

Learning jQuery 1.3

Better Interaction Design and Web Development with
Simple JavaScript Techniques

Jonathan Chaffer
Karl Swedberg

 BIRMINGHAM - MUMBAI

Learning jQuery 1.3

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2009

Production Reference: 1040209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-70-5

www.packtpub.com

Cover Image by Karl Swedberg (karl@englishrules.com)

Credits

Authors

Jonathan Chaffer

Karl Swedberg

Reviewers

Akash Mehta

Dave Methvin

Mike Alsup

Senior Acquisition Editor

Douglas Paterson

Development Editor

Usha Iyer

Technical Editor

John Antony

Editorial Team Leader

Akshara Aware

Production Editorial
Manager

Abhijeet Deobhakta

Project Team Leader

Lata Basantani

Project Coordinator

Leena Purkait

Indexer

Rekha Nair

Proofreader

Jeff Orloff

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagata

The Gigapedia Team

Foreword
I feel honored knowing that Karl Swedberg and Jonathan Chaffer undertook the task
of writing Learning jQuery. As the first book about jQuery, it set the standard that
other jQuery — and, really, other JavaScript books in general — have tried to match.
It's consistently been one of the top selling JavaScript books since its release, in no
small part due to its quality and attention to detail.

I'm especially pleased that it was Karl and Jonathan who wrote the book since I
already knew them so well and knew that they would be perfect for the job. Being
part of the core jQuery team, I've had the opportunity to come to know Karl quite
well over the past couple years, and especially within the context of his book writing
effort. Looking at the end result, it's clear that his skills as both a developer and a
former English teacher were perfectly designed for this singular task.

I've also had the opportunity to meet both of them in person, a rare occurrence in
the world of distributed Open Source projects, and they continue to be upstanding
members of the jQuery community.

The jQuery library is used by so many different people in the jQuery community.
The community is full of designers, developers, people who have experience
programming, and those who don't. Even within the jQuery team, we have people
from all backgrounds providing their feedback on the direction of the project. There
is one thing that is common across all of jQuery's users, though: We are a community
of developers and designers who want JavaScript development to be made simple.

It's almost a cliché, at this point, to say that an open source project is community-
oriented, or that a project wants to focus on helping new users get started. But it's
not just an empty gesture for jQuery; it's the liquid-oxygen fuel for the project. We
actually have more people in the jQuery team dedicated to managing the jQuery
community, writing documentation, or writing plugins than actually maintaining
the core code base. While the health of the library is incredibly important, the
community surrounding that code is the difference between a floundering, mediocre
project and one that will match and exceed your every need.

How we run the project, and how you use the code, is fundamentally very different
from most open source projects — and most JavaScript libraries. The jQuery project
and community is incredibly knowledgeable; we understand what makes jQuery
a different programming experience and do our best to pass that knowledge on to
fellow users.

The jQuery community isn't something that you can read about to understand; it's
something that you actually have to participate in for it to fully sink in. I hope that
you'll have the opportunity to partake in it. Come join us in our forums, mailing
lists, and blogs and let us help guide you through the experience of getting to know
jQuery better.

For me, jQuery is much more than a block of code. It's the sum total of experiences
that have transpired over the years in order to make the library happen. The
considerable ups and downs, the struggle of development together with the
excitement of seeing it grow and succeed. Growing close with its users and fellow
team members, understanding them and trying to grow and adapt.

When I first saw this book talk about jQuery and discuss it like a unified tool, as
opposed to the experiences that it's come to encapsulate for me, I was both taken
aback and excited. Seeing how others learn, understand, and mold jQuery to fit them
is much of what makes the project so exhilarating.

I'm not the only one who enjoys jQuery on a level that is far different from a normal
tool-user relationship. I don't know if I can properly encapsulate why this is, but I've
seen it time and time again — the singular moment when a user's face lights up with
the realization of just how much jQuery will help them.

There is a specific moment where it just clicks for a jQuery user, when they realize
that this tool that they were using was in fact much, much more than just a simple
tool all along — and suddenly their understanding of how to write dynamic web
applications completely shifts. It's an incredible thing, and absolutely my favorite
part of the jQuery project.

I hope you'll have the opportunity to experience this sensation as well.

John Resig
Creator of jQuery

About the Authors

Jonathan Chaffer is the Chief Technology Officer of Structure Interactive,
an interactive agency located in Grand Rapids, Michigan. There, he oversees
web development projects using a wide range of technologies, and continues
to collaborate on day-to-day programming tasks as well.

In the open-source community, Jonathan has been very active in the Drupal CMS
project, which has adopted jQuery as its JavaScript framework of choice. He is the
creator of the Content Construction Kit, a popular module for managing structured
content on Drupal sites. He is responsible for major overhauls of Drupal's menu
system and developer API reference.

Jonathan lives in Grand Rapids with his wife, Jennifer.

I would like to thank Jenny for her tireless enthusiasm and support,
Karl for the motivation to continue writing when the spirit is weak,
and the Ars Technica community for constant inspiration toward
technical excellence.

Karl Swedberg is a web developer at Fusionary Media in Grand Rapids, Michigan,
where he spends much of his time implementing design with a focus on "web
standards"—semantic HTML, well-mannered CSS, and unobtrusive JavaScript.
A member of the jQuery Project Team and an active contributor to the jQuery
discussion list, Karl has presented at workshops and conferences and provided
corporate training in Europe and North America.

Before his current love affair with web development, Karl worked as a copy editor,
a high-school English teacher, and a coffee house owner. His fascination with
technology began in the early 1990s when he worked at Microsoft in Redmond,
Washington, and it has continued unabated ever since.

Karl would rather be spending time with his wife, Sara, and his two children,
Benjamin and Lucia.

I wish to thank my wife, Sara, for her steadfast love and support.
Thanks also to my two delightful children, Benjamin and Lucia.
Jonathan Chaffer has my deepest respect for his programming
expertise and my gratitude for his willingness to write this book
with me.

Many thanks to John Resig for creating the world's greatest
JavaScript library and for fostering an amazing community around
it. Thanks also to the folks at Packt Publishing, the technical
reviewers of this book, the jQuery Cabal, and the many others
who have provided help and inspiration along the way.

 About the Reviewers

Akash Mehta is a web application developer, technical writer and business
consultant based in Brisbane, Australia. His past projects include brochure websites,
e-learning solutions and information systems. He has written web development
articles for several of publishers in print and online, is a regular speaker at local
conferences, and contributes to prominent PHP blogs.

As a student, Akash maintained PHP web applications and built user interfaces
using the jQuery toolkit. While pursuing a degree in both commerce and IT, Akash
develops web applications on PHP and Python platforms. After hours, he organizes
his local PHP user group.

Akash develops applications on a wide range of open source libraries. His toolbox
includes a number of application frameworks, including the Zend Framework,
CakePHP and Django; Javascript frameworks like jQuery, Prototype and Mootools,
platforms such as Adobe Flash/Flex, and the MySQL and SQLite database engines.

Currently, Akash provides freelance technical writing and web development
through his website, http://bitmeta.org.

Dave Methvin has more than 25 years of software development experience in
both the Windows and Unix environments. His early career focused on embedded
software in the fields of robotics, telecommunications, and medicine. Later, he
moved to PC-based software projects using C/C++ and web technologies.

Dave also has more than 20 years of experience in computer journalism. He was
Executive Editor at PC Tech Journal and Windows Magazine, covering PC and
Internet issues; his how-to columns on JavaScript offered some of the first cut-and-
paste solutions to common web page problems. He was also a co-author of the book
"Networking Windows NT" (John Wiley & Sons, 1997).

Currently, Dave is Chief Technology Officer at PC Pitstop, a web site that helps
users fix and optimize the performance of their computers. He is also active in the
jQuery community.

Mike Alsup has been involved with the jQuery project since near its inception
and has contributed many popular plugins to the community. He is an active
participant in the jQuery Google Group where he frequently provides support to
new jQuery users.

Mike lives in upstate NY with his wife, Diane, and their triplet teenage sons. He is a
Senior Software Developer at Click Commerce, Inc. where he focuses on Java, Swing,
and web application development.

His jQuery plugins can be found at http://jquery.malsup.com/

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

What jQuery does	 7
Why jQuery works well	 8
History of the jQuery project	 10
Our first jQuery-powered web page	 11

Downloading jQuery	 11
Setting up the HTML document	 11
Adding jQuery	 14

Finding the poem text	 15
Injecting the new class	 15
Executing the code	 15

The finished product	 17
Summary	 18

Chapter 2: Selectors	 19
The Document Object Model	 19
The $() factory function	 20
CSS selectors	 21

Styling list-item levels	 23
Attribute selectors	 24

Styling links	 25
Custom selectors	 26

Styling alternate rows	 27
Form selectors	 29

DOM traversal methods	 30
Styling specific cells	 31
Chaining	 32

Accessing DOM elements	 33
Summary	 34

Table of Contents

[ii]

Chapter 3: Events	 35
Performing tasks on page load	 35

Timing of code execution	 35
Multiple scripts on one page	 36
Shortcuts for code brevity	 37
Coexisting with other libraries	 38

Simple events	 39
A simple style switcher	 39

Enabling the other buttons	 41
Event handler context	 43
Further consolidation	 45

Shorthand events	 47
Compound events	 48

Showing and hiding advanced features	 48
Highlighting clickable items	 50

The journey of an event	 51
Side effects of event bubbling	 53

Altering the journey: the event object	 53
Event targets	 54
Stopping event propagation	 55
Default actions	 56
Event delegation	 56

Removing an event handler	 58
Event namespacing	 59
Rebinding events	 60

Simulating user interaction	 62
Keyboard events	 63

Summary	 66
Chapter 4: Effects	 67

Inline CSS modification	 67
Basic hide and show	 72
Effects and speed	 74

Speeding in	 74
Fading in and fading out	 75

Compound effects	 76
Creating custom animations	 77

Toggling the fade	 78
Animating multiple properties	 79

Positioning with CSS	 81
Simultaneous versus queued effects	 82

Working with a single set of elements	 82

Table of Contents

[iii]

Working with multiple sets of elements	 85
Callbacks	 87
In a nutshell	 89

Summary	 90
Chapter 5: DOM Manipulation	 91

Manipulating attributes	 91
Non-class attributes	 91
The $() factory function revisited	 94

Inserting new elements	 96
Moving elements	 98

Marking, numbering, and linking the context	 101
Appending footnotes 	 103

Wrapping elements	 105
Copying elements	 106

Clone with events	 107
Cloning for pull quotes	 107
A CSS diversion	 108
Back to the code	 109
Prettifying the pull quotes	 111

DOM manipulation methods in a nutshell	 113
Summary	 114

Chapter 6: AJAX	 115
Loading data on demand	 115

Appending HTML	 117
Working with JavaScript objects	 120

Retrieving a JavaScript object	 120
Global jQuery functions	 121
Executing a script	 125

Loading an XML document	 127
Choosing a data format	 130
Passing data to the server	 131

Performing a GET request	 132
Performing a POST request	 136
Serializing a form	 137

Keeping an eye on the request	 139
AJAX and events	 142
Security limitations	 143

Using JSONP for remote data	 144
Additional options	 146

The low-level AJAX method	 146
Modifying default options	 147

Table of Contents

[iv]

Loading parts of an HTML page	 147
Summary	 150

Chapter 7: Table Manipulation	 151
Sorting and paging	 152

Server-side sorting	 152
Preventing page refreshes	 153

JavaScript sorting	 153
Row grouping tags	 155
Basic alphabetical sorting	 156
The power of plugins	 161
Performance concerns	 161
Finessing the sort keys	 163
Sorting other types of data	 165
Column highlighting	 168
Alternating sort directions	 168

Server-side pagination	 171
Sorting and paging go together	 171

JavaScript pagination	 173
Displaying the pager	 173
Enabling the pager buttons	 174
Marking the current page	 176
Paging with sorting	 177

The finished code	 178
Modifying table appearance	 180

Row highlighting	 181
Row striping	 182
Advanced row striping	 185
Interactive row highlighting	 186

Tooltips	 189
Collapsing and expanding sections	 194
Filtering	 196

Filter options	 197
Reversing the filters	 199
Interacting with other code	 200

The finished code	 202
Summary	 205

Chapter 8: Forms with Function	 207
Improving a basic form	 207

Progressively enhanced form styling	 208
The legend	 210
Required field messages	 211

Conditionally displayed fields	 215
Form validation	 217

Required fields	 218

Table of Contents

[�]

Required formats	 221
A final check	 223

Checkbox manipulation	 226
The finished code	 228

Compact forms	 232
Placeholder text for fields	 232
AJAX auto-completion	 235

On the server	 236
In the browser	 237
Populating the search field	 238
Keyboard navigation	 239
Handling the arrow keys	 241
Inserting suggestions in the field	 242
Removing the suggestion list	 243
Auto-completion versus live search	 243

The finished code	 244
Working with numeric form data	 246

Shopping cart table structure	 247
Rejecting non-numeric input	 250
Numeric calculations	 251

Parsing and formatting currency	 252
Dealing with decimal places	 254
Other calculations	 255
Rounding values	 256
Finishing touches	 257

Deleting items	 258
Editing shipping information	 263
The finished code	 266

Summary	 268
Chapter 9: Shufflers and Rotators	 269

Headline rotator	 269
Setting up the page	 270
Retrieving the feed	 272
Setting up the rotator	 275
The headline rotate function	 276
Pause on hover	 279
Retrieving a feed from a different domain	 281

Adding a loading indicator	 282
Gradient fade effect	 283
The finished code	 285

An image carousel	 287
Setting up the page	 288

Revising the styles with JavaScript	 290

Table of Contents

[vi]

Shuffling images when clicked	 291
Adding sliding animation	 294
Displaying action icons	 295

Image enlargement	 299
Hiding the enlarged cover	 301
Displaying a close button	 302
More fun with badging	 304
Animating the cover enlargement	 306
Deferring animations until image loads	 310
Adding a loading indicator	 311

The finished code	 313
Summary	 316

Chapter 10: Using Plugins	 317
Finding plugins and help	 317
How to use a plugin	 318
The Form plugin	 318

Tips and tricks	 320
The jQuery UI plugin library	 321

Effects	 321
Color animations	 322
Class animations	 322
Advanced easing	 322
Additional effects	 323

Interaction components 	 324
Widgets	 326
jQuery UI ThemeRoller	 329

Other recommended plugins	 330
Forms	 330

Autocomplete	 330
Validation	 331
Jeditable	 331
Masked input	 332

Tables	 332
Tablesorter	 333
jqGrid	 333
Flexigrid	 334

Images	 334
Jcrop	 334
Magnify	 335

Lightboxes and Modal Dialogs	 336
FancyBox	 336
Thickbox	 336
BlockUI	 337
jqModal	 338

Table of Contents

[vii]

Charting	 338
Flot	 338
Sparklines	 339

Events	 340
hoverIntent	 340
Live query	 340

Summary	 340
Chapter 11: Developing plugins	 341

Adding new global functions	 341
Adding multiple functions	 342
What's the point?	 343
Creating a utility method	 343

Adding jQuery Object Methods	 345
Object Method context	 345
Method chaining	 348

DOM traversal methods	 349
Adding new shortcut methods	 354
Method parameters	 357

Simple parameters	 359
Parameter maps	 360
Default parameter values	 361
Callback functions	 362
Customizable defaults	 363

Adding a selector expression	 365
Sharing a plugin with the world	 368

Naming conventions	 368
Use of the $ alias	 369
Method interfaces	 369
Documentation style	 370

Summary	 370
Appendix A: Online Resources	 371

jQuery documentation	 371
jQuery wiki	 371
jQuery API	 371
jQuery API browser	 371
Visual jQuery	 372
Adobe AIR jQueryAPI viewer	 372

JavaScript reference	 372
Mozilla developer center	 372
Dev.opera	 372

Table of Contents

[viii]

MSDN JScript Reference	 372
Quirksmode	 373
JavaScript Toolbox	 373

JavaScript code compressors	 373
YUI Compressor	 373
JSMin	 373
Pretty printer	 374

(X)HTML reference	 374
W3C hypertext markup language home page	 374

CSS reference	 374
W3C cascading style sheets home page	 374
Mezzoblue CSS cribsheet	 374
Position is everything	 375

Useful blogs	 375
The jQuery blog	 375
Learning jQuery	 375
Ajaxian	 375
John Resig	 375
JavaScript ant	 376
Robert's talk	 376
Web standards with imagination	 376
Snook	 376
Matt Snider JavaScript resource	 376
I can't	 376
DOM scripting	 377
As days pass by	 377
A list apart	 377

Web development frameworks using jQuery	 377
Appendix B: Development Tools	 379

Tools for Firefox	 379
Firebug	 379
Web developer toolbar	 380
Venkman	 380
Regular expressions tester	 380

Tools for Internet Explorer	 380
Microsoft Internet Explorer Developer Toolbar	 380
Microsoft Visual Web Developer	 381
DebugBar	 381
Drip	 381

Table of Contents

[ix]

Tools for Safari	 381
Develop Menu	 381
Web Inspector	 382

Tools for Opera	 382
Dragonfly	 382

Other tools	 382
Firebug Lite	 382
NitobiBug	 383
TextMate jQuery bundle	 383
Charles	 383
Fiddler	 383
Aptana	 383

Appendix C: JavaScript Closures	 385
Inner functions	 385

The great escape	 387
Variable scoping	 388

Interactions between closures	 390
Closures in jQuery	 391

Arguments to $(document).ready()	 391
Event handlers	 392

Memory leak hazards	 394
Accidental reference loops	 395
The Internet Explorer memory leak problem	 396
The good news	 397

Summary	 397
Appendix D: Quick Reference	 399

Selector expressions	 399
DOM traversal methods	 401
Event methods	 402
Effect methods	 404
DOM manipulation methods	 405
AJAX methods	 408
Miscellaneous methods	 409

Index	 411

Preface
It began as a labor of love back in 2005 by John Resig, a JavaScript wunderkind who
now works for the Mozilla Corporation. Inspired by pioneers in the field such as
Dean Edwards and Simon Willison, Resig put together a set of functions to make it
easy to programmatically find elements on a web page and assign behaviors to them.
By the time he first publicly announced his project in January 2006, he had added
DOM modification and basic animations. He gave it the name jQuery to emphasize
the central role of finding, or "querying," parts of a web page and acting on them
with JavaScript. In the few short years since then, jQuery has grown in its feature set,
improved in its performance, and gained widespread adoption by some of the most
popular sites on the Internet. While Resig remains the lead developer of the project,
jQuery has blossomed, in true open-source fashion, to the point where it now boasts
a core team of top-notch JavaScript developers, as well as a vibrant community of
thousands of developers.

The jQuery JavaScript Library can enhance your websites regardless of your
background. It provides a wide range of features, an easy-to-learn syntax, and robust
cross-platform compatibility in a single compact file. What's more, hundreds of
plug-ins have been developed to extend jQuery's functionality, making it an essential
tool for nearly every client-side scripting occasion.

Learning jQuery provides a gentle introduction to jQuery concepts, allowing you to
add interactions and animations to your pages—even if previous attempts at writing
JavaScript have left you baffled. This book guides you past the pitfalls associated
with AJAX, events, effects, and advanced JavaScript language features, and provides
you with a brief reference to the jQuery library to return to again and again.

Preface

[�]

What this book covers
In Chapter 1 you'll get your feet wet with the jQuery JavaScript library. The chapter
begins with a description of jQuery and what it can do for you. It walks you through
downloading and setting up the library, as well as writing your first script.

In Chapter 2 you'll learn how to use jQuery's selector expressions and DOM traversal
methods to find elements on the page, wherever they may be. You'll use jQuery to
apply styling to a diverse set of page elements, sometimes in a way that pure
CSS cannot.

In Chapter 3 you'll use jQuery's event-handling mechanism to fire off behaviors when
browser events occur. You'll see how jQuery makes it easy to attach events to elements
unobtrusively, even before the page finishes loading. And, you'll be introduced to
more advanced topics, such as event bubbling, delegation, and namespacing.

In Chapter 4 you'll be introduced to jQuery's animation techniques and see how to
hide, show, and move page elements with effects that are both useful and pleasing
to the eye.

In Chapter 5 you'll learn how to change your page on command. This chapter will
teach you how to alter the very structure of an HTML document, as well as its
content, on the fly.

In Chapter 6 you'll discover the many ways in which jQuery makes it easy to access
server-side functionality without resorting to clunky page refreshes.

In the next three chapters (7, 8, and 9) you'll work through several real-world
examples, pulling together what you've learned in previous chapters and creating
robust jQuery solutions to common problems.

In Chapter 7, "Table Manipulation," you'll sort, sift, and style information to create
beautiful and functional data layouts.

In Chapter 8, "Forms with Function," you'll master the finer points of client-side
validation, design an adaptive form layout, and implement interactive client-server
form features such as autocompletion.

In Chapter 9, "Shufflers and Rotators," you'll enhance the beauty and utility of page
elements by showing them in more manageable chunks. You'll make information fly
in and out of view both on its own and under user control.

Chapters 10 and 11 take you beyond the core jQuery methods to explore
third-party extensions to the library, and show you various ways you can extend
the library yourself.

Preface

[�]

In Chapter 10, "Using Plug-ins," you'll examine the Form plug-in and the official
collection of user interface plug-ins known as jQuery UI. You'll also learn where to
find many other popular jQuery plug-ins and see what they can do for you.

In Chapter 11, "Developing Plug-ins," you'll learn how to take advantage of jQuery's
impressive extension capabilities to develop your own plug-ins from the ground up.
You'll create your own utility functions, add jQuery object methods, write custom
selector expressions, and more.

In Appendix A, "Online Resources," you'll find recommendations for a handful of
informative websites on a wide range of topics related to jQuery, JavaScript, and web
development in general.

In Appendix B, "Development Tools," you'll discover a number of useful third-party
programs and utilities for editing and debugging jQuery code within your personal
development environment.

In Appendix C, "JavaScript Closures," you'll gain a solid understanding of
closures—what they are and how you can use them to your advantage.

In Appendix D, "Quick Reference," you'll get a glimpse of the entire jQuery library,
including every one of its methods and selector expressions. Its easy-to-scan format
is perfect for those moments when you know what you want to do, but you're just
unsure about the right method name or selector.

What you need for this book
In order to both write and run the code demonstrated in this book, you need
the following:

A basic text editor.
A modern web browser such as Mozilla Firefox, Apple Safari, or Microsoft
Internet Explorer.
The jQuery source file, version 1.3.1 or later, which can be downloaded from
http://jquery.com/.

Additionally, to run the AJAX examples in Chapter 6, you will need a
PHP-enabled server.

•

•

•

Preface

[�]

Who is this book for
This book is for web designers who want to create interactive elements for their
designs, and for developers who want to create the best user interface for their web
applications. Basic JavaScript programming knowledge is required. You will need
to know the basics of HTML and CSS, and should be comfortable with the syntax
of JavaScript. No knowledge of jQuery is assumed, nor is experience with any other
JavaScript libraries required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

<html>
 <head>
 <title>the title</title>
 </head>
 <body>
 <div>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 <p>This is yet another paragraph.</p>
 </div>
 </body>
</html>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

$(document).ready(function() {
 $('a[href^=mailto:]').addClass('mailto');
 $('a[href$=.pdf]').addClass('pdflink');
 $('a[href^=http][href*=henry]')
 .addClass('henrylink');
});

Preface

[�]

Any command-line input and output is written as follows:

outerFn():
Outer function
Inner function

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Note the PDF icon to the right of the Hamlet link, the envelope icon next to the
email link, and the white background and black border around the Henry V link.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[�]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6705_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide the location address or website name immediately so we can pursue
a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Getting Started
Today's World Wide Web is a dynamic environment, and its users set a high bar for
both style and function of sites. To build interesting, interactive sites, developers
are turning to JavaScript libraries such as jQuery to automate common tasks and
simplify complicated ones. One reason the jQuery library is a popular choice is its
ability to assist in a wide range of tasks.

It can seem challenging to know where to begin because jQuery performs so
many different functions. Yet, there is a coherence and symmetry to the design of
the library; most of its concepts are borrowed from the structure of HTML and
Cascading Style Sheets (CSS). The library's design lends itself to a quick start for
designers with little programming experience since many web developers have
more experience with these technologies than they do with JavaScript. In fact, in this
opening chapter we'll write a functioning jQuery program in just three lines of code.
On the other hand, experienced programmers will also be aided by this conceptual
consistency, as we'll see in the later, more advanced chapters.

So let's look at what jQuery can do for us.

What jQuery does
The jQuery library provides a general-purpose abstraction layer for common web
scripting, and is therefore useful in almost every scripting situation. Its extensible
nature means that we could never cover all possible uses and functions in a single
book, as plugins are constantly being developed to add new abilities. The core
features, though, address the following needs:

Access elements in a document. Without a JavaScript library, many lines of
code must be written to traverse the Document Object Model (DOM) tree,
and locate specific portions of an HTML document's structure. A robust and
efficient selector mechanism is offered in jQuery for retrieving the exact piece
of the document that is to be inspected or manipulated.

•

Getting Started

[�]

Modify the appearance of a web page. CSS offers a powerful method of
influencing the way a document is rendered, but it falls short when web
browsers do not all support the same standards. With jQuery, developers can
bridge this gap, relying on the same standards support across all browsers. In
addition, jQuery can change the classes or individual style properties applied
to a portion of the document even after the page has been rendered.
Alter the content of a document. Not limited to mere cosmetic changes,
jQuery can modify the content of a document itself with a few keystrokes. Text
can be changed, images can be inserted or swapped, lists can be reordered, or
the entire structure of the HTML can be rewritten and extended—all with a
single easy-to-use Application Programming Interface (API).
Respond to a user's interaction. Even the most elaborate and powerful
behaviors are not useful if we can't control when they take place. The jQuery
library offers an elegant way to intercept a wide variety of events, such as a
user clicking on a link, without the need to clutter the HTML code itself with
event handlers. At the same time, its event-handling API removes browser
inconsistencies that often plague web developers.
Animate changes being made to a document. To effectively implement such
interactive behaviors, a designer must also provide visual feedback to the
user. The jQuery library facilitates this by providing an array of effects such
as fades and wipes, as well as a toolkit for crafting new ones.
Retrieve information from a server without refreshing a page. This code
pattern has become known as Asynchronous JavaScript And XML (AJAX),
and assists web developers in crafting a responsive, feature-rich site. The
jQuery library removes the browser-specific complexity from this process,
allowing developers to focus on the server-end functionality.
Simplify common JavaScript tasks. In addition to all of the
document-specific features of jQuery, the library provides enhancements
to basic JavaScript constructs such as iteration and array manipulation.

Why jQuery works well
With the recent resurgence of interest in dynamic HTML comes a proliferation of
JavaScript frameworks. Some are specialized, focusing on just one or two of the
above tasks. Others attempt to catalog every possible behavior and animation, and
serve these all up pre-packaged. To maintain the wide range of features outlined
above while remaining compact, jQuery employs several strategies:

•

•

•

•

•

•

Chapter 1

[�]

Leverage knowledge of CSS. By basing the mechanism for locating page
elements on CSS selectors, jQuery inherits a terse yet legible way of
expressing a document's structure. The jQuery library becomes an entry
point for designers who want to add behaviors to their pages because a
prerequisite for doing professional web development is knowledge of
CSS syntax.
Support extensions. In order to avoid "feature creep", jQuery relegates
special-case uses to plugins. The method for creating new plugins is simple
and well-documented, which has spurred the development of a wide variety
of inventive and useful modules. Even most of the features in the basic
jQuery download are internally realized through the plugin architecture,
and can be removed if desired, yielding an even smaller library.
Abstract away browser quirks. An unfortunate reality of web development
is that each browser has its own set of deviations from published standards.
A significant portion of any web application can be relegated to handling
features differently on each platform. While the ever-evolving browser
landscape makes a perfectly browser-neutral code base impossible for some
advanced features, jQuery adds an abstraction layer that normalizes the
common tasks, reducing the size of code, and tremendously simplifying it.
Always work with sets. When we instruct jQuery, Find all elements with
the class collapsible and hide them, there is no need to loop through
each returned element. Instead, methods such as .hide() are designed
to automatically work on sets of objects instead of individual ones. This
technique, called implicit iteration, means that many looping constructs
become unnecessary, shortening code considerably.
Allow multiple actions in one line. To avoid overuse of temporary variables
or wasteful repetition, jQuery employs a programming pattern called
chaining for the majority of its methods. This means that the result of most
operations on an object is the object itself, ready for the next action to be
applied to it.

These strategies have kept the jQuery package slim—under 20 KB compressed—
while at the same time providing techniques for keeping our custom code that uses
the library compact, as well.

The elegance of the library comes about partly by design, and partly due to
the evolutionary process spurred by the vibrant community that has sprung up
around the project. Users of jQuery gather to discuss not only the development of
plugins, but also enhancements to the core library. Appendix A details many of
the community resources available to jQuery developers.

•

•

•

•

•

Getting Started

[10]

Despite all of the efforts required to engineer such a flexible and robust system,
the end product is free for all to use. This open-source project is dually licensed
under the GNU Public License (appropriate for inclusion in many other
open-source projects) and the MIT License (to facilitate use of jQuery within
proprietary software).

History of the jQuery project
This book covers the functionality and syntax of jQuery 1.3.x, the latest version at
the time of writing. The premise behind the library—providing an easy way to find
elements on a web page and manipulating them—has not changed over the course
of its development, but some syntax details and features have. This brief overview
of the project history describes the most significant changes from version to version.

Public Development Phase: John Resig first made mention of an
improvement on Prototype's "Behaviour" library in August of 2005. This
new framework was formally released as jQuery on January 14, 2006.
jQuery 1.0 (August 2006): This, the first stable release of the library, already
had robust support for CSS selectors, event handling, and AJAX interaction.
jQuery 1.1 (January 2007): This release streamlined the API considerably.
Many rarely-used methods were combined, reducing the number of methods
to learn and document.
jQuery 1.1.3 (July 2007): This minor release contained massive speed
improvements for jQuery's selector engine. From this version on, jQuery's
performance would compare favorably to its fellow JavaScript libraries such
as Prototype, Mootools, and Dojo.
jQuery 1.2 (September 2007): XPath syntax for selecting elements was
removed in this release, as it had become redundant with the CSS syntax.
Effect customization became much more flexible in this release, and plugin
development became easier with the addition of namespaced events.
jQuery UI (September 2007): This new plugin suite was announced
to replace the popular but aging Interface plugin. A rich collection of
prefabricated widgets was included, as well as a set of tools for building
sophisticated elements such as drag-and-drop interfaces.
jQuery 1.2.6 (May 2008): The functionality of Brandon Aaron's popular
Dimensions plugin was brought into the main library.
jQuery 1.3 (January 2009): A major overhaul of the selector engine (Sizzle)
provided a huge boost to the library’s performance. Event delegation
became formally supported.

•

•

•

•

•

•

•

•

Chapter 1

[11]

Release notes for older jQuery versions can be found on the project's web
site at http://docs.jquery.com/History_of_jQuery.

Our first jQuery-powered web page
Now that we have covered the range of features available to us with jQuery, we can
examine how to put the library into action.

Downloading jQuery
The official jQuery website (http://jquery.com/) is always the most up-to-date
resource for code and news related to the library. To get started, we need a copy
of jQuery, which can be downloaded right from the home page of the site. Several
versions of jQuery may be available at any given moment; the most appropriate for
us as site developers will be the latest uncompressed version of the library. This can
be replaced with a compressed version in production environments.

No installation is required. To use jQuery, we just need to place it on our site in a
public location. Since JavaScript is an interpreted language, there is no compilation
or build phase to worry about. Whenever we need a page to have jQuery available,
we will simply refer to the file's location from the HTML document.

Setting up the HTML document
There are three pieces to most examples of jQuery usage: the HTML document itself,
CSS files to style it, and JavaScript files to act on it. For our first example, we'll use a
page with a book excerpt that has a number of classes applied to portions of it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8"/>

 <title>Through the Looking-Glass</title>

 <link rel="stylesheet" href="alice.css"
 type="text/css" media="screen" />

 <script src="jquery.js" type="text/javascript"></script>

Getting Started

[12]

 <script src="alice.js" type="text/javascript"></script>
 </head>

 <body>
 <h1>Through the Looking-Glass</h1>
 <div class="author">by Lewis Carroll</div>

 <div class="chapter" id="chapter-1">
 <h2 class="chapter-title">1. Looking-Glass House</h2>
 <p>There was a book lying near Alice on the table,
 and while she sat watching the White King (for she
 was still a little anxious about him, and had the
 ink all ready to throw over him, in case he fainted
 again), she turned over the leaves, to find some
 part that she could read,
 "—for it's all in some language I don't know,"
 she said to herself.</p>
 <p>It was like this.</p>
 <div class="poem">
 <h3 class="poem-title">YKCOWREBBAJ</h3>
 <div class="poem-stanza">
 <div>sevot yhtils eht dna ,gillirb sawT'</div>
 <div>;ebaw eht ni elbmig dna eryg diD</div>
 <div>,sevogorob eht erew ysmim llA</div>
 <div>.ebargtuo shtar emom eht dnA</div>
 </div>
 </div>
 <p>She puzzled over this for some time, but at last
 a bright thought struck her.
 "Why, it's a Looking-glass book, of course! And if
 I hold it up to a glass, the words will all go the
 right way again."</p>
 <p>This was the poem that Alice read.</p>
 <div class="poem">
 <h3 class="poem-title">JABBERWOCKY</h3>
 <div class="poem-stanza">
 <div>'Twas brillig, and the slithy toves</div>
 <div>Did gyre and gimble in the wabe;</div>
 <div>All mimsy were the borogoves,</div>
 <div>And the mome raths outgrabe.</div>
 </div>
 </div>
 </div>
 </body>
</html>

Chapter 1

[13]

The actual layout of files on the server does not matter. References from
one file to another just need to be adjusted to match the organization
we choose. In most examples in this book, we will use relative paths to
reference files (../images/foo.png) rather than absolute paths
(/images/foo.png). This will allow the code to run locally without
the need for a web server.

Immediately following the normal HTML preamble, the stylesheet is loaded. For this
example, we'll use a spartan one.

body {
 font: 62.5% Arial, Verdana, sans-serif;
}
h1 {
 font-size: 2.5em;
 margin-bottom: 0;
}
h2 {
 font-size: 1.3em;
 margin-bottom: .5em;
}
h3 {
 font-size: 1.1em;
 margin-bottom: 0;
}
.poem {
 margin: 0 2em;
}
.highlight {
 font-style: italic;
 border: 1px solid #888;
 padding: 0.5em;
 margin: 0.5em 0;
 background-color: #ffc;
}

After the stylesheet is referenced, the JavaScript files are included. It is important that
the script tag for the jQuery library be placed before the tag for our custom scripts;
otherwise, the jQuery framework will not be available when our code attempts to
reference it.

Getting Started

[14]

Throughout the rest of this book, only the relevant portions of HTML and
CSS files will be printed. The files in their entirety are available from the
book's companion website http://book.learningjquery.com or
from the publisher's website http://www.packtpub.com/support.

Now we have a page that looks like this:

We will use jQuery to apply a new style to the poem text.

This example is to demonstrate a simple use of jQuery. In real-world
situations, this type of styling could be performed purely with CSS.

Adding jQuery
Our custom code will go in the second, currently empty, JavaScript file, which
we included from the HTML using <script src="alice.js" type="text/
javascript"></script>. For this example, we only need three lines of code:

$(document).ready(function() {
 $('.poem-stanza').addClass('highlight');
});

Chapter 1

[15]

Finding the poem text
The fundamental operation in jQuery is selecting a part of the document. This is done
with the $() construct. Typically, it takes a string as a parameter, which can contain
any CSS selector expression. In this case, we wish to find all parts of the document that
have the poem-stanza class applied to them, so the selector is very simple. However,
we will cover much more sophisticated options through the course of the book. We
will step through the different ways of locating parts of a document in Chapter 2.

The $() function is actually a factory for the jQuery object, which is the basic
building block we will be working with from now on. The jQuery object encapsulates
zero or more DOM elements, and allows us to interact with them in many different
ways. In this case, we wish to modify the appearance of these parts of the page, and
we will accomplish this by changing the classes applied to the poem text.

Injecting the new class
The .addClass() method, like most jQuery methods, is named self-descriptively; it
applies a CSS class to the part of the page that we have selected. Its only parameter
is the name of the class to add. This method, and its counterpart, .removeClass(),
will allow us to easily observe jQuery in action as we explore the different selector
expressions available to us. For now, our example simply adds the highlight class,
which our stylesheet has defined as italicized text with a border.

Note that no iteration is necessary to add the class to all the poem stanzas. As we
discussed, jQuery uses implicit iteration within methods such as .addClass(), so
a single function call is all it takes to alter all of the selected parts of the document.

Executing the code
Taken together, $() and .addClass() are enough for us to accomplish our goal of
changing the appearance of the poem text. However, if this line of code is inserted
alone in the document header, it will have no effect. JavaScript code is generally
run as soon as it is encountered in the browser, and at the time the header is being
processed, no HTML is yet present to style. We need to delay the execution of the
code until after the DOM is available for our use.

Getting Started

[16]

The traditional mechanism for controlling when JavaScript code is run is to call the
code from within event handlers. Many handlers are available for user-initiated
events, such as mouse clicks and key presses. If we did not have jQuery available
for our use, we would need to rely on the onload handler, which fires after the page
(along with all of its images) has been rendered. To trigger our code from the onload
event, we would place the code inside a function:

function highlightPoemStanzas() {
 $('.poem-stanza').addClass('highlight');
}

Then we would attach the function to the event by modifying the HTML <body> tag
to reference it:

<body onload="highlightPoemStanzas();">

This causes our code to run after the page is completely loaded.

There are drawbacks to this approach. We altered the HTML itself to effect this
behavior change. This tight coupling of structure and function clutters the code,
possibly requiring the same function calls to be repeated over many different
pages, or in the case of other events such as mouse clicks, over every instance of an
element on a page. Adding new behaviors would then require alterations in multiple
places, increasing the opportunity for error and complicating parallel workflows for
designers and programmers.

To avoid this pitfall, jQuery allows us to schedule function calls for firing once the
DOM is loaded—without waiting for images—with the $(document).ready()
construct. With our function defined as above, we can write:

$(document).ready(highlightPoemStanzas);

This technique does not require any HTML modifications. Instead, the behavior is
attached entirely from within the JavaScript file. We will learn how to respond to other
types of events, divorcing their effects from the HTML structure as well, in Chapter 3.

This incarnation is still slightly wasteful, though, because the function
highlightPoemStanzas() is defined only to be used immediately, and exactly
once. This means that we have used an identifier in the global namespace of
functions that we have to remember not to use again, and for little gain. JavaScript,
like some other programming languages, has a way around this inefficiency called
anonymous functions (sometimes also called lambda functions). Using anonymous
functions, we can write the code as it was originally presented:

$(document).ready(function() {
 $('.poem-stanza').addClass('highlight');
});

Chapter 1

[17]

By using the function keyword without a function name, we define a function
exactly where it is needed, and not before. This removes clutter and brings us
down to three lines of JavaScript. This idiom is extremely convenient in jQuery
code, as many methods take a function as an argument and such functions are
rarely reusable.

When this syntax is used to define an anonymous function within the body of
another function, a closure can be created. This is an advanced and powerful
concept, but should be understood when making extensive use of nested function
definitions as it can have unintended consequences and ramifications on memory
use. This topic is discussed fully in Appendix C.

The finished product
Now that our JavaScript is in place, the page looks like this:

The poem stanzas are now italicized and enclosed in boxes, as specified by
the alice.css stylesheet, due to the insertion of the highlight class by the
JavaScript code.

Getting Started

[18]

Summary
We now have an idea of why a developer would choose to use a JavaScript
framework rather than writing all code from scratch, even for the most basic tasks.
We also have seen some of the ways in which jQuery excels as a framework, and
why we might choose it over other options. We also know in general which tasks
jQuery makes easier.

In this chapter, we have learned how to make jQuery available to JavaScript code
on our web page, use the $() factory function to locate a part of the page that has
a given class, call .addClass() to apply additional styling to this part of the page,
and invoke $(document).ready() to cause this code to execute upon the loading
of the page.

The simple example we have been using demonstrates how jQuery works, but is not
very useful in real-world situations. In the next chapter, we will expand on the code
here by exploring jQuery's sophisticated selector language, finding practical uses for
this technique.

Selectors
The jQuery library harnesses the power of Cascading Style Sheets (CSS) selectors
to let us quickly and easily access elements or groups of elements in the Document
Object Model (DOM). In this chapter, we will explore a few of these selectors, as
well as jQuery's own custom selectors. We'll also look at jQuery's DOM traversal
methods that provide even greater flexibility for getting what we want.

The Document Object Model
One of the most powerful aspects of jQuery is its ability to make selecting elements
in the DOM easy. The Document Object Model is a family-tree structure of sorts.
HTML, like other markup languages, uses this model to describe the relationships of
things on a page. When we refer to these relationships, we use the same terminology
that we use when referring to family relationships—parents, children, and so on.
A simple example can help us understand how the family tree metaphor applies
to a document:

<html>
 <head>
 <title>the title</title>
 </head>
 <body>
 <div>
 <p>This is a paragraph.</p>
 <p>This is another paragraph.</p>
 <p>This is yet another paragraph.</p>
 </div>
 </body>
</html>

Selectors

[20]

Here, <html> is the ancestor of all the other elements; in other words, all the other
elements are descendants of <html>. The <head> and <body> elements are not
only descendants, but children of <html>, as well. Likewise, in addition to being
the ancestor of <head> and <body>, <html> is also their parent. The <p> elements
are children (and descendants) of <div>, descendants of <body> and <html>, and
siblings of each other. For information on how to visualize the family-tree structure
of the DOM using third-party software, see Appendix B.

An important point to note before we begin is that the resulting set of elements from
selectors and methods is always wrapped in a jQuery object. These jQuery objects are
very easy to work with when we want to actually do something with the things that
we find on a page. We can easily bind events to these objects and add slick effects
to them, as well as chain multiple modifications or effects together. Nevertheless,
jQuery objects are different from regular DOM elements or node lists, and as such do
not necessarily provide the same methods and properties for some tasks. In the final
part of this chapter, therefore, we will look at ways to access the DOM elements that
are wrapped in a jQuery object.

The $() factory function
No matter which type of selector we want to use in jQuery, we always start with the
dollar sign and parentheses: $(). Just about anything that can be used in a stylesheet
can also be wrapped in quotation marks and placed inside the parentheses, allowing
us to apply jQuery methods to the matched set of elements.

Making jQuery Play Well with Other JavaScript Libraries
In jQuery, the dollar sign $ is simply an "alias" for jQuery. Conflicts
could arise if more than one of these libraries were being used in a given
page because a $() function is very common in JavaScript libraries. We
can avoid such conflicts by replacing every instance of $ with jQuery
in our custom jQuery code. Additional solutions to this problem are
addressed in Chapter 10.

Three building blocks of these selectors are tag name, ID, and class. They can be
used either on their own or in combination with other selectors. Here is an example
of what each of these three selectors looks like on its own:

Chapter 2

[21]

Selector CSS jQuery Description
Tag name p $('p') Selects all paragraphs in the document
ID #some-id $('#some-id') Selects the single element in the

document that has an ID of some-id
Class .some-class $('.some-class') Selects all elements in the document

that have a class of some-class

As mentioned in Chapter 1, when we attach methods to the $() factory function,
the elements wrapped in the jQuery object are looped through automatically and
implicitly. Therefore, we can usually avoid explicit iteration, such as a for loop,
that is so often required in DOM scripting.

Now that we have covered the basics, we're ready to start exploring some more
powerful uses of selectors.

CSS selectors
The jQuery library supports nearly all of the selectors included in CSS
specifications 1 through 3, as outlined on the World Wide Web Consortium's site:
http://www.w3.org/Style/CSS/#specs. This support allows developers to
enhance their websites without worrying about which browsers (particularly
Internet Explorer 6) might not understand advanced selectors, as long as the
browsers have JavaScript enabled.

Responsible jQuery developers should always apply the concepts of
progressive enhancement and graceful degradation to their code,
ensuring that a page will render as accurately, even if not as beautifully,
with JavaScript disabled as it does with JavaScript turned on. We will
continue to explore these concepts throughout the book.

To begin learning how jQuery works with CSS selectors, we'll use a structure that
appears on many websites, often for navigation—the nested, unordered list.

<ul id="selected-plays">
 Comedies

 As You Like It
 All's Well That Ends Well
 A Midsummer Night's Dream
 Twelfth Night

 Tragedies

Selectors

[22]

 Hamlet
 Macbeth
 Romeo and Juliet

 Histories

 Henry IV (email)

 Part I
 Part II	

 Henry V
 Richard II

Notice that the first has an ID of selected-plays, but none of the tags
have a class associated with them. Without any styles applied, the list looks like this:

The nested list appears as we would expect it to—a set of bulleted items arranged
vertically and indented according to their level.

Chapter 2

[23]

Styling list-item levels
Lets suppose that we want the top-level items, and only the top-level items, to be
arranged horizontally. We can start by defining a horizontal class in the stylesheet:

.horizontal {
 float: left;
 list-style: none;
 margin: 10px;
}

The horizontal class floats the element to the left of the one following it, removes
the bullet from it if it's a list item, and adds a 10 pixel margin on all sides of it.

Rather than attaching the horizontal class directly in our HTML, we'll add
it dynamically to the top-level list items only—Comedies, Tragedies, and
Histories—to demonstrate jQuery's use of selectors:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');

});

As discussed in Chapter 1, we begin the jQuery code with the $(document).
ready() wrapper, that runs as soon as the DOM has loaded.

The second line uses the child combinator (>) to add the horizontal class to all
top-level items only. In effect, the selector inside the $() function is saying, find
each list item (li) that is a child (>) of the element with an ID of selected-plays
(#selected-plays).

With the class now applied, our nested list looks like this:

Selectors

[24]

Styling all of the other items—those that are not in the top level—can be done in a
number of ways. Since we have already applied the horizontal class to the top-
level items, one way to select all sub-level items is to use a negation pseudo-class to
identify all list items that do not have a class of horizontal. Note the addition of the
third line of code:

$(document).ready(function() {
 $('#selected-plays > li').addClass('horizontal');
 $('#selected-plays li:not(.horizontal)').addClass('sub-level');

});

This time we are selecting every list item (li) that:

1.	 Is a descendant of the element with an ID of selected-plays
(#selected-plays)

2.	 Does not have a class of horizontal (:not(.horizontal))

When we add the sub-level class to these items, they receive the shaded
background defined in the stylesheet. Now the nested list looks like this:

Attribute selectors
Attribute selectors are a particularly helpful subset of CSS selectors. They allow us
to specify an element by one of its HTML properties, such as a link's title attribute
or an image's alt attribute. For example, to select all images that have an alt
attribute, we write the following:

$('img[alt]')

In versions prior to 1.2, jQuery used XML Path Language (XPath) syntax
for its attribute selectors and included a handful of other XPath selectors.
While these basic XPath selectors have since been removed from the core
jQuery library, they are still available as a plugin:
http://plugins.jquery.com/project/xpath/

Chapter 2

[25]

Styling links
Attribute selectors accept a wildcard syntax inspired by regular expressions for
identifying the value at the beginning (^) or ending ($) of a string. They can also
take an asterisk (*) to indicate the value at an arbitrary position within a string or
an exclamation mark to indicate a negated value.

Let's say we want to have different styles for different types of links. We first define
the styles in our stylesheet:

a {
 color: #00c;
}
a.mailto {
 background: url(images/mail.png) no-repeat right top;
 padding-right: 18px;
}
a.pdflink {
 background: url(images/pdf.png) no-repeat right top;
 padding-right: 18px;
}
a.henrylink {
 background-color: #fff;
 padding: 2px;
 border: 1px solid #000;
}

Then, we add the three classes—mailto, pdflink, and henrylink—to the
appropriate links using jQuery.

