exists, dis-
playing a message and a link to the catalog index page.

#14 Starts a switch statement for the values of a button named Cart.

#16 Begins the case block that executes if the button is Continue
Shopping. The block displays the catalog index page.

#19 Begins the case block that executes if the button is Update Cart.

#23

#33
#42
#47

#53

#57

#61

#73
#74

Starts a foreach loop that updates the quantities for each item
in the database.

Lines 33 to 38 delete all the items in the database with 0 quantity.
Lines 42 to 46 select the remaining items from the database.

Starts an if block that executes when no items were found in
the database. The if block displays a message and a link to the
catalog.

Starts a while loop that creates a new array ($items_new) con-
taining the remaining items retrieved from the database.

Deletes all the items from the database for the current order.

Begins a for loop that inserts all the items in the new array
(s$items_new), created on line 53, into the database with
sequential item numbers. The loop ends on line 72.

Stores the current number of items in the session.

Lines 74 and 75 display the shopping cart.

#77 Begins the case block that executes when the button value is Submit
Order. The block runs the third shopping cart application script:
ProcessOrder.php.

#81 Begins the default case block. The block displays the shopping cart.

Writing ProcessOrder.php

The third application script for the shopping cart application processes the
order when the customer submits it. The script collects the shipping informa-
tion, verifies the information that the customer enters, and displays the sum-
mary form. When the customer clicks a button on the summary form, the
script accepts and processes the order and displays a confirmation page.
The script is organized by a series of i f/elseif statements, executing code

Chapter 6: Shopping Cart Application 20 ’

depending on the name and value of the button that the customer clicked.
The following is an overview of the structure of the script:

if (no order number exists in session)
Display message that cart is empty and a link that
returns the user to the catalog index page.

if (script started from shopping cart)
Display shipping information form
elseif (button name = "Summary")
1. Check form for blank fields. If blanks are found,
redisplay the form.
2. Check format of form fields. If invalid data is found,
redisplay the form.
3. Insert shipping information into the order database.
4. Display the summary form.
elseif (button name = "Ship")
1. Update quantities in the database
2. Delete any items with 0 quantity.
3. Renumber the items with sequential numbers
4. Redisplay the shopping cart
elseif (Button name = "Final")
switch (Button value)
case: "Continue Shopping"
Run ShopCatalog.php
case: Cancel Order
Display cancellation Web page
Destroy session
case: Submit Order
Set order status to submitted
Process credit information
Send order to be filled
Display order confirmation Web page

Listing 6-13 shows the code for ProcessOrder.php — the third application
script in the online orders application.

LisTING 6-13: THE PROCESSORDER APPLICATION SCRIPT FOR SHOPPING CART

<?php
/* Program name: ProcessOrder.php
* Description: Processes order when it's been submitted.

*/
session_start():; #5
include("functions _main.inc");
if(!isset ($_SESSION['order_number'])) #7
{

echo "No order number found
\n";

header ("Location: ShopCatalog.php");

exit();
}

Continued

2()2 Partii: Building Online Sales Applications

LisTING 6-13: (Continued)

if (@$_GET['from'] == "cart") #13
{
include("fields_ship info.inc");
include("single_form.inc");

exit();
}
elseif (isset ($_POST['Summary']l)) #19
{
foreach($_POST as $field => $value) #21
{
if ($value == "")
{
$blanks[] = $field;
}
}
if (isset ($blanks))
{
$message = "The following fields are blank.
Please enter the required information: ";
foreach($blanks as $value)
{
$message .="$value, ";
}
extract ($_POST);
include("fields ship info.inc");
include("single_form.inc");
exit();
}
foreach($_POST as $field => $value) #41
{

if($field != "Summary")

{

if (eregi("name", $field))

{
if (lereg("*[A-Za-z' -]1{1,50}$",$value))
{

$errors[] = "$value is not a valid name.";

}

}

if (eregi("street",$field)or eregi("addr",$field) or
eregi("city",$field))

{
if(!ereg("*[A-Za-z0-9.,' -1{1,50}s$",%$value))
{
serrors[] = "$value is not a valid address
or city.";
}
}

if (eregi("state",$field))

if(!ereg("[A-Za-z]", $value))
{
$errors[] = "$value is not a valid state.";

Chapter 6: Shopping Cart Application 203

}

if (eregi("email",$field))
¢ if (lereg("*.+@.+\\..+$", $value))
‘ $errors[]="$value is not a valid email address.";
) }
if (eregi("zip",$field))
{ %f(!ereg(““[0-9]{5,5}(\-[0-9]{4,4})?$“,$Va1ue))

$errors[] = "$value is not a valid zipcode.";
}
}
if (eregi ("phone",$field))
{

if(lereg("*[0-9) (xX -1{7,20}$",$value))

{
$errors[]="$value is not a valid phone number. ";

}

}

if (eregi ("cc_number", $field))

{
$value = trim($value);
$value = ereg replace(' ','',$value);
$value = ereg replace('-','',$value);
$_POST['cc_number'] = $value;
if($_POST['cc_type'] == "visa")
{

if(!ereg("4[4]1{1,1}[0-9]1{12,15}$", $value))
{

$errors[]="$value is not a valid Visa number. ";

}
}
elseif ($_POST['cc_type']l] == "mc")
{
if(lereg("~[5]1{1,1}[0-9]1{15,15}%",$value))
{
$errors[] = "$value is not a wvalid
MasterCard number. ";
}
}
else
{

if(lereg("~[31{1,1}[0-9]1{14,14})$",$value))
{

$errors[] = "$value is not a wvalid
American Express number. ";
}
}

}
$$field = strip_tags(trim(S$value));

Continued

2014 Partii: Building Online Sales Applications

LisTING 6-13: (Continued)

}
}
if (@is_array($errors))
{
$message = "";
foreach($errors as $value)
{
$message .= $value." Please try again
";
}
include("fields_ship info.inc");
include("single_form.inc");
exit();
} #132
/* Process data when all fields are correct */
foreach($_POST as $field => $value) #134
{
if(leregi("cc_",%$field) && $field != "Summary") #136
{
$value = addslashes($value);
$updates[] = "$field = '$value'";
}
}
$update_string = implode ($updates,","); #142
$sql_ship = "UPDATE Customer Order SET $update_string

WHERE order_ number='{$_SESSION['order number']}'";
$cxn = connect_to_db("vars.inc");
$result = mysqgli_query($cxn, $sqgl_ship)
or die(mysqgli_error($cxn));
extract ($_POST) ; #148
include("fields_summary.inc");
include ("summary page.inc");

}
elseif(isset ($_POST['Ship']l)) #152
{
include("fields_ship info.inc");
include("single_form.inc");
}
elseif(isset ($_POST['Final'])) #157
{
switch ($_POST['Final'l]) #159
{
case "Continue Shopping": #161
header ("Location: ShopCatalog.php"):;
break;
case "Cancel Order": #164

#include("fields_cancel.inc");
#include("cancel message.inc");
unset ($_SESSION|['order number']);
session_destroy();
exit();
break;
case "Submit Order": #171
$cxn = connect_to_db("Vars.inc"):;

Chapter 6: Shopping Cart Application 205

$sql = "UPDATE Customer Order SET submitted='yes'
WHERE order_number='{$_SESSION['order_number']}'";
$result = mysqgli query($cxn, $sql)
or die("Error: ".mysqli_ error($cxn));

#processCCInfo(); #177
#sendOrder () ;

#include("fields_accept.inc"); #179
#include("accept_message.inc");

#email (); #181
session destroy(); #182
break;

In the following list, I explain the designated lines in Listing 6-12:

#5
#7

#13

#19

#134

#142
#143

Starts a session for the current order.

Begins an if block that executes if there is no current order. It dis-
plays a message and a link to the catalog.

Begins an if block that executes when the user clicks the Submit
Order button in the shopping cart. The block displays the shipping
information form.

Begins an elseif block that executes when the user clicks the button
named summary, which is the button that displays Continue in the
shipping information form. The elseif block processes the informa-
tion from the shipping information form. Lines 21 to 132 check the
form fields. (I discuss form fields in more detail in Chapter 4.)

#21 Lines 21 to 40 checks for blank fields and redisplays the form if
blanks are found.

#41 Lines 41 to 132 check the format of the information entered by
the user. The form is redisplayed with an error message if any
invalid formats are found.

Starts a foreach loop that creates an array, called $update, that con-
tains the shipping information. This array is used later to build the
SQL statement that adds the shipping information to the database.

#136 Begins an if block that executes if the field doesn’t contain
credit card information. This application doesn’t store the credit
card information in the database. Consequently, the customer
needs to reenter the credit card information if it’s needed again.

Creates a string containing the shipping information.

Lines 143 to 147 create and execute the SQL statement that adds the
shipping information to the database.

200 Partin: Building Online Sales Applications

#148
#152

#157

Lines 148 to 150 display the summary Web page.

Begins an elseif block that executes when the button is named Ship.
This condition is true when the user clicks the Edit Shipping
Information button on the summary page. The block displays the
shipping information form with the shipping information that is cur-
rently stored in the database.

Begins an elseif block that executes when the user clicks a button
named Final. These buttons are displayed on the summary Web page.

#159 Starts a switch statement based on which Final button the user
clicks.

#161 Starts the case block that executes when the value of the Final
button is Continue Shopping. The block runs the
ShopCatalog.php script, which displays the catalog index
page.

#164 Starts the case block that executes when the value of the Final
button is Cancel Order. The block displays a cancellation Web
page, by including two files, and destroys the session. Notice
that the two include statements have a comment mark (#) at
the beginning of the line. These two statements are commented
out because the cancellation Web page isn’t provided in this
chapter, in the interests of saving space. You need to develop
a cancellation page that is specific to your order process.

#171 Starts the case block that executes when the value of the Final
button is Submit Order. The block sets the order status to
Submitted='yes"'.

#177 Calls a function that processes the credit card information. I
don’t provide this function because it depends on which credit
card processing company you use. The company will provide
you with the information needed to write the function. In gen-
eral, the function sends the credit information to the company
and receives a code from them that either accepts or rejects the
credit charge. Notice that the statement in the listing has a com-
ment mark (#) at the beginning of the line so that it doesn’t
actually execute. It’s just there to show you a possible state-
ment to use.

#178 Calls a function that sends the order information to the person/
department responsible for filling and shipping the order. This
function depends on your internal procedures. The function
might send an e-mail notice to the shipping department, or your
process might be altogether different. This statement is also
commented out because I don’t provide the function.

#179 Displays an order confirmation (or not accepted) Web page by
including two files. The files are not provided, so the include
statements are commented out. You need to write your own
files to include at this location.

Chapter 6: Shopping Cart Application 20 7

#181 Calls a function that sends an e-mail to the customer. This func-
tion call is commented out, because | don’t provide the email
function. You need to write a function that creates and sends an
e-mail message specific to your business. Sending an e-mail is
shown in detail in Chapter 4.

#182 Destroys the session. The user can’t make any changes to the
order after clicking the Submit Order button on the summary

page.

Building the Shopping Cart Application:
The Object-Oriented Approach

Object-oriented programming requires that you create and use objects to pro-
vide the functionality of the application. You first identify the objects needed
for the application. Then you write the classes that define the objects, includ-
ing the methods that the application needs. When the objects are ready, you
write the application script that creates and uses the objects.

Developing the objects

The shopping cart application needs to display products from the catalog. It
stores the customer’s choices in a shopping cart. It stores the order shipping
information and the items ordered in a database. The following list of objects
reflects the tasks this application needs to perform:

V¥ Catalog: The Catalog class returns and displays product information
as needed.

V” Database: The application stores the product information in a database.
The Database class provides the container that stores the data.

v Item: The customer orders items. The items are stored in the shopping
cart and stored in the order database. The Item class stores and
retrieves information about the item.

v ShoppingCart: The shopping cart holds the items currently selected
by the customer. The customer can add items to and delete items from
the cart.

v order: The shipping and credit information for the order needs to
be associated with the items in the order. The Order class stores and
retrieves all the information about the order that is stored in the
database.

208 Partint: Building Online Sales Applications

v WebForm: A form is used to collect the shipping and credit information
from the customer. The WebForm class provides the form for the applica-
tion. It collects and processes the information typed by the customer.

v WiebPage: The WebPage class displays a Web page that includes informa-
tion from PHP variables. The webPage class is used frequently through-
out this book whenever a Web page needs to be displayed.

v Email: The application sends an e-mail to customers when they order,
letting them know that the order has been accepted and other informa-
tion about their orders. The Email class contains and manages the
e-mail message.

I discuss the details for each class in the following sections.

Writing the Catalog class

The catalog class maintains a connection to the database where the product
information is stored. The Catalog class returns or displays product informa-
tion as needed. I develop the Catalog class in Chapter 5. I add two additional
methods to the class for the shopping cart application. (Refer to Listing 5-7 for
the catalog class code.) I describe the new methods, getName and getPrice,
later in this section.

The methods provided by the catalog class are:

v The constructor: Creates a connection to a MySQL database. The con-
structor expects to be passed a filename of the file that contains the
hostname, account name, and password necessary to access MySQL.
The following statement creates a Database object:

$db = new Database("Vars.inc");

v useDatabase: Selects a database and stores the database name. The
method expects to be passed a database name. It checks whether the
database exists and returns a message if the database doesn’t exist.

V¥ getConnection: Returns the connection that is established and stored
in the constructor.

v getName: Returns the product name. This method expects to be passed
a catalog number. This method is added in this chapter. The code is
shown in Listing 6-14.

»* getPrice: Returns the price. This method expects to be passed a cata-
log number. This method is added in this chapter. The code is shown in
Listing 6-14.

The code for the getName and getPrice methods is shown in Listing 6-14.

Chapter 6: Shopping Cart Application 209

LisTING 6-14: THE NEw METHODS FOR THE CATALOG CLASS

function getName ($catalog number)

{
if (ereg("[0-9]*",$catalog number))
{
$sql = "SELECT name,type FROM Food
WHERE catalog number='S$catalog_number'";
}
else
{
throw new Exception("$catalog number is not a
catalog number.");
exit();
}
if (!$result = $this->connection->query($sql))
{
throw new Exception(mysqli_error($this->connection));
exit();
}
$name = $result->fetch_assoc();
return "{$name['name']}"." {$name['type'll}";
}

function getPrice($catalog number)

{
if (ereg("[0-9]*",$catalog number))

{
$sql = "SELECT price FROM Food
WHERE catalog number='$catalog number'";
}
else
{
throw new Exception("$catalog number is not a
catalog number.");
exit();
}
if (!$result = $this->connection->query($sql))
{
throw new Exception(mysqli_error ($this->connection));
exit();
}
$price = $result->fetch _assoc();
return "{$price['price'l}";
}
The getName method

The getName method returns the product name, formatted as name-space-
type. For instance, in this application, the method returns Delicious Apple
or Mandarin Orange.

2 10 partin: Buitding Online Sales Applications

The method tests that the catalog number passed to it contains only num-
bers. For other applications, the catalog number might have a different
format that contains letters or other characters. The if statement needs to
test the format of the catalog number in as much detail as possible.

If the catalog number has the correct format, an SQL query is built to select
the needed information from the database. The query is executed. The infor-
mation returned by the query is added to a string with the correct format.
The formatted information is returned. You can call the method as follows:

$product_name = $catalog->getName("1004");

where "1004" is the catalog number for the product.

The getPrice method

The getPrice method returns the product price. An SQL query is built to
select the price from the database and executed. The method returns the
price. The syntax for calling the method is shown here:

$product_price = $catalog->getPrice($catalog number);

Writing the Item class

The Item class is a fundamental class. The customer orders items. The item
object stores and retrieves the information about an item that the customer
selected.

The properties
The Item properties store information about the item. The properties are:

private $catalog number;
private $quantity;
private $name;

private $price;

The first property is the number needed to locate the item in the catalog
database. The second property is the quantity of the item entered by the cus-
tomer. The remaining properties are the name and the price for the item,
information obtained from the catalog.

The code

Listing 6-15 contains the complete code for the Ttem class. After the code list-
ing you can find details about each method.

Chapter 6: Shopping Cart Application 2 ’ ’

LisTING 6-15: THE ITEM CLASS

<?php
/* Name: Item.class

class Item

{

*

*/

}

function getCatalogNumber ()

{
}

function getQuantity ()

{
}

function getPrice()

{
}

function getName ()

{

Desc: Represents an item in the order.

private $catalog number;
private $quantity;
private $name;

private $price;

function __construct ($cat_no, $quantity)
{
if (is_string($cat_no) && is_numeric($quantity))
{
$this->quantity = $quantity;
$this->catalog number = $cat_no;
$cat = new Catalog("Vars.inc");
$cat->selectCatalog("OnlineOrders") ;
$this->name = $cat->getName ($cat_no);
$this->price = $cat->getPrice($cat_no);
}
else
{
throw new Exception("Parameter is not a wvalid
catalog number and quantity");

return $this->catalog number;

return $this->quantity;

return $this->price;

return $this->name;

212 Ppartin: Building Online Sales Applications

The constructor

The constructor collects and stores the information for the item. the catalog
number and the quantity are passed when a new Item is created. The con-
structor stores the catalog number and quantity in the Ttem properties. The
constructor retrieves the remaining two properties from the catalog database
and stores them in the Item properties.

An item is created as follows:

$iteml = new Item(5007,3)

getCatalogNumber, getQuantity, getPrice, getName

These methods return the specified item information. The methods are used
as follows:

$price = getPrice();

Writing the ShoppingCart class

The shopping cart is a major component of the shopping cart application. It
holds the items currently selected by the customer.

The properties

The shopping cart properties store the items in the shopping cart, along with
information needed by the shopping cart to display the cart correctly.

private $items = array():;
private $message;
private $n_items = 0;

The first property is an array of objects that contains the items currently
stored in the shopping cart. The second property is a message that appears
when the shopping cart is displayed. The third property is the number of
items currently stored in the cart.

The code

Listing 6-16 contains the complete code for the ShoppingCart class. I cover
each method in detail after the code listing.

Chapter 6: Shopping Cart Application

LisTING 6-16: THE SHOPPINGCART CLASS

<?php
/* Name: ShoppingCart.class
* Desc: Creates a shopping cart--a structure that

* holds items.
*/
class ShoppingCart

{
private $items = array();
private $message;
private $n _items = 0;

function __construct()

{
if(isset ($_SESSION['items']))
{
s$this->items = $_SESSION['items'];
$this->n items = sizeof ($this->items);
}
$this->message = "Shopping Cart contains
{$this->n_items} items.";
}
function addItem(Item $item)
{
$this->items[] = $item;
$_SESSION['items'] = $this->items;
$this->n items++;
$this->message = "Shopping Cart contains
{$this->n items} items.";
}
function getAllItems ()
{
return $this->items;
}
function getMessage()
{
return $this->message;
}
function displayCart($file fields, $file_page)
{
include($file_fields);
include($file_page);
}

function updateCart ($new_array)
{

if (is_array($new_array))

{

Continued

213

2 14 Partii: Building Online Sales Applications

LisTING 6-16: (Continued)

foreach($new_array as $field => $value)

{
if (ereg("item", $field) && $value > 0) #51
$cat_no = substr($field,4);
$items_new[] = new Item($cat_no, $value);
}
}

$this->items = @$items_new;

$ SESSION['items'] = $this->items;

$this->n items sizeof ($this->items);

$this->message "Shopping Cart contains
{$this->n_ items} items.";

}
else
{
throw new Exception("Parameter is not an array");
}

The constructor

The constructor sets the three properties. The default values set an empty
array and the number of items is 0. The constructor looks for an array of items
in the session. If it finds it, it stores it in the $items property and sets the
number of items to the size of the array. If no items are stored in the session,
the properties retain the default settings for an empty cart. The third property,
$message, is set to a string of text that shows the number of items in the cart.

The object is created without passing any arguments, as follows:
$cart = new ShoppingCart();

When the shopping cart is created, either it is new and empty or it contains
the items stored for the session.

addltem

The add1tem method adds an item to the cart. It expects to receive an item
object. It adds the item to the item array and stores the new array in the ses-
sion variable. This method also increments the number of items stored and
updates the message with the new number of items. You use the method as
follows:

$cart->addItem($item5);

where the $item5 variable contains an item object.

Chapter 6: Shopping Cart Application 2 ’5

getAllltems, getMessage

The getallItems and getMessage methods get the specified properties. The
getAllItems method returns the array of item objects stored in the cart
properties. The getMessage method returns the stored message. Neither
method expects an argument to be passed.

displayCart
The displayCart method displays the shopping cart on a Web page. The

names of the files that provide the fields and define the page are passed to
the method. You can use the methods as follows:

$cart = new ShoppingCart();
$cart->displayCart ("fields_cart-oo.inc", "table_page.inc");

updateCart

The updateCart method updates an existing cart. It expects an array contain-
ing the information for all the items to be in the updated cart. The method
replaces the existing array of items with the a new array of items created from
the information passed to the method.

The array passed to the method should contain keys in the format i temnnnn
where nnnn is the catalog number of an item. The value is the quantity for the
item. A sample array might contain the following:

$item array[iteml003] = 1
$item array[item27] = 2.5
$item array[item673] = 1.7

The $_pPoST array (which is sent when the user clicks the submit button in
the shopping cart Web page) contains similar elements, such as:

$item array[iteml003] = 1

$item array[item27] = 2.5

For each element in the array, the method extracts the catalog number from
the key, passes the catalog number and the quantity to create an item object,
and adds the new item object to an array of objects. When all the elements
have been added to the new array of objects, the new array is stored in the
object property $items and in the session variable. The number of items is
incremented and stored.

Writing the Database class

The Database class provides the connection to the database where the cus-
tomer information is stored. [develop the Database class in Chapter 3. See
Listing 3-4 for the Database class code.

2 16 Partinn: Building Online Sales Applications

The methods provided by the Database class are:

v The constructor: Creates a connection to a MySQL database. The con-
structor expects to be passed a filename where the hostname, account
name, and password necessary to access MySQL are stored. A Database
object is created with the following statement:

$db = new Database("Vars.inc");
V¥ useDatabase: Selects a database and stores the database name. The

method expects to be passed a database name. It checks whether the
database exists and returns a message if the database doesn’t exist.

V¥ getConnection: Returns the connection that is established and stored
in the constructor.

Writing the Order class

The order contains all the information needed to complete the customer’s
purchase. It contains the shipping and credit information and the item infor-
mation for each item ordered. The order information is stored in a database.

The properties
The order properties store information about the order. The properties are:

private $order_number;
private $cxn;
private $table;

The first property is the number needed to identify the order in the database.
The remaining two properties contain the information needed to access the
order in the database.

The code

Listing 6-17 contains the complete code for the order class. After the code
listing, you can find a discussion about each method.

LiSTING 6-17: THE ORDER CLASS

<?php

/* Class: Order
* Desc: Class that holds orders.
*/

class Order
{
private $order_ number;

private $order_info;

private $order_items=array();
private $cxn;

private $table;

function __construct (mysgli $cxn, $table)

{
$this->cxn = $cxn;
if (is_string($table))
{
$this->table = $table;
}
else
{
throw new Exception("$table is not a
valid table name.");
}
}
function createOrder()
{
$today = date("Y-m-4d");
$sql = "INSERT INTO $this->table
(order_date) VALUES ('$today')";
if ($result = $this->cxn->query($sql))
{
$this->order number = $this->cxn->insert_id;
$ SESSION['order number'] = $this->order number;
}
else
{
throw new Exception("Database is not available.
Try again later");
}
}
function getOrderNumber ()
{
return $this->order number;
}

function addCart (ShoppingCart $cart)
{
foreach($cart->getAllItems() as $n => $item)
{
$cat_no = $item->getCatalogNumber();
$quantity = $item->getQuantity();
$price = $item->getPrice();
$sql = "INSERT INTO Order_ Item
(order_number,catalog number,
quantity, item number,price)
VALUES
($this->order number, $cat_no,
$quantity, ($n+l), $price)";

Continued

Chapter 6: Shopping Cart Application 2 ’ 7

2 18 Ppartin: Building Online Sales Applications

LisTING 6-17: (Continued)
$result = $this->cxn->query($sql);
}

function selectOrder ($order number)
{

if (is_int ($order_ number))

{

$this->order_number = $order_number;

}

else

{

throw new Exception("$order number
is not an integer.");

}

function getOrderInfo()
{
$sgql = "SELECT * FROM $this->table
WHERE order_ number='$this->order_ number'";
if ($result = $this->cxn->query($sql))
{
return $result->fetch_assoc();
}
else
{
throw new Exception("Database is not available.
Try again later");

}

function getItemInfo()
{
$sgl = "SELECT item number,catalog number,quantity,price
FROM order_item
WHERE order number='$this->order number'";
if ($result = $this->cxn->query($sql))
{
$n=1;
while($row=$result->fetch_assoc())
{
foreach($row as $field => $value)

Sitem[$n] [$field] = S$value;
}
$cat = new Catalog("Vars.inc");
$cat->selectCatalog("OnlineOrders") ;
$item[$n] ['name'] =
$Scat->getName($item[$n] ['catalog number']);
$n++;

Chapter 6: Shopping Cart Application 2 ’ 9

return $item;
}
else
{
throw new Exception("Database is not available.
Try again later");

}

function updateOrderInfo($data)
{
if(!is_array($data))
{
throw new Exception("Data must be in an array."):;
exit();

}
$sql = "UPDATE $this->table SET ";
foreach($data as $field => $value)
{

if (ereg("ship", $field) || $field == "phone"

|| $field == "email")
{
$data_array[] = "$field='$value'";

}
}
$sql .= implode($data_array,','):
$sql .= "WHERE order_ number='$this->order_ number'";
if (!$result = $this->cxn->query($sql))
{

throw new Exception("Database is not available.

Try again later");

}
return true;

}

function displayOrderSummary($field info, $field_page)
{
$data = $this->getOrderInfo()
$items = $this->getItemInfo()
extract ($data);
if(is_string($field info) and is_string($field page))
{

-
I
-
I

include($field_info);
include ($field_page);
}
else
{

throw new Exception("Requires two valid filenames.");

22() Partin: Building Online Sales Applications

The constructor

The constructor stores the information needed to connect to the database. It
expects to be passed a connection and a table name. The connection is a
database connection provided by a Database object. The constructor stores
the information in the order properties.

You can create an Order object as follows:

$db = new Database("Vars.inc");
$db->selectDatabase ("OnlineOrders");
$order = new Order ($db->getConnection(), "Customer Order");

createOrder

The createOrder method inserts a new order into the order database using
an SQL query. Today’s date is stored. The MySQL AUTO_INCREMENT feature
creates the order number. The new order number is stored in the order prop-
erty and in a session variable. The method returns true if the order is suc-
cessfully created.

selectOrder

The selectOrder method sets the order number in the Order to the order
number passed to it. Any information retrieved later from the database is
retrieved based on the order number property.

addCart

The addcart method adds all the items in a shopping cart to the order. The
method expects to be passed a ShoppingCart object. The method uses a
foreach loop to loop through all the items in the shopping cart. The informa-
tion from each item object is used to build an SQL query that inserts the item
into the order_ item table.

getOrderInfo

The getOrderInfo method returns an associative array containing all the
information from the customer_order table. It includes the name and
address, phone, date created, and other order-level information. It creates an
SQL sELECT query that selects all the information. No parameter is expected.

getltemlnfo

The getItemInfo method returns a multidimensional array containing all the
information for all the items in the order. The information for each item in the
array includes all the fields from the order_item table in the database, plus
the product name retrieved from the catalog.

Chapter 6: Shopping Cart Application 22 1

The method executes a query that gets all the information from the order_
itemtable. A while loop processes each item row in turn. A foreach loop
runs for each row, adding each field to the array element resulting in a multi-
dimensional array. After the foreach loop finishes, the method retrieves the
product name from the catalog and adds it to the array.

updateOrderlnfo

The updateOrderInfo method updates the shipping information in the
customer_order table of the database. The method expects an array of ship-
ping information, such as the $_posT array from the shipping information
form. An SQI. UPDATE query is created from the data in the $data array.

The query is built with an opening section and phrases for each field, such
as ship_name=John Smith. Each update phrase is added to a new array,
$data_array. After all fields have been processed and added to the new
array, the implode function is used to convert the array into a string suitable
for use in the query. The WHERE clause is then added to the end of the query.

The method can be used with a statement similar to the following:

$order->updateOrderInfo($_POST);

updateOrderInfo returns true when the information is updated successfully.

displayOrderSummary

The displayOrderSummary method displays a summary of the order. The
names of the two files that define the summary page are passed. The sum-
mary page is displayed by including the two files.

Writing the WebForm class

The webForm is used to display and process the shipping information form. I
create and explain the webForm class in Chapter 4. The class is shown in
Listing 4-6.

The methods in the webForm class that the shopping cart application script
uses are:

v The constructor: Stores the properties needed to display the form cor-
rectly. Two files — an information file and a file that defines the look and
feel — are required. The two filenames are passed when the WwebForm
object is created and stored in two properties. The data for the form
fields can be passed, but can be left out and the form fields will be blank.
You can create the object by using either of the following statements:

new WebForm("filel.inc","file2.inc",$_POST):
new WebForm("filel.inc","file2.inc");

$form
$form

222 Partlil: Building Online Sales Applications

v displayForm: This method displays the form. It extracts the data from the
$data property where it is stored. An @ is used to suppress the error mes-
sages so that the form can be displayed without any data. The form is dis-
played by including the two files that define the form. These two files can
define any type of form, with fields and elements you want to use. For this
application, I use the files [describe earlier in this chapter — fields_
ship_info-oo.inc and single_form.inc — which define the shipping
information form.

v checkForBlanks: Checks each field in the form to see whether it con-
tains information. If the method finds invalid blank fields, it returns an
array containing the field names of the blank fields.

v verifyData: This method checks each field to ensure that the informa-
tion submitted in the field is in a reasonable format. For instance, you
know that “hi you” is not a reasonable format for a zip code. This method
checks the information from specific fields against regular expressions
that match the information allowed in that field. If invalid data is found in
any fields, the method returns an array containing messages that identify
the problems.

V¥ trimData, stripTagsFromData: A PHP function is applied to each value
in the $data property. The resulting values are stored in $data. The trim
function removes leading and trailing blanks from a string. The strip_
tags function removes any HTML tags from the string, important for
security.

Writing the WebPage class

[use the webPage class throughout this book whenever [need to display a
Web page. The webPage object is a Web page that displays information in
PHP variables, along with HTML code. The code that defines the Web page is
in a separate file. You include the file to display the Web page. I develop and
explain the webpPage class in Chapter 3. You can see the webPage class listing
in Listing 3-6.

The webPage class includes the following methods:

1 The constructor: Stores a filename and the data needed to display the
page. Expects to be passed the filename of the file that contains the HTML
code that defines the Web page. It also expects to be passed an array con-
taining any data that needs to be displayed in the page. A WebPage object
can be created with a statement similar to the following:

$web_pagel = new WebPage ("define_page.inc", $data);

v displayPage: Displays the Web page. The method extracts the informa-
tion in the $data array and includes the HTML file.

Chapter 6: Shopping Cart Application 223

Writing the Email Class

After a customer successfully submits an order, the application sends a con-
firmation e-mail message to the e-mail address provided by the customer.
(You can find out about the Email class in Chapter 4, and the code is shown
in Listing 4-9.)

Writing the shopping cart
application script

After writing all the class code needed for the shopping cart application, you
write the application script that creates and uses the objects to provide the
application functionality. The application script is organized as an i f statement
with nested if statements. The if statements execute based on the name and
value of the submit buttons. Table 6-3 shows the buttons used throughout the
application. The table shows the text displayed on the button, the Web page
where the button appears, and the name given to the button in the input tag.

Table 6-3 Buttons Displayed by the Shopping Cart Application

Displays Web Page Name
Select a Category Catalog index Products
Continue Shopping Catalog Product (No name)
Continue Shopping Shopping Cart (No name)
Continue Shopping Summary (No name)
Add Items to Cart Catalog Product Cart
Previous Catalog Product Cart

Next Catalog Product Cart
Submit Order Shopping Cart Ship
Update Cart Shopping Cart Cart
Continue Shipping information form Summary
Edit Shipping Info Summary Ship
Submit Order Summary Final

Cancel Order Summary Final

22/ Parti: Building Online Sales Applications

The following text gives a general overview of the application script:

if (Button name = Products)
Display catalog products page for the category selected.
elseif (Button name = Cart)

if (Button = Update Cart)

1. Update items and quantities in shopping cart.
2. Display cart.
elseif (Button = Add Items to Cart)
1. Add the selected items to shopping cart.
2. Display shopping cart.
elseif (Button name = Ship)

1. If current order exists, get order number from the
session variable. If not, create a new order.

2. Display shipping information form.

elseif (Button name = Summary)

1. Check form information for blanks. If blanks found,
redisplay form with error message.

2. Check form information for correct format. If
invalid information found, redisplay form with error
message.

3. Add shipping information from form to database.

4. Add the items in the shopping cart to the database.

5. Display summary form.

elseif (Button name = Final)
if (Button = "Submit Order")
1. Update order status to submitted.
2. Process credit card information.
3. Submit order to be filled and shipped.
4. Send confirmation email to customer.
5. Display confirmation Web page.
elseif (Button = "Cancel Order")
1. Update order status to cancelled.
2. Display cancellation Web page.
3. Destroy session.
else
Display catalog index page

The application program creates objects and uses their methods to perform
the tasks that I describe in the preceding application overview. You see the
application program script in Listing 6-18.

LiSTING 6-18: THE SHOPPING CART APPLICATION SCRIPT

<?php
/* Program: Orders-oo.php
* Desc: Handles all functions of the Online Orders
* application. The submit button name is tested
* to determine which section of the program
* executes.
*/
require_once("Item.class");
require_once("Catalog.class");

Chapter 6: Shopping Cart Application 225

require_once ("ShoppingCart.class");
require_ once("WebForm.class");
require_once ("WebPage.class");
require_once("Order.class");
require_once("Database.class");
include("functions_main.inc");
session_start(); #16
if (isset ($_POST['Products']) && isset($_POST['interest']l))
{
try
{
$catalog = new Catalog("Vars.inc"):;
$catalog->selectCatalog("OnlineOrders") ;
$catalog->displayAllofType($_POST['interest'],2);
}
catch(Exception $e)
{
echo $e->getMessage():
exit();
}
}
elseif (isset ($_POST['Cart'])) #31
{
$cart = new ShoppingCart():;
if($_POST['Cart'] == "Update Cart") #34
{
try
{

}
catch(Exception $e)
{

$cart->updateCart ($_POST);

echo $e->getMessage();
exit();
}

}
elseif ($_POST['Cart'] == "Add Items to Cart") #46
{
foreach($_POST as $field => $value) #48
{
if (ereg("item", $field) && $value > 0)
{

try

{
$cat_no = substr($field,4); #54
$item = new Item($cat_no, $value);
$cart->addItem($item);

}
catch(Exception $e)
{
echo $e->getMessage();
exit();
}

Continued

220 Partili: Building Online Sales Applications

LisTING 6-18: (Continued)

$cart->displayCart ("fields_cart-oo.inc",
"table_page-oo.inc"); #69
}
catch(Exception $e)
{
echo $e->getMessage();
exit();
}

}
elseif(isset ($_POST['Ship'])) #77
{
try
{
$db = new Database("Vars.inc");
$db->useDatabase ("OnlineOrders") ;
$order = new Order ($db->getConnection(),
"Customer Order");
if (isset ($_SESSION|'order_ number'])) #85
{
$order->selectOrder ($_SESSION['order number']);
}
else
{
$order->createOrder();
}
$ord = $order->getOrderNumber();
$info = $order->getOrderInfo();
$form = new WebForm("single form.inc",
"fields ship info.inc", $info);
$form->displayForm();
}
catch(Exception $e)
{
echo $e->getMessage():
exit();
}
}
elseif (isset ($_POST['Summary'])) #105
{
try
{
$form = new WebForm("single_ form.inc",
"fields_ship info-oo.inc",$_POST);
$blanks = $form->checkForBlanks();
}

catch(Exception $e)

{

}
if (is_array($blanks)) #117

{

echo $e->getMessage();

$GLOBALS ['message'] = "The following required fields
were blank. Please enter the
required information: ";
foreach($blanks as $value)
{
$GLOBALS|['message'] .="$value, ";
}
$form->displayform() ;
exit();
}
$form->trimbData(); #129
$form->stripTagsFromData() ;
try
{
$errors = $form->verifyData();
}
catch (Exception $e)
{

}
if (is_array($errors))

{

echo $e->getMessage();

$GLOBALS['message'] = "";
foreach($errors as $value)
{

}
$form->displayForm() ;
exit();

$GLOBALS ['message'] .="$value
 ";

try

$db = new Database("Vars.inc"); #151
$db->useDatabase ("OnlineOrders") ;
$order =

new Order ($db->getConnection(), "Customer_Order");
$order->selectOrder ($_SESSION['order number']);

// Add shipping form info to db
$order->updateOrderInfo($_POST) ;

// Add items to db
$cart = new ShoppingCart(); #161
$order->addCart ($cart) ;

// display summary form
$order->displayOrderSummary ("fields_ summary-oo.inc",
"summary page.inc");

Continued

Chapter 6: Shopping Cart Application 22 7

228 Partil: Building Online Sales Applications

LisTING 6-18: (Continued)

}
catch(Exception $e)
{
echo $e->getMessage();
}

}
elseif (isset ($_POST['Final'])) #173

if($_POST['Final'] == "Submit Order") #175
{

$db = new Database("Vars.inc");
$db->useDatabase("OnlineOrders") ;
$order = new Order ($db->getConnection(),
"Customer_ Order");
$order->selectOrder ($_SESSION|['order_number']);
if (processCC()) #182
{
$order->setSubmitted() ; #184
$order->sendToShipping(); #185
$order->sendEMailtoCustomer(); #186
$confirm = new webPage("confirm page.inc", $data);
$confirmpage->displayPage(); #188
}
else #190
{
$order->cancel();
$unapp = new webPage ("not_accepted_page.inc", $data);
$unapp->displayPage();
unset ($_SESSION|['order_number']):;
unset ($_SESSION) ;
session_destroy();

else #200

$order->cancel();
$cancel = new webPage("cancel.inc", $data);
$cancel->displayPage();
unset ($_SESSION|['order number']);
unset ($_SESSION) ;
session_destroy();
}
}
else #210
{
$catalog = new Catalog("Vars.inc");
$catalog->selectCatalog("OnlineOrders");
$catalog->displayCategories();

Chapter 6: Shopping Cart Application 229

The following numbered items discuss the numbered lines in Listing 6-18:

#16
#17

#31

#77

#105

Opens an existing session or, if no session exists, opens a new session.

Begins an if block that executes when the user clicks the Products
button with a product category selected. The block displays the cata-
log product page for the selected category.

Begins an elseif block that executes when the user clicks the Cart
button.

#33 Creates a ShoppingCart object. The ShoppingCart class con-
structor looks for items in the session. If existing items are
found in the session variable $items, they are loaded into the
cart object. If $items isn’t found in the session, the cart is set
up empty.

#34 Begins an if block that executes when the user clicks the
Update Cart button. The block updates the quantities and items
in the shopping cart.

#46 Begins an elseif block that executes when the user clicks the
Add Items to Cart button. Line 48 starts a foreach loop the
loops through the $_POST array. When an array element key
contains item and the quantity is greater than 0, the catalog
number is extracted from the field name (line 54) and an item
object is created (line 55) and added to the cart (line 56).

#68 Lines 68 to 69 display the shopping cart.

Begins an elseif block that executes when the user clicks the Ship
button. This block displays the shipping information form.

#81 Lines 81 to 84 create an order object.

#85 Starts an if/else statement that sets the order number. If the
order number is found in a session variable, the order property
is set to the session order number. If not, a new order is created
with a new order number.

#93 Lines 93 to 97 display the shipping information form, with the
shipping information from the order database.

Begins an elseif block that executes when the user clicks the
Summary button. This block processes the information from the ship-
ping information form.

#109 Lines 109 to 128 check the $_posST array for blank form fields.
If blanks are found, the form is redisplayed with an error
message.

#129 Lines 129 to 148 check the format of the data in the elements in
the $_posT array. If invalid data is found, the form is redis-
played with an error message.

230 Parti: Building Online Sales Applications

#173

#210

#151 Lines 151 to 158 add the shipping information to the database.
This line is not reached until the shipping information has been
validated.

#161 Lines 161 to 162 add the items in the shopping cart to the order
database.

#165 Lines 165 to 166 get the information from the database and dis-
play the summary Web page.

Starts an elseif block that executes when the user clicks the Final
button. This block processes the final order. The customer can cancel
or submit the order. If submitted, the order is either approved or not
approved.

#175 Starts an if block that executes when the user clicks the
Submit Order button. The block creates an order object.

#182 Starts an if block that executes when the credit card process-
ing company approves the credit charge. The function
processCC isn’t included in this chapter. You must write this
function yourself because it is different for different credit pro-
cessing companies. The company tells you what the function
needs to do. In general, you send the credit information to the
company computer, which processes the credit charge. A code
for success or failure is returned to your function.

#184 Sets the status of the order in the database to be approved.

#185 Sends the order to be filled and shipped. This method isn’t
included in the order class in this chapter. You need to write
the method to fulfill orders per your company procedures.

#187 Lines 187 and 188 display a confirmation Web page. You need to
write confirmation_page.inc to include the information that
you want your customers to know, such as shipping date, ship-
ping method, and so on.

#190 Starts an else block that executes when the credit charge is
not approved. The block cancels the order, displays a not
approved Web page, and destroys the session. The file
not_accepted_page. inc is not provided in this chapter. You
need to write the HTML for this file with the information you
want the customer to have.

#200 Starts an else block that executes when the customer clicks
the Cancel Order button. The block cancels the order, displays
a cancellation page, and destroys the session. You need to write
the file, cancel_page. inc yourself.

Begins an else block that executes when the user clicks no button or
a button without a name. The block displays the catalog index page.

Chapter 6: Shopping Cart Application 23 1

Adding Features to the Application

The shopping cart application in this chapter provides basic online ordering
functionality. However, you can add even more features. Some common fea-
tures of a shopping cart applications that aren’t provided in this chapter
include

v Login: As [discuss at the beginning of this chapter, many online mer-
chants require customers to log in before they can order. You can add
this feature with the login application provided in Chapter 4.

Some sites allow customers to purchase items without logging in, but
offer them the option of saving their information for faster checkout
during their next order.

This application doesn’t save the credit card information. Some users
trust well-known merchants to store their credit card numbers. It pro-
vides faster checkout. It’s more trouble, but more customer friendly, to
make credit card storage optional. Customers will be happier if you ask
their permission before storing their credit card numbers.

v Order Tracking: Customers appreciate the opportunity to track their
orders. It’s difficult to provide this feature without a login. If you allow
a customer to see the details of an order by simply entering the order
number, there’s really nothing to prevent that customer from looking
at any order number in your system.

v Inventory: For some companies, the database that holds information
about the product also keeps track of the inventory of products.
Customers receive immediate information regarding the availability of
an item. The database can also let purchasing know when the quantity
of a product is low.

You can add these common features or other features that are very specific
to your Web site. I suggest that you get the application working as it is first.
Then, when it’s working, you can add features one at a time. Don’t change too
many things at once. It’s easiest to troubleshoot one feature at a time.

In general, adding features to the object-oriented application is easier than
adding to the procedural application. One of the strengths of object-oriented
programming is that you can add code without needed to change the existing
code. If you believe your application is likely to grow in the future, building
with the object-oriented application would be wise.

232 Partlil: Building Online Sales Applications

Part IV

Building Other
Useful
Applications

The 5th Wave By Rich Tennant
ORIUITENNANT

“The engineevs lived on Jolt and cheese sticks
putting this pmd,uct togethey, but 1f you
wanted 1o just use ‘cola and cheese sticks' in
the Users Documentation, that's oRay too.
We've pretiy loose avound heve.”

In this part . . .

In this part, I provide two independent applications.
The first application, discussed in Chapter 7, is a
Content Management System (CMS) that allows users to
post their documents on a Web site. The second applica-
tion, discussed in Chapter 8, is a Forum application that
allows users to read and post messages on a public bul-
letin board.

