
Practical Generic Programming with OCaml

Jeremy Yallop

LFCS, University of Edinburgh

ML Workshop 2007

Instead of this . . .

type α tree = Node of α | Branch of (α tree) × (α tree)

val show_tree : (α → string) → (α tree → string)
let rec show_tree show_a = function

Node a -> "Node " ^ show_a a
| Branch (l, r) -> "Branch ("^ show_tree l ^ ","

^ show_tree r ^ ")"

show_list (show_pair (show_tree show_int) show_bool) t

You can write this!

type α tree = Node of α | Branch of (α tree) × (α tree)
deriving (Show)

Show.show<(int tree * bool) list> t

Outline

Basic idea

Customization

More customization: pickling

Conclusions

Haskell type classes as OCaml modules1

class Show a where
show :: a → String

module type Show = sig
type a

val show : a → string

end

Type class as signature

1Dreyer, Harper, Chakravarty and Keller. Modular Type Classes (POPL 07)

Haskell type classes as OCaml modules

instance Show Int where
show = showInt

module ShowInt

: Show with type a = int =

struct
type a = int

let show = string_of_int

end

Instance as structure

Haskell type classes as OCaml modules

instance (Show a) => Show [a]

where show l = "[" ++

intersperse "," (map show l)

++ "]"

module ShowList (A : Show)

: Show with type a = A.a list =

struct
type a = A.a list

let show l = "[" ^

concat "," (map A.show l)

^ "]"

end

Parameterized instance as functor

Haskell type classes as OCaml modules

data Tree α = Node α
| Branch (Tree α) (Tree α)

deriving (Show)

type α tree = Node of α
| Branch of (α tree) × (α tree)

deriving (Show)

Haskell type classes as OCaml modules

data Tree α = Node α
| Branch (Tree α) (Tree α)

deriving (Show)

instance Show a => Show (Tree a)

where

show = ...

type α tree = Node of α
| Branch of (α tree) × (α tree)

deriving (Show)

Haskell type classes as OCaml modules

data Tree α = Node α
| Branch (Tree α) (Tree α)

deriving (Show)

instance Show a => Show (Tree a)

where

show = ...

type α tree = Node of α
| Branch of (α tree) × (α tree)

deriving (Show)

module Show_tree (A : Show)

: Show with type a = A.a tree =

struct
type a = A.a tree

let show = ...

end

Haskell type classes as OCaml modules

show t Show.show<τ> t

Outline

Basic idea

Customization

More customization: pickling

Conclusions

Customization

type intset = int list
deriving (Show)

Show.show<intset> [4; 1; 2; 3] =⇒ "[4; 1; 2; 3]"

Customization

type intset = int list

module Show_intset
: Show.Show with type a = intset =

Show.Defaults(struct
let format fmt t =

Format.fprintf fmt "{%s}"
(concat "," (map Show.show<int> (sort compare t)))

end)

Show.show<intset> [4; 1; 2; 3] =⇒ "{1, 2, 3, 4}"

Outline

Basic idea

Customization

More customization: pickling

Conclusions

More customization: pickling

I The “Pickle” class marshals values

I Pickle preserves and increases sharing wherever possible

I Sharing detection depends on the definition of equality

I We can customize pickling by customizing equality

What is equality?

I For values?

I For references?

I For functions?

I For user-defined types?

Sharing λ terms

type name = string

deriving (Eq, Typeable, Pickle)

type exp = Var of name

| App of exp × exp

| Lam of name × exp

deriving (Eq, Typeable, Pickle)

Sharing λ terms

type name = string

deriving (Typeable, Pickle)

type exp = Var of name

| App of exp × exp

| Lam of name × exp

deriving (Typeable, Pickle)

module Eq_name

: Eq.Eq with type a = name =

struct
type a = name

let eq = (=)

end

module Eq_exp

: Eq.Eq with type a = name =

struct
type a = exp

let eq l r =

(* α-equivalence *)

...

end

d dbb

AppVar VarApp

AppApp ea c a

LamLamVar Var

LamLam

Var VarVarVar ec

AppAppb d

Lam

Appa

(a)

Lam

Var

Appb

Lam

Appa

VarApp

Appc

LamVar

(c)

mar

d dbb

AppVar VarApp

AppApp ea c a

LamLamVar Var

LamLam

Var VarVarVar ec

AppAppb d

Lam

Appa

(a)

Lam

Var

Appb

Lam

Appa

VarApp

Appc

LamVar

(c)

mar

Outline

Basic idea

Customization

More customization: pickling

Conclusions

Who can use deriving?

Regular users use generic functions

Advanced users customize generic functions

Experts write generic functions

Coverage

Supported:
I base types
I variants
I tuples
I records
I mutable types
I polymorphic variants
I type aliases
I parameterized types
I (mutually) recursive types
I modules
I constraints (a bit)
I private types
I type replication

Not supported:

I non-regular recursion

I polymorphic record fields

I class types

I private rows

Remaining work

I more classes

I user-defined overloaded functions (not class methods)

(* print : Show α ⇒ α → unit *)
let print<a:Show> v = print_endline (show<a> v)

Thank you!

http://code.google.com/p/deriving
(or google “ocaml” and “deriving”)

	Basic idea
	Customization
	More customization: pickling
	Conclusions