To add a class for all email links, we construct a selector that looks for all anchor
elements (a) with an href attribute ([href) that begins with mailto: (^=mailto:]),
as follows:

$(document).ready(function() {
 $('a[href^=mailto:]').addClass('mailto');

});

To add a class for all links to PDF files, we use the dollar sign rather than the
caret symbol. This is because we're selecting links with an href attribute that
ends with .pdf:

$(document).ready(function() {
 $('a[href^=mailto:]').addClass('mailto');
 $('a[href$=.pdf]').addClass('pdflink');

});

Selectors

[26]

Attribute selectors can be combined as well. We can, for example, add a
henrylink class for all links with an href value that both starts with http
and contains henry anywhere:

$(document).ready(function() {
 $('a[href^=mailto:]').addClass('mailto');
 $('a[href$=.pdf]').addClass('pdflink');
 $('a[href^=http][href*=henry]')

 .addClass('henrylink');

});

With the three classes applied to the three types of links, we should see
the following:

Note the PDF icon to the right of the Hamlet link, the envelope icon next to the email
link, and the white background and black border around the Henry V link.

Custom selectors
To the wide variety of CSS selectors, jQuery adds its own custom selectors. Most of
the custom selectors allow us to pick certain elements out of a line-up, so to speak.
The syntax is the same as the CSS pseudo-class syntax, where the selector starts with
a colon (:). For example, to select the second item from a matched set of div selectors
with a class of horizontal, we write this:

$('div.horizontal:eq(1)')

Note that :eq(1) selects the second item in the set because JavaScript array
numbering is zero-based, meaning that it starts with 0. In contrast, CSS is one-based,
so a CSS selector such as $('div:nth-child(1)') would select all div selectors
that are the first child of their parent (in this case, however, we would probably use
$('div:first-child') instead).

Chapter 2

[27]

Styling alternate rows
Two very useful custom selectors in the jQuery library are :odd and :even. Let's
take a look at how we can use one of them for basic table striping, given the
following table:

<table>
 <tr>
 	 <td>As You Like It</td>
 	 <td>Comedy</td>
 	 <td></td>
 </tr>
 <tr>
 	 <td>All's Well that Ends Well</td>
 	 <td>Comedy</td>
 	 <td>1601</td>
 </tr>
 <tr>
 	 <td>Hamlet</td>
 	 <td>Tragedy</td>
 	 <td>1604</td>
 </tr>
 <tr>
 	 <td>Macbeth</td>
 	 <td>Tragedy</td>
 	 <td>1606</td>
 </tr>
 <tr>
 	 <td>Romeo and Juliet</td>
 	 <td>Tragedy</td>
 	 <td>1595</td>
 </tr>
 <tr>
 	 <td>Henry IV, Part I</td>
 	 <td>History</td>
 	 <td>1596</td>
 </tr>
 <tr>
 	 <td>Henry V</td>
 	 <td>History</td>
 	 <td>1599</td>
 </tr>
</table>

Selectors

[28]

Now we can add a style to the stylesheet for all table rows, and use an alt class for
the even rows:

tr {
 background-color: #fff;
}
.alt {
 background-color: #ccc;
}

Finally, we write our jQuery code, attaching the class to the even-numbered table
rows (<tr> tags):

$(document).ready(function() {
 $('tr:odd').addClass('alt');
});

But wait! Why use the :odd selector for even-numbered rows? Well, just as with
the :eq() selector, the :odd and :even selectors use JavaScript's native zero-based
numbering. Therefore, the first row counts as 0 (even) and the second row counts
as 1 (odd), and so on. With this in mind, we can expect our simple bit of code to
produce a table that looks like this:

Note that we may see unintended results if there is more than one table on a page.
For example, since the last row in this table has a white background, the first row in
the next table would have the "alternate" gray background. One way to avoid this
type of problem is to use the :nth-child() selector instead. This selector can take
either a number, odd, or even as its argument. Notably, however, :nth-child() is
the only jQuery selector that is one-based. To achieve the same row striping as we
did above, and to make it consistent across multiple tables in a document, the code
would look like this:

$(document).ready(function() {
 $('tr:nth-child(even)').addClass('alt');
});

Chapter 2

[29]

For one f﻿inal custom-selector touch, let's suppose for some reason we want to
highlight any table cell that referred to one of the Henry plays. All we have to
do—after adding a class to the stylesheet to make the text bold and italicized
(.highlight {font-weight:bold; font-style: italics;})—is add a line
to our jQuery code, using the :contains() selector.

$(document).ready(function() {
$('tr:nth-child(even)').addClass('alt');
 $('td:contains(Henry)').addClass('highlight');

});

So, now we can see our lovely striped table with the Henry plays
prominently featured:

It's important to note that the :contains() selector is case sensitive. Using $('td:
contains(henry)') instead, without the uppercase "H," would select no cells.

Admittedly, there are ways to achieve the row striping and text highlighting without
jQuery—or any client‑side programming, for that matter. Nevertheless, jQuery,
along with CSS, is a great alternative for this type of styling in cases where the
content is generated dynamically and we don’t have access to either the HTML or
server-side code.

Form selectors
When working with forms, jQuery's custom selectors can make short work of
selecting just the elements we need. The following table describes a handful of
these selectors:

Selector Match
:text, :checkbox, :radio,
:image, :submit, :reset, :
password, :file

Input elements with a type attribute equal to the selector
name (excluding the colon). For example, :text selects
<input type="text">

:input Input, textarea, select, and button elements

Selectors

[30]

Selector Match
:button Button elements and input elements with a type attribute

equal to button
:enabled Form elements that are enabled
:disabled Form elements that are disabled
:checked Radio buttons or checkboxes that are checked
:selected Option elements that are selected

As with the other selectors, form selectors can be combined for greater specificity.
We can, for example, select all checked radio buttons (but not checkboxes) with
$(':radio:checked') or select all password inputs and disabled text inputs with
$(':password, :text:disabled'). Even with custom selectors, we use the same
basic principles of CSS to build the list of matched elements.

DOM traversal methods
The jQuery selectors that we have explored so far allow us to select a set of elements
as we navigate across and down the DOM tree and filter the results. If this were the
only way to select elements, our options would be quite limited (although, frankly,
the selector expressions are robust in their own right, especially when compared
to the regular DOM scripting options). There are many occasions when selecting
a parent or ancestor element is essential; that is where jQuery's DOM traversal
methods come into play. With these methods at our disposal, we can go up, down,
and all around the DOM tree with ease.

Some of the methods have a nearly identical counterpart among the selector
expressions. For example, the line we first used to add the alt class, $('tr:odd').
addClass('alt');, could be rewritten with the .filter() method as follows:

$('tr').filter(':odd').addClass('alt');

For the most part, however, the two ways of selecting elements complement each
other. Also, the .filter() method in particular has enormous power because it can
take a function as its argument. The function allows us to create complex tests for
whether elements should be kept in the matched set. Let's suppose, for example, we
want to add a class to all external links. jQuery has no selector for this sort of case.
Without a filter function, we'd be forced to explicitly loop through each element,
testing each one separately. With the following filter function, however, we can
still rely on jQuery's implicit iteration and keep our code compact:

$('a').filter(function() {
 return this.hostname && this.hostname != location.hostname;
}).addClass('external');

Chapter 2

[31]

The second line filters the set of <a> elements by two criteria:

1.	 They must have an href attribute with a domain name (this.hostname). We
use this test to exclude mailto links and others of its ilk.

2.	 The domain name that they link to (again, this.hostname) must not match
(!=) the domain name of the current page (location.hostname).

More precisely, the .filter() method iterates through the matched set of elements,
testing the return value of the function against each one. If the function returns
false, the element is removed from the matched set. If it returns true, the element
is kept.

Now let's take a look at our striped table again to see what else is possible with
traversal methods.

Styling specific cells
Earlier we added a highlight class to all cells containing the text Henry. To instead
style the cell next to each cell containing Henry, we can begin with the selector that
we have already written, and simply chain the next() method to it:

$(document).ready(function() {
 $('td:contains(Henry)').next().addClass('highlight');
});

The table should now look like this:

The .next() method selects only the very next sibling element. To highlight all
of the cells following the one containing Henry, we could use the .nextAll()
method instead.

$(document).ready(function() {
 $('td:contains(Henry)').nextAll().addClass('highlight');
});

Selectors

[32]

As we might expect, the .next() and .nextAll() methods have
counterparts: .prev() and .prevAll(). Additionally, .siblings()
selects all other elements at the same DOM level, regardless of whether
they come before or after the previously selected element.

To include the original cell (the one that contains Henry) along with the cells that
follow, we can add the .andSelf() method:

$(document).ready(function() {
 $('td:contains(Henry)').nextAll().andSelf().addClass('highlight');

});

To be sure, there are a multitude of selector and traversal-method combinations by
which we can select the same set of elements. Here, for example, is another way to
select every cell in each row where at least one of the cells contains Henry:

$(document).ready(function() {
 $('td:contains(Henry)').parent().children().addClass('highlight');

});

Here, rather than traversing across to sibling elements, we travel up one level
in the DOM to the <tr> with .parent() and then select all of the row's cells
with .children().

Chaining
The traversal-method combinations that we have just explored illustrate jQuery's
chaining capability. It is possible with jQuery to select multiple sets of elements and
do multiple things with them, all within a single line of code. This chaining not only
helps keep jQuery code concise, but it also can improve a script's performance when
the alternative is to re-specify a selector.

It is also possible to break a single line of code into multiple lines for greater
readability. For example, a single chained sequence of methods could be written
as one line …

$('td:contains(Henry)').parent().find('td:eq(1)')
 .addClass('highlight').end().find('td:eq(2)')
 .addClass('highlight');

Chapter 2

[33]

… or as seven lines …

$('td:contains(Henry)') // Find every cell containing "Henry"
.parent() // Select its parent
.find('td:eq(1)') // Find the 2nd descendant cell
.addClass('highlight') // Add the "highlight" class
.end() // Return to the parent of the cell containing "Henry"
.find('td:eq(2)') // Find the 3rd descendant cell
.addClass('highlight'); // Add the "highlight" class

Admittedly, the DOM traversal in this example is circuitous to the point of absurdity.
We certainly wouldn't recommend using it, as there are clearly simpler, more direct
methods at our disposal. The point of the example is simply to demonstrate the
tremendous flexibility that chaining affords us.

Chaining can be like speaking a whole paragraph's worth of words in a single
breath—it gets the job done quickly, but it can be hard for someone else to
understand. Breaking it up into multiple lines and adding judicious comments
can save more time in the long run.

Accessing DOM elements
Every selector expression and most jQuery methods return a jQuery object. This
is almost always what we want, because of the implicit iteration and chaining
capabilities that it affords.

Still, there may be points in our code when we need to access a DOM element
directly. For example, we may need to make a resulting set of elements available to
another JavaScript library. Or we might need to access an element's tag name, which
is available as a property of the DOM element. For these admittedly rare situations,
jQuery provides the .get() method. To access the first DOM element referred to by
a jQuery object, we would use .get(0). If the DOM element is needed within a loop,
we would use .get(index). So, if we want to know the tag name of an element with
id="my-element", we would write:

var myTag = $('#my-element').get(0).tagName;

For even greater convenience, jQuery provides a shorthand for .get(). Instead of
writing the above line, we can use square brackets immediately following the selector:

var myTag = $('#my-element')[0].tagName;

It's no accident that this syntax looks like an array of DOM elements; using the
square brackets is like peeling away the jQuery wrapper to get at the node list,
while including the index (in this case, 0) is like plucking out a DOM element itself.

Selectors

[34]

Summary
With the techniques that we have covered in this chapter, we should now be able
to style top-level and sub-level items in a nested list by using basic CSS selectors,
apply different styles to different types of links by using attribute selectors, add
rudimentary striping to a table by using either the custom jQuery selectors :odd and
:even or the advanced CSS selector :nth-child(), and highlight text within certain
table cells by chaining jQuery methods.

So far, we have been using the $(document).ready() event to add a class to a
matched set of elements. In the next chapter, we'll explore ways in which to add a
class in response to a variety of user-initiated events.

Events
JavaScript has several built-in ways of reacting to user interaction and other events.
To make a page dynamic and responsive, we need to harness this capability so that
we can, at the appropriate times, use the jQuery techniques we have learned so far
and the other tricks we'll learn later. While we could do this with vanilla JavaScript,
jQuery enhances and extends the basic event handling mechanisms to give them a
more elegant syntax while at the same time making them more powerful.

Performing tasks on page load
We have already seen how to make jQuery react to the loading of a web page. The
$(document).ready() event handler can be used to fire off a function's worth of
code, but there's a bit more to be said about it.

Timing of code execution
In Chapter 1, we noted that $(document).ready() was jQuery's way to perform
tasks that were typically triggered by JavaScript's built-in onload event. While the
two have a similar effect, however, they trigger actions at subtly different times.

The window.onload event fires when a document is completely downloaded to
the browser. This means that every element on the page is ready to be manipulated
by JavaScript, which is a boon for writing featureful code without worrying about
load order.

On the other hand, a handler registered using $(document).ready() is invoked
when the DOM is completely ready for use. This also means that all elements are
accessible by our scripts, but does not mean that every associated file has been
downloaded. As soon as the HTML has been downloaded and parsed into a DOM
tree, the code can run.

Events

[36]

To ensure that the page has also been styled before the JavaScript code
executes, it is a good practice to place <link rel="stylesheet"> tags
prior to <script> tags within the document's <head> element.

Consider, for example, a page that presents an image gallery; such a page may have
many large images on it, which we can hide, show, move, and otherwise manipulate
with jQuery. If we set up our interface using the onload event, users will have to
wait until each and every image is completely downloaded before they can use the
page. Even worse, if behaviors are not yet attached to elements that have default
behaviors (such as links), user interactions could produce unintended outcomes.
However, when we use $(document).ready() for the setup, the interface gets ready
to use much earlier with the correct behavior.

Using $(document).ready() is almost always preferable to using
an onload handler, but we need to keep in mind that because supporting
files may not have loaded, attributes such as image height and width
are not necessarily available at this time. If these are needed, we may at
times also choose to implement an onload handler (or more likely, use
jQuery to set a handler for the load event); the two mechanisms can
coexist peacefully.

Multiple scripts on one page
The traditional mechanism for registering event handlers through JavaScript
(rather than adding handler attributes right in the HTML) is to assign a function to
the DOM element's corresponding attribute. For example, suppose we had defined
the function:

function doStuff() {
 // Perform a task...
}

We could then either assign it within our HTML markup:

<body onload="doStuff();">

Or, we could assign it from within JavaScript code:

window.onload = doStuff;

Both of these approaches will cause the function to execute when the page is loaded.
The advantage of the second is that the behavior is more cleanly separated from
the markup.

Chapter 3

[37]

Note here that when we assign a function as a handler, we use the
function name but omit the trailing parentheses. With the parentheses,
the function is called immediately; without, the name simply identifies the
function, and can be used to call it later.

With one function, this strategy works quite well. However, suppose we have a
second function:

function doOtherStuff() {
 // Perform another task...
}

We could then attempt to assign this function to run on page load:
window.onload = doOtherStuff;

However, this assignment trumps the first one. The .onload attribute can only store
one function reference at a time, so we can't add to the existing behavior.

The $(document).ready() mechanism handles this situation gracefully. Each call
to the method adds the new function to an internal queue of behaviors; when the
page is loaded all of the functions will execute. The functions will run in the order
in which they were registered.

To be fair, jQuery doesn't have a monopoly on workarounds to this issue.
We can write a JavaScript function that forms a new function that calls the
existing onload handler, then calls a passed-in handler. This approach,
used for example by Simon Willison's addLoadEvent(), avoids
conflicts between rival handlers like $(document).ready() does, but
lacks some of the other benefits we have discussed. Browser-specific
methods such as document.addEventListener() and document.
attachEvent() offer similar functionality, but jQuery allows us
to accomplish this task without concerning ourselves with browser
inconsistencies.

Shortcuts for code brevity
The $(document).ready() construct is actually calling the .ready() method on a
jQuery object we've constructed from the document DOM element. The $() factory
function provides a shortcut for us as this is a common task. When called with no
arguments, the function behaves as though document were passed in. This means
that instead of:

$(document).ready(function() {
 // Our code here...
});

Events

[38]

we can write:
$().ready(function() {
 // Our code here...
});

In addition, the factory function can take another function as an argument. When
we do this, jQuery performs an implicit call to .ready(), so for the same result we
can write:

$(function() {
 // Our code here...
});

While these other syntaxes are shorter, the authors recommend the longer version to
make it clearer as to what the code is doing.

Coexisting with other libraries
In some cases, it may prove useful to use more than one JavaScript library on the
same page. Since many libraries make use of the $ identifier (since it is short and
convenient), we need a way to prevent collisions between these names.

Fortunately, jQuery provides a method called .noConflict() to return control of
the $ identifier back to other libraries. Typical usage of .noConflict() follows the
following pattern:

<script src="prototype.js" type="text/javascript"></script>
<script src="jquery.js" type="text/javascript"></script>
<script type="text/javascript">
 jQuery.noConflict();
</script>
<script src="myscript.js" type="text/javascript"></script>

First, the other library (Prototype in this example) is included. Then, jQuery itself is
included, taking over $ for its own use. Next, a call to .noConflict() frees up $, so
that control of it reverts to the first included library (Prototype). Now in our custom
script we can use both libraries—but whenever we need to use a jQuery method, we
need to use jQuery instead of $ as an identifier.

The .ready() method has one more trick up its sleeve to help us in this situation.
The callback function we pass to it can take a single parameter: the jQuery object
itself. This allows us to effectively rename it without fear of conflicts:

jQuery(document).ready(function($) {
 // In here, we can use $ like normal!
});

Chapter 3

[39]

Or, using the shorter syntax we learned above:
jQuery(function($) {
 // Code that uses $.
});

Simple events
There are many other times apart from the loading of the page at which we might
want to perform a task. Just as JavaScript allows us to intercept the page load
event with <body onload=""> or window.onload, it provides similar hooks for
user-initiated events such as mouse clicks (onclick), form fields being modified
(onchange), and windows changing size (onresize). When assigned directly to
elements in the DOM, these hooks have similar drawbacks to the ones we outlined
for onload. Therefore, jQuery offers an improved way of handling these events
as well.

A simple style switcher
To illustrate some event handling techniques, suppose we wish to have a single
page rendered in several different styles based on user input. We will allow the
user to click buttons to toggle between a normal view, a view in which the text is
constrained to a narrow column, and a view with large print for the content area.

In a real-world example, a good web citizen will employ the principle of progressive
enhancement here. The style switcher should either be hidden when JavaScript is
unavailable or, better yet, should still function through links to alternative versions
of the page. For the purposes of this tutorial, we'll assume that all users have
JavaScript turned on.

The HTML markup for the style switcher is as follows:

<div id="switcher">
 <h3>Style Switcher</h3>
 <div class="button selected" id="switcher-default">
 Default
 </div>
 <div class="button" id="switcher-narrow">
 Narrow Column
 </div>
 <div class="button" id="switcher-large">
 Large Print
 </div>
</div>

Events

[40]

Combined with the rest of the page's HTML markup and some basic CSS, we get a
page that looks like the following figure:

To begin, we'll make the Large Print button operate. We need a bit of CSS to
implement our alternative view of the page:

body.large .chapter {
 font-size: 1.5em;
}

Our goal, then, is to apply the large class to the <body> tag. This will allow the
stylesheet to reformat the page appropriately. Using what we learned in Chapter 2,
we already know the statement needed to accomplish this:

'body').addClass('large');

However, we want this to occur when the button is clicked, not when the page
loaded as we have seen so far. To do this, we'll introduce the .bind() method. This
method allows us to specify any JavaScript event, and to attach a behavior to it. In
this case, the event is called click, and the behavior is a function consisting of our
one-liner above:

$(document).ready(function() {
 $('#switcher-large').bind('click', function() {
 $('body').addClass('large');
 });
});

Chapter 3

[41]

Now when the button gets clicked, our code runs and the text is enlarged as shown
in the following figure:

That's all there is to binding an event. The advantages we discussed with the
.ready() method apply here, as well. Multiple calls to .bind() coexist nicely,
appending additional behaviors to the same event as necessary.

This is not necessarily the most elegant or efficient way to accomplish this task. As
we proceed through this chapter, we will extend and refine this code into something
we can be proud of.

Enabling the other buttons
We now have a Large Print button that works as advertised, but we need to apply
similar handling to the other two buttons (Default and Narrow Column) to make
them perform their tasks. This is straightforward; we use .bind() to add a click
handler to each of them, removing and adding classes as necessary. The new code
reads as follows:

$(document).ready(function() {
 $('#switcher-default').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').removeClass('large');
 });
 $('#switcher-narrow').bind('click', function() {

Events

[42]

 $('body').addClass('narrow');
 $('body').removeClass('large');
 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').addClass('large');
 });
});

This is combined with a CSS rule for the narrow class:

body.narrow .chapter {
 width: 400px;
}

Now, after clicking the Narrow Column button, its corresponding CSS is applied
and the text gets laid out differently as shown in the following figure:

Clicking Default removes both class names from the <body> tag, returning the page
to its initial rendering.

Chapter 3

[43]

Event handler context
Our switcher is behaving correctly, but we are not giving the user any feedback
about which button is currently active. Our approach for handling this will be to
apply the selected class to the button when it is clicked, and remove this class
from the other buttons. The selected class simply makes the button's text bold:

.selected {
 font-weight: bold;
}

We could accomplish this class modification as we do above, by referring to each
button by ID and applying or removing classes as necessary, but instead we'll
explore a more elegant and scalable solution that exploits the context in which
event handlers run.

When any event handler is triggered, the keyword this refers to the DOM element
to which the behavior was attached. Earlier we noted that the $() factory function
could take a DOM element as its argument; this is one of the key reasons that facility
is available. By writing $(this) within the event handler, we create a jQuery object
corresponding to the element, and can act on it just as if we had located it with a
CSS selector.

With this in mind, we can write:

$(this).addClass('selected');

Placing this line in each of the three handlers will add the class when a button
is clicked. To remove the class from the other buttons, we can take advantage of
jQuery's implicit iteration feature, and write:

$('#switcher .button').removeClass('selected');

This line removes the class from every button inside the style switcher. So, placing
these in the correct order, we have the code as:

$(document).ready(function() {
 $('#switcher-default').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').removeClass('large');
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
 $('#switcher-narrow').bind('click', function() {
 $('body').addClass('narrow');
 $('body').removeClass('large');
 $('#switcher .button').removeClass('selected');

Events

[44]

 $(this).addClass('selected');
 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass('narrow');
 $('body').addClass('large');
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Now the style switcher gives appropriate feedback as shown in the following figure:

Generalizing the statements by using the handler context allows us to be yet more
efficient. We can factor the highlighting routine out into a separate handler, as shown
in the following code, because it is the same for all three buttons:

 $(document).ready(function() {
 $('#switcher-default').bind('click', function() {
 $('body').removeClass('narrow').removeClass('large');
 });
 $('#switcher-narrow').bind('click', function() {
 $('body').addClass('narrow').removeClass('large');
 });
 $('#switcher-large').bind('click', function() {

Chapter 3

[45]

 $('body').removeClass('narrow').addClass('large');
 });

 $('#switcher .button').bind('click', function() {
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

This optimization takes advantage of the three jQuery features we have discussed.
First, implicit iteration is once again useful when we bind the same click handler
to each button with a single call to .bind(). Second, behavior queuing allows us
to bind two functions to the same click event, without the second overwriting the
first. Lastly, we're using jQuery's chaining capabilities to collapse the adding and
removing of classes into a single line of code each time.

Further consolidation
The code optimization we've just completed is an example of refactoring—modifying
existing code to perform the same task in a more efficient or elegant way. To explore
further refactoring opportunities, let's look at the behaviors we have bound to each
button. The .removeClass() method's parameter is optional; when omitted, it
removes all classes from the element. We can streamline our code a bit by exploiting
this as follows:

$(document).ready(function() {
 $('#switcher-default').bind('click', function() {
 $('body').removeClass();

 });
 $('#switcher-narrow').bind('click', function() {
 $('body').removeClass().addClass('narrow');

 });
 $('#switcher-large').bind('click', function() {
 $('body').removeClass().addClass('large');

 });

 $('#switcher .button').bind('click', function() {
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Note that the order of operations has changed a bit to accommodate our more
general class removal; we need to execute .removeClass() first so that it doesn't
undo the .addClass() we perform in the same breath.

Events

[46]

We can only safely remove all classes because we are in charge of the
HTML in this case. When we are writing code for reuse (such as for a
plugin), we need to respect any classes that might be present and leave
them intact.

Now we are executing some of the same code in each of the buttons' handlers. This
can be easily factored out into our general button click handler:

$(document).ready(function() {
 $('#switcher .button').bind('click', function() {
 $('body').removeClass();
 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });

 $('#switcher-narrow').bind('click', function() {
 $('body').addClass('narrow');
 });
 $('#switcher-large').bind('click', function() {
 $('body').addClass('large');
 });
});

Note that we need to move the general handler above the specific ones now. The
.removeClass() needs to happen before the .addClass(), and we can count on
this because jQuery always triggers event handlers in the order in which they
were registered.

Finally, we can get rid of the specific handlers entirely by once again exploiting
event context. Since the context keyword this gives us a DOM element rather than a
jQuery object, we can use native DOM properties to determine the ID of the element
that was clicked. We can thus bind the same handler to all the buttons, and within
the handler perform different actions for each button:

$(document).ready(function() {
 $('#switcher .button').bind('click', function() {
 $('body').removeClass();
 if (this.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (this.id == 'switcher-large') {
 $('body').addClass('large');
 }

 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Chapter 3

[47]

Shorthand events
Binding a handler for an event (like a simple click event) is such a common task
that jQuery provides an even terser way to accomplish it; shorthand event methods
work in the same way as their .bind() counterparts with a couple fewer keystrokes.

For example, our style switcher could be written using .click() instead of .bind()
as follows:

$(document).ready(function() {
 $('#switcher .button').click(function() {

 $('body').removeClass();
 if (this.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (this.id == 'switcher-large') {
 $('body').addClass('large');
 }

 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 });
});

Shorthand event methods such as this exist for all standard DOM events:

blur

change

click

dblclick

error

focus

keydown

keypress

keyup

load

mousedown

mousemove

mouseout

mouseover

mouseup

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Events

[48]

resize

scroll

select

submit

unload

Each shortcut method binds a handler to the event with the corresponding name.

Compound events
Most of jQuery's event-handling methods correspond directly to native JavaScript
events. A handful, however, are custom handlers added for convenience and
cross-browser optimization. One of these, the .ready() method, we have discussed
in detail already. The .toggle() and .hover() methods are two more custom
event handlers; they are both referred to as compound event handlers because
they intercept combinations of user actions, and respond to them using more than
one function.

Showing and hiding advanced features
Suppose that we wanted to be able to hide our style switcher when it is not
needed. One convenient way to hide advanced features is to make them collapsible.
We will allow one click on the label to hide the buttons, leaving the label alone.
Another click on the label will restore the buttons. We need another class to handle
the hidden buttons:

.hidden {
 display: none;
}

We could implement this feature by storing the current state of the buttons in a
variable, and checking its value each time the label is clicked to know whether to
add or remove the hidden class on the buttons. We could also directly check for
the presence of the class on a button, and use this information to decide what to do.
Instead, jQuery provides the .toggle() method, which performs this housekeeping
task for us.

There are in fact two .toggle() methods defined by jQuery. For
information on the effect method of this name (which is distinguished
by different argument types), see: http://docs.jquery.com/
Effects/toggle

•

•

•

•

•

Chapter 3

[49]

The .toggle() event method takes two or more arguments, each of which is a
function. The first click on the element causes the first function to execute, the second
click triggers the second function, and so forth. Once each function has been invoked,
the cycle begins again from the first function. With .toggle(), we can implement
our collapsible style switcher quite easily:

$(document).ready(function() {
 $('#switcher h3').toggle(function() {
 $('#switcher .button').addClass('hidden');
 }, function() {
 $('#switcher .button').removeClass('hidden');
 });
});

After the first click, the buttons are all hidden:

And a second click returns them to visibility:

Once again we rely on implicit iteration; this time, to hide all the buttons in one fell
swoop without requiring an enclosing element.

For this specific case, jQuery provides another mechanism for the collapsing we are
performing. We can use the .toggleClass() method to automatically check for the
presence of the class before applying or removing it:

$(document).ready(function() {
 $('#switcher h3').click(function() {
 $('#switcher .button').toggleClass('hidden');
 });
});

In this case, .toggleClass() is probably the more elegant solution, but .toggle()
is a more versatile way to perform two or more different actions in alternation.

Events

[50]

Highlighting clickable items
In illustrating the ability of the click event to operate on normally non-clickable
page elements, we have crafted an interface that gives few hints that the
buttons—actually just <div> elements—are actually live parts of the page, awaiting
user interaction. To remedy this, we can give the buttons a rollover state, making it
clear that they interact in some way with the mouse:

#switcher .hover {
 cursor: pointer;
 background-color: #afa;
}

The CSS specification includes a pseudo-class called :hover, which allows a stylesheet
to affect an element's appearance when the user's mouse cursor hovers over it. In
Internet Explorer 6, this capability is restricted to link elements, so we can't use it
for other items in cross-browser code. Instead, jQuery allows us to use JavaScript to
change an element's styling—and indeed, perform any arbitrary action—both when
the mouse cursor enters the element and when it leaves the element.

The .hover() method takes two function arguments, just as in our .toggle()
example above. In this case, the first function will be executed when the mouse cursor
enters the selected element, and the second is fired when the cursor leaves. We can
modify the classes applied to the buttons at these times to achieve a rollover effect:

$(document).ready(function() {
 $('#switcher .button').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 });
});

We once again use implicit iteration and event context for short, simple code.
Now when hovering over any button, we see our class applied as shown in the
following screenshot:

Chapter 3

[51]

The use of .hover() also means we avoid headaches caused by event propagation
in JavaScript. To understand this, we need to take a look at how JavaScript decides
which element gets to handle a given event.

The journey of an event
When an event occurs on a page, an entire hierarchy of DOM elements gets a chance
to handle the event. Consider a page model like this:

<div class="foo">

 The quick brown fox jumps over the lazy dog.

 <p>
 How razorback-jumping frogs can level six piqued gymnasts!
 </p>
</div>

We then visualize the code as a set of nested elements as shown in the
following figure:

<div>

<a> <p>

For any event, there are multiple elements that could logically be responsible for
reacting. When the link on this page is clicked, for example, the <div>, , and
<a> all should get the opportunity to respond to the click. After all, the three are all
under the user's mouse cursor at the time. The <p> element, on the other hand, is not
part of this interaction at all.

Events

[52]

One strategy for allowing multiple elements to respond to a click is called event
capturing. With event capturing, the event is first given to the most all-encompassing
element, and then to successively more specific ones. In our example, this means that
first the <div> gets passed the event, then the , and finally the <a>.

<div>

<a> <p>

Capturing

Technically, in browser implementations of event capturing, specific
elements register to listen for events that occur among their descendants.
The approximation provided here is close enough for our needs.

The opposite strategy is called event bubbling. The event gets sent to the most
specific element, and after this element has an opportunity to react, the event
bubbles up to more general elements. In our example, the <a> would be handed
the event first, and then the and <div> in that order.

<div>

<a> <p>

Bubbling

Unsurprisingly, different browser developers originally decided on different models
for event propagation. The DOM standard that eventually developed thus specified
that both strategies should be used: first the event is captured from general elements
to specific ones, and then the event bubbles back up to the top of the DOM tree.
Event handlers can be registered for either part of the process.

Not all browsers have been updated to match this new standard, and in those that
support capturing it typically must be specifically enabled. To provide cross-browser
consistency, therefore, jQuery always registers event handlers for the bubbling phase
of the model. We can always assume that the most specific element will get the first
opportunity to respond to any event.

Chapter 3

[53]

Side effects of event bubbling
Event bubbling can cause unexpected behavior, especially when the wrong element
responds to a mouseover or mouseout. Consider a mouseout event handler attached
to the <div> in our example. When the user's mouse cursor exits the <div>, the
mouseout handler is run as anticipated. Since this is at the top of the hierarchy,
no other elements get the event. On the other hand, when the cursor exits the <a>
element, a mouseout event is sent to that. This event will then bubble up to the
 and then to the <div>, firing the same event handler. This bubbling sequence
is likely not desired; for the buttons in our style switcher example, it could mean the
highlight was turned off prematurely.

The .hover() method is aware of these bubbling issues, and when we use that
method to attach events, we can ignore the problems caused by the wrong element
getting a mouseover or mouseout event. This makes .hover() a very attractive
alternative to binding the individual mouse events.

If action only needs to be taken when the mouse enters or leaves
an element, but not both, we can bind jQuery's mouseenter and
mouseleave events, which also circumvent bubbling concerns. These
events are paired so often, however, that .hover() is generally the
right choice.

The mouseout scenario just described illustrates the need to constrain the scope of
an event. While .hover() handles this specific case, we will encounter other
situations in which we need to limit an event spatially (preventing the event from
being sent to certain elements) or temporally (preventing the event from being sent
at certain times).

Altering the journey: the event object
We have already seen one situation in which event bubbling can cause problems.
To show a case in which .hover() does not help our cause, we'll alter the collapsing
behavior we implemented earlier.

Suppose we wish to expand the clickable area that triggers the collapsing or
expanding of the style switcher. One way to do this is to move the event handler
from the label, <h3>, to its containing <div> element:

$(document).ready(function() {
 $('#switcher').click(function() {
 $('#switcher .button').toggleClass('hidden');
 });
});

Events

[54]

This alteration makes the entire area of the style switcher clickable to toggle its
visibility. The downside is that clicking on a button also collapses the style switcher
after the style on the content has been altered. This is due to event bubbling;
the event is first handled by the buttons, then passed up to the DOM tree until it
reaches the <div id="switcher">, where our new handler is activated and hides
the buttons.

To solve this problem, we need access to the event object. This is a JavaScript
construct that is passed to each element's event handler when it is invoked. It
provides information about the event, such as where the mouse cursor was at the
time of the event. It also provides some methods that can be used to affect the
progress of the event through the DOM.

To use the event object in our handlers, we only need to add a parameter to
the function:

$(document).ready(function() {
 $('#switcher').click(function(event) {

 $('#switcher .button').toggleClass('hidden');
 });
});

Event targets
Now we have the event object available to us as the variable event within our
handler. The property event.target can be helpful in controlling where an event
takes effect. This property is a part of the DOM API, but is not implemented in all
browsers; jQuery extends the event object as necessary to provide the property in
every browser. With .target, we can determine which element in the DOM was the
first to receive the event—that is, in the case of a click event, the actual item clicked
on. Remembering that this gives us the DOM element handling the event, we can
write the following code:

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (event.target == this) {

 $('#switcher .button').toggleClass('hidden');
 }

 });
});

Chapter 3

[55]

This code ensures that the item clicked on was <div id="switcher">, not one of
its sub‑elements. Now clicking on buttons will not collapse the style switcher, and
clicking on the switcher's background will. However, clicking on the label, <h3>, now
does nothing, because it too is a sub‑element. Instead of placing this check here, we
can modify the behavior of the buttons to achieve our goals.

Stopping event propagation
The event object provides the .stopPropagation() method, which can halt the
bubbling process completely for the event. Like .target, this method is a plain
JavaScript feature, but cannot be safely used across all browsers. As long as we
register all of our event handlers using jQuery, though, we can use it with impunity.

We'll remove the event.target == this check we just added, and instead add
some code in our buttons' click handlers:

$(document).ready(function() {
 $('#switcher .button').click(function(event) {

 $('body').removeClass();
 if (this.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (this.id == 'switcher-large') {
 $('body').addClass('large');
 }

 $('#switcher .button').removeClass('selected');
 $(this).addClass('selected');
 event.stopPropagation();

 });
});

As before, we need to add a parameter to the function we're using as the click
handler, so we have access to the event object. Then we simply call event.
stopPropagation() to prevent any other DOM element from responding to
the event. Now our click is handled by the buttons, and only the buttons; clicks
anywhere else on the style switcher will collapse or expand it.

Events

[56]

Default actions
Were our click event handler registered on a link element (<a>) rather than a
generic <div>, we would face another problem. When a user clicks on a link, the
browser loads a new page. This behavior is not an event handler in the same sense
as the ones we have been discussing; instead, this is the default action for a click
on a link element. Similarly, when the Enter key is pressed while the user is editing
a form, the submit event is triggered on the form, but then the form submission
actually occurs after this.

If these default actions are undesired, calling .stopPropagation() on the event
will not help. These actions occur nowhere in the normal flow of event propagation.
Instead, the .preventDefault() method will serve to stop the event in its tracks
before the default action is triggered.

Calling .preventDefault() is often useful after we have done some
tests on the environment of the event. For example, during a form
submission we might wish to check that required fields are filled in, and
prevent the default action only if they are not. We'll see this in action in
Chapter 8.

Event propagation and default actions are independent mechanisms; either can be
stopped while the other still occurs. If we wish to halt both, we can return false
from our event handler, which is a shortcut for calling both .stopPropagation()
and .preventDefault() on the event.

Event delegation
Event bubbling isn't always a hindrance; we can often use it to great benefit. One
great technique that exploits bubbling is called event delegation. With it, we can
use an event handler on a single element to do the work of many.

In jQuery 1.3, a new pair of methods, .live() and .die(), have been
introduced. These methods perform the same tasks as .bind() and
.unbind(), but behind the scenes they use event delegation to gain the
benefits we’ll describe in this section. Documentation on these methods
can be found at: http://docs.jquery.com/Events/live

In our example, there are just three <div class="button"> elements that have
attached click handlers. But what if there were many? This is more common than
one might think. Consider, for example, a large table of information in which each
row has an interactive item requiring a click handler. Implicit iteration makes
assigning all of these click handlers easy, but performance can suffer because of

Chapter 3

[57]

the looping being done internally to jQuery, and because of the memory footprint of
maintaining all the handlers.

Instead, we can assign a single click handler to an ancestor element in the DOM. An
uninterrupted click event will eventually reach the ancestor due to event bubbling,
and we can do our work there.

As an example, let's apply this technique to our style switcher (even though the
number of items does not demand the approach). As seen above, we can use the
event.target property to check what element was under the mouse cursor when
the click occurred.

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if ($(event.target).is('.button')) {
 $('body').removeClass();
 if (event.target.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (event.target.id == 'switcher-large') {
 $('body').addClass('large');
 }

 $('#switcher .button').removeClass('selected');
 $(event.target).addClass('selected');
 event.stopPropagation();
 }
 });
});

We've used a new method here, called .is(). This method accepts the selector
expressions we investigated in the previous chapter, and tests the current jQuery
object against the selector. If at least one element in the set is matched by the selector,
.is() returns true. In this case, $(event.target).is('.button') asks whether
the element clicked has a class of button assigned to it. If so, we proceed with the
code from before, with one significant alteration: the keyword this now refers to
<div id="switcher">, so every time we are interested in the clicked button we
must now refer to it with event.target.

We can also test for the presence of a class on an element with a shortcut
method, .hasClass(). The .is() method is more flexible, however,
and can test any selector expression.

Events

[58]

We have an unintentional side-effect from this code, however. When a button
is clicked now, the switcher collapses, as it did before we added the call to
.stopPropagation(). The handler for the switcher visibility toggle is now bound
to the same element as the handler for the buttons, so halting the event bubbling
does not stop the toggle from being triggered. To sidestep this issue, we can
remove the .stopPropagation() call and instead add another .is() test:

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 });
});

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if ($(event.target).is('.button')) {
 $('body').removeClass();
 if (event.target.id == 'switcher-narrow') {
 $('body').addClass('narrow');
 }
 else if (event.target.id == 'switcher-large') {
 $('body').addClass('large');
 }

 $('#switcher .button').removeClass('selected');
 $(event.target).addClass('selected');
 }
 });
});

This example is a bit overcomplicated for its size, but as the number of elements with
event handlers increases, event delegation is the right technique to use.

Event delegation is also useful in other situations we'll see later, such
as when new elements are added by DOM manipulation methods
(Chapter 5) or AJAX routines (Chapter 6).

Removing an event handler
There are times when we will be done with an event handler we previously
registered. Perhaps the state of the page has changed such that the action no
longer makes sense. It is typically possible to handle this situation with conditional
statements inside our event handlers, but it may be more elegant to unbind the
handler entirely.

Chapter 3

[59]

Suppose that we want our collapsible style switcher to remain expanded whenever
the page is not using the normal style. While the Narrow Column or Large Print
button is selected, clicking the background of the style switcher should do nothing.
We can accomplish this by calling the .unbind() method to remove the collapsing
handler when one of the non-default style switcher buttons is clicked.

$(document).ready(function() {
 $('#switcher').click(function(event) {
 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 });

 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').unbind('click');
 });
});

Now when a button such as Narrow Column is clicked, the click handler on the
style switcher <div> is removed, and clicking the background of the box no longer
collapses it. However, the button doesn't work anymore! It is attached to the click
event of the style switcher <div> as well because we rewrote the button-handling
code to use event delegation. This means that when we call $('#switcher').
unbind('click'), both behaviors are removed.

Event namespacing
We need to make our .unbind() call more specific, so that it does not remove both
of the click handlers we have registered. One way of doing this is to use event
namespacing. We can introduce additional information when an event is bound
that allows us to identify that particular handler later. To use namespacing, we
need to return to the non-shorthand method of binding event handlers, the .bind()
method itself.

The first parameter we pass to .bind() is the name of the JavaScript event we
want to watch for. We can use a special syntax here, though, that allows us to
subcategorize the event.

$(document).ready(function() {
 $('#switcher').bind('click.collapse', function(event) {

 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 });

Events

[60]

 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').unbind('click.collapse');

 });
});

The .collapse suffix is invisible to the event handling system; click events are
handled by this function, just as if we wrote .bind('click'). However, the addition
of the namespace means that we can unbind just this handler, without affecting the
separate click handler we wrote for the buttons.

There are other ways of making our .unbind() call more specific, as we
will see in a moment. However, event namespacing is a useful tool in our
arsenal. It is especially handy in the creation of plugins, as we'll see in
Chapter 11.

Rebinding events
Now clicking the Narrow Column or Large Print button causes the style switcher
collapsing functionality to be disabled. However, we want the behavior to return
when the Default button is pressed. To do this, we will need to rebind the handler
whenever Default is clicked.

First, we should give our handler function a name so that we can use it more than
once without repeating ourselves:

$(document).ready(function() {
 var toggleStyleSwitcher = function(event) {
 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 };

 $('#switcher').bind('click.collapse', toggleStyleSwitcher);
});

Note that we are here using a new syntax for defining a function. Rather than
defining the function by leading with the function keyword, we assign an
anonymous function to a local variable. This is a stylistic choice to make our event
handlers and other function definitions resemble each other more closely; the two
syntaxes are functionally equivalent.

Also, recall that .bind() takes a function reference as its second argument. It is
important to remember, when using a named function here, to omit parentheses
after the function name; parentheses would cause the function to be called, rather
than referenced.

Chapter 3

[61]

Now that the function has a name, we can bind it again later without repeating the
function definition:

$(document).ready(function() {
 var toggleStyleSwitcher = function(event) {
 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 };

 $('#switcher').bind('click.collapse', toggleStyleSwitcher);

 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').unbind('click.collapse');
 });
 $('#switcher-default').click(function() {
 $('#switcher')
 .bind('click.collapse', toggleStyleSwitcher);

 });
});

Now the toggle behavior is bound when the document is loaded, unbound when
Narrow Column or Large Print is clicked, and rebound when Normal is clicked
after that.

We have sidestepped a potential pitfall here. Remember that when a handler is
bound to an event in jQuery, previous handlers remain in effect. This would seem
to mean that if Normal was clicked multiple times in succession, many copies of the
toggleStyleSwitcher handler would be bound, causing strange behavior when
the <div> was clicked. Indeed, if we had used anonymous functions throughout our
example, this would be the case. But since we gave the function a name and used the
same function throughout the code, the behavior is only bound once. The .bind()
method will not attach an event handler to an element if it has already been attached.

As another benefit to naming this function, we no longer need to use namespacing.
The .unbind() method can take a function as a second argument; in this case, it
unbinds only that specific handler.

$(document).ready(function() {
 var toggleStyleSwitcher = function(event) {
 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 };

 $('#switcher').click(toggleStyleSwitcher);

Events

[62]

 $('#switcher-narrow, #switcher-large').click(function() {
 $('#switcher').unbind('click', toggleStyleSwitcher);

 });
 $('#switcher-default').click(function() {
 $('#switcher').click(toggleStyleSwitcher);

 });
});

A shortcut is also available for the situation in which we want to unbind an event
handler immediately after the first time it is triggered. This shortcut, called .one(),
is used like this:

$(document).ready(function() {
 $('#switcher').one('click', toggleStyleSwitcher);
});

This would cause the toggle action to occur only once.

Simulating user interaction
At times it is convenient to execute code that we have bound to an event, even if
the normal circumstances of the event are not occurring. For example, suppose we
wanted our style switcher to begin in its collapsed state. We could accomplish this
by hiding buttons from within the stylesheet, or by calling the .hide() method from
a $(document).ready() handler. Another way would be to simulate a click on the
style switcher so that the toggling mechanism we've already established is triggered.

The .trigger() method allows us to do just this:

$(document).ready(function() {
 $('#switcher').trigger('click');
});

Now right when the page loads the switcher is collapsed, just as if it had been
clicked. If we were hiding content that we wanted people without JavaScript enabled
to see, this would be a reasonable way to implement graceful degradation.

Chapter 3

[63]

The .trigger() method provides the same set of shortcuts that .bind() does.
When these shortcuts are used with no arguments, the behavior is to trigger the
action rather than bind it:

$(document).ready(function() {
 $('#switcher').click();
});

Keyboard events
As another example, we can add keyboard shortcuts to our style switcher. When the
user types the first letter of one of the display styles, we will have the page behave as
if the corresponding button were clicked. To implement this feature, we will need to
explore keyboard events, that behave a bit differently from mouse events.

There are two types of keyboard events: those that react to the keyboard directly
(keyup and keydown) and those that react to text input (keypress). A single
character entry event could correspond to several keys, for example when the Shift
key in combination with the X key creates the capital letter X. While the specifics
of implementation differ from one browser to the next (unsurprisingly), a safe rule
of thumb is as follows: if you want to know what key the user pushed, you should
observe the keyup or keydown event; if you want to know what character ended up
on the screen as a result, you should observe the keypress event. For this feature, we
just want to know when the user presses the D, N, or L key, so we will use keyup.

Next, we need to determine which element should watch for the event. This is a little
less obvious than with mouse events, where we have an obvious mouse cursor to tell
us about the event's target. Instead, the target of a keyboard event is the element that
currently has the keyboard focus. The element with focus can be changed in several
ways, including mouse clicks and presses of the Tab key. Not every element can get
the focus, either; only items that have default keyboard-driven behaviors such as
form fields, links, and elements with a .tabIndex property are candidates.

In this case, we don't really care what element has the focus; we want our switcher
to work whenever the user presses one of the keys. Event bubbling will once again
come in handy, as we can bind our keyup event to the document element and have
assurance that eventually, any key event will bubble up to us.

Events

[64]

Finally, we will need to know which key was pressed when our keyup handler gets
triggered. We can inspect the event object for this. The .keyCode property of the
event contains an identifier for the key that was pressed, and for alphabetic keys, this
identifier is the ASCII value of the uppercase letter. So we can switch on this value
and trigger the appropriate button click:

$(document).ready(function() {
 $(document).keyup(function(event) {
 switch (String.fromCharCode(event.keyCode)) {
 case 'D':
 $('#switcher-default').click();
 break;
 case 'N':
 $('#switcher-narrow').click();
 break;
 case 'L':
 $('#switcher-large').click();
 break;
 }
 });
});

Presses of these three keys now simulate mouse clicks on the buttons—provided that
the key event is not interrupted by features such as Firefox's "search for text when I
start typing."