Chapter 7

Building a Content Management
System

In This Chapter

Looking over a content management system (CMS)
Designing a basic CMS

Exploring area-specific permissions

Uploading files and managing uploaded files
Designing an object model

A content management system (CMS) is a general term for a Web site that
can have its content, flow, and/or look and feel managed by using an
administrative, Web-based interface. A CMS allows a non-technical user to
update a Web site’s content with ease. This alleviates the need to have a pro-
grammer present to change code for each piece of content the user wishes
to publish. A CMS won’t put programmers out of work, but a properly con-
structed CMS can make their lives easier because they won’t be needed for
every little change to the site content. By enabling the Web site’s users to
maintain the content for the site, maybe you'll finally be able to take that
vacation! Before you buy that plane ticket and pack your scuba gear, how-
ever, take a look at this chapter, in which [show you how to build a CMS.

Designing the CMS Application

Before you design the user interface, you must make some fundamental pro-
gramming design decisions, such as

v Content types: The goal of a CMS is to make Web site content totally
user-driven, alleviating the need for programmers to make code changes
to change the Web site. However, the designer of a CMS will have to
decide how robust the CMS should be. Some CMS systems provide a
WYSIWYG editor and a complex hierarchy for organizing sections of the
Web site. In this chapter | show you a sample intranet CMS. It provides

236 Part IV: Building Other Useful Applications

an area for each department in a company. Each department’s area of
the Web site will have a section for News, Events, Meeting Materials, and
FAQ. Therefore, the hierarchy and the types of content the Web site will
manage are somewhat limited, but the design of the CMS makes it easy
to add a new department or to add a new content type (with no addi-
tional code).

v Permissions: A CMS usually needs to know who is using the Web site so
that appropriate menus are displayed. An intranet is usually a set of inter-
nal Web applications that allow a company to share information within the
organization. In the example CMS in this chapter, any member of a given
department can create or modify content for that department. A user
cannot edit content for a department in which the user does not belong.
For instance, an employee in the Sales Department cannot edit content in
the Information Technology Department’s section of the Web site. So, the
CMS application needs to have a login screen. The user accounts need to
identify which department the user is in. [develop the login program used
for this application in Chapter 4, and I describe the issues and code in that
chapter as well. Using the login program in this application requires some
minor changes, which I detail later in this chapter.

+ Handling Uploads: Intranets are valuable tools because of the informa-
tion that is available on them. To allow users to share documents, you
need to provide a way for the users to upload files. In the sample CMS
in this chapter, the user can upload documents. The CMS simply keeps
track of the filename and the content to which it is associated. For exam-
ple, if a user wants to post an FAQ where the question being posed is
“How do I sign up for the 401K?”, the user posting the FAQ will be able
to answer the FAQ and also post related documents, perhaps forms that
the people browsing the Web site will find useful.

Creating the CMS Database

The database stores information about users, departments, content types,
content items, and downloads. The user table helps you determine the
department to which a user belongs. The department table gives you infor-
mation about a department, such as its name and a description of what the
department does. The content type table defines the types of content that
the Web site can accommodate. The content and download tables store the
details that the users will be interested in. The CMS can determine whether
a user is allowed to modify or edit content if the user belongs to the depart-
ment in which the user is browsing.

Chapter 7: Building a Content Management System 23 7

Designing the CMS database

The sample application in this chapter uses a database named IntranetCMS.
The database needs tables that contain the user, department, and content
data. The database contains the following five tables:

v Dept_User: Stores information about the users, including which depart-
ment they work in.

v Department: Stores a name and description for each department.

V¥ Content_Type: Stores an ID and description for each type of content
that the user can store.

V¥ Content: Stores information about a content item, such as title and
description, date created, who created it, and other information.

V¥ Content_Download: Stores the filenames of any documents that can be
downloaded. Each item is connected to an item in the Content table.

Auto increment columns in each of the tables help to tie all the information
together. The dept_id column is used in the Department, Dept_User, and
Content tables. The content_id (the auto increment column of the Content
table) ties a piece of content to any associated downloads, stored in the
Content_Download table.

Designing the Dept_User Table

The Dept_User table, shown in Table 7-1, contains user information, includ-
ing the dept_id that will tie each user to a specific department.

Table 7-1 Database Table: Dept_User

Variable Name

Type

Description

user_name

VARCHAR (255)

User identifier (primary key)

dept_id

INT

Department identifier (see
Table 7-2)

first_name

VARCHAR (255)

User's first name

last_name

VARCHAR (255)

User's last name

password

VARCHAR (255)

User's password

create_date

TIMESTAMP

Date (and time) user's record
was created

email

VARCHAR (255)

E-mail address

238 Partv:Building Other Useful Applications

\\J

The user_name and password will be used to gain access to the site. The
dept_id column will be useful when the CMS needs to decide whether a user
can add or modify content in a section of the Web site.

Designing the Department table

The Department database table, shown in Table 7-2, is a simple table that
stores the name and a short description for a department. The dept_id
column is an identity column that is also used in other tables, allowing con-
tent and users to be associated with a department.

Table 7-2 Database Table: Department

Variable Name Type Description

dept_id SERIAL Department’s unique ID (pri-
mary key)

name VARCHAR (255) Department’s name

description VARCHAR (255) Long description of what
the department does in the
company

What kind of column is SERTAL? SERIAL is a built-in alias for BIGINT
UNSIGNED NOT NULL AUTO_INCREMENT. Save your fingers from typing that
and use the alias to build an auto increment column. However, keep in mind
that the storage required for a BIGINT is 8 bytes whereas the storage for an
INT is 4 bytes. Storage requirements for MySQL data types are found here:
http://dev.mysqgl.com/doc/mysgl/en/storage-requirements.html.

The department list in the example CMS could have been hard-coded into
the PHP code, but what if the company you work for merges with another
company and suddenly a bunch of new departments exist? By storing the
department information in the database, you can make the Web site more
manageable. Isn’t that the goal of a content management system? You want
the users and the system — not the programmers — to manage information.
The more the CMS can manage itself, the more opportunities you will find
to build more and more exiting applications. If you had to do all the content
maintenance for the Web sites you build, you might find yourself continu-
ously changing little pieces of the Web site for your clients or end users.

Designing the Content_Type table

Table 7-3 shows the table structure that will allow the CMS to keep track of
the different types of content that can be posted on the Web site.

Chapter 7: Building a Content Management System 23 9

WMBER
@"&
&

Table 7-3 Database Table: Content_Type

Variable Name Type Description

type_id SERIAL Content type identifier (pri-
mary key)

name VARCHAR (255) Description of the content

type

The list of content types could have been hard-coded into the Web site’s
PHP code, but, again, by making this kind of information database-driven
you make the Web site flexible enough to accommodate many future content

types.

Designing the Content table

The content table is a generic table for keeping any type of content. In a
more complex CMS, this task might not be feasible with a single table, but it
does the trick for this example application. Table 7-4 shows the columns for
the content table. A simple piece of content has a number of attributes asso-
ciated with it, such as the date and time at which the content item was cre-
ated and the date and time at which the content item was last modified.

Table 7-4 Database Table: Content

Variable Name Type Description

content_id SERIAL Content identifier (primary key).

dept_id INT This column identifies the depart-
ment to which this content belongs
(see Table 7-2).

content_type INT This column identifies the type of
content being stored in this record
(see Table 7-3).

title VARCHAR (255) Short description for the content.

description TEXT Long description for the content.

content_date DATE Date when the content is relevant or
when some event occurs.

create_date TIMESTAMP Date content item was created.

created_by VARCHAR (255) User name of the user who created

this content item.

(continued)

240 PartIv: Building Other Useful Applications

Table 7-4 (continued)

Variable Name Type Description
last_upd_date TIMESTAMP Date content item was last modified.
last_upd_by VARCHAR (255) User name of the user that last mod-

ified this content item.

The content table uses a TEXT column for the long description because the
VARCHAR and CHAR data types have a length limit of 255 (in MySQL 4.x and
previous versions). Using a TEXT column type, if the content is very verbose,
it won’t get cut off because a TEXT column can handle up to 2 + 2'° bytes. The
description is the bulk of the content item, and it is displayed by using a
TEXTAREA element in the HTML form when the user has edit permissions.

Designing the Content_Download table

A list of downloadable documents might be associated with each content
item from the Content table (shown in Table 7-4). Table 7-5 shows the simple
table that essentially ties a document with a content item. The name of the
file will be used in the display.

Table 7-5 Database Table: Content_Download

Variable Name Type Description

download_id SERIAL Download identifier, primary key.

content_id INT This column identifies the content item
to which this download belongs (see
Table 7-4).

name VARCHAR (255) The name of the uploaded file.

The Content_Download table is very simple in the sample CMS implemented
in this chapter. If you want to make the download functionality more robust,
you can also keep track of the size of the file, the file type, and so on. In the
sample application, I implement a simple upload and download capability.

Building the CMS database

The following SQL statement creates this database:

CREATE DATABASE IntranetCMS;
USE IntranetCMS;

Chapter 7: Building a Content Management System 24 1

The following SQL statements create the tables:

DROP TABLE IF EXISTS Department;

CREATE TABLE Department (
dept_id SERIAL,
name VARCHAR (255) NOT NULL,
description VARCHAR (255) NOT NULL,

PRIMARY KEY (dept_id)
)

DROP TABLE IF EXISTS Content_Type;
CREATE TABLE Content_Type (

type_id SERIAL,

name VARCHAR (255) NOT NULL,

PRIMARY KEY (type_id)
)

DROP TABLE IF EXISTS Content;

CREATE TABLE Content (

content_id SERIAL,

dept_id INT NOT NULL,
content_type INT NOT NULL,
title VARCHAR (255) NOT NULL,
description TEXT NOT NULL,

content_date DATE,
create_date TIMESTAMP

DEFAULT now() NOT NULL,
created_ by VARCHAR (255) NOT NULL,
last_upd date TIMESTAMP NOT NULL,
last_upd by VARCHAR (255) NOT NULL,

PRIMARY KEY(content_id)
)i

DROP TABLE IF EXISTS Dept_User;

CREATE TABLE Dept_User (

user_name VARCHAR (255)

UNIQUE NOT NULL,
dept_id INT NOT NULL,
first_name VARCHAR (255) NOT NULL,
last_name VARCHAR (255) NOT NULL,
password VARCHAR (255) NOT NULL,

create_date TIMESTAMP
DEFAULT now() NOT NULL,
email VARCHAR (255),

2052 PartIv:Building Other Useful Applications

A\

PRIMARY KEY (user_name)
)i

DROP TABLE IF EXISTS Content_Download;

CREATE TABLE Content_Download (
dovwnload_id SERIAL,
content_id INT(6) NOT NULL,
file name VARCHAR (255) NOT NULL
)i

Why drop tables before creating them? Well, when I'm developing a new Web
site, I find it helpful to have a file that I can use to quickly re-create the data-
base structure all at once. [can then use all or part of this “script” as I fine-
tune the structure of the database. The drop table if exists statement in
the file just saves me some time while I copy and paste the data definition lan-
guage (DDL) into the MySQL client window. DDL statements are a subset of
SQL statements that are used to create or modify database objects and their
structure.

The following SQL statements fill the Content_Type table with the content
types that are to appear in the CMS:

INSERT Content_Type (name) values ("News");

INSERT Content_Type (name) values ("Events");

INSERT Content_Type (name) values ("FAQ"):;

INSERT Content_Type (name) values ("Meeting Materials");

The following SQL statements fill the Department table with the departments
in the fictitious company in this chapter’s CMS example:

INSERT Department (name, description)
values ("Human Resources",
"Bringing the right people together to get the job
done.");

INSERT Department (name, description)
values ("Sales",
"Our experienced sales team markets our great products
to the public.");

INSERT Department (name, description)
values ("Distribution", "We get the goods to the
customers.");

INSERT Department (name, description)
values ("Information Technology",
"Building the applications that give us the edge.");

Chapter 7: Building a Content Management System 243

Accessing the CMS database

In the sample CMS in this chapter, as in previous chapters, the database cre-
dentials are stored in a file named vars. inc. The contents of this file contain
your account and password, similar to the following:

<?php
$host = "localhost";
$user = "admin";
$passwd = "";
$database = "IntranetCMS";
?>

Designing the CMS Web Pages

The CMS application has a login page and content pages that have five levels
of browsing, as follows:

1.

Login: The CMS application requires users to register and log in before
they can browse content. I took the login page for this application from
Chapter 4 and slightly modified it; [describe the changes in Listing 7-1.

. Home page: The home page simply displays a list of the departments

that make up the company’s intranet. The department descriptions are
displayed in the main body of the page; along the left side of the page
are links to the departments in the intranet. See Figure 7-1.

. Department page: From the home page, the user clicks a single depart-

ment. At the department-level page, the content types are listed in the
main section of the page and on the left, as shown in Figure 7-2.

. Content List page: From the Department page, the user clicks a content

area, such as New, Events, or FAQ. The content area contains a list of
items for the department and content type that the user selected. In
Figure 7-3, the FAQs are listed for the Human Resources Department. If
the user browsing this page isn’t a member of the Human Resources
Department, she won’t see the Edit or Delete links. (The Edit and
Deleted links are located in the far right column.)

. Content Detail page: From the Content List page, the user can view the

details of a single content item, including any downloads. The left side of
the page lists any available downloads associated with the content item,
and the main body of the page includes the details of the content item,
including the creation date and creator of the content item. In Figure 7-4,
a single FAQ'’s details are displayed for the Human Resources depart-
ment. This shows a user that is part of the Human Resources depart-
ment. If she weren’t a Human Resources employee, she would see a
read-only view of the content, like the one shown in Figure 7-5.

244 Part1v: Building Other Useful Applications

|
Figure 7-1:
The Intranet
home page,
where the
departments
inthe
company
are listed.

|
Figure 7-2:
The content
types are
listed for the
Human
Resources
Department
page.

any Intranet - Mozilla Fir

File Edit View Go Bookmarks Tools Help

v o - & 0 5 L& |[] hitpziflocalhost/CompanyHome.php =l | © Go |IGL
Welcome to omr Infranet
Honwe
Departinents Welcome to our Intranet where each department shares content with the whole company. Tou can
update your own departments content too with eur simple mterface.
Distribution

Vist the departments' homepages:

Human Eesources .
— + Distributicn - "We get the goods to the customers.

. + Human Resources - Bringing the right people together to get the job done.
Information Techology " . S)
AR Lo * Information Techology - Bulding the applications that give us the edge.
S + Sales - Our experienced sales team markets our great products to the public.
es =

Copyright(R) 2005

any Intranet - Mozilla Fir

File Edit View Go Bookmarks Tools Help

Q-2 8 09 58 Lr |0 http:h'lucalhosb’CompanyHome.php?dept_id=1&Ij| © Go |IGL

Human Resowmrces

THome - Human Resources

Content Index || Human Resources - Bringing the right people together to get the job dene.

Events Wist the departments’ areas:
+ Events

FAQ vy

Meeting + Meeting Matenals

Materials + Hews

Iews

Copymight(Ry) 2005

Chapter 7: Building a Content Management System 2 4 5

ipany Intranet - Mozilla Fir {
File Edit View Go Bookmarks Tools Help
S-S5 030 http:h'lucalhosb’CompanyHome.php?dept_id=1&Ij| © Go Il{_}L
Human Resources - FAQ
Home - Human Regources - FAQ
Content e Last
FAQ Title ;‘:tQ C‘B’“‘l C’;‘“d Updated | Updated
EAQ € n X On By
Wews When are the company holidays? |03/07/05 | 03007705 Juser3 0307005 | jdoe?77 |[delete view edit |
Hew can I sign up for the 401K |03/07/05 | 03/0705 | jdoe?T7 | 030705 | 1dee?T7 | [delete view edit |
Events
[add]
Meeting
Mlaterials
L __|
| Copyright(R) 2005
Figure 7-3:
The Human
Resources
FAQ List
page.
|
ipany Intranet - Mozilla Fir {
File Edit View Go Bookmarks Tools Help
@' -5 @ @ @ . | 1 http:h'lucalhosb’CompalryHome.php?&dept_id=1:j| © Go Il{_}L
Downloads =
FAQ Title: [How can | sign up forthe 401K?
401kApp.doc Fill out the form 401KApp.doc and fax it
[del] to HR. Allow for a two week review
period. You will receive a packet in the
mail with instructions on how to proceed.
FAQ Description
FAQ Date: [03/07/2005 | (malddbnnm)
Creation Date: 03/07/2005
Created By: jdoe777
Last Updated: 03/07/2005
Last Updated By: jdoe777
|
Add Downloads
Figure 7-4: Browse...
The Human L0
Resources Browee., |
FAQ Detail FesetForm | Cancel | Sawve Changes]
£ - ===~
| Copryright(R) 2005 I

246 Part IV: Building Other Useful Applications

|
Figure 7-5:
The Human
Resources
FAQ Detail
page in
read-only
view.

Q-2-58 0 9 2200 http:h’localhostf(:olnpanyHome,php?&depl_id=1iE'| © Go I:Gl

Human Resources - FAQ

THome - Human Resources - FAQ

Downloads
FAQ Title: How can I sign up for the 401E7?

401k dpp.doc FAQ Description: Fill cout the Formn 401k dpp. doc and fax it to HE. Allow for a two week review
period. You will recetve a packet in the mad with instructions on how to proceed.
FAQ Date: 03/07/2005
Creation Date: 2005-03-07 00.00:00
Created By: jdoe777
Last Updated: 2005-03-07 00:00:00
Last Updated By: jdoe777

Back

Copymight(R) 2005

Building the CMS Application:
Procedural Approach

The CompanyHome . php file contains the logic for organizing the data for the
main display of the CMS. It figures out whether the user is looking at the main
page, a department-level page, a content list page, or a detail page. It fills in
elements of the $page array. The $page array is used in the company . inc pro-
gram to construct the HTML display. This CMS intranet Web site requires that
the people browsing it are registered users who have logged in to the system.
Some intranet sites require only a login to gain access to administrative parts
of the Web site. In the example in this chapter, the Web site requires users to
be logged in to browse any of the content. The include file company . inc does
the HTML work with the data that was set up by CompanyHome . php.

Writing the login code

The example in this chapter uses a very simple login and authentication
scheme. The application assumes that the users that belong in a department
have permission to create, edit, or delete any of the content for that depart-
ment. Furthermore, the application allows the users signing up to choose the

Chapter 7: Building a Content Management System 24 7

department in which they work. In a real-world application, this is quite a
leap of faith. If you create a CMS system, you should implement a system that
can appropriately identify users and apply the appropriate entitlements. To
keep things simple in this chapter, you reuse the Login.php code from
Chapter 4, Listing 4-4. A few modifications are needed, however; I identify
those changes in Listing 7-1.

LisTING 7-1: LOGIN.PHP CHANGES

$table name = "Dept_ User"; #11

$next_program = "CompanyHome.php"; #12
$sql = "SELECT user_ name,dept_id FROM $table_name #25
$ SESSION['user dept'] = S$row['dept_id']; #33
$_SESSION['user_name'] = $row['user_name']; #34
$ SESSION['user dept'] = $dept_id; #192
4 SESSION['user _name'] = $user name; #193

Following is a description of the lines changed from the Login.php found in
Chapter 4:

#11 The database tables used in the CMS application are different from
the database tables used in Chapter 4. You change line 11 to use the
Dept_User table designed earlier in this chapter.

#12 The page to which Login.php will redirect the user upon a successful
login or registration is changed to the home page for the CMS applica-
tion, CompanyHome . php.

#25 The application stores the user name and department ID in the ses-
sion to use later in the application. The field dept_id is added to the
SELECT query started on this line so that the department ID can be
stored in the session.

#33 Stores the department ID in the session.

#34 Stores the user name in the session. Lines 33 and 34 stored different
bits of information on these lines in Login.php in Chapter 4.

#192 [and #193] Chapter 4 stored a flag in the session to indicate that
the user had been authenticated (auth), and it stored the user’s ID
(1ogname). The CMS application in this chapter stores the user name
(user_name) and department identifier (dept_id) in the session vari-
able. The user_name comes in handy when the CMS needs to store
information about the person adding or changing content in the system.
The department ID (dept_id) helps the CMS keep track of the depart-
ment for which the user has permission to add or modify content.

248 PartIv:Building Other Useful Applications

The file in Listing 7-2 is copied from Chapter 4 (specifically, from Listing 4-1)
and is also altered a bit to meet the needs of the CMS application in this
chapter. The biggest difference is that the list of departments is constructed
by connecting to the database and querying the Department table. The list of
departments is needed for the Department drop-down list on the login page,
thus allowing the user to select the department in which he is a member.

LisTING 7-2: THE FiLE THAT CoNTAINS THE ARRAYS NEEDED FOR THE LOGIN PAGE

<?
/* File: fields_login.inc
* Desc: Contains arrays with the field names and form
* elements for the login Web page.
*/
include_once("functions_main.inc");

"title" =>
"top" =>
"bottom" =>

"Login Page",

n ll’

"Send questions and comments
to admin@ourplace.com",

$page = array(

)i

=> "Returning Home:
<span style=\"font-size:
font-weight: 100%\">
<i>Login here</i>",
llbottomll => nn ’
"submit" => "Login"
)i
array("top" => "New Users:
<span style=\"font-size:
font-weight: 100%\">
<i>Register here</i>",

$elements_1 array("top"

$elements_2 =

"password"
"email"
"first name"
"last_name"

"hottom" => "n ,
"submit" => "Register"
)

$fields_1 = array("fusername" => "User Name",
"fpassword" => "Password"
)i

$length 1 = array("fusername" => "10",
"fpassword" => "10"
)

$types_1 = array ("fusername" => "text",
"fpassword" => "password"
)i

$fields_2 = array("user_ name" => "User Name",

=> "Password",
=> "Email Address",
=> "First Name",

=> "Last Name",

Chapter 7: Building a Content Management System 24 9

"dept_id" => "Department"
);:

$types_2 = array("user_name" => "text",
"password" => "password",
"email™" => "text",
"first name" => "text",
"last_name" => "text",
"dept_id" => "gelect"
);:

$length 2 = array("user_name" => "20",
"password" => ngn,
"email™"™ => ||55||’
"first name" => "40",
"last_name" => "40",

)i
$options = array():

$connection = Connect_to_db("Vars.inc"):
$results = mysqli_query($connection, "SELECT dept_id, name
FROM Department
ORDER BY name");
while($row = mysqgli_fetch_assoc($results)) {
Soptions['dept_id'][$row['dept_id']] = S$row['name'];
}

?>

The double_form. inc file in Listing 7-3 was copied from Chapter 4, Listing
4-2, and was altered a bit, too. The biggest difference is that there is now
code that builds the department drop-down list, starting at line 85.

LisTING 7-3: DEFINING Two SIDE-BY-SIDE HTML Forms

<?php
/* File: double_form.inc
* Desc: Contains the code for a Web page that displays
* two HTML forms, side by side in a table.
*/
?>
<head><title><?php echo $page['title']?></title></head>
<body style="margin: 0">
<hl align="center"><?php echo $page['top'] ?></hl>
<hr size="10" noshade>

<table border="0" cellpadding="5" cellspacing="0">
<?php

Continued

250 PartIv: Building Other Useful Applications

LisTiNGg 7-3: (Continued)

#H#HH A
Form 1
#HHH S
?>
<tr>
<td width="33%" valign="top">
<p style="font-size: 110%; font-weight: bold">
<?php echo $elements 1l['top']?></p>
<!-- Beginning of form 1 (left) -->
<form action=<?php echo $_SERVER['PHP_ SELF']?>
method="POST" >
<table border="0">
<?php
if (isset ($GLOBALS['message 1'])) #27
{
echo "<tr>
<td colspan='2"'
style=\"font-weight: bold;
font-style: italic;
font-size: 90%; color: red\">
{$SGLOBALS['message_1']}<p></td></tr>\n";
}
foreach($fields_1 as $field => $value) #36
{
$type = Stypes_1l[$field];
echo "<tr><td style=\"text-align: right;
font-weight: bold\">$value</td>
<td><input type='$type' name='$field’
value='".@$$field.""
size='{$length 1[$field]}"’
maxsize='{$length 1[$field]}"'>
</td></tr>\n";
} #46

<tr>
<td colspan="2" style="text-align: center" >

<input type="submit" name="Button"
value="<?php echo $elements_1['submit']?>">
</td></txr>
</table>
</form>
</td>

<!=-- Column that separates the two forms -->
<td style="background-color: gray"></td>
<?php
#HH S
Form 2
#HH S #63
?>
<td width="67%">
<p style="font-size: 110%; font-weight: bold">

Chapter 7: Building a Content Management System 25 1

<?php echo $elements_2['top']?>
<!-- Beginning of Form 1 (right side) -->
<form action=<?php echo $ SERVER['PHP SELF']?>
method="POST" >

<p>
<table border="0" width="100%">
<?php
if (isset ($GLOBALS['message 2'])) #74

echo "<tr>
<td colspan='2"
style=\"font-weight: bold; font-style: italic;
font-size: 90%; color: red\">
{$GLOBALS ['message_2'] }<p></td></tr>";
}
foreach($fields_2 as $field => $value) #82
{
$type = $types_2[$field];
if ($type == "select") #85
{
echo "<tr><td style=\"text-align: right;
font-weight: bold\">$fields_2[$field]</td>
<td><select name='§$field'>";
foreach ($options[$field] as $opt_id => Sopt_name)
{
echo "<option value='$opt_id'";
if (@$_GET[$field] == $opt_id)
echo " selected";
echo ">$opt_name\n";
}
echo "</select>";
}
else
{
echo "<tr><td style=\"text-align: right; #101
font-weight: bold\">$value</td>
<td><input type='S$type' name='$field’
value='".@$$field. !
size='{$length 2[$field]}"
maxsize='{$length 2[$field]}'>
</td></tr>";

} #109
?>
<tr>
<td colspan="2" style="text-align: center">
<p style="margin-top: .05in">
<input type="submit" name="Button"
value="<?php echo $elements_2['submit']?>">
</td></tr>

</table>

</form>

</td>

Continued

252 PartIv: Building Other Useful Applications

LisTiNGg 7-3: (Continued)

</tr>
</table>

<hr size="10" noshade>

<div style="text-align: center; font-size: 75%">
<?php echo $pagel['bottom']?>

</body></html>

Following is a description of the numbered lines of code that appear in
double_form. inc, in Listing 7-3:

#27

#36

#48

#63
#74

#82

#85

#101

#111

Checks for the existence of an error message that is stored in the
$_GLOBALS array. If it is set, the error message is displayed.

For each element in the $fields_1 array, which is used in the login
form, a form input element is constructed.

At line 48, the submit button is displayed. This button, if clicked, will
make the form submit to Login.php and the user’s user name and
password will be evaluated.

The form created after line 63 is the registration form.

The isset function call checks for the existence of an error message
that is stored in the $_GLOBALS array. If set, the error message is
displayed.

The foreach statement starts a loop through the elements that should
be displayed on the registration form, as defined by the $fields_2
array. Line 84 looks up the HTML element type for the field in the
$types_2 array (that is defined in fields_login.inc).

This block of code creates the drop-down list of departments. In a real-
life CMS, you will probably find tighter security. In the CMS example in
this chapter, the user is trusted to choose her department. Remember,
a user associated with a certain department has administrative rights
for that department. A real-life CMS should include another layer of
administration where a “super-user” can grant or revoke administra-
tive privileges.

In the HTML around line 101, a form input element is constructed.
The length of the element is defined in the $1ength_2 array (found
in fields_login.inc).

At line 111, the submit button is displayed. This button, if clicked, will
make the form submit to Login.php, and Login.php will process reg-
istration information. If the validation succeeds the user will be for-
warded on to the Intranet home page. If there is an error found while
validating the registration information, the login page will be redis-
played and the errors will be noted on the screen in red text.

Chapter 7: Building a Content Management System 253

Writing CompanyHome.php,
a data retrieval file

CompanyHome . php is responsible for setting up the data elements used by
company . inc, a file that will display the HTML interface. CompanyHome . php
is structured as a switch statement, with case blocks for each browse level.
The browse level reflects the level in the site hierarchy at which the user is
browsing, starting at the home page and drilling down to the content detail
level. The browse level is passed in the URL. The switch statement tests the
browse level and executes the appropriate case block. The following is an
overview of the structure of the script:

switch (browse_level)

case "home":

1l Get the list of departments from the Department
database table.

2 Use the list of departments to build left-hand
links to the departments.

3 Use the list of departments to build the main body
text of the Web page that will include the
department description text.

case "department":

1 Get the list of content types supported in the CMS
from the Content_Type database table.

2 Use the list of content types to build left-hand
links to the content type pages for the selected
department.

3 Use the list of content types to build main body
text of links to the content type pages for the
selected department.

case "content":

1 Get the list of content items based on the
department and content type that the user has
selected.

2 If no content items exist, display a message
indicating this.

3 If content items exist, list the items in a table.

4 If the user has administrative permissions in this

department, display links that allow the user to
add or edit the content item.

case "details":

1 Get the list of content details based on the
department, content type, and content item that
the user has selected.

2 If the user is an administrator, show a form that
includes elements that allow the user to upload
files.

3 Show any downloadable files in the left-hand
section of the Web page.

254 PartIv:Building Other Useful Applications

Listing 7-4 contains the PHP code that sets up data elements that are going to
be used to display the Web pages.

LisTING 7-4: GETTING THE DEPARTMENT AND CONTENT DATA FROM MYSQL

<?php
/* Program: CompanyHome.php

* Desc: Displays a Web page that has four levels:
* 1) the home page, 2) a department page, 3) a
* content list page, and 4) a detail page.
*/
if (!isset($_SESSION)) #7
session_start();
include_once("functions_main.inc");
$page = array(#12
"title" => "The Company Intranet",
"header" => "The Company Intranet",
"bottom" => "Copyright(R) 2005",
"left_nav_links" => array(),
"body links™" => array(),
"col_headers" => array(),
"data_rows" => array(),
)i
$admin = FALSE;
$base_url = "CompanyHome.php";
$trail = "Home"; #24
if (!isset($_SESSION['user_name']))
header ("Location: Login.php"); #27
else
{

if (isset($_SESSION|['user dept']l)
&& isset ($_GET['dept_id']l))
{ #32
$admin = $§_SESSION['user_dept'] == $_GET['dept_id'];
}

$cxn = Connect_to_db("vars.inc");
$left_nav links = array();
$page["browse_level"] =
isset ($_GET['browse_level']) ?
$_GET['browse_level'] : "home";

#38

switch ($page["browse level"]) #42

{
case "home":
$sql = "SELECT name, dept_id, description
FROM Department
ORDER BY name";

$results = mysqli_query($cxn, $sql);

$body links = "";
while($row = mysqgli_ fetch_ assoc($results)) #50
{

$link = "$base_url?dept_id=" . $row['dept_id']

"sbrowse_level=department";
$page["left_nav links"][$link] = $row['name'];
$body links .= "<a href=\"" . $link
m\n">" . Srow['mame'] . " - "
. $row|['description'];
}
$page["left_nav header"] = "Departments"; #59
$page["top"] = "Welcome to our Intranet";
$page["body text"] = "Welcome to our Intranet "
. "where each department shares content with "
. "the whole company. You can update your "
. "own departments content too with our simple "
. "interface.<p>Vist the departments' "
. "home pages: $body links";

break;

case "department": #70

$dept_id = $_GET['dept_id'];
$sql = "SELECT name, dept_id, description
FROM Department
WHERE dept_id = $dept_id ORDER BY name";
$results = mysqli query($cxn, $sql);
$row = mysqli_fetch_assoc($results);
$dept_name = $row|['name'];
$dept_desc= $row['description'];

$page["left_nav"] = "$dept_name Content";
$page["body text"] = "$dept_name - $dept_desc";
$sql = "SELECT a.name, a.type_id,

count (b.content_id)
FROM Content_Type a
LEFT OUTER JOIN Content b on
a.type_id = b.content_type
and b.dept_id = $dept_id
GROUP BY a.name, a.type_id ORDER BY name";
$results = mysqli query($cxn, $sql);

$body links = "";
while($row = mysqgli fetch assoc($results)) #92
{
$1link = "$base_url?dept_id=$dept_id"
"stype_id=" . $row['type_id']
. "&browse_level=content";
$page["left_nav_ links"] [$1link] = $row['name'];

$body links .= "<a href=\"" . $link
||\||>|| . $row['name'] . llll;
}
$page["left_nav header"] = "Content Index";

Continued

Chapter 7: Building a Content Management System 255

256 Part IV: Building Other Useful Applications

LisTING 7-4: (Continued)

$page["top"] = $dept_name;
$page["body text"] = "$dept_name - $dept_desc "
"<p>Vist the departments' "
. "areas: $body links";
$trail .= " - <a href='$base_url?dept_id=3$dept_id"
"sbrowse_level=department'>$dept_name";
break;

case "content": #110
$dept_id = $_GET['dept_id'];
$type_id = $_GET['type_id']l;
$sql = "SELECT a.name, a.type id, b.title,
b.description, b.content_date,
b.create_date, b.created_ by,
b.last_upd date, b.last_upd_by,
c.name as dept_name, content_id
FROM Content_Type a, Department c
LEFT OUTER JOIN Content b on
a.type_id = b.content_type
and a.type_id = b.content_type
and b.dept_id = $dept_id
and b.content type = $type_ id
WHERE c.dept_id = $dept_id
ORDER BY content_date DESC";
$results = mysqgli_ query(S$Scxn, $sql);

$body links = "»;
$content_count = 0;
$page["body text"] = "»;
while($row = mysqgli fetch assoc($results)) #132
{
if (!isset($area_name) && $type_id == Srow["type_id"])
{

$row["name"];
$row["dept_name"];

$area_name =
$dept_name =
}
$link = "$base_url?dept_id=$dept_id"

. "&type id=" . $row['type_ id']

. "&browse_level=content";
$page["left_nav links"][$1link] = $row['mame'];

if (lisset($row["content_id"])) #144
continue;

$content_id = $row["content_id"];

$content_count++;
$link = "$base_url?dept_id=$dept_id"

. "&type_id=$type_id&browse_level=content";
$page["left_nav links"][$1link] = $row['mame'];

Chapter 7: Building a Content Management System 25 7

$page["data_rows"][] = S$row;
}
if ($content count == 0) #156
{

$page["body text"] = "There are no $area_name

content items for $dept_name";

}
if ($admin) #161
{

$page["body_text"] .= "<p>[<a
href='%$base_url?dept_id=$dept_id"
"sbrowse_level=details&type_ id=$type_id"
. "&content_id='>add]1";

}

$page["col_headers"] ["title"] = "$area name Title";

$page["col_headers"] ["content_date"] = "$area_name.)
Date";

$page["col_headers"] ["create_date"] = "Created On";

$page["col_headers"] ["created_by"] = "Created By";

$page["col_headers"] ["last_upd date"] =
"Last Updated On";

$page["col_headers"] ["last_upd by"] =
"Last Updated By";

$page["left nav header"] = "Content"; #176
$page["top"] = "$dept_name - $area_name";
$trail .= " - <a href='$base_url?dept_id=%$dept_id"
. "&browse_level=department'>$dept_name";
$trail .= " - <a href='$base url?dept_id=$dept_id"
. "&browse_level=content"
. "&type_ id=$type_id'>$area name";
break;
case "details": #185

$dept_id = $_GET['dept_id'];
$type_id = $_GET['type_id']l;

$sgql = "SELECT a.name as dept_name, b.name
FROM Department a, Content_Type b
WHERE b.type_id $type_id

and a.dept_id $Sdept_id

ORDER BY name";

$results = mysqli_ query($cxn, $sql);

$body links = "";

$content_count = 0;

while($row = mysqgli_ fetch assoc($results)) #198
{
$area_ name
$dept_name

$row["name"];
$row["dept_name"];

if (!isset($row["content_id"])) #203
continue;

Continued

258 PartIv: Building Other Useful Applications

LisTiING 7-4: (Continued)

$content_count++;
$link = "$base_url?dept_id=$dept_id"

. "&type_id=".$row['type_id']

. "&browse_level=content";
$page["left_nav links"][$1link] = $row['mame'];
$body links .= "<a href=\"" . $link

||\||>|| . $row['na.me'] . ||n'.
}
$create_date = date("m/d/y", time());
$created by = $_ SESSION["user name"];
$last_upd by = $_SESSION["user name"];

$content_id = $§_GET["content_id"];

$edit = $admin && (@$_GET["edit"] == "true"

|| $content_id == "");
if ($content_id != "v) #222
{

Connect_to_db("Vars.inc");
$sql = "SELECT content_id, dept_id, content_date,
content_type as type_ id, title,
description, create_date,
created_by, last_upd date, last_upd_ by
FROM Content
WHERE content_id = $content_id";
$results = mysqli_query($cxn, $sql):
if ($row = mysqli_ fetch assoc($results))

foreach ($row as $key => $value)
$$key = $value;
}
$sql = "SELECT download_id, file_name
FROM Content_Download
WHERE content_id = $content_id";

$results = mysqli_query($cxn, $sql):;
while($row = mysqgli_fetch_assoc($results)) #242
{
$download_id = $row["download id"];
$file name = $row["file_name"];
$link = "files/$download_id/$file_name";
$page["left_nav_links"][$1link] = $file_name;

if ($edit) #249
$page["left_nav_links"][$1link] .= "
[<a href=\"Admin.php"
"?action=DeleteDownload&download_id=$down)

load_id\"

>del1";

}
}

foreach ($_GET as $name => $value) #257

Chapter 7: Building a Content Management System 259

$$name = $value;

$edit = $admin && (@$_GET["edit"] == "true" || $con)
tent_id == "");

$page["top"] = "$dept_name - $area_name";

if ($edit) #264

{

$page["body text"] = "<center><u>Add Downloads</u>";
for ($i = 0; $i < 3; $i++)
{
$page["body_ text"] .=
"
<input type='file' name='upload file$i'>";

}

$page["body text"] .= "
</center> <p />
<center>
<input type='reset' name='action'
value ='Reset Form'>
<input type='submit' name='action'
value ='Cancel'>
<input type='submit' name='action'
value ='Save Changes'>
</center>";

$page["top"] .= " Edit/Create";
else

$page["body text"] =
"Back";

}
$page["left_nav_header"] = "Downloads";
$trail .= " - <a href='$base_url?dept_id=%$dept_id"
. "&browse_level=department'>$dept_name";
$trail .= " - <a href='$base url?dept_id=$dept_id"
. "&browse_level=content"
. "&type_ id=$type_ id'>$area_ name";
break;

}

include ("company.inc");

?>

260 Part IV: Building Other Useful Applications

Following is a description of the numbered lines of code that appear in
CompanyHome . php, shown in Listing 7-4:

#7

#12

#24

#27

#32

#38

#42

#50

Lines 7 and 8 ensure that a session has been started. The isset call
at line 7 is used because Admin.php, which also has a session_
start call, uses this file in an include call. Without the isset check for
the $_SESSION variable, a notice might be displayed, like this: “Notice:
A session had already been started — ignoring session_start().”
This notice would display on your PHP page if the error_reporting
level (set in the php. ini file) includes the £E_NOTICE level.

Lines 12 to 19 set up some strings and arrays that will be used in
company . inc to display the Web page. You can change the title,
header, and bottom variables to reflect the name of your company.
The left_nav, body_links, col_headers, and data_rows elements
are actually lists of data elements.

Here a variable named $trail is defined. This string will be used to
build a trail of links that will represent the hierarchy of the site that
the user has traversed. In Figure 7-3 earlier in this chapter, you see
the trail includes Home, the department being browsed (Human
Resources), and the content area being browsed (FAQ).

Line 27 and 28 check that the user is registered and has logged in. You
can remove these lines if you want to open up the Web site to unregis-
tered users. Some intranet Web sites don’t require a login unless the
user is trying to enter an administrative part of the site.

Lines 30 to 34 set the $admin variable to either TRUE or FALSE. The
$admin variable, defined at line 22, is used to determine whether a
user has administrative privileges to the area of the Web site that the
user is browsing.

Lines 38 to 40 set up the browse_1level variable (really an element in
the $page array). The browse level determines whether the user is
looking at

v The company’s home page (browse_level of "home")
A department’s home page (browse_level of "department")

A content item list (browse_level of "content")

X Y X\

The detailed view of a single content item (browse_level of
"details")

Line 42 contains a switch statement that executes a block of code that
depends on the level of hierarchy at which the user is browsing.

Line 50 gathers the departments that make up the company’s intranet.
The design of the Department table (Table 7-2) enables flexible addi-
tion of new departments (or removal of departments that have been
axed).

Chapter 7: Building a Content Management System 26 1

#59

#70

#92

#110

#132

#144

#156

#161

#176

#185

#198

Lines 59 to 66 fill in some page-level variables. The “home”
browse_level represents the main home page (as seen in Figure 7-1).
At this level, the departments are listed. The 1eft_nav_header, top,
and body_text elements of the $page array are set here. To make the
CMS more managed (and less programmer-dependant), you can have
the CMS get these strings from the database. Of course, to make the
CMS truly user-managed, you have to build an interface to change
these strings.

Lines 70 to 88 are used to build the department-level display as
shown in Figure 7-2 (shown earlier). The SQL that ends at line 88 uses
an OUTER JOIN clause to make sure that all the content types are
retrieved from the Content_Type table. If a regular join (INNER JOIN)
were used here, then if there were no content items in the Content
table for the department, no rows would get returned. The OUTER
JOIN clause gets the content types (from the Content_Type table)
regardless of if no content items exist (in the Content table).

Begins a loop through the list of content types. At lines 94 to 96, the
link to the content list is constructed.

Begins a block of code that builds the content-level display, as shown
in Figure 7-3, earlier in the chapter.

Begins a loop through the list of content items. When the execution is
at this point in the code, the program knows the department and con-
tent type in which the user is browsing.

At line 144, a check for content_id is done. If content_id isn’t set,
the loop continues its next iteration. The content_id variable can
be null because of the LEFT OUTER JOIN clause in the SQL. The
code constructs the left-hand links to the content types regardless
of whether there are items in the Content table. Line 153 assigns the
data_rows element of the $page array to the results of the query.

Line 156 checks the number of content items processed in the previ-
ous loop. If there are no content items, a message is displayed so that
the user doesn’t simply see a blank page.

Begins a block of code that will add an administrative “add” link if the
user is an administrator of the department being browsed.

Lines 176 and 177 set up some display items to let the user know that
the level of data being browsed is the content level. Lines 178 to 181
set up the trail of links that helps the user determine where in the
Web site hierarchy she is browsing.

Begins a block of code that builds the content detail-level display, as
shown in Figure 7-4 and Figure 7-5.

Begins a loop through the list of content items. When the execution is
at this point in the code, the program knows the department, the con-
tent type, and the exact content item to which the user has browsed.

262 Part IV: Building Other Useful Applications

#203 At line 203 (like at line 144), a check for content_id is done. If the
content_id variable isn’t set, the loop continues its next iteration.

#222 If the scontent_id contains a value, the code knows that the user is
editing an existing content item. If this $content_id variable is
empty, then the user is creating a new item.

#242 Begins a block of code that builds the list of downloads for a content
item. In Figure 7-5, shown earlier, you can see in the left area of the
Web page that one download is available.

#249 Begins a block of code that will add an administrative “del” link if the
user is an administrator of the department being browsed. The “del”
link will allow the user to delete the specific download item.

#257 Begins a loop through the $_GET array and sets up variables based on
submitted HTML form elements.

#264 Begins a block of code used to build links for administrative actions.
Users who aren’t administrators in a department in which they are
browsing won’t see any administrative links and will be restricted to
a read-only view of the data.

#297 This is the end of the CompanyHome . php script. At this point in the
program’s execution, the data needed to construct the HTML has
been set up. Now, the company . inc file is included to actually build
the HTML display.

Writing company.inc, the
main HTML display file

The preceding code file, CompanyHome . php (shown in Listing 7-4), does most
of the work of determining where the user is in the hierarchy of the Web site,
if the user is an administrator, and what the title is of the Web page. The next
code file, company . inc — shown in Listing 7-5 — does the display work. It
parses the data lists set up in CompanyHome . php and builds the HTML.

LisTiNnG 7-5: BuILDING THE HOME AND DEPARTMENT HTIMIL DispLAY

<?php
/* File: company.inc
* Desc: Contains the code for a Web page that displays

* company and department data.