As an alternative to using .trigger() to simulate this click, let's explore how to
factor out code into a function so that more than one handler can call it—in this case,
both click and keyup. While not necessary in this case, this technique can be useful
in eliminating code redundancy.

$(document).ready(function() {
 // Enable hover effect on the style switcher buttons.
 $('#switcher .button').hover(function() {
 $(this).addClass('hover');
 }, function() {
 $(this).removeClass('hover');
 });

 // Allow the style switcher to expand and collapse.
 var toggleStyleSwitcher = function(event) {
 if (!$(event.target).is('.button')) {
 $('#switcher .button').toggleClass('hidden');
 }
 };
 $('#switcher').click(toggleStyleSwitcher);

Chapter 3

[65]

 // Simulate a click so we start in a collaped state.
 $('#switcher').click();

 // The setBodyClass() function changes the page style.
 // The style switcher state is also updated.
 var setBodyClass = function(className) {
 $('body').removeClass();
 $('body').addClass(className);
 $('#switcher .button').removeClass('selected');
 $('#switcher-' + className).addClass('selected');

 if (className == 'default') {
 $('#switcher').click(toggleStyleSwitcher);
 }
 else {
 $('#switcher').unbind('click', toggleStyleSwitcher);
 $('#switcher .button').removeClass('hidden');
 }
 };

 // Invoke setBodyClass() when a button is clicked.
 $('#switcher').click(function(event) {
 if ($(event.target).is('.button')) {
 if (event.target.id == 'switcher-default') {
 setBodyClass('default');
 }
 if (event.target.id == 'switcher-narrow') {
 setBodyClass('narrow');
 }
 else if (event.target.id == 'switcher-large') {
 setBodyClass('large');
 }
 }
 });

 // Invoke setBodyClass() when a key is pressed.
 $(document).keyup(function(event) {
 switch (String.fromCharCode(event.keyCode)) {
 case 'D':
 setBodyClass('default');
 break;
 case 'N':
 setBodyClass('narrow');
 break;
 case 'L':
 setBodyClass('large');
 break;
 }
 });
});

Events

[66]

Summary
The abilities we've discussed in this chapter allow us to:

Let multiple JavaScript libraries coexist on a single page
using .noConflict().
Use mouse event handlers to react to a user's click on a page element
with .bind() or .click().
Observe event context to perform different actions depending on the page
element clicked, even when the handler is bound to several elements.
Alternately expand and collapse a page element by using .toggle().
Highlight page elements under the mouse cursor by using .hover().
Influence event propagation to determine which elements get to respond to
an event by using .stopPropagation() and .preventDefault().
Implement event delegation to reduce the number of bound event handlers
necessary on a page.
Call .unbind() to remove an event handler we're finished with.
Segregate related event handlers with event namespacing so they can be
acted on as a group.
Cause bound event handlers to execute with .trigger().
Use keyboard event handlers to react to a user's key press with .keyup().

Used together, we can use these capabilities to build quite interactive pages. In
the next chapter, we'll learn how to provide visual feedback to the user during
these interactions.

•

•

•

•

•

•

•

•

•

•

•

Effects
If actions speak louder than words, then in the JavaScript world, effects make actions
speak louder still. With jQuery, we can easily add impact to our actions through a set
of simple visual effects, and even craft our own, more sophisticated animations.

jQuery effects certainly add flair, as is evident when we see elements gradually slide
into view instead of appearing all at once. However, they can also provide important
usability enhancements that help orient the user when there is some change on a
page (especially common in AJAX applications). In this chapter, we will explore a
number of these effects and combine them in interesting ways.

Inline CSS modification
Before we jump into the nifty jQuery effects, a quick look at CSS is in order. In
previous chapters we have been modifying a document's appearance by defining
styles for classes in a separate stylesheet and then adding or removing those classes
with jQuery. Typically, this is the preferred process for injecting CSS into HTML
because it respects the stylesheet's role in dealing with the presentation of a page.
However, there may be times when we need to apply styles that haven't been, or
can't easily be, defined in a stylesheet. Fortunately, jQuery offers the .css() method
for such occasions.

This method acts as both a getter and a setter. To get the value of a style property, we
simply pass the name of the property as a string, like .css('backgroundColor').
Multi-word properties can be interpreted by jQuery when hyphenated, as they are
in CSS notation (background-color), or camel-cased, as they are in DOM notation
(backgroundColor). For setting style properties, the .css() method comes in two
flavors—one that takes a single style property and its value and one that takes a map
of property-value pairs:

.css('property','value')

.css({property1: 'value1', 'property-2': 'value2'})

Effects

[68]

Experienced JavaScript developers will recognize these jQuery maps as JavaScript
object literals.

Numeric values do not take quotation marks while string values do.
However, when using the map notation, quotation marks are not required
for property names if they are written in camel-cased DOM notation.

We use the .css() method the same way we've been using .addClass()
—by chaining it to a selector and binding it to an event. To demonstrate this,
we'll return to the style switcher example of Chapter 3, but with different HTML:

<div id="switcher">
 <div class="label">Text Size</div>
 <button id="switcher-default">Default</button>
 <button id="switcher-large">Bigger</button>
 <button id="switcher-small">Smaller</button>
</div>
<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty,
 and dedicated to the proposition that all men are created
 equal.</p>
</div>

By linking to a stylesheet with a few basic style rules, the page can initially look like
the following screenshot:

In this version of the style switcher, we're using <button> elements. Clicking
on the Bigger and Smaller buttons will increase or decrease the text size of
<div class="speech">, while clicking on the Default button will reset
<div class="speech"> to its original text size.

Chapter 4

[69]

If all we wanted were to change the font size a single time to a predetermined value,
we could still use the .addClass() method. But let's suppose that now we want
the text to continue increasing or decreasing incrementally each time the respective
button is clicked. Although it might be possible to define a separate class for each
click and iterate through them, a more straightforward approach would be to
compute the new text size each time by getting the current size and increasing it by
a set factor (for example, 40%).

Our code will start with the $(document).ready() and $('#switcher-large').
click() event handlers:

$(document).ready(function() {
 $('#switcher-large').click(function() {
 });
});

Next, the font size can be easily discovered by using the .css() method: $('div.
speech').css('fontSize'). However, because the returned value will include
a trailing 'px', we'll need to strip that part in order to perform calculations with
the value. Also, when we plan to use a jQuery object more than once, it's generally
a good idea to cache the selector by storing the resulting jQuery object in a variable
as well.

$(document).ready(function() {
 var $speech = $('div.speech');

 $('#switcher-large').click(function() {
 var num = parseFloat($speech.css('fontSize'), 10);

 });
});

The first line inside $(document).ready() now stores a variable for <div
class="speech"> itself. Notice the use of a $ in the variable name, $speech. Since
$ is a legal character in JavaScript variables, we can use it as a reminder that the
variable is storing a jQuery object.

Inside the .click() handler, we use parseFloat() to get the font size property's
number only. The parseFloat() function looks at a string from left to right until
it encounters a non-numeric character. The string of digits is converted into a
floating-point (decimal) number. For example, it would convert the string '12' to
the number 12. In addition, it strips non-numeric trailing characters from the string,
so '12px' becomes 12 as well. If the string begins with a non-numeric character,
parseFloat() returns NaN, which stands for Not a Number. The second argument
for parseFloat() allows us to ensure that the number is interpreted as base-10
instead of octal or some other representation.

Effects

[70]

All that's left to do, if we are increasing by 40%, is to multiply num by 1.4 and then
set the font size by concatenating num and 'px':

$(document).ready(function() {
 var $speech = $('div.speech');
 $('#switcher-large').click(function() {
 var num = parseFloat($speech.css('fontSize'), 10);
 num *= 1.4;

 $speech.css('fontSize', num + 'px');

 });
});

The equation num *= 1.4 is shorthand for num = num * 1.4. We can use
the same type of shorthand for the other basic mathematical operations,
as well: addition, num += 1.4; subtraction, num -= 1.4; division,
num /= 1.4; and modulus (division remainder), num %= 1.4.

Now when a user clicks on the Bigger button, the text becomes larger. Another click,
and the text becomes larger still, as shown in the following screenshot:

To get the Smaller button to decrease the font size, we will divide rather than
multiply—num /= 1.4. Better still, we'll combine the two into a single .click()
handler on all <button> elements within <div id="switcher">. Then, after finding
the numeric value, we can either multiply or divide depending on the ID of the
button that was clicked. Here is what that code looks like now:

$(document).ready(function() {
 var $speech = $('div.speech');
 $('#switcher button').click(function() {

 var num = parseFloat($speech.css('fontSize'), 10);
 if (this.id == 'switcher-large') {

 num *= 1.4;

 } else if (this.id == 'switcher-small') {

Chapter 4

[71]

 num /= 1.4;

 }

 $speech.css('fontSize', num + 'px);
 });
});

Recall from Chapter 3 that we can access the id property of the DOM element
referred to by this, which appears here inside the if and else if statements.
Here, it is more efficient to use this than to create a jQuery object just to test the
value of a property.

It's also nice to have a way to return the font size to its initial value. To allow the
user to do so, we can simply store the font size in a variable immediately when the
DOM is ready. We can then use this value whenever the Default button is clicked.
To handle this click, we could add another else if statement. However, perhaps
a switch statement would be more appropriate.

$(document).ready(function() {
 var $speech = $('div.speech');
 var defaultSize = $speech.css('fontSize');
 $('#switcher button').click(function() {
 var num = parseFloat($speech.css('fontSize'), 10);
 switch (this.id) {
 case 'switcher-large':
 num *= 1.4;
 break;
 case 'switcher-small':
 num /= 1.4;
 break;
 default:
 num = parseFloat(defaultSize, 10);
 }
 $speech.css('fontSize', num + 'px');
 });
});

Here we're still checking the value of this.id and changing the font size based on it,
but if its value is neither 'switcher-large' nor 'switcher-small' it will default to
the initial font size.

Effects

[72]

Basic hide and show
The basic .hide() and .show() methods, without any parameters, can be thought
of as smart shorthand methods for .css('display','string'), where 'string' is
the appropriate display value. The effect, as might be expected, is that the matched
set of elements will be immediately hidden or shown, with no animation.

The .hide() method sets the inline style attribute of the matched set of elements
to display:none. The smart part here is that it remembers the value of the display
property—typically block or inline—before it was changed to none. Conversely,
the .show() method restores the matched set of elements to whatever visible display
property they had before display:none was applied.

For more information about the display property and how its values are
visually represented in a web page, visit the Mozilla Developer Center at
https://developer.mozilla.org/en/CSS/display/ and view
examples at https://developer.mozilla.org/samples/cssref/
display.html.

This feature of .show() and .hide() is especially helpful when hiding elements
whose default display property is overridden in a stylesheet. For example, the
element has the property display:block by default, but we might want to change it
to display:inline for a horizontal menu. Fortunately, using the .show() method
on a hidden element such as one of these tags would not merely reset it to its
default display:block, because that would put the on its own line. Instead,
the element is restored to its previous display:inline state, thus preserving the
horizontal design.

A quick demonstration of these two methods can be set up by adding a second
paragraph and a "read more" link after the first paragraph in the example HTML:

<div id="switcher">
 <div class="label">Text Size</div>
 <button id="switcher-default">Default</button>
 <button id="switcher-large">Bigger</button>
 <button id="switcher-small">Smaller</button>
</div>
<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty,

Chapter 4

[73]

 and dedicated to the proposition that all men are
 created equal.
 </p>
 <p>Now we are engaged in a great civil war, testing whether
 that nation, or any nation so conceived and so dedicated,
 can long endure. We are met on a great battlefield of
 that war. We have come to dedicate a portion of that
 field as a final resting-place for those who here gave
 their lives that the nation might live. It is altogether
 fitting and proper that we should do this. But, in a
 larger sense, we cannot dedicate, we cannot consecrate,
 we cannot hallow, this ground.
 </p>
 read more
</div>

When the DOM is ready, the second paragraph is hidden:

$(document).ready(function() {
 $('p:eq(1)').hide();
});

And the speech looks like the following screenshot:

Then, when the user clicks on read more at the end of the first paragraph, that link is
hidden and the second paragraph is shown:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('a.more').click(function() {
 $('p:eq(1)').show();
 $(this).hide();
 return false;
 });
});

Effects

[74]

Note the use of return false to keep the link from activating its default action.
Now the speech looks like this:

The .hide() and .show() methods are quick and useful, but they aren't very flashy.
To add some flair, we can give them a speed.

Effects and speed
When we include a speed (or, more precisely, a duration) with .show() or
.hide(), it becomes animated—occurring over a specified period of time. The
.hide('speed') method, for example, decreases an element's height, width,
and opacity simultaneously until all three reach zero, at which point the CSS rule
display:none is applied. The .show('speed') method will increase the element's
height from top to bottom, width from left to right, and opacity from 0 to 1 until its
contents are completely visible.

Speeding in
With any jQuery effect, we can use one of three preset speeds: 'slow', 'normal',
and 'fast'. Using .show('slow') makes the show effect complete in .6 seconds,
.show('normal') in .4 seconds, and .show('fast') in .2 seconds. For even greater
precision we can specify a number of milliseconds, for example .show(850). Unlike
the speed names, the numbers are not wrapped in quotation marks.

Let's include a speed in our example when showing the second paragraph of
Lincoln's Gettysburg Address:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('a.more').click(function() {
 $('p:eq(1)').show('slow');
 $(this).hide();
 return false;
 });
});

Chapter 4

[75]

When we capture the paragraph's appearance at roughly halfway through the effect,
we see something like the following:

Fading in and fading out
While the animated .show() and .hide() methods are certainly flashy, they
may at times be too much of a good thing. Fortunately, jQuery offers a couple
other pre-built animations for a more subtle effect. For example, to have the
whole paragraph appear just by gradually increasing the opacity, we can use
.fadeIn('slow') instead:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('a.more').click(function() {
 $('p:eq(1)').fadeIn('slow');

 $(this).hide();
 return false;
 });
});

This time when we capture the paragraph's appearance halfway, it's seen as:

The difference here is that the .fadeIn() effect starts by setting the dimensions of
the paragraph so that the contents can simply fade into it. To gradually decrease the
opacity we can use .fadeOut().

Effects

[76]

Compound effects
Sometimes we have a need to toggle the visibility of elements, rather than displaying
them once as we did in the previous example. Toggling can be achieved by first
checking the visibility of the matched elements and then attaching the appropriate
method. Using the fade effects again, we can modify the example script to look
like this:

$(document).ready(function() {
 var $firstPara = $('p:eq(1)');
 $firstPara.hide();
 $('a.more').click(function() {
 if ($firstPara.is(':hidden')) {
 $firstPara.fadeIn('slow');
 $(this).text('read less');
 } else {
 $firstPara.fadeOut('slow');
 $(this).text('read more');
 }
 return false;
 });
});

As we did earlier in the chapter, we're caching our selector here to avoid repeated
DOM traversal. Notice, too, that we're no longer hiding the clicked link; instead,
we're changing the its text.

Using an if else statement is a perfectly reasonable way to toggle elements'
visibility. But with jQuery's compound effects we can leave the conditionals
out of it (although, in this example, we still need one for the link text). jQuery
provides a .toggle() method, which acts like .show() and .hide(), and like
them, can be used with a speed argument or without. The other compound method
is .slideToggle(), which shows or hides elements by gradually increasing
or decreasing their height. Here is what the script looks like when we use the
.slideToggle() method:

$(document).ready(function() {
var $firstPara = $('p:eq(1)');
 $firstPara.hide();
 $('a.more').click(function() {
 $firstPara.slideToggle('slow');

 var $link = $(this);

 if ($link.text() == "read more") {

 $link.text('read less');

 } else {

Chapter 4

[77]

 $link.text('read more');

 }

 return false;
 });
});

This time $(this) would have been repeated, so we're storing it in the $link
variable for performance and readability. Also, the conditional statement checks for
the text of the link rather than the visibility of the second paragraph, since we're only
using it to change the text.

Creating custom animations
In addition to the pre-built effect methods, jQuery provides a powerful
.animate() method that allows us to create our own custom animations with
fine-grained control. The .animate() method comes in two forms. The first takes
up to four arguments:

1.	 A map of style properties and values—similar to the .css() map discussed
earlier in this chapter

2.	 An optional speed—which can be one of the preset strings or a number
of milliseconds

3.	 An optional easing type—an advanced option discussed in Chapter 10
4.	 An optional callback function—which will be discussed later in this chapter

All together, the four arguments look like this:

.animate({property1: 'value1', property2: 'value2'},
 speed, easing, function() {
 alert('The animation is finished.');
 }
);

The second form takes two arguments, a map of properties and a map of options.

.animate({properties}, {options})

In effect, the second argument wraps up the second through fourth arguments of the
first form into another map, and adds two more options to the mix. When we adjust
the line breaks for readability, the second form looks like this:

.animate({
 property1: 'value1',
 property2: 'value2'

Effects

[78]

}, {
 duration: 'value',
 easing: 'value',
 complete: function() {
 alert('The animation is finished.');
 },
 queue: boolean,
 step: callback
});

For now we'll use the first form of the .animate() method, but we'll return to the
second form later in the chapter when we discuss queuing effects.

Toggling the fade
When we discussed compound effects, did you notice that not all methods have a
corresponding method for toggling? That's right: while the sliding methods include
.slideToggle(), there is no corresponding .fadeToggle() to go along with
.fadeIn() and .fadeOut()! The good news is that we can use the .animate()
method to easily make our own toggling fade animation. Here, we'll replace the
.slideToggle() line of the previous example with our custom animation:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('a.more').click(function() {
 $('p:eq(1)').animate({opacity: 'toggle'}, 'slow');

 var $link = $(this);
 if ($link.text() == "read more") {
 $link.text('read less');
 } else {
 $link.text('read more');
 }
 return false;
 });
});

As the example illustrates, the .animate() method provides convenient shorthand
values for CSS properties — 'show', 'hide', and 'toggle' — to ease the way when
the shorthand methods aren't quite right for the particular task.

Chapter 4

[79]

Animating multiple properties
With the .animate() method, we can modify any combination of properties
simultaneously. For example, to create a simultaneous sliding and fading effect when
toggling the second paragraph, we simply add the height property-value pair to
.animate()'s properties map:

$(document).ready(function() {
 $('p:eq(1)').hide();
 $('a.more').click(function() {
 $('p:eq(1)').animate({

 opacity: 'toggle',

 height: 'toggle'

 },

 'slow');

 var $link = $(this);
 if ($link.text() == "read more") {
 $link.text('read less');
 } else {
 $link.text('read more');
 }
 return false;
 });
});

Additionally, we have not only the style properties used for the shorthand effect
methods at our disposal, but also other properties such as: left, top, fontSize,
margin, padding, and borderWidth. Recall the script to change the text size of
the speech paragraphs. We can animate the increase or decrease in size by simply
substituting the .animate() method for the .css() method:

$(document).ready(function() {
 var $speech = $('div.speech');
 var defaultSize = $speech.css('fontSize');
 $('#switcher button').click(function() {
 var num = parseFloat($speech.css('fontSize'), 10);
 switch (this.id) {
 case 'switcher-large':
 num *= 1.4;
 break;
 case 'switcher-small':
 num /= 1.4;
 break;
 default:
 num = parseFloat(defaultSize, 10);

Effects

[80]

 }
 $speech.animate({fontSize: num + 'px'},
 'slow');
 });
});

The extra properties allow us to create much more complex effects, too. We can, for
example, move an item from the left side of the page to the right while increasing its
height by 20 pixels and changing its border width to 5 pixels.

So, let's do that with the <div id="switcher"> box. Here is what it looks like before
we animate it:

With a flexible-width layout, we need to compute the distance that the box needs to
travel before it lines up at the right side of the page. Assuming that the paragraph's
width is 100%, we can subtract the Text Size box's width from the paragraph's
width. While jQuery's .width() method would usually come in handy for such
calculations, it doesn't factor in the width of the right and left padding or the right
and left border. As of jQuery version 1.2.6, though we also have the .outerWidth()
method at our disposal. This is what we'll use here, to avoid having to add padding
and border widths as well. For the sake of this example, we'll trigger the animation
by clicking the Text Size label, just above the buttons. Here is what the code should
look like:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher.animate({left: paraWidth - switcherWidth,
 height: '+=20px', borderWidth: '5px'}, 'slow');
 });
});

Chapter 4

[81]

Note that the height property has += before the pixel value. This expression,
introduced in jQuery 1.2, indicates a relative value. So, instead of animating the
height to 20 pixels, the height is animated to 20 pixels greater than the current height.

Although this code successfully increases the height of the <div> and widens its
border, at the moment the left position cannot be changed. We still need to enable
changing its position in the CSS.

Positioning with CSS
When working with .animate(), it's important to keep in mind the limitations that
CSS imposes on the elements that we wish to change. For example, adjusting the
left property will have no effect on the matching elements unless those elements
have their CSS position set to relative or absolute. The default CSS position for all
block-level elements is static, which accurately describes how those elements will
remain if we try to move them without first changing their position value.

For more information on absolute and relative positioning, see Joe
Gillespie's article, Absolutely Relative at: http://www.wpdfd.com/
issues/78/absolutely_relative/

A peek at our stylesheet shows that we have now set <div id="switcher"> to be
relatively positioned:

 #switcher {
 position: relative;
}

With the CSS taken into account, the result of clicking on Text Size, when the
animation has completed, will look like this:

Effects

[82]

Simultaneous versus queued effects
The .animate() method, as we've just discovered, is very useful for creating
simultaneous effects in a particular set of elements. There may be times, however,
when we want to queue our effects, having them occur one after the other.

Working with a single set of elements
When applying multiple effects to the same set of elements, queuing is easily
achieved by chaining those effects. To demonstrate this queuing, we'll again move
the Text Size box to the right, increase its height and increase its border width. This
time, however, we perform the three effects sequentially, simply by placing each in
its own .animate() method and chaining the three together:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .animate({left: paraWidth - switcherWidth},

 'slow')

 .animate({height: '+=20px'}, 'slow')

 .animate({borderWidth: '5px'}, 'slow');

 });
});

Recall that chaining permits us to keep all three .animate() methods on the
same line, but here we have indented them and put each on its own line for
greater readability.

We can queue any of the jQuery effect methods, not just .animate(), by chaining
them. We can, for example, queue effects on <div id="switcher"> in the
following order:

1.	 Fade its opacity to .5 with .fadeTo().
2.	 Move it to the right with .animate().
3.	 Fade it back in to full opacity with .fadeTo().
4.	 Hide it with .slideUp().
5.	 Show it once more with .slideDown().

Chapter 4

[83]

All we need to do is chain the effects in the same order in our code:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .fadeTo('fast',0.5)

 .animate({

 'left': paraWidth - switcherWidth

 }, 'slow')

 .fadeTo('slow',1.0)

 .slideUp('slow')

 .slideDown('slow');

 });
});

But what if we want to move the <div> to the right at the same time as it fades to
half opacity? If the two animations were occurring at the same speed, we could
simply combine them into a single .animate() method. But in this example, the fade
is using the 'fast' speed while the move to the right is using the 'slow' speed.
Here is where the second form of the .animate() method comes in handy:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .fadeTo('fast',0.5)
 .animate({

 'left': paraWidth - switcherWidth

 }, {duration: 'slow', queue: false})

 .fadeTo('slow',1.0)
 .slideUp('slow')
 .slideDown('slow');
 });
});

The second argument, an options map, provides the queue option, which when set to
false makes the animation start simultaneously with the previous one.

Effects

[84]

One final observation about queuing effects on a single set of elements is that
queuing does not automatically apply to other, non-effect methods such as
.css(). So let's suppose we wanted to change the background color of
<div id="switcher"> to red after the .slideUp() but before the slideDown().
We could try doing it like this:

$(document).ready(function() {
$('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .fadeTo('fast',0.5)
 .animate({
 'left': paraWidth - switcherWidth
 }, 'slow')
 .fadeTo('slow',1.0)
 .slideUp('slow')
 .css('backgroundColor','#f00')

 .slideDown('slow');
 });
});

However, even though the background-changing code is placed at the correct
position in the chain, it occurs immediately upon the click.

One way we can add non-effect methods to the queue is to use the appropriately
named .queue() method. Here is what it would look like in our example:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .fadeTo('fast',0.5)
 .animate({
 'left': paraWidth - switcherWidth
 }, 'slow')
 .fadeTo('slow',1.0)
 .slideUp('slow')
 .queue(function() {

 $switcher

 .css('backgroundColor', '#f00')

 .dequeue();

Chapter 4

[85]

 })

 .slideDown('slow');
 });
});

When given a callback function, as it is here, the .queue() method adds the
function to the queue of effects for the matched elements. Within the function, we
set the background color to red and then add the corollary .dequeue() method.
Including this .dequeue() method allows the animation queue to pick up where it
left off and complete the chain with the following .slideDown('slow') line. If we
hadn't used .dequeue(), the animation would have stopped.

More information and examples for .queue() and .dequeue() are
available at http://docs.jquery.com/Effects.

We'll discover another way to queue non-effect methods as we examine effects with
multiple sets of elements.

Working with multiple sets of elements
Unlike with a single set of elements, when we apply effects to different sets, they
occur at virtually the same time. To see these simultaneous effects in action, we'll
slide one paragraph down while sliding another paragraph up. First, we'll add the
remaining portion of the Gettysburg Address to the HTML, dividing it into two
separate paragraphs:

<div id="switcher">
 <div class="label">Text Size</div>
 <button id="switcher-default">Default</button>
 <button id="switcher-large">Bigger</button>
 <button id="switcher-small">Smaller</button>
</div>
<div class="speech">
 <p>Fourscore and seven years ago our fathers brought forth
 on this continent a new nation, conceived in liberty, and
 dedicated to the proposition that all men are created
 equal.
 </p>
 <p>Now we are engaged in a great civil war, testing whether
 that nation, or any nation so conceived and so dedicated,
 can long endure. We are met on a great battlefield of
 that war. We have come to dedicate a portion of that
 field as a final resting-place for those who here gave

Effects

[86]

 their lives that the nation might live. It is altogether
 fitting and proper that we should do this. But, in a
 larger sense, we cannot dedicate, we cannot consecrate,
 we cannot hallow, this ground.
 </p>
 read more
 <p>The brave men, living and dead, who struggled
 here have consecrated it, far above our poor
 power to add or detract. The world will little
 note, nor long remember, what we say here, but it
 can never forget what they did here. It is for us
 the living, rather, to be dedicated here to the
 unfinished work which they who fought here have
 thus far so nobly advanced.
 </p>
 <p>It is rather for us to be here dedicated to the
 great task remaining before us—that from
 these honored dead we take increased devotion to
 that cause for which they gave the last full
 measure of devotion—that we here highly
 resolve that these dead shall not have died in
 vain—that this nation, under God, shall
 have a new birth of freedom and that government
 of the people, by the people, for the people,
 shall not perish from the earth.
 </p>
</div>

Next, to help us see what's happening during the effect, we'll give the third
paragraph a 1-pixel border and the fourth paragraph a gray background. We'll
also hide the fourth paragraph when the DOM is ready:

$(document).ready(function() {
 $('p:eq(2)').css('border', '1px solid #333');
 $('p:eq(3)').css('backgroundColor', '#ccc').hide();
});

Finally, we'll add the .click() method to the third paragraph so that when it
is clicked, the third paragraph will slide up (and out of view), while the fourth
paragraph slides down (and into view):

$(document).ready(function() {
$('p:eq(2)')
 .css('border', '1px solid #333')
 .click(function() {

Chapter 4

[87]

 $(this).slideUp('slow')

 .next().slideDown('slow');

 });

 $('p:eq(3)').css('backgroundColor', '#ccc').hide();
});

A screenshot of these two effects in mid-slide confirms that they do, indeed, occur
virtually simultaneously:

The third paragraph, which started visible, is halfway through sliding up at the
same time as the fourth paragraph, which started hidden, is halfway through
sliding down.

Callbacks
In order to allow queuing effects on different elements, jQuery provides a callback
function for each effect method. As we have seen with event handlers and with the
.queue() method, callbacks are simply functions passed as method arguments. In
the case of effects, they appear as the last argument of the method.

If we use a callback to queue the two slide effects, we can have the fourth paragraph
slide down before the third paragraph slides up. Let's first look at how to set up the
.slideDown() method with the callback:

$(document).ready(function() {
 $('p:eq(2)')
 .css('border', '1px solid #333')
 .click(function() {
 $(this).next().slideDown('slow',function() {

 // code here executes after 3rd paragraph's

 // slide down has ended

 });

 });
 $('p:eq(3)').css('backgroundColor', '#ccc').hide();
 });

Effects

[88]

We do need to be careful here, however, about what is actually going to slide up. The
context has changed for $(this) because the callback is inside the .slideDown()
method. Here, $(this) is no longer the third paragraph, as it was at the point of the
.click() method; rather, since the .slideDown() method is attached to $(this).
next(), everything within that method now sees $(this) as the next sibling, or
the fourth paragraph. Therefore, if we put $(this).slideUp('slow') inside the
callback, we would end up hiding the same paragraph that we had just made visible.

A simple way to keep the reference of $(this) stable is to store it in a variable right
away within the .click() method, like var $thirdPara = $(this).

Now $thirdPara will refer to the third paragraph, both outside and inside the
callback. Here is what the code looks like using our new variable:

$(document).ready(function() {
 var $thirdPara = $('p:eq(2)');

 $thirdPara
 .css('border', '1px solid #333')
 .click(function() {

 $(this).next().slideDown('slow',function() {
 $thirdPara.slideUp('slow');

 });
 });
 $('p:eq(3)').css('backgroundColor', '#ccc').hide();
});

Using $thirdPara inside the .slideDown() callback relies on the properties
of closures. We'll be discussing this important, yet difficult-to-master, topic in
Appendix C.

This time, a snapshot halfway through the effects will reveal that both the third and
the fourth paragraphs are visible; the fourth has finished sliding down and the third
is about to begin sliding up:

Chapter 4

[89]

Now that we've discussed callbacks, we can return to the code from earlier in this
chapter in which we queued a background-color change near the end of a series of
effects. Instead of using the .queue() method, as we did earlier, we can simply use
a callback function:

$(document).ready(function() {
 $('div.label').click(function() {
 var paraWidth = $('div.speech p').outerWidth();
 var $switcher = $(this).parent();
 var switcherWidth = $switcher.outerWidth();
 $switcher
 .fadeTo('slow',0.5)
 .animate({
 'left': paraWidth - switcherWidth
 }, 'slow')
 .fadeTo('slow',1.0)
 .slideUp('slow', function() {

 $switcher

 .css('backgroundColor', '#f00');

 })

 .slideDown('slow');
 });
});

Here again, the background color of <div id="switcher"> changes to red after it
slides up, and before it slides back down.

In a nutshell
With all the variations to consider when applying effects, it can become difficult
to remember whether the effects will occur simultaneously or sequentially. A brief
outline might help:

1.	 Effects on a single set of elements are:
simultaneous when applied as multiple properties in a single
.animate() method
queued when applied in a chain of methods, unless the queue
option is set to false

2.	 Effects on multiple sets of elements are:
simultaneous by default
queued when applied within the callback of another effect or
within the callback of the .queue() method

°

°

°

°

Effects

[90]

Summary
By using effect methods that we have explored in this chapter, we should now be
able to incrementally increase and decrease text size by using either the .css() or
the .animate() method. We should also be able to apply various effects to gradually
hide and show page elements in different ways and also to animate elements,
simultaneously or sequentially, in a number of ways.

In the first four chapters of the book, all of our examples have involved manipulating
elements that have been hard-coded into the page's HTML. In Chapter 5 we will
explore ways in which we can use jQuery to create new elements and insert them
into the DOM wherever we choose.

DOM Manipulation
Like a magician who appears to produce a bouquet of flowers out of thin air, jQuery
can create elements, attributes, and text in a web page—as if by magic. But wait,
there's more! With jQuery, we can also make any of these things vanish. And, we
can take that bouquet of flowers and transform it into a <div class="magic"
id="flowerstodove">dove</div>.

Manipulating attributes
Throughout the first four chapters of this book, we have been using the .addClass()
and .removeClass() methods to demonstrate how we can change the appearance of
elements on a page. Effectively, what these two methods are doing is manipulating
the class attribute (or, in DOM scripting parlance, the className property). The
.addClass() method creates or adds to the attribute, while .removeClass()
deletes or shortens it. Add to these the .toggleClass() method, which alternates
between adding and removing a class, and we have an efficient and robust way of
handling classes.

Nevertheless, the class attribute is only one of several attributes that we may
need to access or change: for example, id and rel and href. For manipulating
these attributes, jQuery provides the .attr() and .removeAttr() methods. We
could even use .attr() and .removeAttr() to modify the class attribute, but
the specialized .addClass() and .removeClass() methods are better in this case
because they correctly handle cases where multiple classes are applied to a single
element, such as <div class="first second">.

Non-class attributes
Some attributes are not so easily manipulated without the help of jQuery. In
addition, jQuery lets us modify more than one attribute at a time, similar to the way
we worked with multiple CSS properties using the .css() method in Chapter 4.

DOM Manipulation

[92]

For example, we can easily set the id, rel, and title attributes for links, all at once.
Let's start with some sample HTML:

<h1 id="f-title">Flatland: A Romance of Many Dimensions</h1>
<div id="f-author">by Edwin A. Abbott</div>
<h2>Part 1, Section 3</h2>
<h3 id="f-subtitle">
 Concerning the Inhabitants of Flatland
</h3>
<div id="excerpt">an excerpt</div>

<div class="chapter">

 <p class="square">Our Professional Men and Gentlemen are
 Squares (to which class I myself belong) and Five-Sided
 Figures or Pentagons
 .
 </p>
 <p class="nobility hexagon">Next above these come the
 Nobility, of whom there are several degrees, beginning at
 Six-Sided Figures, or Hexagons,
 and from thence rising in the number of their sides till
 they receive the honourable title of Polygonal,
 or many-Sided. Finally when the number of the sides
 becomes so numerous, and the sides themselves so small,
 that the figure cannot be distinguished from a circle, he
 is included in the Circular or Priestly order; and this is
 the highest class of all.
 </p>

 <p>It is a Law
 of Nature with us that a male child shall have
 one more side than his father, so
 that each generation shall rise (as a rule) one step in
 the scale of development and nobility. Thus the son of a
 Square is a Pentagon; the son of a Pentagon, a Hexagon;
 and so on.
 </p>
<!-- . . . code continues . . . -->

</div>

Chapter 5

[93]

Now we can iterate through each of the links inside <div class="chapter"> and
apply attributes to them one by one. If we only needed to set a common attribute
value for all of the links, we could do so with a single line of code within our
$(document).ready() handler:

$(document).ready(function() {
 $('div.chapter a').attr({'rel': 'external'});
});

This technique works because we want the new rel attribute to have the same value
for each link. Often, though, the attributes we add or change must have different
values for each element. One example of this is that for any given document, each
id must be unique if we want our JavaScript code to behave predictably. To set a
unique id for each link, we abandon the single-line solution in favor of jQuery's
.each() method.

$(document).ready(function() {
 $('div.chapter a').each(function(index) {
 $(this).attr({
 'rel': 'external',
 'id': 'wikilink-' + index
 });
 });
});

The .each() method, which acts as an explicit iterator, is actually a more convenient
form of the for loop. It can be employed when the code we want to use on each item
in the selector's set of matched elements is too complex for the implicit iteration
syntax. In our situation, the .each() method's anonymous function is passed an
index that we can append to each id. This index argument acts as a counter, starting
at 0 for the first link and incrementing by 1 with each successive link. Thus, setting
the id to 'wikilink-' + index gives the first link an id of wikilink-0, the second
an id of wikilink-1, and so on.

In fact, we could have stuck with implicit iteration here, because the
.attr() method can take a function as its second argument, similar to
the way the .filter() method can do so with its single argument as
we saw in Chapter 2 (see http://docs.jquery.com/Attributes/
attr#keyfn for details). However, using .each() seems more
convenient for our needs.

DOM Manipulation

[94]

We'll use the title attribute to invite people to learn more about the linked term at
Wikipedia. In the HTML example, all of the links point to Wikipedia. However, it's
probably a good idea to make the selector expression a little more specific, selecting
only links that contain wikipedia in the href, just in case we decide to add a
non-Wikipedia link to the HTML at a later time:

$(document).ready(function() {
 $('div.chapter a[href*=wikipedia]').each(function(index) {
 var $thisLink = $(this);
 $thisLink.attr({
 'rel': 'external',
 'id': 'wikilink-' + index,
 'title': 'learn more about ' + $thisLink.text() +
 ' at Wikipedia'
 });
 });
});

One thing worth noting here is that we're now storing $(this) in a variable called
$thisLink, simply because we end up using it more than once.

With all three attributes set, the HTML of the first link, for example, now looks
like this:

<a href="http://en.wikipedia.org/wiki/Pentagon" rel="external"
 id="wikilink-0" title="learn more about Pentagons at
 Wikipedia">Pentagons

The $() factory function revisited
From the start of this book, we've been using the $() function to access elements in a
document. In a sense, this function lies at the very heart of the jQuery library, as it is
used every time we attach an effect, event, or property to a matched set of elements.

What's more, the $() function has yet another trick within its parentheses—a
feature so powerful that it can change not only the visual appearance but also the
actual contents of a page. Simply by inserting a snippet of HTML code inside the
parentheses, we can create an entirely new DOM structure from thin air.

Accessibility reminder
We should keep in mind, once again, the inherent danger in making
certain functionality, visual appeal, or textual information available only
to those with web browsers capable of (and enabled for) using JavaScript.
Important information should be accessible to all, not just people who
happen to be using the right software.

Chapter 5

[95]

A feature commonly seen on FAQ pages is the back to top link that appears after
each question-and-answer pair. It could be argued that these links serve no semantic
purpose and therefore can be included via JavaScript legitimately as an enhancement
for a subset of the visitors to a page. For our example, we'll add a back to top link
after each paragraph, as well as the anchor to which the back to top links will take
us. To begin, we simply create the new elements:

$(document).ready(function() {
 $('back to top');
 $('');
});

Here is what the page looks like at this point:

But where are the back to top links and the anchor? Shouldn't they appear on the
page? The answer is no. While the two lines do create the elements, they don't
yet add the elements to the page. To do that, we can use one of the many jQuery
insertion methods.

DOM Manipulation

[96]

Inserting new elements
jQuery has two methods for inserting elements before other elements:
.insertBefore() and .before(). These two methods have the same function; their
difference lies only in how they are chained to other methods. Another two methods,
.insertAfter() and .after(), bear the same relationship with each other, but as
their names suggest, they insert elements after other elements. For the back to top
links we'll use the .insertAfter() method:

$(document).ready(function() {
 $('back to top')
 .insertAfter('div.chapter p');
 $('');
});

The .after() method would accomplish the same thing as .insertAfter(), but
with the selector expression preceding the method rather than following it. Using
.after(), the first line inside $(document).ready() would look like this:

$('div.chapter p').after('back to top');

With .insertAfter(), we can continue acting on the created <a> element by
chaining additional methods. With .after(), additional methods would act on the
elements matched by the $('div.chapter p') selector instead.

So, now that we've actually inserted the links into the page (and into the DOM) after
each paragraph that appears within <div class="chapter">, the back to top links
will appear:

Chapter 5

[97]

Unfortunately, the links won't work yet. We still need to insert the anchor with
id="top". For this, we can use one of the methods that insert elements inside of
other elements.

$(document).ready(function() {
 $('back to top')
 .insertAfter('div.chapter p');
 $('')
 .prependTo('body');

});

This additional code inserts the anchor right at the beginning of the <body>; in other
words, at the top of the page. Now, with the .insertAfter() method for the links
and the .prependTo() method for the anchor, we have a fully functioning set of
back to top links for the page.

With back to top links, it doesn't make much sense to have them appear when the
top of the page is still visible. A quick improvement to the script would start the
links only after, say, the fourth paragraph. This is easy to accomplish with a little
change to the selector expression: .insertAfter('div.chapter p:gt(2)').
Why the 2 here? Remember that JavaScript indexing starts at 0; therefore, the first
paragraph is indexed as 0, the second is 1, the third is 2, and the fourth paragraph
is 3. Our selector expression begins inserting the links after each paragraph when
the index reaches 3, because that is the first one greater than 2.

The effect of this selector-expression change is now evident:

DOM Manipulation

[98]

Moving elements
With the back to top links, we created new elements and inserted them on the
page. It's also possible to take elements from one place on the page and insert them
into another place. A practical application of this type of insertion is the dynamic
placement and formatting of footnotes. One footnote already appears in the original
Flatland text that we are using for this example, but we'll also designate a couple of
other portions of the text as footnotes for the purpose of this demonstration:

<p>Rarely—in proportion to the vast numbers of Isosceles
 births—is a genuine and certifiable Equal-Sided
 Triangle produced from Isosceles parents. <span
 class="footnote">"What need of a certificate?" a Spaceland

Chapter 5

[99]

 class="footnote">And how perfect a proof of the natural
 fitness and, I may almost say, the divine origin of the
 aristocratic constitution of the States of Flatland!
 By a judicious use of this Law of Nature, the Polygons and
 Circles are almost always able to stifle sedition in its
 very cradle, taking advantage of the irrepressible and
 boundless hopefulness of the human mind.…
</p>

Each of these three paragraphs has a single footnote wrapped inside <span
class="footnote">. By marking up the HTML in this way, we can
preserve the context of the footnote. With a CSS rule applied in the stylesheet
to italicize the footnotes, the three paragraphs look like this:

Now we can grab the footnotes and insert them in between <div class="chapter">
and <div id="footer">. Keep in mind that even in cases of implicit iteration, the
order of insertion is predefined, starting at the top of the DOM tree and working its
way down. Since it's important to maintain the correct order of the footnotes in their
new place on the page, we should use .insertBefore('#footer').

DOM Manipulation

[100]

This will place each footnote directly before the <div id="footer"> so that
footnote 1 is placed between <div class="chapter"> and <div id="footer">,
footnote 2 is placed between footnote 1 and <div id="footer">, and so on. Using
.insertAfter('div.chapter'), on the other hand, would have the footnotes
appear in reverse order. So far, our code looks like this:

$(document).ready(function() {
 $('span.footnote').insertBefore('#footer');
});

Unfortunately, though, we've run into a big problem. The footnotes are in
tags, which means they display inline by default, one right after the other with
no separation:

One solution to this problem is to modify the CSS, making the elements
display as blocks, but only if they are not inside <div class="chapter">:

span.footnote {
 font-style: italic;
 font-family: "Times New Roman", Times, serif;
 display: block;

 margin: 1em 0;

}
.chapter span.footnote {
 display: inline;
}

The footnotes are now beginning to take shape:

Chapter 5

[101]

At least they are distinct footnotes now; yet there is still a lot of work that can be
done to them. A more robust footnote solution should:

1.	 Mark the location in the text from which each footnote is pulled.
2.	 Number each location, and provide a matching number for the

footnote itself.
3.	 Create a link from the text location to its matching footnote, and from the

footnote back to the text location.

These steps can be accomplished from within an .each() method; but first we'll set
up a container element for the notes at the bottom of the page:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
});

It seems reasonable enough to use an ordered list <ol id="notes"> for the
footnotes; after all, we want them to be numbered. Why not use an element that
numbers them for us automatically? We've given the list an ID of notes and have
inserted it after <div class="chapter">.

Marking, numbering, and linking the context
Now we're ready to mark and number the place from which we're pulling
the footnote:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before(
 ['<a href="#foot-note-',
 index+1,
 '" id="context-',
 index+1,
 '" class="context">',
 '^{' + (index+1) + '}',
 ''
].join('')
)
 });
});

Here we start with the same selector as we used with the simpler footnote example,
but we chain the .each() method to it.

[102]

$(this), which represents each footnote in
.before() method to it.

 within the .before() method's parentheses is a
. The first one,

.before() method, we start with a
—which represents an array literal. Each element within

.join() method.

, the id attributes at #context-1 and the actual

of course).

http://www.sitepen.com/blog/2008/05/09/

Chapter 5

[103]

Our three linked footnote markers now look like this:

Appending footnotes
The next step is to move the elements, as we did with
the simpler example. This time, however, we drop them into the newly created
<ol id="notes">. We'll use .appendTo() here, again to maintain proper ordering,
as each successive footnote will be inserted at the end of the element:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before(
 ['<a href="#foot-note-',
 index+1,
 '" id="context-',
 index+1,
 '" class="context">',
 '^{' + (index+1) + '}',
 ''
].join('')
)
 .appendTo('#notes')

 });
});

DOM Manipulation

[104]

It's important to remember that .appendTo() is still being chained to $(this), so
that jQuery is saying, Append the footnote span to the element with an ID of 'notes'.

To each of the footnotes we just moved, we append another link—this one back to
the number in the text:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before(
 ['<a href="#foot-note-',
 index+1,
 '" id="context-',
 index+1,
 '" class="context">',
 '^{' + (index+1) + '}',
 ''
].join('')
)
 .appendTo('#notes')
 .append(' (<a href="#context-' + (index+1) +

 '">context)');

 });
});

Notice that the href points back to the id of the corresponding marker. Here you can
see the footnotes again with a link appended to each:

The footnotes still lack their numbers, however. Even though they have been placed
within an , each one must also be individually wrapped in its own .

Chapter 5

[105]

Wrapping elements
jQuery's primary method for wrapping elements around other elements is the
appropriately named .wrap(). Because we want each $(this) to be wrapped
in , we can complete our footnote code like so:

$(document).ready(function() {
 $('<ol id="notes">').insertAfter('div.chapter');
 $('span.footnote').each(function(index) {
 $(this)
 .before(
 ['<a href="#foot-note-',
 index+1,
 '" id="context-',
 index+1,
 '" class="context">',
 '^{' + (index+1) + '}',
 ''
].join('')
)
 .appendTo('#notes')
 .append(' (<a href="#context-' + (index+1) +
 '">context)')
 .wrap('<li id="foot-note-' + (index+1) +

 '">');

 });
});

Now each of the elements comes complete with an id that matches the marker's
href. At last, we have a set of numbered, linked footnotes:

Of course, the numbers could have been inserted before each footnote the same way
they were in the paragraphs, but there is something deeply satisfying about having
semantic markup dynamically generated by JavaScript.

DOM Manipulation

[106]

The other jQuery methods for wrapping elements are .wrapAll() and
.wrapInner(). See http://docs.jquery.com/Manipulation/
wrapAll and http://docs.jquery.com/Manipulation/
wrapInner for more information.

Copying elements
So far in this chapter we have inserted newly created elements, moved elements from
one location in the document to another, and wrapped new elements around existing
ones. Sometimes, though, we may want to copy elements. For example, a navigation
menu that appears in the page's header could be copied and placed in the footer as
well. In fact, whenever elements can be copied to enhance a page visually, it's a good
opportunity to use a script. After all, why write something twice and double our
chance of error when we can write it once and let jQuery do the heavy lifting?

For copying elements, jQuery's .clone() method is just what we need; it takes
any set of matched elements and creates a copy of them for later use. As with the
element creation process we explored earlier in this chapter, the copied elements
will not appear in the document until we apply one of the insertion methods.
For example, the following line creates a copy of the first paragraph inside
<div class="chapter">:

$('div.chapter p:eq(0)').clone();

So far, the content on the page hasn't changed:

Chapter 5

[107]

To continue the example, we can make the cloned paragraph appear before <div
class="chapter">:

$('div.chapter p:eq(0)').clone().insertBefore('div.chapter');

Now the first paragraph appears twice, and because the first instance of it is no
longer inside <div class="chapter">, it does not retain the styles associated
with the div (most noticeably, the width):

So, using an analogy that most people should be familiar with, .clone() is to the
insertion methods as copy is to paste.

Clone with events
The .clone() method by default does not copy any events that are bound to the
matching element or any of its descendants. However, it can take a single Boolean
parameter that, when set to true, clones events as well: .clone(true). This
convenient event cloning allows us to avoid having to deal with manually rebinding
events, as was discussed in Chapter 3.

Cloning for pull quotes
Many websites, like their print counterparts, use pull quotes to emphasize
small portions of text and attract the reader's eye. We can easily accomplish this
embellishment with the .clone() method. First, let's take another look at the
third paragraph of our example text:

<p>
 It is a Law of Nature
 with us that a male child shall
 have one more side than his father,

DOM Manipulation

[108]

 so that each generation shall rise (as a rule) one step in
 the scale of development and nobility. Thus the son of a
 Square is a Pentagon; the son of a Pentagon, a Hexagon; and
 so on.
</p>

Notice that the paragraph begins with . This is the
class we will be targeting for cloning. Once the copied text inside that is
pasted into another place, we need to modify its style properties to set it apart from
the rest of the text.

A CSS diversion
To accomplish this type of styling, we'll add a pulled class to the copied and
give the class the following style rule in the stylesheet:

.pulled {
 background: #e5e5e5;
 position: absolute;
 width: 145px;
 top: -20px;
 right: -180px;
 padding: 12px 5px 12px 10px;
 font: italic 1.4em "Times New Roman", Times, serif;
}

The pull quote now gets a light gray background, some padding, and a different
font. Most important, it's absolutely positioned, 20 pixels above and 20 pixels to
the right of the nearest (absolute or relative) positioned ancestor in the DOM.
If no ancestor has positioning (other than static) applied, the pull quote will be
positioned relative to the document <body>. Because of this, we need to make sure
in the jQuery code that the cloned pull quote's parent element has position:
relative set.

While the top positioning is fairly intuitive, it may not be clear at first how the pull
quote box will be located 20 pixels to the left of its positioned parent. We derive the
number first from the total width of the pull-quote box, which is the value of the
width property plus the left and right padding, or 145 px + 5 px + 10 px, or 160 px.
We then set the right property of the pull quote. A value of 0 would align the pull
quote's right side with that of its parent. Therefore, to place its left side 20 px to the
right of the parent, we need to move it in a negative direction 20 pixels more than its
total width, or -180 px.

Chapter 5

[109]

Back to the code
Now we can get into the jQuery. Let's start with a selector expression for all of the
 elements, and attach an .each() method so that we
can perform multiple actions as we iterate through them:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 //...
 });
});

Next, we find the parent paragraph of each pull quote and apply the CSS
position property:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');

 $parentParagraph.css('position', 'relative');

 });
});

Once again, we store any selector that we'll be using more than once in a variable to
improve performance and readability.

We can be sure now that the CSS is all set and ready for the pull quote. At this point
we can clone each , add the pulled class to the copy, and insert it into the
beginning of the paragraph:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 $(this).clone()

 .addClass('pulled')

 .prependTo($parentParagraph);

 });
});

Because we're using absolute positioning for the pull quote, the placement of it
within the paragraph is irrelevant. As long as it remains inside the paragraph, it
will be positioned in relation to the top and right of the paragraph, based on our
CSS rules. If, however, we wanted to apply a float to the pull quote instead, its
placement within the paragraph would affect its vertical position.

DOM Manipulation

[110]

The paragraph, together with its pull quote, now looks like this:

This is a good start, but pull quotes typically do not retain font formatting as this
one does with the bold one more side text. What we want is the text of <span
class="pull-quote">, stripped of any , , <a href> or other inline
tags. Additionally, it would be nice to be able to modify the pull quote a bit,
dropping some words and replacing them with ellipses. For this, we have wrapped
a few words of text in the example in a tag: with
us.

We'll apply the ellipsis first, and then replace all of the pull-quote HTML with a
stripped, text-only version:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 var $clonedCopy = $(this).clone();

 $clonedCopy
 .addClass('pulled')
 .find('span.drop')

 .html('…')

 .end()

 .prependTo($parentParagraph);

 var clonedText = $clonedCopy.text();

 $clonedCopy.html(clonedText);

 });
});

So, we start the cloning process this time by storing the clone in a variable. The
variable is necessary this time because we can't work on it completely within the
same chain. Notice, too, that after we find and replace its
HTML with an ellipsis (…), we use .end() to back out of the last query,
.find('span.drop'). This way, we're inserting the whole copy, not just the
ellipsis, at the beginning of the paragraph.

Chapter 5

[111]

At the end, we set one more variable, clonedText, to the text-only contents of the
copy; then we use these text-only contents as a replacement for the HTML of the
copy. Now, the pull quote looks like this:

Evidently, another has been added to a later
paragraph to ensure that the code works for multiple elements.

Prettifying the pull quotes
The pull quotes are now working as expected, with child elements stripped and
ellipses added where text should be dropped.

Since one of the goals is to add visual appeal, though, we would do well to give the
pull quotes rounded corners with drop shadows. However, the variable height of the
pull-quote boxes is problematic because we'll need to apply two background images
to a single element, which is impossible for every browser at the moment except the
most recent builds of Safari.

DOM Manipulation

[112]

To overcome this limitation, we can wrap another <div> around the pull quotes:

$(document).ready(function() {
 $('span.pull-quote').each(function(index) {
 var $parentParagraph = $(this).parent('p');
 $parentParagraph.css('position', 'relative');
 var $clonedCopy = $(this).clone();
 $clonedCopy
 .addClass('pulled')
 .find('span.drop')
 .html('…')
 .end()
 .prependTo($parentParagraph)
 .wrap('<div class="pulled-wrapper"></div>');

 var clonedText = $clonedCopy.text();
 $clonedCopy.html(clonedText);
 });
});

We also need to modify the CSS, of course, to account for the new <div> and the two
background images:

.pulled-wrapper {
 background: url(pq-top.jpg) no-repeat left top;
 position: absolute;
 width: 160px;
 right: -180px;
 padding-top: 18px;
}
.pulled {
 background: url(pq-bottom.jpg) no-repeat left bottom;
 position: relative;
 display: block;
 width: 140px;
 padding: 0 10px 24px 10px;
 font: italic 1.4em "Times New Roman", Times, serif;
}

Here, some of the rules formerly applied to are applied
to <div class="pulled-wrapper"> instead. A couple of width and padding
adjustments take into account the design of the background image borders, and the
.pulled rule has its position and display properties modified in order to appear
correctly for all browsers.

Chapter 5

[113]

Here is one final look at the newly primped pull quotes in their native habitat:

DOM manipulation methods in a nutshell
The extensive DOM manipulation methods that jQuery provides vary according to
their task and their location. The following outline can serve as a reminder of which
methods we can use to accomplish any of these tasks, just about anywhere.

1.	 To create new elements from HTML, user the $() factory function.
2.	 To insert new element(s) inside every matched element, use:

.append()

.appendTo()

.prepend()

.prependTo()

°

°

°

°

DOM Manipulation

[114]

3.	 To insert new element(s) adjacent to every matched element, use:
.after()

.insertAfter()

.before()

.insertBefore()

4.	 To insert new element(s) around every matched element, use:
.wrap()

.wrapAll()

.wrapInner()

5.	 To replace every matched element with new element(s) or text, use:
.html()

.text()

.replaceAll()

.replaceWith()

6.	 To remove element(s) inside every matched element, use:
.empty()

7.	 To remove every matched element and descendants from the document
without actually deleting them, use:

.remove()

Summary
In this chapter we have created, copied, reassembled, and embellished content using
jQuery's DOM modification methods. We've applied these methods to a single web
page, transforming a handful of generic paragraphs to a footnoted, pull quoted,
linked, and stylized literary excerpt.

The tutorial section of the book is nearly over, but before we move on to examine
more complex, expanded examples, let's take a round-trip journey to the server via
jQuery's AJAX methods.

°

°

°

°

°

°

°

°

°

°

°

°

°

AJAX
In recent years, it has become common to judge sites based on their use of specific
technologies. One of the most prominent buzzwords used to describe new web
applications is AJAX-powered. This label has been used to mean many different
things, as the term encompasses a group of related capabilities and techniques.

Technically, AJAX is an acronym standing for Asynchronous JavaScript and XML.
The technologies involved in an AJAX solution include:

JavaScript, to capture interactions with the user or other
browser-related events
The XMLHttpRequest object, which allows requests to be made to the server
without interrupting other browser tasks
XML files on the server, or often other similar data formats such as HTML
or JSON
More JavaScript, to interpret the data from the server and present it on
the page

AJAX technology has been hailed as the savior of the web landscape, transforming
static web pages into interactive web applications. Many frameworks have sprung
up to assist developers in taming it, because of the inconsistencies in the browsers'
implementations of the XMLHttpRequest object; jQuery is no exception.

Let us see if AJAX can truly perform miracles.

Loading data on demand
Underneath all the hype and trappings, AJAX is just a means of loading data from
the server to the web browser, or client, without a visible page refresh. This data can
take many forms, and we have many options for what to do with it when it arrives.
We'll see this by performing the same basic task in many ways.

•

•

•

•

AJAX

[116]

We are going to build a page that displays entries from a dictionary, grouped by the
starting letter of the dictionary entry. The HTML defining the content area of the
page will look like this:

<div id="dictionary">
</div>

Yes, really! Our page will have no content to begin with. We are going to use
jQuery's various AJAX methods to populate this <div> with dictionary entries.

We're going to need a way to trigger the loading process, so we'll add some links for
our event handlers to latch onto:

<div class="letters">
 <div class="letter" id="letter-a">
 <h3>A</h3>
 </div>
 <div class="letter" id="letter-b">
 <h3>B</h3>
 </div>
 <div class="letter" id="letter-c">
 <h3>C</h3>
 </div>
 <div class="letter" id="letter-d">
 <h3>D</h3>
 </div>
</div>

As always, a real-world implementation should use progressive
enhancement to make the page function without requiring JavaScript.
Here, to simplify our example, the links do nothing until we add
behaviors to them with jQuery.

Adding a few CSS rules, we get a page that looks like this:

Now we can focus on getting content onto the page.

Chapter 6

[117]

Appending HTML
AJAX applications are often no more than a request for a chunk of HTML. This
technique, sometimes referred to as AHAH (Asynchronous HTTP and HTML), is
almost trivial to implement with jQuery. First we need some HTML to insert, which
we'll place in a file called a.html alongside our main document. This secondary
HTML file begins:

<div class="entry">
 <h3 class="term">ABDICATION</h3>
 <div class="part">n.</div>
 <div class="definition">
 An act whereby a sovereign attests his sense of the high
	 temperature of the throne.
 <div class="quote">
 <div class="quote-line">Poor Isabella's Dead, whose
		 abdication</div>
 <div class="quote-line">Set all tongues wagging in the
		 Spanish nation.</div>
 <div class="quote-line">For that performance 'twere
		 unfair to scold her:</div>
 <div class="quote-line">She wisely left a throne too
		 hot to hold her.</div>
 <div class="quote-line">To History she'll be no royal
		 riddle —</div>
 <div class="quote-line">Merely a plain parched pea that
		 jumped the griddle.</div>
 <div class="quote-author">G.J.</div>
 </div>
 </div>
</div>

<div class="entry">
 <h3 class="term">ABSOLUTE</h3>
 <div class="part">adj.</div>
 <div class="definition">
 Independent, irresponsible. An absolute monarchy is one
	 in which the sovereign does as he pleases so long as he
	 pleases the assassins. Not many absolute monarchies are
	 left, most of them having been replaced by limited
	 monarchies, where the sovereign's power for evil (and for
	 good) is greatly curtailed, and by republics, which are
	 governed by chance.
 </div>
</div>

AJAX

[118]

The page continues with more entries in this HTML structure. Rendered on its own,
this page is quite plain:

Note that a.html is not a true HTML document; it contains no <html>, <head>, or
<body>, all of which are normally required. We usually call such a file a snippet or
fragment; its only purpose is to be inserted into another HTML document, which
we'll accomplish now:

$(document).ready(function() {
 $('#letter-a a').click(function() {
 $('#dictionary').load('a.html');
 return false;
 });
});

The .load() method does all our heavy lifting for us! We specify the target location
for the HTML snippet by using a normal jQuery selector, and then pass the URL
of the file to be loaded as a parameter to the method. Now, when the first link is
clicked, the file is loaded and placed inside <div id="dictionary">. The browser
will render the new HTML as soon as it is inserted:

Chapter 6

[119]

Note that the HTML is now styled, whereas before it was plain. This is due to the
CSS rules in the main document; as soon as the new HTML snippet is inserted, the
rules apply to its tags as well.

When testing this example, the dictionary definitions will probably appear
instantaneously when the button is clicked. This is a hazard of working on our
applications locally; it is hard to account for delays in transferring documents
across the network. Suppose we added an alert box to display after the definitions
are loaded:

$(document).ready(function() {
 $('#letter-a a').click(function() {
 $('#dictionary').load('a.html');
 alert('Loaded!');
 return false;
 });
});

We might assume from the structure of this code that the alert can only be displayed
after the load has been performed. JavaScript execution is usually synchronous,
working on one task after another in strict sequence.

AJAX

[120]

However, when this particular code is tested on a production web server, the alert
will quite possibly have come and gone before the load has completed, due to
network lag. This happens because all AJAX calls are by default asynchronous.
Otherwise, we'd have to call it SJAX, which hardly has the same ring to it!
Asynchronous loading means that once the HTTP request to retrieve the HTML
snippet is issued, script execution immediately resumes without waiting. Some
time later, the browser receives the response from the server and handles it. This is
generally desired behavior; it is unfriendly to lock up the whole web browser while
waiting for data to be retrieved.

If actions must be delayed until the load has been completed, jQuery provides a
callback for this. An example will be provided below.

Working with JavaScript objects
Pulling in fully-formed HTML on demand is very convenient, but there are times
when we want our script to be able to do some processing of the data before it
is displayed. In this case, we need to retrieve the data in a structure that we can
traverse with JavaScript.

With jQuery's selectors, we could traverse the HTML we get back and manipulate it,
but it must first be inserted into the document. A more native JavaScript data format
can mean even less code.

Retrieving a JavaScript object
As we have often seen, JavaScript objects are just sets of key-value pairs, and can be
defined succinctly using curly braces ({}). JavaScript arrays, on the other hand, are
defined on the fly with square brackets ([]). Combining these two concepts, we can
easily express some very complex and rich data structures.

The term JavaScript Object Notation (JSON) was coined by Douglas Crockford to
capitalize on this simple syntax. This notation can offer a concise alternative to the
sometimes-bulky XML format:

{
 "key": "value",
 "key 2": [
 "array",
 "of",
 "items"
]
}

Chapter 6

[121]

For information on some of the potential advantages of JSON,
as well as implementations in many programming languages, visit
http://json.org/.

We can encode our data using this format in many ways. We'll place some dictionary
entries in a JSON file we'll call b.json, which begins as follows:

[
 {
 "term": "BACCHUS",
 "part": "n.",
 "definition": "A convenient deity invented by the...",
 "quote": [
 "Is public worship, then, a sin,",
 "That for devotions paid to Bacchus",
 "The lictors dare to run us in,",
 "And resolutely thump and whack us?"
],
 "author": "Jorace"
 },
 {
 "term": "BACKBITE",
 "part": "v.t.",
 "definition": "To speak of a man as you find him when..."
 },
 {
 "term": "BEARD",
 "part": "n.",
 "definition": "The hair that is commonly cut off by..."
 },

To retrieve this data, we'll use the $.getJSON() method, which fetches the file and
processes it, providing the calling code with the resulting JavaScript object.

Global jQuery functions
To this point, all jQuery methods that we've used have been attached to a jQuery
object that we've built with the $() factory function. The selectors have allowed us
to specify a set of DOM nodes to work with, and the methods have operated on them
in some way. This $.getJSON() function, however, is different. There is no logical
DOM element to which it could apply; the resulting object has to be provided to the
script, not injected into the page. For this reason, getJSON() is defined as a method
of the global jQuery object (a single object called jQuery or $ defined once by the
jQuery library), rather than of an individual jQuery object instance (the objects we
create with the $() function).

AJAX

[122]

If JavaScript had classes like other object-oriented languages, we'd call $.getJSON()
a class method. For our purposes, we'll refer to this type of method as a global
function; in effect, they are functions that use the jQuery namespace so as not to
conflict with other function names.

To use this function, we pass it the file name as before:

$(document).ready(function() {
 $('#letter-b a').click(function() {
 $.getJSON('b.json');
 return false;
 });
});

This code has no apparent effect when we click the link. The function call loads the
file, but we have not told JavaScript what to do with the resulting data. For this, we
need to use a callback function.

The $.getJSON() function takes a second argument, which is a function to be called
when the load is complete. As mentioned before, AJAX calls are asynchronous,
and the callback provides a way to wait for the data to be transmitted rather than
executing code right away. The callback function also takes an argument, which is
filled with the resulting data. So, we can write:

$(document).ready(function() {
 $('#letter-b a').click(function() {
 $.getJSON('b.json', function(data) {
 });
 return false;
 });
});

Here we are using an anonymous function as our callback, as has been common
in our jQuery code for brevity. A named function could equally be provided as
the callback.

Inside this function, we can use the data variable to traverse the data structure as
necessary. We'll need to iterate over the top-level array, building the HTML for each
item. We could do this with a standard for loop, but instead we'll introduce another
of jQuery's useful global functions, $.each(). We saw its counterpart, the .each()
method, in Chapter 5. Instead of operating on a jQuery object, this function takes an
array or map as its first parameter and a callback function as its second. Each time
through the loop, the current iteration index and the current item in the array or
map are passed as two parameters to the callback function.

Chapter 6

[123]

$(document).ready(function() {
 $('#letter-b a').click(function() {
 $.getJSON('b.json', function(data) {
 $('#dictionary').empty();
 $.each(data, function(entryIndex, entry) {
 var html = '<div class="entry">';
 html += '<h3 class="term">' + entry['term'] + '</h3>';
 html += '<div class="part">' + entry['part'] + '</div>';
 html += '<div class="definition">';
 html += entry['definition'];
 html += '</div>';
 html += '</div>';
 $('#dictionary').append(html);
 });
 });
 return false;
 });
});

Before the loop, we empty out <div id="dictionary"> so that we can fill it with
our newly-constructed HTML. Then we use $.each() to examine each item in turn,
building an HTML structure using the contents of the entry map. Finally, we turn
this HTML into a DOM tree by appending it to the <div>.

This approach presumes that the data is safe for HTML consumption; it
should not contain any stray < characters, for example.

All that's left is to handle the entries with quotations, which takes another
$.each() loop:

$(document).ready(function() {
 $('#letter-b a').click(function() {
 $.getJSON('b.json', function(data) {
 $('#dictionary').empty();
 $.each(data, function(entryIndex, entry) {
 var html = '<div class="entry">';
 html += '<h3 class="term">' + entry['term'] + '</h3>';
 html += '<div class="part">' + entry['part'] + '</div>';
 html += '<div class="definition">';
 html += entry['definition'];
 if (entry['quote']) {
 html += '<div class="quote">';
 $.each(entry['quote'], function(lineIndex, line) {
 html += '<div class="quote-line">' + line + '</div>';

AJAX

[124]

 });
 if (entry['author']) {
 html += '<div class="quote-author">' + entry['author'] +
'</div>';
 }
 html += '</div>';
 }
 html += '</div>';
 html += '</div>';
 $('#dictionary').append(html);
 });
 });
 return false;

B link and confirm our results:

Chapter 6

[125]

Executing a script
Occasionally we don't want to retrieve all the JavaScript we will need when the
page is first loaded. We might not know what scripts will be necessary until some
user interaction occurs. We could introduce <script> tags on the fly when they are
needed, but a more elegant way to inject additional code is to have jQuery load the
.js file directly.

Pulling in a script is about as simple as loading an HTML fragment. In this case,
we use the global function $.getScript(), which, like its siblings, accepts a URL
locating the script file:

$(document).ready(function() {
 $('#letter-c a').click(function() {
 $.getScript('c.js');
 return false;
 });
});

In our last example, we then needed to process the result data so that we could do
something useful with the loaded file. With a script file, though, the processing is
automatic; the script is simply run.

Scripts fetched in this way are run in the global context of the current page. This
means they have access to all globally-defined functions and variables, notably
including jQuery itself. We can therefore mimic the JSON example to prepare and
insert HTML on the page when the script is executed, and place this code in c.js:

var entries = [
 {
 "term": "CALAMITY",
 "part": "n.",
 "definition": "A more than commonly plain and..."
 },
 {
 "term": "CANNIBAL",
 "part": "n.",
 "definition": "A gastronome of the old school who..."
 },
 {
 "term": "CHILDHOOD",
 "part": "n.",
 "definition": "The period of human life intermediate..."
 },
 {
 "term": "CLARIONET",
 "part": "n.",
 "definition": "An instrument of torture operated by..."

AJAX

[126]

 },
 {
 "term": "COMFORT",
 "part": "n.",
 "definition": "A state of mind produced by..."
 },
 {
 "term": "CORSAIR",
 "part": "n.",
 "definition": "A politician of the seas."
 }
];

var html = '';

$.each(entries, function() {
 html += '<div class="entry">';
 html += '<h3 class="term">' + this['term'] + '</h3>';
 html += '<div class="part">' + this['part'] + '</div>';
 html += '<div class="definition">' + this['definition'] + '</div>';
 html += '</div>';
});

$('#dictionary').html(html);

Now clicking on the C link has the expected result:

Chapter 6

[127]

Loading an XML document
XML is part of the acronym AJAX, but we haven't actually loaded any XML yet.
Doing so is straightforward, and mirrors the JSON technique fairly closely. First
we'll need an XML file d.xml containing some data we wish to display:

<?xml version="1.0" encoding="UTF-8"?>
<entries>
 <entry term="DEFAME" part="v.t.">
 <definition>
 To lie about another. To tell the truth about another.
 </definition>
 </entry>
 <entry term="DEFENCELESS" part="adj.">
 <definition>
 Unable to attack.
 </definition>
 </entry>
 <entry term="DELUSION" part="n.">
 <definition>
 The father of a most respectable family, comprising
 Enthusiasm, Affection, Self-denial, Faith, Hope,
 Charity and many other goodly sons and daughters.
 </definition>
 <quote author="Mumfrey Mappel">
 <line>All hail, Delusion! Were it not for thee</line>
 <line>The world turned topsy-turvy we should see;
 </line>
 <line>For Vice, respectable with cleanly fancies,
 </line>
 <line>Would fly abandoned Virtue's gross advances.
 </line>
 </quote>
 </entry>
 <entry term="DIE" part="n.">
 <definition>
 The singular of "dice." We seldom hear the word,
 because there is a prohibitory proverb, "Never say
 die." At long intervals, however, some one says: "The
 die is cast," which is not true, for it is cut. The
 word is found in an immortal couplet by that eminent
 poet and domestic economist, Senator Depew:
 </definition>
 <quote>
 <line>A cube of cheese no larger than a die</line>
 <line>May bait the trap to catch a nibbling mie.</line>
 </quote>
 </entry>
</entries>

AJAX

[128]

This data could be expressed in many ways, of course, and some would more
closely mimic the structure we established for the HTML or JSON used earlier. Here,
however, we're illustrating some of the features of XML designed to make it more
readable to humans, such as the use of attributes for term and part rather than tags.

We'll start off our function in a familiar manner:

$(document).ready(function() {
 $('#letter-d a').click(function() {
 $.get('d.xml', function(data) {

 });
 return false;
 });
});

This time it's the $.get() function that does our work. In general, this function
simply fetches the file at the supplied URL and provides the plain text to the
callback. However, if the response is known to be XML because of its server-supplied
MIME type, the callback will be handed the XML DOM tree.

Fortunately, as we have already seen, jQuery has substantial DOM traversing
capabilities. We can use the normal .find(), .filter() and other traversal
methods on the XML document just as we would on HTML:

$(document).ready(function() {
 $('#letter-d a').click(function() {
 $.get('d.xml', function(data) {
 $('#dictionary').empty();
 $(data).find('entry').each(function() {
 var $entry = $(this);
 var html = '<div class="entry">';
 html += '<h3 class="term">' + $entry.attr('term')
 + '</h3>';
 html += '<div class="part">' + $entry.attr('part')
 + '</div>';
 html += '<div class="definition">';
 html += $entry.find('definition').text();
 var $quote = $entry.find('quote');
 if ($quote.length) {
 html += '<div class="quote">';
 $quote.find('line').each(function() {
 html += '<div class="quote-line">'
 + $(this).text() + '</div>';
 });
 if ($quote.attr('author')) {

Chapter 6

[129]

 html += '<div class="quote-author">'
 + $quote.attr('author') + '</div>';
 }
 html += '</div>';
 }
 html += '</div>';
 html += '</div>';
 $('#dictionary').append($(html));
 });
 });
 return false;
 });
});

This has the expected effect when the D link is clicked:

This is a new use for the DOM traversal methods we already know, shedding some
light on the flexibility of jQuery's CSS selector support. CSS syntax is typically used
to help beautify HTML pages, and thus selectors in standard .css files use HTML
tag names such as div and body to locate content. However, jQuery can use arbitrary
XML tag names, such as entry and definition here, just as readily as the standard
HTML ones.

AJAX

[130]

The advanced selector engine inside jQuery facilitates finding parts of the XML
document in much more complicated situations, as well. For example, suppose we
wanted to limit the displayed entries to those that have quotes that in turn have
attributed authors. To do this, we can limit the entries to those with nested <quote>
elements by changing entry to entry:has(quote). Then we can further restrict the
entries to those with author attributes on the <quote> elements by writing entry:
has(quote[author]). The line with the initial selector now reads:

$(data).find('entry:has(quote[author])').each(function() {

This new selector expression restricts the returned entries correspondingly:

Choosing a data format
We have looked at four formats for our external data, each of which is handled
natively by jQuery's AJAX functions. We have also verified that all four can handle
the task at hand, loading information onto an existing page when the user requests it
and not before. How, then, do we decide which one to use in our applications?

HTML snippets require very little work to implement. The external data can
be loaded and inserted into the page with one simple method, which does not
even require a callback function. No traversal of the data is necessary for the
straightforward task of adding the new HTML into the existing page. On the other
hand, the data is not necessarily structured in a way that makes it reusable for other
applications. The external file is tightly coupled with its intended container.

Chapter 6

[131]

JSON files are structured for simple reuse. They are compact, and easy to read. The
data structure must be traversed to pull out the information and present it on the
page, but this can be done with standard JavaScript techniques. Since the files can be
parsed with a single call to JavaScript's eval(), reading in a JSON file is extremely
fast. Any use of eval() does carry inherent risks, however. Errors in the JSON file
can cause silent failure or even side effects on the page, so the data must be crafted
carefully by a trusted party.

JavaScript files offer the ultimate in flexibility, but are not really a data storage
mechanism. Since the files are language-specific, they cannot be used to provide the
same information to disparate systems. Instead, the ability to load a JavaScript file
means that behaviors that are rarely needed can be factored out into external files,
reducing code size unless and until it is needed.

XML documents are the kings of portability. Because XML has become the lingua
franca of the web service world, providing data in this format makes it very likely the
data can be reused elsewhere. For example, Flickr (http://flickr.com/), del.icio.us
(http://del.icio.us/) and Upcoming (http://upcoming.org/) all export XML
representations of their data, which has allowed many interesting mashups of their
data to arise. The XML format is somewhat bulky, though, and can be a bit slower to
parse and manipulate than other options.

With these characteristics in mind, it is typically easiest to provide external data as
HTML snippets, as long as the data is not needed in other applications as well. In
cases where the data will be reused but the other applications can also be influenced,
JSON is often a good choice due to its performance and size. When the remote
application is not known, XML provides the greatest assurance that interoperability
will be possible.

More than any other consideration, we should determine if the data is already
available. If it is, chances are it's in one of these formats to begin with, so our
decision may be made for us.

Passing data to the server
Our examples to this point have focused on the task of retrieving static data files
from the web server. However, the AJAX technique really comes into its own only
when the server can dynamically shape the data based on input from the browser.
We're helped along by jQuery in this task as well; all of the methods we've covered
so far can be modified so that data transfer becomes a two-way street.

AJAX

[132]

Since demonstrating these techniques requires interaction with the
web server, we'll need to use server-side code for the first time here.
The examples given will use the PHP scripting language, which is very
widely used as well as freely available. We will not cover how to set up
a web server with PHP here; help on this can be found on the websites of
Apache (http://apache.org/) or PHP (http://php.net/), or from
your site's hosting company.

Performing a GET request
To illustrate the communication between client and server, we'll write a script that
only sends one dictionary entry to the browser on each request. The entry chosen
will depend on a parameter sent from the browser. Our script will pull its data from
an internal data structure like this:

<?php
$entries = array(
 'EAVESDROP' => array(
 'part' => 'v.i.',
 'definition' => 'Secretly to overhear a catalogue of the
 crimes and vices of another or yourself.',
 'quote' => array(
 'A lady with one of her ears applied',
 'To an open keyhole heard, inside,',
 'Two female gossips in converse free —',
 'The subject engaging them was she.',
 '"I think," said one, "and my husband thinks',
 'That she\'s a prying, inquisitive minx!"',
 'As soon as no more of it she could hear',
 'The lady, indignant, removed her ear.',
 '"I will not stay," she said, with a pout,',
 '"To hear my character lied about!"',
),
 'author' => 'Gopete Sherany',
),
 'EDIBLE' => array(
 'part' => 'adj.',
 'definition' => 'Good to eat, and wholesome to digest, as
 a worm to a toad, a toad to a snake, a snake to a pig,
 a pig to a man, and a man to a worm.',
),
 'EDUCATION' => array(
 'part' => 'n.',

Chapter 6

[133]

 'definition' => 'That which discloses to the wise and
 disguises from the foolish their lack of
 understanding.',
),
);
?>

In a production version of this example, the data would probably be stored in a
database and loaded on demand. Since the data is a part of the script here, the code
to retrieve it is quite straightforward. We examine the data that has been posted and
craft the HTML snippet to display:

<?php
$term = strtoupper($_REQUEST['term']);
if (isset($entries[$term])) {
 $entry = $entries[$term];

 $html = '<div class="entry">';
 $html .= '<h3 class="term">';
 $html .= $term;
 $html .= '</h3>';
 $html .= '<div class="part">';
 $html .= $entry['part'];
 $html .= '</div>';
 $html .= '<div class="definition">';
 $html .= $entry['definition'];
 if (isset($entry['quote'])) {
 $html .= '<div class="quote">';
 foreach ($entry['quote'] as $line) {
 $html .= '<div class="quote-line">'. $line .'</div>';
 }
 if (isset($entry['author'])) {
 $html .= '<div class="quote-author">'. $entry['author']
 .'</div>';
 }
 $html .= '</div>';
 }
 $html .= '</div>';

 $html .= '</div>';

 print($html);
}
?>

AJAX

[134]

Now requests to this script, which we'll call e.php, will return the HTML snippet
corresponding to the term that was sent in the GET parameters. For example,
when accessing the script with e.php?term=eavesdrop, we get back:

Once again, we note the lack of formatting we saw with earlier HTML snippets,
because CSS rules have not been applied.

Since we're showing how data is passed to the server, we will use a different method
to request entries than the solitary buttons we've been relying on so far. Instead,
we'll present a list of links for each term, and cause a click on any of them to load
the corresponding definition. The HTML we'll add for this looks like:

<div class="letter" id="letter-e">
 <h3>E</h3>

 Eavesdrop
 Edible
 Education
 Eloquence
 Elysium
 Emancipation

 Emotion
 Envelope
 Envy
 Epitaph
 Evangelist

</div>

Chapter 6

[135]

Now we need to get our JavaScript code to call the PHP script with the right
parameters. We could do this with the normal .load() mechanism, appending
the query string right to the URL and fetching data with addresses like
e.php?term=eavesdrop directly. Instead, though, we can have jQuery construct
the query string based on a map we provide to the $.get() function:

$(document).ready(function() {
 $('#letter-e a').click(function() {
 $.get('e.php', {'term': $(this).text()}, function(data) {
 $('#dictionary').html(data);
 });
 return false;
 });
});

Now that we have seen other AJAX interfaces that jQuery provides, the operation
of this function seems familiar. The only difference is the second parameter, which
allows us to supply a map of keys and values that become part of the query string.
In this case, the key is always term but the value is taken from the text of each link.
Now, clicking on the first link in the list causes its definition to appear:

All the links here have addresses given, even though we are not using them in the
code. This provides an alternative method of navigating the information for users
who have JavaScript turned off or unavailable (a form of progressive enhancement).
To prevent the links from being followed normally when clicked, the event handler
has to return false.

AJAX

[136]

Performing a POST request
HTTP requests using the POST method are almost identical to those using GET. One
of the most visible differences is that GET places its arguments in the query string
portion of the URL, whereas POST requests do not. However, in AJAX calls, even
this distinction is invisible to the average user. Generally, the only reason to choose
one method over the other is to conform to the norms of the server-side code, or to
provide for large amounts of transmitted data; GET has a more stringent limit. We
have coded our PHP example to cope equally well with either method, so we can
change from GET to POST simply by changing the jQuery function we call:

$(document).ready(function() {
 $('#letter-e a').click(function() {
 $.post('e.php', {'term': $(this).text()}, function(data) {
 $('#dictionary').html(data);
 });
 return false;
 });
});

The arguments are the same, and the request will now be made via POST. We can
further simplify the code by using the .load() method, which uses POST by default
when it is supplied with a map of arguments:

$(document).ready(function() {
 $('#letter-e a').click(function() {
 $('#dictionary').load('e.php', {'term': $(this).text()});
 return false;
 });
});

This cut-down version functions the same way when a link is clicked:

Chapter 6

[137]

Serializing a form
Sending data to the server often involves the user filling out forms. Rather than
relying on the normal form submission mechanism, which will load the response
in the entire browser window, we can use jQuery's AJAX toolkit to submit the form
asynchronously and place the response inside the current page.

To try this out, we'll need to construct a simple form:

<div class="letter" id="letter-f">
 <h3>F</h3>
 <form>
 <input type="text" name="term" value="" id="term" />
 <input type="submit" name="search" value="search"
 id="search" />
 </form>
</div>

This time we'll return a set of entries from the PHP script by searching for the
supplied search term as a substring of a dictionary term. The data structure will
be of the same format as before, but the logic will be a bit different:

foreach ($entries as $term => $entry) {
 if (strpos($term, strtoupper($_REQUEST['term']))
 !== FALSE) {
 $html = '<div class="entry">';

 $html .= '<h3 class="term">';
 $html .= $term;
 $html .= '</h3>';

 $html .= '<div class="part">';
 $html .= $entry['part'];
 $html .= '</div>';

 $html .= '<div class="definition">';
 $html .= $entry['definition'];
 if (isset($entry['quote'])) {
 foreach ($entry['quote'] as $line) {
 $html .= '<div class="quote-line">'. $line .'</div>';
 }
 if (isset($entry['author'])) {
 $html .= '<div class="quote-author">'.
 $entry['author'] .'</div>';
 }
 }

AJAX

[138]

 $html .= '</div>';

 $html .= '</div>';

 print($html);
 }
}

The call to strpos() scans the word for the supplied search string. Now we can
react to a form submission and craft the proper query parameters by traversing the
DOM tree:

$(document).ready(function() {
 $('#letter-f form').submit(function() {
 $('#dictionary').load('f.php',
 {'term': $('input[name="term"]').val()});
 return false;
 });
});

This code has the intended effect, but searching for input fields by name and
appending them to a map one by one is cumbersome. In particular, this approach
does not scale well as the form becomes more complex. Fortunately, jQuery
offers a shortcut for this often-used idiom. The .serialize() method acts on a
jQuery object and translates the matched DOM elements into a query string that
can be passed along with an AJAX request. We can generalize our submission
handler as follows:

$(document).ready(function() {
 $('#letter-f form').submit(function() {
 $.get('f.php', $(this).serialize(), function(data) {
 $('#dictionary').html(data);
 });
 return false;
 });
});

Chapter 6

[139]

Now the same script will work to submit the form, even as the number of fields
increases. When we perform a search, the matched entries are displayed:

Keeping an eye on the request
So far, it has been sufficient for us to make a call to an AJAX method and patiently
await the response. At times, though, it is handy to know a bit more about the HTTP
request as it progresses. If such a need arises, jQuery offers a suite of functions that
can be used to register callbacks when various AJAX-related events occur.

The .ajaxStart() and .ajaxStop() methods are two examples of these observer
functions, and can be attached to any jQuery object. When an AJAX call begins
with no other transfer in progress, the .ajaxStart() callback is fired. Conversely,
when the last active request ends, the callback attached with .ajaxStop() will be
executed. All of the observers are global, in that they are called when any AJAX
communication occurs, regardless of what code initiates it.

We can use these methods to provide some feedback to the user in the case of a
slow network connection. The HTML for the page can have a suitable loading
message appended:

<div id="loading">
 Loading...
</div>

AJAX

[140]

This message is just a piece of arbitrary HTML; it could include an animated GIF
image to provide a throbber, for instance. In this case, we'll add a few simple styles
to the CSS file, so that when the message is displayed, the page looks like:

In keeping with the spirit of progressive enhancement, however, we won't put
this HTML markup directly on the page. It's only relevant for us when JavaScript
is available, so we will insert it using jQuery:

$(document).ready(function() {
 $('<div id="loading">Loading...</div>')
 .insertBefore('#dictionary')
});

Our CSS file will give this <div> a display: none; style rule so that the message
is initially hidden. To display it at the right time, we just register it as an observer
with .ajaxStart():

$(document).ready(function() {
 $('<div id="loading">Loading...</div>')
 .insertBefore('#dictionary')
 .ajaxStart(function() {

 $(this).show();

 });

});

Chapter 6

[141]

We can chain the hiding behavior right onto this:

$(document).ready(function() {
 $('<div id="loading">Loading...</div>')
 .insertBefore('#dictionary')
 .ajaxStart(function() {
 $(this).show();
 }).ajaxStop(function() {

 $(this).hide();

 });

});

Voilà! We have our loading feedback.

Once again, note that these methods have no association with the particular ways in
which the AJAX communications begin. The .load() attached to the A link and the
.getJSON() attached to the B link both cause these actions to occur.

In this case, this global behavior is desirable. If we need to get more specific,
though, we have a few options at our disposal. Some of the observer methods,
like .ajaxError(), send their callback a reference to the XMLHttpRequest object.
This can be used to differentiate one request from another, and provide different
behaviors. Other more specific handling can be achieved by using the low-level
$.ajax() function, which we'll discuss a bit later.

The most common way of interacting with the request, though, is the success
callback, which we have already covered. We have used this in several of our
examples to interpret the data coming back from the server and to populate the
page with the results. It can be used for other feedback too, of course. Consider
once again our .load() example:

$(document).ready(function() {
 $('#letter-a a').click(function() {
 $('#dictionary').load('a.html');
 return false;
 });
});

We can create a small enhancement here by making the loaded content fade into
view rather than appear suddenly. The .load() can take a callback to be fired
on completion:

$(document).ready(function() {
 $('#letter-a a').click(function() {
 $('#dictionary').hide().load('a.html', function() {

 $(this).fadeIn();

AJAX

[142]

 });
 return false;
 });
});

First, we hide the target element, and then initiate the load. When the load is
complete, we use the callback to show the newly-populated element by fading it in.

AJAX and events
Suppose we wanted to allow each dictionary term name to control the display of
the definition that follows; clicking on the term name would show or hide the
associated definition. With the techniques we have seen so far, this should be
pretty straightforward:

$(document).ready(function() {
 $('.term').click(function() {
 $(this).siblings('.definition').slideToggle();
 });
});

When a term is clicked, this code finds siblings of the element that have a class of
definition, and slides them up or down as appropriate.

All seems in order, but a click does nothing with this code. Unfortunately, the terms
have not yet been added to the document when we attach the click handlers. Even
if we managed to attach click handlers to these items, once we clicked on a different
letter the handlers would no longer be attached.

This is a common problem with areas of a page populated by AJAX. A popular
solution is to rebind handlers each time the page area is refreshed. This can be
cumbersome, however, as the event binding code needs to be called each time
anything causes the DOM structure of the page to change.

An often superior alternative was introduced in Chapter 3: We can implement event
delegation, actually binding the event to an ancestor element that never changes. In
this case, we'll attach the click handler to the document using .live() and catch
our clicks that way:

$(document).ready(function() {
 $('.term').live('click', function() {
 $(this).siblings('.definition').slideToggle();
 });
});

Chapter 6

[143]

The .live() method tells the browser to observe all clicks anywhere on the page.
If (and only if) the clicked element matches the .term selector, then the handler is
executed. Now the toggling behavior will take place on any term, even if it is added
by a later AJAX transaction.

Security limitations
For all its utility in crafting dynamic web applications, XMLHttpRequest (the
underlying browser technology behind jQuery's AJAX implementation) is subject to
strict boundaries. To prevent various cross-site scripting attacks, it is not generally
possible to request a document from a server other than the one that hosts the
original page.

This is generally a positive situation. For example, some cite the implementation of
JSON parsing by using eval() as insecure. If malicious code is present in the data
file, it could be run by the eval() call. However, since the data file must reside on
the same server as the web page itself, the ability to inject code in the data file is
largely equivalent to the ability to inject code in the page directly. This means that,
for the case of loading trusted JSON files, eval() is not a significant security concern.

There are many cases, though, in which it would be beneficial to load data from a
third-party source. There are several ways to work around the security limitations
and allow this to happen.

One method is to rely on the server to load the remote data, and then provide it
when requested by the client. This is a very powerful approach as the server can
perform pre-processing on the data as needed. For example, we could load XML files
containing RSS news feeds from several sources, aggregate them into a single feed on
the server, and publish this new file for the client when it is requested.

To load data from a remote location without server involvement, we have to get
a bit sneakier. A popular approach for the case of loading foreign JavaScript files
is injecting <script> tags on demand. Since jQuery can help us insert new DOM
elements, it is simple to do this:

$(document.createElement('script'))
 .attr('src', 'http://example.com/example.js')
 .appendTo('head');

In fact, the $.getScript() method will automatically adapt to this technique if it
detects a remote host in its URL argument, so even this is handled for us.

AJAX

[144]

The browser will execute the loaded script, but there is no mechanism to retrieve
results from the script. For this reason, the technique requires cooperation from
the remote host. The loaded script must take some action, such as setting a global
variable that has an effect on the local environment. Services that publish scripts that
are executable in this way will also provide an API with which to interact with the
remote script.

Another option is to use the <iframe> HTML tag to load remote data. This element
allows any URL to be used as the source for its data fetching, even if it does not
match the host page's server. The data can be loaded and easily displayed on
the current page. Manipulating the data, however, typically requires the same
cooperation needed for the <script> tag approach; scripts inside the <iframe>
need to explicitly provide the data to objects in the parent document.

Using JSONP for remote data
The idea of using <script> tags to fetch JavaScript files from a remote source can
be adapted to pull in JSON files from another server as well. To do this, we need to
slightly modify the JSON file on the server, however. There are several mechanisms
for doing this, one of which is directly supported by jQuery: JSON with Padding,
or JSONP.

The JSONP file format consists of a standard JSON file that has been wrapped in
parentheses and prepended with an arbitrary text string. This string, the "padding",
is determined by the client requesting the data. Because of the parentheses, the client
can either cause a function to be called or a variable to be set depending on what is
sent as the padding string.

A PHP implementation of the JSONP technique is quite simple:

<?php
 print($_GET['callback'] .'('. $data .')');
?>

Here, $data is a variable containing a string representation of a JSON file. When this
script is called, the callback query string parameter is prepended to the resulting
file that gets returned to the client.

To demonstrate this technique, we need only slightly modify our earlier JSON
example to call this remote data source instead. The $.getJSON() function makes use
of a special placeholder character, ?, to achieve this.

$(document).ready(function() {
 var url = 'http://examples.learningjquery.com/jsonp/g.php';
 $('#letter-g a').click(function() {

Chapter 6

 $.getJSON(url + '?callback=?', function(data) {

 $('#dictionary').empty();
 $.each(data, function(entryIndex, entry) {
 var html = '<div class="entry">';
 html += '<h3 class="term">' + entry['term']
 + '</h3>';

 + '</div>';

 + '</div>';
 });

 }

 }
 html += '</div>';
 html += '</div>';

 });
 });
 return false;
 });
});

learningjquery.com

our URL, using ?

success function as data

AJAX

[146]

Additional options
The AJAX toolbox provided by jQuery is well-stocked. We've covered several of the
available options, but we've just scratched the surface. While there are too many
variants to cover here, we will give an overview of some of the more prominent
ways to customize AJAX communications.

The low-level AJAX method
We have seen several methods that all initiate AJAX transactions. Internally, jQuery
maps each of these methods onto variants of the $.ajax() global function. Rather
than presuming one particular type of AJAX activity, this function takes a map of
options that can be used to customize its behavior.

Our first example loaded an HTML snippet using $('#dictionary').load('a.
html'). This action could instead be accomplished with $.ajax() as follows:

$.ajax({
 url: 'a.html',
 type: 'GET',
 dataType: 'html',
 success: function(data) {
 $('#dictionary').html(data);
 }
});

We need to explicitly specify the request method, the data type that will be
returned, and what to do with the resulting data. Clearly, this is less efficient use
of programmer effort; however, with this extra work comes a great deal of flexibility.
A few of the special capabilities that come with using a low-level $.ajax()
call include:

Preventing the browser from caching responses from the server. This can be
useful if the server produces its data dynamically.
Registering separate callback functions for when the request completes
successfully, with an error, or in all cases.
Suppressing the global handlers (such as ones registered with
$.ajaxStart()) that are normally triggered by all AJAX interactions.
Providing a user name and password for authentication with the
remote host.

For details on using these and other options, consult jQuery Reference Guide or see the
API reference online (http://docs.jquery.com/Ajax/jQuery.ajax).

•

•

•

•

The

AJAX

[148]

 <body>
 <div id="container">
 <div id="header">
 <h2>The Devil's Dictionary: H</h2>
 <div class="author">by Ambrose Bierce</div>
 </div>

 <div id="dictionary">
 <div class="entry">
 <h3 class="term">HABEAS CORPUS</h3>
 <div class="part">n.</div>
 <div class="definition">
 A writ by which a man may be taken out of jail
 when confined for the wrong crime.
 </div>
 </div>

 <div class="entry">
 <h3 class="term">HABIT</h3>
 <div class="part">n.</div>
 <div class="definition">
 A shackle for the free.
 </div>
 </div>
 </div>

 </div>
 </body>
</html>

We can load the whole document into our page using the code we wrote earlier:

$(document).ready(function() {
 $('#letter-h a').click(function() {
 $('#dictionary').load('h.html');
 return false;
 });
});

Chapter 6

[149]

This produces a strange effect, though, due to the pieces of the HTML page we don't
want to include:

To remove these extraneous bits, we can use a new feature of the .load() method.
When specifying the URL of the document to load, we can also provide a jQuery
selector expression. If present, this expression is used to locate a portion of the
loaded document. Only the matched part of the document is inserted into the page.
In this case, we can use this technique to pull only the dictionary entries from the
document and insert them:

$(document).ready(function() {
 $('#letter-h a').click(function() {
 $('#dictionary').load('h.html .entry');

 return false;
 });
});

AJAX

[150]

Now the irrelevant portions of the document are excluded from the page:

Summary
We have learned that AJAX methods provided by jQuery can help us to load data
in several different formats from the server without a page refresh. We can execute
scripts from the server on demand, and send data back to the server.

We've also learned how to deal with common challenges of asynchronous loading
techniques, such as keeping handlers bound after a load has occurred and loading
data from a third-party server.

This concludes the tutorial portion of the book. We are armed with the main tools
offered by jQuery: selectors, events, effects, DOM manipulation, and asynchronous
server requests. These are not the only ways jQuery can help us; we'll cover a few
of the many abilities conferred by jQuery plugins in later chapters. But first, we'll
examine a few combinations of these techniques that enhance our web pages in new
and interesting ways.

Table Manipulation
In the first six chapters, we explored the jQuery library in a series of tutorials
that focused on each jQuery component and used examples as a way to see those
components in action. In Chapters 7 through 9 we invert the process; we'll begin
with examples of real-world problems, and see how we can use jQuery methods
to solve them.