*/
include_once("functions_main.inc"); #6
?>

<html>

Chapter 7: Building a Content Management System 263

<head><title><?php echo $page['title']?></title></head>
<body style="margin: 0">
<h3 align="center"><?php echo $page['top'] ?></h3>
<div style="font-size: 70%; font-weight: bold">
<?php echo $trail ?></div>
<hr size="10" noshade>
<table border="0" cellpadding="5" cellspacing="0">
<?php
#H#H S
Left Nav
##H S #16
?>
<tr>
<td width="20%" valign="top" >
<p style="font-size: 110%; font-weight: bold">
<?php echo $page['left_nav header']?></p>
<table border="0">
<?php
foreach($page["left_nav links"] as $link => $label) #27
{
echo "<tr><td >"
. "$label<p><p></td></tr>\n";

}
if (sizeof($page["left_nav links"]) == 0)
echo "<i>no items yet</i>";
?>
</table>
</td>
<!-- Column that separates the two forms -->
<td style="background-color: gray"></td>
<?php
#H#HH S
Main Content
G s B i s E
?>
<td width="80%" valign="top">
<form method="POST" action="Admin.php"
enctype="multipart/form-data">
<?php
if ($pagel["browse_level"] == "details") #50
{

include("fields_content.inc");
include("content_form.inc");

}
else if (@$content_count > 0) #55
{
echo "<table cellspacing='3' cellpadding='3"
width='100%'bgcolor="'gray"'>

Continued

264 Part IV: Building Other Useful Applications

LisTING 7-5: (Continued)

<tr bgcolor='lightgray'>\n";
foreach ($pagel"col_headers"] as $key => $display)

{
echo "<th >$display</th>\n";cl
}
echo "<th nowrap> </th>\n";
echo "</tr>\n";
foreach ($page["data_rows"] as S$row) #66
{

echo "<tr bgcolor=white>\n";
foreach ($pagel["col_headers"] as S$key => $display)
{
if (ereg("date", S$key))
s$row[$key] = date("m/d/y", strtotime($row[Skeyl)):;
echo "<td nowrap>".$row[$key]."</th>\n";

}

echo "<th nowrap>[";

if ($admin) #76
{

echo "<a href=\"Admin.php?action=delete"
. "&dept_id=$dept_id&type_id=$type id&content_id="
. $row["content_id"] . "\">delete\n";
}
echo "<a href=\"CompanyHome.php?"
"gdept_id=$dept_id&type id=$type_ id&content_id="
. $row["content_id"] .
"gbrowse_level=details&edit=false\">"
. "view\n";
if ($admin) #86
{
echo "<a href=\"CompanyHome.php?"
. "&dept_ id=$dept_id&type_ id=$type id&content_id="
. $row["content_id"] .
"gbrowse_level=details&edit=true\">"
. "edit\n";
}
echo "]</th></tr>\n";
}
echo "</table>\n";
}

echo $page["body text"];
?>
</form>
</td>

</txr>
</table>
<hr size="10" noshade>
<div style="text-align: center; font-size: 75%">
<?php echo $pagel['bottom']?>
</body>
</html>

Chapter 7: Building a Content Management System 265

Following is a description of the lines of numbered code that appear in
company . inc, shown in Listing 7-5:

#6

#16

#27

#50

#55

#66

#76

#86

Line 6 ensures that the file that has the code for connecting to the
database in included once.

Begins an HTML row and the left column that contains either the
departments (when the user is at the home page), the content types
(when the user is at a department page), or the available downloads
(when the user is viewing a content item’s details).

Begins the loop of the links on the left. If no links exist, ano items
yet message is displayed.

If the user is looking at a specific content item, the HTML is built by
the included files.

If more than one content item is listed, an HTML table listing the con-
tent items is constructed. Lines 57 to 65 set up the beginning of the
HTML table.

Begins the loop that builds a row in the HTML table for each content
item.

If the user is an administrator, a link to delete the content item is
added to the display.

If the user is an administrator, a link to edit the content item is added
to the display.

Writing the content detail code

The Web site is designed in such a way that the user will drill down to the
details. The home page and the department page don'’t list the full details of a
single content item. The content detail page has all the information related to
a single content item.

Writing fields_content.inc, setting up fields for the detail page

This next file — fields_content, shown in Listing 7-6 — sets up the elements
to display on the content item form. The $fields associative array maps the
form element IDs to display names. Some form names are left blank because
they are hidden.

260 Part\V: Building Other Useful Applications

LisTiNG 7-6: SETTING UP ELEMENTS AND TYPES USED TO BuiLD DisPLAY

<?php

/* File: fields_content.inc

* Desc: Contains arrays with the field names and form

* elements for the content pages.

*/

include_once("functions_main.inc");

$fields = array("content_id" => nn,
lldept_idll => nn
“type_:i.d“ => un,
"title" => "$area_name Title",
"description" =>

"Sarea name Description",

"content_date" => "$area_name Date",
"create_date" => "Creation Date",
"created_ by" => "Created By",
"last_upd_date" => "Last Updated",
"last_upd_by" => "Last Updated By"
)

$types = array("content_id" => "hidden",
"dept_id" => "hidden",
"type_id" => "hidden",
"content_date" => "date",
"title" => "text",
"description” => "textarea",
"create_date" => "datelabel",
"created_ by" => "label",
"last_upd date" => "datelabel",
"last_upd_by" => "label"
)

$length = array("content_date" => "iQ",
"title" => ||30||);

?>

The $fields associative array sets up the key to display mapping. The
values of this associative array will be used in the labels on the HTML form.
The $types associative array sets up the key to HTML type mapping. The
values of this associative array determine the type of HTML element to use in
the HTML form. The $1ength array maps an element key to the length of the
HTML text box to be used in the display.

Writing content_form.inc, the content item detail display code

This next file — content_form, shown in Listing 7-7 — works as a form for
editing data for a content item and also as a read-only view of a content item.
If the user is an administrator, the form is shown, but non-administrators see

only a read-only view of the data.

Chapter 7: Building a Content Management System 26 7

LisTING 7-7: BUILDING THE CONTENT DETAIL HTML DispLAY

<?php

/* File: content_form.inc
* Desc: Contains the display code for a content item.
*

?> /

<p>

<table border="0" width="100%">

<?php

if (isset ($GLOBALS['message_2'])) #10
{
echo "<tr>
<td colspan='2' style=\"font-weight: bold;
font-style: italic;
font-size: 90%; color: red\">
{$GLOBALS['message_2"'] }<p></td></tr>";

}
$edit = $admin && (@$_GET["edit"] == "true" #19
|| @$content_id == "");

foreach($fields as $field => $value) #21
{

$type = $types[$field];

if ($type != "hidden" && !S$edit)

{

$type = $type == "date" ? "datelabel" : "label";
}
switch ($type) { #28

case "hidden":
echo "<input type='hidden' "
. "name=\"$field\" value=\"".@$$field."\">";
break;

case "datelabel":
if (!isset($$field) || $$field == "")
break;
$$field = date("m/d/Y", time($$field));

case "label":
echo "<tr><td nowrap valign=top
style=\"text-align: right;
font-weight: bold\">$value:</td>
<td valign=top>".@$$field."</td></tr>";
break;

case "date":
if (isset($$field) && $$field != "")
$4field = date("m/d/Y", time($$field));

case "text":
echo "<tr><td valign=top nowrap
style=\"text-align: right;

Continued

268 Part IV: Building Other Useful Applications

LisTING 7-7: (Continued)

font-weight: bold\">$value:</td>
<td valign=top>
<input type='$type'
name='$field’
value='".@$$field.""
size='{$length[$field]}"
maxsize='{$length[$field]}'>";

if ($type == "date")

echo " <i>(mm/dd/yyyy)</i>";
echo "</td></tr>";
break;

case "textarea":
echo "<tr><td nowrap style=\"text-align: right;
font-weight: bold\">$value</td>
<td><textarea name='$field' cols=40 rows=8>"
. @$sfield
. "</textarea>
</td></tr>";
}
}
?>
<input type="hidden" name="browse_level" value="details">
<tr><td colspan="2" style="text-align: center">
<p style="margin-top: .05in">
</table>

Following is a description of the numbered lines that appear in content_
form. inc, shown in Listing 7-7:

#10 Begins a block of code that, if message_2 is set in the $_GLOBALS
array, displays the error text that is stored in the array element.

#19 The $edit variable gets set to either TRUE or FALSE. If the user is an
administrator and the user clicked the Edit link to get to the detail
page, $edit is set to TRUE and the page shows up in the edit mode.
Otherwise, sedit is set to FALSE and the page appears in a read-only
view.

#21 Begins a loop through the form elements. HTML is constructed based
on the attributes set in the $types array and whether the user can
edit the content item.

#28 Begins a switch statement that looks at the type of the element and
builds the HTML based on that type.

Chapter 7: Building a Content Management System 269

Writing Admin.php, the
data manipulation code

When writing code that is going to make changes to data, you can never be
too careful when validating that the user has proper access to modify data,
that the data being submitted is valid, and that related data relationships are
valid. In the CMS example in this chapter, some validation is done, but for
simplicity’s sake only a couple checks are in place. Ideally, you should look at
every line of code and ask yourself whether someone could in any way mali-
ciously (or accidentally) reach an invalid state in the code. You can use the
built-in assert function while debugging your code to check any code
assumptions.

The brains of the CMS reside in the Admin.php file. ltems are added, deleted,
and modified in this code file. The form built in the content_form. inc file
will post its form elements to Admin.php. Admin.php has to validate data,
redirect the user to the next display, and save the data to the database.

Here is the basic flow of the administrative PHP file (Admin.php), which is
shown in its entirety in Listing 7-8:

Loop through the submitted form elements.
Examine the action that the user is performing:
switch (action)

case "delete":

1 Delete the content details from the Content table
for the content item that the user is trying to
delete.

2 Delete any download items from the Content_Download
table that are associated with the content item
that the user is deleting.

case "Save Changes":

1 Organize and validate the form elements being
submitted.

2 If the user is saving a new content item, insert a
new row into the Content database table.

3 If the user is saving an existing content item,
update a row in the Content database table.

4 Loop through the files that have been uploaded and
add their details to the Content_Download table.

case "DeleteDownload":
1 Delete from the Content_Download table a single
item.

2 70 Part IV: Building Other Useful Applications

LisTING 7-8: UPDATING THE DATABASE AND SAVE UPLOADED FILES

<?php
/* File: Admin.php
* Desc: Perform any data manipulation tasks, like
* creating, editing, or deleting content items.
*/

session_start();
include_once("functions_main.inc");

foreach ($_POST as $name => $value) #9
$$name = $value;

foreach ($_GET as $name => $value) #11
$$name = $value;

if (l!isset($action)) #14
header ("Location: CompanyHome.php"):;

if (!isset($create_date)) #17
$create_date = date("Y-m-d", time());

else

$create_date = time($create_date);
if (!isset($content_date))

$content_date = date("Y-m-d", time());
else

$content_date = strtotime($content_date);

$content_date = date("Y-m-4d", $content_date);
$last_upd date = date("Y-m-d", time());

if (lisset($created_by))
$created_by = $_SESSION["user_ name"];

$last_upd by = $_SESSION["user name"];

$cxn = Connect_to_db("Vars.inc");

switch ($action) #35
{
case "delete": #37
$sql = "DELETE FROM Content

WHERE content_id=$content_id";

mysqgli_query($cxn, $sql);

$sqgql = "DELETE FROM Content_Download
WHERE content_id=$content_id";

mysqgli_query($cxn, $sql);

break;
case "Save Changes": #48
$message 2 = "";

if ($content_date <= 0)
$message 2 = "Invalid Content Date";

Chapter 7: Building a Content Management System 2 7 1

if ($title == "n)
$message 2 .= "Title cannot be left blank";

if ($message_2)

$message_2 = "Please correct these errors: $message_2";
if ($message_ 2 != "")
{
include ("CompanyHome.php") ;
exit();
}
if ($content_id) #65
{
$sql = "UPDATE Content
SET title = '$title’,
description = '$description’',
content_date = '$content_date’,
last_upd_date = '$last_upd_date',
last_upd by = '$last_upd_ by’
WHERE content_id = $content_id";
}
else #75
{
$sgl = "INSERT Content (dept_id, content_type,
title, description, content_date,
create_date, created_by,
last_upd_date, last_upd by)

VALUES ($dept_id, $type_id, '$title’',
'$description', 'S$content_date',
'$Screate_date', 'S$created by’',
'$last_upd_date', '$last_upd by')";

}
Connect_to_db("Vars.inc"); #87

mysqli_query($cxn, $sql);

if (!$content_id)
$content_id = mysqli_insert_id($cxn); #92

foreach ($_FILES as $file) #94
{
$file name = $file["name"];
if ($file["size"] <= 0)
continue;

$sql = "INSERT Content_Download (content_id, file_ name)
VALUES ($content_id, '$file_name')";

mysqli_query($cxn, $sql);

$file id = mysqgli insert id($cxn); #103

$dest_dir = "files" .DIRECTORY SEPARATOR.$file id;

$dest_file = $dest_dir.DIRECTORY SEPARATOR.$file_name;

Continued

2 72 Part IV: Building Other Useful Applications

LisTING 7-8: (Continued)

if(!'file_exists($dest_dir)) #107
{
if (!mkdir ($dest_dir, 0700, TRUE))
die ("Can't archive attachments to $dest_dir");

}
if (!file_exists($dest_file)) #113
{
if (!move_uploaded_file($file["tmp_name"],
s$dest_file))
die ("Can't archive attachments to $dest_dir");
}
}
break;
case "DeleteDownload": #121
$sqgql = "SELECT a.dept_id, a.content_type

FROM Content a, Content_Download b
WHERE b.download_id=$download_id
AND a.content_id = b.content_id";

$results = mysqgli_ query($cxn, $sql);

$row = mysqgli_fetch_assoc($results);
$dept_id = $row["dept_id"];
$type_id = $row["content_type"];
#132
$sql = "DELETE FROM Content_Download
WHERE download_id=$download_id";
mysqli_query($cxn, $sql);

break;
case "Cancel":
break;

}

$query str = "browse_ level=content" #142
. "&dept_id=$dept_id&type_id=$type_ id";

header ("Location: CompanyHome.php?$query str");

?>

Following is a description of the numbered lines that appear in Admin . php,
shown in Listing 7-8:

#9 Begins a loop through the form elements that have been submitted to
Admin.php by using the POST form method.

#11 Begins a loop through the form elements that have been submitted to
Admin.php by using the GET form method.

Chapter 7: Building a Content Management System 2 73

#14

#17

#35

#37

#48

#65

#75
#87

#92

#94

When the form from content_form. inc is submitted to Admin.php,
it should supply an action. Without an action (that gets set in the
$action variable), the code won’t know whether the user is trying to
add, delete, or modify a content item. Therefore, if no action has been
supplied, the user is sent back to the home page by the header direc-
tive. The "Location: pathname" header directive tells the user’s
browser to go to another location. There are other headers that are
useful when designing dynamic Web sites. The "Pragma: no-cache"
header directive tells the user’s browser how to manage caching. The
"Expires: GMT time" header directive can help make sure timely
content is refreshed. (Note that these are not used in this chapter.)

For new content items, the creation date is created from scratch by
using the time () function. In this file, you see the time, strtotime,
and date functions used. The time function creates an integer storing
the milliseconds since January 1, 1970, GMT, also known as the UNIX
Epoch. The strtotime function is used to parse a generic date string
in an attempt to retrieve a real-time value. (A -1 returned from this
function means that PHP cannot determine the time value of the
string passed in as a variable.) The date function will take a time
variable and apply a formatting to it.

Begins a switch block that examines the action that the user wants
to take for a content item. The user might be adding a new content
item, adding a new download item, deleting a content item, deleting a
download item, or editing a content item’s details.

Begins a block of code that deletes a content item. Associated down-
load items are also deleted in lines 42 to 44.

Begins a block of code that saves changes to a content item. Lines 49
to 58 validate some of the submitted form elements. At line 63, if
there are any problems found while validating the submitted form,
the user is sent to back to the content details page.

At lines 65 to 74, SQL is constructed for updating an existing content
item that the user is attempting to update. The code knows that this
is an item to edit (as opposed to being a new item) because the check
for the scontent_id variable passes.

At lines 75 to 85, SQL is constructed for a creating a new content item.

Lines 87 to 89 connect to the database and execute the SQL that will
either create or update a content item.

Lines 91 and 92 will fill in the $content_id variable if the item is a new
item. The mysqgl_insert_id function will retrieve from the database
the value of the identity column from the most recently inserted row.

Begins a loop that will save each uploaded file that the user has
attached. In Figure 7-4 (shown earlier), you see an Add Downloads
section of the Web page where, using the Browse button, the user can
upload a file. Three downloads are shown by default, but you can add

2 74 Part IV: Building Other Useful Applications

#103

#107

#113

#121

#132

#142

more after saving the content item details if the user returns to the
edit view of the content item.

The file is stored in the file system by using a path that includes the
identifier of the row ($file_id) in the Content_Download table.
Notice the DIRECTOR_SEPARATOR constant. This built-in constant
helps ensure that your code is portable across different operating
systems. If you were to hard-code a backslash (\) as the directory
separator (like C: \www\ files), then if you ever had to relocate your
code to a UNIX or Mac server you might find that your code failed
when trying to access an invalid file path.

Checks for the existence of the destination directory. This directory
should be unique, so you could insert additional error checking code
here to display a system error if the $dest_dir directory already
exists. The directory is created at line 109.

Checks for the existence of the destination file. It shouldn’t already
exist, but your PHP code should never assume too much about the
state of the system. At line 115, the file that was uploaded by the user is
moved to the destination that the CMS has constructed, the $dest_dir
directory. The move_uploaded_file function call is necessary because
PHP will eventually remove any uploaded files that it stored in the tem-
porary file location (determined by the upload_tmp_dir value in the
php.ini file). The PHP code in the example in this chapter does not
restrict the file upload size. You can restrict the size of uploaded files in
one of two ways:

v Change the upload_max_filesize setting in the php. ini file.

v Add a hidden input field to the HTML form named
MAX_FILE_SIZE and enter a value (in bytes) in the HTML
input’s value field.

At line 121 is a block of code for is deleting a download item. The first
SQL query retrieves the dept_id and type_id values from the data-
base for the download item that is being deleted. This is done so that
the next page being displayed has enough information to maintain the
user’s place in the hierarchy of the Web site being browsed.

Delete the database information pertaining to the download item.
Notice that the file hasn’t been deleted from the file system. To do
this, the code would need to retrieve the path of the download item
(before the database row is deleted) and then use the unlink func-
tion to delete the actual file.

At this point in the code’s execution, all data manipulation has been
done, and the code redirects the user (via the Location header direc-
tive) to the home page.

Chapter 7: Building a Content Management System 2 75

Building the CMS Application:
Object-Oriented Approach

When designing an objected-oriented system, designers can define the object
model first — including the properties, methods, and constructors of the
objects — without filling in all the code that will eventually reside in the
objects. By first designing the high-level objects, designers, programmers,
and users can conceptually view a system and hopefully find any holes in the
design before writing a bunch of code. Furthermore, with an object model
design in place, the coding tasks can be broken up among multiple program-
mers. As long as the programmer knows the methods of an object, she can
write code that uses objects that someone else coded. For more information
on designing an object-oriented system, check out An Introduction to Object-
Oriented Analysis: Objects and UML in Plain English, 2nd Edition, by David
William Brown (Wiley).

Writing the object model

In the section “The objects” I tell you about the classes that make up the
object model for the CMS in this chapter. The object-oriented code is func-
tional and reuses much of the procedural code. The biggest difference
between the procedural code and the object-oriented code is that a set of
objects have been created to encapsulate the underlying data objects.

QQN\BE” If you look at the DDL defined earlier in this chapter (in the “Designing the

> Content_Type table” section), you see a direct correlation between the under-
lying database tables and the following classes. The object models that you
design for other applications might not always reflect your database structure.

The CMS example in this chapter consists of departments, content areas,
content items, and downloads. Each of these things can be represented using
objects. For instance, a Department object has methods that reveal the name
and description of a department.

The objects

The Department, ContentType, ContentItem, and ContentDownload classes
are used in this chapter and help to make up the object model for the CMS. I
describe them here, along with a couple other classes:

v Department: This class represents a department within a company’s
organization. The CMS application in this chapter cares only about the
department’s name, description, and its underlying ID in the database.
This class has only read-only methods because the CMS application has
no mechanism for modifying the department list. The department list is

2 76 Part IV: Building Other Useful Applications

driven by the contents of the Department table. A possible enhance-
ment to the CMS example in this chapter would be an administrative
module that would allow administrators to add new departments to
the system.

V¥ ContentType: Within the CMS, a user can browse a number of content
types, such as New, Events, and FAQs. The ContentType class helps the
CMS categorize the content data. The class contains only an ID and a
name. The content type list is driven by the contents of the Content_Type
table. A possible enhancement to the CMS example in this chapter would
be an administrative module that would allow administrators to add new
content types to the system.

v ContentItem: This class is the workhorse of the CMS. This class encap-
sulates the data that users are creating or editing. The underlying data is
stored in the Content table in the database. This class has save and
delete functions so that changes to the object can be reflected in the
database.

v ContentDownload: This class, representing data stored in the Content_
Download table, simply exposes a filename and ID. The save and delete
functions allow the PHP code to persist the object’s details to the
database.

v BaseInfo: The classes outlined in the preceding bullets have a couple
things in common: a name and an identifier. The BaseInfo class is the
common denominator among the other classes. This class allows you
to simplify all the other classes because the common code has been
centralized in one class.

V” Database: This class encapsulates the setup of the database connec-
tion. The getConnection function is used by consumers of this object
to get the database connection. A benefit of object-oriented program-
ming (OO programming) is that implementation details can be in a black
box. In other words, code that uses the Database class doesn’t need to
know how the class sets up database connections. Consumer code cares
only about the methods that objects make available.

v WiebForm: The WebForm class provides forms for the application. It col-
lects and processes the information typed by a user.

Creating static finder methods

How do you get data from the database into an object representation in your
PHP code? There are several approaches to this. You could build a single PHP
file to search for data and instantiate the appropriate objects. You could put
the object instantiation code wherever the need for objects arises. In the
example in this chapter, the factory approach is used. A factory method is
responsible for taking some search parameters and returning the desired
object or objects. Factory methods have a simple, straightforward job: They
just churn out objects. The finder methods have static scope. This means that
the factory methods do not require an instantiated object to execute. For

Chapter 7: Building a Content Management System 2 77

regular class methods, the object has to be instantiated (created) with the
new keyword before its methods can be used. Static methods do not need to
be executed within an object context.

The static finder methods for the objects in the object model in this chapter
reside in the objects’ code. Therefore, each class is responsible for locating
the underlying data from the database and instantiating the objects that rep-
resent the data. For instance, the Department object has a method, findall,
that returns an array of Department objects. The findByTd method returns a
single object (or NULL if no data is found in the database for the ID that is
supplied as a parameter to the method call). The name of each of the finder
method begins with £ind.

A static method is called by using the format ClassName: : staticMethod
Name (). This is different from an object method call, which looks like
$variableNam->methodName (). Here are some more illustrations of
code that use object methods versus static method calls:

Object instantiation
$object_instance = new MyObject();

Object method call
echo $object_instance->getDescription();

Static method call, returns an array of objects
$object_array = MyObject::findAllData():;

Static method call, returns a single object
$object_instance = MyObject::findById($id):;

Object method call
echo $object_instance->getName();

Creating getter and setter methods

Objects reveal their details through getter methods. These methods, usually
with a name beginning with get, return an object’s attributes. If you were
designing an Employee object, you might implement these getter methods:
getFirstName, getLastName, get IdNumber, getAge, and so on. Setter meth-
ods, on the other hand, are methods that enable consumers of the objects to
set an object’s attributes. Some setter methods of an Employee object might
include setFirstName, setLastName, setDepartment, setAge, and SO on.

Writing a basic data class

When creating an object model, you can often factor out (or generalize)
common attributes and functions into a base class. In the CMS in this chap-
ter, each of the data objects has an identifier and a name. These properties,
along with a static helper function to retrieve a database connection, will
make up the base class, BaseInfo.class.

2 78 Part IV: Building Other Useful Applications

The properties
The BaseInfo properties store the ID and name of an item. The properties are:

protected $id;
protected $name;

The first property, $id, is the underlying identifier of the column. The $name
property is a displayable name or title for the item. Notice that these properties
are protected, which means that the properties cannot be accessed from con-
sumers of the object. However, subclasses do have access to these properties.

The code

Listing 7-9 contains the complete code for the BaseInfo class. I discuss each
method in detail after the code listing.

LisTING 7-9: THE BAsSEINFO CLASS

{

<?php
/* Name: BaseInfo.class

* Desc: Base Class from which the data objects can

* extend. The ID and name are common among
* all the data objects. Also, the database
* connection can be obtained from this class.
*/

include_once("Database.class");

class BaseInfo

protected $id;
protected $name;

function __construct($id, $name)
{

$this->id = $id;

$this->name = $name;

}

protected static function getConnection()
{
$db = new Database("Vars.inc");
$db->useDatabase ("IntranetCMS") ;
return $db->getConnection();
}

public function getId()
{

return $this->id;

Chapter 7: Building a Content Management System 2 79

}
public function getName ()
{
return $this->name;
}
}
?>

The constructor

The constructor requires an identifier and a name. These parameters are
used to assign values to the properties of the object.

getConnection

This method simply instantiates a Database object and uses its get
Connection method to return the database connection. The method is
static because the finder methods, which are static too, need to obtain a
database connection to perform a search.

getld, getName

The $id value is exposed by the get1d function. In object-oriented program-
ming, you should try to declare functions to get and set internal attributes
instead of exposing class variables by making them public. This helps to
ensure that a class strictly controls its internal state. The getName method
returns the name of the object.

Writing the Department class

The Department class encapsulates the information that makes up a depart-
ment within the organization. This includes the department name, descrip-
tion, and the department ID.

The properties

The Department object’s properties store information about a single depart-
ment within the organization. The properties are:

protected $description;

Notice that this class defines one property, but the class really has three
properties. The other two properties (ID and name) are defined in the
BaseInfo class. Because the Department class is a subclass of the BaseInfo
class, the Department class has inherited the BaseInfo class’s properties.

28() PartIv: Building Other Useful Applications

The code

Listing 7-10 contains the complete code for the Department class. I discuss
each method in detail after the code listing.

LisTING 7-10: THE DEPARTMENT CLASS

<?php
/* Name: Department.class
* Desc: Class containing details for a department
* and the content within the department.
*/
include_once("BaseInfo.class");

class Department extends BaseInfo

{
protected $description; #10

function __construct($id, $name, $desc)

{
parent::__construct($id, $name); #14
$this->description = $desc;

}

public function getDescription() #18
{

return $this->description;
}

public static function findaAll()
{
$cxn = parent::getConnection(); #25
$sgl = "SELECT dept_id, name, description
FROM Department
ORDER BY name";
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem getting data: " +
$cxn->error) ;
}
$depts = array();
while ($row = $results->fetch_assoc()) #36
{
$depts[] = new Department ($row['dept_id'],
Srow['name'], $row['description']);
}
return $depts;
}

public static function £indById($id)

{
$cxn = parent::getConnection();

Chapter 7: Building a Content Management System 28 1

$sql = "SELECT dept_id, name, description
FROM Department
WHERE dept_id = $id";
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem getting data: " +
$cxn->error) ;
}

if ($row = $results->fetch assoc())

return new Department ($row['dept_id']l,
$row['name'], $row['description']);
}
return NULL;

?>

The constructor

The base class doesn’t have all the properties needed to represent a depart-
ment, so an additional property is declared to represent the long description
for a department at line 10. Remember that the $id and $name properties
from the base class, BaseInfo, are also accessible in this class. The construc-
tor is needed to handle the additional $description property. The parent
class’s constructor is called on line 14 so that the $id and $name properties
get set.

getDescription
This new method at line 18 exposes the $description property.

findAll, findByld

These methods are static finder functions. In the object model in this design,
the code that does the searching resides in the classes themselves. The
findall function will return an array of instantiated objects that meet the
search parameters. At line 25, a database connection is retrieved by using a
function defined in the parent class. At line 36 is a loop that will fill the return
array with new Department objects. £indById will return a single object for
the search if there is a matching row in the database for the identifier.

Writing the ContentType class

This class is very simple. It represents a content type available in the CMS.
A content type has only an ID and a name. These properties were already

282 PartIv: Building Other Useful Applications

coded in the base class, so the only other code that needs to go in this class
is the code that will handle the searching and instantiating of ContentType
objects.

The properties

The contentType class doesn’t define any properties, but it will use the
properties that are defined in the super class (also called the parent class), the
$id and $name properties.

The code

Listing 7-11 contains the complete code for the ContentType class. I discuss
each method in detail after the code listing.

LisTING 7-11: THE CONTENTTYPE CLASS

<?php

/* Name: ContentType.class
* Desc: Class containing details for a content type
* available in the CMS.
*/

include_once("BaseInfo.class");

class ContentType extends BaseInfo
{

public static function f£indAll() #11
{
parent: :getConnection();
"SELECT type_id, name
FROM Content_Type
ORDER BY name";
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem getting data: " +
$cxn->error());

$cxn
$sql

}
$types = array();
while ($row = S$results->fetch_assoc())
{
Stypes[] = new ContentType($row['type_id'],
$row['name']);
}
return $types;

}

public static function f£findById($id) #32
{

parent: :getConnection();

"SELECT type_id, name

$cxn
$sql

Chapter 7: Building a Content Management System 283

FROM Content_Type
WHERE type_id = $id";
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem getting data: " +
$cxn->error());
}
if ($row = $results->fetch assoc())
{

}
return NULL;

return new ContentType ($row|['type_id']l, $row['nmame']);

The constructor

This class doesn’t explicitly define a constructor because the one defined in
the parent class (BaseInfo.class) meets the needs of this class too. So
there’s no code for a constructor in this class file.

findAll, findByld
These methods are static finder functions. findall at line 11 returns an

array of objects, and findBy1Id at line 32 returns a single object (if the search
yields a row in the database).

Writing the Contentltem class

The contentItem class is the base class representing the different types of
content items available in the CMS. This class can be extended because some
content items might have more or fewer details tied to the content item. For
instance, in Listing 7-13 the FaQ class is defined. The showColumn function
returns FALSE when the content_date string is passed in as a parameter. For
an FAQ content item, this content_date isn’t relevant for the end user, there-
fore the overridden class will enable the display interface to ignore the field.

The properties

The Department object’s properties store information about a single depart-
ment within the organization. The properties are

protected $description;
protected $content_date;
protected $create_date;

284 PartIv:Building Other Useful Applications

protected $created_by;
protected $last_upd date;
protected $last_upd_by;

The properties $id and $name are inherited from the BaseInfo class, so they
aren’t redefined here. The $description property is a string that represents
the main body of a content item. The $content_date property reflects that
date on which a content item is relevant; in the case of an event content item,
the $content_type property is used to signify the date of the listed event.
The $created_by, $create_date, $last_upd_date, and $last_upd_by
properties are used for basic auditing the content item.

The code

Listing 7-12 contains the complete code for the ContentItem class. I discuss
each method in detail after the code listing.

LisTING 7-12: THE CONTENTITEM CLASS

{

<?php
/* Name: ContentItem.class

* Desc: Class containing details for a single
* content item.
*/

include_once("BaseInfo.class");

class ContentItem extends BaselInfo

protected $description; #10
protected $content_date;

protected $create_date;

protected $created_by;

protected $last_upd date;

protected $last_upd by;

function __construct($id, $title, $desc, #17
$content_date, $created_on, S$created_by,
$last_upd_on, $last_upd_by)

{
parent::__construct($id, $title);
$this->description = $desc;
$this->content_date = $content_date;
s$this->create_date = $created_on;
$this->created_by = $created by;
$this->last_upd _date = $last_upd_on;
$this->last_upd by = $last_upd by;

}

public function setName ($name) #31

Chapter 7: Building a Content Management System 285

¢ $this->name = $name;

}

public function getDescription() #36
: return $this->description;

public function setDescription($desc)

: $this->description = $desc;

public function getContentDate()
{

return date("m/d/y", strtotime($this->content_date));

}

public function setContentDate($content_ date)
{

$this->content_date = strtotime($content_date);

}

public function getCreationDate()
{

return date("m/d/y", strtotime($this->create_date));

}

public function setCreationDate($create_date)
{

$this->create_date = strtotime($create_date);

}

public function getCreatedBy()

{
return $this->created by;

}

public function getLastUpdDate()

{
return date("m/d/y", strtotime($this->last_upd_date));

}

public function getLastUpdBy()
{

return $this->last_upd_by;
}

public function setLastUpdBy($last_upd by)
{

$this->last_upd by = $last_upd by;
}

Continued

286 Part IV: Building Other Useful Applications

LisTING 7-12:(Continued)

public static function findById($content_id) #86

{

parent: :getConnection();

"SELECT content_id, title, description,
content_date, create_date,
created_by, last_upd date, last_upd by

FROM Content

WHERE content_id = $content_id";

$cxn
$sql

$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem getting data: " +
$cxn->error) ;
}
$row = $results->fetch_assoc();

return ContentItem::getContentItem($row); #103
}

public static function findByDeptType ($dept_id,
$content_type)
{
parent: :getConnection();
"SELECT content_id, title, description,
content_date, create_date,
created_ by, last_upd date, last_upd by
FROM Content
WHERE content_type = $content_type
and dept_id = $dept_id";
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem getting data: " +
$cxn->error) ;

$cxn
$sql

}

$ret_array = array();

while ($row = $results->fetch_assoc()) #123
$ret_array[] = ContentItem::getContentItem($row);

return $ret_array;

}

public static function getContentItem($row) #129
{
if (!$row)
return NULL;

return new ContentItem($row|['content_id'], $row['title'],
$row['description'], $row['content_date'],
$row['create date'], S$row['created by'l]l,

Chapter 7: Building a Content Management System 28 7

$row['last_upd_date'], S$row['last upd by'l);
}

public function save($dept_id = NULL, $type_id = NULL) #140
{
if (isset($this->id)) #142
{

$sql = "UPDATE Content
SET title = '$this->name’',
description = '$this->description’,
content_date = '$this->content_date’',
last_upd_date = now(),
last_upd_by = '$this->last_upd_ by’
WHERE content_id = $this->id";
}
else #152
{
$sgl = "INSERT Content (dept_id, content_type,
title, description, content_date,
create_date, created_by,
last_upd_date, last_upd by)
VALUES ($dept_id, $type_id,
'$this->name’,
'$this->description', '$this->content_date’',
now(), 'Sthis->created_by',
now(), '$this->last_upd by')";
}

$cxn = parent::getConnection();
$cxn->query($sql);

if (!isset($this->id))
$this->id = $cxn->insert_id;

return $this->id;

}

public function delete() #174
{
if (!isset($this->id))
return;

$sql = "DELETE FROM Content

WHERE content_id = $this->id";
$cxn = parent::getConnection();
$results = $cxn->query($sql);
if (!$results)

{
throw new Exception("Problem deleting data: " +
$cxn->error) ;
}
#188
$sql = "DELETE FROM Content_Download

Continued

288 PartIv: Building Other Useful Applications

LisTING 7-12:(Continued)

WHERE content_id = $this->id";
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem deleting data: " +
$cxn->error) ;

The constructor

The constructor sets up the properties of the ContentItem class at line 17.
Remember, the $id and $name properties aren’t defined in this class because
they have already been defined in the parent class. Within the constructor
the parent class’s constructor is also called so that the base class’s proper-
ties get set properly.

setName, setDescriptionn, setContentDate,
setCreationDate, setLastUpdBy

The setter methods change the object’s internal state. For instance, a call to
setName at line 31 changes the $name property, which is actually defined in
the BaseInfo class. These setter functions don’t persist the data changes to
the database. That is the responsibility of the save and delete functions.

getContentDate, getCreationDate, getLastUpdBy, getLastUpDate

The getter methods expose the properties of the object. Without these meth-
ods, the outside world wouldn’t be able to retrieve the details of the object’s
properties. The getDescription method at line 36 will return the long
description of the content item.

findByld, findByDeptType

Line 106 begins the definition of a function that returns an array of
ContentItem objects for a given department and content type, whereas
the £indBy1d method at line 86 returns a single ContentItem object based
on the ID of the content item.

save, delete

The save function is responsible for saving a new or modified ContentItem
object to the database, whereas the delete function removes its details from
the database. At line 142, the isset function call helps the save function
decide whether the ContentItem object ($this) is a new or existing object

Chapter 7: Building a Content Management System 289

in the database. If the ID hasn’t yet been set in the object, the code considers
the ContentItem to be a brand new content item.

getContentltem

The getContentItem function is used by the finder functions to instantiate a
single ContentItem object from a single row returned from the database, like
at line 103. The getContentItem function simplifies the code that instanti-
ates a new object.

Writing the ContentDownload class

This is another simple object that represents a single row in the database. In
this case, a ContentDownload item represents a row in the
Content_Download table. Notice that this object doesn’t define a constructor
because the constructor defined in the parent class fits the needs of this
class. Just some additional finder functions are needed along with the data
manipulation methods.

The properties

The contentDownload class doesn’t define any properties, but it will use the
properties that are defined in the parent class: the $id and $name properties.

The code

Listing 7-13 contains the complete code for the ContentDownload class. I dis-
cuss each method in detail after the code listing.

LisTING 7-13: THE CONTENTDOWNLOAD CLASS

<?php

/* Name: ContentDownload.class
* Desc: Class containing details for a
* content item's downloadable file.
*/

include_once("BaseInfo.class");

class ContentDownload extends BaselInfo

{
public static function findByContentId($content_id) #10
{

$ret_arr = array():;

parent: :getConnection();
"SELECT download id, file_ name

$cxn
$sql

Continued

29() Part\v:Building Other Useful Applications

LisTING 7-13: (Continued)

FROM Content_Download

WHERE content_id = $content_id";
$results = $cxn->query($sql):;
if (!$results)

{
throw new Exception("Problem getting data: " +
$cxn->error) ;
}
while($row = $results->fetch_assoc())
{

$download_id = $row["download id"];
$file_name = $row["file_name"];

$ret_arr[] =
new ContentDownload($download id, $file_name);
}

return $ret_arr;

}

public static function findById($file_ id) #36
{

$ret_arr = array();

$cxn = parent::getConnection();

$sql = "SELECT download_id, file_name
FROM Content_Download
WHERE download_id = $file_id";

$results = $cxn->query($sql);

if (!$results)

{

throw new Exception("Problem getting data: " +
$cxn->error) ;
}
if ($row = $results->fetch assoc())

$download id = $row["download id"];
$file_name = $row["file_name"];

return new ContentDownload($download id, $£file_name);

}

return NULL;
}
public function save() #61
¢ $sqgl = "INSERT Content_ Download (content_id, file name)

VALUES ($this->id, 'S$this->name')";

$cxn = parent::getConnection();
$results = $cxn->query($sql);

Chapter 7: Building a Content Management System 29 1

if (!$results)

{
throw new Exception("Problem saving data: " +
$cxn->error) ;
}
$this->id = $cxn->insert id; #74

return $this->id;

}

public function delete() #79
{
$sgl = "DELETE FROM Content_Download
WHERE download_ id=$this->id";

$cxn = parent::getConnection();
$results = $cxn->query($sql);
if (!$results)
{
throw new Exception("Problem deleting data: " +
$cxn->error) ;

The constructor

This class doesn’t explicitly define a constructor because the one defined in
the parent class (BaseInfo.class) meets the needs of this class too. You
can save a lot of typing when writing object-oriented code.

findByContentld, findByld

These methods are static finder functions. The findByContentId method at
line 10 returns an array of objects, and findById at line 36 returns a single
object (if the search yields a row in the database).

save, delete

The save (line 61) and delete (line 79) methods ensure that data is either
saved to the database or removed from the database.

Writing the Database class

The Database class provides the connection to the database where the user,
department, and content data are stored. | develop the Database class in
Chapter 3. See Listing 3-4 for the Database class code.

292 PartIv:Building Other Useful Applications

The methods provided by the Database class are:

v The constructor: This method creates a connection to a MySQL data-
base. It also expects to be passed the hostname, account name, and
password necessary to access MySQL. A Database object is created
with the following statement:

$db = new Database ($host, $user, $password) ;

” useDatabase: This method selects a database and stores the database
name. It expects to be passed a database name. It also checks whether
the database exists and returns a message if the database doesn’t exist.

V¥ getConnection: This method returns the connection that is established
and stored in the constructor.

Writing the WebForm class

The webForm class is used to display the page with the login and registration
forms. I create and explain the webForm class in Chapter 4. The class is
shown in Listing 4-6.

The methods in the WebForm class that are used in this application are:

v The constructor: The constructor stores the properties needed to dis-
play the form correctly. Two files — an information file and a file that
defines the look and feel — are required. The two filenames are passed
when the webForm object is created and stored in two properties. The
data for the form fields can be passed, but can be left out, and the form
fields will be blank. You can create the object by using either of the fol-
lowing statements:

$form
$form

new WebForm("filel.inc","file2.inc",$_POST):;
new WebForm("filel.inc","file2.inc");

v displayForm: This method displays the form. It extracts the data from
the $data property where it is stored.

V¥ checkForBlanks: This method checks each field in the form to see
whether it contains information. If invalid blank fields are found, it
returns an array containing the field names of the blank fields.

v verifyData: This method checks each field to ensure that the informa-
tion submitted in the field is in a reasonable format. If invalid data is
found in any field, the method returns an array containing messages that
identify the problems.

V trimData, stripTagsFromData: A PHP function is applied to each value
in the $data property. The resulting values are stored in $data. The trim
function removes leading and trailing blanks from a string. The strip_
tags function removes any HTML tags from the string, which is impor-
tant for security.

Chapter 7: Building a Content Management System 293

Writing the code for the login page

The object-oriented login page — Login-00.php — from Chapter 4 (Listing
4-10) is modified here to deal with the tables and PHP files in this chapter.
Listing 7-14 highlights the changes.

Login-00.php requires three additional classes that are not used by other
programs in the CMS application: Account.class, Session.class, and
Email.class. [don’t describe these classes in this chapter. For more infor-
mation on these classes and how they are used in the login application, see
the object-oriented application section in Chapter 4.

LisTiNG 7-14: LoGIN-OO.PHP CHANGES

Line 38:

$db->useDatabase ("intranetCMS") ; #38
Line 39:

$acct = new Account ($db->getConnection(), "Dept_User");

Lines 83 and 174:

header ("Location: CompanyHome-00O.php");

Line 154:

$sess->storeVariable ("user name", $newdatal['user name']);
$sess->storeVariable("user_ dept", $newdatal['dept_id']l);

Following is a description of the lines that were changed from the Login-
00.php file in Chapter 4:

#38 Changes the name of the database.

#39 The name of the database table that stored user details has been
changed to use the Dept_User table.

#83 [and #174] Upon successful login or registration, the user’s browser is
redirected to the application’s main display PHP, CompanyHome-00.
php. The header directive sends a command to the user’s browser. If
you have HTML being sent to the browser before a header directive
has been sent, the directive call will create an error because all head-
ers must be sent before any content is displayed.

#154 Chapter 4 stored a flag in the session to indicate that the user had been
authenticated ("auth"), and it stored the user’s ID ("logname"). The
CMS application in this chapter stores the user name ("user_name"
and department identifier ("dept_id") in the session variable.

2914 Part\v: Building Other Useful Applications

Writing fields_content.inc
and content_form.inc

The fields_content. inc (refer to Listing 7-6) and content_form. inc
(refer to Listing 7-7) files from the procedural code section can be reused
for the object-oriented approach to coding the CMS application.

Writing the display code

CompanyHome-00 . php is very similar to CompanyHome . php defined earlier in
this chapter (in Listing 7-4). The only real difference is that the object model
defined in the “Writing the Object Model” section is leveraged. Because the
object code handles the database retrieval and persistence details, the dis-
play code is alleviated from needing to know about the database structure.
This is the beautiful thing about OO code: You can create layers of abstrac-
tion that can make it possible to change the internals of objects without
having to change the consumers of the objects in the object model.

Writing CompanyHome-00.php

CompanyHome-00 . php — shown in Listing 7-15 — is responsible for setting up
the data elements used by company-00. inc, a file that will display the HTML
interface.

LisTING 7-15: SETTING UP DispLAY DATA, CoMPANYHOME-OO.PHP

<?php
/* Program: CompanyHome-00.php
* Desc: Displays a Web page that has four levels:
* 1) the home page, 2) a department page, 3) a
* content list page, and 4) a detail page.
*/

if (!isset($_SESSION))
session_start();

include_once("functions_main.inc");
include_once("Department.class"); #11
include_once("ContentType.class");
include_once("ContentItem.class");
include_once("ContentDownload.class"); #14

$page = array(
"title" => "The Company Intranet",
"header" => "The Company Intranet",
"bottom" => "Copyright(R) 2005",

Chapter 7: Building a Content Management System 295

"left_nav_ links" => array(),

"body links" => array(),
"col_headers" => array(),
"data_rows" => array().

)i

$admin = FALSE;
$base_url = "CompanyHome-00.php";
$trail = "Home";

if (!isset($_SESSION['user_name']))
header ("Location: Login-00.php"):
else
{
if (isset($_SESSION['user_name'])
&& isset($_GET['dept_id']l))
{

$admin = $_SESSION|['user dept'] == $ _GET['dept_id'];

}
$left_nav links = array();

$page["browse_level"] =
isset ($_GET['browse_level']) ?
$_GET['browse_level'] : "home";

switch ($pagel["browse_level"])
{
case "home":
try
{

}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
$body links = "";
foreach ($departments as $department)
{

$departments = Department::findaAll();

#31

#48

#51

#59

$link = "$base_url?dept_id=" . $department->getId()

. "&browse_level=department";
$page["left_nav links"][$link] =
$department->getName () ;

$body links .= "<a href=\"" . $link

w\nyn | $Sdepartment->getName() .
. $department->getDescription();
}

$page["left_nav_header"] = "Departments";
$page["top"] = "Welcome to our Intranet";

Continued

296 Part\v:Building Other Useful Applications

LisTING 7-15: (Continued)

$page["body text"] = "Welcome to our Intranet "
. "where each department shares content with "
. "the whole company. You can update your "
. "own departments content too with our simple "
. "interface.<p>Vist the departments' "
. "home pages: $body links";

break;
case "department": #79

$dept_id = $_GET['dept_id'];
try
{

$department = Department::findById($dept_id); #83
}
catch(Exception $e)
{

echo $e->getMessage():

exit();
}
$dept_name = $department->getName(); #90
$dept_desc= $department->getDescription();
$page["left_nav"] = "$dept_name Content";
$page["body text"] = "$dept_name - $dept_desc";
$body links = "";
$content_ types = ContentType::findAll(); #97
foreach ($content_types as $content_type) #98
{

$link = "$base_url?dept_id=$dept_id"
. "&type_id=" . $content_type->getId()
"gbrowse_level=content";
$page["left_nav_links"][$1link] =
$content_type->getName();
$body links .= "<a href=\"" . $link

"\">" ., $content_type->getName() . "";
}
$page["left_nav_header"] = "Content Index";
$page["top"] = $dept_name;
$page["body text"] = "$dept_name - $dept_desc "
"<p>Vist the departments' "

. "areas: $body links";

$trail .= " - <a href='$base url?dept_id=$dept_id"
. "gbrowse_ level=department'>$dept_ name";
break;
case "content": #117

$dept_id = $_GET['dept_id']l;
$type_id = $_GET['type_id'];
try

{

Chapter 7: Building a Content Management System 29 7

$department = Department::findById($dept_id); #122
}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
$dept_name = $department->getName();
$body links = "";
$page["body text"] = "»;
try
{
$content_types = ContentType::£findall(); #134
}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
foreach ($content_types as $content_type)
{
$link = "$base_url?dept_id=$dept_id"
. "&type_id=" . $content_type->getId()
"&browse_level=content";
$page["left_nav links"][$link] =
$content_type->getName() ;
if ($content_type->getId() == $type_id)
$area_name = $content_type->getName();

}
$page["data_rows"] = #151
ContentItem: : £indByDeptType ($dept_id, $type_ id):
if (sizeof ($pagel["data_rows"]) == 0) #153
{
$page["body text"] = "There are no $area_name
content items for $dept_name";
}
if ($admin)
{

$page["body text"] .=
"<p>[<a href='$base url?dept_id=$dept_id"
"sbrowse_level=details&type_ id=$type_id"
. "&content_id='>add]";
}
$page["col_headers"]["title"] = "$area_name Title";
$page["col_headers"] ["content_date"] =
"Sarea_name Date";
$page["col_headers"] ["create_date"] = "Created On";
$page["col_headers"] ["created_by"] = "Created By";
$page["col_headers"] ["last_upd_date"] =
"Last Updated On";
$page["col_headers"] ["last_upd by"] =

Continued

298 Partiv:Building Other Useful Applications

LisTING 7-15: (Continued)

case

if
{

}

"Last Updated By";

$page["left_nav_header"] = "Content";
$page["top"] = "$dept_name - $area_name";
$trail .= " - <a href='$base url?dept_id=3$dept_id"

. "gbrowse_level=department'>$dept_name";

$trail .= " - <a href='$base url?dept_id=3$dept_id"

. "&browse_ level=content"
. "stype id=$type_id'>$area name";

break;

"details": #183

$dept_id = $_GET['dept_id']l;
$type_id = $_GET['type_id']l;
$department = Department::findById($dept_id); #186
$dept_name = $department->getName();

$content_type = ContentType::findById($type_id);

$area name = S$content_type->getName();

$body links = "";

$create_date = date("m/d/y", time());

$created_by = $_SESSION["user name"];

$last_upd by = $_ SESSION["user name"];

$content_id = $_GET["content_id"]:;
$edit = $admin && (@$_GET["edit"] =

|| $content_id
($content_id != "")

#198
$content_item = ContentItem::findById($content_id);
$title = $content_item->getName(); #200
$content_date = $content_item->getContentDate();
$description $content_item->getDescription();
$create_date $content_item->getCreationDate();
$created by = $content_ item->getCreatedBy();
$last_upd date = $content_item->getLastUpdDate();
$last_upd_by = $content_item->getLastUpdBy();
$downloads = #207

ContentDownload: : findByContentId($content_id);
foreach($downloads as $download) #209
{

$download_id = $download->getId():
$file_name = $download->getName();
$link = "files/$download_id/$file_name";
$page["left_nav_links"][$1link] = $file_name;
if ($edit)
$page["left_nav links"][$1link] .= "
[<a href=\"Admin-00.php" .
"?action=DeleteDownload&download id=$download_id&"
"dept_id=$dept_id&type_ id=$type_id\"
>del]1";
}

foreach ($_GET as $name => $value)

Chapter 7: Building a Content Management System 299

}

?>

$$name = $value;
$edit = $admin && (@$_GET["edit"]
$content_id
$page["top"] = "$dept_name - $area_name";
if ($edit)
{
$page["body text"] = "<center><u>Add Downloads</u>";
for ($i = 0; $i < 3; $i++)
{

= "grue" | |

= nn).

$page["body text"] .=
"
<input type='file' name='upload file$i'>";
}
$page["body_ text"] .= "
</center> <p />
<center>
<input type='reset' name='action'
value ='Reset Form'>
<input type='submit' name='action'
value ='Cancel'>
<input type='submit' name='action'
value ='Save Changes'>
</center>";
$page["top"] .= " Edit/Create";
}
else
{
$page["body_ text"] =
"Back";

}
$page["left_nav _header"] = "Downloads";
$trail .= " - <a href='$base_url?dept_id=$dept_id"
. "&browse_level=department'>$dept_name";
$trail .= " - <a href='$base_url?dept_id=$dept_id"
. "&browse_level=content"
. "&type_ id=$type_id'>$area_ name";
break;

include ("company-00.inc");

Following is a description of the numbered lines of code that appear in
CompanyHome-00 . php, shown in listing 7-15:

#11 Lines 11 to 14 ensure that the class definitions are included so that
the object model outlined earlier can be put into action.

#31 Here the OO login application from Chapter 4 is leveraged.

#48 The home page display is handled in this block of the switch
statement.

300 PartIv: Building Other Useful Applications

#51

#59

#79

#83

#90

#97

#98

#117

#122

#134

#151

#153

#183

#186
#198

#200

#207

#209

The static method call finds all the departments in the intranet. The
array returned from this function contains Department objects.

Each Department object is examined in this loop so that the depart-
ment name and description can be displayed on the home page.

The department-level display is handled in this block of the switch
statement.

At this point in the program’s execution, the user has clicked a spe-
cific department. The $department variable becomes an instantiation
of the Department class when the findById function returns.

Lines 90 and 91 retrieve some details about the department.

Line 97 gets the list of content types in the CMS, each content type
being represented by a ContentType object.

Begins a loop through all the contentType objects. The objects’
details will be used to build the links to the content areas for the
selected department.

The content list display is handled in this block of the switch
statement.

This static function call retrieves an object representing the selected
department.

The static function call will find all the content types in the system.

At line 151 the list of content items is added to a page-level variable
so that company-00. inc will be able to build the display of all the
objects’ data.

Begins a block of code that will display an informational message if
there are no content items for the selected department and content

type.

The block of code executed when a user is looking at the details for a
single content item.

Lines 186 to 189 get details for the display from objects.

If the $content_id variable contains a value, the details of the con-
tent item are retrieved by using the finder function at line 199.

Lines 200 to 206 show the details of the content item being extracted
from the object using the getter functions.

The downloadable files associated with the selected content item are
retrieved.

Begins the loop that builds links to the downloadable files by using
the details from the ContentDownload objects.

Chapter 7: Building a Content Management System 30 ’

Writing company-00.inc, the main display code

Here the objects set up in CompanyHome-00.php — the file shown in List-
ing 7-16 — are leveraged to build the HTML display. Other than the use of
these objects, not much else is different from the procedural version of this
file, company. inc.

LisTING 7-16: BuiLbinGg THE HTML DispLAY

<?php
/* File: company-00.inc
* Desc: Contains the code for a Web page that displays

* company and department data.
*/
include_once("functions_main.inc");
?>
<html>

<head><title><?php echo $page['title']?></title></head>
<body style="margin: 0">
<h3 align="center"><?php echo $page['top'] ?></h3>
<div style="font-size: 70%; font-weight: bold">
<?php echo $trail ?></div>
<hr size="10" noshade>
<table border="0" cellpadding="5" cellspacing="0">
<?php
#HH S
Left Nav
HHH
?>
<tr>
<td width="20%" valign="top" >
<p style="font-size: 110%; font-weight: bold">
<?php echo $pagel['left_ _nav header']?></p>
<table border="0">

<?php
foreach($page["left_nav links"] as $link => $label)
{
echo "<tr><td >"
. "$label<p><p></td></tr>\n";
}
if (sizeof($pagel["left_nav links"]) == 0)
echo "<i>no items yet</i>";
?>
</table>
</td>
<!=-- Column that separates the two forms -->
<td style="background-color: gray"></td>
<?php

Continued

302 PartIv: Building Other Useful Applications

LisTING 7-16: (Continued)

#HH S
Main Content
#H#HH
?>
<td width="80%" valign="top">
<form method="POST" action="Admin-00.php"
enctype="multipart/form-data">
<?php

if ($pagel["browse_level"] == "details")
{
include("fields_content.inc");
include("content form.inc");

else if (sizeof ($pagel["data_rows"]) > 0)
{
echo "<table cellspacing='3' cellpadding='3"
width='100%'bgcolor="'gray"'>
<tr bgcolor='lightgray'>\n";
foreach ($pagel["col headers"] as S$key => $display)
{
echo "<th >$display</th>\n";
}
echo "<th nowrap> </th>\n";
echo "</tr>\n";
foreach ($pagel["data_rows"] as $content_item)

{
echo "<tr bgcolor=white>\n"; #68
echo "<td nowrap>" . $content_item->getName() . "</th>\n";
echo "<td nowrap>" . $content_item->getContentDate()
. "</th>\n";
echo "<td nowrap>" . $content_ item->getCreationDate()

. "</th>\n";
echo "<td nowrap>" . $content_item->getCreatedBy()
. "</th>\n";
echo "<td nowrap>" . $content_item->getLastUpdDate()
. "</th>\n";
echo "<td nowrap>" . $content_item->getLastUpdBy()
. "</th>\n"; #79

echo "<th nowrap>[";
if ($admin)
{
echo "<a href=\"Admin-0OO.php?action=delete"
. "&dept_id=$dept_id&type_id=$type id&content_id="
. $content_item->getId() . "\">delete\n";
}
echo "<a href=\"CompanyHome-00.php?"
. "&dept_id=$dept_id&type_id=$type id&content_id="
. $content_item->getId() .
"gbrowse_level=details&edit=false\">"
. "view\n";

Chapter 7: Building a Content Management System 303

if ($admin)
{
echo "<a href=\"CompanyHome-0O.php?"
"gdept_id=$dept_id&type_ id=$type_id&content_id="
. $content_item->getId() . O
"sbrowse_level=details&edit=true\">"
. "edit\n";
}
echo "]</th></tr>\n";
}
echo "</table>\n";
}

echo $page["body text"];
?>
</ form>
</td>

</tr>
</table>
<hr size="10" noshade>
<div style="text-align: center; font-size: 75%">
<?php echo $page['bottom']?>
</body>
</html>

Following is a description of the numbered lines of code that appear in
CompanyHome-00 .php (shown in Listing 7-16):

#68 Lines 68 to 79 show the use of the objects to get the content item
details. For each column displayed in the HTML table, a different func-
tion is used to get the value. Keep in mind that the data in this object
maps back to data stored in the database. However, this display code
doesn’t know about the data, how it is stored, or how it is retrieved. As
long as the objects can be leveraged, the display can be constructed.

Writing fields_content.inc and content_form.inc

The fields_content.inc and content_form. inc files from the procedural
code section can be reused for the object-oriented approach to coding the
CMS application.

Writing Admin-00.php, the
data manipulation code

The data manipulation code is simpler than the procedural code in this
chapter because the SQL code isn’t executed in the administrative PHP
code. Instead, the administrative PHP, Admin-00.php, operates on objects.

30 Part1v: Building Other Useful Applications

The save and delete functions of the objects are used to modify the under-
lying data. This differs from the procedural admin.php file, where SQL to
manipulate the data is defined within the PHP itself. The OO code removes
the need to have SQL in the administrative PHP file. In Listing 7-17, the PHP
code simply uses method calls to manipulate the underlying data.

LisTING 7-17: UPDATING THE DATABASE AND SAVING UPLOADED FILES

<?php
/* File: Admin-00.php
* Desc: Perform any data manipulation tasks, like
* creating, editing, or deleting content items.
*/

session_start();

include_once("functions_main.inc");
include_once("ContentItem.class"); #8
include_once("ContentDownload.class");

foreach ($_POST as $name => $value)
$$name = $value;

foreach ($_GET as $name => $value)
$$name = $value;

if (!isset($action))
header ("Location: CompanyHome-00.php");

if (!isset($create_date))

$create_date = date("Y-m-d", time()):;
else

$create_date = strtotime($create_date);
if (!isset($content_date))

$content_date = date("Y-m-d", time());
else

$content_date = strtotime($content_date);

$content_date = date("Y-m-d", $content_date);
$last_upd date = date("Y-m-4d", time());

if (!isset($created_by))
$created_by = $ SESSION["user name"];

$last_upd by = $ SESSION["user_name"];

switch ($action)
{
case "delete": #37
$content_item = ContentItem::findById($content_id);
if (isset($content_item))
try
{

}
catch(Exception $e)
{

$content_item->delete();

Chapter 7: Building a Content Management System 305

echo $e->getMessage();
exit();
}

break;

case "Save Changes":
$message 2 = "";
if ($content_date <= 0)
$message_2 = "Invalid Content Date";
if ($title == "")
$Smessage 2 .= "<1li>Title cannot be left blank";
if (Smessage_2)
$message_2 = "Please correct these errors: $message_2";
if ($message 2 != "")
{
include ("CompanyHome-00.php") ;
exit();

}
if ($content_id) #65
{
try
{
$content_item = ContentItem::findById($content_id);
}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
$content_item->setName($title);
$content_item->setDescription($description);
$content_item->setLastUpdBy($last_upd by);
$content_id = $content_item->save();
}
else #81
{
$content_item = new ContentItem(NULL,
$title, $description, $content_date,
$create_date, $created_ by,
$last_upd _date, $last_upd by);
$content_id = $content_item->save($dept_id, S$type_id);
}
foreach ($_FILES as $file) #89
{
$file name = $file["name"];
if ($file["size"] <= 0)
continue;
$download = new ContentDownload($content_id,
$file_name);
$file id = $download->save();

Continued

306 Part IV: Building Other Useful Applications

LisTING 7-17: (Continued)

$dest_dir = "files".DIRECTORY SEPARATOR.S$file_ id;
$dest_file = $dest_dir.DIRECTORY_ SEPARATOR.$file_name;
if(!file_exists($dest_dir))

if (!mkdir($dest_dir, 0700, TRUE))
die ("Can't archive attachments to $dest_dir");

}
if (!file_exists($dest_file))
{
if (!move_uploaded file($file["tmp name"],
$dest_file))
die ("Can't archive attachments to $dest_dir");
}
}
break;
case "DeleteDownload": #114
try
{

$download = ContentDownload::findById($download_id);
$download->delete();
}
catch(Exception $e)
{
echo $e->getMessage();
exit();

}
break;

case "Cancel":
break;
}

$query str = "browse_level=content"

. "&dept_id=$dept_id&type_ id=3$type_ id";
header ("Location: CompanyHome-00.php?$query str");
?>

Following is a description of the numbered lines in Admin-00.php, shown in
Listing 7-17:

#8 The two types of data that can be changed by users of the CMS, repre-
sented by the ContentItem and ContentDownload classes, are used
in Admin-00.php.

Chapter 7: Building a Content Management System 30 7

#37

#65
#81
#89

#114

The block of code beginning at line 37 uses the ContentItem class’s
static finder function to get the single content item object that the
user wishes to delete. The object’s delete function is called to remove
the underlying data from the database. Admin-00.php doesn’t need to
know how this is accomplished because the object-oriented approach
allows such details to be encapsulated in the class’s code.

Begins a block of code that updates an existing content item.
Begins a block of code that creates a new content item.

Begins a loop that saves any uploaded files to the database. Again,
the details of how the information is saved to the database is
abstracted from the code in Admin-00. php.

This is where the details for a single downloadable file are looked up.
After the information is located, it’s removed via the
ContentDownload object’s delete function.

Enhancing the Content
Management System

The CMS you see in this chapter is very generic. It supports a number of con-
tent types, but the user interface, the data, and the object model don’t differ
much for each content type. The object model could be further developed so
that, perhaps, a News object and an Event object would have more attributes
that are relevant to the object model’s specific content type. For instance, an
Event content type could be implemented so that users could register for
one or more events.

WMBER
s&
&

A well-designed CMS should organize content so that, if the volume of data
grows, browsing through and searching for content doesn’t become tedious.
Paging is a useful feature for simplifying navigation through long lists of con-
tent items. Also, a keyword search is a nice tool that enables users to quickly
locate a number of related but distinct content items.

308 PartIv: Building Other Useful Applications

Chapter 8

Hosting Discussions
with a Web Forum

In This Chapter

Understanding how a Web forum works

Building a database to store and organize messages
Building and designing the forum

Designing a procedural application that hosts discussions

Using inheritance to simplify your object-oriented code

A Web forum is a popular way to let your Web site visitors communicate
with you and with each other. A forum is like a community bulletin
board where one visitor can leave a message and other visitors can read that
message and reply to it with messages of their own. In a lively forum, you can
typically find questions (and answers); tips and techniques; reviews (for
products, books, restaurants, and so on); and links to other resources.

Designing the Forum Application

The basic function of a Web forum is to store, organize, and display messages.
When you navigate to a forum site (by using a Web browser, such as Firefox or
Konqueror), you see a page that displays a list of forums. For example, if the
site hosts discussions related to household pets, you might see forums named
Cats, Dogs, Reptiles, and Others. Underneath each forum, you might see a list
of topics owned by the forum. Within the Cats forum, for example, you might
see topics such as Cat Breeds, Health Issues, Feeding, and Bad Habits. The
Dogs forum might hold a similar set of topics. If you look inside the Reptiles
forum, you might find Amphibians, Snakes, Lizards, Housing, and Feeding.

When you click a topic, your browser moves to a new page that displays a list
of the threads owned by the topic. A thread is a collection of messages, all of
which share the same topic. From this page, you can click a thread to display
the messages owned by that thread or you can click the Start a New Thread

370 Partiv: Building Other Useful Applications

button to create a new thread. When you navigate to a specific thread, you see
a list of all the messages in that thread. Each message displays the author (that
is, the e-mail address of the user who posted the message); the date/time that
the message was posted; and the body of the message. To reply to a message,
just click the Reply button next to that message.

The heart of the forum application is a set of tables that organize the mes-
sages created by your users. When a user posts a new message, the text of
the message is stored as a single row in a table that I call post. Each post
contains a bit of bookkeeping information (such as the author of the mes-
sage, the date the message was posted, and so on). To organize the messages
in your forum, you can add a few layers on top of the post table to group
messages into similar areas of discussion. Each Post belongs to a single
Thread. Each Thread belongs to a single Topic. Each Topic belongs to a
single Forum. All together, you need four tables to organize messages the
way | describe: Forum, Topic, Thread, and Post.

Forums and topics are different from threads and posts in several respects.
You, the forum administrator, create the forums and topics. Your users create
threads and posts. To create a new forum, you simply add a row to the Forum
table. To create a new topic, add a row to the Topic table. When a user posts
a message, he can start a new thread or reply to an existing thread. To start a
new thread, the user clicks the Start a New Thread button, types in a subject
for the thread, and types in the body of the message. When he clicks the Post
Message button, a new row is inserted into the Thread table and a new row
is inserted into the pPost table. To add a message to an existing thread, the
user clicks the Reply To button and types in the body of the message. (Note
that he doesn’t have to enter a subject for the message — the subject is inher-
ited from the message that he’s replying to.) When he clicks the Post Reply
button, a new row is inserted into the post table (and the related Thread is
updated to indicate the date of the most recent message).

You need to consider the security of your forum. Will you allow any visitor to
start new threads? Must a user register (and log in) before she can reply to
an existing thread? The forum application that you develop in this chapter
takes a middle-of-the-road approach to security. Only a forum administrator
can add new forums and new topics. Anyone can start a new thread or reply
to an existing one. Throughout this chapter, I point out a few changes that
you can make to adjust the security policy to fit your needs.

Creating the Forum Database

This application has four layers of organization. Looking from the top down,
you start with a forum, which contains one or more topics. Each topic contains

Chapter 8: Hosting Discussions with a Web Forum 3 ’ 1

a collection of zero or more threads. (A topic is empty until someone starts a
thread.) Each thread contains a collection of one or more posts, all sharing
the same subject. Looking at the forum structure from the bottom up, each
message is owned by a single thread, each thread is owned by a single topic,
and each topic is owned by a single forum.

Designing the Forum database

The sample application in this chapter uses a database named Forum. The
forum application defines four tables: Forum, Topic, Thread, and Post. Each
table contains an id column — every row is uniquely identified by its id. To
link the tables together into a hierarchy, every post, Thread, and Topic con-
tains the unique identifier of its parent. For example, a Post is owned by a
Thread: If you look inside a Post, you see a column named parent_thread
that contains the id of the parent Thread. In a similar fashion, each Thread
contains a parent_topic and each Topic contains a parent_forum.

Designing the Forum table

The Forum table contains information about each forum. Table 8-1 shows the
layout of the Forum table.

Table 8-1 Database Table: Forum

Variable Name Type Description

id INTEGER UNSIGNED Unique identifier for forum
(primary key)

name VARCHAR (100) Forum name

description TEXT Description of forum

The Forum table is straightforward; it exists only to organize similar topics
into meaningful groups. Each row contains a unique identifier (id), a name,
and a description. The id column is defined as an auto_increment column
so that the MySQL server assigns a unique value to each row. The forum name
is required, but the description is optional.

Designing the Topic table

The Topic table contains information about each topic. Table 8-2 shows the
layout of the Topic table.

3712 Partiv: Building Other Useful Applications

Table 8-2 Database Table: Topic

Variable Name Type Description

parent_forum INTEGER UNSIGNED Forum to which this topic
belongs

id INTEGER UNSIGNED Unique identifier for topic (pri-
mary key)

name VARCHAR (100) Topic name

description TEXT Description of topic

The Topic table is very similar to the Forum table; the Topic table exists only
to organize similar threads into meaningful groups. Every row in the Topic
table belongs to some row in the Forum table. The parent_forum in any
given Topic identifies the owner of the Topic (that is, Topic.parent_forum
will contain the Forum. id value of the Forum that owns the Topic). The id
column serves as a unique identifier for the Topic and, like the Forum.id
column, the MySQL server assigns a value to this column each time you add
anew Topic. Topic.name is required and Topic.description is optional.

Designing the Thread table

The Thread table contains information about each thread. The Thread table
is shown in Table 8-3.

Table 8-3 Database Table: Thread

Variable Name Type Description

parent_topic INTEGER UNSIGNED Topic to which this thread
belongs

id INTEGER UNSIGNED Unique identifier for thread
(primary key)

subject TEXT Subject for all messages in
this thread

replies INTEGER UNSIGNED Number of replies in this
thread

last_post TIMESTAMP Date (and time) of most recent

post in this thread

Chapter 8: Hosting Discussions with a Web Forum 3 ’3

The Thread table is a bit more complex than the Forum and Topic tables.
Each Thread belongs to a Topic and the Thread.parent_topic column
contains the Topic. id of the owner. Like the Forum and Topic tables, each
Thread is uniquely identified by a server-assigned id. When a user starts a
new Thread, she must provide a subject. The replies column contains a
count of the number of messages in the thread (minus one — the first mes-
sage in a thread doesn’t count as a reply). The 1last_post column contains
the time and date of the most recent message added to any given Thread.
You add a new record to the Thread table each time a user starts a new dis-
cussion. You update Thread.replies and Thread.last_post each time a
message is added to the thread.

Designing the Post table

The post table contains information about each post. The post table is
shown in Table 8-4.

Table 8-4 Database Table: Post

Variable Name Type Description

parent_thread INTEGER UNSIGNED Thread to which this post
belongs.

in_reply_to INTEGER UNSIGNED If this message is the first

message in a thread,
in_reply_toiSNULL;
otherwise, in_reply_to
contains the ID of some

other post.

el INTEGER UNSIGNED Unique identifier for post (pri-
mary key).

author VARCHAR (100) Name of user who posted this
message.

date TIMESTAMP Date that this message was
posted.

body TEXT Text of message.

Each message is stored as a single row in the post table. Notice that you aren’t
storing a subject with each post — instead, the subject is stored in the Thread
that owns the Post. The in_reply to column contains the id of another pPost.
If a Post is the first message in a Thread, in_reply_to will be NULL; otherwise,
the Post must be a reply to some other message. The author column contains
the name of the user who posted the message. The date column stores the
time and date that the message was added — the MySQL server automatically
timestamps each row when it is added it to the table.

314 Part1v: Building Other Useful Applications

The parent_thread, parent_topic, and parent_forum columns link the
forum tables together into a hierarchy.

You can find the thread that owns a given post by executing a query such
as SELECT * FROM Thread WHERE Thread.id = Post.parent_thread.

Similarly, you can find the topic that owns a thread with the query
SELECT * FROM Topic WHERE Topic.id = Thread.parent_topic.

You can find the forum that owns a topic with the query SELECT * FROM
Forum WHERE Forum.id = Topic.parent_forum.

To find all the topics belonging to a forum, use SELECT * FROM Topic
WHERE Topic.parent_forum = Forum.id.

To find all the threads belonging to a topic, use SELECT * FROM Thread
WHERE parent_topic = Topic.id.

To find all messages that belong to a thread, use a query such as SELECT
* FROM Thread, Post WHERE parent_thread = Thread.id.

If you want to tighten the security policy for your site, you must create an
additional table that keeps track of registered users. The Login application
that you develop in Chapter 4 provides everything you need to register and
authenticate visitors.

Building the forum tables

The following SQL query creates this database:

CREATE DATABASE Forum

The following CREATE TABLE statements create all the tables you need for
the forums application.

CREATE TABLE Forum (
id INTEGER UNSIGNED NOT NULL auto_increment,
name VARCHAR(100) NOT NULL,
description TEXT,

PRIMARY KEY(id));

CREATE TABLE Topic (
parent_forum INTEGER UNSIGNED NOT NULL,
id INTEGER UNSIGNED NOT NULL auto_increment,
name VARCHAR(100) NOT NULL,
description TEXT,
PRIMARY KEY(id)):;

Chapter 8: Hosting Discussions with a Web Forum 3 ’5

CREATE TABLE Thread (
parent_topic INTEGER UNSIGNED NOT NULL,

id INTEGER UNSIGNED NOT NULL auto_increment,
subject TEXT NOT NULL,

replies INTEGER UNSIGNED,

last_post TIMESTAMP,

PRIMARY KEY(id));

CREATE TABLE Post (
parent_thread INTEGER UNSIGNED NOT NULL,
in reply to INTEGER UNSIGNED,

id INTEGER UNSIGNED NOT NULL auto_increment,
author VARCHAR(100) NOT NULL,

date TIMESTAMP,

body TEXT,

PRIMARY KEY(id)):;

Accessing the forum tables

To interact with the MySQL server, your PHP scripts use the mysql (or mysqli)
API that comes with PHP. By using the mysql functions, you can connect to a
MySQL server, execute queries and other SQL statements, and retrieve results
from the server. When you fetch (or retrieve) a row of data from the MySQL
server, you can ask PHP to deliver the row in many different forms. If you call
the mysqgl_fetch_array function, you get an array of values, indexed by
column number. If you call mysgl_fetch_assoc, you get an associative array,
indexed by column name. You can also ask mysq]l to return a row in the form
of an object. (The resulting object has one field for each column in the row.
The name of the field corresponds to the name of the column.)

In this application, [fetch each row of data into an associative array. An asso-
ciative array offers three advantages over an enumerated array:

+ When you access a member of an associate array, your code is self-
documenting. $thread| 'parent_topic'] is much more descriptive
than $thread[2].

+ Your code is self-maintaining. If you change the SELECT statement that
creates a result set, $thread['parent_topic'] always refers to a
parent_topic, but $thread[2] might refer to the wrong column.
(Consider what would happen if you add a column to the beginning of
the SELECT list.)

+* You can easily convert an associative array into a set of “normal” vari-
ables by using the extract function. For example, if you have an asso-
ciative array that contains columns named parent_topic, name, and
description, you can extract the array, and you’ll have three new vari-
ables: $parent_topic, $name, and $description.

3 ’6 Part IV: Building Other Useful Applications

NNG/
&

WING/

&

PHP provides two different sets of MySQL functions: mysql functions and
mysqli functions. The mysqli functions were developed to allow the use of
features that were added in MySQL version 4.1. You can use the mysql func-
tions with version 4.1, but you don’t have access to the newer features. The
mysql or mysqli extension is activated when PHP is installed. You must use
PHP 5 to use the mysqli functions.

Because MySQL 4.1 is now the recommended version on the MySQL Web site,
[use the MySQL Improved (mysqli) functions in this chapter. I use the pro-
cedural functions when building the procedural programs. I use the object-
oriented classes when building the object-oriented programs.

If you're using PHP 4 or for other reasons want to use the mysql functions —
rather than the mysqli functions — you might need to make small changes to
the syntax. The mysqli functions are very similar to the mysql functions, but
some differences exist. I explain the PHP and MySQL versions in Chapter 1.
The syntax differences are shown in Appendix C. More information about the
functions is available in the PHP manual at www.php.net/manual/en/ref.
mysqgli.php and www.php.net/manual/en/ref .mysqgl.php.

In this application, [have stored the information needed by the PHP mysql
functions in a separate file called forumvars.inc. This file is stored in a
directory outside my Web space, for security reasons. The file contains infor-
mation similar to the following:

<?php
$host = "localhost";
$user = "admin";
$passwd = "";
$database = "Forum";

?>

Notice the PHP tags at the beginning (<?php) and the end (?>) of the file. If
you forget those tags, a visitor to your Web site will see the username and
password required to log into your MySQL server, which is not at all what
you want.

Adding data to the database

To cut down on the number of forms required by this application, you need
to maintain two of these tables (Forum and Topic) directly. Visitors to your
site maintain the other two tables (Thread and Post) by using the forms that
[describe later in this chapter.

To create a new forum, simply insert (by using an INSERT query) a new row
into the Forum table, like this:

INSERT INTO Forum (name, description)
VALUES ('Cats', 'All things kitty'):;

Chapter 8: Hosting Discussions with a Web Forum 3 ’ 7

Notice that you can omit the id column and MySQL will assign a unique
number for you. If you let MySQL assign an id for your Forum, you can find
the value that the server chose by calling the LAST_INSERT_ID function. To
create a new topic, you need to know the id of the Forum that should own
the topic. Creating a new topic is almost as easy as creating a new forum; just
insert (INSERT) a new row into the Topic table:

INSERT INTO Topic (parent_ forum, name, description)
VALUES (1, 'Cat Breeds', 'Discussions regarding
different breeds');
INSERT INTO Topic (parent_forum, name, description)
VALUES (1, 'Health Issues', 'Keeping your felines
healthy and happy'):;

You must create at least one Forum and one Topic before your forum site will
be usable.

Building the Forum Web Pages

A visitor interacts with your forum application through a series of HTML Web
pages. Some of the pages display simple HTML tables; others display HTML
forms that the user must complete in order to proceed to the next page. Each
page is dynamically created, which means that the data displayed to the user
comes from one or more tables stored in the MySQL server.

Designing the Forum Web pages

The forum application displays the following five Web pages:

v Forums: This page lists all the forums and the topics available in each
forum.

v Threads: This page lists all the threads in the selected topic. This page
is displayed when the user clicks a Topic link in the Forums page.

1 Messages: This page displays all the messages in a thread. This page is
displayed when the user clicks a thread link in the Threads page.

v New Message: This page displays a form where the user can create and
post a message. This page is displayed when the user clicks the Start a
New Thread link.

v Reply: This page displays a form where the user can reply to a message.
This page is displayed when the user clicks the reply button.

The same files are used in both the procedural and object-oriented code to
display all five pages. The next few sections describe the pages and the files
that display the pages.

318 Partiv: uilding Other Useful Applications

Figure 8-1:
The Forums
page
displayed by
the forum
application.
|

|
Figure 8-2:
The Threads
page
displayed by
the forum
application.
|

Designing the Forums page

The Forums page displays all the forums and topics available. Figure 8-1
shows the Forums page.

E Forums - Mozilla BE)]x]
EEiIe Edit View Go Bookmarks Tools Window Help
[of X R
.® A @;;,.|
Back Forward Reload &hltp.mocalhosturummewFurums.php \V_ Print m
e
General
Debugging
GDB Using the GDB Debugger
DDD Using the DDD Visual Debugger

The Forums page displays the names of the forums. In this case, two forums
are displayed: General and Debugging. The name and description of topics
within the forums are displayed. In this case, the Debugging forum has two
topics: GDB and DDD.

Designing the Threads page

The Threads page (see Figure 8-2) displays all the threads available for a
topic. This page is displayed when the user clicks a topic name on the
forums page.

' Topic 2 - Mozilla
EEiIe Edit View Go Bookmarks Tools

e .2 .3 @

Back Reload

B[]

Semcll .

Window Help

& httpiflocathostForumdviewTopic. php PtapiclD=2

Most Recent

Using DDD with C++ someone-else @work 2004-12-22 11:14:58

Start a new thread

The Threads page displays the subject, number of replies, author, and date
and time of the most recent reply. Below the list of threads is a link that
allows the user to create a new thread.

|
Figure 8-3:
The
Messages
page
displayed by
the forum
application.

Designing the Messages page

The Messages page (see Figure 8-3) displays all the messages in a thread.
This page is displayed when the user clicks a thread subject on the Threads
page.

(8 Thread 3 - Mozilla D[]
Efile Edit View Go Bookmarks Tools Window Help

(4 . @ 2 @ http:ocalhost/F orumdviewTh PhreadiD=2 it .
| Back Reload & http:ifocalhastiF arumdviewThread. php?threadD: Sl Print WD
e]

someone-else@work
1004-12-22 11:14: 53 Reply

Any advice on debugging C++ programs with DDD?

janet@valade.com
2005841712 21 41 Reply

It works really welll

The Messages page displays all the messages in a thread. The display has
two columns: Author and Message. The e-mail address of the author and the
date and time the message was posted are displayed in the first column. A
link that allows the user to reply to the message is also displayed in the first
column. The second column displays the contents of the message. If the user
clicks the Reply link next to a message, a page with a form where the user can
post a reply is displayed.

Designing the New Message page

The New Message page (see Figure 8-4) displays a form where the user can
enter a new message. This page is displayed when the user clicks the Start a
New Thread link on the Threads page.

The New Message page displays a form with three fields for users to enter
their e-mail address, the subject of the message, and the message contents.
The user clicks the Post Message button when finished typing the message.
The message posts and returns the user to the Threads page, where the new
message now appears in the list.

Designing the Reply page
The Reply page (see Figure 8-5) displays a form where the user can reply to a

message. This page is displayed when the user clicks the Reply link next to
any message on the Messages page.

Chapter 8: Hosting Discussions with a Web Forum

319

320 PartIv: Building Other Useful Applications

|
Figure 8-4:
The New
Message
page
displayed by
the forum
application.
|

|
Figure 8-5:
The Reply
page
displayed by
the Forum
application.
|

SE)]

File Edit View Go Bookmarks Tools

Starting new thread in topic: DDD - Mozilla
: Window Help

FY

Back Forward

- a %% & nttp:AocalhostiForumiposthd

Reload o

S

Starting new thread in topic: DDD

Your e-mail address |
Subject |

Message

Send questiors and comments to adminBourplace com

ik % & E3) @ | Done

SE)]

Reply to: Using DDD with C++ - Mozilla
: Window Help

i File Edit View Go Bookmarks Tools

~§§ http-#flocalhostiForumipostReply. phpPreplyTo=5 v Search - =
2| & it postReply. php?reply _] iy

rord JRSGSA R
Reply to: Using DDD with C++

S

Tour e-madl addressl

Message

Any advice on debugging C++ programs with DOD?

In reply to

e

Send questiors and comments to adminourplace com

ik % & E3) @ | Done

Chapter 8: Hosting Discussions with a Web Forum 32 ’

The Reply page displays a form with two fields for users to enter their e-mail
addresses and their reply contents. The subject of the message that the user
is replying to is displayed. The user clicks the Post Message button when fin-
ished typing the message. The message posts and returns the user to the
Messages page, where the reply now appears in the list.

Writing the code for the Forums page
The Forums page is the first page displayed when the application starts. It
displays a list of all the forums and topics available. The user can click any

topic to display a page showing a list of threads available in the topic.

The code that displays the forums page is shown in Listing 8-1.

LisTING 8-1: THE FiLE THAT DEFINES THE FORUMS PAGE

<?php
/* Program: viewForums.inc
* Desc: Program that displays all forums and the topics
* within each forum. Each topic displays a link to
* the threads within that topic.
*/
include("functions_viewforums.inc");
?>
<html>

<head><title>Forums</title>
<link rel="stylesheet" href="Forums.css"
type="text/css"></head>

<body>

<?php
$cxn = Connect_to_db("forumVars.inc"); #16
$result = mysqgli_query($cxn, "SELECT * FROM Forum"); #17
if ($result == 0)
{

echo "Error ";
echo mysqli errno($cxn).": ".mysqli error($cxn);
echo "";
}
else
{
echo "<table width=\"100%\"
class=\"forumline\"cellpadding=\"4\"";
echo " cellspacing=\"2\" border=\"0\" align=\"center\">";
echo "<tbody>";
DisplayForumsHeader () ;
for($i = 0; $i < mysqgli_ num rows($result); $i++) #31

Continued

322 PartIv: Building Other Useful Applications

LisTING 8-1: (Continued)

}

?>

$forum = mysqgli_fetch_ assoc($result);

echo "<tr>";

echo ' <td class="forumTitle"
colspan="5">"'.$forum['name']."</td>";

echo "</tr>\n";

DisplayTopics ($forum['id'], $cxn, "viewTopic.php"); #38

}
echo "</tbody></table>";

The numbers in the following list refer to the line numbers in Listing 8-1:

#16 Connects to the MySQL server with a function called Connect_to_db.
The function is in the file functions_main. inc that is included in the
viewForums.php application script. The function code is shown in
Listing 8-15.

#17 Executes a query that returns all rows in the Forum table.
#18 If the query in line 17 fails, an error message is displayed.

#26 If the query in line 17 succeeds, the program displays the table with
the forums and topics and continues to line 21. The call to
DisplayForumsHeader (which I describe in the next section) writes
the HTML column headers to the Web page.

#31 The loop at lines 31 through 39 reads through each row in the Forum
table, displays the forum name, and calls the DisplayTopics func-
tion to display each topic belonging to the forum. As you will see in
functions_viewforums.inc, the DisplayTopics function also
contains a loop that reads through a MySQL result set. You commonly
see this nested loop structure when you're dealing with tables that are
related to each other in a parent/child relationship. The outer loop
reads through the rows in the parent table and the inner loop reads
through the details rows in the child table.

Listing 8-2 shows the supporting functions (DisplayForumsHeader and
DisplayTopics) that viewForums. inc uses.

Chapter 8: Hosting Discussions with a Web Forum 323

LisTING 8-2: SuPPORTING FUNCTIONS FOR VIEWFORUMS.INC

<?php

/* File: functions_viewforums.inc
* Desc: Supporting functions for the viewForums.inc file.
*/

function DisplayForumsHeader ()

{
echo '
<tr>
<th colspan="2" class="forumHeader" height="25"
nowrap="nowrap">Forum</th>
<th class="forumHeader" nowrap="nowrap">Topic</th>
<th class="forumHeader" nowrap="nowrap">Description</th>
</tr>';
}
function DisplayTopics ($forumID, $cxn, $linkTarget) #17
{
$sql = "SELECT * FROM Topic
WHERE parent forum = ".$forumID;
$result = mysqgli_query($cxn, $sql);
for($i = 0; $i < mysqgli num rows($result); $i++) #21
{
echo '<tr>';
$topic = mysqgli_fetch assoc($result);
echo '<td class="topicFiller" colspan="2"> </td>"';
echo '<td class="topicLink">'; #29
echo '<a href="' . $linkTarget. '?topicID=' .
$topic['id'] . "">';
echo $topic['name'];
echo '';
echo '</td>';
echo '<td class=topicDesc>'.
$topic['description']. '</td>'; #36
echo "</tr>\n";
}
}
?>

The following is a description of the numbered lines of code that appear in
functions_viewforums.inc in Listing 8-2:

#6 The DisplayForumsHeader function creates column headers for this
Web page.

32/ PartIV: Building Other Useful Applications

#16 DisplayTopics is called (by viewForums. inc) once for each forum.
This function displays all topics owned by a single forum — the
$forumID argument contains the ID of the parent forum.

#21 The for loop beginning at line 21 reads through each Topic owned
by the given $forumib. For each topic, the page displays (from left
to right) a blank column that indents the each topic to the right of
its parent forum, the topic name, and the topic description.

#27 The first <td> item for each topic is a non-breaking space that fills the
leftmost column.

#29 The second <td> item contains a link to another page (viewTopic)
that displays the threads owned by a topic. The user sees the name
of the topic. The link points to a parameterized Web page and looks
something like viewTopic.php?topicID=1id (where id identifies the
topic you want to view).

#35 Finally, DisplayTopics displays the topic description in the right-
most column and then terminates the HTML table row.

Writing the code for the Threads page

The Threads page displays when the user clicks a topic link on the Forums
page. It displays a list of all the threads available for the selected topic. The
user can click any thread to show all the messages available for the thread.
The page also displays a Start a New Thread link, which, when clicked, dis-
plays a page where the user can post a new message. The code that displays
the page is shown in Listing 8-3.

LisTING 8-3: THE FiLE THAT DispPLAYS THE THREADS PAGE

<?php

/* Program: viewTopic.inc

* Desc: Program that displays the discussion threads
* within a selected topic. Each thread displays
* a link to the posts within that thread.