Here, we will use an online bookstore as our model website, but the techniques
we cook up can be applied to a wide variety of other sites as well, from weblogs to
portfolios, from market-facing business sites to corporate intranets. Chapters 7 and
8 focus on two common elements of most sites—tables and forms—while Chapter
9 examines a couple of ways to visually enhance sets of information using animated
shufflers and rotators.

As the web standards movement has become more pervasive in the last few years,
table-based layout has increasingly been abandoned in favor of CSS-based designs.
Although tables were often employed as a somewhat necessary stopgap measure
in the 1990s to create multi-column and other complex layouts, they were never
intended to be used in that way. On the other hand, CSS is a technology expressly
created for these presentation tasks.

But this is not the place for an extended discussion on the proper role of tables.
Suffice it to say that in this chapter we will use jQuery to apply techniques for
increasing the readability, usability, and visual appeal of semantically marked up
containers of tabular data. For a closer look at applying semantic, accessible HTML
to tables, a good place to begin is Roger Johansson's blog entry, "Bring on the Tables"
at http://www.456bereastreet.com/archive/200410/bring_on_the_tables/.

Some of the techniques we apply to tables in this chapter can be found in plugins
such as Christian Bach's Table Sorter. For more information, visit the jQuery Plugin
Repository at http://plugins.jquery.com/.

Table Manipulation

[152]

In this chapter, we cover:

Sorting
Pagination
Row highlighting
Tooltips
Collapsing and expanding rows, and
Filtering

Sorting and paging
Two of the most common tasks performed with tabular data are sorting and paging.
In a large table, being able to rearrange the information that we're looking for is
invaluable. Unfortunately, these helpful operations can be some of the trickiest to
put into action.

First, we'll look at what it takes to perform table sorting, reordering data into a
sequence that is most helpful to the user.

Server-side sorting
A common solution for data sorting is to perform it on the server side. Data in tables
often comes from a database, which means that the code that pulls it out of the
database can request it in a given sort order (using, for example, the SQL language's
ORDER BY clause). If we have server-side code at our disposal, it is straightforward to
begin with a reasonable default sort order.

Sorting is most useful, though, when the user can determine the sort order. A
common method is to make the table headers (<th>) of sortable columns into links.
These links can go to the current page, but with a query string appended indicating
the column to sort by:

<table id="my-data">
 <thead>
 <tr>
 <th class="name">
 Name
 </th>
 <th class="date">
 Date
 </th>
 </tr>

•

•

•

•

•

•

Chapter 7

[153]

 </thead>
 <tbody>
 ...
 </tbody>
</table>

The server can react to the query string parameter by returning the database contents
in a different order.

Preventing page refreshes
This setup is simple, but requires a page refresh for each sort operation. As we have
seen, jQuery allows us to eliminate such page refreshes by using AJAX methods. If
we have the column headers set up as links as before, we can add jQuery code to
change those links into AJAX requests:

$(document).ready(function() {
 $('#my-data th a').click(function() {
 $('#my-data tbody').load($(this).attr('href'));
 return false;
 });
});

Now when the anchors are clicked, jQuery sends an AJAX request to the server for
the same page. When jQuery is used to make a page request using AJAX, it sets
the X-Requested-With HTTP header to XMLHttpRequest so that the server can
determine that an AJAX request is being made. The server code can be written to
send back only the content of the <tbody> element itself, and not the surrounding
page, when this parameter is present. This way we can take the response and insert
it in place of the existing <tbody> element.

This is an example of progressive enhancement. The page works perfectly well
without any JavaScript at all, as the links for server-side sorting are still present.
When JavaScript is available, however, the AJAX hijacks the page request and
allows the sort to occur without a full page load.

JavaScript sorting
There are times, though, when we either don't want to wait for server responses
when sorting, or don't have a server-side scripting language available to us. A
viable alternative in this case is to perform the sorting entirely on the browser using
JavaScript client-side scripting.

Table Manipulation

[154]

For example, suppose we have a table listing books, the author names, release dates,
and prices:

<table class="sortable">
 <thead>
 <tr>
 <th></th>
 <th>Title</th>
 <th>Author(s)</th>
 <th>Publish Date</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td><img src="../images/covers/small/1847192386.png"
 width="49" height="61" alt="Building Websites with
 Joomla! 1.5 Beta 1" />
 </td>
 <td>Building Websites with Joomla! 1.5 Beta 1</td>
 <td>Hagen Graf</td>
 <td>Feb 2007</td>
 <td>$40.49</td>
 </tr>
 <tr>
 <td><img src="../images/covers/small/1904811620.png"
 width="49" height="61" alt="Learning Mambo: A
 Step-by-Step Tutorial to Building Your Website" />
 </td>
 <td>Learning Mambo: A Step-by-Step Tutorial to Building
 Your Website
 </td>
 <td>Douglas Paterson</td>
 <td>Dec 2006</td>
 <td>$40.49</td>
 </tr>
 </tbody>
</table>

Chapter 7

[155]

We'd like to turn the table headers into buttons that sort the data by their respective
columns. Let's explore some ways of doing this.

Row grouping tags
Note our use of the <thead> and <tbody> tags to segment the data into row
groupings. Many HTML authors omit these implied tags, but they can prove useful
in supplying us with more convenient CSS selectors to use. For example, suppose
we wish to apply typical even/odd row striping to this table, but only to the body
of the table:

$(document).ready(function() {
 $('table.sortable tbody tr:odd').addClass('odd');
 $('table.sortable tbody tr:even').addClass('even');
});

Table Manipulation

[156]

This will add alternating colors to the table, but leave the header untouched:

Using these row grouping tags, we will be able to easily select and manipulate the
data rows without affecting the header.

Basic alphabetical sorting
Now let's perform a sort on the Title column of the table. We'll need a class on the
table header cell so that we can select it properly:

<thead>
 <tr>
 <th></th>
 <th class="sort-alpha">Title</th>
 <th>Author(s)</th>
 <th>Publish Date</th>
 <th>Price</th>
 </tr>
</thead>

Chapter 7

[157]

Using JavaScript to sort arrays
To perform the actual sort, we can use JavaScript's built in .sort() method. It does
an in-place sort on an array, and can take a comparator function as an argument.
This function compares two items in the array and should return a positive or
negative number depending on which item should come first in the sorted array.

For example, take a simple array of numbers:

var arr = [52, 97, 3, 62, 10, 63, 64, 1, 9, 3, 4];

We can sort this array by calling arr.sort(). After this, the items are in the order:

[1, 10, 3, 3, 4, 52, 62, 63, 64, 9, 97]

By default, as we see here, the items are sorted lexicographically (in alphabetical
order). In this case it might make more sense to sort the items numerically. To do
this, we can supply a comparator function to the .sort() method:

arr.sort(function(a,b) {
 if (a < b)
 return -1;
 if (a > b)
 return 1;
 return 0;
});

This function returns a negative number if a should come first in the sorted array,
a positive number if b should come first, and zero if the order of the items does
not matter. With this information in hand, the .sort() method can sequence the
items appropriately:

[1, 3, 3, 4, 9, 10, 52, 62, 63, 64, 97]

Using a comparator to sort table rows
Our initial sort routine looks like this:

$(document).ready(function() {
 $('table.sortable').each(function() {
 var $table = $(this);
 $('th', $table).each(function(column) {
 var $header = $(this);
 if ($header.is('.sort-alpha')) {
 $header.addClass('clickable').hover(function() {
 $header.addClass('hover');
 }, function() {
 $header.removeClass('hover');

Table Manipulation

[158]

 }).click(function() {
 var rows = $table.find('tbody > tr').get();
 rows.sort(function(a, b) {
 var keyA = $(a).children('td').eq(column).text()
 .toUpperCase();
 var keyB = $(b).children('td').eq(column).text()
 .toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 });
 });
 }
 });
 });
});

The first thing to note is our use of the .each() method to make the iteration
explicit. Even though we could bind a click handler to all headers that have the
sort-alpha class just by calling $('table.sortable th.sort-alpha').click(),
this wouldn't allow us to easily capture a crucial bit of information: the column
index of the clicked header. Because .each() passes the iteration index into its
callback function, we can use it to find the relevant cell in each row of the data later.

Once we have found the header cell, we retrieve an array of all of the data rows. This
is a great example of how .get() is useful in transforming a jQuery object into an
array of DOM nodes; even though jQuery objects act like arrays in many respects,
they don't have any of the native array methods available, such as .sort().

Now that we have an array of DOM nodes, we can sort them, but to do this we need
to write an appropriate comparator function. We want to sort the rows according
to the textual contents of the relevant table cells, so this will be the information
the comparator function will examine. We know which cell to look at because we
captured the column index in the enclosing .each() call. We convert the text to
uppercase because string comparisons in JavaScript are case-sensitive and we
wish our sort to be case-insensitive. We store the key values in variables to avoid
redundant calculations, compare them, and return a positive or negative number as
discussed above.

Finally, with the array sorted, we loop through the rows and reinsert them into the
table. Since .append() does not clone nodes, this moves them rather than copying
them. Our table is now sorted.

Chapter 7

[159]

This is an example of progressive enhancement's counterpart, graceful degradation.
Unlike the AJAX solution discussed earlier, this technique cannot function without
JavaScript; we are assuming the server has no scripting language available to it for
this example. Since JavaScript is required for the sort to work, we are adding the
clickable class through code only, thereby making sure that the interface indicates
that sorting is possible (with a background image) only if the script can run. The
page degrades into one that is still functional, albeit without sorting available.

We have moved the actual rows around, hence our alternating row colors are now
out of whack:

We need to reapply the row colors after the sort is performed. We can do this by
pulling the coloring code out into a function that we call when needed:

$(document).ready(function() {
 var alternateRowColors = function($table) {
 $('tbody tr:odd', $table)
 .removeClass('even').addClass('odd');
 $('tbody tr:even', $table)
 .removeClass('odd').addClass('even');
 };

 $('table.sortable').each(function() {
 var $table = $(this);
 alternateRowColors($table);
 $('th', $table).each(function(column) {
 var $header = $(this);
 if ($header.is('.sort-alpha')) {
 $header.addClass('clickable').hover(function() {

Table Manipulation

[160]

 $header.addClass('hover');
 }, function() {
 $header.removeClass('hover');
 }).click(function() {
 var rows = $table.find('tbody > tr').get();
 rows.sort(function(a, b) {
 var keyA = $(a).children('td').eq(column).text()
 .toUpperCase();
 var keyB = $(b).children('td').eq(column).text()
 .toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 });
 alternateRowColors($table);
 });
 }
 });
 });
});

This corrects the row coloring after the fact, fixing our issue:

Chapter 7

[161]

The power of plugins
The alternateRowColors() function that we wrote is a perfect candidate to become
a jQuery plugin. In fact, any operation that we wish to apply to a set of DOM
elements can easily be expressed as a plugin. To accomplish this, we need to modify
our existing function only a little bit:

jQuery.fn.alternateRowColors = function() {
 $('tbody tr:odd', this)
 .removeClass('even').addClass('odd');
 $('tbody tr:even', this)
 .removeClass('odd').addClass('even');
 return this;
};

We have made three important changes to the function.

It is defined as a new property of jQuery.fn rather than as a standalone
function. This registers the function as a plugin method.
We use the keyword this as a replacement for our $table parameter.
Within a plugin method, this refers to the jQuery object that is being
acted upon.
Finally, we return this at the end of the function. Supplying the jQuery
object as the return value makes our new method chainable.

More information on writing jQuery plugins can be found in Chapter 11.
There, we will discuss making a plugin ready for public consumption,
as opposed to the small example here that is only to be used by our
own code.

With our new plugin defined, we can call $table.alternateRowColors(), a more
natural jQuery statement, instead of alternateRowColors($table).

Performance concerns
Our code works, but it is quite slow. The culprit is the comparator function, which is
performing a fair amount of work. This comparator will be called many times during
the course of a sort, which means that every extra moment it spends on processing
will be magnified.

The actual sort algorithm used by JavaScript is not defined by the standard. It may
be a simple sort like a bubble sort (worst case of Θ(n2) in computational complexity
terms) or a more sophisticated approach like quick sort (which is Θ(n log n) on
average). It is safe to say, though, that doubling the number of items in an array
will more than double the number of times the comparator function is called.

•

•

•

Table Manipulation

[162]

The remedy for our slow comparator is to pre-compute the keys for the comparison.
We begin with our current, slow sort function:

rows.sort(function(a, b) {
 var keyA = $(a).children('td').eq(column).text()
 .toUpperCase();
 var keyB = $(b).children('td').eq(column).text()
 .toUpperCase();
 if (keyA < keyB) return -1;
 if (keyA > keyB) return 1;
 return 0;
});

We can pull out the key computation and do that in a separate loop:

$.each(rows, function(index, row) {
 row.sortKey = $(row).children('td').eq(column)
 .text().toUpperCase();
});
rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -1;
 if (a.sortKey > b.sortKey) return 1;
 return 0;
});
$.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
});

In the new loop, we are doing all of the expensive work and storing the result in a
new .sortKey property. This kind of property, attached to a DOM element but not
a normal DOM attribute, is called an expando. This is a convenient place to store the
key, since we need one per table row element. Now, we can examine this attribute
within the comparator function, and our sort is markedly faster.

We set the expando property to null after we're done with it to clean
up after ourselves. This is not strictly necessary in this case, but is a good
habit to establish because expando properties left lying around can be the
cause of memory leaks. For more information, see Appendix C.

Instead of using expando properties, jQuery provides an alternative data storage
mechanism we could use. The .data() method sets or retrieves arbitrary
information associated with page elements, and the .removeData() method
gets rid of any such stored information:

Chapter 7

[163]

$.each(rows, function(index, row) {
 $(row).data('sortKey', $(row).children('td')

 .eq(column).text().toUpperCase());
});
rows.sort(function(a, b) {
 if ($(a).data('sortKey') < $(b).data('sortKey'))

 return -1;
 if ($(a).data('sortKey') > $(b).data('sortKey'))

 return 1;
 return 0;
});
$.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 $(row).removeData('sortKey');

});

Using .data() instead of expando properties can, at times, be more convenient,
since we are often working with jQuery objects rather than directly with DOM
nodes. It also avoids potential problems with Internet Explorer memory leaks.
However, for the remainder of this example, we will stick with expando properties
in order to practice switching between operations on DOM nodes and operations
on jQuery objects.

Finessing the sort keys
Now, we want to apply the same kind of sorting behavior to the Author(s) column
of our table. By adding the sort-alpha class to its table header cell, the Author(s)
column can be sorted with our existing code. Ideally authors should be sorted by
last name, not first. Since some books have multiple authors, and some authors have
middle names or initials listed, we need outside guidance to determine what part of
the text to use as our sort key. We can supply this guidance by wrapping the relevant
part of the cell in a tag:

<tr>
 <td><img src="../images/covers/small/1847192386.png"
 width="49" height="61" alt="Building Websites with
 Joomla! 1.5 Beta 1" />
 </td>
 <td>Building Websites with Joomla! 1.5 Beta 1</td>
 <td>Hagen Graf</td>
 <td>Feb 2007</td>
 <td>$40.49</td>
</tr>
<tr>

Table Manipulation

[164]

 <td><img src="../images/covers/small/1904811620.png"
 width="49" height="61" alt="Learning Mambo: A
 Step-by-Step Tutorial to Building Your Website" />
 </td>
 <td>Learning Mambo: A Step-by-Step Tutorial to Building
 Your Website
 </td>
 <td>Douglas Paterson</td>
 <td>Dec 2006</td>
 <td>$40.49</td>
</tr>

Now, we have to modify our sorting code to take this tag into account without
disturbing the existing behavior for the Title column, which is already working well.
By prepending the marked sort key to the key we have previously calculated, we can
sort first on the last name if it is called out, but on the whole string as a fallback:

$.each(rows, function(index, row) {
 var $cell = $(row).children('td').eq(column);
 row.sortKey = $cell.find('.sort-key').text().toUpperCase()
 + ' ' + $cell.text().toUpperCase();
});

Sorting by the Author(s) column now uses the provided key, thereby sorting by
last name:

If two last names are identical, the sort uses the entire string as a tiebreaker
for positioning.

Chapter 7

[165]

Sorting other types of data
Our user should be able to sort not just by the Title and Author(s) columns, but
the Publish Date and Price columns as well. Since we streamlined our comparator
function, it can handle all kinds of data, but first the computed keys will need to be
adjusted for other data types. For example, in the case of prices we need to strip off
the leading $ character and parse the rest so that we can compare them numerically:

var key = parseFloat($cell.text().replace(/^[^\d.]*/, ''));
row.sortKey = isNaN(key) ? 0 : key;

The regular expression used here removes any leading characters other than
numbers and decimal points, passing the result on to parseFloat(). The result of
parseFloat() then needs to be checked, because if no number can be extracted
from the text, NaN (not a number) is returned. This can wreak havoc on .sort().

For the date cells, we can use the JavaScript Date object:

row.sortKey = Date.parse('1 ' + $cell.text());

The dates in this table contain a month and year only; Date.parse() requires
a fully-specified date, so we prepend the string with 1. This provides a day to
complement the month and year, and the combination is then converted into
a timestamp, which can be sorted using our normal comparator.

We can apportion these expressions across separate functions, and call the
appropriate one based on the class applied to the table header:

jQuery.fn.alternateRowColors = function() {
 $('tbody tr:odd', this)
 .removeClass('even').addClass('odd');
 $('tbody tr:even', this)
 .removeClass('odd').addClass('even');
 return this;
};

$(document).ready(function() {
 $('table.sortable').each(function() {
 var $table = $(this);
 $table.alternateRowColors();
 $('th', $table).each(function(column) {
 var $header = $(this);
 var findSortKey;

 if ($header.is('.sort-alpha')) {

 findSortKey = function($cell) {

 return $cell.find('.sort-key')

 .text().toUpperCase()

Table Manipulation

[166]

 + ' ' + $cell.text().toUpperCase();

 };

 }

 else if ($header.is('.sort-numeric')) {

 findSortKey = function($cell) {

 var key = $cell.text().replace(/^[^\d.]*/, '');

 key = parseFloat(key);

 return isNaN(key) ? 0 : key;

 };

 }

 else if ($header.is('.sort-date')) {

 findSortKey = function($cell) {

 return Date.parse('1 ' + $cell.text());

 };

 }

 if (findSortKey) {

 $header.addClass('clickable').hover(function() {
 $header.addClass('hover');
 }, function() {
 $header.removeClass('hover');
 }).click(function() {
 var rows = $table.find('tbody > tr').get();
 $.each(rows, function(index, row) {
 var $cell = $(row).children('td').eq(column);
 row.sortKey = findSortKey($cell);

 });
 rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -1;
 if (a.sortKey > b.sortKey) return 1;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
 });
 $table.alternateRowColors();
 });
 }
 });
 });
});

Chapter 7

[167]

The findSortKey variable doubles as the function to calculate the key, and a flag to
indicate whether the column header is marked with a class making it sortable. We
can now sort on date or price:

Table Manipulation

[168]

Column highlighting
It can be a nice user interface enhancement to visually remind the user of what has
been done in the past. By highlighting the column that was most recently used for
sorting, we can focus the user's attention on the part of the table that is most likely to
be relevant. Fortunately, since we've already determined how to select the table cells
in the column, applying a class to those cells is simple:

$table.find('td').removeClass('sorted')
 .filter(':nth-child(' + (column + 1) + ')')
 .addClass('sorted');

This snippet first removes the sorted class from all cells, then adds it to cells that
are in the same column we just used for our sort. Note that we have to add 1 to the
column index we found earlier, since the :nth-child() selector is one-based rather
than zero-based. With this code in place, we get a highlighted column after any
sort operation:

Alternating sort directions
Our final sorting enhancement is to allow for both ascending and descending sort
orders. When the user clicks on a column that is already sorted, we want to reverse
the current sort order.

Chapter 7

[169]

To reverse a sort, all we have to do is to invert the values returned by our
comparator. We can do this with a simple variable:

if (a.sortKey < b.sortKey) return -sortDirection;
if (a.sortKey > b.sortKey) return sortDirection;

If sortDirection equals 1, then the sort will be the same as before. If it equals -1,
the sort will be reversed. We can use classes to keep track of the current sort order
of a column:

jQuery.fn.alternateRowColors = function() {
 $('tbody tr:odd', this)
 .removeClass('even').addClass('odd');
 $('tbody tr:even', this)
 .removeClass('odd').addClass('even');
 return this;
};

$(document).ready(function() {
 $('table.sortable').each(function() {
 var $table = $(this);
 $table.alternateRowColors();
 $('th', $table).each(function(column) {
 var $header = $(this);
 var findSortKey;
 if ($header.is('.sort-alpha')) {
 findSortKey = function($cell) {
 return $cell.find('.sort-key').text().toUpperCase()
 + ' ' + $cell.text().toUpperCase();
 };
 }
 else if ($header.is('.sort-numeric')) {
 findSortKey = function($cell) {
 var key = $cell.text().replace(/^[^\d.]*/, '');
 key = parseFloat(key);
 return isNaN(key) ? 0 : key;
 };
 }
 else if ($header.is('.sort-date')) {
 findSortKey = function($cell) {
 return Date.parse('1 ' + $cell.text());
 };
 }

 if (findSortKey) {
 $header.addClass('clickable').hover(function() {

Table Manipulation

[170]

 $header.addClass('hover');
 }, function() {
 $header.removeClass('hover');
 }).click(function() {
 var sortDirection = 1;

 if ($header.is('.sorted-asc')) {

 sortDirection = -1;

 }

 var rows = $table.find('tbody > tr').get();
 $.each(rows, function(index, row) {
 var $cell = $(row).children('td').eq(column);
 row.sortKey = findSortKey($cell);
 });
 rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -sortDirection;
 if (a.sortKey > b.sortKey) return sortDirection;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
 });
 $table.find('th').removeClass('sorted-asc')

 .removeClass('sorted-desc');

 if (sortDirection == 1) {

 $header.addClass('sorted-asc');

 }

 else {

 $header.addClass('sorted-desc');

 }

 $table.find('td').removeClass('sorted')
 .filter(':nth-child(' + (column + 1) + ')')
 .addClass('sorted');
 $table.alternateRowColors();
 });
 }
 });
 });
});

Chapter 7

[171]

As a side benefit, since we use classes to store the sort direction we can style the
column headers to indicate the current order as well:

Server-side pagination
Sorting is a great way to wade through a large amount of data to find information.
We can also help the user focus on a portion of a large data set by paginating
the data.

Much like sorting, pagination is often performed on the server. If the data to be
displayed is stored in a database, it is easy to pull out one chunk of information at a
time using MySQL's LIMIT clause, ROWNUM in Oracle, or equivalent methods in other
database engines.

As with our initial sorting example, pagination can be triggered by sending
information to the server in a query string, such as index.php?page=52. And again,
as before, we can perform this task either with a full page load or by using AJAX to
pull in just one chunk of the table. This strategy is browser-independent, and can
handle large data sets very well.

Sorting and paging go together
Data that is long enough to benefit from sorting is likely long enough to be a
candidate for paging. It is not unusual to wish to combine these two techniques for
data presentation. Since they both affect the set of data that is present on a page,
though, it is important to consider their interactions while implementing them.

Table Manipulation

[172]

Both sorting and pagination can be accomplished either on the server, or in the web
browser. However, we must keep the strategies for the two tasks in sync; otherwise,
we can end up with confusing behavior. Suppose, for example, we have a table with
eight rows and two columns in it, sorted initially by the first column. If the data is
re-sorted by the second column, many rows may change places:

Before After

A

B

C

D

E

F

G

H

1

2

3

4

5

6

7

8

A

B

C

D

E

F

G

H

1

2

3

4

5

6

7

8

Now let's consider what happens when pagination is added to the mix. Suppose only
the first four rows are provided by the server and the browser attempts to sort the
data. If paging is done by the server and sorting by the browser, the entire data set is
not available for the sorting routine, making the results incorrect:

Before After

A

B

C

D

2

4

5

7

A

B

C

D

2

4

5

7

Only the data already present on the page can be manipulated by JavaScript. To
prevent this from being a problem, we must either perform both tasks on the server
(polling the server for the correct data set on every page or sort operation), or both
in the browser (with all possible data available to JavaScript at all times), so that the
first displayed results are indeed the first rows in the data set:

Before After

A

B

C

D

2

4

5

7 A

C 2

4

G

E 1

3

Chapter 7

[173]

JavaScript pagination
So, let's examine how we would add JavaScript pagination to the table we have
already made sortable in the browser. First, we'll focus on displaying a particular
page of data, disregarding user interaction for now.

$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;
 var $table = $(this);
 $table.find('tbody tr').hide()
 .slice(currentPage * numPerPage,
 (currentPage + 1) * numPerPage)
 .show();
 });
});

This code displays the first page—ten rows of data.

Once again we rely on the presence of a <tbody> element to separate data from
headers; we don't want to have the headers or footers disappear when moving on to
the second page. For selecting the rows containing data, we hide all the rows first,
then select the rows on the current page, showing the selected rows. The .slice()
method shown here works like the array method of the same name; it reduces the
selection to the elements in between the two positions given.

The most error-prone task in writing this code is formulating the expressions to use
in the .slice() filter. We need to find the indices of the rows at the beginning and
end of the current page. For the beginning row, we just multiply the current page
number by the number of rows on each page. Multiplying the number of rows by one
more than the current page number gives us the beginning row of the next page; the
.slice() method fetches the rows up to and not including this second parameter.

Displaying the pager
To add user interaction to the mix, we need to place a pager next to the table: a set of
links for navigating to different pages of data. We could do this by simply inserting
links for the pages in the HTML markup, but this would violate the progressive
enhancement principle we've been espousing. Instead, we should add the links
using JavaScript, so that users without scripting available are not misled by links
that cannot work.

Table Manipulation

[174]

To display the links, we need to calculate the number of pages and create a
corresponding number of DOM elements:

var numRows = $table.find('tbody tr').length;
var numPages = Math.ceil(numRows / numPerPage);

var $pager = $('<div class="pager"></div>');
for (var page = 0; page < numPages; page++) {
 $('' + (page + 1) + '')
 .appendTo($pager).addClass('clickable');
}
$pager.insertBefore($table);

The number of pages can be found by dividing the number of data rows by the
number of items we wish to display on each page. Since the division may not yield
an integer, we must round the result up using Math.ceil() to ensure that the final
partial page will be accessible. Then, with this number in hand, we create buttons for
each page and position the new pager above the table:

Enabling the pager buttons
To make these new buttons actually work, we need to update the currentPage
variable and then run our pagination routine. At first blush, it seems we should be
able to do this by setting currentPage to page, which is the current value of the
iterator that creates the buttons:

$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;
 var $table = $(this);
 var repaginate = function() {
 $table.find('tbody tr').hide()
 .slice(currentPage * numPerPage,
 (currentPage + 1) * numPerPage)
 .show();
 };
 var numRows = $table.find('tbody tr').length;

Chapter 7

[175]

 var numPages = Math.ceil(numRows / numPerPage);
 var $pager = $('<div class="pager"></div>');
 for (var page = 0; page < numPages; page++) {
 $('').text(page + 1)
 .click(function() {
 currentPage = page;
 repaginate();
 }).appendTo($pager).addClass('clickable');
 }
 $pager.insertBefore($table);

 });
});

This works, in that the new repaginate() function is called when the page loads
and when any of the page links are clicked. All of the links present us with a table
that has no data rows, though:

The problem is that in defining our click handler, we have created a closure. The
click handler refers to the page variable, which is defined outside the function.
When the variable changes the next time through the loop, this also affects the click
handlers that we have already set up for the earlier buttons. The net effect is that, for
a pager with 7 pages, each button directs us to page 8 (the final value of page when
the loop is complete).

More information on how closures work can be found in Appendix C.

To correct this problem, we'll take advantage of one of the more advanced features
of jQuery's event binding methods. We can add a set of custom event data to the
handler when we bind it that will still be available when the handler is eventually
called. With this capability in our bag of tricks, we can write:

$('').text(page + 1)
 .bind('click', {newPage: page}, function(event) {
 currentPage = event.data['newPage'];
 repaginate();
 }).appendTo($pager).addClass('clickable');

Table Manipulation

[176]

The new page number is passed into the handler by way of the event's data
property. In this way the page number escapes the hazards of the closure, and is
frozen in time at the value it contained when the handler was bound. Now our pager
links can correctly take us to different pages:

Marking the current page
Our pager can be made more user-friendly by highlighting the current page number.
We just need to update the classes on the buttons every time one is clicked:

$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;
 var $table = $(this);
 var repaginate = function() {
 $table.find('tbody tr').hide()
 .slice(currentPage * numPerPage,
 (currentPage + 1) * numPerPage)
 .show();
 };
 var numRows = $table.find('tbody tr').length;
 var numPages = Math.ceil(numRows / numPerPage);
 var $pager = $('<div class="pager"></div>');
 for (var page = 0; page < numPages; page++) {
 $('').text(page + 1)

Chapter 7

[177]

 .bind('click', {newPage: page}, function(event) {
 currentPage = event.data['newPage'];
 repaginate();
 $(this).addClass('active')

 .siblings().removeClass('active');

 }).appendTo($pager).addClass('clickable');
 }
 $pager.insertBefore($table)
 .find('span.page-number:first').addClass('active');

 });
});

Now we have an indicator of the current status of the pager:

Paging with sorting
We began this discussion by noting that sorting and paging controls needed to be
aware of one another to avoid confusing results. Now that we have a working pager,
we need to make sort operations respect the current page selection.

Doing this is as simple as calling our repaginate() function whenever a sort is
performed. The scope of the function, though, makes this problematic. We can't
reach repaginate() from our sorting routine because it is contained inside a
different $(document).ready() handler. We could just consolidate the two pieces
of code, but instead let's be a bit sneakier. We can decouple the behaviors, so that a
sort calls the repaginate behavior if it exists, but ignores it otherwise. To accomplish
this, we'll use a handler for a custom event.

Table Manipulation

[178]

In our earlier event handling discussion, we limited ourselves to event names that
were triggered by the web browser, such as click and mouseup. The .bind()
and .trigger() methods are not limited to these events, though; we can use any
string as an event name. Using this capability, we can define a new event called
repaginate as a stand-in for the function we've been calling:

$table.bind('repaginate', function() {
 $table.find('tbody tr').hide()
 .slice(currentPage * numPerPage,
 (currentPage + 1) * numPerPage)
 .show();
});

Now in places where we were calling repaginate(), we can call:

$table.trigger('repaginate');

We can issue this call in our sort code as well. It will do nothing if the table does not
have a pager, so we can mix and match the two capabilities as desired.

The finished code
The completed sorting and paging code in its entirety follows:

jQuery.fn.alternateRowColors = function() {
 $('tbody tr:odd', this)
 .removeClass('even').addClass('odd');
 $('tbody tr:even', this)
 .removeClass('odd').addClass('even');
 return this;
};

$(document).ready(function() {
 $('table.sortable').each(function() {
 var $table = $(this);
 $table.alternateRowColors();
 $('th', $table).each(function(column) {
 var $header = $(this);
 var findSortKey;
 if ($header.is('.sort-alpha')) {
 findSortKey = function($cell) {
 return $cell.find('.sort-key').text().toUpperCase()
 + ' ' + $cell.text().toUpperCase();
 };
 }
 else if ($header.is('.sort-numeric')) {
 findSortKey = function($cell) {

Chapter 7

[179]

 var key = $cell.text().replace(/^[^\d.]*/, '');
 key = parseFloat(key);
 return isNaN(key) ? 0 : key;
 };
 }
 else if ($header.is('.sort-date')) {
 findSortKey = function($cell) {
 return Date.parse('1 ' + $cell.text());
 };
 }

 if (findSortKey) {
 $header.addClass('clickable').hover(function() {
 $header.addClass('hover');
 }, function() {
 $header.removeClass('hover');
 }).click(function() {
 var sortDirection = 1;
 if ($header.is('.sorted-asc')) {
 sortDirection = -1;
 }
 var rows = $table.find('tbody > tr').get();
 $.each(rows, function(index, row) {
 var $cell = $(row).children('td').eq(column);
 row.sortKey = findSortKey($cell);
 });
 rows.sort(function(a, b) {
 if (a.sortKey < b.sortKey) return -sortDirection;
 if (a.sortKey > b.sortKey) return sortDirection;
 return 0;
 });
 $.each(rows, function(index, row) {
 $table.children('tbody').append(row);
 row.sortKey = null;
 });
 $table.find('th').removeClass('sorted-asc')
 .removeClass('sorted-desc');
 if (sortDirection == 1) {
 $header.addClass('sorted-asc');
 }
 else {
 $header.addClass('sorted-desc');
 }
 $table.find('td').removeClass('sorted')
 .filter(':nth-child(' + (column + 1) + ')')
 .addClass('sorted');
 $table.alternateRowColors();
 $table.trigger('repaginate');

Table Manipulation

[180]

 });
 }
 });
 });
});
$(document).ready(function() {
 $('table.paginated').each(function() {
 var currentPage = 0;
 var numPerPage = 10;
 var $table = $(this);
 $table.bind('repaginate', function() {
 $table.find('tbody tr').hide()
 .slice(currentPage * numPerPage,
 (currentPage + 1) * numPerPage)
 .show();
 });
 var numRows = $table.find('tbody tr').length;
 var numPages = Math.ceil(numRows / numPerPage);
 var $pager = $('<div class="pager"></div>');
 for (var page = 0; page < numPages; page++) {
 $('').text(page + 1)
 .bind('click', {newPage: page}, function(event) {
 currentPage = event.data['newPage'];
 $table.trigger('repaginate');
 $(this).addClass('active')
 .siblings().removeClass('active');
 }).appendTo($pager).addClass('clickable');
 }
 $pager.insertBefore($table)
 .find('span.page-number:first').addClass('active');
 });
});

Modifying table appearance
We have now looked at some ways of ordering the rows of data in a table to provide
assistance to the user in finding the desired information. It is often the case, though,
that there is still a lot of data to sift through after any sorting or paging is performed.
We can assist the user by manipulating not just the order and quantity of displayed
rows, but the appearance of those that are shown.

Chapter 7

[181]

Row highlighting
One practical way to guide the user's eye is to highlight rows to give a visual cue
about what data is important. To examine some highlighting strategies, we need
a table to work with. This time, we'll start with a table of news items. The table
will be a little more complicated than the last; it will include some rows used as
subheadings, in addition to a main heading row. The HTML structure is as follows:

<table>
 <thead>
 <tr>
 <th>Date</th>
 <th>Headline</th>
 <th>Author</th>
 <th>Topic</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th colspan="4">2008</th>
 </tr>
 <tr>
 <td>Sep 28</td>
 <td>jQuery, Microsoft, and Nokia</td>
 <td>John Resig</td>
 <td>third-party</td>
 </tr>
 ...
 <tr>
 <td>Jan 15</td>
 <td>jQuery 1.2.2: 2nd Birthday Present</td>
 <td>John Resig</td>
 <td>release</td>
 </tr>
 </tbody>
 <tbody>
 <tr>
 <th colspan="4">2007</th>
 </tr>
 <tr>
 <td>Dec 8</td>
 <td>jQuery Plugins site updated</td>
 <td>Mike Hostetler</td>
 <td>announcement</td>
 </tr>

Table Manipulation

[182]

 ...
 <tr>
 <td>Jan 11</td>
 <td>Selector Speeds</td>
 <td>John Resig</td>
 <td>source</td>
 </tr>
 </tbody>
 ...
</table>

Note the use of multiple <tbody> sections. This is valid HTML markup for
grouping sets of rows together. We have placed the section subheadings within
these groupings, using <th> elements to set them off. With basic CSS added, this
table renders as follows:

Row striping
We have already seen one simple example of row highlighting earlier in this chapter,
and before that in Chapter 2. Striping rows is a common way to guide the user's eye
across multiple columns accurately.

Chapter 7

[183]

As we have seen, row striping can be as simple as a couple of lines to add classes to
odd and even rows:

$(document).ready(function() {
 $('table.striped tr:odd).addClass('odd');
 $('table.striped tr:even).addClass('even');
});

While this code works fine for simple table structures, if we introduce additional
rows we do not want to be striped (such as the subheading rows we are using for the
years in our table), the basic odd-even pattern no longer suffices. If, for example, the
2006 row would be classified as even, the rows before and after it would both be odd,
which is likely not desirable.

We can ensure that our alternating-row pattern begins anew with each years'
worth of news items by using the :nth-child() pseudo-class we learned about
in Chapter 2:

$(document).ready(function() {
 $('table.striped tr:nth-child(odd)').addClass('odd');
 $('table.striped tr:nth-child(even)').addClass('even');
});

Table Manipulation

[184]

Each group of rows now begins with an odd row, but the subheading rows are
included in this calculation. So instead, we could exclude the subheading rows
from consideration with the :has() pseudo-class:

$(document).ready(function() {
 $('table.striped tr:not(:has(th)):odd').addClass('odd');
 $('table.striped tr:not(:has(th)):even').addClass('even');
});

Now the subheadings are excluded, but groupings will begin with an odd or even
row depending on which classification applied to the previous data row. Reconciling
these two behaviors can be a bit tricky; one straightforward option is introducing
some explicit iteration using the .each() method.

$(document).ready(function() {
 $('table.striped tbody').each(function() {
 $(this).find('tr:not(:has(th)):odd').addClass('odd');
 $(this).find('tr:not(:has(th)):even').addClass('even');
 });
});

Now each grouping is striped independently, and subheading rows are excluded
from the calculations.

Chapter 7

[185]

Advanced row striping
These manipulations of odd and even rows have set us up for some more
complicated techniques. In particularly dense tables, even alternating row colors
can be confusing to the eye, and it can be beneficial to alternate colors at a larger
interval. As an example, we will modify the striping of our news table to color its
rows three-at-a-time.

In Chapter 2, we introduced the .filter() method for selecting page elements in a
very flexible way. Recalling that .filter() can take not just a selector expression,
but also a filter function, we can write:

$(document).ready(function() {
 $('table.striped tbody').each(function() {
 $(this).find('tr:not(:has(th))').filter(function(index) {
 return (index % 6) < 3;
 }).addClass('odd');
 });
});

This code accomplishes a lot in a small space, so let's break it down piece-by-piece.

First, we use the .each() method as before to segment our task neatly by row
grouping. We want our three-row stripes to begin anew after each subheading, so
this technique allows us to work one section at a time. Then, we use .find() as in
our last example to locate all of the rows that do not have <th> elements (and thus
are not subheadings).

Now, we need to select the first three elements of this set, skip three elements, and
so forth. This is where .filter() comes into play. The filter function takes an
argument containing the index of the item within the matched set—that is, the row
number in the section of the table we're examining. If, and only if, our filter function
returns true, the element will remain in the set.

The modulo operator (%) provides us with the information we need. The expression
index % 6 evaluates to the remainder of the row number when divided by 6; if this
remainder is 0, 1, or 2, then we'll mark the row as odd; if it is 3, 4, or 5, the row will
be even.

The code, as presented, only marks the odd sets of rows. To also apply the even class,
we could write another filter that applied the opposite filter, or we can get a bit
more creative:

$(document).ready(function() {
 $('table.striped tbody').each(function() {
 $(this).find('tr:not(:has(th))').addClass('even')

Table Manipulation

[186]

 .filter(function(index) {
 return (index % 6) < 3;
 }).removeClass('even').addClass('odd');
 });
});

Here we apply the even class to all of the rows, and remove it if we add the odd
class. Our table now has stylish alternating row groupings, which begin anew with
each new section of the table.

Interactive row highlighting
Another visual enhancement that we can apply to our news article table is row
highlighting based on user interaction. Here we'll respond to clicking on an author's
name by highlighting all rows that have the same name in their Author cell. Just as
we did with the row striping, we can modify the appearance of these highlighted
rows by adding a class:

#content tr.highlight {
 background: #ff6;
}

Chapter 7

[187]

It's important that we give this new highlight class adequate specificity, so that the
background color will override that of the even and odd classes.

Now we need to select the appropriate cell and attach behavior to it using the
.click() method:

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 $authorCells.click(function() {
 // Perform our highlighting here.
 });
});

Notice that we use the :nth-child(n) pseudo-class as part of the selector expression
that points to the third column where the author information is. In case the table
structure were to later change, we would want this constant 3 to be in only one place
in the code, so it could be easily updated. For this reason, and for efficiency, we store
the result of our selector in the $authorCells variable rather than repeating the
selector each time it is needed.

Recall that unlike JavaScript indices, the CSS-based :nth-child(n)
pseudo-class begins numbering at 1, not 0.

When the user clicks a cell in the third column, we want the cell's text to be
compared to that of the same column's cell in every other row. If it matches, the
highlight class will be toggled. In other words, the class will be added if it isn't
already there and removed if it is. This way, we can click on an author cell to
remove the row highlighting if that cell or one with the same author has already
been clicked.

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 $authorCells.click(function() {
 var authorName = $(this).text();
 $authorCells.each(function(index) {
 if (authorName == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 }
 });
 });
});

Table Manipulation

[188]

The code is working well at this point, except when a user clicks on two authors'
names in succession. Rather than switching the highlighted rows from one author to
the next as we might expect, we end up with the highlight class on both groups of
rows. To avoid this behavior, we can add an else statement to the code, removing
the highlight class for any row that does not have the same author name as the
one clicked:

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 $authorCells.click(function() {
 var authorName = $(this).text();
 $authorCells.each(function(index) {
 if (authorName == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 }
 else {
 $(this).parent().removeClass('highlight');
 }
 });
 });
});

Now when we click on Rey Bango, for example, we can see all of his articles much
more easily:

Chapter 7

[189]

If we then click on John Resig in any one of the cells, the highlighting will be
removed from Rey Bango's rows and added to John's.

Tooltips
Although the row highlighting might be a useful feature, so far it's not apparent to
the user that the feature even exists. We can begin to remedy this situation by giving
all author cells a clickable class, which we have styled to change the mouse cursor
to a pointer when it is within the cell:

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 $authorCells
 .addClass('clickable')

 .click(function() {
 var authorName = $(this).text();
 $authorCells.each(function(index) {
 if (authorName == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 }
 else {
 $(this).parent().removeClass('highlight');
 }
 });
 });
});

The clickable class is a step in the right direction, for sure, but it still doesn't tell the
user what will happen when the cell is clicked. As far as the user of the page knows,
that click could just as easily trigger another behavior, such as sending the user to
another page. Some further indication of what will happen upon clicking is in order.

Tooltips are a familiar feature of many software applications, including web
browsers. We can address this usability challenge by displaying a tooltip when the
mouse hovers over one of the Author cells. The text of the tooltip can describe to
users the effect their action will have, with a message such as Highlight all articles
by Rey Bango. This text will be contained in a <div>, which we can append to the
<body>. The $tooltip variable will be used throughout the script to refer to this
newly created element:

var $tooltip = $('<div id="tooltip"></div>').appendTo('body');

Table Manipulation

[190]

There are three basic operations we will have to perform repeatedly on our tooltip:

1.	 Showing the tooltip when the mouse is over the interactive element,
2.	 Hiding it when the mouse leaves the area,
3.	 Repositioning the tooltip when the mouse moves.

We'll write functions for each of these tasks first, then wire them up to browser
events using jQuery.

Let's start with positionTooltip, which we'll reference when the mouse moves
over any of the Author cells:

var positionTooltip = function(event) {
 var tPosX = event.pageX;
 var tPosY = event.pageY + 20;
 $tooltip.css({top: tPosY, left: tPosX});
};

Here we use the pageX and pageY properties of the event object to set the top
and left positions of the tooltip. When this function is invoked in response to a
mouse event, such as mousemove, event.pageX and event.pageY will give us the
coordinates of the mouse cursor, so tPosX and tPosY will refer to a screen location
20 pixels below the mouse cursor.

Next we need to write our showTooltip() function, to place the tooltip on
the screen.

 var showTooltip = function(event) {
 var authorName = $(this).text();
 $tooltip
 .text('Highlight all articles by ' + authorName)
 .show();
 positionTooltip(event);
 };

The showTooltip() function is rather straightforward. We populate the tooltip's
contents using a string built from the cell contents (which will be the author's name),
and show it.

We then place it in the proper location on the page with the positionTooltip()
function. Since the tooltip has been appended to the body element, we'll need some
CSS to make the it float above the page in the right location:

#tooltip {
 position: absolute;
 z-index: 2;

Chapter 7

[191]

 background: #efd;
 border: 1px solid #ccc;
 padding: 3px;
}

Finally, we write a simple hideTooltip() function:
var hideTooltip = function() {
 $tooltip.hide();
};

And now that we have functions for showing, hiding, and positioning the tooltip, we
can reference them at the appropriate places in our code:

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 var $tooltip = $('<div id="tooltip"></div>').appendTo('body');

 var positionTooltip = function(event) {
 var tPosX = event.pageX;
 var tPosY = event.pageY + 20;
 $tooltip.css({top: tPosY, left: tPosX});
 };
 var showTooltip = function(event) {
 var authorName = $(this).text();
 $tooltip
 .text('Highlight all articles by ' + authorName)
 .show();
 positionTooltip(event);
 };
 var hideTooltip = function() {
 $tooltip.hide();
 };
 $authorCells
 .addClass('clickable')
 .hover(showTooltip, hideTooltip)
 .mousemove(positionTooltip)
 .click(function(event) {
 var authorName = $(this).text();
 $authorCells.each(function(index) {
 if (authorName == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 }
 else {
 $(this).parent().removeClass('highlight');
 }
 });
 });
});

Table Manipulation

[192]

Note that the arguments to the .hover() and .mousemove() methods are
referencing functions that are defined elsewhere. As such, we omit the parentheses
that would follow calls to the functions. The tooltip now appears when we hover
over an author cell, moves with the mouse movement, and disappears when we
move the mouse cursor out of the cell.

A problem with our current implementation is that the tooltip continues to
suggest clicking on a cell to highlight the articles even after those articles have
been highlighted:

We need a way to change the tooltip's text if the row has the highlight class. We
can accomplish this by placing a conditional test in the showTooltip() function to
check for the presence of the class. If the current cell's parent <tr> has the highlight
class, we want to use the word Unhighlight instead of Highlight when we create
the tooltip:

var action = 'Highlight';
if ($(this).parent().is('.highlight')) {
 action = 'Unhighlight';
}
$tooltip
 .text(action + ' all articles by ' + authorName)
 .show();

This correctly chooses tooltip text when the mouse enters a cell, but we also need
to recalculate the label at the time the mouse is clicked. For that, we need to call the
showTooltip() function inside the click event handler:

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 var $tooltip = $('<div id="tooltip"></div>').appendTo('body');

Chapter 7

[193]

 var positionTooltip = function(event) {
 var tPosX = event.pageX;
 var tPosY = event.pageY + 20;
 $tooltip.css({top: tPosY, left: tPosX});
 };
 var showTooltip = function(event) {
 var authorName = $(this).text();
 var action = 'Highlight';
 if ($(this).parent().is('.highlight')) {
 action = 'Unhighlight';
 }
 $tooltip
 .text(action + ' all articles by ' + authorName)
 .show();
 positionTooltip(event);
 };
 var hideTooltip = function() {
 $tooltip.hide();
 };

 $authorCells
 .addClass('clickable')
 .hover(showTooltip, hideTooltip)
 .mousemove(positionTooltip)
 .click(function(event) {
 var authorName = $(this).text();
 $authorCells.each(function(index) {
 if (authorName == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 }
 else {
 $(this).parent().removeClass('highlight');
 }
 });
 showTooltip.call(this, event);

 });
});

Table Manipulation

[194]

By using the JavaScript call() function, we can invoke showTooltip() as if it were
running within the scope of the click handler of the cell with the author's name. We
need to do this so that the this keyword refers to the correct object (this table cell)
during the execution of showTooltip().

Now the tooltip offers a more intelligent suggestion when the pointer hovers over a
row that is already highlighted.

Collapsing and expanding sections
When a large set of data is divided into sections, it can be useful to hide information
that we aren't interested in at the moment. In our table of news articles, rows are
grouped by year; collapsing, or hiding, a year of articles can be a convenient way
to get a broad view of all of the table's data without having to scroll so much.