*/

include("functions_viewtopics.inc");

echo '<html>';

echo '<head>';

echo '<title>Topic ' . $_GET['topicID'] .'</title>'; #12

echo '<link rel="stylesheet" href="Forums.css" :)
type="text/css"></head>"';

echo '<body>';

$connect = Connect_ to_db("forumVars.inc"); #15

$query = "SELECT Thread.*, date, author

Chapter 8: Hosting Discussions with a Web Forum 325

FROM Thread, Post

WHERE
parent_topic =" ., $ GET['topicID'] . " AND
parent_thread = Thread.id AND
in reply to IS NULL";
$result = mysqgli_ query(S$connect, $query); #22
if ($result == 0)

{
echo "Error: ";
echo mysqgli_ error($cxn)."";
}
else #28
{
echo "<table width=\"100%\"
class=\"forumline \"cellpadding=\"4\"";
echo " cellspacing=\"2\" border=\"0\" align=\"center\">";
echo "<tbody>";
DisplayThreadsHeader() ;
for($i = 0; $i < mysqgli_num rows(S$result); $i++) #35
{
$thread = mysqli_ fetch assoc($result);
echo "<tr>\n";
echo '<td class="threadSubject">'; #39
echo '<a href="viewThread.php?threadID="'.
$thread['id'] . "">';
echo $thread['subject'];

echo '"';
echo " </td>\n";
AddField($thread, "replies", "threadFiller"); #45
AddField($thread, "author", "threadFiller");
)i

AddField($thread, "last_post", "threadFiller"
echo "</tr>\n";
}
echo "</tbody></table>";
echo '<a href="postMessage.php?topicID="'.
$_GET['topicID']. '">';
echo "Start a new thread";
}
?>
</body></html>

The following is a description of the lines of code that appear in Listing 8-3:

#12 The Web page produced by this script displays all threads belonging
to a particular topic. The forwarding page (that is, the page that you're
coming from) includes a topic ID in the URL for this page. You can find
that ID in the variable $_GET['topicID']. Line 12 displays the topic ID
in the browser’s title bar — if you prefer, you could write code to look
up the topic name in the database and display that instead.

326 Part IV: Building Other Useful Applications

#15 Connects to the MySQL server with the connection options specified
in forumvars.inc. Connect_to_db is a function defined in the file
functions_main.inc that is included in the viewTopic.php script.

#16 The query built on lines 16 to 21 reads all threads belonging to the
given topic. It also reads author and original posting date from the
first message in each thread. (Remember, you can find the first mes-
sage in a thread by looking for a Post whose in_reply_to column is
NULL.) The query is executed on line 22.

#23 Begins an if block that executes if no threads were found. An error
message is displayed.

#28 Begins an else block that executes if a thread is found. This block
displays the thread information in a table.

#34 The DisplayThreadsHeader function creates the column head-
ers for the HTML table.

#35 Starts a loop that reads through each Thread that belongs to
the topic of interest. As the loop reads each Thread, it creates a
new row in the HTML table. Each row displays the subject
under discussion, the number of replies, the author of the first
message in the thread, and the date and time of the most recent
message.

#39 The subject is actually a link to a another page that displays all
of the messages within that thread. The users sees the thread
subject, the URL contains the thread ID as a parameter and
looks something like viewThread.php?threaded=47.

#45 You see three calls to the Addrield function (which you see in
the next section). Addrield creates a styled <td> (table data)
element by extracting a column from the $thread associative
array — when you call Addrield, you provide an associative
array, a column name, and a style name; Addrield does the
rest. In this case, Addrield displays Thread.replies,
Post.author, Thread.last_post

The DisplayThreadsHeader and AddField functions are defined in a sepa-
rate include file, functions_viewtopic.inc, shown in Listing 8-4.

LisTING 8-4: SuPPORTING FUNCTIONS FOR VIEWTOPIC.INC

<?php

/* File: functions_viewtopic.inc
* Desc: Supporting functions for the viewTopic.inc file.
*/

/* Function: DisplayThreadsHeader
* Desc: Displays the column headers

Chapter 8: Hosting Discussions with a Web Forum 32 7

*/
function DisplayThreadsHeader () #9
{
echo '
<tr>
<th class="threadHeader" height="25"
nowrap="nowrap">Subject</th>
<th class="threadHeader" nowrap="nowrap"
width="50">Replies</th>
<th class="threadHeader" nowrap="nowrap"
width="50">Author</th>
<th class="threadHeader"
nowrap="nowrap">Most Recent
Post</th>
</tr>';
}
/* Function: AddField
* Desc: Generates a TD (table data) element
* by extracting the given column from
* an associative array. The resulting
* value is displayed in the $style
* provided by the caller
*/
function AddField($assoc, $column, $style) #30
{
echo ' <td class="'. $style . '">'
. $assoc[$column] . "</td>\n";
s

Following is a description of the lines of code numbered in Listing 8-4:

#9 The DisplayThreadsHeader function creates the column headers for
an HTML table. This particular table contains a list of the discussion
threads within a specific topic, so you see labels for subject,
Replies, Author, and Most Recent Post.

#30 The addrield function creates a <td> (table data) element. The caller
provides an associative array (presumably a row produced by a MySQL
query), a column name, and a CSS style name. Addrield extracts the
desired value from the array and generates a <td> element that will be
displayed in the requested style. Addrield is a simple but useful func-
tion: If you want to use it in your own applications, you might want to
add some extra error checking (for example, you might want to ensure
that the column named by the caller actually exists in the associative
array).

328 PartIv: Building Other Useful Applications

Writing the code for the Messages page

The Messages page displays when the user clicks a thread link on the Threads
page. All the messages for the selected thread are displayed, one row per mes-
sage. The author, the date and time the message was posted, and the message
content are shown for each message. The user can click the Reply link for any
message to display the reply page, where the user can create and post a reply.
If you want to enforce a tighter security policy in your forum so that only prop-
erly authenticated users can post messages, simply omit (or disable) the Reply
link unless the user has logged in. See Chapter 4 for more information regard-
ing user registration and authentication.

The code that displays the page is shown in Listing 8-5.

LisTING 8-5: THE FiLE THAT DispPLAYS THE MESSAGES PAGE

<?php

/* Program: viewThread.inc
* Desc: Program that displays a thread of discussion.
*/

include ("functions_viewthread.inc");

?>

<html>

<head>

<?php
echo '<title>Thread ' . $_GET['threadID'] .'</title>'; #12
echo '<link rel="stylesheet" href="Forums.css"

type="text/css"></head>"';

echo '<body>';

$cxn = Connect_to_db("forumVars.inc"); #16
$query = "SELECT id, author, date, body

FROM Post

WHERE parent_ thread = ". $_GET['threadID'];
$result = mysqli_ query(cxn, Squery); #20
if ($result == 0)
{

echo "Error: " . mysqgli_error($cxn);

}
else #25
{

echo "<table width=\"100%\"

class=\"forumline \"cellpadding=\"4\"";
echo " cellspacing=\"2\" border=\"0\" align=\"center\">";
echo "<tbody>";
DisplayPostsHeader () ; #31
for($i = 0; $i < mysqgli_num rows($result); $i++) #32
{

Chapter 8: Hosting Discussions with a Web Forum 329

}

?>

$post = mysqli_fetch assoc($result);
echo "<tr>\n";

echo '<td class=postFiller>'; #36

echo ''. $post['author'] .
"
";

echo "".$post['date']."";

echo "";

echo '<a href="postReply.php?replyTo="'.$post['id'].
lll>l;

echo 'Reply';

echo "";

echo "</td>\n";

echo ' <td class="postText">'.$post['body']."</td>\n";

echo "</tr>\n";

}
echo "</tbody></table>";

</body></html>

Following is a description of the lines of code in Listing 8-5:

#12

#16

#17

#21

#25

#31

This script produces a Web page that displays all messages (posts)
belonging to a given thread. Line 12 displays the thread ID in the title
bar. The thread ID is passed in the URL to identify which thread
should be displayed. For example, the URL for this page is similar to:
viewThread.php?threadID=47. The script retrieves the thread ID
from the variable $_GET['topicID'].

Connects to the database. The Connect_to_db function is stored in
the file functions_main. inc, which is included in the
viewThread.php script.

The query built on lines 17 to 19 selects the author, id, date, and body
from every message belonging to the selected thread. The author, date,
and body are displayed. The ID values is used to generate a Reply To
link. The query is executed on line 20.

Begins an if block that displays an error message when no messages
are found for the thread.

Begins an else block that executes when messages are found for the
thread. The block displays an HTML table with each message shown
on a separate row.

The call to DisplayPostsHeader creates the column headers for the
HTML table. (I show you DisplayPostsHeader in the functions_
viewthread. inc code listing.)

330 PartIv: Building Other Useful Applications

#36 The Reply To button links to another Web page (produced by
the postReply.php script shown later in this chapter). The
URL for the Reply To button includes a message ID and looks
like this: postReply.php?replyTo=52.

#37 Begins a for loop that loops through the result set and displays
each post in a separate row. Each post is displayed in two
columns. The first column contains the message author’s name,
the post date, and a Reply To button. The author name is dis-
played above the other elements and each element is assigned
its own CSS style so that you can easily customize the look and
feel by changing the corresponding styles (postAuthor,
postDate, and postReply) in the style sheet.

The DisplayPostsHeader function is defined in functions_viewthread.inc,
shown in Listing 8-6.

LisTING 8-6: SUPPORTING FUNCTIONS FOR VIEWTHREAD.INC

<?php
/* File: functions_viewthread.inc
* Desc: Supporting functions for the viewThread.php program.

*/
/* Function: DisplayPostsHeader
* Desc: Displays the column headers for the table that
* shows the Post information
*/
function DisplayPostsHeader ()
{
echo '
<tr>

<th class="postHeader" height="25" D
nowrap="nowrap">Author</th>
<th class="postHeader" nowrap="nowrap">Message</th>
</tr>';
}

?>

The DisplayPostHeader function creates the column headers for an HTML
table that displays each message in a thread. viewThread. inc calls this func-
tion after starting the HTML table.

Chapter 8: Hosting Discussions with a Web Forum

Writing the code for the
New Message page

The New Message page provides a form where the user can create and post a
new message. The code that creates the new message page is in two separate
files, as follows:

V¥ messageForm. inc: Contains the code that defines the look and feel of
the Web page. It produces a form that lets users post a new message.
Another file must be used in conjunction with this file to create the page.
The other file contains the specific information for the page. This file is
used to display both the New Message page and the Reply page. The
pages are different because different files are used in conjunction with
this file.

V¥ messageFields.inc: Contains the specific information for the New
Message page. When used with messageForm. inc, it displays the New
Message page. A different file with different information could be used
with messageForm. inc to create a page that displayed a different form.

These two files are the same for the procedural application and the object-
oriented application. I describe the two files in the following sections.

Writing messageFields.inc

The messageFields. inc file provides the specific information for the
new message page. This file defines five arrays that, when interpreted by
messageForm. inc (which I cover in Listing 8-7), are translated into HTML
elements. The arrays are

V* $page: This array stores the elements displayed in the browser’s titlebar
($page('title']), at the top of the page ($page['top']1), and at the
bottom of the page ($page['bottom']).

v $elements: This array contains the elements displayed at the top and
bottom of the form (and the label to display on the submit button). The
members of the $page array form a visual frame around the members of
the $elements array. This arrangement is a matter of preference and
you can adjust the layout to fit your own personal style.

v $fields: Each member of this array describes a field that is displayed
on the form. The key defines the name of the field and the value pro-
vides a label that is displayed to the left of the field.

v stypes: This array defines the type of HTML control used to display each
field in the $fields array. For example, the $fauthor field is displayed in
an input control while $fbody is displayed in a textarea control.

331

332 PartIv: Building Other Useful Applications

v $styles: Defines the style assigned to each field in the $fields array.
Because the Web pages utilize a CSS (cascading style sheet), most of the
names you see in the $styles array refer to a CSS style. (The exception
is $styles[' ftopicID'], which creates a hidden HTML control.)

Listing 8-7 shows the messageFields. inc file.

LisTING 8-7: THE FiLE THAT PRoVIDES THE ARRAYS FOR THE NEW IMIESSAGE FORM

<?php
/* File: messageFields.inc
* Desc: Contains arrays with the field names and form

* elements for the forum post form.
*/
$page = array("title"™ => "Starting new thread in topic:
$ftopic",
"top" => "Starting new thread in topic:
s$ftopic”,

"bottom" => "Send questions and comments
to admin@ourplace.com",
)i

$elements = array("top" => "",
llbottomll => nn ’
"submit" => "Post Message"
)i

$fields = array("author" => "Your e-mail address",
"subject" => "Subject",
"body" => "Message",
n ftopicIDll => n II’
)
$types = array("author" => 'input type="text" size="30"',
"subject" => 'input type="text" size="30"',
"body" => 'textarea rows="5" cols="60""',

"ftopicID" => 'input type="hidden"'
)i

$styles = array("author" => "postAuthor",
"subject" => "postSubject",
"body" => "postBody",
"ftopicID" => "hidden"
);
?>

Writing messageForm.inc

Listing 8-8 shows the messageForm. inc file. messageForm. inc converts the
form description (see Listing 8-7) into an HTML form and displays that form
to the user.

Chapter 8: Hosting Discussions with a Web Forum 333

LisTiING 8-8: THE FiLE THAT DispLAYS THE NEw MESSAGE AND REPLY PAGES

<?php

/* File: messageForm.inc

* Desc: Displays a Web page that lets the user post a

* reply to a new message.

*/ #5
?>
<head><title><?php echo $page['title']?></title>

<link rel="stylesheet" href="Forums.css" type="text/css">

</head>
<body style="margin: 0">
<h2 align="center"><?php echo $pagel['top'] ?></h2>
<hr size="10" noshade>
<p style="font-size: 110%; font-weight: bold">
<?php echo $elements['top']l?></p>
<form action=<?php echo $_SERVER['PHP_SELF']?> method="POST">
<table border="0">
<?php #17
if (isset ($GLOBALS|['message_2']))

echo "<tr>
<td colspan='2"
style=\"font-weight: bold; font-style: italic;
font-size: 90%; color: red\">
{SGLOBALS|['message_2"'] }<p></td></tr>";
}
foreach($fields as $field => $value) #26
{
echo "<tr>\n";
DisplayField($value, $field, @$$field, S$types[$field],
$styles[$field]);
echo "</tr>\n";

} #32
?>
<tr>
<td colspan="2" style="text-align: center" >

<input type="submit" name="Button"
value="<?php echo $elements['submit']?>">
</td>
</tr>
</table></form>

<hr size="10" noshade>

<div style="text-align: center; font-size: 75%">
<?php echo $pagel['bottom']?>

</div></body></html>

This script translates the $page, $elements, $fields, $types, and $styles
associative arrays into an HTML page.

334 PartIv: Building Other Useful Applications

The following numbers correspond to the lines in Listing 8-8:

#7
#11
#14

#16

#26

#37

Displays $page['title'] in the browser title bar.
The spage['top'] element is centered across the top of the Web page.

Displays the selements['top'] string value. The postFields.inc
file puts an empty string into $elements['top' 1, but you can add
your own message there if you like.

Begins a table. The HTML controls defined by postFields.inc are
displayed inside an HTML table so that the labels and controls line
up nicely.

Begins a foreach loop that loops through each field in the $fields
array and creates a new row in the HTML table for each element in
the array. To actually create the table elements, this script calls the
DisplayField function (see Listing 8-16). DisplayField expects five
arguments: a label, a field name, a value, a control type, and a style
name.

For example, the first element in the $fields array is "fauthor" =>
"Your e-mail address".DisplayField paints the element value
("Your e-mail address") as alabel and uses element key (fauthor)
to create an HTML control named fauthor. The value of the field is
found by dereferencing $field. In other words, if $fieldis set to
fauthor and $fauthor contains me@home, then $$field evaluates to
the string me@home. The control type (textarea, input, and so on) is
found by using the field name (fauthor, fbody, and so on) as an index
into the $types array. Similarly, the style is found by using the field
name as an index into the $styles array.

The last row in the HTML table contains the submit button. The
button label is derived from $element['submit']. (In this case,
the button is labeled Post Message.)

Writing the code for the Reply page

The Reply page provides a form where the user can reply to a post. The code
that creates the reply page is in two separate files, as follows:

V messageForm. inc: Contains the code that defines the look and feel of
the Web page. It produces a form that lets users post a reply. Another
file must be used in conjunction with this file to create the page.

v This is the same file used to produce the post message page, described
in the previous section. It produces the reply page, rather than the post
message page, because a different file is used in conjunction with it. To

Chapter 8: Hosting Discussions with a Web Forum 335

produce the reply page, this file is used with the replyFields. inc file.
In the previous section, this file was used in conjunction with the
messageFields. inc file to product the post message page.

V replyFields.inc: Contains the specific information for the reply page.
When used with messageForm. inc, it displays the Reply page. A differ-
ent file, with different information, is used with messageForm. inc to
create a page that displays a different form, such as the post message
page described in the previous section.

These two files are the same for the procedural application and the object-
oriented application. I describe the replyFields. inc file in the following
section.

Writing replyFields.inc

The replyFields. inc file provides the specific information for the Reply
page. This file also defines five arrays that, when interpreted by the file
messageForm. inc (Which I cover in Listing 8-8), are translated into HTML
elements. The arrays are

v $page: This array stores the elements displayed in the browser’s title
bar ($page['title']), at the top of the page ($page('top']), and at
the bottom of the page ($page['bottom']).

v $elements: This array contains the elements displayed at the top and
bottom of the form (and the label to display on the submit button). The
members of the $page array form a visual frame around the members of
the $elements array. This arrangement is a matter of preference and
you can adjust the layout to fit your own personal style.

v $fields: Each member of this array describes a field that is displayed
on the form. The key defines the name of the field and the value pro-
vides a label that is displayed to the left of the field.

v $types: This array defines the type of HTML control used to display
each field in the $fields array. For example, the $fauthor field is dis-
played in an input control while $fbody is displayed in a textarea
control.

v $styles: Defines the style assigned to each field in the $fields
array. Because the Web pages utilize a CSS, most of the names you
see in the $styles array refer to a CSS style. (The exception is
$styles['ftopicID'], which creates a hidden HTML control.)

Listing 8-9 shows the replyFields. inc file. This file defines the content of
the HTML form displayed to the user and, together with the Forums.css
stylesheet, defines the appearance of each element in the form.

336 Part IV: Building Other Useful Applications

LisTiING 8-9: THE PAGE THAT PROVIDES THE ARRAYS FOR THE REPLY PAGE

<?php
/* File: replyFields.inc
* Desc: Contains arrays with the field names and form
* elements for the forum post form.
*/
$page = array("title"™ => "Reply to: " . $ POST['subject'],
"top" => "Reply to: " . $_POST['subject'],
"bottom" => "Send questions and comments
to admin@ourplace.com",
)i
$elements = array("top" => "",
llbottomll => nn ’
"submit" => "Post Message"
)i
$fields = array("author" => "Your e-mail address",
"body" => "Message",
"fresponse" => "In reply to",
n freplyto n => nn ’
n fsubject n => " ll'
)i
$types = array("author" => "input",
"body" => 'textarea rows="5" cols="60""',
"fresponse" => 'textarea readonly rows="5"
cols="60"",
"freplyto" => 'input type="hidden"',
"fsubject" => 'input type="hidden"',
)i
$styles = array("author" => "postAuthor",
"body" => "postBody",
"fresponse" => "postResponse",
"freplyto" => "hidden",
"fsubject" => "hidden",
)i
?>

The $fields, $types, and $styles arrays describe five HTML controls:
v author: An input field where you expect the user to enter his or her
e-mail address.

¥ body: A text area where you expect the user to type in the text of the
message.

v fresponse: A text area that displays the text of the message that the
user is replying to.

Chapter 8: Hosting Discussions with a Web Forum 33 7

v freplyto: A hidden field that contains the ID of the message that the
user is replying to. This field is used to forward the message ID from one
phase to the next.

v fsubject: A hidden field that contains the subject of the message that
the user is replying to.

Building the Forum Application:
Procedural Approach

The Forum application has five application scripts, as follows:

v viewForums.php: Displays the forums Web page, which displays a list of
the forums and topics available.

V¥ viewTopic.php: Displays the threads Web page, which displays a list of
the threads in a topic.

v viewThread.php: Displays the messages Web page, which displays a list
of the messages in a thread.

V¥ postMessage . php: Builds, displays, validates, and processes an HTML
form using the strategies outlined in Chapters 3 and 4. When the user cre-
ates a new thread, the Web server runs postReply.php twice. The first
time through, postMessage.php displays a form that shows the topic that
will own the new thread and a number of empty fields. When the user
completes the form and clicks the Post Message button, postMessage.
php executes again — this time it validates the input and, if everything
looks okay, writes the new message to the database.

V¥ postReply.php: Builds, displays, validates, and processes the HTML
form used in the reply page. The script is similar to the post Message
script. However, postMessage creates both a message and thread, while
postReply creates a message but updates an existing thread. This script
runs when the user clicks a Reply link in the messages page. The thread
ID is passed to this script in the URL.

Writing viewForums.php

The viewForums.php script (shown in Listing 8-10) is very simple. It simply
includes the viewForums. inc file that displays the Web page. This script is
run first, starting the application by displaying the forums Web page. Other
scripts run when links or buttons are clicked.

338 PartIv: Building Other Useful Applications

LisTiING 8-10: THE ScRIPT THAT DispPLAYS THE FORUMS PAGE

<?php

/* Program: viewForums.php
* Desc: Displays the forums page.
*/

include("functions_main.inc");
include ("viewForums.inc");

?>

The script includes a file containing functions needed by the viewForums. inc
file and then includes viewForums. inc.

Writing viewTopic.php

The viewTopic.php script is the same as the viewForums .php script, except
that it includes the viewTopic. inc file that displays the Threads Web page.
This script runs when the user clicks a topic name in the forums page. Listing
8-11 shows viewTopic.php.

LisTING 8-11: THE ScRIPT THAT DispLAYS THE FORUMS PAGE

<?php

/* Program: viewTopic.php

* Desc: Displays the threads page.
*/

include("functions_main.inc");
include("viewTopic.inc");

?>

The script includes a file containing functions needed by the viewTopic.inc
file and then includes viewTopic. inc.

Writing viewThread.php

The viewThread.php script is the same as the viewForums .php script,
except that it includes the viewThread. inc file that displays the Messages
Web page. This script runs when the user clicks a thread name in the threads
page. Listing 8-12 shows viewThread.php.

Chapter 8: Hosting Discussions with a Web Forum 33 9

LisTING 8-12: THE ScRiPT THAT DispLAYS THE FORUMS PAGE

<?php

/* Program: viewThread.php

* Desc: Displays the messages page.
*/

include("functions_main.inc");
include ("viewThread.inc");

?>

The script includes a file containing functions needed by the viewForums.
inc file and then includes viewforums. inc.

Writing postMessage.php

The postMessage . php script starts when the user clicks the Start a New

Thread link. The postMessage . php script builds, displays, validates, and
processes an HTML form. The following is an overview of the structure of
the script:

switch (Button)

case "Post Message":
Save new message in thread

case default:
Show HTML form for creating new messages.

Listing 8-13 shows the postMessage.php program.

LisTING 8-13: POSTIMESSAGE.PHP

<?php

/* Program: postMessage.php

* Desc: Displays and validates a form that starts a new
* thread and posts a message to that thread.

*/

include("functions_main.inc");
include ("functions_post.inc");

switch(@$_POST['Button']) #9
{
case "Post Message": #11
{

Continued

34 Part1v: Building Other Useful Applications

LisTING 8-13: (Continued)

$cxn = Connect_to_db("forumVars.inc");

// Create the new Thread #14
$sql = "INSERT INTO Thread(parent_topic,subject) ";
$sgql .= "VALUES(";
$sq1 .= $ POSTI[" ftopicIiID'] . ","."'";
$sql .= addslashes(htmlentities($_POST['subject']))."')";
if (!mysqli_query($cxn, $sql))
{
echo "Error: ".mysqgli_error($cxn);
}
$parentThread = mysqgli_insert_id($cxn); #23
// Encode any quote characters #24

$author = strip_ tags($_POST['author']l);

sauthor = mysqli_ real escape_ string($cxn, $Sauthor);
$body = htmlentities($_POST['body']l):

$body = mysqgli_real escape_string($cxn, $body);

// And add the new message to the Post table #29
$query = "INSERT INTO Post (parent_thread,author,body)";
$Squery .= "VALUES(";
$Squery .= $parentThread . ",";
$query .= LI $author . lll,ll;
$query .= LU $body. |||)||;
$result = mysqli_query($cxn, $query);
if($result == 0)
echo "Error: ".mysqgli_error($cxn);
else
{
echo '<meta http-equiv="Refresh" content="3;'; #40
echo 'url=viewTopic.php?topicID="';
echo $_POST['ftopicID'] . '"/>';
echo "Your message has been posted. In a moment you
will be automatically returned to the
topic.";
}
break;
}
default: #50
{

$parentTopic = $_ GET['topicID'];

$cxn = Connect_to_db("forumVars.inc");

$sql = "SELECT name FROM Topic WHERE id = $parentTopic";
$result = mysqli_query($cxn, $sql);

if($result == 0)

{
echo "Error: ".mysqgli_ error($cxn);
exit();
}
$topic = mysqgli_fetch assoc($result);
$author = nn, #62
$subject = un,;

$body

wn .
’

Chapter 8: Hosting Discussions with a Web Forum

341

$ftopic $topic['name'];
$ftopicID $parentTopic;
include("messageFields.inc");
include("messageForm.inc");
break;

#67

The following numbered items refer to the line numbers in Listing 8-13:

#9

#11

#15

#23

#25

The switch statement detects which phase the script is running in.
If the user has filled in the form and clicked the Post Message button,
$_POST['Button'] is set to Post Message. If the user has not yet
seen the form, $_POST['Button'] is undefined (in fact, the entire
$POST superglobal array is undefined).

The case statement executes when the user completes the form and
clicks Post Message.

Lines 15 to 18 build an INSERT query that creates a new row in the
Thread table. The htmlentities function is used on line 18 to con-
vert any HTML tags in the subject to entities. This protects against
dangerous text entered into the form by bad guys. The addslashes
function is used to escape any quotes in the subject.

If the INSERT statement succeeds, you can call the mysqgli_insert_
id function to retrieve the auto-generated ID of the new thread.

Lines 25 to 28 prepare the input data for insertion into the database.
You see two calls to the mysgli_real_escape_string function. The
first call escapes any quotes that the user typed into the author field.
The second takes care of any quotes in the body field. You might be
wondering why you need to prepare the text entered by the user.
Consider a simple INSERT statement that adds a single piece of data
to a MySQL table:

INSERT INTO myTable VALUES('S$userData');

Assume that a Web user provided the value for suserData by filling
in a form. If the user typed in a value in the form that you're expect-
ing, say “Good kitty”, the INSERT statement translates to:

INSERT INTO myTable VALUES('Good kitty');

But consider what would happen if, instead, the user typed in the value
“There’s a good kitty”. If you simply plug this text into the INSERT state-
ment, the embedded quote mark will produce a syntax error:

INSERT INTO myTable VALUES('There's a good kitty');

342 PartIV: Building Other Useful Applications

#29

#40

#50

#62

#67

As far as the MySQL server is concerned, the string begins at the first
quote and ends at the second quote — the rest of the text between
the parentheses is a syntax error. A call to mysqli_real_escape_
string will translate “There’s a good kitty” into “There\’s a good
kitty”, making it safe to use in a MySQL statement.

Lines 30 to 35 build and execute the INSERT query that inserts the
new message into the post table.

By the time you reach line 40, all of the necessary database updates
have completed and the new message has been posted. The only
thing left to do is to send the user somewhere useful. The <meta> tag
you produce at line 40 automatically redirects the browser back to
the viewThread page after a delay of three seconds, giving the user
a chance to read the “post successful” message. Using an automatic
refresh this way means that the user still gets some feedback (the
“post successful” message), but won’t have to click another button
to get back to the thread display.

The default case executes when the user first navigates to this Web
page. The code in this section prepares the form and displays it to the
usetr.

After retrieving the topic name from the Topic table, the fields that
are about to be displayed to the user are initialized. In this case, the
user must enter a value for $author, $subject, and $body so those
fields are initialized to empty strings. (Vote: If you decide to add user
registration and authentication to your forum application, you should
set the user’s e-mail address in the $author field and disable that
control.) The $ftopic variable displays the name of the topic that
owns the new thread. $ftopicID is a hidden control that shuttles the
topic ID from one phase to the next.

The two include directives that you see at lines 67 and 68 display
the new message page. [describe the files messageFields.inc and
messageForm. inc in the earlier section “Writing the code for the new
message page.”

Writing postReply.php

The postReply.php script starts when the user clicks the Reply link for any
message. The postReply.php script builds, displays, validates, and processes
an HTML form. The ID of the post the user is replying to is passed in the URL.
The following is an overview of the structure of the script:

switch (Button)

case "Post Message":

Get parent id
Save new reply in thread

Chapter 8: Hosting Discussions with a Web Forum

Update thread

case default:
Show HTML form for creating reply.

Listing 8-14 shows the postReply.php script.

LisTING 8-14: POSTREPLY.PHP

<?php
/* Program: postReply.php
* Desc: Script that posts a reply to a message.
*/

include("functions_main.inc");
include ("functions_post.inc");

switch(@$_POST['Button'])

{
case "Post Message":

{
$cxn = Connect_to_db("forumVars.inc");

// Find the parent_ thread of the message that the user
// is replying to

$query = "SELECT parent_ thread FROM Post
WHERE id = " . $_POST['freplyto'];
$result mysqgli_ query($cxn, $query);

$thread = mysqgli_ fetch_ assoc($result);
// Encode any quote characters
$author = strip_tags($_POST['author']l);
$author = mysqli real escape_ string($cxn, $author);
$body = htmlentities($_POST['body']l):;
$body = mysqgli_ real escape_string($cxn, $body);
// And add the new message to the Post table

$query = "INSERT INTO Post
(parent_thread, in reply to, author, body)
$query .= "VALUES(";
Squery .= $thread|['parent_thread'] . ",";
Squery .= $ _POST['freplyto'] . ",";
$query .= "r$Sauthor',";
$query .= "'$body')";
$result = mysqli_query($cxn, $query);

if($result == 0)
echo "Error: ".mysqgli_ error($cxn);
else
{
$Squery = "SELECT replies FROM Thread
WHERE id = $thread[parent_thread]";
$result = mysqgli_query($cxn, $query);
$reps = mysqgli_ fetch assoc($result);
$Squery = "UPDATE Thread SET last_post = now(),

343

#5

#8
#10
#12

#17

#20

#25

"”e
I

#37

Continued

344, PartIv: Building Other Useful Applications

LisTING 8-14: (Continued)

#45

#50

#61
#63

#70

#75

replies = {Sreps['replies']}+1l
WHERE id = $thread[parent_thread]";
$result = mysqli_query($cxn, $query);
if($result == 0)
echo "Error: ".mysqli_error($cxn):;
else
{
echo '<meta http-equiv="Refresh" content="3;';
echo 'url=viewThread.php?threadID=';
echo $thread|['parent_thread']. '"/>';
echo "Your message has been posted. In a moment
you will be
automatically returned to the thread.";
}
}
break;
}
default:
{
$cxn = Connect_to_db("forumvVars.inc");
$query = "SELECT author, date, body, subject
FROM Post, Thread
WHERE Post.id = " . $_GET['replyTo']
AND Thread.id = Post.parent_thread";
$Sresult = mysqli_ query($cxn, $query);
$_POST = mysqgli_fetch_assoc($result);
$fresponse = §_POST['body'];
$fsubject = $_POST['subject'l];
$b°dy = nn,
$author = nwn,
$freplyto = $_GET['replyTo'l;
include("replyFields.inc");
include("messageForm.inc");
break;
}
}
?>

Following is a description of the lines of code in Listing 8-14:

#8 The switch statement detects which phase the script is running in. If

the user has filled in the reply form and clicked the Post Message link,

$_POST['Button'] is set to Post Message. If the user hasn’t yet

seen the form, $_POST['Button'] is undefined.

#10 The first case statement executes after the user has completed the

form and clicked the Post Message button.

Chapter 8: Hosting Discussions with a Web Forum

#16

#21

#25

#38

#50

#61

#63

#64

#70

#75

Every post is owned by a single thread, and a new message is owned
by the same thread that owns the message to which the user is
replying. Lines 16 to 17 build the query that retrieves the ID of

the thread that owns the original message. You could also include
the parent thread ID as a second parameter in the URL, like this
postReply.php?replyTo=47&parentThread=52.

Lines 21 to 24 prepare the input data for insertion into the database.
The strip_tags and htmlentities functions remove or convert
HTML tags. The mysqli function escapes any quotes.

After the user-entered data has been made safe, you can insert the
new message into the Post table. Lines 26 to 33 build and execute the
INSERT query.

If the new message is successfully added to the pPost table, lines 38 to
45 build and execute an UPDATE query that modifies 1ast_post date
and the number of replies in the parent thread.

The <meta> tag you see automatically redirects the browser back to
the viewThread page after a delay of three seconds.

This case statement (the default case) executes when the user first
navigates to this Web page. The code in this section displays a form
to the user.

When you display the reply form to the user, you want the user to see
the subject and content of the message that he’s replying to. That
information is stored in two places: The subject is found in the parent
thread, and the message content is stored in the original post. The
Connect_to_db function that connects to the database on line 58 is
stored in the functions_main.inc file included at line 5.

Lines 59 to 63 build and execute the query that retrieves the subject
and contents of the message being replied to.

The form displayed to the user contains five fields (which I explain
in the next section). The code starting at line 65 defines the data dis-
played to the user by assigning initial values to those five fields.

The two include directives that you see at lines 70 and 71 display
the reply page. The files replyFields.inc and messageForm. inc
are described in the earlier sections “Writing the code for the new
message page” and “Writing the code for the reply page.”

Writing the supporting functions

The scripts in this application make use of a small set of functions stored

in separate files. All the scripts use the function Connect_to_db stored

in the file functions_main.inc. The two scripts that post messages —
postMessage.php and postReply. inc — include the file functions_post.
inc that defines a function used to display the forms.

345

346 Part IV: Building Other Useful Applications

Writing functions_main.inc

This file contains one function used by all the scripts. Listing 8-15 shows the
file.

LisTING 8-15: THE FuNcTIiON THAT CONNECTS TO THE DATABASE

<?php

/* File: functions_main.inc

* Function: Connect_to_db

* Desc: Connects to a MySQL database. The name of
* a file containing the database variables
* is passed to the function.

*/

function Connect_to_db($filename)

{

include($filename);
$cxn = mysqgli_connect ($host, $user, $passwd)
or die ("Couldn't connect to server.");
$db = mysqli_select_db($cxn, $database)
or die ("Couldn't select database.");
return $cxn;

The Connect_to_db function that you see here is identical to the Connect_
to_db function you see throughout the book. The call must provide the name
of a file ($filename) that defines a set of connection options ($host, Suser,
$passwd, and $database). Given the name of a file that contains connection
options, Connect_to_db connects to a MySQL server and returns a connec-
tion handle.

Writing functions_post.inc

This file contains one function that adds an HTML field to a form. Listing 8-16
shows the file.

LisTING 8-16: THE FiLE THAT DEFINES THE DiSPLAYFIELD FUNCTION

<?php
/* File: functions_post.inc
* Desc: Supporting functions for postMessage and postReply.

*/
function DisplayField($label, $field, $value, $type, $style)
{

$typeTags explode("™ ", S$type);

$controlType $typeTags[0];

Chapter 8: Hosting Discussions with a Web Forum 34 7

$result = ' <td style="formLabel">';
$result .= $label;
$result .= "</td>\n";
if(ereg("input", $controlType)) #16
{
$result .= " <td><$type class='S$style' name='$field’
value='$value'></td>\n";
}
else
{
$result .= "<td>";
$result .= "<$type name='$field' class=\"$style\">";
$result .= $value;

$result .

}
echo $result;
}

?>

"</$controlType></td>\n";

The caller provides a string ($1abel) that displays to the left of the field, a
name for the field ($£ield), an initial value ($value), a field type ($type),
and the name of a display style ($style).

The only tricky part of this function is that when you’re creating an <input>
element the initial value (the value displayed to the user) is specified as an
attribute. When you're creating a <textarea> element, the initial value is
specified as the value of the element. In other words, if you're creating an
<input> element, you specify the value like this:

<input name="fieldName" value="initial wvalue">

But if you're creating a <textarea> element, you specify the value like this:

<textarea name="fieldName">initial value</textarea>

This part of the function is handled by an if/else statement that begins on
line 16.

Building the Forum Application:
The Object-Oriented Approach

From the user’s perspective, the forum application behaves the same way
whether you’ve written it in a procedural fashion or you've used an object-
oriented approach. A visitor to your Web site sees the same HTML tables and
HTML forms regardless of which method you’ve chosen. The object-oriented

34 & Part1v: Building Other Useful Applications

version of this application uses the same set of tables as the procedural ver-
sion and produces the same set of Web pages.

Object-oriented programming requires that you create and use objects to pro-
vide the functionality of the application. You first identify the objects needed
for the application. Then you write the classes that define the objects, includ-
ing the methods that the application needs. When the objects are ready, you
write the application script that creates and uses the objects.

Developing the objects

The Forum application stores and displays messages that are posted by users.
It displays lists of forums, topics, and threads, so that the user can view and
reply to any posted messages. The following list of objects reflects the tasks
this application needs to perform.

V¥ TableAccessor: A class that provides a means to retrieve data from a
given table. This is a master class, providing general methods for access-
ing all types of tables. The pPost class and the Thread class are sub-
classes that extend the TableAccessor class, providing methods for
accessing specific types of tables.

v post: The post class provides a simple interface to the post table. The
Post class extends the TableAccessor class by adding two methods
and overriding one of the methods defined in TableAccessor.

v Thread: The Thread class provides a convenient interface to the Thread
table. The Thread class extends the TableAccessor class by adding two
methods.

V” Database: The application stores the forum information in a database.
The Database class provides the container that stores the data.

v WebForm: A form is central to this application. The form allows cus-
tomers to register or to enter their usernames and passwords if they're
already registered. The webForm class provides the form for the applica-
tion. It collects and processes the information typed by a user.

The first three classes are developed to access the forum database. To inter-
act with a MySQL table from a PHP program, you need to

1. Connect to the database.
2. Select the data that you need.
3. Access the values that you select.

4. Process any error messages you might encounter.

Chapter 8: Hosting Discussions with a Web Forum 34 9

Those operations are pretty much the same regardless of which table you're
dealing with.

Instead of creating separate classes that contain nearly identical code, | show
you how to create a single class, TableAccessor, that defines a common set
of methods required to access any table. Next, you extend the TableAccessor
class, creating a Thread class that adds the methods that you need in order
to interact with the Thread table. (The keyword extend indicates that the
class being defined inherits from the other class.) When you create an object
of type Thread, because of inheritance you're also creating an object of type
TableAccessor — anything that you can do with a TableAccessor object
you can also do with a Thread object. You then extend the TableAccessor to
create a post class that provides access to the post table. The postReply
script accesses two tables (Thread and Post), so I don’t create Forum or
Topic classes, but you could do that in a similar manner if those classes were
needed.

Writing the TableAccessor class

Instead of interacting with the MySQL server directly, the TableAccessor
class provides a more convenient way to retrieve data from a given table.

The properties

The TableAccessor properties store connection, table, and row information.
The properties are

protected $cxn;
protected $table_name;
protected $message;
protected $currentRow;

The $cxn property is a database connection handle, the $table_name prop-
erty represents the name of a MySQL table, and the $currentRow property
holds the resultset contents. The $message property is used to convey any
error messages.

The code

Listing 8-17 contains the complete code for the TableAccessor class. After
the code listing you can find a discussion about each method. Notice the line
numbers at the ends of some of the lines of code. The discussion following
the listing refers to the line number.

35() PartIv: Building Other Useful Applications

LisTING 8-17: TABLEACCESSOR.CLASS

<?php
class TableAccessor
{
protected $cxn;
protected $table_name;
protected $message;
protected $currentRow;
function __construct (mysqgli $cxn, $table)
{
$this->cxn = $cxn; #11
if(is_string($table)) #12
{
$sgql = "SHOW TABLES LIKE 'S$table'";
$table _res = mysqli_ query($cxn, $sql);
$nrow = mysqgli_num rows ($table_res);
if ($nrow > 0) #17
{
$this->table_name = $table;
}
else #21
{
throw new Exception("$table is not a table
in the database");
return FALSE;
}
}
else #28
{
throw new Exception("Second parameter is not a
valid table name");
return FALSE;
}
}
function selectByID($id) #36
{
$id = trim($id);
$sql = "SELECT * FROM $this->table_name
WHERE id = $id"; #40
if (!$result = mysqli_query($this->cxn, $sql))
{
throw new Exception("Couldn't execute query: "
.mysqli error($this->cxn));
return FALSE;
}
if(mysgli_num rows($result) > 0)
{
$this->currentRow = mysqgli fetch assoc($result); #49
return TRUE;
}
else

Chapter 8: Hosting Discussions with a Web Forum 35 1

{
$this->message = "$this->table_name $id
does not exist!"; #55
unset ($this->currentRow) ;
return FALSE;
}
}

function getvValues($fieldNames) #61

{
if (!isset ($fieldNames)) #63
{

return $this->currentRow;
}
else if(is_array($fieldNames)) #67
{

foreach($fieldNames as S$name)

$result[$name] = $this->currentRow[$name];

return S$result;
}
else
{

return $this->currentRow[$fieldNames]; #75
}

}

function getMessage()

{

return $this->message;

}

function getConnection()
{
return $this->cxn;
}
}

?>

The constructor

The constructor tests the connection and the table name that are passed to
it to ensure that the parameters are in the proper format and stores them in
properties. There is no default for these values; the values must be passed
when the Account object is created.

#11 Stores the database connection in the property.

#12 Begins an if block that executes if the table name passed is a string.
The table name is checked to see whether it exists.

#14 Lines 14 to 15 create and execute an SQL query that tests
whether a table exists with the name that was passed to the
constructor.

352 PartIv: Building Other Useful Applications

#17 Begins an if block that executes if the table exists. The table
name is stored in the $table property.

#21 Begins an else block that executes when the table does not
exist. The script throws an exception with a message and
returns FALSE.

#28 Begins an else block that executes if the table name is not a string.
The script throws an exception with a message and returns FALSE.

selectBylD

This method retrieves a single row from the table. The row is identified by its
id column. selectByID doesn’t return the content of the row, it returns TRUE
or FALSE to indicate whether the requested row was found. If the selectByID
function can’t find the row that is being looked up, it stores a message in the
object explaining that no such object exists in the data — that can be retrieved
by calling the getMessage method. The following numbers refer to line number
in Listing 8-17.

#38 Because all the forum tables contain a column named id, you can
simply hard-code a SELECT statement in this method. If you want to
extend TableAccessor to access a table that doesn’t contain a
column named id (or if you need to access the table by some other
set of columns), you can override the selectByID method in your
own class. (In fact, you do just that when you create the post class a
little later.)

#48 If selectByID finds the requested row, it stores the row values in
$this->currentRow (which is a protected member of the
TableAccessor class) and returns TRUE to indicate success.

#54 If selectByID can'’t find the requested row, it stores a message in
$this->message and returns FALSE.

getValues

Returns one or more values from the current row. How many values are
returned depends on the type of argument passed to the method. The
following numbers refer to line numbers in Listing 8-17:

#62 If you call this method with a NULL argument (or with no arguments),
getValues returns the current row.

#66 If you want to retrieve a specific set of columns from the current row,
call getvalues with an array that contains the names of the columns
that you want. getvalues returns the requested values in the form of
an associative array.

#74 You can also call getvalues with the name of a single column, and it
returns the value in that column.

Chapter 8: Hosting Discussions with a Web Forum 3 53

getMessage
Returns the text of the most recent error message.

getConnection
Returns the database connection stored inside this object.

Writing the Thread class

The Thread class provides a convenient interface to the Thread table. After
you create a Thread object, you can use it to call any of the methods defined
by class Thread or by class TableAccessor. That means, for example, that
you can retrieve a specific row in the Thread table by calling $thread->
selectByID (assuming that $thread is an object of type Thread). The
Thread class extends TableAccessor by adding two methods:
updateTimeStamp and createNew.

The code

The complete code for the Thread class is shown in Listing 8-18. After the
code listing you can find a discussion about each method. Notice the line
numbers at the ends of some of the lines of code. The discussion following
the listing refers to the line numbers.

LisTING 8-18: THE THREAD CLASS

<?php
/* Class: Thread
* Desc: Represents a thread.
*/

require_once("TableAccessor.class");

class Thread extends TableAccessor
{
function updateTimeStamp ($threadID) #9
{
$sql = "UPDATE Thread SET last_post = now()
WHERE id = $threadID";
return(mysqli_ query($this->cxn, $sql));
}

function createNew($topic, $subject) #16
{
$subject=mysqgli_real escape_string($this->cxn, $subject);
$sqgl = "INSERT INTO Thread(parent_topic, subject)
VALUES(S$topic, '$subject')";

Continued

354 PartIv: Building Other Useful Applications

LisTING 8-18: (Continued)

if (mysqli_ query($this->cxn, $sql)) #21
{
return $this->cxn->insert_id;
}
else
{

throw new Exception("Can't execute query insert: "
.mysqli error($this->cxn));
return NULL;

}
function updateReplies ($threadID)
{
Squery = "SELECT replies FROM Thread

WHERE id = $threadID";
$result = mysqli_query($this->cxn, $Squery);
$reps = mysqli_fetch_ assoc($result):;
$Squery = "UPDATE Thread
SET replies = {$reps['replies']}+1l
WHERE id = '$threadID'";
$result = mysqgli_query(S$this->cxn, $query):;
return($result);

updateTimeStamp

This method executes a single UPDATE statement that assigns the value

now () (a function executed by the MySQL server) to Thread.last_post. If
the UPDATE statement succeeds, updateTimeStamp returns TRUE; otherwise,
it returns FALSE.

createNew

This method inserts a new row into the Thread table. The caller provides the
ID of the parent topic and a string containing the subject of the thread. The
Thread.replies and Thread.last_post columns are set to NULL. Thread.
idis defined as an auto_increment column so the MySQL server will assign
a unique identifier to the new Thread. At line 21, if the new INSERT state-
ment succeeds, createNew returns the id of the new thread. The mysqli
package makes it easy to find the auto-generated id value — just look in the
connection->insert_id property.

updateReplies

This method adds 1 to the replies field in the Thread table of the database. It
gets the number of replies currently in the database. It then updates the field,
setting the new value to the current (retrieved) value plus 1.

Chapter 8: Hosting Discussions with a Web Forum 3 5 5

Writing the Post class

Like the Thread class, the pPost class provides a simple interface to a MySQL
table. The pPost class extends the TableAccessor class by adding two meth-
ods (postReply and postMessage) and re-implementing, or overriding, one
of the methods defined by the master class (selectByID).

When you select a row from the post table, it’s often convenient to retrieve the
subject of the parent thread as well: The selectByID method implemented by
the post class does just that. The selectByID method offered by the base
class (TableAccessor) doesn’t know how to join two tables, so the Post class
must override the selectByID method simply by supplying its own version.

The postReply and postMessage methods both add a new row to the post
table: postReply adds a message to an existing thread and postMessage cre-
ates a new message and a new thread.

The code

The complete code for the post class is shown in Listing 8-19. After the code
listing you can find a discussion about each method. Notice the line numbers
at the ends of some of the lines of code. The discussion following the listing
refers to the line numbers.

LisTING 8-19: THE PosT CLASS

<?php

/* Class: Post

* Desc: Stores a post.

*/
require_once("TableAccessor.class");
require_once("Thread.class");

class Post extends TableAccessor

{
function selectByID($id) #10
{
$id = trim($id);
$sqgl = "SELECT date,body, subject,parent_thread

FROM Post,Thread WHERE Post.id = $id
AND Thread.id = Post.parent_thread";
if(!$result = mysqli_query($this->cxn, $sql))
{
throw new Exception("Couldn't execute query: "
.mysqli error($this->cxn));
return FALSE;

if(mysqgli_num rows(S$result) > 0)

Continued

356 Part IV: Building Other Useful Applications

LisTING 8-19: (Continued)

{
$this->currentRow = mysqli_ fetch_assoc($result);
return TRUE;

}
else
{
$this->message = "Post $id does not exist!";
return FALSE;
}
}
function postReply($parent, $replyTo, $author, $body) #34
{
// Encode any quote characters
$author = mysqli_real_escape_string($this->cxn, $author);
$body = mysqgli_real escape_string($this->cxn, $body);
$sq1 = "INSERT INTO Post

(parent_thread, in reply to, author, body)
VALUES ($parent, S$replyTo, 'S$author', '$body')";
if (mysqgli_query($this->cxn, $sql))
{
return $this->cxn->insert_id; #44
}
else
{
throw new Exception("Can't execute query insert: "
.mysqli error($this->cxn));
return NULL;
}
}

function postMessage ($topic, $subject, $author, $body) #54
{
$thread = new Thread($this->getConnection(), "Thread");
$parent_thread = $thread->createNew($topic, $subject);
// Encode any quote characters
$author = mysqgli_ real escape_ string($this->cxn, $author);
$body = mysqgli_real escape_string($this->cxn, $body);
$sqgl = "INSERT INTO Post (parent_thread, author, body)
VALUES ($parent_thread, '$author', '$body')";
if (mysqli_query($this->cxn, $sql))

{
return $this->cxn->insert_id;

}

else

{
throw new Exception("Can't execute query insert: "

.mysqli_error($this->cxn));

return NULL;

}

Chapter 8: Hosting Discussions with a Web Forum

selectBylD

This method overrides the selectByID method defined by class
TableAccessor. When you call selectByID through a Post object, you're
calling the method defined at line 10 in Listing 8-19. On the other hand, if you
call selectByID through a Thread object, you're calling the selectByID
defined in class TableAccessor (because class Thread does not override
selectByID). The selectByID method defined by Post is very similar to the
selectByID defined by TableAccessor. In fact, the only difference is that
this version joins the Post and Thread tables rather than selecting from a
single table.

postReply

This method adds a new message to the Post table. This method runs when
a user replies to an existing message. The caller provides the ID of the parent
thread, the ID of the message that the user is replying to, the author, and the
body of the new message. As always, you should use mysgli_real_escape_
string to clean up any data that comes from the outside world (that is, from
the user’s Web browser). At line 44, if the message is successfully added to
the pPost table, postReply returns the auto-generated ID of the new row.

postMessage

Like postReply, postMessage adds a new message to the post table. This
method is invoked when a user starts a new thread of discussion. The caller
must provide the ID of the topic that the thread belongs to, the subject of the
thread, the author, and the body of the message. At line 56, postMessage must
create a new row in the Thread table. Rather than dealing directly with the
Thread table, postMessage creates a Thread object and asks that object to
create a new row. The $thread->createNew method returns the ID of the new
thread. After you have the ID of the parent thread, you can INSERT a new row
into the pPost table. Notice that the INSERT statement omits the in_reply_to,
id, and date columns. The new row contains a NULL in_reply_to value to
indicate that it is the first message in a new thread (that is, the new message
isn’t a reply to some other message). The MySQL server automatically assigns
values to the date and id columns. Like postReply, postMessage returns the
ID of the newly created post.

Writing the Database class

The Database class provides the connection to the database where the cus-
tomer information is stored. [develop the Database class in Chapter 3. See
Listing 3-4 for the Database class code.

357

358 PartIv: Building Other Useful Applications

The methods provided by the Database class are:

v The constructor: Creates a connection to a MySQL database. The con-
structor expects to be passed a filename where the hostname, account
name, and password necessary to access MySQL are stored. A Database
object is created with the following statement:

$db = new Database("forumVars.inc");

V¥ useDatabase: Selects a database and stores the database name. The
method expects to be passed a database name. It checks whether the
database exists and returns a message if the database doesn’t exist.

V¥ getConnection: Returns the connection that is established and stored
in the constructor.

Writing the WebForm class

The webForm is used to display and process the new message and reply
forms. I create and explain the webForm class in Chapter 4. The class is
shown in Listing 4-6.

The methods in the WebForm class that this application uses are:

v The constructor: Stores the properties needed to display the form cor-
rectly. Two files — an information file and a file that defines the look and
feel — are required. The two filenames are passed when the webForm
object is created and stored in two properties. The data for the form
fields can be passed, but can be left out and the form fields will be blank.
You can create the object by using either of the following statements:

$form
$form

new WebForm("filel.inc","file2.inc",$_POST);
new WebForm("filel.inc","file2.inc");

v displayForm: This method displays the form. It extracts the data from
the $data property where it is stored. An @ to suppress the error mes-
sages so that the form can be displayed without any data. The form is
displayed by including the two files that define the form. These two files
can define any type of form, with fields and elements you want to use.
For this application, I use the files I describe earlier in this chapter —
replyFields.inc, messageFields.inc, and messageForm.inc.

V¥ checkForBlanks: Checks each field in the form to see whether it con-
tains information. If it finds invalid blank fields, it returns an array con-
taining the field names of the blank fields.

v verifyData: This method checks each field to ensure that the informa-
tion submitted in the field is in a reasonable format. For instance, you
know that “hi you” is not a reasonable format for a zip code. This
method checks the information from specific fields against regular
expressions that match the information allowed in that field. If invalid

Chapter 8: Hosting Discussions with a Web Forum 3 5 9

data is found in any fields, the method returns an array containing mes-
sages that identify the problems.

V¥ trimData, stripTagsFromData: A PHP function is applied to each value
in the $data property. The resulting values are stored in $data. The
trim function removes leading and trailing blanks from a string. The
strip_tags function removes any HTML tags from the string, important
for security.

Writing the Forum application scripts

The Forum application has five application scripts, as follows:

v viewForums-00.php: Displays the forums Web page, which displays a
list of the forums and topics available.

V¥ viewTopic-00.php: Displays the threads Web page, which displays a
list of the threads in a topic.

v viewThread-00.php: Displays the messages Web page, which displays a
list of the messages in a thread.

V¥ postMessage-00.php: Builds, displays, validates, and processes the
HTML form used on the new message page.

V¥ postReply-00.php: Builds, displays, validates, and processes the HTML
form used in the reply page. The script is similar to the postMessage-00
script. However, postMessage creates both a message and thread, while
postReply creates a message but updates an existing thread. This script
runs when the user clicks a Reply link in the messages page. The thread
ID is passed to this script in the URL.

Writing viewForums-00.php

The viewForums-00.php script simply includes the viewForums. inc file
that displays the Web page. This script is run first, starting the application by
displaying the forums Web page. Other scripts run when links or buttons are
clicked. Listing 8-20 shows viewForums-00.php.

LisTING 8-20: THE ScRIPT THAT DispLAYS THE FORUMS PAGE

<?php

/* Program: viewForums-00.php

* Desc: Displays the forums page.
*/

include("functions_main.inc");
include("viewForums.inc");

?>

360 Part IV: Building Other Useful Applications

The script includes a file containing functions needed by the viewForums.
inc file and then includes viewForums. inc. The viewForums. inc file is the
same file used for the procedural application, shown in Listing 8-1, with the
exception of line 38. The following two lines show the line to be changed. The
first line is the line from the procedural application; the second line is the line
as needed for the object-oriented application.

DisplayTopics ($forum['id'], $cxn, "viewTopic.php");#38
DisplayTopics($forum['id'], $cxn, "viewTopic-00.php") ;#38

Writing viewTopic-00.php

The viewTopic-00.php script is the same as the viewForums-00.php script,
except that it includes the viewTopic. inc file that displays the Threads Web
page. This script runs when the user clicks a topic name in the forums page.
Listing 8-21 shows viewTopic-00.php.

LisTING 8-21: THE ScRIPT THAT DisPLAYS THE THREADS PAGE

<?php

/* Program: viewTopic-00.php

* Desc: Displays the threads page.
*/

include("functions_main.inc");
include("viewTopic.inc");

?>

The script includes a file containing functions needed by the viewTopic. inc
file and then includes viewTopic. inc. The viewTopic. inc file is the same
file used for the procedural application, shown in Listing 8-3, with the excep-
tion of two lines. The first line that must be changed is line 40, shown here:

echo '"';

In this line, viewThread.php needs to be changed to viewThread-00.php.
The second line that needs to be changed is line 51, shown here:

echo '"';

In this line, postMessage.php needs to be changed to postMessage-00.php.

Chapter 8: Hosting Discussions with a Web Forum 36 ’

Writing viewThread-00.php

The viewThread-00.php script is the same as the viewForums-00.php
script, except that it includes the viewThread. inc file that displays the
Messages Web page. This script runs when the user clicks a thread name in
the threads page. Listing 8-22 shows viewThread-00.php.

LisTING 8-22: ScRIPT THAT DisPLAYS THE MESSAGES PAGE

<?php

/* Program: viewThread-00.php

* Desc: Displays the messages page.
*/

include("functions main.inc");
include ("viewThread.inc");

?>

The script includes a file containing functions needed by the viewForums.
inc file and then includes viewforums. inc. The viewTopic. inc file is the
same file used for the procedural application, shown in Listing 8-3, with the
exception of line 41, shown here:

echo '<a href="postReply.php?replyTo='.$post['id'].

In this line, postReply.php needs to be changed to postReply-00.php.

Writing the postMessage-00 application script

The postMessage-00 program is invoked when you click the Start a New
Thread link on the Threads page. postMessage-00 creates and displays an
HTML form and waits until you click the submit button (which, in this case, is
labeled Post Message). After you click the submit button, the postReply-00
program re-invokes itself — the $_POST[] array contains the data that you
entered. The second time around, postReply-00 validates the data that you
entered and, if everything looks okay, writes your new message to the MySQL
database.

Listing 8-23 shows the postReply-00.php script.

362 Part IV: Building Other Useful Applications

LisTING 8-23: THE ScRriPT THAT PosTs A NEw MESSAGE

<?php
/* Program: postMessage-00.php
* Desc: Program that posts a new message and starts
* a new thread.
*/
require_once ("WebForm.class"); #6

require_once("Database.class");
require_once("TableAccessor.class");
require_once("Post.class");
require_once("functions_post-00.inc");
require_once("forumVars.inc");

try
{
if(!isset ($_POST['Button'])) #15
{
$parentTopic = $_GET['topicID']; #17

$db = new Database("forumVars.inc");
$db->useDatabase ("forumTest") ;
$topic = new TableAccessor ($db->getConnection(),
llTopicll) ;
if(!$topic->selectByID($parentTopic))
{
echo $topic->getMessage() ."
";
exit();
}
$_POST['author']
$_POST['subject']
$_POST['body']
$_POST['ftopic']
$ POST['ftopicID']
}
$form = new WebForm("messageForm.inc",
"messageFields.inc", $_POST);

wu . #28

nmme
’
n II;
$topic->getvalues("name");
$parentTopic;

}
catch(Exception $e)
{

echo $e->getMessage():

exit();
}
if (!isset ($_POST['Button'])) #42
{

$form->displayForm() ;

exit();
}
else #47
{

if(!validate($form))

{

$form->displayform();

Chapter 8: Hosting Discussions with a Web Forum 363

exit();
}
$newdata = $form->getAllFields(); #54
@extract($newdata); #55
$db = new Database("forumVars.inc"); #56
$db->useDatabase ("forumTest") ;
$post = new Post ($db->getConnection(), "Post"); #58
$newMessage =
$post->postMessage ($ftopicID, $subject, $author, $body) ;
if($newMessage == NULL)
{
echo "Couldn't post new message.
Try again later.";
exit();
}
else
{
echo '<meta http-equiv="Refresh" content="3;'; #69
echo "url=viewTopic-00.php?topicID=$ftopicID";
echo '"/>';
echo "Your message has been posted. In a moment you
will be
automatically returned to the topic";
}

The following numbers refer to the line numbers in Listing 8-23.

#6

#15

#17
#19

#34
#42

#47

#69

Includes the files needed by this application script. The classes are
included, including the WebForm and Database classes that are devel-
oped and explained in Chapters 3 and 4.

Begins an if block that executes if the user did not click the submit
button. This means that the user clicked the Start a New Thread link.
The blank form should be displayed.

Gets the topic ID that was passed in the URL.

Lines 19 to 32 set up the default values to be displayed in the new
message form.

Creates a WebForm object with the default values.

Starts an if block that executes if the user did not click the Post
Message button. The form is displayed with the default values.

Starts an else block that executes if the user clicked the Post Message
button. The information the user enters in the form is validated, to
determine if reasonable information was submitted. If the information
is not valid data, the form is redisplayed with an error message. If the
information is valid, the new message is stored in the database.

Returns the user to the messages Web page.

364 Part IV: Building Other Useful Applications

Writing the postReply-00 application script

The postReply-00 program is invoked when the user clicks the Reply To
button to reply to an existing message. postReply-00 creates and displays
an HTML form and waits until the user clicks the submit button (which, in
this case, is labeled Post Message). After the user clicks the submit button,
the postReply-00 program starts again — the $_POST[] array contains the
data that the user entered. The second time around, postReply-00 validates
the data that the user entered and, if everything looks okay, writes the new
message to the MySQL database.

Listing 8-24 shows the postReply-00.php script.

LisTING 8-24: THE ScRIPT THAT PosTs A REPLY TO A MIEESSAGE

<?php
/* Program: postReply-00.php
* Desc: Program that posts a reply to an existing
* message. This program displays a form to
* the user and processes the form when the
* user clicks the submit button.
*/
require once("WebForm.class"); #8

require_once("Database.class");
require_once("Post.class");
require_once("Thread.class");
require_once("functions_post-00.inc");
require_once("forumVars.inc");

try
{
if(!isset ($_POST['Button'])) #17
{
$replyTo = $_GET['replyTo'l; #19
$db = new Database("forumVars.inc"); #20

$db->useDatabase ("Forum") ;
$post = new Post ($db->getConnection(), "Post");
if(!$post->selectByID($replyTo)) #23

echo $post->getMessage()."
";

exit();
}
$postData = $post->getValues (array("body", "subject"));
$_POST['author'] we .
$_POST['body']
$_POST['fsubject']

wn .
’

$postDatal['subject'];
$_POST|['fresponse'] $postDatal['body'];
$_POST['freplyto'] $replyTo;
$_POST['subject'] = $postDatal'subject'];

}
$form = new WebForm("messageForm.inc",
"replyFields.inc",$_ POST);

Chapter 8: Hosting Discussions with a Web Forum 365

}
catch (Exception $e)
{
echo $e->getMessage();
exit();
}
if(!isset($_POST['Button'])) #44
{
$form->displayForm() ;
exit();
}
else
{
if(!validate($form)) #51
{
$form->displayform() ;
exit();
}
$newdata = $form->getAllFields(); #56
@extract($newdata):; #57
$db = new Database("forumVars.inc"); #58
$db->useDatabase ("Forum") ;
$post = new Post ($db->getConnection(), "Post");
if(!$post->selectByID(S$_POST['freplyto']l))
{
echo $post->getMessage()."
";
exit();
}
$parent_thread = $post->getValues("parent_thread"); #66
$newMessage = $post->postReply($parent_thread,
$_POST['freplyto'], $author, $body):
if($newMessage == NULL)
{
echo "Couldn't post new message.
Try again later.";
exit();
}
else
{
$thread = new Thread($db->getConnection(), "Thread"):;
$thread->updateTimestamp($parent_thread); #78
$thread->updateReplies($parent_thread); #79
echo '<meta http-equiv="Refresh" content="3;"'; #80
echo "url=viewThread-00.php?threadID=$parent_thread";
echo ""/>';
echo "Your message has been posted. In a moment you
will be automatically returned to the
thread.";

360 Part1v:Building Other Useful Applications

Following is a description of the numbered lines of code that appear in
postReply-00.php in Listing 8-24:

#8

#17

#19

#20

#23

#28

#29

This program uses the Database and WebForm classes that you
develop in Chapters 3 and 4 (respectively); refer to those chapters for
full details.

Remember: This program runs in two distinct phases. In the first phase,
it builds (and displays) an HTML form and waits for the user to click
the submit button. In the second phase, the user has (presumably)
completed the form and postReply-00 should process the values pro-
vided by the user. To distinguish between the two phases, you test the
$_POST['Button'] variable — if that variable is undefined (not set),
you're running in the first phase. If $_pP0OST['Button'] is defined, the
user has completed the form and $_POST contains the data entered.

Arriving at line 19 means that this form is being displayed to the user
for the first time. Lines of code fill in the initial values that will be dis-
played on the form.

When the reply form displays, the user should see the subject of the
message to which she is replying, as well as an editable text area for
the body of the reply message. To find the subject, postReply-00
creates a Database object (calling the constructor with the login
parameters imported from forumvars.inc) and a Post object.

The post class provides a number of useful methods that make it
easy to work with the post table. The first method, selectByID, exe-
cutes a SELECT statement that retrieves the Post whose ID matches
$replyTo. selectByID does not return the values retrieved; it merely
stores them inside the $post object. If selectByID can’t find the
requested Post, it stores an error message in $post and makes that
message accessible through the getMessage method.

The post class also provides a method that lets you access the values
retrieved by selectByID: getValues. You can call getvValues three
ways. If you call getvalues with the name of a column, getvalues
returns the value of that column (as retrieved by selectByID). If you
call getvalues with an array of column names, getvalues returns

an associative array containing the values that you requested. If you
call getvalues without any arguments (or with a NULL argument), it
returns the entire row (in the form of an associative array) retrieved
by selectByID. Line 28 extracts the body and subject values from
Spost.

postReply-00 uses the WwebForm class to display an HTML form to
the user. The initial values displayed on that form are found in the
$_POST array. Lines 29 through 34 store the appropriate values in
$_posT. The user is expected to fill in the author and body so those
fields are blanked out. The fsubject and fresponse fields are initial-
ized to the values found in the original message. freplyto is initial-
ized to the message ID found in the forwarding URL.

Chapter 8: Hosting Discussions with a Web Forum 36 7

#36

#44

#49

#56

#57

#58

#66

By the time the program arrives at line 35, the $_POST array contains
the values displayed on the form. If the form is being shown for the
first time, $_POST contains the initial values that will be displayed to
the user. If the user has already completed the form (and clicked the
Submit button), $_POST contains the values that the user typed into
the form.

Now that the form has been created and prepared, an if/else state-
ment determines how to display the form, depending on the value of
the button. If the user hasn’t yet seen the form, $_pPOST['Button'] will
be undefined, $form->displayForm will be called and the program
will exit. If the user has completed the form, $_POST['Button'] is

set and the program jumps down to line 48.

Begins the else statement that executes if the user clicked the submit
button. The call to validate ($form) checks the content entered by
the user and returns either TRUE or FALSE. If the data fails verification,
validate returns FALSE — in that case, simply display the form again.
(The $form object stores an error message that it displays to the
user.)

If validate succeeds (implying that the data entered by the user
looks okay), you can call $form->getallFields to retrieve those
values. As I show you in Chapter 4, getal1Fields returns an associa-
tive array that contains both the field names (the keys) and the field
values.

The $newdata array contains elements such as author=>"bruce@
example.com" and body=>"This is my message". The call to
extract creates a new variable for each member of the $newdata
array. The name of the variable matches the key and the value of

the variable matches the value of the array element. For example,
extract would create two new variables: $author and $body.
$author would hold the string "bruce@example.com", and $body
would be set to "This is my message". After you extract the values
in $newdata, you have (at least) five new variables: sauthor, $body,
$fsubject, $fresponse, and $freplyto.

At this point, most of the information needed to create a new message
in the post table has been obtained. The one last piece is the ID of the
parent thread. The forwarding page provided the original message ID
in the URL, but the message needs to be looked up in the database to
find out which thread it belonged to. First, a database connection is
established by using the login parameters found in forumvars.inc.
Then a new Post object is instantiated and selectByID is called to
retrieve the original message.

The call to getvalues grabs the parent_thread from the row
retrieved by selectByID. Now a new message can be saved to the
Post table by calling $post->postReply. If successful, postReply
returns the auto-generated ID of the new message. If postReply fails,
it returns NULL.

368 Part IV: Building Other Useful Applications

#78 If postReply succeeds, the last_post timestamp in the parent
thread is updated. The Thread class defines a method (update
Timestamp) that does just that — you provide the thread ID, and
updateTimestamp does the rest.

#79 If postReply succeeds, the replies field in the parent thread is
updated. The Thread class defines a method (updateReplies) that
does just that — you provide the thread ID and updateReplies
does the rest.

#80 The only thing left to do is to send the user somewhere useful. The
<meta> tag redirects the browser back to the viewThread-00 page
after a delay of three seconds, giving the user a chance to read the
“post successful” message.

Writing the supporting functions

The scripts in this application make use of a small set of functions stored

in separate files. All the scripts use the function Connect_to_db stored

in the file functions_main.inc. The two scripts that post messages —
postMessage.php and postReply.inc — include the functions_post.inc
file that defines a function used to display the forms.

Writing functions_main.inc

This file contains one function used by three of the scripts. Listing 8-25 shows
the file.

LisTiNnG 8-25: THE FuncTion THAT CONNECTS TO THE DATABASE

<?php

/* File: functions_main.inc

* Function: Connect_to_db

* Desc: Connects to a MySQL database. The name of
* a file containing the database variables
* is passed to the function.

*/
function Connect_to_db($filename)

{

include($filename);
$cxn = mysqli_connect ($host, $user, $passwd)
or die ("Couldn't connect to server.");
$db = mysqgli_select_db($cxn, $database)
or die ("Couldn't select database.");
return $cxn;

Chapter 8: Hosting Discussions with a Web Forum 369

The Connect_to_db function that you see here is identical to the Connect_
to_db function you see throughout the book. The call must provide the name
of a file ($filename) that defines a set of connection options ($host, $user
$passwd, and $database). Given the name of a file that contains connection
options, Connect_to_db connects to a MySQL server and returns a connec-
tion handle.

Writing functions_post-00.inc

This file contains one function that adds an HTML field to a form. Listing 8-26
shows the file.

LisTiING 8-26: THE FiLE THAT DEFINES Two FuncTioONs NEEDED BY THE SCRIPTS

<?php
/* File: functions_post-00.inc
* Desc: Supporting functions for postMessage-00 and
* postReply-00.
*/
function DisplayField($label, $field, $value, $type, $style)
{
$typeTags = explode(" ", $type);
$controlType = S$typeTags[0];
$result = ' <td style="formLabel">';
$result .= $label;
$result .= "</td>\n";
if(ereg("input", $controlType)) #14
{
$result .= " <td><$type class='$style' name='$field’
value='$value'></td>\n";
}
else
{
$result .= "<td>";
$result .= "<$type name='$field' class=\"$style\">";
$result .= $value;
$result .= "</$controlType></td>\n";
}
echo $result;
}
function validate($form) #29
{
try
{
$blanks = $form->checkForBlanks(); #33
}
catch(Exception $e)
{
Continued

3 70 Part IV: Building Other Useful Applications

LisTING 8-26: (Continued)

}
{

}

{
}
{
}
{

}

echo $e->getMessage();

if(is_array($blanks)) #39

$GLOBALS['message_2'] =
"The following required fields were blank.
Please enter the required information: ";
foreach($blanks as $value)
{
$GLOBALS['message_2'] .="$value, ";
}
return FALSE;

$form->trimbata(); #50
$form->stripTagsFromData() ;
try

$errors = $form->verifyData(); #54

catch(Exception $e)

echo $e->getMessage():

if(is_array($errors)) #60

$GLOBALS ['message_2'] = "";
foreach($errors as $value)
{

$GLOBALS['message_2'] .="$value
 ";
}
return FALSE;

return TRUE; #69

This file contains two functions needed by the postMessage-00 and post
Reply-00 scripts. The first function is DisplayFields. The calling statement
provides a string ($1abel) that displays to the left of the field, a name for the
field ($£ield), an initial value ($value), a field type ($type), and the name of
a display style ($style).

The only tricky part of this function is that, when you’re creating an <input>
element, the initial value (the value displayed to the user) is specified as an
attribute. When you're creating a <textarea> element, the initial value is
specified as the value of the element. In other words, if you're creating an
<input> element, you specify the value like this:

Chapter 8: Hosting Discussions with a Web Forum 3 7 1

<input name="fieldName" value="initial wvalue">

But if you're creating a <textarea> element, you specify the value like this:

<textarea name="fieldName">initial value</textarea>

This part of the function is handled by an if/else statement that begins on
line 16.

The second function is validate, which processes the information typed
into the form by the user.

#29 The calling statement passes an array of data to this function.
#33 Checks for blank fields that should contain data.

#39 Begins an if block that executes if blank fields are found. The form is
re-displayed with an error message.

#50 Processes the data entered by a user. Removes blank spaces from the
beginning and end. The script doesn’t reach this line unless no blank
fields are found.

#51 Removes any HTML tags from the data.
#54 Checks the data for valid formats.

#60 Begins an if block that executes if information was found with an
invalid format. The form is re-displayed with an error message.

#69 Returns true when the data is all okay — no blanks and no invalid
format found.

Possible Enhancements

If you’'ve made it to this point, you have a complete Web forum application.
Invite a few visitors to your site, and you’ll have lively discussions popping
up in no time. To wrap up this chapter, here are a few enhancements that you
might want to consider:

v~ User registration/authentication: You can easily integrate the Login
application that you develop in Chapter 3 if you want to require visitors
to register (and log in) at your site before they can post new messages.

v Threading: Some forums thread messages together to make the relation-
ship between message and reply easier to see. When the user clicks
the Reply button in this application, the system keeps track of the rela-
tionship between the existing messages that have been created and the
message that the user is replying to (that information is stored in the
Post.in_reply_to column). If you want to display messages in threaded
order, you simply have to sort them appropriately and indent each reply.

3 72 Part IV: Building Other Useful Applications

v BBcode: If you've visited many Web forums, you’ve probably encoun-
tered a feature known as BBCode. BBCode is an easy way for a novice
user to mark up a message. For example, to italicize a phrase, you
simply type in [i]this is italicized[/i]; to include a smiley face, just type
in 7). The PHP Extension and Application Repository (PEAR) provides a
package, HTML_BBCodeParser, that can convert BBCode into equivalent
HTML form.

v Forum Management: After your forum is up and running for a while,
you’ll probably find a few tasks that you’d like to automate. You might
want to create a Web form that makes it easier to add (and remove)
Forum and Topic records. You might want another form that truncates a
thread or consolidates two similar threads. You can manage your forum
from the MySQL command line, but Web forms can certainly simplify the
task. Just be sure to secure any management tools that you create, so
they can’t fall in the wrong hands.

v~ File uploads/downloads: Most Web forums provide a way for a visitor to
attach a file to a message. If you're hosting a forum devoted to house-
hold pets, your users will surely want to share photos. Check out the
HTTP_Upload package at PEAR (pear.php.net) to see how to add this
feature to your forum.

v Search tools: The MySQL server provides a set of full-text search func-
tions that you might want to add to your forum. You can use a full-text
search to find words and phrases within any table in your MySQL server.
The most useful search (in this application) locates messages by search-
ing the Post.body and Thread. subject columns.

PartV
The Part of Tens

‘Okay, well, I think we all get the gist of
where Jevry was going with the site map.”

In this part . . .

C hapter 9 contains tips for application development
based on my experiences. They can serve as short-
cuts for you on your journey to becoming a Web
developer.

Chapter 10 contains a list of Web sites where you can
find code libraries and other useful information about
applications.

Chapter 9

Ten Hints for Application
Development

In This Chapter
Writing code that’s easy to maintain

Getting help from discussion lists

A n application can be a five line script that outputs Hello world!.
Application development for this script is pretty simple. However, an
application is likely to be more complex, often requiring many scripts and
many coordinated programmers. Application development for a complex
application can be very tricky. This chapter includes some suggestions for
coding practices that will make development proceed more smoothly, no
matter how complicated the application is.

Plan First

Restrain your desire to jump in and start coding immediately. A plan, on
paper, is essential. A plan should answer the following questions:

1 What tasks does your application need to perform?

v+ What programming methods will you use to implement each task?

v How do the tasks interact with each other?

v How easy is your application to maintain?

v How will you add features to the application in the future?

v How does the application meet the needs of the user?

Nothing is more painful than realizing after half your application is coded
that you forgot an important factor and must start all over again.

3 76 Part V: The Part of Tens

Be Consistent

Many decisions are made in the course of coding an application. Make each
decision once and then be consistent throughout the application. For instance,
decide on naming conventions at the beginning and use the same conventions
throughout. If you use all lowercase letters for variables and camel caps for
function names at the beginning of your application or in one class, use the
same conventions throughout the application or in all classes. Consistency
makes the code much easier to understand and to maintain.

Test Code Incrementally

A program consists of many code blocks. Building and testing an application

proceeds best when each small code block is tested on its own. Test a simple
piece of code until it performs as expected. Add functionality to the code one
element at a time, testing as each new piece of code is added. For instance, if
a program task requires a loop within a loop, build and test one loop. When it
works, add the other loop.

Remember Those Who Follow

Keep your code as simple and easy to read as possible. At some point in the
future, someone will try to understand your code so they can maintain or
modify it. Code that can’t be easily understood is a problem, no matter how
clever it might seem or how many lines shorter it is.

Use Constants

Constants greatly simplify maintenance. If you use the same value more than
once in your application, such as a tax rate or a company name, store it in a
constant and use the constant in your application. This serves two purposes.
First, the constant name is much more enlightening than an obscure number
to someone reading the code. That is, TAX_RATE is much more informative
than 6. 5. Secondly, if the value changes, you have to change it only once, at
the beginning of the program, rather than finding and changing it in many
places in your application.

Chapter 9: Ten Hints for Application Development 3 77

Write Reusable Code

Look for opportunities to write reusable code. Any time you find yourself
writing the same code in different parts of the application, write a function.
It saves a great deal of time and makes the program much easier to read.
Over a period of time, you will build up a library of functions that you can
use in many different applications.

Of course, if you're writing object-oriented code, you're always writing
reusable code.

Separate Page Layout from Function

Maintenance is easier if you separate the Web page layout code from the pro-
gram logic code. You can write the code that displays the page in a separate
file, a file that outputs HTML code. The main PHP script that contains the
program logic can include the file containing the display code when the page
needs to be displayed. Given this separation, it’s much easier to change the
look of a Web page. You change only the display code in the layout file; you
don’t need to change any of the program logic code.

Don’t Reinvent the Wheel

Before you spend hours writing a piece of code that refuses to do what you
want it to do, search the Internet for the code that you need. Thousands of
PHP developers are willing to share their code. PHP code repositories store
code for various purposes, perhaps exactly the purpose you have in mind.
Chapter 10 provides a list of places to find code.

If your application is a common one, you might be able to find a ready-

made application that you can use, instead of building your own. Many PHP
applications — for free or to purchase — are available on the Internet.

Several applications are available for Content Management Systems, Shopping
Carts, Message Boards, Templating Systems, and many other uses. Try
googling for a complete solution before deciding that you must build your
own.

3 78 Part V: The Part of Tens

Use the Discussion Lists
Frequently, but Wisely

Users of PHP and MySQL are more than willing to help if you are stumped. Take
advantage of this resource. However, be sure your question is organized and to-
the-point. “I tried to access my database but it didn’t work. What should I do?”
is not a message that anyone can answer. And, anyone who responds is likely
to point out the foolishness of this message that doesn’t provide any details.
Include the following information in a message asking for help:

v Supply the software and versions that you are using, such as Windows
XP, PHP 5.0.2, MySQL 4.1.7, Apache 1.3.27.

v Explain what you did, in detail. If your problem is that the code pro-
duces an error message or the code doesn’t give you the results you
expected, include the code. If your code is a huge program, include just
enough code to show the problem. Or, perhaps, construct a simplified
piece of code that has the problem.

v~ State what you expected the outcome to be.

v~ State what actually happened differently than your expected outcome.
In addition, be sure to do your homework before you ask a question. Read
the manual. Google for answers. Turn to the list only when other resources

fail. You can find a document with a lot of good advice about asking questions
on a list at www.catb.org/~esr/fags/smart-questions.html.

The most useful lists for PHP and MySQL help are

V¥ www.php.net/mailing-lists.php

V¥ http://lists.mysqgl.com

Document Everything

While you’re writing an application, the details seem indelibly burned into
your mind. However, in six months, when you want to make changes to the
application, you’ll be amazed to discover that most of those details are gone.
So don’t depend on your memory. Write down all your decisions. Use com-
ments liberally in your scripts.

Chapter 10
Ten Sources of PHP Code

In This Chapter

Finding code libraries

Discovering other useful resources for PHP programmers

0ne advantage of PHP is that its developers are willing to share code.
Several online code libraries are available where you can obtain code
donated by experienced PHP programmers. Whatever your need, you can
often find code that you can use as is or with a little modification. There’s no
need to reinvent the wheel for every programming task.

SourcefForge.net

www.sourceforge.net

SourceForge.net is the largest repository of open-source code and applica-
tions available on the Internet. You can find software for all purposes at this
site. Many of the projects on SourceForge are large software applications that
you can download and use. For instance, phpmyadmin, a popular application
used to manage MySQL databases, is available on SourceForge.

You don’t need to log in to SourceForge to download software. You can find
software written specifically in PHP by following these steps:
1. Click the Software Map tab at the top.
2. Click Programming Language in the column on the right.
3. Click PHP in the column of alphabetically listed programming lan-
guages on the left.

As of today, SourceForge.net shows over 9,000 projects in PHP.

380 Part V: The Part of Tens

WeberDev

http://weberdev.com

WeberDev is one of the most comprehensive resources for PHP program-
mers. Started in 1998 as a page to post examples, the site has grown dramati-
cally and includes both code snippets and complex programs. The almost
4,000 examples (as of this writing) fall into the following major categories:
PHP, MySQL, JavaScript, and Databases. You can download the code without
logging into the site. User comments about the code are displayed with the
code. WeberDev also provides articles, manuals, discussion forums, a coding
contest, templates, PHP Web logs (blogs), and other resources.

You can register on WeberDev and receive a password. Logging in allows you
to add code, post to the discussion forums, add comments to code examples,
enter a coding contest with prizes, receive a newsletter, receive notification
when new examples are added to the site, and other advantages. You must
provide your name and e-mail address to register. You can elect not to
receive e-mail from the site when you register.

PHP Classes

www.phpclasses.org

PHP Classes is a repository for hundreds of classes written in PHP. You can
search or browse through many categories or by author to find classes. User
ratings are provided with the class information. You don’t need to log in to
download the code. This Web site also provides reviews of PHP books.

Codewalkers

http://codewalkers.com

The Codewalkers Web site calls itself “A resource for PHP and SQL developers.”
You can find code in the following categories: Content Management, Database
Related, Date and Time, Discussion Boards, E-Mail, File Manipulation, Link
Farm, Look and Feel, Miscellaneous, Searching, Site Navigation, Statistics and
Counters, and User Management. Each code submission displays a rating pro-
vided by site visitors. The code gallery contains both procedural and object-
oriented code. The site also offers tutorials, reviews of books and software, a
coding contest, and forums for discussions.

Chapter 10: Ten Sources of PHP Code 38 1

The site provides a member registration and login. You don’t need to register
as a member of the site to download code, but you must register before you
can contribute code. You can post to the forums without logging in, but you
must register to use some advanced features of the forums. Registration
requires a user ID and a password that you create. An e-mail address is also
required. Other information is requested but not required.

PHP Builder

www.phpbuilder.com

PHP Builder is a Web site containing a variety of resources for PHP coders. It
provides a library of code snippets, scripts, and functions for a broad range
of uses. You can search for code in such categories as databases, calendars,
shopping carts, games, graphics, and many others. In addition, you can find
news and a list of useful articles as well as search for jobs or people available
for hire.

HotScripts.com

Zend

www.hotscripts.com

HotScripts is an Internet directory to programming-related resources.
HotScripts provides information and scripts for PHP, CGI, Perl, JavaScript,
and ASP. Almost 10,000 scripts are currently listed for PHP.

The listing for each program provides information about the software, with a
link to the Web page for the software. Each listing also includes reviews and
ratings of the software provided by visitors.

http://zend.com

The Zend Web site includes a code gallery. Zend is the company that develops
the PHP engine. You don’t need to log in to the Web site to download code. PHP
code is available for categories such as math, databases, algorithms, new, most
requested, and top rated. Visitors can post ratings of the software.

382 Part V: The Part of Tens

Many other resources are available here, including some excellent articles.
Zend, in partnership with WeberDev (which [describe earlier in this chap-
ter), sponsors a PHP coding contest.

PHP Ereaks

www.phpfreaks.com

PHP Freaks offers about 600 scripts in several categories. It also provides
easy access to the ten most popular scripts and the newest scripts. Ratings
of the code are provided. You don’t need to log in to download scripts or to
add a script. However, you must provide a name and valid e-mail address to
add a script.

The site also provides articles and tutorials, news, and forums. The Web site
states that it has, as of this writing, 25,189 active members.

PX: The PHP Code Exchange

http://px.sklar.com

PX allows users to post and download PHP code. It’s a simple Web site that
just provides access to code. The home page consists of a list of categories
for browsing and a field for entering search terms. You don’t need to be
logged in to download code, but you must register and log in before you can
post or rate code.

Free PHP and MySOL Hosting Directory

www.oinko.net/freephp

This site is a list of free Web hosting companies that offer PHP. Hosts are
rated up to five stars.

Part VI
Appendixes

The 5th Wave By Rich Tennani
ESM'“E'“%NT

“Why, of course . T'd be veyy intevested in seeing this new
wmilestone in the project.”

In this part . . .

rlis part provides a brief introduction of object-
oriented programming (Appendix A) and also a
summary of concepts and syntax for object-oriented
programming in PHP (Appendix B).

Appendix C provides information on PHP functions used
to interact with MySQL. It provides tables for converting
from mysql functions to mysqli functions and/or mysqli
objects.

Appendix D discusses the useful goodies you can find on
the CD: all the code from the book, a list of useful PHP- and
MySQL-related links, and a bonus chapter that shows you
how to build and manage a mailing list.

Appendix A

Introducing Object-Oriented
Programming

If you’re unfamiliar with the concepts and terminology of object-oriented
programming, this appendix is for you. I explain the principles and terms
of object-oriented programming here. In Appendix B, I describe how to write
object-oriented programs. If you are familiar with the vocabulary and con-
cepts of object-oriented programming and know object-oriented program-
ming using another language, such as Java or C++, you can go directly to
Appendix B where I explain the syntax of PHP’s object-oriented programming
features.

Understanding Object-Oriented
Programming Concepts

OO programming (that is, object-oriented programming) is an approach to
programming that uses objects and classes. As I explain in Chapter 1, chang-
ing from procedural programming to object-oriented programming is more
than just using a different syntax. It’s a different way of analyzing program-
ming problems. The program is designed by modeling the programming prob-
lem. For example, a programmer designing a program to support a company’s
sales department might look at the programming problem in terms of the
relationships among customers and sales and credit lines — in other words,
in terms of the design of the sales department itself.

Object-oriented programming developed new concepts and new terminology
to represent those concepts. This section introduces and explains the major
object-oriented programming concepts.

386 Part VI: Appendixes

Objects and classes

The basic elements of object-oriented programs are objects. It’s easiest to
understand objects as physical objects. For example, a bicycle is an object. It
has properties, such as color, model, and tires, which are also called attrib-
utes. A bike has things it can do, too, such as move forward, turn, park, and
fall over.

In general, objects are nouns. A person is an object. So are animals, houses,
offices, customers, garbage cans, coats, clouds, planets, and buttons.
However, objects are not just physical objects. Often objects, like nouns, are
more conceptual. For example, a bank account is not something you can hold
in your hand, but it can be considered an object. So can a computer account.
Or a mortgage. A file is often an object. So is a database. Orders, e-mail mes-
sages, addresses, songs, TV shows, meetings, and dates can all be objects.

A class is the code that is used to create an object — the template or pattern
for creating the object. The class defines the properties of the object and
defines the things the object can do — its responsibilities. For example, you
write a class that defines a bike as two wheels and a frame and lists the things
it can do, such as move forward and change gears. Then when you write a
statement that creates a bike object using the class, your new bike is created
following the pattern in your class. When you use your bike object, you might
find that it is missing a few important things, such as a seat or handlebars or
brakes. Those are things you left out of the class when you wrote it.