To make the sections of the news article table collapsible, we first need to create a
page element that will be used to trigger the behavior. One standard interface for
collapsible items is a minus sign, with a corresponding plus sign for expandable
items. We'll insert the icon with JavaScript, following standard progressive
enhancement techniques.

$(document).ready(function() {
 var collapseIcon = '../images/bullet_toggle_minus.png';
 var collapseText = 'Collapse this section';
 var expandIcon = '../images/bullet_toggle_plus.png';
 var expandText = 'Expand this section';
 $('table.collapsible tbody').each(function() {
 var $section = $(this);
 $('').attr('src', collapseIcon)
 .attr('alt', collapseText)
 .prependTo($section.find('th'));
 });
});

Chapter 7

[195]

We have stored the locations of the icons, as well as their alternate textual
representations, in variables at the beginning of the function. This allows us to refer
to them easily, and provides a simple way to make changes if necessary. We've done
the image injection in an .each() loop, which will prove convenient later as we
will need to refer to the enclosing <tbody> element again; it will be available to us
through the $section variable we've defined here.

Next, we'll need to make the icons trigger the collapsing and expanding of rows.
The addition of a clickable class provides the necessary user feedback, and a class
on the <tbody> element helps us keep track of whether the rows are currently visible
or not.

$(document).ready(function() {
 var collapseIcon = '../images/bullet_toggle_minus.png';
 var collapseText = 'Collapse this section';
 var expandIcon = '../images/bullet_toggle_plus.png';
 var expandText = 'Expand this section';
 $('table.collapsible tbody').each(function() {
 var $section = $(this);
 $('').attr('src', collapseIcon)
 .attr('alt', collapseText)
 .prependTo($section.find('th'))
 .addClass('clickable')
 .click(function() {
 if ($section.is('.collapsed')) {
 $section.removeClass('collapsed')
 .find('tr:not(:has(th))').fadeIn('fast');
 $(this).attr('src', collapseIcon)
 .attr('alt', collapseText);
 }
 else {
 $section.addClass('collapsed')
 .find('tr:not(:has(th))').fadeOut('fast');
 $(this).attr('src', expandIcon)
 .attr('alt', expandText);
 }
 });
 });
});

Table Manipulation

[196]

When a click occurs, we do the following:

1.	 Add or remove the collapsed class on the <tbody> element, to keep track of
the current state of the table section.

2.	 Locate all rows in the section that do not contain headings, and show or hide
them using a fading transition.

3.	 Toggle the current state of the icon, changing its src and alt attributes to
reflect the action it will now trigger when clicked.

With this code in place, clicking on the Collapse this section icon next to 2007 makes
the table look like this:

The 2007 news articles aren't removed; they are just hidden until we click the Expand
this section icon that now appears in that row.

Table rows present particular obstacles to animation, since browsers
use different values (table-row and block) for their visible display
property. The .hide() and .show() methods, without animation, are
always safe to use with table rows. If animation is desired, .fadeIn()
and .fadeOut() can be used as well.

Filtering
Earlier we examined sorting and paging as techniques for helping users focus on
relevant portions of a table's data. We saw that both could be implemented either
with server-side technology, or with JavaScript. Filtering completes this arsenal of
data arrangement strategies. By displaying to the user only the table rows that match
a given criterion, we can strip away needless distractions.

We have already seen how to perform one type of filter: highlighting a set of rows.
Now we will extend this idea to actually hiding rows that don't match the filter.

Chapter 7

[197]

We can begin by creating a place to put our filtering links. In a typical progressive
enhancement strategy, we insert these controls using JavaScript so that people
without scripting available do not see the options:

$(document).ready(function() {
 $('table.filterable').each(function() {
 var $table = $(this);

 $table.find('th').each(function(column) {
 if ($(this).is('.filter-column')) {
 var $filters = $('<div class="filters"></div>');
 $('<h3></h3>')
 .text('Filter by ' + $(this).text() + ':')
 .appendTo($filters);
 $filters.insertBefore($table);
 }
 });
 });
});

We get the label for the filter box from the column headers so that this code can be
reused for other tables quite easily. Now we have a heading awaiting some buttons:

Filter options
Now, we can move on to actually implementing a filter. To start with, we will add
filters for a couple of known topics. The code for this is quite similar to the author
highlighting example from before:

$(document).ready(function() {
 $('table.filterable').each(function() {
 var $table = $(this);

 $table.find('th').each(function(column) {
 if ($(this).is('.filter-column')) {
 var $filters = $('<div class="filters"></div>');
 $('<h3></h3>')

Table Manipulation

[198]

 .text('Filter by ' + $(this).text() + ':')
 .appendTo($filters);

 var keywords = ['conference', 'release'];
 $.each(keywords, function(index, keyword) {
 $('<div class="filter"></div>').text(keyword)
 .bind('click', {key: keyword}, function(event) {
 $('tr:not(:has(th))', $table).each(function() {
 var value = $('td', this).eq(column).text();
 if (value == event.data['key']) {
 $(this).show();
 }
 else {
 $(this).hide();
 }
 });
 $(this).addClass('active')
 .siblings().removeClass('active');
 }).addClass('clickable').appendTo($filters);
 });

 $filters.insertBefore($table);
 }
 });
 });
});

Starting with a static array of keywords to filter by, we loop through and create
a filtering link for each. Just as in the paging example, we need to use the data
parameter of .bind() to avoid accidental problems due to the properties of closures.
Then, in the click handler, we compare each cell's contents against the keyword and
hide the row if there is no match. Since our row selector excludes rows containing a
<th> element, we don't need to worry about subheadings being hidden.

Both of the links now work as advertised:

Chapter 7

[199]

Collecting filter options from content
Now we need to expand the filter options to cover the range of available topics in the
table. Rather than hard-coding all of the topics, we can gather them from the text that
has been entered in the table. We can change the definition of keywords to read:

var keywords = {};
$table.find('td:nth-child(' + (column + 1) + ')')
 .each(function() {
 keywords[$(this).text()] = $(this).text();
 });

This code relies on two tricks:

1.	 By using a map rather than an array to hold the keywords as they are found,
we eliminate duplicates automatically; each key can have only one value, and
keys are always unique.

2.	 jQuery's $.each() function lets us operate on arrays and maps identically, so
no subsequent code has to change.

Now we have a full complement of filter options:

Reversing the filters
For completeness, we need a way to get back to the full list after we have filtered it.
Adding an option for all topics is pretty straightforward:

$('<div class="filter">all</div>').click(function() {
 $table.find('tbody tr').show();
 $(this).addClass('active')
 .siblings().removeClass('active');
}).addClass('clickable active').appendTo($filters);

Table Manipulation

[200]

This gives us an all link that simply shows all rows of the table. For good measure,
this new link is marked active to begin with.

Interacting with other code
We learned with our sorting and paging code that we can't treat the various features
we write as islands. The behaviors we build can interact in sometimes surprising
ways; for this reason, it is worth revisiting our earlier efforts to examine how they
coexist with the new filtering capabilities we have added.

Row striping
The advanced row striping we put in place earlier is confused by our new filters.
Since the tables are not re-striped after a filter is performed, rows retain their
coloring as if the filtered rows were still present.

To account for the filtered rows, the row-striping code needs to be able to find them.
The jQuery pseudo-class :visible can assist us in collecting the correct set of rows
to stripe. While we're making this change, we can prepare our row-striping code to
be invoked from other places by creating a custom event type for it, as we did when
making sorting and paging work together.

$(document).ready(function() {
 $('table.striped').bind('stripe', function() {
 $('tbody', this).each(function() {
 $(this).find('tr:visible:not(:has(th))')
 .removeClass('odd').addClass('even')
 .filter(function(index) {
 return (index % 6) < 3;

Chapter 7

[201]

 }).removeClass('even').addClass('odd');
 });
 }).trigger('stripe');
});

In our filtering code, we can now call $table.trigger('stripe') each time a
filtering operation occurs. With both the new event handler and its triggers in place,
the filtering operation respects row striping:

Expanding and collapsing
The expanding and collapsing behavior added earlier also conflicts with our filters.
If a section is collapsed and a new filter is chosen, then the matching items are
displayed, even if in the collapsed section. Conversely, if the table is filtered and a
section is expanded, then all items in the expanded section are displayed regardless
of whether they match the filter.

One way to address the latter situation is to change the way we show and hide
rows. If we use a class to indicate a row should be hidden, we don't need to explicitly
call .hide() and .show(). By replacing .hide() with .addClass('filtered')
and .show() with .removeClass('filtered'), along with a CSS rule for the
class, we can accomplish the hiding and showing but play more nicely with the
collapsing code. If the class is removed and the row is collapsed, the row will not
be inadvertently displayed.

Table Manipulation

[202]

Introducing this new filtered class also helps us with the converse issue. We can
test for the presence of filtered when performing a section expansion, skipping
these rows instead of showing them. Testing for this class is a simple matter of
adding :not(.filtered) to the selector expression used during expansion.

Now our features play nicely, each able to hide and show the rows independently.

The finished code
Our second example page has demonstrated table row striping, highlighting,
tooltips, collapsing/expanding, and filtering. Taken together, the JavaScript
code for this page is:

$(document).ready(function() {
 $('table.striped').bind('stripe', function() {
 $('tbody', this).each(function() {
 $(this).find('tr:visible:not(:has(th))')
 .removeClass('odd').addClass('even')
 .filter(function(index) {
 return (index % 6) < 3;
 }).removeClass('even').addClass('odd');
 });
 }).trigger('stripe');
});

$(document).ready(function() {
 var $authorCells = $('table.striped td:nth-child(3)');
 var $tooltip = $('<div id="tooltip"></div>').appendTo('body');

 var positionTooltip = function(event) {
 var tPosX = event.pageX;
 var tPosY = event.pageY + 20;
 $tooltip.css({top: tPosY, left: tPosX});
 };
 var showTooltip = function(event) {
 var authorName = $(this).text();
 var action = 'Highlight';
 if ($(this).parent().is('.highlight')) {
 action = 'Unhighlight';
 }
 $tooltip
 .text(action + ' all articles by ' + authorName)
 .show();
 positionTooltip(event);
 };

Chapter 7

[203]

 var hideTooltip = function() {
 $tooltip.hide();
 };

 $authorCells
 .addClass('clickable')
 .hover(showTooltip, hideTooltip)
 .mousemove(positionTooltip)
 .click(function(event) {
 var authorName = $(this).text();
 $authorCells.each(function(index) {
 if (authorName == $(this).text()) {
 $(this).parent().toggleClass('highlight');
 }
 else {
 $(this).parent().removeClass('highlight');
 }
 });
 showTooltip.call(this, event);
 });
});

$(document).ready(function() {
 var collapseIcon = '../images/bullet_toggle_minus.png';
 var collapseText = 'Collapse this section';
 var expandIcon = '../images/bullet_toggle_plus.png';
 var expandText = 'Expand this section';
 $('table.collapsible tbody').each(function() {
 var $section = $(this);
 $('').attr('src', collapseIcon)
 .attr('alt', collapseText)
 .prependTo($section.find('th'))
 .addClass('clickable')
 .click(function() {
 if ($section.is('.collapsed')) {
 $section.removeClass('collapsed')
 .find('tr:not(:has(th)):not(.filtered)')
 .fadeIn('fast');
 $(this).attr('src', collapseIcon)
 .attr('alt', collapseText);
 }
 else {
 $section.addClass('collapsed')
 .find('tr:not(:has(th))')
 .fadeOut('fast', function() {

Table Manipulation

[204]

 $(this).css('display', 'none');
 });
 $(this).attr('src', expandIcon)
 .attr('alt', expandText);
 }
 $section.parent().trigger('stripe');
 });
 });
});

$(document).ready(function() {
 $('table.filterable').each(function() {
 var $table = $(this);

 $table.find('th').each(function(column) {
 if ($(this).is('.filter-column')) {
 var $filters = $('<div class="filters"></div>');
 $('<h3></h3>')
 .text('Filter by ' + $(this).text() + ':')
 .appendTo($filters);

 $('<div class="filter">all</div>').click(function() {
 $table.find('tbody tr').removeClass('filtered');
 $(this).addClass('active')
 .siblings().removeClass('active');
 $table.trigger('stripe');
 }).addClass('clickable active').appendTo($filters);

 var keywords = {};
 $table.find('td:nth-child(' + (column + 1) + ')')
 .each(function() {
 keywords[$(this).text()] = $(this).text();
 });

 $.each(keywords, function(index, keyword) {
 $('<div class="filter"></div>').text(keyword)
 .bind('click', {key: keyword}, function(event) {
 $('tr:not(:has(th))', $table).each(function() {
 var value = $('td', this).eq(column).text();
 if (value == event.data['key']) {
 $(this).removeClass('filtered');
 }
 else {
 $(this).addClass('filtered');
 }
 });
 $(this).addClass('active')

Chapter 7

[205]

 .siblings().removeClass('active');
 $table.trigger('stripe');
 }).addClass('clickable').appendTo($filters);
 });

 $filters.insertBefore($table);
 }
 });
 });
});

Summary
In this chapter, we have explored some of the ways to slice and dice the tables on our
sites, reconfiguring them into beautiful and functional containers for our data. We
have covered sorting data in tables, using different kinds of data (words, numbers,
dates) as sort keys along with paginating tables into easily-viewed chunks. We have
learned sophisticated row striping techniques and JavaScript-powered tooltips. We
have also walked through expanding and collapsing content as well as filtering and
highlighting of rows that match the given criteria.

We've even touched briefly on some quite advanced topics, such as sorting and
paging with server-side code and AJAX techniques, dynamically calculating page
coordinates for elements, and writing a jQuery plugin.

As we have seen, properly semantic HTML tables wrap a great deal of subtlety and
complexity in a small package. Fortunately, jQuery can help us easily tame these
creatures, allowing the full power of tabular data to come to the surface.

Forms with Function
Nearly every website that requires feedback from the user will employ a form in
one capacity or another. Throughout the life of the Internet, forms have played the
role of pack mule, carrying information from the end user back to the website's
publisher—dependably, reliably, but with very little grace or style. Perhaps this lack
of flair was caused by the repetitious, arduous journey to the server and back; or
perhaps it had something to do with the uncompromising elements the form had to
work with and their unwillingness to follow the latest fashion. Whatever the reason,
it wasn't until recently, with the resurgence of client-side scripting, that forms found
new vigor, purpose, and style. In this chapter, we will look at ways in which we can
breathe new life into forms. We'll enhance their style, create validation routines for
them, use them for calculations, and send their results to the server while nobody
is watching.

Improving a basic form
As we apply jQuery to websites, we must always ask ourselves how pages will look
and function when JavaScript is unavailable to our visitors (unless, of course, we
know exactly who every visitor will be and how their browsers will be configured).
This is not to say, however, that we can't create a more beautiful or feature-full site
for visitors with JavaScript turned on. The principle of progressive enhancement
is popular among JavaScript developers because it respects the needs of all users
while providing something extra to most of them. To demonstrate progressive
enhancement with respect to forms, we'll create a contact form that we can
improve in both appearance and behavior using jQuery.

Forms with Function

[208]

Progressively enhanced form styling
First, let's make some aesthetic tweaks to our form. Without JavaScript enabled, the
form's first fieldset is rendered like this:

While it certainly appears functional, and contains plenty of information to guide
the user through each field, it could definitely stand some improvement. We'll
progressively enhance this group in three ways:

1.	 Modify the DOM to allow for flexible styling of the <legend>.
2.	 Change the required field message (required) to an asterisk (*) and the

special field message (required only when the corresponding checkbox is
checked) to a double asterisk (**). Bold the label for each required field and
place a key at the top of the form explaining what the asterisk and double
asterisk mean.

3.	 Hide each checkbox's corresponding text input on page load, and then toggle
them, visible and hidden, when the user checks and unchecks the boxes.

We start with the <fieldset>'s HTML:

<fieldset>
 <legend>Personal Info</legend>

 <label for="first-name">First Name</label>
 <input class="required" type="text" name="first-name"
 id="first-name" />
 (required)

 <label for="last-name">Last Name</label>
 <input class="required" type="text" name="last-name"
 id="last-name" />
 (required)

Chapter 8

 How would you like to be contacted?
 (choose at least one method)

 <label for="by-email">
 <input type="checkbox" name="by-contact-type"
 value="E-mail" id="by-email" />
 by E-Mail
 </label>
 <input class="conditional" type="text" name="email"
 id="email" />
 (required when corresponding checkbox
 checked)

 <label for="by-phone">
 <input type="checkbox" name="by-contact-type"
 value="Phone" id="by-phone" />
 by Phone
 </label>
 <input class="conditional" type="text" name="phone"
 id="phone" />
 (required when corresponding checkbox
 checked)

 <label for="by-fax">
 <input type="checkbox" name="by-contact-type"
 value="Fax" id="by-fax" />
 by Fax
 </label>
 <input class="conditional" type="text" name="fax"
 id="fax" />
 (required when corresponding checkbox
 checked)

</fieldset>

list item (

(). Furthermore, we use the
field. For text fields, the <label>
the <input>

Forms with Function

[210]

With our HTML in place, we're now ready to use jQuery for the
progressive enhancement.

The legend
The form's legend is a notoriously difficult element to style with CSS. Browser
inconsistencies and positioning limitations make working with it an exercise in
frustration. Yet, if we're concerned about using meaningful, well-structured page
elements, the legend is an attractive, if not visually appealing, choice for displaying
a title in our form's <fieldset>.

Left with only HTML and CSS, we're forced to compromise either semantic markup
or flexible design choices. However, we can change the HTML as the page loads,
turning each <legend> into an <h3> for people viewing the page, while machines
reading the page—and those without JavaScript available—still see the <legend>.
This can be done straightforwardly using jQuery's .replaceWith() method:

$(document).ready(function() {
 $('legend').each(function(index) {
 $(this).replaceWith('<h3>' + $(this).text() + '</h3>');
 });
});

Notice here that we can't rely on jQuery's implicit iteration. With each element we
replace, we need to insert that element's unique text contents. For this we rely on
the .each() method, which allows us to target the particular text with $(this).

Now, when we apply a blue background and white text color to the <h3> in the
stylesheet, the form's first fieldset looks like this:

Chapter 8

[211]

An alternative approach that keeps the <legend> elements intact involves wrapping
their contents with a tag:

$(document).ready(function() {
 $('legend').wrapInner('');
});

Wrapping a inside the <legend> has at least two advantages over replacing
the <legend> with an <h3>: it retains the semantic meaning of the <legend> for
screen readers with JavaScript support and it requires less work on the part of the
script. The disadvantage is that it makes the heading style a little harder to achieve.
At the very least, we have to set the position property of both the <fieldset>
and the , as well as the padding-top of the <fieldset> and the width of
the :

fieldset {
 position: relative;
 padding-top: 1.5em;
}

legend span {
 position: absolute;
 width: 100%;
}

Whether we choose to replace the form's <legend> elements or insert a into
them, they are now sufficiently styled for our purposes; it's time to clean up the
required field messages.

Required field messages
In our contact form, required fields have class="required" to allow for styling
as well as response to user input; the input fields for each type of contact have
class="conditional" applied to them. We're going to use these classes to change
the instructions printed within parentheses to the right of each input.

We start by setting variables for requiredFlag and conditionalFlag, and then
we fill the element next to each required and conditional field with the text
stored in those variables:

$(document).ready(function() {
 var requiredFlag = ' * ';
 var conditionalFlag = ' ** ';

 $('form :input')
 .filter('.required')

Forms with Function

[212]

 .next('span').text(requiredFlag).end()
 .end()
 .filter('.conditional')
 .next('span').text(conditionalFlag);
});

.filter('.required') and
. Thus, when .filter('.conditional')

, it applies to all inputs within the form.

 to the <label> for each required field and apply

Chapter 8

Not bad. Still, the required and conditional field messages really weren't so bad after
all; they were just too repetitive. Let's take the first instance of each message and
display it above the form next to the flag we're using to symbolize it.

Before we populate the elements holding the messages with their respective
flags, we need to store the initial messages in a couple of variables. Then we can strip
out the parentheses by using a regular expression:

$(document).ready(function() {
 var requiredFlag = ' * ';
 var conditionalFlag = ' ** ';

 var requiredKey = $('input.required:first')

 .next('span').text();

 var conditionalKey = $('input.conditional:first')

 .next('span').text();

 requiredKey = requiredFlag +

 requiredKey.replace(/^\((.+)\)$/,'$1');

 conditionalKey = conditionalFlag +

 conditionalKey.replace(/^\((.+)\)$/,'$1');

// . . . code continues
});

conditionalKey

warrants further explanation.

like this: /^\((.+)\)$/

(represented by +

Forms with Function

[214]

The .replace() method looks within a particular context for a string represented by
a regular expression and replaces it with another string. The syntax looks like this:

'context'.replace(/regular-expression/, 'replacement')

The context strings of our two .replace() methods are the variables requiredKey
and conditionalKey. We've already looked at the regular expression part of this,
contained within the two slashes. A comma separates the regular expression and the
replacement string, which in our two cases is '$1'. The $1 placeholder represents
the first group in the regular expression. Since, again, our regular expression has one
group of one or more characters, with a parenthesis on either side, the replacement
string will be everything inside, and not including, the parentheses.

Inserting the field-message legend
Now that we've retrieved the field messages without the parentheses, we can insert
them, along with their corresponding flags, above the form:

$(document).ready(function() {
 var requiredFlag = ' * ';
 var conditionalFlag = ' ** ';

 var requiredKey = $('input.required:first')
 .next('span').text();
 var conditionalKey = $('input.conditional:first')
 .next('span').text();

 requiredKey = requiredFlag +
 requiredKey.replace(/^\((.+)\)$/,'$1');
 conditionalKey = conditionalFlag +
 conditionalKey.replace(/^\((.+)\)$/,'$1');

 $('<p></p>')
 .addClass('field-keys')
 .append(requiredKey + '
')
 .append(conditionalKey)
 .insertBefore('#contact');
});

The five new lines should look relatively familiar by now. Here is what they do:

1.	 Create a new paragraph element.
2.	 Give the paragraph a class of field-keys.
3.	 Append requiredKey and a line break to the paragraph.
4.	 Append conditionalKey to the paragraph.
5.	 Insert the paragraph and everything we've appended inside it before the

contact form.

Chapter 8

When using .append() with an HTML string, as we do here, we need to be careful
that any special HTML characters are properly escaped. In this case, the .text()
method we used when declaring the variables has done this for us.

When we define some styles for .field-keys in the stylesheet, the result looks
like this:

Our jQuery work for the first fieldset is almost complete.

Conditionally displayed fields

});

[216]

.click() method to each

 methods, this time so we can attach the
 selector.

<label> element:

this.checked is preferred because we
this keyword. When the DOM node is

 instead, since .is()
).

Chapter 8

[217]

We're left with two more things to do:

1.	 Ensure that the checkboxes are unchecked when the page initially loads,
since some browsers will retain the state of form elements on page refresh.

2.	 Add an else condition that hides the conditional elements and removes the
req-label class when the checkbox is not checked.
$(document).ready(function() {
 $('input.conditional').next('span').andSelf().hide()
 .end().end()
 .each(function() {
 var $thisInput = $(this);
 var $thisFlag = $thisInput.next('span');
 $thisInput.prev('label').find(':checkbox')
 .attr('checked', false)

 .click(function() {
 if (this.checked) {
 $thisInput.show();
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
 } else {

 $thisInput.hide();

 $thisFlag.hide();

 $(this).parent('label')

 .removeClass('req-label');

 }

 });

});

And that concludes the styling portion of this form makeover. Next, we'll add some
client-side validation.

Form validation
Before we add validation to any form with jQuery, we need to remember one
important rule: client-side validation is not a substitute for server-side validation.
Again, we cannot rely on users to have JavaScript enabled. If we truly require certain
fields to be entered, or to be entered in a particular format, JavaScript alone can't
guarantee the result we demand. Some users prefer not to enable JavaScript, some
devices simply don't support it, and a few users could intentionally submit malicious
data by circumventing JavaScript restrictions.

Forms with Function

[218]

Why then should we bother implementing validation with jQuery? Client-side
form validation using jQuery can offer one advantage over server-side validation:
immediate feedback. Server-side code, whether it's ASP, PHP, or any other
fancy acronym, needs the page to be reloaded to take effect (unless it is accessed
asynchronously, of course, which in any case requires JavaScript). With jQuery,
we can capitalize on the prompt response of client-side code by applying validation
to each required field when it loses focus (on blur), or when a key is pressed
(on keyup).

Required fields
For our contact form, we'll check for the required class on each input when the
user tabs or clicks out of it. Before we begin with this code, however, we should
make a quick trip back to our conditional text fields. To simplify our validation
routine, we can add the required class to the <input> when it is shown, and remove
the class when the <input> is subsequently hidden. This portion of the code now
looks like this:

$thisInput.prev('label').find(':checkbox')
 .attr('checked', false)
 .click(function() {
 if (this.checked) {
 $thisInput.show().addClass('required');

 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
 } else {
 $thisInput.hide().removeClass('required');

 $thisFlag.hide();
 $(this).parent('label').removeClass('req-label');
 }
 });

With all of the required classes in place, we're ready to respond when the user
leaves one of these fields empty. A message will be placed after the required
flag, and the field's element will receive styles to alert the user through
class="warning":

$(document).ready(function() {
 $('form :input').blur(function() {
 if ($(this).hasClass('required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 $('')

Chapter 8

[219]

 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 }
 }
 });
});

The code has two if statements for each form input on blur: the first checks for the
required class, and the second checks for an empty string. If both conditions are
met, we construct an error message, put it in , and
append it all to the parent .

We want to give a slightly different message if the field is one of the conditional
text fields—only required when its corresponding checkbox is checked. We'll
concatenate a qualifier message to the standard error message. To do so, we can nest
one more if statement that checks for the conditional class only after the first two
if conditions have been met:

$(document).ready(function() {
 $('form :input').blur(function() {
 if ($(this).hasClass('required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 if ($(this).hasClass('conditional')) {

 errorMessage += ', when its related ' +

 'checkbox is checked';

}

 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 }
 }
 });
});

Forms with Function

[220]

Our code works great the first time the user leaves a field blank; however, two
problems with the code are evident when the user subsequently enters and leaves
the field:

If the field remains blank, the error message is repeated as many times as the
user leaves the field. If the field has text entered, the class="warning" is not
removed. Obviously, we want only one message per field, and we want the
message to be removed if the user fixes the error. We can fix both problems by
removing class= "warning" from the current field's parent and any
 within the same every time the field
is blurred, before running through the validation checks:

$(document).ready(function() {
 $('form :input').blur(function() {
 $(this).parents('li:first').removeClass('warning')
 .find('span.error-message').remove();
 if ($(this).hasClass('required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 if ($(this).hasClass('conditional')) {
 errorMessage += ', when its related checkbox
 is checked';
 }
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 }
 }
 });
});

Finally, we have a functioning validation script for required, and conditionally
required, fields. Even after repeatedly entering and leaving required fields, our
error messages now display correctly:

Chapter 8

[221]

But wait! We want to remove the element's warning class and its <span
class="error-message"> elements when the user unchecks a checkbox too! We can
do that by visiting our previous checkbox code once more and getting it to trigger
blur on the corresponding text field when its checkbox is unchecked:

if (this.checked) {
 $thisInput.show().addClass('required');
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
} else {
 $thisInput.hide().removeClass('required').blur();
 $thisFlag.hide();
 $(this).parent('label').removeClass('req-label');
}

Now when a checkbox is unchecked, the related warning styles, and error messages,
will be out of sight and out of mind.

Required formats
There is one further type of validation to implement in our contact form—correct
input formats. Sometimes it can be helpful to provide a warning if text is entered
into a field incorrectly (rather than simply having it blank). Prime candidates for this
type of warning are email, phone, and credit-card fields. For our demonstration, we
will put in place a relatively simple regular-expression test for the email field. Let's
take a look at the full code for the email validation before we dig into the regular
expression in particular:

$(document).ready(function() {
// . . . code continues . . .

 if (this.id == 'email') {
 var $listItem = $(this).parents('li:first');

Forms with Function

[222]

 if ($(this).is(':hidden')) {
 this.value = '';
 }
 if (this.value != '' &&
 !/.+@.+\.[a-zA-Z]{2,4}$/.test(this.value)) {
 var errorMessage = 'Please use proper e-mail format'
 + ' (e.g. joe@example.com)';
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 }
 }
// . . . code continues . . .
});

The code performs the following tasks:

Tests for the id of the email field; if the test is successful:
Sets a variable for the parent list item.
Tests for the hidden state of the email field. If it is hidden
(which happens when its corresponding checkbox is
unchecked), its value is set to an empty string. This allows our
previous warning class and error message removal to work
properly for email fields as well.
Tests that the field value is not an empty string and that the
field value does not match the regular expression. If the two
tests are successful, the script:

Creates an error message
Inserts the message in
Appends the element and
its contents to the parent list item
Adds the warning class to the parent list item

Now let's take a look at the regular expression in isolation:

!/.+@.+\.[a-zA-Z]{2,4}$/.test(this.value)

Although this regular expression is similar to the one we created earlier in the
chapter, it uses the .test() method rather than the .replace() method, since we
only need it to return true or false. As before, the regular expression goes between
the two forward slashes. It is then tested against a string that is placed inside the
parentheses of .test(), in this case the value of the email field.

•

°

°

°

•
•
•

•

Chapter 8

[223]

In this regular expression, we look for a group of one or more non-linefeed
characters (.+), followed by an @ symbol, and then followed by another group of
one or more non-linefeed characters. So far, a string such as lucia@example would
pass the test, as would millions of other permutations, even though it is not a valid
email address.

We can make the test more precise by looking for a . character, followed by two
through four letters between a and z at the end of the string. That is exactly what
the remaining portion of the regular expression does. It first looks for a character
between a and z or A and Z—[a-zA-Z]. It then says that a letter in that range can
appear two through four times only—{2,4}. Finally, it insists that those two through
four letters appear at the end of the string: $. Now a string such as lucia@example.
com would return true, whereas lucia@example—or lucia@example.2fn or
lucia@example.example or lucia-example.com—would return false.

But we want true returned (and the error message, etc., created) only if the proper
email address format is not entered. That's why we precede the test expression with
the exclamation mark (not operator):

!/.+@.+\.[a-zA-Z]{2,4}$/.test(this.value)

A final check
The validation code is now almost complete for the contact form. We can validate the
form's fields one more time when the user attempts to submit it, this time all at once.
Using the .submit() event handler on the form (not the Send button) we trigger
blur on all of the required fields:

$(document).ready(function() {
 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 });
});

Note here that we've sneaked in a line to remove an element that does not yet exist:
<div id="submit-message">. We'll add this element in the next step. We're just
preemptively removing it here because we already know that we'll need to do it
based on the problems we encountered with creating multiple error messages
earlier in the chapter.

Forms with Function

[224]

After triggering blur, we get the total number of warning classes in the current
form. If there are any at all, we'll create a new <div id="submit-message"> and
insert it before the Send button where the user is most likely to see it. We also stop
the form from actually being submitted:

$(document).ready(function() {
 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 var numWarnings = $('.warning', this).length;
 if (numWarnings) {
 $('<div></div>')
 .attr({
 'id': 'submit-message',
 'class': 'warning'
 })
 .append('Please correct errors with ' +
 numWarnings + ' fields')
 .insertBefore('#send');
 return false;
 }
 });
});

In addition to providing a generic request to fix errors, the message indicates the
number of fields that need to be fixed:

We can do better than that, however; rather than just showing the number of errors,
we can list the names of the fields that contain errors:

$(document).ready(function() {
 $('form').submit(function() {
 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 var numWarnings = $('.warning', this).length;
 if (numWarnings) {
 var list = [];

 $('.warning label').each(function() {

 list.push($(this).text());

 });

Chapter 8

[225]

 $('<div></div>')
 .attr({
 'id': 'submit-message',
 'class': 'warning'
 })
 .append('Please correct errors with the following ' +
 numWarnings + ' fields:
')
 .append('• ' + list.join('
• '))

 .insertBefore('#send');
 return false;
 };
 });
});

The first change to the code is the list variable set to an empty array. Then, we get
each label that is a descendant of an element with the warning class and push its text
into the list array (with the native JavaScript push function). Now, the text of each
of these labels constitutes a separate element in the list array.

We modify our first version of the <div id="submit-message"> content a bit
and append our list array to it. Using the native JavaScript join() function to
convert the array into a string, we join each of the array's elements with a line
break and a bullet:

Admittedly, the HTML for the field list is presentational rather than semantic.
However, for an ephemeral list—one that is generated by JavaScript as a last step
and meant to be discarded as soon as possible—we'll forgive this quick and dirty
code for the sake of ease and brevity.

Forms with Function

[226]

Checkbox manipulation
Our contact form also has a Miscellaneous section, which contains a list
of checkboxes.

To round out our enhancements to the contact form, we'll help the user manage this
list. A group of 10 checkboxes can be daunting, especially if the user wishes to click
most or all of them. An option to check, or uncheck, all of the checkboxes comes in
handy in this type of situation. So, let's create one.

To begin, we create a new element, fill it with a <label>, inside which we place
<input type="checkbox" id="discover-all"> and some text, and prepend it all
to the element inside <li class="discover">:

$(document).ready(function() {
 $('')
 .html('<label><input type="checkbox" id="discover-all" />' +
 ' check all</label>')
 .prependTo('li.discover > ul');
});

Chapter 8

[227]

Now we have a new checkbox with a label that reads check all. But it doesn't do
anything yet. We need to attach the .click() method to it:

$(document).ready(function() {
 $('')
 .html('<label><input type="checkbox" id="discover-all" />' +
 ' check all</label>')
 .prependTo('li.discover > ul');
 $('#discover-all').click(function() {
 var $checkboxes = $(this).parents('ul:first')
 .find(':checkbox');
 if (this.checked) {
 $checkboxes.attr('checked', true);
 } else {
 $checkboxes.attr('checked', '');
 }
 });
});

Inside this event handler, we first set the $checkboxes variable, which consists of
a jQuery object containing every checkbox within the current list. With the variable
set, manipulating the checkboxes becomes a matter of checking them if the check all
checkbox is checked, and unchecking them if the check all one is unchecked.

A finishing touch can be applied to this checkbox feature by adding a checkall class
to the check all checkbox's label, and changing its text to un-check all after it has
been checked by the user:

$(document).ready(function() {
$('')
 .html('<label><input type="checkbox" id="discover-all" />' +
 ' check all</label>')
 .prependTo('li.discover > ul');
 $('#discover-all').click(function() {
 var $checkboxes = $(this) .parents('ul:first')
 .find(':checkbox');
 if (this.checked) {
 $(this).next().text(' un-check all');
 $checkboxes.attr('checked', true);
 } else {
 $(this).next().text(' check all');
 $checkboxes.attr('checked', '');
 };
 })
 .parent('label').addClass('checkall');
});

Forms with Function

[228]

The group of checkboxes, along with the check all box, now looks like this:

And with the check all box checked, the group looks like this:

The finished code
Here it is, the finished code for the contact form:

$(document).ready(function() {

 // Enhance style of form elements.

 $('legend').each(function(index) {

Chapter 8

[229]

 $(this).replaceWith('<h3>' + $(this).text() + '</h3>');
 });

 var requiredFlag = ' * ';
 var conditionalFlag = ' ** ';
 var requiredKey = $('input.required:first')
 .next('span').text();
 var conditionalKey = $('input.conditional:first')
 .next('span').text();

 requiredKey = requiredFlag +
 requiredKey.replace(/^\((.+)\)$/,'$1');
 conditionalKey = conditionalFlag +
 conditionalKey.replace(/^\((.+)\)$/,'$1');

 $('<p></p>')
 .addClass('field-keys')
 .append(requiredKey + '
')
 .append(conditionalKey)
 .insertBefore('#contact');

 $('form :input')
 .filter('.required')
 .next('span').text(requiredFlag).end()
 .prev('label').addClass('req-label').end()
 .end()
 .filter('.conditional')
 .next('span').text(conditionalFlag);

 // Checkbox toggle: conditional text inputs.

 $('input.conditional').next('span').andSelf().hide()
 .end().end()
 .each(function() {
 var $thisInput = $(this);
 var $thisFlag = $thisInput.next('span');
 $thisInput.prev('label').find(':checkbox')
 .attr('checked', false)
 .click(function() {
 if (this.checked) {
 $thisInput.show().addClass('required');
 $thisFlag.show();
 $(this).parent('label').addClass('req-label');
 } else {
 $thisInput.hide().removeClass('required').blur();
 $thisFlag.hide();
 $(this).parent('label').removeClass('req-label');

Forms with Function

[230]

 }
 });
 });

 // Validate fields on blur.

 $('form :input').blur(function() {
 $(this).parents('li:first').removeClass('warning')
 .find('span.error-message').remove();

 if ($(this).hasClass('required')) {
 var $listItem = $(this).parents('li:first');
 if (this.value == '') {
 var errorMessage = 'This is a required field';
 if ($(this).is('.conditional')) {
 errorMessage += ', when its related checkbox is
 checked';
 }
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 }
 }

 if (this.id == 'email') {
 var $listItem = $(this).parents('li:first');
 if ($(this).is(':hidden')) {
 this.value = '';
 }
 if (this.value != '' &&
 !/.+@.+\.[a-zA-Z]{2,4}$/.test(this.value)) {
 var errorMessage = 'Please use proper e-mail format'
 + ' (e.g. joe@example.com)';
 $('')
 .addClass('error-message')
 .text(errorMessage)
 .appendTo($listItem);
 $listItem.addClass('warning');
 }
 }
 });

 // Validate form on submit.

 $('form').submit(function() {

Chapter 8

[231]

 $('#submit-message').remove();
 $(':input.required').trigger('blur');
 var numWarnings = $('.warning', this).length;
 if (numWarnings) {
 var fieldList = [];
 $('.warning label').each(function() {
 fieldList.push($(this).text());
 });
 $('<div></div>')
 .attr({
 'id': 'submit-message',
 'class': 'warning'
 })
 .append('Please correct errors with the following ' +
 numWarnings + ' fields:
')
 .append('• ' + fieldList.join('
• '))
 .insertBefore('#send');
 return false;
 };
 });

 // Checkboxes
 $('form :checkbox').removeAttr('checked');

 // Checkboxes with (un)check all.
 $('')
 .html('<label><input type="checkbox" id="discover-all" />' +
 ' check all</label>')
 .prependTo('li.discover > ul');
 $('#discover-all').click(function() {
 var $checkboxes = $(this) .parents('ul:first')
 .find(':checkbox');
 if (this.checked) {
 $(this).next().text(' un-check all');
 $checkboxes.attr('checked', true);
 } else {
 $(this).next().text(' check all');
 $checkboxes.attr('checked', '');
 };
 })
 .parent('label').addClass('checkall');

});

Forms with Function

[232]

Although we've made significant improvements to the contact form, there is still much
that could be done. Validation, for example, comes in a number of varieties. For a
flexible validation plugin, visit http://plugins.jquery.com/project/validate/.

Compact forms
Some forms are much simpler than contact forms. In fact, many sites incorporate
a single-field form on every single page: a search function for the site. The usual
trappings of a form—field labels, submit buttons, and the text—are cumbersome for
such a small, single-purpose part of the page. We can use jQuery to help slim down
the form while retaining its functionalities, and even enhance its behavior to be much
more usable than a full-page equivalent.

Placeholder text for fields
The <label> element for a form field is an essential component of accessible
websites. Every field should be labeled so that screen readers and other assistive
devices can identify which field is used, and for what purpose. Even in the HTML
source, the label helps describe the field:

<form id="search" action="search/index.php" method="get">
 <label for="search-text">search the site</label>
 <input type="text" name="search-text" id="search-text" />
</form>

Without styling, we see the label right before the field:

While this doesn't take up much room, in some site layouts even this single line
of text might be too much. We could hide the text with CSS, but this then provides
the user with no way to know what the field is for. Instead, we'll use CSS to position
the label on top of the field, only if JavaScript is available, by adding a class to the
search form:

$(document).ready(function() {
 var $search = $('#search').addClass('overlabel');
});

Chapter 8

[233]

In a single line we're adding a class to the search form and storing the selector in a
variable so that we can refer to it later. The stylesheet uses the overlabel class to
style the label:

.overlabel {
 position: relative;
}
.overlabel label {
 position: absolute;
 top: 6px;
 left: 3px;
 color: #999;

 cursor: text;
}

Not only does the added class position the label properly, but it also grays out the
text to distinguish it as a placeholder:

This is a nice effect, but it has a couple problems:

1.	 The label text obscures any text that the user enters into the text field.
2.	 The input can only be accessed now by tabbing into it. Since the label is

covering the input, the user is prevented from clicking into it.

To avoid the first problem, we need to hide the label text when the field gets focus,
and show it again when the focus is lost, as long as there is no user-entered text in
the field.

Discussion about keyboard focus can be found in Chapter 3.

Forms with Function

[234]

Hiding the label text on focus is simple enough:

$(document).ready(function() {
 var $search = $('#search').addClass('overlabel');
 var $searchInput = $search.find('input');
 var $searchLabel = $search.find('label');

 $searchInput
 .focus(function() {
 $searchLabel.hide();
 })
 .blur(function() {
 if (this.value == '') {
 $searchLabel.show();
 }
 });
 });

The label is now neatly hidden when the user types text into the field:

The second problem is now quite easy to solve as well. We can both hide the label
text and give the user access to the input by letting a click on the label trigger the
focus event for the input:

$(document).ready(function() {
 var $search = $('#search').addClass('overlabel');
 var $searchInput = $search.find('input');
 var $searchLabel = $search.find('label');

 $searchInput
 .focus(function() {
 $searchLabel.hide();
 })
 .blur(function() {
 if (this.value == '') {
 $searchLabel.show();
 }
 });

 $searchLabel.click(function() {

 $searchInput.trigger('focus');

 });

});

Chapter 8

[235]

Finally, we need to handle the case in which text remains in the input when the page
is refreshed—similar to what we had to do with the conditional inputs in the form
validation section earlier in this chapter. If the input has a value, the label is hidden:

$(document).ready(function() {
 var $search = $('#search').addClass('overlabel');
 var $searchInput = $search.find('input');
 var $searchLabel = $search.find('label');

 if ($searchInput.val()) {

 $searchLabel.hide();

 }

 $searchInput
 .focus(function() {
 $searchLabel.hide();
 })
 .blur(function() {
 if (this.value == '') {
 $searchLabel.show();
 }
 });

 $searchLabel.click(function() {
 $searchInput.trigger('focus');
 });
});

One advantage of using the label rather than inserting a default value directly into
the text input is that this technique can be adapted to any text field without having
to worry about a potential conflict with a validation script.

AJAX auto-completion
We can further spruce up our search field by offering auto-completion of its
contents. This feature will allow users to type the beginning of a search term
and be presented with all of the possible terms that begin with the typed string.
Since the list of terms can be drawn from a database that is driving the site, the user
can know that search results are forthcoming if the typed term is used. Also, if the
database provides the terms in order of popularity or number of results, the user
can be guided to more appropriate searches.

Forms with Function

[236]

Auto-completion is a very complicated subject with subtleties introduced by
different kinds of user interaction. We will craft a working example here, but
cannot, in this space, explore all of the advanced concepts such as limiting the rate
of requests or multi-term completion. The auto-complete widget in the jQuery UI
plugin collection is recommended for simple, real-world implementations, and as a
starting point for more complex ones. It can be found at http://ui.jquery.com/.

The basic idea behind an auto-completion routine is to react to a keystroke, and to
send an AJAX request to the server containing the contents of the field in the request.
The results will contain a list of possible completions for the field. The script then
presents this list as a dropdown below the field.

On the server
We need some server-side code to handle requests. While a real-world implementation
will usually rely on a database to produce a list of possible completions, for this
example we can use a simple PHP script with the results built in:

<?php
 if (strlen($_REQUEST['search-text']) < 1) {
 print '[]';
 exit;
 }
 $terms = array(
 'access',
 'action',
 // List continues...
 'xaml',
 'xoops',
);
 $possibilities = array();
 foreach ($terms as $term) {
 if (strpos($term, strtolower($_REQUEST['search-text']))
 === 0) {
 $possibilities[] = "'". str_replace("'", "\\'", $term)
 ."'";
 }
 }
 print ('['. implode(', ', $possibilities) .']');

The page compares the provided string against the beginning of each term, and
composes a JSON array of matches. The string manipulation operations here
(such as str_replace() and implode()) ensure that the output of the script is
properly-formatted JSON, so as to avoid JavaScript errors during parsing.

Chapter 8

[237]

In the browser
Now we can make a request to this PHP script from our JavaScript code:

$(document).ready(function() {
 var $autocomplete = $('<ul class="autocomplete">')
 .hide()
 .insertAfter('#search-text');

 $('#search-text').keyup(function() {
 $.ajax({
 'url': '../search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'GET',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term).appendTo($autocomplete);
 });
 $autocomplete.show();
 }
 }
 });
 });
});

We need to use keyup, not keydown or keypress, as the event that triggers the AJAX
request. The latter two events occur during the process of the key press, before the
character has actually been entered in the field. If we attempt to act on these events
and issue the request, the suggestion list will lag behind the search text. When the
third character is entered, for example, the AJAX request will be made using just the
first two characters. By acting on keyup, we avoid this problem.

In our stylesheet, we position this list of suggestions absolutely, so that it overlaps
the text underneath. Now when we type in the search field, we see our possible
terms presented to us:

Forms with Function

[238]

To properly display our list of suggestions, we have to take into account the built-in
auto-completion mechanism of some web browsers. Browsers will often remember
what users have typed in a form field, and suggest these entries the next time the
form is used. This can look confusing when in conjunction with our custom
auto-complete suggestions:

Fortunately, this can be disabled in the browsers that perform autocompletion by
setting the autocomplete attribute of the form field to off. We could do this right
in the HTML, but this would not be in keeping with the principle of progressive
enhancement because we would be disabling the browser's autocompletion function
without offering our own. Instead, we can add this attribute from our script:

$('#search-text').attr('autocomplete', 'off')

Populating the search field
Our list of suggestions doesn't do us much good if we can't place them in the search
box. To begin with, we'll allow a mouse click to confirm a suggestion:

'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete)
 .click(function() {

 $('#search-text').val(term);

 $autocomplete.hide();

 });

 });
 $autocomplete.show();
 }
}

Chapter 8

This modification sets the text of the search box to whatever list item was clicked. We
also hide the suggestions after this since we are done with them.

Keyboard navigation
Since the user is already at the keyboard, and typing in the search term, it is very
convenient to allow the keyboard to control selection from the suggestion list as well.
We'll need to keep track of the currently selected item to enable this. First, we can
add a helper function that will store the index of the item and perform the necessary
visual effects to reveal which item is currently selected:

var selectedItem = null;
var setSelectedItem = function(item) {
 selectedItem = item;
 if (selectedItem === null) {
 $autocomplete.hide();
 return;
 }
 if (selectedItem < 0) {
 selectedItem = 0;
 }
 if (selectedItem >= $autocomplete.find('li').length) {
 selectedItem = $autocomplete.find('li').length - 1;
 }
 $autocomplete.find('li').removeClass('selected')
 .eq(selectedItem).addClass('selected');
 $autocomplete.show();
};

The selectedItem
always calling

selectedItem

 $.ajax({

 'dataType': 'json',

Forms with Function

[240]

 'type': 'GET',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete)
 .mouseover(function() {

 setSelectedItem(index);

 })

 .click(function() {
 $('#search-text').val(term);
 $autocomplete.hide();
 });
 });

 setSelectedItem(0);

 }
 else {
 setSelectedItem(null);

 }
 }
 });
});

This revision has several immediate benefits. First, the suggestion list is hidden
when there are no results for a given search. Second, we are able to add a mouseover
handler that highlights the item under the mouse cursor. Third, the first item is
highlighted immediately when the suggestion list is shown:

Now we need to allow the keyboard keys to change which item is currently active in
the list.