As the person who writes a class, you know how things work inside the class.
But it isn’t necessary to know how an object accomplishes its responsibilities
in order to use it; anyone can use a class. I have no clue how a telephone
object works, but I can use it to make a phone call. The person who built the
telephone knows what’s happening inside it. When new technology is intro-
duced, the phone builder can open my phone and improve it. As long as he
doesn’t change the interface — the keypad and buttons — it doesn’t affect
my use of the phone at all.

Properties

Objects have properties, also sometimes called attributes. A bike might be red,
green, or striped. Properties — such as color, size, or model for a bike — are
stored inside the object. Properties are set up in the class as variables. For
example, the color attribute is stored in the object in a variable and given a
descriptive name such as scolor. Thus, the bike object might contain
$color = red.

The variables that store properties can have default values, can be given
values when the object is created, or can have values added or modified

Appendix A: Introducing Object-Oriented Programming 38 7

later. For example, a house might be created white, but when it is painted
later, $color is changed to chartreuse.

Methods

The things that objects can do are sometimes referred to as responsibilities.
For example, a bike object can move forward, stop, and park. Each thing an
object can do — each responsibility — is programmed into the class and
called a method.

In PHP, methods use the same syntax as functions. Although the code looks
like the code for a function, the distinction is that methods are inside a class.

Classes are easier to understand and use when method names are descrip-
tive of what they do, such as stopBike or getColor. Methods, like other PHP
entities, can be named with any valid name but are often named with camel
caps, by convention (as shown in the previous sentence).

The method are the interface between the object and the rest of the world.
The object needs methods for all its responsibilities. Objects should interact
with the outside world only through their methods. If your neighbor object
wants to borrow a cup of sugar, for example, you want him to knock on your
door and request the sugar. You don’t want him to just climb in the kitchen
window and help himself. Your house object should have a front door, and
neighbor objects should not be able to get into your house without using the
front door. In other words, your house object has a method for openFront
Door that the neighbor must use. The neighbor should not be able to get into
the house any other way. Opening the front door is something your house
object can do, via a method called openFrontDoor. Don’t leave any open win-
dows in your object design.

A good object should contain all it needs to perform its responsibilities but
not a lot of extraneous data. It should not perform actions that are another
object’s responsibility. The car object should travel and should have every-
thing it needs to perform its responsibilities, such as gas, oil, tires, engine,
and so on. But the car object should not cook and does not need to have salt
or frying pans. And the cook object should not transport the kids to soccer
practice.

Abstraction

Abstraction is an important concept in object-oriented programming. When
you’re designing a class, you need to abstract the important characteristics
of the object to include in your class, not include every single property and

388 Part VI: Appendixes

responsibility you can think of. You abstract the characteristics that are
important for your application and ignore the characteristics that are irrele-
vant for your task.

Suppose you're developing an application for a grocery store. Your applica-
tion will assist with the work schedule for the grocery clerks, so you design

a checkout clerk object. You can include many characteristics of the grocery
clerks, such as name, age, hair color, hours worked per week, and height.
However, your goal is to abstract the grocery clerk characteristics that are rel-
evant to the scheduling task. Age, hair color, and height are not useful infor-
mation. However, the grocery clerks’ names and the hours they’re scheduled
to work per week are necessary for the schedule, so those characteristics are
included in the object.

Methods are similarly abstracted for their relevance. Such methods as
startWork and stopWork are needed for the application, but brushesTeeth
and drivesCar are not.

Inheritance

Objects should contain only the properties and methods they need. No
more. No less. One way to accomplish that is to share properties and meth-
ods between classes by using inheritance. For example, suppose you have
two Car objects: a sedan and a convertible You could write two classes: a
Sedan class and a Convertible class. However, a lot of the properties and
responsibilities are the same for both objects. Both have four wheels, both
have color, and both move forward in the same way. Inheritance enables you
to eliminate the duplication.

You can write one class called car, which stores the information, such as
$color and $engine_size, and provides the methods, such as openDoor
and moveBackward, used by both types of cars. You can then write two sub-
classes: sedan and Convertible. The Ccar class is called the master class or
the parent class. Sedan and Convertible are the subclasses, which are
referred to as child classes, or the kids, as my favorite professor fondly
referred to them.

Child classes inherit all the properties and methods from the parent class.
But they can also have their own individual properties and methods, such as
$sunroof = yes or $sunroof = no for the Sedan class and lowerTop and
raiseTop methods for the Convertible class. A $sunroof property doesn’t
make sense for the Convertible, because it isn’t going to have a sun roof,
ever. The lowerTop or raiseTop methods make no sense for the Sedan
because you can’t lower its top.

Appendix A: Introducing Object-Oriented Programming 389

A child class can contain a method with the same name as a method in a
parent class. In that case, the method in the child class takes precedence for a
child object. You can use the method in the parent class by specifying it
specifically, but if you don’t specify the parent method, the child class method
is used. For instance, the cars both can move forward. In most cases, they
move forward the same, regardless of the type of car, so you put a method
called moveForward in the Car class so both child classes can use it. However,
suppose that the Convertible moves forward differently than the sedan

(for instance, all convertibles are standard shift, but a sedan can be standard or
automatic). You can put a method called moveForward in the Convertible
class that would override the method in the parent class with the same name.

Information hiding

Information hiding is an important design principle in object-oriented pro-
gramming. The user of a class doesn’t need to know how an object performs
its actions. The user just needs to know the interface of the object in order
to use it.

For instance, take a look at a checking account. As the user of a checking
account, you need to know how to pay money from your account to your
landlord. You know that you can pay money from the account to your land-
lord by writing a check with your landlord’s name on the payee line. You
don’t know the details involved when your landlord cashes that check; you
don’t know who handles the check, where the check is stored, or where or
how the teller enters the information about the check into the bank’s comput-
ers, or any similar details You don’t need to know. You need to know only
how to write the check. The bank can alter its procedures, such as using a
different teller or changing the computer program that handles the transac-
tion, without affecting you. As long as the bank doesn’t change the interface
between you and the bank, such as how you fill out the check, you continue
to use the bank without knowing about any internal changes.

If you're writing a banking application that includes an account object, the
same principles apply. The account class needs to include a method such as
cashCheck. The person using the class needs to know how to pass the infor-
mation, such as the payee and the amount of the check, to the cashCheck
method. However, the person using the cashCheck method doesn’t need to
know how the method performs its actions, just that the check is cashed. The
person writing the class can change the internal details of the cashCheck
method, but as long as the interface doesn’t change, the user of the class
isn’t affected.

390 rartvi: Appendixes

The same principle applies to properties of an object. For instance, the
checking account object needs to know the balance in the account. However,
no one outside the class should be able to change the balance directly. The
balance should be accessible only to bank employees, such as the teller. The
balance should not be public, where anyone can change it.

To accomplish information hiding in PHP (and other languages), you use key-
words to designate public versus private properties and methods. Private
properties and methods can be accessed only by methods contained in the
class, not by statements outside the class. Appendix B explains the details of
using public and private properties and methods.

Creating and Using the Class

By their nature, object-oriented programs require a lot of planning. You
need to develop a list of objects — along with their properties and responsi-
bilities — that covers all the functionality of your application. Each object
needs to contain all the information and methods needed to carry out its
responsibilities without encroaching on the responsibilities of other objects.
For complicated projects, you might need to do some model building and
testing before you can be reasonably confident that your project plan
includes all the objects it needs.

After you decide on the design of an object, you can create and then use the
object. The steps for creating and using an object follow:
1. Write the class statement.

The class statement is a PHP statement that is the blueprint for the
object. The class statement has a statement block that contains PHP
code for all the properties and methods that the object has.

2. Include the class in the script where you want to use the object.

You can write the class statement in the script itself. However, it is
more common to save the class statement in a separate file and use an
include statement to include the class at the beginning of the script
that needs to use the object.

3. Create an object in the script.

You use a PHP statement to create an object based on the class. This is
called instantiation.

4. Use the new object.
After you create a new object, you can use it to perform actions. You can
use any method that is inside the class statement block.

Appendix B provides the details needed to complete the preceding steps.

Appendix B

Object-Oriented Programming
with PHP

If you know object-oriented (OO) programming in another language, such
as Java or C++, and just want to know how object-oriented programming
is implemented in PHP, you are in the right place. In this appendix, I tell you
how to write PHP programs by using object-oriented programming methods,
assuming you already understand object-oriented terminology and concepts.
If you don’t know object-oriented programming concepts and terminology,
check out Appendix A, where | introduce object-oriented programming.

& Much of the syntax that I describe in this appendix is valid only for PHP 5 and
doesn’t work in PHP 4.

Writing a Class Statement

You write the class statement to define the properties and methods for the
class.

The class statement

The class statement has the following general format:

class className

{

#Add statements that define the properties
#Add all the methods

3 92 Part VI: Appendixes

Naming the class

You can use any valid PHP identifier for the class name, except reserved

words — words that PHP already uses, such as echo, print, while, and so

on. The name stdcClass is not available because PHP uses the name stdclass
internally. In addition, PHP uses Iterator and IteratorAggregate for PHP
interfaces, so those names are not available. In general, if you use the name of
a PHP command or function for a class name, you get a parse error that looks
something like the following error for a class named echo:

Parse error: parse error, unexpected T ECHO, expecting
T _STRING in d:\Test.php on line 24

If you use a name that PHP already uses for a class, you get a fatal error simi-
lar to the following:

Fatal error: Cannot redeclare class stdClass in
d:\Test.php on line 30

Adding the class code

You enclose all the property settings and method definitions in the opening
and closing curly brackets.

The next few sections show you how to set properties and define methods
within the class statement. For a more comprehensive example of a com-
plete class statement, see the section “Putting it all together,” later in this
appendix.

Setting properties

When you’re defining a class, declare all the properties in the top of the class.
PHP does not require property declarations, but classes with declarations
are much easier to understand. It’s poor programming practice to leave

them out.

Declaring public properties
Use public to declare public properties when needed, as follows:

class Airplane

{
public $owner;
public $passenger capacity;
public $gas;

Method statements

\NG/
Vg,\\

\\J

Appendix B: Object-Oriented Programming with PHP 393

You can leave out the keyword public. The property is then public by
default. However, the code is easier to understand with the word public
included.

You can also use constants as properties, with the following format:

const SIZE = 20;

Declaring private properties
You can declare properties either private or protected by using a keyword:

v private: No access from outside the class, either by the script or from
another class.

v protected: No access from outside except from a class that is a child of
the class with the protected attribute or method.

You can make an attribute private as follows:
private $gas = 0;

With the attribute specified as private, a statement that attempts to access
the attribute directly gets the following error message:

Fatal error: Cannot access private property Airplane::$gas
in c:\testclass.php on line 17

The public and private declarations are new with PHP 5. In PHP 4, all prop-
erties were declared as follows:

var $gas = 0

However, the new public and private keywords replace var in PHP 5. If you
use var in PHP 5, your script still runs correctly, but you receive an
E_STRICT warning as follows:

Strict Standards: var: Deprecated. Please use the
public/private/protected modifiers in c:\test.php on line 5

Don’t use the var keyword, because it will possibly be removed in a future
version of PHP.

While testing new code during development, you want to see all the mes-
sages (error, warning, notice, strict) that PHP can display. The information is
useful for debugging new code. The error setting £_ALL doesn’t include the
“strict” messages. So, use the setting E_ALL | E_STRICT. You, of course,
should turn off these messages when the application is made available to
users, because any error messages provide information that’s useful for the
bad guys. At this point, you can turn error messages off, or better still, write
them to a log file.

394 Partvi: Appendixes

Setting values for properties

To set or change a property variable’s value when you create an object, use
the constructor (which I describe in “Writing the constructor,” later in this
appendix). Or, to set or change the property variable’s value after you create
the object, use a method you write for this purpose.

You can set default values for the properties, but the values allowed are
restricted. You can declare a simple value but not a computed one, as
detailed in the following examples:

v The following variable declarations are allowed as default values:

private $owner = "DonaldDuckAirLines";
private $passenger_ capacity = 150;
private $gas = 1000;

v The following variable declarations are not allowed as default values:

private $color = "DonaldDuck"." AirLines";
private $passenger_ capacity = 30*5;
private $gas = 2000-1000;

An array is allowed in the variable declaration, as long as the values are
simple, as follows:

private $doors = array("front","back");

Adding methods

Methods specify what an object can do. Methods are included inside the
class statement and are coded in the same format as functions. For example,
your checking account might need a method that deposits money into the
account. You can have a variable called balance that contains the amount of
money currently in the account. You can write a method that deposits a sum
into the $balance. You can add such a method to your class as follows:

class CheckingAccount
{
private $balance = 0;
function depositSum($amount)
{
$this->balance = $this->balance + $amount;
echo "$${amount} deposited to your account";
}
}

This looks just like any other function, but it’s a method because it’s inside a
class. Methods can use all the formatting of functions. For instance, you can

specify a default value for your parameters as follows:

function depositSum($amount=0)

Appendix B: Object-Oriented Programming with PHP 395

If no value is passed for $amount, $amount is 0 by default.

PHP provides some special methods with names that begin with __ (two
underscores). These methods are handled differently by PHP internally. This
appendix discusses three of these methods: construct, destruct, and clone.
Don’t begin the names of your own methods with two underscores unless
you’re taking advantage of a PHP special method.

You can make methods private or protected in the same way you can make
properties private or protected: by using the appropriate keyword. If you
don’t use any keyword for a method, it’s public by default.

\\J
It’s good programming practice to hide as much of your class as possible.
Only make methods public that absolutely need to be public.

A static method is a method that can be accessed directly, without instantiat-
ing an object first. You declare a method static by including a keyword, as
follows:

static function functionname()

For details on using a static method, see the section “Using a Class,” later in
this appendix.

Accessing properties and methods

When you write methods for your class, you often want to access the proper-
ties of the class or other methods in the same class. A special variable —
$this — is available for accessing properties and methods within the same
class. You use the variable as follows:

$this->varname
$this->methodname

You can use $this in any of the following statements as shown:

$this->gas = 2000;
$product [$this->size] = $price;
if($this->gas < 100)

{echo $this->gas};

As you can see, you use $this->varname in all the same ways you would use
Svarname.

@“\NG! Notice that a dollar sign ($) appears before this but not before gas. Don’t
S use a dollar sign before gas — as in $this->$gas — because it changes the
meaning of your statement. You might or might not get an error message, but
it isn’t referring to the variable $gas inside the current class.

3 96 Part VI: Appendixes

The following class includes a method to add gas to your car: addGas.
However, you want to be sure that people buy the gas that is added; you
don’t want any stolen gas in your car. So, you make the gas property and
the addGas method private. You add a buyGas method for public use, as
follows:

class Car
{
private $gas = 0;
private function addGas ($amount)

{
$this->gas = $this->gas + $amount;
echo "$amount gallons added to gas tank";
}
function buyGas ($amount)
{
$this->addGas ($amount) ;
}

}

In this class, the only way that gas can be added to the car from outside the
class is with the buyGas method. The $gas property is private, so it can’t be
modified from outside the class. The addGas method is also private. The only
public method for adding gas is the buyGas method, which accesses the
addGas method by using $this->addGas. If a statement outside the class
attempts to add to $gas directly or to use addGas, a fatal error is displayed,
as follows:

Fatal error: Call to private method Car::addGas()in
c:\testcar.php on line 10

You can’t use the special variable $this in a static method because $this
refers to the current object and you don’t necessarily create an object when
accessing a static method.

You can’t use $this to access class constants. Instead, you use a line like the
following to access a class constant named SIZE:

$this->gas = self::SIZE;

Writing the constructor

The constructor is executed automatically when an object is created by using
the class as a pattern. In PHP, only one constructor is allowed. A constructor
is not required.

Appendix B: Object-Oriented Programming with PHP

WMBER
‘x&
&

The constructor has a special name so that PHP knows to execute the
method when an object is created. Constructors are named __construct
(two underscores). A constructor method looks similar to the following:

function __construct()

{
$this->balance = 100; # account is opened with $100
echo "Current balance is $$this->balance.";

}

This constructor defines the new bank account. When the account is created,
it has $100 in it (a reward for opening the account).

Prior to PHP 5, constructors had the same name as the class. You might run
across classes written in this older style. PHP 5 looks first for a method called
__construct () to use as the constructor. If it doesn’t find one, it looks for a
method that has the same name as the class and uses that method for the
constructor. Thus, older classes still run under PHP 5. If your class has both
a method named __construct () and a method with the same name as the
class, a message warns you that you are redefining the constructor, and then
the script proceeds, using __construct () and ignoring the method with the
same name as the class.

Putting it all together

Your class can have as few or as many properties and methods as it needs.
These methods can be very simple or very complicated, but the goal of
object-oriented programming is to make the methods as simple as is reason-
able. Rather than cram everything into one method, it’s better to have sev-
eral smaller methods and have one method call another, as in the following
example:

class Message

{
private $message = "No message";
function __construct ($message)
{
$this->message = $message;
}
function displayMessage()
{
echo $this->message."\n";
}
function changeMessage ($new_message)
{
$this->message = $new message;
echo "The message was changed to: ";
$this->displayMessage();
}

397

398 Ppartvi: Appendixes

This simple Message class has a constructor, two methods, and one property.
The property is the text of the message, which is passed into the object when
the object is created and stored in the property variable when the construc-
tor executes. The displayMessage method displays the message stored in
the property. The changeMessage method changes the text of the message
and then uses the displayMessage method to display the changed message
text.

Using inheritance in your class

A class can be a subclass that inherits properties and methods from a parent
class. Suppose you need two car objects: a sedan and a pickup truck. The
two objects have many similarities, such as four wheels, an engine, and a
steering wheel. However, the two objects also have differences, such as trunk
versus bed, two doors versus four doors, passenger capacity, cargo capacity,
and so on. You can write a parent class, Car, that contains the similarities
and a subclass, Pickup, that contains the properties and methods that are
unique to the pickup. You write the pPickup class as follows:

class Pickup extends Car

{
Add the property statements
Add the methods

}

The object created from this class has access to all the properties and meth-
ods of both the car class and the pickup class. The car class, however, does
not have access to properties or methods in the child class Pickup. You can
access the properties and methods of the parent from a child class by using
either of the following statements:

$this->gas
parent: :gas

If you add a method to a child class with the same name as a method in the
parent class, the child class method overrides the parent class method. That
is, if you create a child object and call the method, then the child method
rather than the parent method is used. If the signature (the number of argu-
ments passed) for the child method doesn’t match the signature of the
parent method, a warning is displayed.

To prevent a method from being overridden in a child class, use the keyword
final with the method in the parent class, as follows:

final function functionname()

Appendix B: Object-Oriented Programming with PHP 399

You can prevent a class from being inherited by declaring it final, as follows:

final class classname

Using a Class

The class code needs to be in the script that uses the class. Define the class
before you use it. Most commonly, the class is stored in a separate include
file and is included in any script that uses the class.

To use an object, you first create the object from the class. Then that object
can perform any methods that the class includes. Only static methods can be
used without creating an object first.

Creating an object

To create (or instantiate) an object, use statements with the following format:
$objectname = new classname(value,value,...);

For example, to create a Message object, use the following statement:

$my message = new Message("Slow. Aardvark crossing.");
$my message2 = new Message("Happy 100th Birthday!");

The Message object is stored in $my_message. The constructor method
stores "Slow. Aardvark crossing." in the $message property.

Different objects created from the same class are independent entities. If
you change the message in $my_message, it doesn’t affect the message in
$my_message2. You can copy an object by using PHP’s __clone method,
which I describe later in this appendix.

Using methods

After you create the object and store it in a variable, you can use any method
in the class, except private or protected methods, with statements of the fol-
lowing format:

$my message->displayMessage();
$my message->changeMessage("Stop. Aardvark in crosswalk.");

4 00 Part VI: Appendixes

Static methods can be used directly from outside the class, without creating
an object first. The following example is a class with a static method:

class TestStatic

{
static function writeMessage()
{
echo "I am a static method";
}
}

You can access this method directly in your script with the following
statement:

TestStatic: :writeMessage():;

Accessing properties

After you create an object, you can access the public properties with the fol-
lowing statements:

$my message->message;
$my message2->message;

However, private and protected properties can’t be accessed this way. They
can be accessed only from inside a class. It’s good programming practice to
hide as much of your class as possible. Only make properties public that
absolutely need to be public, which is seldom the case.

Using Exceptions

PHP provides an error-handling class called Exception that you can use to
handle undesirable things that happen in your script. For example, in the car
class, you might keep track of the gas in the car and stop the car when it runs
out of gas. You expect your program to detect 0 gallons and react. You don’t
expect the gas in the gas tank to be a negative amount; you consider that to
be an exception, and you want to be sure that won’t happen in your script.
To deal with this, you can write a routine that uses the Exception class to
watch for a negative gas amount. The following statements check for this
situation:

$this->gas = $this->gas - 5;
try
{

Appendix B: Object-Oriented Programming with PHP 40 1

if ($this->gas < 0)

{
throw new Exception("Negative amount of gas.");
}
}
catch (Exception $e)
{
echo $e->getMessage();
echo "\n
\n";
exit();
}

The preceding script contains a try block and a catch block:

v In the try block, you test a condition. If the condition is TRUE, you throw
an exception — in other words, you create an Exception object. The
Exception object has a property that stores the message you sent when
you threw the exception.

v In the catch block, you catch the exception and call it $e. Then you exe-
cute the statements in the catch block. One of the statements is a call to
a method called getMessage in the Exception class. The getMessage
method returns the message that you stored, and your statement
echoes the returned message. The statements then echo the end-of-line
characters so the message is displayed correctly. The script stops on
the exit statement.

If no exception is thrown, the catch block has nothing to catch, and it’s
ignored. The script proceeds to the statements after the catch block.

Copying Objects

PHP provides a method you can use to copy an object: __clone (with two
underscores). If your class contains a __clone method, PHP uses the method
to copy; if the class doesn’t contain a __clone method, PHP uses its default
__clone method, which copies all the properties as is. As shown by the two
underscores beginning its name, the clone method is a special method, and
thus is called differently, as shown in the following example.

For example, you can write the following class:

class Car

{
private $gas = 0;
private $color = "red";
function addGas ($amount)
{

4 02 Part VI: Appendixes

$this->gas = $this->gas + $amount;
echo "$amount gallons added to gas tank";

}
function __clone()
{

$this->gas = 0;
}

}

Using this class, you can create an object and copy it as follows:
$firstCar = new Car;

$firstCar->addGas(10);

$secondCar = clone $firstCar;

After these statements, you have two cars:

v $firstcCar: This car is red and contains 10 gallons of gas. The 10 gallons
were added with the addGas method.

v $secondcCar: This car is red but contains 0 gallons of gas. The duplicate
car is created by using the __clone method in the car class. This
method sets $gas to 0 and doesn’t set $color at all.

If you didn’t have a __clone method in the car class, PHP would use

a default __clone method that would copy all the properties, making
$secondCar both red and containing 10 gallons of gas.

Destroying Objects

You can create and destroy an object with the following statements:

$myCar = new Car;
unset ($myCar) ;

After $smyCar is unset, the object no longer exists.

PHP provides a method that is automatically run when an object is destroyed:
__destruct. For example, the following class contains a __destruct method:

class Tower

{
function __destruct()
{
echo "The tower is destroyed";
}

}

Appendix B: Object-Oriented Programming with PHP 403

When you destroy the object with an unset statement, the __destruct
method runs, and the output is echoed. The __destruct method is not
required.

Using Abstract Classes

PHP allows you to use abstract methods — patterns that specify the methods
to be used and the information to be passed, but don’t contain any code.
Any class that contains an abstract method must be declared abstract. An
abstract class can contain both abstract methods and methods that are not
abstract. You define an abstract class with a keyword, as follows:

abstract class Message

{

protected $messageContent;

function _ _construct($text)

{

$this->messageContent = $text;

}

abstract public function displayMessage($color);
}

An object can’t be created from an abstract class. The function of an abstract
class is to serve as a parent for one or more child classes. The abstract class
specifies the methods, including abstract methods that contain no code. The
following two child classes actually implement the displayMessage method:

class BiggestMessage extends Message

{
public function displayMessage ($color)
{
echo "<hl style=\"color: $color\">
$this->messageContent</hl>";
}
}

class BigMessage extends Message

public function displayMessage($color)
{
echo "<h2 style=\"color: $color\">
$this->messageContent</h2>";

}

Notice that the child classes do not contain a constructor. When an object is
created from either child class, the constructor from the parent class is used.
Both child classes must implement the abstract method specified in the
parent class. If displayMessage is not included in a child class, a fatal error
occurs. Notice that the implementation of displayMessage is different in

4 04 Part VI: Appendixes

WING/
&

each class, specifying different sized text. However, because the abstract
method in the parent class specifies one argument ($color) for the method,
the child classes must implement the abstract method with one argument.

Notice that the child classes can access the $messageContent property in
the parent class. A child class can access a protected property. If the prop-
erty were private, the child class would get an error message when trying to
access it.

Using Interfaces

Interfaces, like abstract classes, can’t be instantiated. Interfaces differ from
abstract classes in that all methods in an interface must be abstract. You
define an interface as follows:

interface Moveable
{

abstract public function moveForward($distance);
}

Then suppose you have a Ccar class as follows:

Class Car

{
protected $gas = 0;
function __construct()
(
$this->gas = 10;
}
}

You can create a subclass as follows:

Class Sedan extends Car implements Moveable

{
public function moveForward($distance)
{
$this->gas = $this->gas - $distance * $mileage;
}
}

When a sedan object is created, it adds 10 gallons to $gas as coded in its
parent, the car class. It also implements the Moveable interface, which means
it must implement a moveForward method that accepts one parameter.

You can implement more than one interface by using the following format:

Class Baby implements Feedable, Washable, Changeable

Appendix B: Object-Oriented Programming with PHP 4 05

Testing an Object

You can test an object to determine its class by using the instanceof opera-
tor, as follows:

if($myCar instanceof Car)
echo "It's a car!";

This statement returns TRUE whether $myCar is a Car or is created by a child
class of car, such as when $myCar is a Sedan.

Object-Oriented Concepts
That PHP 5 Omits

If you're familiar with object-oriented programming in other languages, you
might find that some features you're accustomed to using aren’t available in
PHP 5:

+ Polymorphism: PHP doesn’t allow more than one method, even a con-
structor, to have the same name in a class. Therefore, you can’t imple-
ment polymorphism as you’re used to doing. You can’t have two or more
methods with the same name in the same class that accept different
types or numbers of variables. Some people use switches and other
mechanisms to implement the functionality of polymorphism.

+ Multiple inheritance: PHP doesn’t allow multiple inheritance. A class
can inherit from one parent class only.

4 06 Part VI: Appendixes

Appendix C

The MySQL and MySQL Improved
Extensions

P HP interacts with MySQL by using built-in functions. Currently, PHP pro-
vides two sets of functions for use when accessing MySQL databases:
the MySQL extension (mysql) and the MySQL Improved extension (mysqli).

The MySQL extension is enabled automatically when PHP 4 is installed. The
functions provided by this extension have the format

mysql_action(parameters);

where action is the part of the function name that indicates what the func-
tion does, and parameters are the parameters that the function requires. For
instance, the following is a typical function:

$connect = mysql_connect ($host, $user, $password) ;

The function connects to the MySQL server and returns a connection that is
stored in $connect.

The MySQL extension isn’t enabled automatically when you install PHP 5. You
need to activate it yourself, as described in the installation instructions pro-
vided on the PHP Web site (www.php.net).

The MySQL extension can interact with MySQL versions 4.0 and 4.1. However,
several additional features were added with MySQL 4.1. To take advantage of
the new features, you must use the MySQL Improved extension. You activate
mysqli, instead of mysql, when installing PHP 5. The functions provided by
this extension have a similar format:

mysqli_action(parameters);
The beginning of the function name is mysqli, rather than mysql. Parameters
are also passed to the mysqli functions. In some cases, the syntax is the

same, such as for the following function:

$connect = mysqgli_connect ($host, $user, $password) ;

4 08 Part VI: Appendixes

s

However, for some functions the syntax is slightly different, as shown in the
following two functions:

mysqgl_select_db($dbname, $connect) ;
mysqli_select_db($connect, $dbname) ;

Notice that the parameters are in a different order.

The MySQL Improved extension also provides objects for those who prefer
object-oriented programming. Basically, it provides two objects with several
methods available. The two objects used in the applications in this book are:

$connect = new mysqli (S$host, $user, $password) ;
$result = $connect->query("SELECT * FROM Test_table");

$connect is an object that represents a connection to the MySQL server.
$result is an object that contains the results from an SQL query. Both objects
have several methods. For instance, as shown in the preceding code, query is
a method in the mysqli class, used in the second line to return the $result
object. You can see a complete list of all the objects and queries available in
the mysqli extension at www.php.net/manual/en/ref.mysqli.php.

In this book, I use mysqli functions in the procedural programs and mysqli
objects in the object-oriented programs. You can convert any script to use a
different method of interacting with MySQL. For instance, if you prefer to use
PHP 4, you can enable the mysql extension and convert the functions to
mysql functions.

The following two tables show the differences in syntax for statements used
in the applications in this book. The tables assume that the parameters are
passed in variables. For instance, the connection to the MySQL server is
stored in a variable named $connect, as shown previously in this section.
The results of a query are stored in a variable named $result.

Table C-1 compares mysql and mysqli functions. Table C-2 compares mysqli
functions with mysqli methods.

Table C-1 Syntax for mysql and mysqli Functions
mysql Function mysqli Function
mysqgl_connect (Shost, mysqgli_connect (Shost,
Suser, Spasswd) Suser, Spasswd)
mysqgl_errno () Or mysgli_errno (Sconnect)

mysgl_errno (Sconnect)

mysqgl_error () Or mysgli_error (Sconnect)
mysqgl_error (Sconnect)

¢MBER

Appendix C: The MySQL and MySQL Improved Extensions 40 9

mysql Function

mysqli Function

mysqgl_fetch_array (Sresult)

mysgli_fetch_array($Sresult)

mysqgl_fetch_assoc ($result)

mysqgli_fetch_assoc (Sresult)

mysqgl_fetch_row($result)

mysqgli_fetch_row(Sresult)

mysqgl_insert_id($connect)

mysqgli_insert_id($connect)

mysqgl_num_rows (Sresult)

mysqgli_num_rows ($connect)

mysqgl_query ($sqgl) or
mysqgl_query ($sgl, Sconnect)

mysqgli_query
($connect, $sgl)

mysqgl_select_db ($dbname)

mysqgli_select_db
(Sconnect, $dbname)

Table C-2 mysqli Functions and Object-Oriented Statements

mysqli Function

mysqli Method or Property

mysgli_connect ($Shost,
Suser, Spasswd)

new mysqgli (Shost,
Suser, Spasswd)

mysqgli_errno (Sconnect)

Sconnect->errno

mysqgli_error (Sconnect)

Sconnect->error

mysqgli_fetch_array(Sresult)

Sresult->fetch_array()

mysqgli_fetch_assoc(Sresult)

Sresult->fetch_assoc ()

mysqgli_fetch_row(Sresult)

Sresult->fetch_row()

mysgli_insert_id($Sconnect)

Sconnect->insert_id

mysgli_num_rows (Sresult)

Sresult->num_rows

mysqgli_query (Sconnect, $sqgl)

$connect->query ($sql)

mysqgli_select_db
($connect, Sdbname)

Sconnect->select__
db ($dbname)

Note that some items in the object-oriented column do not have parentheses
() at the end of the statement. This means that those items are properties,
not methods. Thus, they are used as variables, as in the following:

echo $connect->error;

4 70 Part VI: Appendixes

Appendix D
About the CD

I’ve included a CD to provide you with all the source code that I present in
the book. [wanted to save you all that typing. And because I had the CD
anyway, [decided to stick in a list of links to PHP and MySQL sites that [think
you’ll find useful. In this appendix, [describe the computer requirements for
using the CD. I also tell you about the material you can find on the CD and
how to access that material. [end the appendix with a brief troubleshooting
section that [hope you won’t need.

System Requirements

Make sure that your computer meets the minimum system requirements
shown in the following list. If your computer doesn’t match up to most of
these requirements, you might have problems using the files on the CD. For
the latest and greatest information, please refer to the ReadMe file located
at the root of the CD-ROM.

v A PC with a Pentium or faster processor, or a Mac OS computer with a
Power PC-based or faster processor

v Microsoft Windows 98 or later, or Mac OS system software 8.5 or later, or
Linux OS

1 At least 32MB of total RAM installed on your computer, but for best per-
formance, at least 64MB of RAM

v A CD-ROM drive
» A monitor capable of displaying at least 256 colors or grayscale
1 A modem with a speed of at least 14,400 bps
If you need more information on the basics, check out these books published

by Wiley: PCs For Dummies, 9th Edition, by Dan Gookin; Macs For Dummies, 8th
Edition, by David Pogue; iMacs For Dummies, 4th Edition by Mark L. Chambers;

4 ’2 Part VI: Appendixes

Windows 98 For Dummies, Windows 2000 Professional For Dummies, and
Windows XP For Dummies, 2nd Edition, all by Andy Rathbone; Linux For
Dummies, 6th Edition, by Dee-Ann LeBlanc.

Using the CD

To install the items from the CD to your hard drive, follow these steps.

Note for Linux Users: Mount the CD and browse to the Author directory on the
CD to access the source code files.

1. Insert the CD into your computer’s CD-ROM drive.
The license agreement appears.

Note to Windows users: The interface won’t launch if you have autorun
disabled. In that case, choose StartoRun. In the dialog box that appears,
type D:\start.exe. (Replace D with the proper letter if your CD-ROM
drive uses a different letter. If you don’t know the letter, see how your
CD-ROM drive is listed under My Computer.) Click OK.

Note for Mac Users: When the CD icon appears on your desktop, double-
click the icon to open the CD, and then double-click the Start icon.

2. Read through the license agreement, and then click the Accept button
if you want to use the CD.

After you click Accept, the License Agreement window won’t appear
again.

The CD interface appears. The interface allows you to install the pro-
grams and run the demos with just a click of a button (or two).

What Vou Can Find on the CD

The following sections are arranged by category and provide a summary

of the files you can find on the CD. If you need help with installing the items
provided on the CD, refer to the installation instructions in the preceding
section.

Source code files

All the application code in this book is located in the Author directory on the
CD. The source code files provided will work with PHP on Macintosh, Linux,

Appendix D: About the CD

UNIX, Windows 98/NT/2000/XP, and many other operating systems. These
files contain all the application code from the book. The structure of the code
directory is

Author/Authentication/Procedural
Author/Authentication/00

Author/Login/Procedural
Author/Login/00

Author/Catalog/Procedural
Author/Catalog/00

Author/ShoppingCart/Procedural
Author/ShoppingCart /00

Author/CMS/Procedural
Author/CMS/00

Author/Forum/Procedural
Author/Forum/00

Author/MailingList/Procedural

Links to useful PHP and
MySOL information

In addition to all the source code files on the CD, you can also find a list of
links that will take you to Web sites containing additional information about
PHP and MySQL.

[describe each of the following sites in Chapter 10:

V¥ http://zend.com

V¥ www .sourceforge.net

V¥ http://weberdev.com

V¥ www .phpclasses.org

V¥ http://codewalkers.com
V¥ www .phpbuilder.com

V¥ www.hotscripts.com

V¥ www .phpfreaks.com

V¥ http://px.sklar.com

V¥ www.oinko.net/freephp

413

4 ’4 Part VI: Appendixes

The following three sites wouldn'’t fit into Chapter 10, but they’re useful, so |
include them on the CD, too:

v www.mysql . com: The official MySQL Web site.

V http://janet.valade.com: My Web site, where you can find any errors
or updates to the application code.

v www.php .net: The official PHP Web site.

A bonus chapter

The bonus chapter on the CD covers building an application that manages
mailing lists. A mailing list is essentially a group of recipients. When you send
a message to a mailing list, the message is distributed to each recipient. A
polite, well-behaved mailing list application asks you to voluntarily subscribe
before it sends any messages to you. (An impolite application simply gathers
a collection of e-mail addresses and sends annoying advertisements to each
recipient.) The mailing list application that I develop in this bonus chapter is
a polite one. Users subscribe/unsubscribe themselves from the mailing lists
and can send messages only to lists that they are subscribed to.

In addition, the application stores an archive of every message and a copy

of every attachment. Users can look at any message and attachment in the
archive. In addition to the features provided to all users, the application rec-
ognizes a special type of user — an administrator, who has special privileges.
The administrator can create new mailing lists, send e-mail to a list that he
or she is not subscribed to, and purge old messages.

The code for this application is provided on the CD, along with the code from
the other chapters. However, although the other chapters provide both proce-
dural and object-oriented code, this chapter presents only a procedural appli-
cation. The bonus chapter contains some code that is a little more advanced
than the code in the other chapters. You might view this application as inter-
mediate, rather than introductory. However, the chapter provides plenty of
detailed explanation for the code. I give you all the information you need to
understand the code.

Troubleshooting

If any source code programs on the CD fail with error messages when run in
your PHP/MySQL environment, check my Web site for information. The Web

Appendix D: Aboutthe €D /)] 5

site provides information and corrections for problems or errors reported by
readers. Corrected and updated versions of files might be available
(http://janet.valade.com).

Customer Care: If you have trouble with the CD-ROM, please call the Wiley
Product Technical Support phone number at (800) 762-2974. Outside the
United States, call (317) 572-3994. You can also contact Wiley Product
Technical Support at www.wiley.com/techsupport. John Wiley & Sons pro-
vide technical support only for installation and other general quality control
items. For technical support on the applications themselves, consult the pro-
gram’s vendor or author.

To place additional orders or to request information about other Wiley prod-
ucts, please call (877) 762-2974.

4 ’6 Part VI: Appendixes

Index

Py A Py PHP, 53

security, 41
abstract classes, 403-404 Security Sockets Layer (SSL), 41

abstraction, 387-388 application development
consistency in coding style, 376

accessing
methods, 395-396, 399-400 constants, 376
MySQL databases, 33-34 discussion lists, 378
MySQL from PHP scripts, 37 documentation, 378

properties, 395-396 PHP source code, 377
Account class (HTTP authentication application) planning, 19-22, 375
code, 66-68 readability of code, 376
resource planning, 21-22
reusable code, 377
schedule, 21
separating page layout from function, 377
testing code incrementally, 376

comparePassword method, 69-70

constructor, 68-69

properties, 66

selectAccount method, 69
Account class (user login application)

comparePassword method, 112 application scripts

accessing MySQL, 37
Admin-00.php, 303-307

constructor, 111
createNewAccount method, 112-114 .
getMessage method, 112 Admin.php, 269-274

selectAccount method, 111 Auth-00.php, 73-76
accounts (MySQL) Catalog-o00.php, 155-157
CompanyHome-00.php, 294-300

CompanyHome. php, 253-262
error handling, 32-33

Login-00.php, 119-125, 293
login.php, 92-100, 246-249

creating, 35-36
modifying, 35
passwords, 35-36
permissions, 35

root, 35
activating MySQL, 1213 Orders-o0o0.php, 224-230
addCart method, 220 outside sources, 25-30
AddField method, 327 postMessage-00.php, 361-363
addItem method, 214 postMessage.php, 339-342
addslashes function, 39 postReply-00.php, 364-368
Admin-00. php script, 303-307 postReply.php, 342-345

ProcessOrder.php, 200-207
ShopCatalog.php, 193-194, 196-197
ShoppingCart.php, 197-200
system calls, 31-32
viewForums-00.php, 359-360
encryption, 41 viewForums.php, 337-338
.htaccess file, 50-51 viewThread-00.php, 361

HTTP authentication, 49-52 viewThread.php, 338-339

password file, 51 viewTopic-00.php, 360
viewTopic.php, 338

Admin.php script, 269-274
AllowOverride Authconfig directive, 50
AllowOverride None directive, 50
Apache Web server

configuration file, 49

5 18 PP &mysaL Everyday Apps For Dummies

applications Brown, David William (An Introduction to Object-
content management system (CMS), 235-236 Oriented Analysis: Objects and UML in Plain

HTTP authentication application, 52
mailing list application, 414
object-oriented code, 15-16
online catalog application, 131-132
procedural code, 15-16
shopping cart application, 159-161
user login application, 77-78
Web forum, 309
Arachnoid Web site, 17
Arachnophilia programming editor, 17
attributes (objects), 386-387
authentication. See HTTP authentication
authentication application
Account object, 60, 66-70
Auth-00.php script, 73-76
Database object, 60, 62-66
features, 52
functionality, 54
object-oriented code, 60-73
PasswordPrompter object, 60-62
procedural code, 56-60
user database, 54-56
WebPage object, 60, 71-73
welcome page, 59-60
AuthName section (. htaccess file), 50
Auth-00.php script, 73-76
author control (Web forum), 336
author’s Web site, 414-415
AuthType section (. htaccess file), 50

ol e

backups for MySQL databases, 40-41
backward compatibility, 10
Barebones Web site, 17-18
BaselInfo class
code, 278-279
constructor, 279
description, 276
getConnection method, 279
getId method, 279
getName method, 279
properties, 278
BBCode, 372
BBEdit programming editor, 17
body control (Web forum), 336
bonus chapter (CD-ROM), 414

English, 2nd Edition), 275
built-in functions
addslashes, 39
MySQL extension, 12-13, 407-409
MySQL Improved extension, 12-13, 407-409
strip_tags, 110, 222, 292, 359
trim, 110, 222, 292, 359

oo

cart application
Add Items to Shopping Cart button, 167
Cancel Order button, 169
Catalog class, 208-210
confirmation of order Web page, 170
Continue Shopping button, 168-169
cookies, 161
credit card handling, 160
customer feedback, 161
customer login, 159-160, 231
database, 162-166
Database class, 216
databases, 161
Edit Shipping Information button, 169
Email class, 223
fields_cart.inc file, 175-177
fields_cart-o0o0.inc file, 179-182
fields_products_page.inc file, 171-172
fields_ship_info.inc file, 182-184
fields_ship_info-o00.1inc file, 184-185
fields_summary.inc file, 188-190
fields_summary-o0o0.inc file, 190
functionality, 161
inventory, 231
Item class, 210-212
Order class, 216-221
order tracking, 231
Orders-o0o0.php script, 223-230
PayPal, 160
ProcessOrder.php script, 200-207
product information Web page, 166-167
purchasing methods, 160
session variables, 161
shipping fees, 160
shipping form Web page, 168-169
ShopCatalog.php script, 193-197
shopping cart Web page, 168

ShoppingCart class, 212-215
ShoppingCart.php script, 197-200
shopping_product_page.inc file, 171-175
single_form.inc file, 182, 185-187
storing contents, 161
Submit Order button, 168-169
summary of order Web page, 169-170
summary_form.inc file, 188
summary_page.inc file, 190-192
table_page.incfile, 175, 177-179
table_page-o0o0.inc file, 179
Update Cart button, 168
View Shopping Cart button, 167
WebForm class, 221-222
WebPage class, 222
catalog application
Catalog class, 150-155, 157-158
Catalog-00.php script, 155-157
database, 132-135
functionality, 131-132
functions_main.inc file, 148-149
index Web page, 136-140, 145
object-oriented code, 149-155
procedural code, 145-149
products Web page, 137, 140-145
Catalog class (catalog application)
adding functionality, 157-158
code, 150-153
constructor, 153-154
displayAllofType method, 155
displayCategories method, 154
getAllofType method, 154
getCategoryAndTypes method, 154
properties, 150
selectCatalog method, 154
Catalog class (shopping cart application)
constructor, 208
getConnection method, 208
getName method, 208-210
getPrice method, 208-210
useDatabase method, 208
Catalog-00.php script, 155-157
CD-ROM
bonus chapter, 414
helpful Web site links, 413-414
installing, 412
license agreement, 412
ReadMe file, 411
source code files, 412-413

Index 4 ’9

system requirements, 411
technical support, 415
troubleshooting, 414-415
Chambers, Mark L. (iMacs For Dummies, 4th Edition),
411-412
checkAddress method, 110
checkEmail method, 110
checkForBlanks method (WebForm class)
content management system, 292
shopping cart application, 222
user login application, 108
Web forum application, 358
checkName method, 110
checkPhone method, 110
checkState method, 110
checkZip method, 110
child classes, 388-389
class files, 13
class statement
accessing methods/properties, 395-396
class code, 392
constructor, 396-397
format, 391
methods, 394-395
naming classes, 392
properties, 392-394
classes
abstract classes, 403-404
Account class (HTTP authentication application),
66-70
Account class (user login application), 111-114
BaselInfo class, 276, 278-279
Catalog class (catalog application), 150-155
Catalog class (shopping cart application), 208-210
child classes, 388-389
ContentDownload class, 276, 289-291
ContentItem class, 276, 283-289
ContentType class, 276, 282-283
Database class (content management system),
276, 292
Database class (HTTP authentication application),
62-66
Database class (shopping cart application), 216
Database class (user login application), 110-111
Database class (Web forum application), 357-358
defined, 386
Department class, 275-276, 279-281
Email class (shopping cart application), 223
Email class (user login application), 117-119

£ 2() PP &MySQL Everyday Apps For Dummies

classes (continued)

Exception class, 400-401

inheritance, 398-399

instantiation, 390

Item class, 210-212

master class, 388

methods, 387, 394-395, 399-400

naming, 392

Order class, 216-221

parent class, 388

PasswordPrompter class, 61-62

Post class, 355-357

properties, 400

Session class, 114-117

ShoppingCart class, 212-215

subclasses, 388-389

TableAccessor class, 349-353

Thread class, 353-354

WebForm class (content management system),
276, 292

WebForm class (shopping cart application), 221-222

WebForm class (user login application), 102-110

WebForm class (Web forum application), 358-359

WebPage class (HTTP authentication application),
71-73

WebPage class (shopping cart application), 222

CMS (content management system)

Admin-00.php script, 303-307

Admin.php script, 269-274

BaselInfo class, 276, 278-279

CompanyHome-00. php script, 294-300

CompanyHome. php script, 253-262

company . inc file, 262-265

company-00.inc file, 301-303

content detail Web page, 243, 245-246

content list Web page, 243, 245

content types, 235-236

ContentDownload class, 276, 289-291

content_form.inc file, 266-268, 294, 303

ContentItem class, 276, 283-289

ContentType class, 276, 282-283

database, 236-243

Database class, 276, 292

defined, 235

Department class, 275-276, 279-281

department Web page, 243-244

double_form.inc file, 249-252

enhancements, 307

fields_content.inc file, 265-266, 294, 303

home Web page, 243-244
intranet, 236
keyword search, 307
login Web page, 243-244
Login-00.php script, 293
login.php script, 246-249
paging navigation, 307
permissions, 236
uploading files, 236
WebForm class, 276, 292
code. See also PHP source code
Account class (HTTP authentication application),
66-68
BaselInfo class, 278-279
Catalog class (catalog application), 150-153
consistency, 376
constants, 376
ContentDownload class, 289-291
ContentItem class, 284-288
ContentType class, 282-283
conventions, 1-2
Database class (HTTP authentication application),
62-64
Database class (user login application), 110
Department class, 280-281
Email class, 117-118
Itemclass, 210-211
object-oriented code, 15-16
Order class, 216-219
PasswordPrompter class, 61
Post class, 355-356
procedural code, 15-16
readability, 376
reusable code, 377
separating page layout from function, 377
Session class, 114-115
ShoppingCart class, 212-214
TableAccessor class, 349-351
testing code incrementally, 376
Thread class, 353-354
WebForm class, 102-107
WebPage class (HTTP authentication application),
71-72
Codewalkers Web site, 380-381
CompanyHome-00.php script, 294-300
CompanyHome. php script, 253-262
company . inc file, 262-265
company-00.inc file, 301-303
comparePassword method, 69-70, 112

constants, 376
constructors
Account class (HTTP authentication application),
68-69, 111
Account class (user login application), 111
BaseInfo class, 279
Catalog class (catalog application), 153-154
Catalog class (shopping cart application), 208
ContentDownload class, 291
ContentItem class, 288
ContentType class, 283
Database class (content management system), 292
Database class (HTTP authentication application),
64-65
Database class (shopping cart application), 216
Database class (user login application), 111
Database class (Web forum application), 358
Department class, 281
Email class, 119
Item class, 212
names, 397
Order class, 220
PasswordPrompter class, 62
PHP constraints/requirements, 396
Session class, 114, 116
ShoppingCart class, 214
TableAccessor class, 351-352
WebForm class (content management system), 292
WebForm class (shopping cart application), 221
WebForm class (user login application), 107
WebForm class (Web forum application), 358
WebPage class (HTTP authentication application), 72
WebPage class (shopping cart application), 222
content management system (CMS)
Admin-00.php script, 303-307
Admin.php script, 269-274
Baselnfo class, 276, 278-279
CompanyHome-00. php script, 294-300
CompanyHome. php script, 253-262
company . inc file, 262-265
company-00.inc file, 301-303
content detail Web page, 243, 245-246
content list Web page, 243, 245
content types, 235-236
ContentDownload class, 276, 289-291
content_form.inc file, 266-268, 294, 303
Contentltem class, 276, 283-289
ContentType class, 276, 282-283
database, 236-243

Index 4 2 1

Database class, 276, 292

defined, 235

Department class, 275-276, 279-281

department Web page, 243-244

double_form.inc file, 249-252

enhancements, 307

fields_content.inc file, 265-266, 294, 303

home Web page, 243-244

intranet, 236

keyword search, 307

login Web page, 243-244

Login-00.php script, 293

login.php script, 246-249

paging navigation, 307

permissions, 236

uploading files, 236

WebForm class, 276, 292
ContentDownload class

code, 289-291

constructor, 291

delete method, 291

description, 276

findByContentId method, 291

findById method, 291

properties, 289

save method, 291
content_form.inc file, 266-268, 294, 303
ContentItem class

code, 284-288

constructor, 288

delete method, 288

description, 276

findByDeptType method, 288

findById method, 288

getContentDate method, 288

getContentItem method, 289

getCreationDate method, 288

getlLastUpDate method, 288

getlLastUpdBy method, 288

properties, 283-284

save method, 288

setContentDate method, 288

setCreationDate method, 288

setDescription method, 288

setlastUpdBy method, 288

setName method, 288
ContentType class

code, 282-283

constructor, 283

422

PHP & MySQL Everyday Apps For Dummies

ContentType class (continued)

description, 276

findA11 method, 283

findById method, 283

properties, 282
controls (Web forum)

author, 336

body, 336

freplyto, 337

fresponse, 336

fsubject, 337
conventions used for PHP code, 1-2
cookies

customer information, 30

shopping cart application, 161
copying objects, 401-402
createNew method, 354
createNewAccount method, 112-114
createOrder method, 220
creating

.htaccess file, 50-51

MySQL accounts, 35-36

objects, 390, 399

password file, 51
credit card handling, 160
current directory, 14
customer feedback, 161
customer information

cookies, 30

databases, 30

security, 30-32

session variables, 30

text files, 30
customer login (shopping cart application),

159-160, 231

o) e

data definition language (DDL), 242
Database class (content management system)
constructor, 292
description, 276
getConnection method, 292
useDatabase method, 292
Database class (HTTP authentication application)
code, 62-64
constructor, 64-65
getConnection method, 65

properties, 63
useDatabase method, 65-66
Database class (shopping cart application), 216
Database class (user login application)
code, 110
constructor, 111
getConnection method, 111
useDatabase method, 111
Database class (Web forum application), 357-358
Database Management System (DBMS), 33
databases
accessing, 33-34
backups, 40-41
catalog database, 132-135
content management system (CMS), 236-243
customer information, 30
MySQL security database, 34-35
shopping cart application, 161-166
User database, 78-81
Web forum application, 311-317
DBMS (Database Management System), 33
DDL (data definition language), 242
delete method, 288, 291
Department class
code, 280-281
constructor, 281
description, 275-276
findA11 method, 281
findById method, 281
getDescription method, 281
properties, 279
destroying objects, 402-403
directives
AllowOverride Authconfig, 50
AllowOverride None, 50
directories
current directory, 14
include directory, 14
discussion application
author control, 336
BBCode, 372
body control, 336
database, 311-317
Database class, 357-358
enhancements, 371-372
file uploads/downloads, 372
forum management, 372
Forums Web page, 317-318, 321-322
freplyto control, 337

fresponse control, 336
fsubject control, 337
functionality, 309
functions_main.inc file, 346, 368-369
functions_post.inc file, 346-347
functions_post-00.inc file, 369-371
messageFields.inc file, 331-332
messageForm.inc file, 331-334
Messages Web page, 317, 319, 328-330
New Message Web page, 317, 319-320, 331-334
Post class, 355-357
postMessage-00.php script, 361-363
postMessage.php script, 339-342
postReply-00.php script, 364-368
postReply.php script, 342-345
Reply Web page, 317, 319-321, 334-335
replyFields.inc file, 335-337
search tools, 372
security, 310
TableAccessor class, 349-353
Thread class, 353-354
threading, 371
threads, 309-310
Threads Web page, 317-318, 324-327
topics, 310
user registration/authentication, 371
viewForums.inc file, 321-323
viewForums-00.php script, 359-360
viewForums.php script, 337-338
viewThread.inc file, 328-330
viewThread-00.php script, 361
viewThread.php script, 338-339
viewTopic.inc file, 324-327
viewTopic-00.php script, 360
viewTopic.php script, 338
WebForm class, 358-359
discussion lists, 378
displayAlTofType method, 155
displayCart method, 215
displayCategories method, 154
displayForm method (WebForm class)
content management system, 292
shopping cart application, 222
user login application, 107
Web forum application, 358
DisplayForumsHeader method, 323
displayOrderSummary method, 221
displayPage method, 73, 222
displayPrompt method, 62

Index 423

DisplayThreadsHeader method, 327
DisplayTopics method, 324
documentation, 378
double_form.1inc file
shopping cart application, 249-252
user login application, 83, 86-90
Dreamweaver MX, 19

oF e

editors

Arachnophilia, 17

BBEdit, 17

common features, 17

demos, 16

EditPlus, 17

Emacs, 17

HomeSite, 18

HTML-Kit, 18

TextWrangler, 18

Vim, 18
EditPlus programming editor, 17
Emacs programming editor, 17
Email class (shopping cart application), 223
Email class (user login application)

code, 117-118

constructor, 119

properties, 117

sendEmail method, 119

setAddr method, 119

setMessage method, 119

setSubj method, 119
encryption, 41
error handling, 32-33
escaping quotes, 39-40
Exception class, 400-401
exceptions, 400-401

ofFe

factory method, 276

fields_cart.inc file, 175-177
fields_cart-o0o0.inc file, 179-182
fields_content.inc file, 265-266, 294, 303
fields_login.inc file, 83-85
fields_products_page.inc file, 171-172
fields_ship_info.inc file, 182-184
fields_ship_info-o0o0.1inc file, 184-185
fields_summary.inc file, 188-190

b24

PHP & MySQL Everyday Apps For Dummies

fields_summary-o00.1inc file, 190
files
class files, 13
image files, 14
include files, 13-14
password-protected files, 47-48
PHP script files, 13
uploading files (CMS), 236
findA11 method
ContentType class, 283
Department class, 281
findByContentId method, 291
findByDeptType method, 288
findById method
ContentDownload class, 291
ContentlItem class, 288
ContentType class, 283
Department class, 281
finder methods, 276-277
forgotten passwords, 126-127
forms
content management system, 276, 292
shopping cart application, 221-222
user login application, 102-110
Web forum application, 358-359
forum application
author control, 336
BBCode, 372
body control, 336
database, 311-317
Database class, 357-358
enhancements, 371-372
file uploads/downloads, 372
forum management, 372
Forums Web page, 317-318, 321-322
freplyto control, 337
fresponse control, 336
fsubject control, 337
functionality, 309

functions_main.inc file, 346, 368-369

functions_post.inc file, 346-347
functions_post-00.inc file, 369-371
messageFields.inc file, 331-332
messageForm.inc file, 331-334
Messages Web page, 317, 319, 328-330

New Message Web page, 317, 319-320, 331-334

Post class, 355-357
postMessage-00.php script, 361-363
postMessage.php script, 339-342

postReply-00.php script, 364-368
postReply.php script, 342-345
Reply Web page, 317, 319-321, 334-335
replyFields.inc file, 335-337
search tools, 372
security, 310
TableAccessor class, 349-353
Thread class, 353-354
threading, 371
threads, 309-310
Threads Web page, 317-318, 324-327
topics, 310
user registration/authentication, 371
viewForums.inc file, 321-323
viewForums-00.php script, 359-360
viewForums.php script, 337-338
viewThread.inc file, 328-330
viewThread-00.php script, 361
viewThread.php script, 338-339
viewTopic.inc file, 324-327
viewTopic-00.php script, 360
viewTopic.php script, 338
WebForm class, 358-359

Forums Web page, 317

Forums Web page (Web forum), 318, 321-322
Free PHP and MySQL Hosting Directory Web site, 382

freplyto control (Web forum), 337
fresponse control (Web forum), 336
fsubject control (Web forum), 337
functions

addslashes, 39

MySQL extension, 12-13, 407-409

MySQL Improved extension, 12-13, 407-409

strip_tags, 110, 222, 292, 359

trim, 110, 222, 292, 359
functions_main.inc file

online catalog application, 148-149

Web forum application, 346, 368-369
functions_post.inc file, 346-347
functions_post-00.1inc file, 369-371

oG o

getAl1Fields method, 108
getAl1Items method, 215
getAllofType method, 154
getCatalogNumber method, 212
getCategoryAndTypes method, 154

getConnection method
Baselnfo class, 279
Catalog class, 208
Database class (content management system), 292
Database class (HTTP authentication application), 65
Database class (shopping cart application), 216
Database class (user login application), 111
Database class (Web forum), 358
TableAccessor class, 353
getContentDate method, 288
getContentItem method, 289
getCreationDate method, 288
getDescription method, 281
getId method, 279
getItemInfo method, 220-221
getlastUpDate method, 288
getlLastUpdBy method, 288
getMessage method, 112, 116, 215, 353
getName method
Baselnfo class, 279
Catalog class, 208-210
Item class, 212
getOrderInfo method, 220
getPrice method
Catalog class, 208-210
Itemclass, 212
getQuantity method, 212
getter methods, 277
getValues method, 352
getVariable method, 116
Gookin, Dan (PCs For Dummies, 9th Edition), 411
GRANT queries, 35-36
group file (. htaccess file), 50

o H o

handling errors, 32-33
HomeSite programming editor, 18
hosted discussion application
author control, 336
BBCode, 372
body control, 336
database, 311-317
Database class, 357-358
enhancements, 371-372
file uploads/downloads, 372
forum management, 372
Forums Web page, 317-318, 321-322
freplyto control, 337

Index 425

fresponse control, 336
fsubject control, 337
functionality, 309
functions_main.inc file, 346, 368-369
functions_post.inc file, 346-347
functions_post-00.inc file, 369-371
messageFields.inc file, 331-332
messageForm.inc file, 331-334
Messages Web page, 317, 319, 328-330
New Message Web page, 317, 319-320, 331-334
Post class, 355-357
postMessage-00.php script, 361-363
postMessage.php script, 339-342
postReply-00.php script, 364-368
postReply.php script, 342-345
Reply Web page, 317, 319-321, 334-335
replyFields.inc file, 335-337
search tools, 372
security, 310
TableAccessor class, 349-353
Thread class, 353-354
threading, 371
threads, 309-310
Threads Web page, 317-318, 324-327
topics, 310
user registration/authentication, 371
viewForums.inc file, 321-323
viewForums-00.php script, 359-360
viewForums.php script, 337-338
viewThread.inc file, 328-330
viewThread-00.php script, 361
viewThread.php script, 338-339
viewTopic.inc file, 324-327
viewTopic-00.php script, 360
viewTopic.php script, 338
WebForm class, 358-359

HotScripts Web site, 381

.htaccess file
AuthName section, 50
AuthType section, 50
creating, 50-51
group file, 50
passwords, 50

HTML controls (Web forum)
author, 336
body, 336
freplyto, 337
fresponse, 336
fsubject, 337

426

PHP & MySQL Everyday Apps For Dummies

HTML-Kit programming editor, 18
HTTP authentication
Apache Web server, 49-52
behavior, 45
look and feel, 45
passwords, 46
HTTP authentication application
Account object, 60, 66-70
Auth-00.php script, 73-76
Database object, 60, 62-66
features, 52
functionality, 54
object-oriented code, 60-73
PasswordPrompter object, 60-62
procedural code, 56-60
user database, 54-56
WebPage object, 60, 71-73
welcome page, 59-60
HTTP headers, 46-47

o]e

IDE (Integrated Development Environment)
common features, 18
demos, 16
Dreamweaver MX, 19
Komodo, 19
PHPEdit, 19
Zend Studio, 19

iMacs For Dummies, 4th Edition (Mark L. Chambers),

411-412

image files, 14

include directory, 14

include files
company . inc file, 262-265
company-00.inc file, 301-303
content_form.inc file, 266-268, 294, 303
defined, 13-14
double_form.inc file, 83, 86-90, 249-252
fields_cart.inc file, 175-177
fields_cart-o00.1inc file, 179-182
fields_content.inc file, 265-266, 294, 303
fields_login.inc file, 83-85
fields_products_page.inc file, 171-172
fields_ship_info.inc file, 182-184
fields_ship_info-oo0.1inc file, 184-185
fields_summary.inc file, 188-190
fields_summary-o0o0.1inc file, 190
functions_main.inc file, 148-149, 346, 368-369

functions_post.inc file, 346-347
functions_post-00.inc file, 369-371
location of, 13-14
messageFields.inc file, 331-332
messageForm.inc file, 331-334
replyFields.inc file, 335-337
shopping_product_page.inc file, 171-175
single_form.inc file, 182, 185-187
summary_form.inc file, 188
summary_page.inc file, 190-192
table_page.inc file, 175, 177-179
table_page-o00.inc file, 179
viewForums.inc file, 321-323
viewThread.inc file, 328-330
viewTopic.inc file, 324-327

index Web page (catalog), 136-140, 145

information hiding, 389-390

inheritance, 388-389, 398-399

installing CD-ROM, 412

instantiation, 390

Integrated Development Environment (IDE)
common features, 18-19
demos, 16
Dreamweaver MX, 19
Komodo, 19
Maguma, 19
PHPEdit, 19
Zend Studio, 19

interfaces, 404

intranet application
Admin-00.php script, 303-307
Admin.php script, 269-274
Baselnfo class, 276, 278-279
CompanyHome-00.php script, 294-300
CompanyHome. php script, 253-262
company . inc file, 262-265
company-00.inc file, 301-303
content detail Web page, 243, 245-246
content list Web page, 243, 245
content types, 235-236
ContentDownload class, 276, 289-291
content_form.inc file, 266-268, 294, 303
ContentlItem class, 276, 283-289
ContentType class, 276, 282-283
database, 236-243
Database class, 276, 292
defined, 235
Department class, 275-276, 279-281
department Web page, 243-244

double_form.inc file, 249-252
enhancements, 307
fields_content.inc file, 265-266, 294, 303
home Web page, 243-244
keyword search, 307
login Web page, 243-244
Login-00.php script, 293
login.php script, 246-249
paging navigation, 307
permissions, 236
uploading files, 236
WebForm class, 276, 292
An Introduction to Object- Oriented Analysis: Objects and
UML in Plain English, 2nd Edition (David William
Brown), 275
inventory (shopping cart application), 231
Item class
code, 210-211
constructor, 212
getCatalogNumber method, 212
getName method, 212
getPrice method, 212
getQuantity method, 212
properties, 210

oo

keyword search (content management system), 307
Komodo IDE, 19

o/ o

LeBlanc, Dee-Ann (Linux For Dummies, 6th Edition), 412
license agreement (CD-ROM), 412
Linux For Dummies, 6th Edition (Dee-Ann LeBlanc), 412
literal characters (regular expressions), 28-29
login application

Account class, 101, 111-114

account management features, 127

Database class, 101, 110-111

double_form.inc file, 83, 86-90

Email class, 102, 117-119

features, 77

fields_login.inc file, 83-85

Forgotten password button, 126-127

functionality, 78

login Web page, 82-91

Login-00.php script, 119-125

login.php script, 92-100

Index 42 7

object-oriented code, 101-119
procedural code, 91-100
Session class, 101-102, 114-117
session variables, 100-101, 126
User database, 78-81
WebForm class, 101-110
10gin method, 116-117
Login-00.php script
content management system (CMS), 293
user login application, 119-125
login.php script
content management system (CMS), 246-249
user login application, 92-100

oM o

Macromedia
Dreamweaver MX, 19
HomeSite, 18
Web site, 18-19
Macs For Dummies, 8th Edition (David Pogue), 411
magic quotes, 39-40, 98, 113
Maguma IDE, 19
mailing list application, 414
master class, 388
messageFields.inc file, 331-332
messageForm.inc file, 331-334
Messages Web page (Web forum), 317, 319, 328-330
methods
accessing, 395-396, 399-400
addCart, 220
AddField, 327
addItem, 214
checkAddress, 110
checkEmail, 110
checkForBlanks, 108, 222, 292, 358
checkName, 110
checkPhone, 110
checkState, 110
checkZip, 110
class statements, 394-395
comparePassword, 69-70, 112
createNew, 354
createNewAccount, 112-114
createQrder, 220
defined, 387
delete, 288, 291
displayAllofType, 155
displayCart, 215

£ 28 PHP & MySQL Everyday Apps For Dummies

methods (continued)
displayCategories, 154
displayForm, 107, 222, 292, 358
DisplayForumsHeader, 323
displayOrderSummary, 221
displayPage, 73, 222
displayPrompt, 62
DisplayThreadsHeader, 327
DisplayTopics, 324

factory method, 276
findA11, 281, 283
findByContentlId, 291
findByDeptType, 288
findById, 281, 283, 288, 291
finder method, 276-277
getAl1Fields, 108
getAllItems, 215
getAllofType, 154
getCatalogNumber, 212
getCategoryAndTypes, 154

getConnection, 65, 111, 208, 216, 279, 292, 353, 358

getContentDate, 288
getContentItem, 289
getCreationDate, 288
getDescription, 281
getld, 279
getItemInfo, 220-221
getlastUpDate, 288
getlLastUpdBy, 288
getMessage, 112, 116, 215, 353
getName, 208-210, 212, 279
getOrderInfo, 220
getPrice, 208-210, 212
getQuantity, 212
getter methods, 277
getValues, 352
getVariable, 116
login, 116-117
postMessage, 357
postReply, 357

save, 288, 291
selectAccount, 69, 111
selectByID, 352
selectByID method, 357
selectOrder, 220
sendEmail, 119
setAddr, 119
setContentDate, 288
setCreationDate, 288

setDescription, 288
setFieldsNotRequired, 107
setlastUpdBy, 288
setMessage, 119
setName, 288
setSubj, 119
setter methods, 277
static methods, 276-277, 395
storeVariable, 116
updateCart, 215
updateOrderInfo, 221
updateReplies, 354
updateTimeStamp, 354
useDatabase, 65-66, 111, 208, 216, 292, 358
verifyData, 108-110, 222, 292, 358-359
modifying
MySQL accounts, 35
source code, 16
multiple inheritance, 405
MySQL
accessing from PHP scripts, 37
activating, 12-13
data definition language (DDL), 242
reserved words, 162
security, 33-35
MySQL accounts
creating, 35-36
modifying, 35
passwords, 35-36
permissions, 35
root, 35
MySQL databases
accessing, 33-34
backups, 40-41
catalog database, 132-135
content management system (CMS), 236-243
customer information, 30
MySQL security database, 34-35
shopping cart application, 161-166
User database, 78-81
Web forum application, 311-317
MySQL extension, 12-13, 407-409
MySQL Improved extension, 12-13, 407-409
MySQL versions
backward compatibility, 10
MySQL 4.0, 11
MySQL 4.1, 11
MySQL 5.0, 11
mysqldump utility, 40-41

o\ o

naming
classes, 392
constructors, 397
New Message Web page (Web forum), 319-320, 331-334

o () e

object-oriented code, 15-16
object-oriented programming (OOP)
abstract classes, 403-404
abstraction, 387-388
accessing methods, 399-400
attributes, 386-387
class statement, 391-394
classes, 386
constructor, 396-397
copying objects, 401-402
creating objects, 399
defined, 385
destroying objects, 402-403
exceptions, 400-401
information hiding, 389-390
inheritance, 388-389, 398-399
instantiation, 390
interfaces, 404
methods, 387, 394-395
multiple inheritance, 405
objects, 386
polymorphism, 405
properties, 386-387, 395
testing objects, 405
objects
attributes, 386-387
copying, 401-402
creating, 390, 399
defined, 386
destroying, 402-403
methods, 387
properties, 386-387
testing, 405
online catalog application
Catalog class, 150-155, 157-158
Catalog-00.php script, 155-157
database, 132-135
functionality, 131-132
functions_main.inc file, 148-149
index Web page, 136-140, 145

Index 4 29

object-oriented code, 149-155

procedural code, 145-149

products Web page, 137, 140-145
online ordering application

Add Items to Shopping Cart button, 167

Cancel Order button, 169

Catalog class, 208-210

confirmation of order Web page, 170

Continue Shopping button, 168-169

cookies, 161

credit card handling, 160

customer feedback, 161

customer login, 159-160, 231

database, 162-166

Database class, 216

databases, 161

Edit Shipping Information button, 169

Email class, 223

fields_cart.inc file, 175-177

fields_cart-oo0.inc file, 179-182

fields_products_page.inc file, 171-172

fields_ship_info.inc file, 182-184

fields_ship_info-o00.1inc file, 184-185

fields_summary.inc file, 188-190

fields_summary-o0o0.inc file, 190

functionality, 161

inventory, 231

Item class, 210-212

Order class, 216-221

order tracking, 231

Orders-oo0.php script, 223-230

PayPal, 160

ProcessOrder.php script, 200-207

product information Web page, 166-167

purchasing methods, 160

session variables, 161

shipping fees, 160

shipping form Web page, 168-169

ShopCatalog.php script, 193-197

shopping cart Web page, 168

ShoppingCart class, 212-215

ShoppingCart.php script, 197-200

shopping_product_page.inc file, 171-175

single_form.inc file, 182, 185-187

storing contents, 161

Submit Order button, 168-169

summary of order Web page, 169-170

summary_form.inc file, 188

summary_page.inc file, 190-192

£ 3() PP & MySQL Everyday Apps For Dummies

online ordering application (continued)
table_page.inc file, 175, 177-179
table_page-o00.inc file, 179
Update Cart button, 168
View Shopping Cart button, 167
WebForm class, 221-222
WebPage class, 222
OOP (object-oriented programming)
abstract classes, 403-404
abstraction, 387-388
accessing methods, 395-396, 399-400
attributes, 386-387
class statement, 391-394
classes, 386
constructor, 396-397
copying objects, 401-402
creating objects, 399
defined, 385
destroying objects, 402-403
exceptions, 400-401
information hiding, 389-390
inheritance, 388-389, 398-399
instantiation, 390
interfaces, 404
methods, 387
multiple inheritance, 405
objects, 386
polymorphism, 405
properties, 386-387, 395
testing objects, 405
Order class
addCart method, 220
code, 216-219
constructor, 220
createOrder method, 220
displayOrderSummary method, 221
getItemInfo method, 220-221
getOrderInfo method, 220
properties, 216
selectOrder method, 220
updateOrderInfo method, 221
order tracking (shopping cart application), 231
Orders-oo0.php script, 223-230
outside information, 25-30

opPe

paging navigation (content management system), 307

parent class, 388

password file, creating, 51

PasswordPrompter class
code, 61-62
constructor, 62
displayPrompt method, 62
properties, 61

passwords
forgotten passwords, 126-127
.htaccess file, 50
HTTP authentication, 46
MySQL accounts, 35-36
password-protected files, 47-48

PayPal Web site, 160

PCs For Dummies, 9th Edition (Dan Gookin), 411

Perl-compatible regular expressions, 30

permissions
content management system (CMS), 236
MySQL accounts, 35

phone number for Wiley Product Technical

Support, 415

PHP Builder Web site, 381

PHP Classes Web site, 380

PHP Freaks Web site, 382

PHP script files, 13

PHP scripts
accessing MySQL, 37
Admin-00.php, 303-307
Admin.php, 269-274
Auth-00.php, 73-76
Catalog-o00.php, 155-157
CompanyHome-00.php, 294-300
CompanyHome. php, 253-262
error handling, 32-33
Login-00.php, 119-125, 293
login.php, 92-100, 246-249
Orders-o0o0.php, 223-230
outside sources, 25-30
postMessage-00.php, 361-363
postMessage.php, 339-342
postReply-00.php, 364-368
postReply.php, 342-345
ProcessOrder.php, 200-207
ShopCatalog.php, 193-194, 196-197
ShoppingCart.php, 197-200
system calls, 31-32
viewForums-00.php, 359-360
viewForums.php, 337-338
viewThread-00.php, 361
viewThread.php, 338-339

viewTopic-00.php, 360
viewTopic.php, 338
PHP source code
application development, 377
CD-ROM, 412-413
class files, 13
Codewalkers Web site, 380-381
conventions, 1-2
Free PHP and MySQL Hosting Directory Web site, 382
HotScripts Web site, 381
include files, 13-14
modifying, 16
PHP Builder Web site, 381
PHP Classes Web site, 380
PHP Freaks Web site, 382
PHP script files, 13
PX Web site, 382
SourceForge.net Web site, 379
WeberDev Web site, 380
Zend Web site, 381-382
PHP versions
backward compatibility, 10
PHP 4, 11-12
PHP 5, 11-12
PHPEdit, 19
planning for application development, 19-22, 375
Pogue, David (Macs For Dummies, 8th Edition), 411
polymorphism, 405
Post class
code, 355-356
postMessage method, 357
postReply method, 357
selectByID method, 357
postMessage method, 357
postMessage-00.php script, 361-363
postMessage.php script, 339-342
postReply method, 357
postReply-00.php script, 364-368
postReply.php script, 342-345
private properties, 393
procedural code, 15-16
ProcessOrder.php script, 200-207
product catalog application
Catalog class, 150-155, 157-158
Catalog-o00.php script, 155-157
database, 132-135
functionality, 131-132
functions_main.inc file, 148-149
index Web page, 136-140, 145

Index 43 1

object-oriented code, 149-155
procedural code, 145-149
products Web page, 137, 140-145
product inventory (shopping cart application), 231
programming editors
Arachnophilia, 17
BBEdit, 17
common features, 17
demos, 16
EditPlus, 17
Emacs, 17
HomeSite, 18
HTMLKit, 18
TextWrangler, 18
Vim, 18
properties
accessing, 395-396
Account class, 66
BaselInfo class, 278
Catalog class, 150
class statements, 392-395
ContentDownload class, 289
ContentItem class, 283-284
ContentType class, 282
Database class, 63
defined, 386-387
Department class, 279
Email class, 117
Item class, 210
Order class, 216
PasswordPrompter class, 61
private properties, 393
public properties, 392-393
Session class, 114
ShoppingCart class, 212
TableAccessor class, 349
values, 394
WebForm class, 102
WebPage class, 71
public properties, 392-393
publishing system
Admin-00.php script, 303-307
Admin.php script, 269-274
BaselInfo class, 276, 278-279
CompanyHome-00.php script, 294-300
CompanyHome. php script, 253-262
company . inc file, 262-265
company-00.inc file, 301-303
content detail Web page, 243, 245-246

£y32 PHP &MySQL Everyday Apps For Dummies

publishing system (continued) resource planning for application development, 21-22
content list Web page, 243, 245 restricted access to Web sites, 77
content types, 235-236 reusable code, 377
ContentDownload class, 276, 289-291 root account (MySQL), 35
content_form.inc file, 266-268, 294, 303
ContentItem class, 276, 283-289 Y S ®
ContentType class, 276, 282-283
database, 236-243 save method, 288, 291
Database class, 276, 292 schedule for application development, 21
defined, 235 scripts
Department class, 275-276, 279-281 accessing MySQL, 37
department Web page, 243-244 Admin-00.php, 303-307
double_form.inc file, 249-252 Admin.php, 269-274
enhancements, 307 Auth-00.php, 73-76
fields_content.inc file, 265-266, 294, 303 Catalog-o00.php, 155-157
home Web page, 243-244 CompanyHome-00. php, 294-300
intranet, 236 CompanyHome. php, 253-262
keyword search, 307 error handling, 32-33
login Web page, 243-244 Login-00.php, 119-125, 293
Login-00.php script, 293 Togin.php, 92-100, 246-249
login.php script, 246-249 Orders-00.php, 223-230
paging navigation, 307 outside sources, 25-30
permissions, 236 postMessage-00.php, 361-363
uploading files, 236 postMessage.php, 339-342
WebForm class, 276, 292 postReply-00.php, 364-368
purchasing methods (shopping cart application), 160 postReply.php, 342-345
PX Web site, 382 ProcessOrder.php, 200-207
ShopCatalog.php, 193-194, 196-197

o 0 o ShoppingCart.php, 197-200

- system calls, 31-32

queries with GRANT, 35-36 viewForums-00.php, 359-360

quotes (magic quotes), 39-40, 98, 113 viewForums.php, 337-338
viewThread-00.php, 361

P R P viewThread.php, 338-339
viewTopic-00.php, 360

Rathbone, Andy viewTopic.php, 338
Windows 98 For Dummies, 412 search tools (Web forum), 372
Windows 2000 Professional For Dummies, 412 security
Windows XP For Dummies, 2nd Edition, 412 customer information, 30-32

readability of code, 376 DBMS (Database Management System), 33

ReadMe file (CD-ROM), 411 error handling, 32-33

regular expressions importance of, 23
checking outside information, 28-30 MySQL, 33-35
literal characters, 28-29 outside information, 25-30
Perl-compatible, 30 secure Web servers, 41
special characters, 28-29 SQL injection attack, 38-40

Reply Web page (Web forum), 317, 319-321, 334-335 Web forum, 310

replyFields.inc file, 335-337 Web servers, 41

reserved words (MySQL), 162 Web sites, 23-24

Security Sockets Layer (SSL), 41
selectAccount method, 69, 111
selectByID method

Post class, 357

TableAccessor class, 352
selectOrder method, 220
sendEmail method, 119
separating page layout from function, 377
Session class

code, 114-115

constructor, 116

getMessage method, 116

getVariable method, 116

10gin method, 116-117

properties, 114

storeVariable method, 116
session variables

customer information, 30

shopping cart application, 161

user login application, 100-101, 126
setAddr method, 119
setContentDate method, 288
setCreationDate method, 288
setDescription method, 288
setFieldsNotRequired method, 107
setlLastUpdBy method, 288
setMessage method, 119
setName method, 288
setSubj method, 119
setter methods, 277
shipping fees (shopping cart application), 160
ShopCatalog.php script, 193-194, 196-197
shopping cart application

Add Items to Shopping Cart button, 167

Cancel Order button, 169

Catalog class, 208-210

confirmation of order Web page, 170

Continue Shopping button, 168-169

cookies, 161

credit card handling, 160

customer feedback, 161

customer login, 159-160, 231

database, 162-166

Database class, 216

databases, 161

Edit Shipping Information button, 169

Email class, 223

fields_cart.inc file, 175-177

fields_cart-oo.inc file, 179-182
fields_products_page.inc file, 171-172
fields_ship_info.inc file, 182-184
fields_ship_info-o00.1inc file, 184-185
fields_summary.inc file, 188-190
fields_summary-o0o0.inc file, 190
functionality, 161
inventory, 231
Itemclass, 210-212
Order class, 216-221
order tracking, 231
Orders-o0o0.php script, 223-230
PayPal, 160
ProcessOrder.php script, 200-207
product information Web page, 166-167
purchasing methods, 160
session variables, 161
shipping fees, 160
shipping form Web page, 168-169
ShopCatalog.php script, 193-197
shopping cart Web page, 168
ShoppingCart class, 212-215
ShoppingCart.php script, 197-200
shopping_product_page.inc file, 171-175
single_form.inc file, 182, 185-187
storing contents, 161
Submit Order button, 168-169
summary of order Web page, 169-170
summary_form.inc file, 188
summary_page.inc file, 190-192
table_page.inc file, 175, 177-179
table_page-o00.inc file, 179
Update Cart button, 168
View Shopping Cart button, 167
WebForm class, 221-222
WebPage class, 222
ShoppingCart class
addItem method, 214
code, 212-214
constructor, 214
displayCart method, 215
getAl1Items method, 215
getMessage method, 215
properties, 212
updateCart method, 215
ShoppingCart.php script, 197-200
shopping_product_page.inc file, 171-175
single_form.inc file, 182, 185-187

Index 433

£y 3/) PHP & MySQL Everyday Apps For Dummies

source code

application development, 377

CD-ROM, 412-413

class files, 13

Codewalkers Web site, 380-381

conventions, 1-2

Free PHP and MySQL Hosting Directory Web site, 382

HotScripts Web site, 381

include files, 13-14

modifying, 16

PHP Builder Web site, 381

PHP Classes Web site, 380

PHP Freaks Web site, 382

PHP script files, 13

PX Web site, 382

SourceForge.net Web site, 379

WeberDev Web site, 380

Zend Web site, 381-382
SourceForge.net Web site, 379
special characters (regular expressions), 28-29
SQL injection attack, 38-40
SSL (Security Sockets Layer), 41
static methods, 276-277, 395
status line (Web servers), 47
storeVariable method, 116
strip_tags function, 110, 222, 292, 359
subclasses, 388-389
summary_form.inc file, 188
summary_page.inc file, 190-192
syntax

MySQL extension, 408-409

MySQL Improved extension, 407-409
system calls, 31-32
system requirements for CD-ROM, 411

oJ e

TableAccessor class
code, 349-351
constructor, 351-352
getConnection method, 353
getMessage method, 353
getValues method, 352
properties, 349
selectByID method, 352
table_page.inc file, 175, 177-179
table_page-o00.inc file, 179
technical support for CD-ROM, 415

telephone number for Wiley Product Technical
Support, 415
testing
code, 376
objects, 405
TextWrangler programming editor, 18
Thread class
code, 353-354
createNew method, 354
updateReplies method, 354
updateTimeStamp method, 354
threads (Web forum), 309-310
Threads Web page (Web forum), 317-318, 324-327
topics (Web forum), 310
tracking orders (shopping cart application), 231
trim function, 110, 222, 292, 359
troubleshooting CD-ROM, 414-415

o lf o

updateCart method, 215
updateOrderInfo method, 221
updateReplies method, 354
updateTimeStamp method, 354
uploading files

content management system, 236

Web forum, 372
useDatabase method

Catalog class, 208

Database class (content management system), 292
Database class (HTTP authentication application),

65-66
Database class (shopping cart application), 216
Database class (user login
application), 111
Database class (Web forum), 358
user login application
Account class, 101, 111-114
account management features, 127
Database class, 101, 110-111
double_form.inc file, 83, 86-90
Email class, 102, 117-119
features, 77
fields_login.inc file, 83-85
Forgotten password button, 126-127
functionality, 78
login Web page, 82-91
Login-00.php script, 119-125
login.php script, 92-100

object-oriented code, 101-113, 115-119
procedural code, 91-100

Session class, 101-102, 114-117
session variables, 100-101, 126

User database, 78-81

WebForm class, 101-110

oo

values of properties, 394
verifyData method (WebForm class)
content management system, 292
shopping cart application, 222
user login application, 108-110
Web forum application, 358-359
versions of MySQL
backward compatibility, 10
MySQL 4.0, 11
MySQL 4.1, 11
MySQL 5.0, 11
versions of PHP
backward compatibility, 10
PHP 4, 11-12
PHP 5, 11-12
viewForums.inc file, 321-323
viewForums-00.php script, 359-360
viewForums.php script, 337-338
viewThread.inc file, 328-330
viewThread-00.php script, 361
viewThread.php script, 338-339
viewTopic.inc file, 324-327
viewTopic-00.php script, 360
viewTopic.php script, 338
Vim programming editor, 18

o[l o

Web forum application
author control, 336
BBCode, 372
body control, 336
database, 311-317
Database class, 357-358
enhancements, 371-372
file uploads/downloads, 372
forum management, 372
Forums Web page, 317-318, 321-322
freplyto control, 337

fresponse control, 336
fsubject control, 337
functionality, 309

functions_main.inc file, 346, 368-369

functions_post.inc file, 346-347
functions_post-00.inc file, 369-371
messageFields.inc file, 331-332
messageForm.inc file, 331-334
Messages Web page, 317, 319, 328-330

Index 435

New Message Web page, 317, 319-320, 331-334

Post class, 355-357
postMessage-00.php script, 361-363
postMessage.php script, 339-342
postReply-00.php script, 364-368
postReply.php script, 342-345
Reply Web page, 317, 319-321, 334-335
replyFields.inc file, 335-337
search tools, 372
security, 310
TableAccessor class, 349-353
Thread class, 353-354
threading, 371
threads, 309-310
Threads Web page, 317-318, 324-327
topics, 310
user registration/authentication, 371
viewForums.inc file, 321-323
viewForums-00.php script, 359-360
viewForums.php script, 337-338
viewThread.inc file, 328-330
viewThread-00.php script, 361
viewThread.php script, 338-339
viewTopic.inc file, 324-327
viewTopic-00.php script, 360
viewTopic.php script, 338
WebForm class, 358-359

Web pages (catalog)
index, 136-140, 145
products, 137, 140-145

Web pages (content management system)
content detail, 243, 245-246
content list, 243, 245
department, 243-244
home, 243-244
login, 243-244

Web pages (Web forum)
Forums, 317-318, 321-322
Messages, 317, 319, 328-330
New Message, 319-320, 331-334

436

PHP & MySQL Everyday Apps For Dummies

Web pages (continued)
Reply, 317, 319-321, 334-335
Threads, 317-318, 324-327
Web servers
encryption, 41
security, 41
status line, 47
Web site security, 23-24
Web sites
Arachnoid, 17
author’s, 414-415
Barebones, 17-18
Codewalkers, 380-381
EditPlus, 17
Emacs, 17
Free PHP and MySQL Hosting Directory, 382
HotScripts, 381
HTML-Kit, 18
Komodo, 19
Macromedia, 18-19
PayPal, 160
PHP Builder, 381
PHP Classes, 380
PHP Freaks, 382
PHPEdit, 19
PX, 382
restricted access, 77
SourceForge.net, 379
Vim, 18
WeberDev, 380
Wiley Product Technical Support, 415
Zend, 381-382
Zend Studio, 19
WeberDev Web site, 380
WebForm class (content management system)
checkForBlanks method, 292
constructor, 292
description, 276
displayForm method, 292
strip_tags function, 292
trim function, 292
verifyData method, 292

WebForm class (shopping cart application)
checkForBlanks method, 222
constructor, 221
displayForm method, 222
displayPage method, 222
strip_tags function, 222
trim function, 222
verifyData method, 222
WebForm class (user login application)
checkAddress method, 110
checkEmail method, 110
checkForBlanks method, 108
checkName method, 110
checkPhone method, 110
checkState method, 110
checkZip method, 110
code, 102-107
constructor, 107
displayFormmethod, 107
getAl1Fields method, 108
properties, 102
setFieldsNotRequired method, 107
strip_tags function, 110
trim function, 110
verifyData method, 108-110
WebForm class (Web forum application), 358-359
WebPage class (HTTP authentication application)
code, 71-72
constructor, 72
displayPage method, 73
properties, 71
WebPage class (shopping cart application), 222
Wiley Product Technical Support, 415
Windows 98 For Dummies (Andy Rathbone), 412
Windows 2000 Professional For Dummies (Andy
Rathbone), 412
Windows XP For Dummies, 2nd Edition (Andy
Rathbone), 412

o o

Zend Studio, 19
Zend Web site, 381-382

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1.

License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software”) solely for
your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM “Software Media”. Copyright
to the individual programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

Restrictions on Use and Transfer.

(@ You may only (i) make one copy of the Software for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the About the CD appendix of this
Book. These limitations are also contained in the individual license agreements recorded on
the Software Media. These limitations may include a requirement that after using the pro-
gram for a specified period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the About the CD appendix and on
the Software Media. None of the material on this Software Media or listed in this Book may
ever be redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.

(@ WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(© This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(@ WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: PHP & MySQL Everyday Apps For Dummies, Wiley Publishing, Inc.,
10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to
six weeks for delivery. This Limited Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any replacement Software Media will
be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(© Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