Chapter 8

[241]

Handling the arrow keys
We can use the keyCode attribute of the event object to determine which key was
pressed. This will allow us to watch for codes 38 and 40, corresponding to the up
and down arrow keys, and react accordingly:

$('#search-text').attr('autocomplete', 'off').keyup(function(event) {
 if (event.keyCode > 40 || event.keyCode == 8) {

 // Keys with codes 40 and below are special
 // (enter, arrow keys, escape, etc.).
 // Key code 8 is backspace.
 $.ajax({
 'url': '../search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'GET',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete)
 .mouseover(function() {
 setSelectedItem(index);
 })
 .click(function() {
 $('#search-text').val(term);
 $autocomplete.hide();
 });
 });

 setSelectedItem(0);
 }
 else {
 setSelectedItem(null);
 }
 }
 });
 }

 else if (event.keyCode == 38 &&

 selectedItem !== null) {

 // User pressed up arrow.

 setSelectedItem(selectedItem - 1);

 event.preventDefault();

 }

Forms with Function

[242]

 else if (event.keyCode == 40 &&

 selectedItem !== null) {

 // User pressed down arrow.

 setSelectedItem(selectedItem + 1);

 event.preventDefault();

 }

});

Our keyup handler now checks the keyCode that was sent, and performs the
corresponding action. The AJAX requests are now skipped if the pressed key
was special, such as an arrow key or escape key. If an arrow key is detected and the
suggestion list is currently displayed, the handler changes the selected item by 1 in
the appropriate direction. Since we wrote setSelectedItem() to clamp the values
to the range of indices possible for the list, we don't have to worry about the user
stepping off of either end of the list.

Inserting suggestions in the field
Next, we need to handle the Enter key (or return key on a Mac). When the suggestion
list is displayed, a press of the Enter key should populate the field with the currently
selected item. Since we are now going to be doing this in two places, we should
factor the field population routine (which we coded earlier for the mouse button)
out and into a separate function:

var populateSearchField = function() {
 $('#search-text').val($autocomplete
 .find('li').eq(selectedItem).text());
 setSelectedItem(null);
};

Now our click handler can be a simple call to this function. We can call this
function when handling the Enter key as well:

$('#search-text').keypress(function(event) {
 if (event.keyCode == 13 && selectedItem !== null) {
 // User pressed enter key.
 populateSearchField();
 event.preventDefault();
 }
});

This handler is attached to the keypress event rather than keyup as before. We
have to make this alteration so that we can prevent the keystroke from submitting
the form. If we wait until the keyup event is triggered, the submission will already
be underway.

Chapter 8

[243]

Removing the suggestion list
There's one final tweak we will make to our auto-complete behavior. We should hide
the suggestion list when the user decides to do something else on the page. First of
all, we can react to the escape key in our keyup handler, and let the user dismiss the
list that way:

else if (event.keyCode == 27 && selectedItem !== null) {
 // User pressed escape key.
 setSelectedItem(null);
}

More importantly, we should hide the list when the search field loses focus. A first
attempt at this is quite simple:

$('#search-text').blur(function(event) {
 setSelectedItem(null);
});

However, this causes an unintended side effect. Since a mouse click on the list
removes focus from the field, this handler is called and the list is hidden. That means
that our click handler defined earlier never gets called, and it becomes impossible
to interact with the list using the mouse.

There is no easy solution to this problem. The blur handler will always be called
before the click handler. A workaround is to hide the list when the focus is lost,
but to wait a fraction of a second first:

$('#search-text').blur(function(event) {
 setTimeout(function() {
 setSelectedItem(null);
 }, 250);
});

This gives a chance for the click event to get triggered on the list item before the list
item is hidden.

Auto-completion versus live search
The earlier example focused on auto-completion of the text field, as it is a technique
that applies to many forms. However, for searches in particular, an alternative called
live search is preferred. This feature actually performs the content searches as the
user types.

Forms with Function

[244]

Functionally, auto-completion and live search are very similar. In both cases, key
presses initiate an AJAX submission to the server, passing the current field contents
along with the request. The results are then placed in a drop-down box below the
field. In the case of auto-completion, as we have seen, the results are possible search
terms to use. With live search, the results are the actual pages that contain the search
terms that have been typed.

On the JavaScript end, the code to build these two features is nearly identical, so
we won't go into detail here. Deciding which to use is a matter of tradeoffs; live
search provides more information to the user with less effort, but is typically more
resource intensive.

The finished code
Our completed code for the search field's presentation and auto-complete behaviors
is as follows:

$(document).ready(function() {
 var $search = $('#search').addClass('overlabel');
 var $searchInput = $search.find('input');
 var $searchLabel = $search.find('label');

 if ($searchInput.val()) {
 $searchLabel.hide();
 }

 $searchInput
 .focus(function() {
 $searchLabel.hide();
 })
 .blur(function() {
 if (this.value == '') {
 $searchLabel.show();
 }
 });

 $searchLabel.click(function() {
 $searchInput.trigger('focus');
 });

 var $autocomplete = $('<ul class="autocomplete">')
 .hide()
 .insertAfter('#search-text');
 var selectedItem = null;

 var setSelectedItem = function(item) {
 selectedItem = item;

Chapter 8

[245]

 if (selectedItem === null) {
 $autocomplete.hide();
 return;
 }

 if (selectedItem < 0) {
 selectedItem = 0;
 }
 if (selectedItem >= $autocomplete.find('li').length) {
 selectedItem = $autocomplete.find('li').length - 1;
 }
 $autocomplete.find('li').removeClass('selected')
 .eq(selectedItem).addClass('selected');
 $autocomplete.show();
 };

 var populateSearchField = function() {
 $('#search-text').val($autocomplete
 .find('li').eq(selectedItem).text());
 setSelectedItem(null);
 };

 $('#search-text')
 .attr('autocomplete', 'off')
 .keyup(function(event) {
 if (event.keyCode > 40 || event.keyCode == 8) {
 // Keys with codes 40 and below are special
 // (enter, arrow keys, escape, etc.).
 // Key code 8 is backspace.
 $.ajax({
 'url': '../search/autocomplete.php',
 'data': {'search-text': $('#search-text').val()},
 'dataType': 'json',
 'type': 'GET',
 'success': function(data) {
 if (data.length) {
 $autocomplete.empty();
 $.each(data, function(index, term) {
 $('').text(term)
 .appendTo($autocomplete)
 .mouseover(function() {
 setSelectedItem(index);
 }).click(populateSearchField);
 });

 setSelectedItem(0);

Forms with Function

[246]

 }
 else {
 setSelectedItem(null);
 }
 }
 });
 }
 else if (event.keyCode == 38 &&
 selectedItem !== null) {
 // User pressed up arrow.
 setSelectedItem(selectedItem - 1);
 event.preventDefault();
 }
 else if (event.keyCode == 40 &&
 selectedItem !== null) {
 // User pressed down arrow.
 setSelectedItem(selectedItem + 1);
 event.preventDefault();
 }

 else if (event.keyCode == 27 && selectedItem !== null) {
 // User pressed escape key.
 setSelectedItem(null);
 }
 }).keypress(function(event) {
 if (event.keyCode == 13 && selectedItem !== null) {
 // User pressed enter key.
 populateSearchField();
 event.preventDefault();
 }
 }).blur(function(event) {
 setTimeout(function() {
 setSelectedItem(null);
 }, 250);
 });
});

Working with numeric form data
We've now looked at several form features that apply to textual inputs from the user.
Often, though, our forms are primarily numeric in content. There are several more
form enhancements we can make when we are dealing with numbers as form values.

Chapter 8

[247]

In our bookstore site, a prime candidate for a numeric form is the shopping cart. We
need to allow the user to update quantities of items being purchased, and we also
need to present numeric data back to the user for prices and totals.

Shopping cart table structure
The HTML for the shopping cart will describe one of the more involved table
structures we have seen so far:

<form action="checkout.php" method="post">
 <table id="cart">
 <thead>
 <tr>
 <th class="item">Item</th>
 <th class="quantity">Quantity</th>
 <th class="price">Price</th>
 <th class="cost">Total</th>
 </tr>
 </thead>
 <tfoot>
 <tr class="subtotal">
 <td class="item">Subtotal</td>
 <td class="quantity"></td>
 <td class="price"></td>
 <td class="cost">$152.95</td>
 </tr>
 <tr class="tax">
 <td class="item">Tax</td>
 <td class="quantity"></td>
 <td class="price">6%</td>
 <td class="cost">$9.18</td>
 </tr>
 <tr class="shipping">
 <td class="item">Shipping</td>
 <td class="quantity">5</td>
 <td class="price">$2 per item</td>
 <td class="cost">$10.00</td>
 </tr>
 <tr class="total">
 <td class="item">Total</td>
 <td class="quantity"></td>
 <td class="price"></td>
 <td class="cost">$172.13</td>
 </tr>

Forms with Function

[248]

 <tr class="actions">
 <td></td>
 <td>
 <input type="button" name="recalculate"
 value="Recalculate" id="recalculate" />
 </td>
 <td></td>
 <td>
 <input type="submit" name="submit"
 value="Place Order" id="submit" />
 </td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td class="item">
 Building Telephony Systems With Asterisk
 </td>
 <td class="quantity">
 <input type="text" name="quantity-2" value="1"
 id="quantity-2" maxlength="3" />
 </td>
 <td class="price">$26.99</td>
 <td class="cost">$26.99</td>
 </tr>
 <tr>
 <td class="item">
 Smarty PHP Template Programming and Applications
 </td>
 <td class="quantity">
 <input type="text" name="quantity-1" value="2"
 id="quantity-1" maxlength="3" />
 </td>
 <td class="price">$35.99</td>
 <td class="cost">$71.98</td>
 </tr>
 <tr>
 <td class="item">
 Creating your MySQL Database
 </td>
 <td class="quantity">
 <input type="text" name="quantity-3" value="1"
 id="quantity-3" maxlength="3" />
 </td>

Chapter 8

[249]

 <td class="price">$17.99</td>
 <td class="cost">$17.99</td>
 </tr>
 <tr>
 <td class="item">
 Drupal: Creating Blogs, Forums, Portals, and
 Community Websites
 </td>
 <td class="quantity">
 <input type="text" name="quantity-4" value="1"
 id="quantity-4" maxlength="3" />
 </td>
 <td class="price">$35.99</td>
 <td class="cost">$35.99</td>
 </tr>
 </tbody>
 </table>
</form>

This table introduces another element rarely seen in the wild, <tfoot>. Like
<thead>, this element groups a set of table rows. Note that though the element
comes before the table body, it is presented after the body when the page is rendered:

This source code ordering, while non-intuitive to designers thinking visually about
the table rendering, is useful to those with visual impairments. When the table is
read aloud by assistive devices, the footer is read before the potentially long content,
allowing the user to get a summary of what is to come.

Forms with Function

[250]

We've also placed a class on each cell of the table, identifying which column of the
table contains that cell. In the previous chapter, we demonstrated some ways to find
cells in a column by looking at the index of the cell within its row. Here, we'll make
a tradeoff and allow the JavaScript code to be simpler by making the HTML source a
bit more complex. With a class identifying the column of each cell, our selectors can
become a bit more straightforward.

Before we proceed with manipulating the form fields, we will apply a standard line
of row striping code to spruce up the table's appearance:

$(document).ready(function() {
 $('#cart tbody tr:nth-child(even)').addClass('alt');
});

Once again, we make sure to only select rows to color if they are in the body of
the table:

Rejecting non-numeric input
When improving the contact form, we discussed some input validation techniques.
With JavaScript, we verified that what the user typed matched what we were
expecting so that we could provide feedback before the form was even sent to the
server. Now, we'll examine the counterpart to input validation called input masking.

Input validation checks what the user has typed against some criteria for valid
inputs. Input masking applies criteria to the entries while they are being typed in the
first place, and simply disallows invalid keystrokes. In our shopping-cart form, for
example, the input fields must contain only numbers. Input masking code can cause
any key that is not a number to do nothing when one of these fields is in focus:

Chapter 8

[251]

$('td.quantity input').keypress(function(event) {
 if (event.which && (event.which < 48 ||
 event.which > 57)) {
 event.preventDefault();
 }
});

When catching keystrokes for our search field's auto-completion function, we
watched the keyup event. This allowed us to examine the .keyCode property of the
event which told us which key on the keyboard was pressed. Here, we observe the
keypress event instead. This event does not have a .keyCode property, but instead
offers the .which property. This property reports the actual ASCII character that is
represented by the keystroke that just occurred.

If the keystroke results in a character (that is, it is not an arrow key, delete, or some
other editing function) and that character is not in the range of ASCII codes that
represent numerals, then we call .preventDefault() on the event. As we have
seen before, this stops the browser from acting on the event; in this case, that means
that the character is never inserted into the field. Now, the quantity fields can accept
only numbers.

Numeric calculations
Now, we'll move on to some manipulation of the actual numbers the user will enter
in the shopping cart form. We have a Recalculate button on the form, which would
cause the form to be submitted to the server, where new totals can be calculated and
the form can be presented again to the user. This requires a round trip that is not
necessary, though; all of this work can be done on the browser side using jQuery.

The simplest calculation on this form is for the cell in the Shipping row that displays
the total quantity of items ordered. When the user modifies a quantity in one of the
rows, we want to add up all of the entered values to produce a new total and display
this total in the cell:

Var $quantities = $('td.quantity input');
$quantities.change(function() {
 var totalQuantity = 0;
 $quantities.each(function() {
 var quantity = parseInt(this.value);
 totalQuantity += quantity;
 });
 $('tr.shipping td.quantity').text(String(totalQuantity));
});

Forms with Function

[252]

We have several choices for which event to watch for this recalculation operation.
We could observe the keypress event, and fire the recalculation with each keystroke.
We could also observe the blur event, which is triggered each time the user leaves
the field. Here, we can be a little more conservative with CPU usage, though, and
only perform our calculations when the change event is triggered. This way, we
recalculate the totals only if the user leaves the field with a different value than it
had before.

The total quantity is calculated using a simple .each() loop. The .value property of
a field will report the string representation of the field's value, so we use the built-in
parseInt() function to convert this into an integer for our calculation. This practice
can avoid strange situations in which addition is interpreted as string concatenation,
since the two operations use the same symbol. Conversely, we need a string to pass
to jQuery's .text() method when displaying the calculation's result, so we use the
String() function to build a new one using our calculated total quantity.

Changing a quantity now updates the total automatically:

Parsing and formatting currency
Now, we can move on to the totals in the right-hand column. Each row's total cost
should be calculated by multiplying the quantity entered by the price of that item.
Since we're now performing multiple tasks for each row, we can begin by refactoring
the quantity calculations a bit to be row-based rather than field-based:

$('#cart tbody tr').each(function() {
 var quantity = parseInt($('td.quantity input', this).val());
 totalQuantity += quantity;
});

Chapter 8

[253]

This produces the same result as before, but we now have a convenient place to
insert our total cost calculation for each row:

$('td.quantity input').change(function() {
 var totalQuantity = 0;
 $('#cart tbody tr').each(function() {
 var price = parseFloat($('td.price', this).text()
 .replace(/^[^\d.]*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity =
 parseInt($('td.quantity input', this).val());
 var cost = quantity * price;
 $('td.cost', this).text('$' + cost);
 totalQuantity += quantity;
 });
 $('tr.shipping td.quantity').text(String(totalQuantity));
});

We fetch the price of each item out of the table using the same technique we needed
when sorting tables by price earlier. The regular expression first strips the currency
symbols off from the front of the value, and the resulting string is then sent to
parseFloat(), which interprets the value as a floating-point number. Since we will
be doing calculations with the result, we need to check that a number was found,
and set the price to 0 if not. Finally, we multiply the cost by the quantity, and then
place the result in the total column with a $ preceding it. We can now see our total
calculations in action:

Forms with Function

[254]

Dealing with decimal places
Though we have placed dollar signs in front of our totals, JavaScript is not aware
that we are dealing with monetary values. As far as the computer is concerned, these
are just numbers, and should be displayed as such. This means that if the total ends
in a zero after the decimal point, this will be chopped off:

As we see here, the total that should read $1079.70 displays as $1079.7. Even worse,
the precision limitations of JavaScript can sometimes lead to rounding errors. These
can make the calculations appear completely broken:

Fortunately, the fix for both problems is simple. JavaScript's Number class has
several methods to deal with this sort of issue, and .toFixed() fits the bill here.
This method takes a number of decimal places as a parameter, and returns a string
representing the floating-point number rounded to that many decimal places:

Chapter 8

[255]

$('#cart tbody tr').each(function() {
 var price = parseFloat($('td.price', this).text()
 .replace(/^[^\d.]*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity = parseInt($('td.quantity input', this).val());
 var cost = quantity * price;
 $('td.cost', this).text('$' + cost.toFixed(2));
 totalQuantity += quantity;
});

Now our totals all look like normal monetary values:

After a long series of arithmetic operations, the rounding of floating-point
numbers could cause enough error to accumulate that even .toFixed()
cannot mask it. The safest way to handle manipulations of currency
in larger applications is to store and manipulate all values in cents, as
integers; decimal points can be added for display only.

Other calculations
The rest of the calculations on the page follow a similar pattern. For the subtotal,
we can add up our totals for each row as they are calculated, and display the result
using the same currency formatting as before:

$('td.quantity input').change(function() {
 var totalQuantity = 0;
 var totalCost = 0;

 $('#cart tbody tr').each(function() {
 var price = parseFloat($('td.price', this).text()

Forms with Function

[256]

 .replace(/^[^\d.*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity =
 parseInt($('td.quantity input', this).val());
 var cost = quantity * price;
 $('td.cost', this).text('$' + cost.toFixed(2));
 totalQuantity += quantity;
 totalCost += cost;

 });
 $('tr.shipping td.quantity').text(String(totalQuantity));
 $('tr.subtotal td.cost').text('$' +

 totalCost.toFixed(2));

});

Rounding values
To calculate tax, we need to divide the figure given by 100 and then multiply the
taxRate by the subtotal. As tax is always rounded up, we must ensure that the
correct value is used both for display and for later calculations. JavaScript's Math.
ceil() function can round a number up to the nearest integer, but since we are
dealing with dollars and cents we need to be a bit trickier:

var taxRate = parseFloat($('tr.tax td.price').text()) / 100;
var tax = Math.ceil(totalCost * taxRate * 100) / 100;
$('tr.tax td.cost').text('$' + tax.toFixed(2));
totalCost += tax;

Chapter 8

[257]

The tax is multiplied by 100 first so that it becomes a value in cents, not dollars. This
can then be rounded safely by Math.ceil() and then divided by 100 to convert it
back into dollars. Finally .toFixed() is called as before to produce the correct result:

Finishing touches
The shipping calculation is simpler than tax since no rounding is involved in our
example. The shipping rate is simply multiplied by the number of items to determine
the total:

$('tr.shipping td.quantity').text(String(totalQuantity));
var shippingRate = parseFloat($('tr.shipping td.price')
 .text().replace(/^[^\d.]*/, ''));
var shipping = totalQuantity * shippingRate;
$('tr.shipping td.cost').text('$' + shipping.toFixed(2));
totalCost += shipping;

We have been keeping track of the grand total as we have gone along, so all we need
to do for this last cell is to format totalCost appropriately:

$('tr.total td.cost').text('$' + totalCost.toFixed(2));

Now, we have completely replicated any server-side calculations that would occur
so we can safely hide the Recalculate button:

$('#recalculate').hide();

Forms with Function

[258]

This change once again echoes our progressive enhancement principle: First, ensure
that the page works properly without JavaScript. Then, use jQuery to perform the
same task more elegantly when possible.

Deleting items
If shoppers on our site change their minds about items they have added to their
carts, they can change the Quantity field for those items to 0. We can provide a more
reassuring behavior, though, by adding explicit Delete buttons for each item. The
actual effect of the button can be the same as changing the Quantity field, but the
visual feedback can reinforce the fact that the item will not be purchased.

First, we need to add the new buttons. Since they won't function without JavaScript,
we won't put them in the HTML. Instead, we'll let jQuery add them to each row:

$('<th> </th>')
 .insertAfter('#cart thead th:nth-child(2)');
$('#cart tbody tr').each(function() {
 $deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../images/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
 });
 $('<td></td>')
 .insertAfter($('td:nth-child(2)', this))

Chapter 8

[259]

 .append($deleteButton);
});
$('<td> </td>')
 .insertAfter('#cart tfoot td:nth-child(2)');

We need to create empty cells in the header and footer rows as placeholders so that
the columns of the table still line up correctly. The buttons are created and added on
the body rows only:

Now we need to make the buttons do something. We can change the button
definition to add a click handler:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../images/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {

 $(this).parents('tr').find('td.quantity input')

 .val(0);

});

Forms with Function

[260]

The handler finds the quantity field in the same row as the button, and sets the
value to 0. Now, the field is updated, but the calculations are out of sync:

We need to trigger the calculation as if the user had manually changed the
field value:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../images/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {
 $(this).parents('tr').find('td.quantity input')
 .val(0).trigger('change');
});

Now the totals update when the button is clicked:

Chapter 8

Now for the visual feedback. We'll hide the row that was just clicked, so that the item
is clearly removed from the cart:

$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../images/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {
 $(this).parents('tr').find('td.quantity input')
 .val(0).trigger('change')
 .end().hide();
});

While the row is hidden, the field is still present on the form. This means it will be
submitted with the rest of the form, and the item will be removed on the server side
at that time.

Our row striping has been disturbed by the removal of this row. To correct this,
we move our existing striping code into a function so that we can call it again later.
At the same time, we need to modify the code to ensure that our alternating row
selection ignores any hidden rows. Unfortunately, even if we filter out all of the
hidden rows, we still can't use the :nth-child(even) selector, because it will apply
the alt

the second one is hidden:

Forms with Function

[262]

We get the following markup [condensed]:
<tr> . . . </tr>
<tr style="display: none"> . . . </tr>
<tr> . . . </tr>
<tr class="alt"> . . . </tr>

Three rows are visible; only the fourth has the alt class applied to it. What we need
is the :visible:odd selector expression, since it will choose every other row after
removing the hidden ones for the selection (and it accounts for the shift from a
one-indexed to a zero-indexed selector). As in Chapter 2, using :odd or :even could
produce unexpected results if we had more than one <tbody> element, but in this
case we're in good shape. With the selector change in place, our new function looks
like this:

var stripe = function() {
 $('#cart tbody tr').removeClass('alt')
 .filter(':visible:odd').addClass('alt');
};
stripe();

Now we can call this function again after removing a row:
$deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../images/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
}).click(function() {
 $(this).parents('tr').find('td.quantity input')
 .val(0).trigger('change')
 .end().hide();
 stripe();
});

The deleted row has now seamlessly disappeared:

Chapter 8

This completes yet another enhancement using jQuery that is completely transparent
to the code on the server. As far as the server is concerned, the user just typed a 0
in the input field, but to the user this is a distinct removal operation that is different
from changing a quantity.

Editing shipping information
The shopping cart page also has a form for shipping information. Actually, it isn't a
form at all when the page loads, and without JavaScript enabled, it remains a little
box tucked away on the right side of the content area, containing a link to a page
where the user can edit the shipping information:

But with JavaScript available, and with the power of jQuery at our disposal, we can
turn this little link into a full-fledged form. We'll do this by requesting the form from
a PHP page. Typically the data populating the form would be stored in a database of
some sort, but for the purpose of this demonstration, we'll just keep some static data
in a PHP array.

To retrieve the form and make it appear inside the Shipping to box, we use the
$.get() method inside the .click() event handler:

$(document).ready(function() {
 $('#shipping-name').click(function() {
 $.get('shipping.php', function(data) {
 $('#shipping-name').remove();
 $(data).hide().appendTo('#shipping').slideDown();
 });
 return false;
 });
});

WITH']

Forms with Function

[264]

In the callback of the $.get() method, we remove the name that was just clicked and
in its place append the form and its data from shipping.php. We then add return
false so that the default event for the clicked link (loading the page indicated in the
href attribute) does not occur. Now the Shipping to box is an editable form:

The user can now edit the shipping information without leaving the page.

The next step is to hijack the form submission and post the edited data back to the
server with jQuery. We start by serializing the data in the form and storing it in a
postData variable. Then we post the data back to the server using shipping.php
once again:

$(document).ready(function() {
 $('shipping form').submit(function() {
 var postData = $(this).serialize();
 $.post('shipping.php', postData);
 return false;
 };
});

The jQuery Form plugin offers a more robust .serialize()
method. The plugin, which can be found at http://www.malsup.com/
jquery/form/, is recommended for most AJAX form
submission scenarios.

Chapter 8

[265]

It makes sense for the form to be removed at this point and for the Shipping to box
to return to its original state. We can achieve this in the callback of the $.post()
method that we just used:

$(document).ready(function() {
 $('#shipping form').submit(function() {
 var postData = $(this).serialize();
 $.post('shipping.php', postData, function(data) {
 $('#shipping form').remove();
 $(data).appendTo('#shipping');
 });
 return false;
 };
});

But, this will not work! The way we have it set up now, the .submit() event handler
is being bound to the Shipping to form as soon as the DOM is loaded, but the form
is not in the DOM until the user clicks on the Shipping to name. The event can't be
bound to something that doesn't exist.

To overcome this problem, we can put the form-creation code into a function
called editShipping() and the form-submission or form-removal code into a
function called saveShipping(). Then we can bind the saveShipping() function
in the callback of $.get(), after the form has been created. Likewise, we can bind
the editShipping() function both when the DOM is ready and when the Edit
shipping link is re-created in the callback of $.post():

$(document).ready(function() {
 var editShipping = function() {
 $.get('shipping.php', function(data) {
 $('#shipping-name').remove();
 $(data).hide().appendTo('#shipping').slideDown();
 $('#shipping form').submit(saveShipping);
 });
 return false;
 };
 var saveShipping = function() {
 var postData = $('#shipping :input').serialize();
 $.post('shipping.php', postData, function(data) {
 $('#shipping form').remove();
 $(data).appendTo('#shipping');
 $('#shipping-name').click(editShipping);
 });
 return false;
 };
 $('#shipping-name').click(editShipping);
});

Forms with Function

[266]

The code has formed a circular pattern of sorts, in which one function allows for the
other by rebinding their respective event handlers.

The finished code
Taken together, the code for the shopping cart page is a mere 80 lines—quite small
considering the functionality it accomplishes, but especially so when we take into
account the breezy style that the code has acquired for optimum readability. Many
of the lines in jQuery could have been merged, were we particularly concerned with
number of lines, because of jQuery's chainability. At any rate, here is the finished
code for the shopping cart page, which concludes this chapter on forms:

$(document).ready(function() {
 var stripe = function() {
 $('#cart tbody tr').removeClass('alt')
 .filter(':visible:odd').addClass('alt');
 };
 stripe();

 $('#recalculate').hide();

 $('.quantity input').keypress(function(event) {
 if (event.which && (event.which < 48 ||
 event.which > 57)) {
 event.preventDefault();
 }
 }).change(function() {
 var totalQuantity = 0;
 var totalCost = 0;
 $('#cart tbody tr').each(function() {
 var price = parseFloat($('.price', this)
 .text().replace(/^[^\d.]*/, ''));
 price = isNaN(price) ? 0 : price;
 var quantity =
 parseInt($('.quantity input', this).val(), 10);
 var cost = quantity * price;
 $('.cost', this).text('$' + cost.toFixed(2));
 totalQuantity += quantity;
 totalCost += cost;
 });
 $('.subtotal .cost').text('$' + totalCost.toFixed(2));
 var taxRate = parseFloat($('.tax .price').text()) / 100;
 var tax = Math.ceil(totalCost * taxRate * 100) / 100;
 $('.tax .cost').text('$' + tax.toFixed(2));
 totalCost += tax;

Chapter 8

[267]

 $('.shipping .quantity').text(String(totalQuantity));
 var shippingRate = parseFloat($('.shipping .price')
 .text().replace(/^[^\d.]*/, ''));
 var shipping = totalQuantity * shippingRate;
 $('.shipping .cost').text('$' + shipping.toFixed(2));
 totalCost += shipping;
 $('.total .cost').text('$' + totalCost.toFixed(2));
 });

 $('<th> </th>')
 .insertAfter('#cart thead th:nth-child(2)');
 $('#cart tbody tr').each(function() {
 $deleteButton = $('').attr({
 'width': '16',
 'height': '16',
 'src': '../images/cross.png',
 'alt': 'remove from cart',
 'title': 'remove from cart',
 'class': 'clickable'
 }).click(function() {
 $(this).parents('tr').find('td.quantity input')
 .val(0).trigger('change')
 .end().hide();
 stripe();
 });
 $('<td></td>')
 .insertAfter($('td:nth-child(2)', this))
 .append($deleteButton);
 });
 $('<td> </td>')
 .insertAfter('#cart tfoot td:nth-child(2)');
});

$(document).ready(function() {
 var editShipping = function() {
 $.get('shipping.php', function(data) {
 $('#shipping-name').remove();
 $(data).hide().appendTo('#shipping').slideDown();
 $('#shipping form').submit(saveShipping);
 });
 return false;
 };
 var saveShipping = function() {
 var postData = $(this).serialize();
 $.post('shipping.php', postData, function(data) {

Forms with Function

[268]

 $('#shipping form').remove();
 $(data).appendTo('#shipping');
 $('#shipping-name').click(editShipping);
 });
 return false;
 };
 $('#shipping-name').click(editShipping);
});

Summary
In this chapter we have investigated ways to improve the appearance and
behavior of common HTML form elements. We have learned about enhancing the
styling of forms while leaving the original markup semantic, conditionally hiding
and showing fields based on other field values, and validating field contents both
before submission and during data entry. We have covered features like AJAX
auto-completion for text fields, allowing only specific characters to be entered in
a field, and performing calculations on numeric values in fields. We have also
learned to submit forms using AJAX rather than a page refresh.

The form element is often the glue that holds an interactive site together. With
jQuery, we can easily improve the user's experience in filling out forms while
still preserving their utility and flexibility.

Shufflers and Rotators
We've seen a few ways to hide information when it's not needed and reveal it on
demand, such as collapsible accordions of information. Sometimes, though, we
want to move content in and out of view with even more flair. These kinds of
animations go by many names: carousels, cyclers, shufflers, and rotators. What they
have in common is an ability to quickly flip between multiple pieces of data in an
eye-catching and impressive way.

In this third and final how-to chapter, we'll explore these advanced animations,
combining them with AJAX techniques and CSS subtlety to really make
an impression.

We will step through two large examples in this chapter: a headline rotator, and an
image carousel. These examples will allow us to learn how to:

Animate the position of an element
Parse XML documents
Prepare advanced styling effect using partial opacity
Retrieve information from different domains
Create a user interface element for horizontal scrolling
Composite layers for badges and overlays
Zoom into an image

Headline rotator
For our first rotator example, we'll take a news feed and scroll the headlines, along
with an excerpt of the article, into view one at a time. The stories will flow into
view, pause to be read, and then slide up and off the page as if there were an infinite
ribbon of information rolling over the page.

•

•

•

•

•

•

•

Shufflers and Rotators

[270]

Setting up the page
At its most basic level, this feature is not very difficult to implement. But as we will
soon see, making it production-ready requires a bit of finesse.

We begin, as usual, with a chunk of HTML. We'll place the news feed in the sidebar
of the page:

<h3>Recent News</h3>
<div id="news-feed">
 News Releases
</div>

So far, the content area of our news feed contains only a single link to the main
news page.

This is our graceful degradation scenario, in case the user does not have
JavaScript enabled. The content we'll be working with will come from an actual
RSS feed instead.

The CSS for this <div> is important as it will determine not only how much of each
news item will be shown at a time, but also where on the page the news items will
appear. Together with the style rule for the individual news items, the CSS looks
like this:

#news-feed {
 position: relative;
 height: 200px;
 width: 17em;
 overflow: hidden;
}

.headline {
 position: absolute;
 height: 200px;
 top: 210px;
 overflow: hidden;
}

Chapter 9

[271]

Notice here that the height of both the individual news items (represented by the
headline class) and their container is 200px. Also, since headline elements are
absolutely positioned relative to #news-feed, we're able to line up the top of the news
items with the bottom edge of their container. That way, when we set the overflow
property of #news-feed to hidden, the headlines are not displayed initially.

Setting the position of the headlines to absolute is necessary for another reason as
well: for any element to have its location animated on the page, it must have either
absolute or relative positioning, rather than the default static positioning.

Now that we have the HTML and CSS in place, we can inject the news items from an
RSS feed. To start, we'll wrap the code in a .each() method, which will act as an if
statement of sorts and contain the code inside a private namespace:

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();
 });
});

Normally when we use the .each() method, we are iterating over a possibly large
set of elements. Here, though, our selector #news-feed is looking for an ID, so there
are only two potential outcomes. The factory function could make a jQuery object
matching one unique element with the news-feed ID, or it could find no elements on
the page with that ID and produce an empty jQuery object. The .each() call takes
care of executing the contained code if, and only if, the jQuery object is non-empty.

At the beginning of our .each() loop, the news feed container is emptied to make it
ready for its new content.

Shufflers and Rotators

[272]

Retrieving the feed
To retrieve the feed, we'll use the $.get() method, one of jQuery's many AJAX
functions for communicating with the server. This method, as we have seen before,
allows us to operate on content from a remote source by using a success handler.
The content of the feed is passed to this handler as an XML structure. We can then
use jQuery's selector engine to work with this data.

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();
 $.get('news/feed.xml', function(data) {
 $('rss item', data).each(function() {
 // Work with the headlines here.
 });
 });
 });
});

For more information on $.get() and other AJAX methods,
see Chapter 6.

Now, we need to combine the parts of each item into a usable block of HTML
markup. We can use .each() again to go through the items in the feed and build
the headline links:

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();
 $.get('news/feed.xml', function(data) {
 $('rss item', data).each(function() {
 var $link = $('<a>')
 .attr('href', $('link', this).text())
 .text($('title', this).text());
 var $headline = $('<h4></h4>').append($link);

 $('<div></div>')
 .append($headline)
 .appendTo($container);
 });
 });
 });
});

Chapter 9

[273]

We get the text of each item's <title> and <link> elements, and construct the <a>
element from them. This link is then wrapped in an <h4> element. We put each news
item into <div id="news-feed">, but for now we're omitting the headline class
on each news item's containing <div> so that we can more easily see our work
in progress.

In addition to the headlines, we want to display a bit of supporting information
about each article. We'll grab the publication date and article summary, and display
these as well.

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();
 $.get('news/feed.xml', function(data) {
 $('rss item', data).each(function() {
 var $link = $('<a>')
 .attr('href', $('link', this).text())
 .text($('title', this).text());
 var $headline = $('<h4></h4>').append($link);

 var pubDate = new Date(

 $('pubDate', this).text());

 var pubMonth = pubDate.getMonth() + 1;

 var pubDay = pubDate.getDate();

 var pubYear = pubDate.getFullYear();

 var $publication = $('<div></div>')

 .addClass('publication-date')

 .text(pubMonth + '/' + pubDay + '/'

 + pubYear);

Shufflers and Rotators

[274]

 var $summary = $('<div></div>')

 .addClass('summary')

 .html($('description', this).text());

 $('<div></div>')
 .append($headline, $publication, $summary)

 .appendTo($container);
 });
 });
 });
});

The date information in an RSS feed is encoded in RFC 822 format, which
includes date, time, and time zone information (for example, Sun, 28 Sep 2008
18:01:55 +0000). This format is not particularly eye-pleasing, so we use JavaScript's
built-in Date object to produce a more compact representation of the date
(such as 9/28/2008).

The summary information is easier to retrieve and format. It's worth noting, though,
that in our sample feed, some HTML entities may exist in the description. To make
sure that these are not automatically escaped by jQuery, we need to use the .html()
method to insert the description into the page, rather than the .text() method.

With these new elements created, we insert them into the document using the
.append() method. Note here that we are using a new feature of the method; if
more than one argument is supplied, all of them get appended in sequence.

As we can see, the title, date, link, and summary of each news item is now in place.
All that's left is to add the headline class with .addClass('headline') (which will
hide them from view because of the CSS we defined earlier), and we are ready to
proceed with our animation.

Chapter 9

[275]

Setting up the rotator
Since the visible news item will change over time, we'll need a way to easily keep
track of which items are visible and where they are. First, we'll set two variables, one
for the currently visible headline and one for the headline that has just scrolled out of
view. Initially, both values will be 0.

var currentHeadline = 0, oldHeadline = 0;

Next, we'll take care of some initial positioning of the headlines. Recall that in the
stylesheet we have already set the top property of the headlines to be 10 pixels
greater than their container's height; because the container has an overflow
property of hidden, the headlines are initially not displayed. It'll be helpful later on
if we store that property in a variable, so that we can move headlines to this position
when needed.

var hiddenPosition = $container.height() + 10;

We also want the first headline to be visible immediately upon page load. To achieve
this, we can set its top property to 0.

$('div.headline').eq(currentHeadline).css('top', 0);

The rotator area of the page is now in the correct initial state:

Finally, we'll store the total number of headlines for later use and define a timeout
variable to be used for the pause mechanism between each rotation.

var headlineCount = $('div.headline').length;
var pause;

Shufflers and Rotators

[276]

There is no need yet to give pause a value at this time; it will be set each time the
rotation occurs. Nevertheless, we must always declare local variables using var
to avoid the risk of collisions with global variables of the same name.

The headline rotate function
Now we're ready to rotate the headlines, dates, and summaries. We'll define a
function for this task so that we can easily repeat the action each time we need it.

First, let's take care of updating the variables that are tracking which headline
is active. The modulus operator (%) will let us easily cycle through the headline
numbers. We can add 1 to the currentHeadline value each time our function is
called, and then take this value modulus the headlineCount value to constrain
the variable to valid headline numbers.

Recall that we used this same technique to cycle through row colors when

 value so that we can easily manipulate the

Chapter 9

[277]

In both cases, we're animating the top property of the news item. Recall that the
items are hidden because they have a top value of hiddenPosition (which is a
number greater than the height of the container). Animating this property to 0
brings an item into view; further animating it to -hiddenPosition moves it out
of view again.

Recall from Chapter 4 that top is a CSS positioning property, and only
has an effect if the position of the element is absolute or relative.

In both cases, we also have a callback function specified to take action when the
animation is complete. When the old headline has completely slid out of view, it
gets its top property reset to hiddenPosition so it is ready to return later. When
the new headline is finished with its animation, we want to queue up the next
transition; this is done with a call to the JavaScript setTimeout() function, which
registers a function to be invoked after a specified period. In this case, we're causing
headlineRotate() to be fired again in five seconds (5000 milliseconds).

We now have a cycle of activity; once one animation completes, the next one is ready
to activate. It remains to call the function the first time; we'll do this with another call
to setTimeout(), causing the first transition to happen 5 seconds after the RSS feed
has been retrieved. Now we have a functional headline rotator.

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();
 $.get('news/feed.xml', function(data) {
 $('rss item', data).each(function() {
 var $link = $('<a>')
 .attr('href', $('link', this).text())
 .text($('title', this).text());
 var $headline = $('<h4></h4>').append($link);

 var pubDate = new Date($('pubDate', this).text());
 var pubMonth = pubDate.getMonth() + 1;
 var pubDay = pubDate.getDate();
 var pubYear = pubDate.getFullYear();
 var $publication = $('<div></div>')
 .addClass('publication-date')
 .text(pubMonth + '/' + pubDay + '/' + pubYear);

 var $summary = $('<div></div>')
 .addClass('summary')
 .html($('description', this).text());

Shufflers and Rotators

[278]

 $('<div></div>')
 .addClass('headline')
 .append($headline, $publication, $summary)
 .appendTo($container);
 });

 var currentHeadline = 0, oldHeadline = 0;
 var hiddenPosition = $container.height() + 10;
 $('div.headline').eq(currentHeadline).css('top', 0);
 var headlineCount = $('div.headline').length;
 var pause;

 var headlineRotate = function() {
 currentHeadline = (oldHeadline + 1) % headlineCount;
 $('div.headline').eq(oldHeadline).animate(
 {top: -hiddenPosition}, 'slow', function() {
 $(this).css('top', hiddenPosition);
 });
 $('div.headline').eq(currentHeadline).animate(
 {top: 0}, 'slow', function() {
 pause = setTimeout(headlineRotate, 5000);
 });
 oldHeadline = currentHeadline;
 };
 pause = setTimeout(headlineRotate, 5000);
 });
 });
});

Partially through the animation, we can see one headline cropped at the top, and the
next coming into view cropped at the bottom:

Chapter 9

[279]

Pause on hover
Even though the headline rotator is now fully functioning, there is one significant
usability issue that we should address—a headline might scroll out of the viewable
area before a user is able to click on one of its links. This forces the user to wait until
the rotator has cycled through the full set of headlines again before getting a second
chance. We can reduce the likelihood of this problem by having the rotator pause
when the user's mouse cursor hovers anywhere within the headline.

$container.hover(function() {
 clearTimeout(pause);
}, function() {
 pause = setTimeout(headlineRotate, 250);
});

When the mouse enters the headline area, the first .hover() handler calls
JavaScript's clearTimeout() function. This cancels the timer in progress,
preventing headlineRotate() from being called. When the mouse leaves, the
second .hover() handler reinstates the timer, thereby invoking headlineRotate()
after a 250 millisecond delay.

This simple code works fine most of the time. However, if the user moves the mouse
over and back out of the <div> quickly and repeatedly, a very undesirable effect can
occur. Multiple headlines will be in motion at a time, layering on top of each other in
the visible area.

Unfortunately, we need to perform some serious surgery to remove this cancer.
Before the headlineRotate() function, we'll introduce one more variable:

var rotateInProgress = false;

Shufflers and Rotators

[280]

Now, on the very first line of our function, we can check if a rotation is currently in
progress. Only if the value of rotateInProgress is false do we want the code to
run again. Therefore, we wrap everything within the function in an if statement.
Immediately inside this conditional, we set the variable to true, and then in the

 method, we set it back to false.

pause variable as a flag indicating
false

Chapter 9

[281]

 });
 $('div.headline').eq(currentHeadline).animate(
 {top: 0}, 'slow', function() {
 rotateInProgress = false;
 if (!pause) {
 pause = setTimeout(headlineRotate, 5000);
 }
 });
 oldHeadline = currentHeadline;
 }
};
if (!pause) {
 pause = setTimeout(headlineRotate, 5000);
}

$container.hover(function() {
 clearTimeout(pause);
 pause = false;
}, function() {
 if (!pause) {
 pause = setTimeout(headlineRotate, 250);
 }
});

At last, our headline rotator can withstand all manner of attempts by the user to
thwart it.

Retrieving a feed from a different domain
The news feed that we've been using for our example is a local file, but we might
want to retrieve a feed from another site altogether. As we saw in Chapter 6, AJAX
requests cannot, as a rule, be made to a different site than the one hosting the
page being viewed. There, we discussed the JSONP data format as a method for
circumventing this limitation. Here, though, we'll assume we cannot modify the
data source, so we need a different solution.

To allow AJAX to fetch this file, we'll use some server-side code as a proxy for
the request, so that JavaScript believes the XML file is on our server even though
it actually resides on a different one. We will write a short PHP script to pull the
content of the news feed to our server, and relay that data to the requesting jQuery
script. This script, which we'll call feed.php, can be called in the same way feed.xml
was fetched previously:

$.get('news/feed.php', function(data) {
 // ...
});

Shufflers and Rotators

[282]

Inside the feed.php file, we pull in the content of the news feed from the remote site,
then print the content as the output of the script.

<?php
 header('Content-Type: text/xml');
 print file_get_contents('http://jquery.com/blog/feed');
?>

Note here that we need to explicitly set the content type of the page to text/xml so
that jQuery can fetch it and parse it as if it were a normal, static XML document.

Some web-hosting providers may not allow the use of the PHP
file_get_contents() function to fetch remote files because of
security concerns. In these cases, alternative solutions, such as using the
cURL library, may be available. More information on this library can be
found at http://wiki.dreamhost.com/CURL.

Adding a loading indicator
Pulling in a remote file like this might take some time, depending on a number of
factors, so we should inform the user that loading is in progress. To do this, we'll
add a loading indicator image to the page before we issue our AJAX request.

var $loadingIndicator = $('')
 .attr({
 'src': 'images/loading.gif',
 'alt': 'Loading. Please wait.'
 })
 .addClass('news-wait')
 .appendTo($container);

Then, as the first line of our $.get() function's success callback, we can remove the
image from the page with a simple command:

$loadingIndicator.remove();

Now, when the page first loads, if there is a delay in retrieving the headline content,
we'll see a loading image rather than an empty area.

Chapter 9

[283]

This image is an animated GIF, and in a web browser will spin to signify that activity
is taking place.

We can easily create new animated GIF images for use as AJAX loading
indicators by using the service at http://ajaxload.info/.

Gradient fade effect
Before we put away our headline rotator example, let's give it a finishing touch, by
making the headline text appear to fade in from the bottom of its container. The
effect will be a gradient fade, appearing as if the text is opaque at the top of the
effect area and transparent at the bottom.

A single text element cannot have multiple opacities simultaneously, however. To
simulate this, we'll actually cover up the effect area with a series of elements, each of
which has a different opacity. These slices with be <div> elements with a few style
properties in common, which we can declare in our stylesheet:

.fade-slice {
 position: absolute;
 width: 20em;
 height: 2px;
 background: #efd;
 z-index: 3;
}

They all have the same width and background-color properties as their containing
element, <div id="news-feed">. This will fool the user's eye into thinking the text
is fading away, rather than being covered up by another element.

Now we can create the <div class="fade-slice"> elements. To make sure we
have the right number of them, first we'll determine a height in pixels for the entire
effect area. In this case, we're choosing 25 percent of the <div id="news-feed">
height. We'll use a for loop to iterate across the height of this area, creating a new
slice element for each 2-pixel segment of the gradient:

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();

 var fadeHeight = $container.height() / 4;
 for (var yPos = 0; yPos < fadeHeight; yPos += 2) {
 $('<div></div>')

Shufflers and Rotators

[284]

 .addClass('fade-slice')
 .appendTo($container);

opacity and top properties:

opacity top

0 150
0.04 152
0.08 154
0.12 156
0.16 158

…

0.80 190
0.84 192
0.88 194
0.92 196
0.96 198

Chapter 9

[285]

Keep in mind that since the top position of the final <div class="fade-slice"> is
198, its 2-pixel height will neatly overlay the bottom two pixels of the 200-pixel-tall
containing <div>.

With our code in place, the text in the headline area of the page now blends
beautifully from transparent to opaque as it overlaps the bottom of the container:

The finished code
Our first rotator is now complete. The news items are now fetched from a remote
server, formatted, animated in and out of view on schedule, and beautifully styled:

$(document).ready(function() {
 $('#news-feed').each(function() {
 var $container = $(this);
 $container.empty();

 var fadeHeight = $container.height() / 4;
 for (var yPos = 0; yPos < fadeHeight; yPos += 2) {
 $('<div></div>').css({
 opacity: yPos / fadeHeight,
 top: $container.height() - fadeHeight + yPos
 }).addClass('fade-slice').appendTo($container);
 }

 var $loadingIndicator = $('')
 .attr({
 'src': 'images/loading.gif',
 'alt': 'Loading. Please wait.'
 })

Shufflers and Rotators

[286]

 .addClass('news-wait')
 .appendTo($container);

 $.get('news/feed.php', function(data) {
 $loadingIndicator.remove();
 $('rss item', data).each(function() {
 var $link = $('<a>')
 .attr('href', $('link', this).text())
 .text($('title', this).text());
 var $headline = $('<h4></h4>').append($link);

 var pubDate = new Date($('pubDate', this).text());
 var pubMonth = pubDate.getMonth() + 1;
 var pubDay = pubDate.getDate();
 var pubYear = pubDate.getFullYear();
 var $publication = $('<div></div>')
 .addClass('publication-date')
 .text(pubMonth + '/' + pubDay + '/' + pubYear);

 var $summary = $('<div></div>')
 .addClass('summary')
 .html($('description', this).text());

 $('<div></div>')
 .addClass('headline')
 .append($headline, $publication, $summary)
 .appendTo($container);
 });

 var currentHeadline = 0, oldHeadline = 0;
 var hiddenPosition = $container.height() + 10;
 $('div.headline').eq(currentHeadline).css('top', 0);
 var headlineCount = $('div.headline').length;
 var pause;
 var rotateInProgress = false;

 var headlineRotate = function() {
 if (!rotateInProgress) {
 rotateInProgress = true;
 pause = false;
 currentHeadline = (oldHeadline + 1)
 % headlineCount;
 $('div.headline').eq(oldHeadline).animate(
 {top: -hiddenPosition}, 'slow', function() {
 $(this).css('top', hiddenPosition);
 });
 $('div.headline').eq(currentHeadline).animate(
 {top: 0}, 'slow', function() {

Chapter 9

[287]

 rotateInProgress = false;
 if (!pause) {
 pause = setTimeout(headlineRotate, 5000);
 }
 });
 oldHeadline = currentHeadline;
 }
 };
 if (!pause) {
 pause = setTimeout(headlineRotate, 5000);
 }

 $container.hover(function() {
 clearTimeout(pause);
 pause = false;
 }, function() {
 if (!pause) {
 pause = setTimeout(headlineRotate, 250);
 }
 });
 });
 });
});

An image carousel
As another example of shuffling around page content, we'll implement an image
gallery for the front page of the bookstore site. The gallery will present a few
featured books for sale, with links to larger cover art for each. Unlike the previous
example, where the headlines in our news ticker moved on a set schedule, here we'll
use jQuery to slide the images across the screen in response to user interaction.

An alternative mechanism for scrolling through a set of images is
implemented by the jCarousel plugin for jQuery. Additionally, the highly
flexible SerialScroll plugin allows for scrolling any type of content. While
not identical to the result we'll achieve here, these
plugins can produce high-quality shuffling effects with very little code.
More information on using plugins can be found in Chapter 10.

Shufflers and Rotators

[288]

Setting up the page
As always, we begin by crafting the HTML and CSS so that users without JavaScript
available receive an appealing and functional representation of the information:

<div id="featured-books">
 <div class="covers">
 <a href="images/covers/large/1847190871.jpg"
 title="Community Server Quickly">
 <img src="images/covers/medium/1847190871.jpg"
 width="120" height="148"
 alt="Community Server Quickly" />
 $35.99

 <a href="images/covers/large/1847190901.jpg"
 title="Deep Inside osCommerce: The Cookbook">
 <img src="images/covers/medium/1847190901.jpg"
 width="120" height="148"
 alt="Deep Inside osCommerce: The Cookbook" />
 $44.99

 <a href="images/covers/large/1847190979.jpg"
 title="Learn OpenOffice.org Spreadsheet Macro
 Programming: OOoBasic and Calc automation">
 <img src="images/covers/medium/1847190979.jpg"
 width="120" height="148"
 alt="Learn OpenOffice.org Spreadsheet Macro
 Programming: OOoBasic and Calc automation" />
 $35.99

 <a href="images/covers/large/1847190987.jpg"
 title="Microsoft AJAX C# Essentials: Building
 Responsive ASP.NET 2.0 Applications">
 <img src="images/covers/medium/1847190987.jpg"
 width="120" height="148"
 alt="Microsoft AJAX C# Essentials: Building
 Responsive ASP.NET 2.0 Applications" />
 $31.99

 <a href="images/covers/large/1847191002.jpg"
 title="Google Web Toolkit GWT Java AJAX Programming">
 <img src="images/covers/medium/1847191002.jpg"
 width="120" height="148"
 alt="Google Web Toolkit GWT Java AJAX Programming" />
 $40.49

 <a href="images/covers/large/1847192386.jpg"
 title="Building Websites with Joomla! 1.5 Beta 1">

Chapter 9

[289]

 <img src="images/covers/medium/1847192386.jpg"
 width="120" height="148"
 alt="Building Websites with Joomla! 1.5 Beta 1" />
 $40.49

 </div>
</div>

Each image is contained within an anchor tag, pointing to the larger version of the
cover. We also have prices given for each cover; these will be hidden for now, and
we'll use JavaScript to display them later at an appropriate time.

To save space on the front page, we want to show only three covers at a time.
Without JavaScript, we can accomplish this by setting the overflow property of
the container to scroll, and adjusting the width appropriately:

#featured-books {
 position: relative;
 background: #ddd;
 width: 440px;
 height: 186px;
 overflow: scroll;
 margin: 1em auto;
 padding: 0;
 text-align: center;
 z-index: 2;
}
#featured-books .covers {
 position: relative;
 width: 840px;
 z-index: 1;
}
#featured-books a {
 float: left;
 margin: 10px;
 height: 146px;
}
#featured-books .price {
 display: none;
}

These styles bear a bit of discussion. The outermost element needs to have a larger
z-index property than the one inside it; this allows Internet Explorer to hide the part
of the inner element that stretches beyond its container. We set the width of the outer
element to 440px, which accommodates three images, the 10px margin around each,
and an extra 20px for the scroll bar.

Shufflers and Rotators

[290]

With these styles in place, the images can be browsed using a standard system
scroll bar:

Revising the styles with JavaScript
Now that we have gone to the work of making the image gallery usable without
JavaScript, we need to undo some of the niceties. The scroll bar will be redundant
when we implement our own scrolling mechanism, and the automatic layout of the
covers using the float property will get in the way of the positioning we need to do
to animate the covers. So our first order of business will be overriding some styles:

$(document).ready(function() {
 var spacing = 140;

 $('#featured-books').css({
 'width': spacing * 3,
 'height': '166px',
 'overflow': 'hidden'
 }).find('.covers a').css({
 'float': 'none',
 'position': 'absolute',
 'left': 1000
 });

 var $covers = $('#featured-books .covers a');

 $covers.eq(0).css('left', 0);
 $covers.eq(1).css('left', spacing);
 $covers.eq(2).css('left', spacing * 2);
});

Chapter 9

[291]

The spacing variable is going to come in handy throughout many of our
calculations. It represents the width of one of the cover images, plus the padding on
either side of it. The width of the containing element can now be set to exactly what
is necessary to contain three of the cover images, since we don't need space for the
scroll bar anymore. Indeed, we change the overflow property to hidden, and
bye-bye scroll bar.

The cover images all get positioned absolutely, and start with a left coordinate of
1000. This places them out of the visible area. Then we move the first three covers
into position, one at a time. The $covers variable holding all of the anchor elements
will also come in handy later.

Now the first three covers are visible, with no scrolling mechanism available:

Shuffling images when clicked
Now, we need to add code to respond to a click on either of the end images, and
reorder the covers as necessary. When the left cover is clicked, this means the user
wants to see more images to the left, which in turn means we need to shift the covers
to the right. Similarly, when the right cover is clicked we will have to shift the covers
to the left. We want the carousel to wrap around, so when images fall off the left side,
they get appended to the right. To begin, we will just change the image positions
without animation.

$(document).ready(function() {
 var spacing = 140;

 $('#featured-books').css({
 'width': spacing * 3,
 'height': '166px',
 'overflow': 'hidden'
 }).find('.covers a').css({

Shufflers and Rotators

[292]

 'float': 'none',
 'position': 'absolute',
 'left': 1000
 });

 var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click');

 // Left image; scroll right (to view images on left).
 $covers.eq(0)
 .css('left', 0)
 .click(function(event) {
 $covers.eq(2).css('left', 1000);
 $covers.eq($covers.length - 1)
 .prependTo('#featured-books .covers');
 setUpCovers();

 event.preventDefault();
 });

 // Right image; scroll left (to view images on right).
 $covers.eq(2)
 .css('left', spacing * 2)
 .click(function(event) {
 $covers.eq(0).css('left', 1000);
 $covers.eq(0)
 .appendTo('#featured-books .covers');
 setUpCovers();

 event.preventDefault();
 });

 // Center image.
 $covers.eq(1)
 .css('left', spacing);
 };

 setUpCovers();
});

The new setUpCovers() function incorporates the image positioning code that
we wrote earlier. By encapsulating this in a function, we can repeat the image
positioning after the elements have been reordered; this will be important, as we
shall soon see.

Chapter 9

[293]

In our example, there are six images in total (which JavaScript will reference with
the numbers 0 through 5), and numbers 0, 1, and 2 are visible. When image #0 is
clicked, we want to shift all the images to the right by one position. We first move
image #2 out of the viewable area (with .css('left', 1000)), since we don't want
it to be visible after the shift. Then, we move the image at the end of the line (#5) to
the front of the queue (using .prependTo()). This reorders all of the images so when
setUpCovers() is called again, the former #5 is now #0, #0 has become #1, and #1
has become #2. The existing positioning code in this function is therefore sufficient
to move the covers to their new locations.

Clicking on image #2 performs the process in reverse. This time, it is #0 that gets
hidden from view, and then moved to the end of the queue. This shifts #1 to the
#0 spot, #2 to #1, and #3 to #2.

There are a couple of details that we have to take care of to avoid user
interaction anomalies:

1.	 We need to call .preventDefault() within our click handler, since we
have made the covers into links to the large version. Without this call, the
link will be followed and we would never see our shuffle effect.

2.	 We need to unbind all of the click handlers at the beginning of the
setUpCovers() function, or we could end up with multiple handlers bound
to the same image as the carousel rotates.

Shufflers and Rotators

[294]

Adding sliding animation
It can be difficult to understand what just happened when an image is clicked; since
the covers move instantaneously, they can appear to have just changed rather than
moved. To mitigate this issue, we can add an animation that causes the covers to
slide into place rather than just appearing in their new positions. This requires a
revision of the setUpCovers() function:

var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click');

 // Left image; scroll right (to view images on left).
 $covers.eq(0)
 .css('left', 0)
 .click(function(event) {
 $covers.eq(0).animate({'left': spacing}, 'fast');
 $covers.eq(1).animate({'left': spacing * 2}, 'fast');
 $covers.eq(2).animate({'left': spacing * 3}, 'fast');
 $covers.eq($covers.length - 1)
 .css('left', -spacing)
 .animate({'left': 0}, 'fast', function() {
 $(this).prependTo('#featured-books .covers');
 setUpCovers();
 });

 event.preventDefault();
 });

 // Right image; scroll left (to view images on right).
 $covers.eq(2)
 .css('left', spacing * 2)
 .click(function(event) {
 $covers.eq(0)
 .animate({'left': -spacing}, 'fast', function() {
 $(this).appendTo('#featured-books .covers');
 setUpCovers();
 });
 $covers.eq(1).animate({'left': 0}, 'fast');
 $covers.eq(2).animate({'left': spacing}, 'fast');
 $covers.eq(3)
 .css('left', spacing * 3)
 .animate({'left': spacing * 2}, 'fast');

 event.preventDefault();
 });

 // Center image.
 $covers.eq(1)
 .css('left', spacing);
};

Chapter 9

[295]

When the left image is clicked, we can move all three visible images to the right
by one image width (reusing the spacing variable we defined earlier). This part is
straightforward, but we also have to make the new image slide into view. To do this,
we grab the image from the end of the queue, and first set its screen position to be
just off-screen on the left side (-spacing). Then, we slide it into view along with the
other items.

Even though the animation takes care of the initial move, we still need to change the
cover order by calling setUpCovers() again. If we don't, the next click won't work
correctly. Since setUpCovers() changes the cover positions, we must defer the call
until after the animation completes, so we place the call in the animation's callback.

A click on the rightmost image performs a similar set of animations, but in reverse.
This time, it's the leftmost image that moves out of view, and must be moved to
the end of the queue before we trigger setUpCovers() when the animation is
complete. The new, rightmost image, on the other hand, must be moved into
position (spacing * 3) before its animation can begin.

Displaying action icons
Our image carousel now rotates smoothly, but we haven't provided any hint to the
user that clicking on the covers will cause them to scroll. We can assist the user by
displaying appropriate icons when the mouse hovers over the images.

Shufflers and Rotators

[296]

In this case, we'll place the icons on top of the existing images. By using the opacity
property, we can continue to see the cover underneath when the icon is displayed.
We'll use simple monochrome icons so that the cover is not too obscured:

We'll need three icons, one each for the left and right covers, which the user will
choose to scroll, and one for the middle cover, which the user can click for an
enlarged version. We can create HTML elements that reference the icons and
store them in variables for later use:

var $leftRollover = $('')
 .attr('src', 'images/left.gif')
 .addClass('control')
 .css('opacity', 0.6)
 .css('display', 'none');
var $rightRollover = $('')
 .attr('src', 'images/right.gif')
 .addClass('control')
 .css('opacity', 0.6)
 .css('display', 'none');
var $enlargeRollover = $('')
 .attr('src', 'images/enlarge.gif')
 .addClass('control')
 .css('opacity', 0.6)
 .css('display', 'none');

You may notice that we've got a fair amount of repetition here. To minimize this
extra code, we can pull this work out into a function that we call for each icon that
needs to be created:

function createControl(src) {
 return $('')
 .attr('src', src)
 .addClass('control')
 .css('opacity', 0.6)
 .css('display', 'none');
}

var $leftRollover = createControl('images/left.gif');
var $rightRollover = createControl('images/right.gif');
var $enlargeRollover = createControl('images/enlarge.gif');

Chapter 9

[297]

In the CSS for the page, we set the z-index of these controls to be higher than the
images', and then position them absolutely so that they can overlap the covers:

#featured-books .control {
 position: absolute;
 z-index: 3;
 left: 0;
 top: 0;
}

The rollover icons all share the same control class, so one might be tempted to place
the opacity style in the CSS stylesheet. However, element opacity is not handled
consistently between browsers; in Internet Explorer, the syntax for 60% opacity is
filter: alpha(opacity=60). Rather than wrestle with these distinctions, we set
the opacity style using jQuery's .css() method, which abstracts away these
browser inconsistencies.

Now, all we have to do in our hover handlers is to place the images in the right
DOM location and show them.

var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click mouseenter mouseleave');

 // Left image; scroll right (to view images on left).
 $covers.eq(0)
 .css('left', 0)
 .click(function(event) {
 $covers.eq(0).animate({'left': spacing}, 'fast');
 $covers.eq(1).animate({'left': spacing * 2}, 'fast');
 $covers.eq(2).animate({'left': spacing * 3}, 'fast');
 $covers.eq($covers.length - 1)
 .css('left', -spacing)
 .animate({'left': 0}, 'fast', function() {
 $(this).prependTo('#featured-books .covers');
 setUpCovers();
 });

 event.preventDefault();
 }).hover(function() {

 $leftRollover.appendTo(this).show();

 }, function() {

 $leftRollover.hide();

 });

 // Right image; scroll left (to view images on right).

Shufflers and Rotators

[298]

 $covers.eq(2)
 .css('left', spacing * 2)
 .click(function(event) {
 $covers.eq(0)
 .animate({'left': -spacing}, 'fast', function() {
 $(this).appendTo('#featured-books .covers');
 setUpCovers();
 });
 $covers.eq(1).animate({'left': 0}, 'fast');
 $covers.eq(2).animate({'left': spacing}, 'fast');
 $covers.eq(3)
 .css('left', spacing * 3)
 .animate({'left': spacing * 2}, 'fast');

 event.preventDefault();
 }).hover(function() {

 $rightRollover.appendTo(this).show();

 }, function() {

 $rightRollover.hide();

 });

 // Center image.
 $covers.eq(1)
 .css('left', spacing)
 .hover(function() {

 $enlargeRollover.appendTo(this).show();

 }, function() {

 $enlargeRollover.hide();

 });

};

Just as we did earlier with click, we unbind mouseenter and mouseleave handlers
at the beginning of setUpCovers() so that the hover behaviors do not accumulate.
Here, we use another feature of the .unbind() method: handlers for multiple event
types can be unbound at once by separating the event type names with spaces.

Why mouseenter and mouseleave? When we call the .hover() method, internally
jQuery translates this into two separate event bindings. The first function we
supply is bound as a handler for the mouseenter event, and the second is bound to
mouseleave. So, to remove the handlers bound using .hover(), we need to unbind
mouseenter and mouseleave.

Chapter 9

[299]

Now when the mouse cursor is over a cover, the appropriate rollover image is
overlaid on top of the cover:

Image enlargement
Now, our image gallery is fully functional, with a carousel that allows the user
to navigate to a desired image. A click on the center image leads to an enlarged
view of the cover in question. But, there is more we can do with this image
enlargement functionality.

Rather than lead the user to a separate URL when the center image is clicked, we can
overlay the enlarged book cover on the page itself.

A number of variations on the theme of displaying information overlaid
on the page are available as jQuery plugins. A few of the more popular
ones include FancyBox, ShadowBox, Thickbox, SimpleModal, and
jqModal. More information on using plugins can be found in
Chapter 10.

This larger cover image will require a new image element, which we can create at the
same time that the hover images are instantiated:

var $enlargedCover = $('')
 .addClass('enlarged')
 .hide()
 .appendTo('body');

Shufflers and Rotators

[300]

We will apply a set of style rules to this new class that are similar to the ones we
have seen before:

img.enlarged {
 position: absolute;
 z-index: 5;
 cursor: pointer;
}

This absolute positioning will allow the cover to float above the other images we
have positioned, because the z-index is higher than the ones we have already used.
Now we need to actually position the enlarged image when the center image in the
carousel is clicked:

// Center image; enlarge cover.
$covers.eq(1)
 .css('left', spacing)
 .click(function(event) {
 $enlargedCover.attr('src', $(this).attr('href'))
 .css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100,
 'width': 360,
 'height': 444
 }).show();
 event.preventDefault();
 })
 .hover(function() {
 $enlargeRollover.appendTo(this).show();
 }, function() {
 $enlargeRollover.hide();
 });

We can take advantage of the links already present in the HTML source to know
where the larger cover's image file resides on the server. We pluck this from the href
attribute of the link, and set it as the src attribute of the enlarged cover image.

Now, we must position the image. The top, width, and height are hard-coded for
now, but the left requires a little calculation. We want the enlarged image to be
centered on the page, but we can't know in advance what the appropriate coordinate
is to achieve this positioning. We can find the halfway mark across the page by
measuring the width of the <body> element and dividing this by two. Half of our
enlarged image will be on either side of this point, so the left coordinate of the image
will be ($('body').width() - 360) / 2, since 360 is the width of the enlarged cover.
The cover is now positioned appropriately, centered horizontally across the page:

Chapter 9

[301]

Hiding the enlarged cover
We need a mechanism for dismissing the cover once it has been enlarged. The
simplest way to do this is by making a click event on the cover fade it out:

// Center image; enlarge cover.
$covers.eq(1)
 .css('left', spacing)
 .click(function(event) {
 $enlargedCover.attr('src', $(this).attr('href'))
 .css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100,
 'width': 360,
 'height': 444
 })
 .show()
 .one('click', function() {
 $enlargedCover.fadeOut();
 });
 event.preventDefault();
 })
 .hover(function() {
 $enlargeRollover.appendTo(this).show();
 }, function() {
 $enlargeRollover.hide();
 });

Shufflers and Rotators

[302]

We use the .one() method to bind this click handler, which sidesteps a couple
of potential problems. With a regular .bind() of the handler, the user could click
on the image again as it was fading out. This would cause the handler to fire again.
Also, since we are reusing the same image element every time the cover is enlarged,
the binding will occur again for each enlargement. If we do nothing to unbind the
handler, they will stack up over time. Using .one() ensures that the handlers are
removed once used.

Displaying a close button
This behavior is sufficient for removing the large cover, but we've given no
indication to the user that clicking the cover will make it go away. We can provide
this assistance by badging the enlarged image with a Close button. Creating the
button is similar to defining the other singleton elements we've used—the items
that are guaranteed to appear only once—and we can call the utility function that
we created earlier:

var $closeButton = createControl('images/close.gif')
 .addClass('enlarged-control')
 .appendTo('body');

When the center cover is clicked, and the enlarged cover is displayed, we need to
position and show the button:

$closeButton.css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100
}).show();

The coordinates of the Close button are identical to the enlarged cover, so their
top-left corners are aligned:

Chapter 9

[303]

We already have a behavior bound to the image that hides it when the image is
clicked. Typically in this situation we could rely on event bubbling to cause a click
on the Close button to cause the same effect. In this case, however, the Close button
is not a descendant element of the cover, despite appearances. We've absolutely
positioned the Close button on top of the cover, which means that clicks on the
button do not get passed to the enlarged image. Instead, we must handle clicks
on the Close button ourselves:

// Center image; enlarge cover.
$covers.eq(1)
 .css('left', spacing)
 .click(function(event) {
 $enlargedCover.attr('src', $(this).attr('href'))

Shufflers and Rotators

[304]

 .css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100,
 'width': 360,
 'height': 444
 })
 .show()
 .one('click', function() {
 $closeButton.unbind('click').hide();

 $enlargedCover.fadeOut();
 });
 $closeButton
 .css({
 'left': ($('body').width() - 360) / 2,
 'top' : 100
 })
 .show()
 .click(function() {

 $enlargedCover.click();

 });

 event.preventDefault();
 })
 .hover(function() {
 $enlargeRollover.appendTo(this).show();
 }, function() {
 $enlargeRollover.hide();
 });

When we show the Close button, we bind a click event handler for it. All this
handler needs to do, though, is to trigger the click handler we've already bound to
the enlarged cover. We do need to modify that handler, though, and hide the Close
button there. While we're at it, we unbind the click handler to prevent handlers
from accumulating over time.

More fun with badging
Since we have the prices for the books available to us in the HTML source, we can
display this as additional information when the book cover is enlarged. This time
we'll apply the technique we just developed for the Close button to textual content
rather than an image.

Chapter 9

[305]

Once again, we create a singleton element at the beginning of our JavaScript code:

var $priceBadge = $('<div/>')
 .addClass('enlarged-price')
 .css('opacity', 0.6)
 .css('display', 'none')
 .appendTo('body');

Since the price will be partially transparent, a high contrast between font color and
background will work best:

.enlarged-price {
 background-color: #373c40;
 color: #fff;
 width: 80px;
 padding: 5px;
 font-size: 18px;
 font-weight: bold;
 text-align: right;
 position: absolute;
 z-index: 6;
}

Before we can display the price badge, we need to populate it with the actual price
information from the HTML. Inside the center cover's click handler, the keyword
this refers to the link element. Since the price is in a element within the link,
obtaining the text is straightforward:

var price = $(this).find('.price').text();

Now we can display the badge when the cover is enlarged:

$priceBadge.css({
 'right': ($('body').width() - 360) / 2,
 'top' : 100
}).text(price).show();

Shufflers and Rotators

[306]

This will fix the price at the top-right corner of the enlarged image:

Once we place a $priceBadge.hide(); within the cover's click handler to clean up
after ourselves, we're done.

Animating the cover enlargement
When the user clicks on the center cover, the enlarged version currently appears
in the center of the page with no flair. To improve on this, we can use the built-in
animation capabilities of jQuery to smoothly transition between the thumbnail view
of the cover and the full-size version.

To do this, we need to know the starting coordinates of the animation; i.e. the
position of the center cover on the page. Calculating this position requires some
clever DOM traversal using plain JavaScript, but jQuery gives us a shortcut. The
.offset() method returns an object containing the left and top coordinates of

Chapter 9

[307]

an element relative to the page. We can then insert the width and height of the
image into this object, and have the position information contained in a tidy package.

var startPos = $(this).offset();
startPos.width = $(this).width();
startPos.height = $(this).height();

Our destination coordinates can now be calculated from these quite easily. We'll
collect them in a similar object.

var endPos = {};
endPos.width = startPos.width * 3;
endPos.height = startPos.height * 3;
endPos.top = 100;
endPos.left = ($('body').width() - endPos.width) / 2;

We can now use these two objects as maps of CSS attributes, which can be passed to
methods such as .css() and .animate().

$enlargedCover.attr('src', $(this).attr('href'))
 .css(startPos)
 .show()
 .animate(endPos, 'normal', function() {
 $enlargedCover
 .one('click', function() {
 $closeButton.unbind('click').hide();
 $priceBadge.hide();
 $enlargedCover.fadeOut();
 });
 $closeButton
 .css({
 'left': endPos.left,
 'top' : endPos.top
 })
 .show()
 .click(function() {
 $enlargedCover.click();
 });
 $priceBadge
 .css({
 'right': endPos.left,
 'top' : endPos.top
 })
 .text(price)
 .show();
 });

Note that the Close button and price badge can't be placed until the animation
completes, so we have moved their code into the callback of the .animate() method.
Also, we've taken this opportunity to simplify the .css() calls for both of these
elements by reusing the positioning information we calculated for the enlarged cover.

Shufflers and Rotators

[308]

Now we have a smooth transition from small to large cover:

Chapter 9

Shufflers and Rotators

[310]

Deferring animations until image loads
Our animation is smooth, but depends on a fast connection to the site. If the enlarged
cover takes some time to download, then the first moments of the animation might
display the red X indicating a broken image, or still display the previous image.
We can make the transition a bit more elegant by waiting until the image has fully
loaded before starting the animation:

$enlargedCover.attr('src', $(this).attr('href'))
 .css(startPos)
 .show();
var performAnimation = function() {
 $enlargedCover.animate(endPos, 'normal', function() {
 $enlargedCover.one('click', function() {
 $closeButton.unbind('click').hide();
 $priceBadge.hide();
 $enlargedCover.fadeOut();
 });
 $closeButton
 .css({
 'left': endPos.left,
 'top' : endPos.top
 })
 .show()
 .click(function() {
 $enlargedCover.click();
 });
 $priceBadge
 .css({
 'right': endPos.left,
 'top' : endPos.top
 })
 .text(price)
 .show();
 });
};
if ($enlargedCover[0].complete) {
 performAnimation();
}
else {
 $enlargedCover.bind('load', performAnimation);
}

Chapter 9

There are two cases we have to consider: either the image is available nearly instantly
(perhaps due to caching), or it needs time to load. In the first situation, the image's
complete attribute will be true, so we can call our new performAnimation()
function immediately. In the second case, we need to wait for the image load to
complete before we call performAnimation(). This is a rare instance in which the
standard DOM load event is more useful to us than jQuery's custom ready event.
Since load is triggered on a window, image, or frame when all of its contents have
fully loaded, we can observe the event to make sure that the image is being properly
displayed. Only then is the handler executed, and the animation is performed.

We're using the .bind('load') syntax rather than the shorthand
.load() method here for clarity since .load() is also an AJAX method;
the two syntaxes are interchangeable.

Internet Explorer and Firefox have different interpretations of what to do if the
image is already in the browser cache. In this case, Firefox will immediately send the
load event to JavaScript, but Internet Explorer will never send the event because no
load actually occurred. Our testing of the complete attribute compensates for this
variance in implementations.

Adding a loading indicator
But now, we can have an awkward situation on slow network connections when
an image takes a few moments to load. Our page appears to do nothing while this
download is in progress. As we did when loading the news headlines, we should
provide an indication to the user that some activity is occurring by displaying a
loading indicator in the meantime.

The indicator will be another singleton image that will be displayed
when appropriate:

 .addClass('control')
 .css('z-index', 4)
 .hide();

Shufflers and Rotators

[312]

For this image, we're actually using an animated GIF, because the motion will
reinforce to the user that the activity is taking place:

It will just take two lines to put our loading indicator in place, now that we have the
element defined. At the very beginning of our click handler for the center image,
before we start doing any work, we need to display the indicator:

$waitThrobber.appendTo(this).show();

And at the beginning of the performAnimation() function, when we know the
image has been loaded, we remove the indicator from view:

$waitThrobber.hide();

This is all it takes to badge the cover being enlarged with the loading indicator. The
animation appears overlaying the top left corner of the cover:

Chapter 9

[313]

The finished code
This chapter represents just a small fraction of what can be done on the Web with
animated image and text rotators. Taken all together, the code for the image carousel
looks like this:

$(document).ready(function() {
 var spacing = 140;

 function createControl(src) {
 return $('')
 .attr('src', src)
 .addClass('control')
 .css('opacity', 0.6)
 .css('display', 'none');
 }

 var $leftRollover = createControl('images/left.gif');
 var $rightRollover = createControl('images/right.gif');
 var $enlargeRollover = createControl('images/enlarge.gif');
 var $enlargedCover = $('')
 .addClass('enlarged')
 .hide()
 .appendTo('body');
 var $closeButton = createControl('images/close.gif')
 .addClass('enlarged-control')
 .appendTo('body');
 var $priceBadge = $('<div/>')
 .addClass('enlarged-price')
 .css('opacity', 0.6)
 .css('display', 'none')
 .appendTo('body');
 var $waitThrobber = $('')
 .attr('src', 'images/wait.gif')
 .addClass('control')
 .css('z-index', 4)
 .hide();

 $('#featured-books').css({
 'width': spacing * 3,
 'height': '166px',
 'overflow': 'hidden'
 }).find('.covers a').css({
 'float': 'none',
 'position': 'absolute',
 'left': 1000
 });

Shufflers and Rotators

[314]

 var setUpCovers = function() {
 var $covers = $('#featured-books .covers a');

 $covers.unbind('click mouseenter mouseleave');

 // Left image; scroll right (to view images on left).
 $covers.eq(0)
 .css('left', 0)
 .click(function(event) {
 $covers.eq(0).animate({'left': spacing}, 'fast');
 $covers.eq(1).animate({'left': spacing * 2}, 'fast');
 $covers.eq(2).animate({'left': spacing * 3}, 'fast');
 $covers.eq($covers.length - 1)
 .css('left', -spacing)
 .animate({'left': 0}, 'fast', function() {
 $(this).prependTo('#featured-books .covers');
 setUpCovers();
 });

 event.preventDefault();
 }).hover(function() {
 $leftRollover.appendTo(this).show();
 }, function() {
 $leftRollover.hide();
 });

 // Right image; scroll left (to view images on right).
 $covers.eq(2)
 .css('left', spacing * 2)
 .click(function(event) {
 $covers.eq(0)
 .animate({'left': -spacing}, 'fast', function() {
 $(this).appendTo('#featured-books .covers');
 setUpCovers();
 });
 $covers.eq(1).animate({'left': 0}, 'fast');
 $covers.eq(2).animate({'left': spacing}, 'fast');
 $covers.eq(3)
 .css('left', spacing * 3)
 .animate({'left': spacing * 2}, 'fast');

 event.preventDefault();
 }).hover(function() {
 $rightRollover.appendTo(this).show();
 }, function() {
 $rightRollover.hide();
 });

Chapter 9

[315]

 // Center image; enlarge cover.
 $covers.eq(1)
 .css('left', spacing)
 .click(function(event) {
 $waitThrobber.appendTo(this).show();
 var price = $(this).find('.price').text();
 var startPos = $(this).offset();
 startPos.width = $(this).width();
 startPos.height = $(this).height();
 var endPos = {};
 endPos.width = startPos.width * 3;
 endPos.height = startPos.height * 3;
 endPos.top = 100;
 endPos.left = ($('body').width() - endPos.width) / 2;

 $enlargedCover.attr('src', $(this).attr('href'))
 .css(startPos)
 .show();
 var performAnimation = function() {
 $waitThrobber.hide();
 $enlargedCover.animate(endPos, 'normal',
 function() {
 $enlargedCover.one('click', function() {
 $closeButton.unbind('click').hide();
 $priceBadge.hide();
 $enlargedCover.fadeOut();
 });
 $closeButton
 .css({
 'left': endPos.left,
 'top' : endPos.top
 })
 .show()
 .click(function() {
 $enlargedCover.click();
 });
 $priceBadge
 .css({
 'right': endPos.left,
 'top' : endPos.top
 })
 .text(price)
 .show();
 });
 };

Shufflers and Rotators

[316]

 if ($enlargedCover[0].complete) {
 performAnimation();
 }
 else {
 $enlargedCover.bind('load', performAnimation);
 }

 event.preventDefault();
 })
 .hover(function() {
 $enlargeRollover.appendTo(this).show();
 }, function() {
 $enlargeRollover.hide();
 });
 };

 setUpCovers();
});

Summary
In this chapter, we have looked into page elements that change over time, either
on their own or in response to user intervention. These shufflers and rotators can
really set a modern web presence apart from traditionally designed sites. We have
covered presenting an XML feed of information on a page, as well as rotating items
in and out of view on a time delay. Along with displaying a set of images in a
navigable carousel-style gallery, we have also discussed enlarging an image for a
closer view with a smooth animation and presenting user-interface controls in an
unobtrusive way.

These techniques can be combined in many ways to breathe life into otherwise
stodgy pages, while simultaneously enhancing the usability of our web-based
applications. Animations and effects that would be otherwise tedious to achieve
can be effortlessly realized thanks to the power of jQuery.

Using Plugins
Throughout this book, we have examined many of the ways in which the jQuery
library can be used to accomplish a wide variety of tasks. Yet one aspect that has
remained relatively unexplored is jQuery's extensibility. As powerful as the library is
at its core, its elegant plugin architecture has allowed developers to extend jQuery,
making it an even more feature-rich library.

The growing jQuery community has created hundreds of plugins—from small selector
helpers to full-scale user-interface widgets. We've already discussed the power of
plugins and created a simple one in Chapter 7. In this chapter, we'll look at how to find
plugins developed by others and incorporate them into our web pages. We'll explore
the popular Form plugin and the official jQuery UI plugin library, and then list and
briefly describe a number of other popular, "author-recommended" plugins.

Finding plugins and help
The jQuery website provides a large repository of available plugins at
http://plugins.jquery.com/, with features such as user ratings, versioning,
and bug reporting. This Plugin Repository is also a great place to start when looking
for documentation. Each plugin listed in the repository is downloadable as a .zip
file, and many of them also have links to demos, example code, and tutorials to
help us get started.

Even more plugins can be found in general code repositories such as
http://github.com/ and on plugin developers' weblogs.

If we can't find the answers to all of our questions in the Plugin Repository, the
author's website, and the plugin's comments, we can always turn to the jQuery
Google Group at http://groups.google.com/group/jquery-en/. Many of the
plugin authors are frequent contributors to the list, and are always willing to help
with any problems that new users might face.

Using Plugins

[318]

How to use a plugin
Using a jQuery plugin is very straightforward. The first step is to include it in
the <head> of the document, making sure that it appears after the main jQuery
source file:

<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8"/>
 <script src="jquery.js" type="text/javascript"></script>
 <script src="jquery.plugin.js"
 type="text/javascript"></script>
 <script src="custom.js" type="text/javascript"></script>
 <title>Example</title>
</head>

After that, it's just a matter of including a custom JavaScript file in which we use the
methods that the plugin either creates or extends. Often, we can add a single line
inside our custom file's $(document).ready() method to invoke some action:

$(document).ready(function() {
 $('#myID').somePlugin();
});

Many plugins have built-in flexibility as well, providing a number of optional
parameters that we can set to modify their behavior. We can customize their
operation as much as needed, typically by including a map as the method's argument:

$(document).ready(function() {
 $('#myID').somePlugin ({
 send: true,
 message: 'This plugin is great!'
 });
});

The syntax of jQuery plugins is, typically, quite similar to the syntax of methods
within the jQuery core itself. Now that we've seen how to include a plugin in a web
page, let's take a look at a couple of popular ones.

The Form plugin
The Form plugin is a terrific example of a script that makes a difficult, complex
task dead simple. The plugin file, along with detailed documentation, is available
at http://malsup/com/jquery/form/.

Chapter 10

[319]

At the heart of the plugin is the .ajaxForm() method. Converting a conventional
form into an AJAX form requires one simple line of code:

$(document).ready(function() {
 $('#myForm').ajaxForm();

});

This example will prepare <form id="myForm"> to be submitted without having
to refresh the current page. This feature in itself is quite nice, but the real power
comes with the map of options that we can pass into the method. For example,
the following code calls .ajaxForm() with the target, beforeSubmit, and
success options:

$(document).ready(function() {
 function validateForm() {
 // the form validation code would go here
 // we can return false to abort the submit
 };

 $('#test-form').ajaxForm({
 target: '#log',
 beforeSubmit: validateForm,
 success: function() {
 alert('Thanks for your comment!');
 }
 });
});

The target option indicates the element(s)—in this case, an element with
id="log"—that will be updated by the server response.

The beforeSubmit option performs tasks before the form is submitted. Here, it
references the validateForm() function. If the function returns false, the form
will not be submitted.

The success option performs tasks after the form is successfully submitted. In this
example it simply provides an alert message to let the user know that the form has
been submitted.

Other options available with .ajaxForm() and the similar .ajaxSubmit() include:

url: The URL to which the form data will be submitted, if different from the
form's action attribute.
type: The method used to submit the form—either GET or POST. The default
is the form's method attribute, or if none is provided, GET.

•

•

Using Plugins

[320]

dataType: The expected data-type of the server response. Possible values are
null, xml, script, or json. The default value is null (an HTML response).
resetForm: Boolean; default is false. If set to true, all of the form's field
values will be reset to their defaults when the submit is successful.
clearForm: Boolean; default is false. If set to true, all of the form's field
values will be cleared when the submit is successful.

The Form plugin provides a number of other methods to assist in handling forms
and their data. For a closer look at these methods, as well as more demos and
examples, visit http://www.malsup.com/jquery/form/.

Tips and tricks
The .ajaxForm() method is usually more convenient than the .ajaxSubmit()
method, at the expense of a little flexibility. When we want the plugin to manage all
the event binding for us, as well as invoke the .ajaxSubmit() method for us at the
appropriate time, we should use .ajaxForm(). When we want finer-grained control
over the submit event handling, .ajaxSubmit() is recommended.

Both .ajaxForm() and .ajaxSubmit() default to using the action and method
values in the form's markup. As long as we use proper markup for the form,
the plugin will work exactly as we expect without any need for tweaking. As
an additional benefit, we automatically gain the advantages of progressive
enhancement; the form is fully functional without JavaScript enabled.

Normally when a form is submitted, if the element used to submit the form has a
name, its name and value attributes are submitted along with the rest of the form
data. The .ajaxForm() method is proactive in this regard, adding click handlers
to all of the <input type="submit"> elements so it knows which one submitted the
form. The .ajaxSubmit() method, on the other hand, is reactive and has no way
of determining this information. It does not capture the submitting element. The
same distinction applies to <input type="image"> elements as well: .ajaxForm()
handles them, while .ajaxSubmit() ignores them.

Unless a file is being uploaded as part of the form submission, the .ajaxForm() and
.ajaxSubmit() methods pass their options argument to the $.ajax() method that
is part of the jQuery core. Therefore, any valid options for $.ajax() can be passed
in through the Form plugin. With this feature in mind, we can make our AJAX form
responses even more robust, like so:

$(document).ready(function() {
 $(#myForm).ajaxForm({
 timeout: 2000,
 error: function (xml, status, e) {

•

•

•

Chapter 10

[321]

 alert(e.message);
 }
 });
});

When less customization is required, the .ajaxForm() and .ajaxSubmit() methods
can be passed a function instead of an options map. Since the function is treated as
the success handler, we can get the response text back from the server, like so:

$(document).ready(function() {
 $(#myForm).ajaxForm(function(responseText) {
 alert(responseText);
 });
});

The jQuery UI plugin library
While the Form plugin does one thing, and does it very well, jQuery UI does a wide
variety of things (and does them well). In fact, jQuery UI is not so much a plugin, but
rather a whole library of plugins.

Led by Paul Bakaus, the jQuery UI team has created a number of core interaction
components and full-fledged widgets to help make the web experience more like
that of a desktop application. Interaction components include methods for dragging,
dropping, sorting, and resizing items. The current stable of widgets includes an
accordion, date picker, dialog, slider, and tabs, with quite a few more in active
development. Additionally, jQuery UI provides an extensive set of advanced effects
to supplement the core jQuery animations.

Since the full UI library is too extensive to adequately cover within this chapter, we'll
limit our exploration to UI effects, the Sortable core interaction component, and the
Dialog widget. Downloads, documentation, and demos of all jQuery modules are
available at http://ui.jquery.com/.

Effects
The effects module of jQuery UI comes with a core file and a set of individual
effect files. The core file provides animations for colors and classes, as well as
advanced easing.

Using Plugins

[322]

Color animations
With the core effects file referenced in the document, the .animate() method
is extended to accept additional style properties, such as borderTopColor,
backgroundColor, and color. For example, we can now gradually change an
element from black text on white background to white text on black background:

$(document).ready(function() {
 $('#mydiv').animate({
 color: '#fff',
 backgroundColor: '#000'
 }, 'slow');
});

A little more than halfway through the animation, the <div> looks like this:

The element looks exactly as it should, with the text on its way to becoming white
and the background color approaching black.

Class animations
The three class methods that we have worked with in previous
chapters—.addClass(), .removeClass(), and .toggleClass()—now take an
optional second argument for the animation duration. We can now write them as
.addClass('highlight', 'fast') or .removeClass('highlight', 'slow')
or .toggleClass('highlight, 1000).

Advanced easing
Advanced easing functions vary the speed and distance at which transitions occur
at various points along the way. For example, the easeInQuart function ends an
animation at four times the speed at which it started. We can specify a custom easing
function in any of the core jQuery animation methods or jQuery UI effect methods.
This can be done by either adding an argument or adding an option to an options
map, depending on the syntax being used. For example, specifying the easeInQuart
function for our previous color animation can be done with an additional argument:

Chapter 10

[323]

$(document).ready(function() {
 $('#mydiv').animate({
 color: '#fff',
 backgroundColor: '#000'
 }, 'slow', 'easeInQuart');

});

Or, it can be done with an option added to a second options map:

$(document).ready(function() {
 $('#mydiv').animate({
 color: '#fff',
 backgroundColor: '#000'
 }, {

 duration: 'slow',

 easing: 'easeInQuart'

 });

});

Demonstrations of the full set of easing functions are available at
http://gsgd.co.uk/sandbox/jquery/easing/.

Additional effects
The individual effect files add various transitions, all of which can be implemented
with the .effect() method and some of which extend the functionality of jQuery's
.show(), .hide(), and .toggle() methods as well. For example, the explode effect,
which hides elements by exploding them into a given number of pieces, can be
achieved with the .effect() method:

$(document).ready(function() {
 $('#explode').effect('explode', {pieces: 16}, 800);
});

Or, it can be achieved with the .hide() method:

$(document).ready(function() {
 $('#explode').hide('explode', {pieces: 16}, 800);
});

Using Plugins

[324]

Either way, the effect hides a box that begins like this:

In the middle of the animation, it looks like this:

And at the end of the animation, the box is hidden.

Interaction components
Among the jQuery UI interaction components is Sortable, which can transform
just about any group of elements into a drag-and-drop style list. Here, we have an
unordered list with some CSS styles applied to each item:

John

Paul

George

Ringo

Pete

Stu

Chapter 10

[325]

The HTML is pretty straightforward:

<ul id="sort-container">
 John
 Paul
 George
 Ringo
 Pete
 Stu

Now, to make the list sortable, we simply write the following code:

$(document).ready(function() {
 $('#sort-container').sortable();
});

This single line within the $(document).ready() allows us to drag each item and
drop it into a different position within the list.

Paul

George

Ringo

Pete

Stu

John

We can enhance the user interaction by adding options to the .sortable()
method. While this method has over thirty available options, we'll use just a
few for our example:

$(document).ready(function() {
 $('#sort-container').sortable({
 opacity: .5,
 cursor: 'move',
 axis: 'y'
 });
});

Using Plugins

[326]

The first two options, opacity and cursor, are self-explanatory. The third, axis,
limits the element's movement to a particular axis (in this case, the y-axis) while
being sorted.

Paul

George

Ringo

Pete

Stu

John

As is evident by the lighter background color of the sorted element, we've also taken
advantage of a class that is automatically applied to it, ui-sortable-helper, by
applying styles to the class in our stylesheet.

For more information about all of the jQuery UI core interaction components, visit
http://docs.jquery.com/UI#Interaction.

Widgets
In addition to building-block components, jQuery UI includes a handful of robust
user-interface widgets that appear and function "out of the box" like the full-fledged
elements we are accustomed to seeing in desktop applications. The Dialog widget,
for example, uses the draggable and resizable components to produce a dialog box, so
that we don't have to build our own.

As with other UI widgets, Dialog accepts a large number of options. Its aptly named
.dialog() method can also take string arguments that alter what the dialog does. At
its most basic level, the .dialog() method converts an existing element into a dialog
and displays it, along with the element's contents. For instance, we can start with a
simple <div> structure.

<div id="dlg">My Dialog</div>

Chapter 10

[327]

Unsurprisingly, this <div> looks quite plain—a simple text block:

We can invoke the basic dialog in our JavaScript file as soon as the DOM is ready.

$(document).ready(function() {
 $('#dlg').dialog();
});

The text is now wrapped in a dialog box:

This dialog box can be resized by clicking on one of its borders and dragging. It can
be moved by clicking anywhere within the top area of the dialog, just below the top
border. And, it can be closed by clicking on the X link in the upper-right corner.

We can obviously do a lot better with the styling, though. While jQuery UI provides
a minimal set of styles to ensure that widgets are functional, it leaves decisions about
look and feel up to us. Here is a dialog with a default theme applied:

Now, the various areas are clearly indicated, and the mouse cursor changes to
provide even more visual feedback on the parts of the dialog enabled for dragging
and resizing.

Using Plugins

[328]

As with the other jQuery UI methods, .dialog() comes with a number of options.
Some of the options affect the dialog's appearance while others allow events to be
triggered. Here is a sampling of these options:

$(document).ready(function() {
 var $dlg = $('#dlg');
 var dlgText = $dlg.text();
 $dlg.dialog({
 autoOpen: false,
 title: dlgText,
 open: function() {
 $dlg.empty();
 },
 buttons: {
 'add message': function() {
 $dlg.append('<p>Inserted message</p>');
 },
 'erase messages': function() {
 $('p', $dlg).remove();
 }
 }
 });
 $('#do-dialog').click(function() {
 $dlg.dialog('open');
 });
});

We've set the dialog to be initially hidden and to open when the user clicks on a
button with id="do-dialog". We've also moved the dialog's initial text content to
the title area and added two buttons, one with add message as its text and one with
erase messages as its text. Each button has a function associated with it to append or
erase paragraphs when clicked. After clicking the add message button three times,
the dialog with these options looks like this:

Chapter 10

[329]

The many other options for configuring the display and behavior of dialogs can be
found at http://docs.jquery.com/UI/Dialog/dialog#options.

jQuery UI ThemeRoller
A recent addition to the jQuery UI library is the ThemeRoller, a web-based
interactive theme engine for UI widgets. The ThemeRoller makes creating highly
customized, professional-looking elements quick and easy. As we noted, the dialog
that we just created has the default theme applied to it; this theme will be output
from the ThemeRoller if no custom settings are supplied.

Using Plugins

[330]

Generating a completely different set of styles is a simple matter of visiting
http://ui.jquery.com/themeroller/, modifying the various options as desired,
and pressing the Download This Theme button. A .zip file of stylesheets and
images can then be placed in the appropriate directory. For example, by choosing a
few different colors and textures, we can within a few minutes change our previous
dialog to look like this:

Other recommended plugins
In addition to the plugins described in this chapter, and elsewhere in the book, the
plugins listed below are recommended by the authors not only because of their
popularity, but also because of their solid code.

Forms
We investigated a few ways to manipulate forms in Chapter 8. These plugins can
accomplish related tasks with ease.

Autocomplete
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/

http://plugins.jquery.com/project/autocompletex

Written by jQuery core developer Jörn Zaefferer, the Autocomplete plugin provides
a list of possible matches as the user types in a text input.

Chapter 10

[331]

Validation
http://bassistance.de/jquery-plugins/jquery-plugin-validation/

http://plugins.jquery.com/project/validate

Another plugin by Jörn Zaefferer, Validation is an enormously flexible tool for
validating form inputs based on a wide range of criteria.

Jeditable
http://www.appelsiini.net/projects/jeditable

http://plugins.jquery.com/project/jeditable

Using Plugins

[332]

The Jeditable plugin converts non-form elements into editable inputs when a
user performs some action, such as a click or double-click. Changed content is
automatically sent to be stored on the server.

Masked input
http://digitalbush.com/projects/masked-input-plugin/

http://plugins.jquery.com/project/maskedinput

The Masked Input plugin offers a way for users to more easily enter data, such
as dates, phone numbers, or social-security numbers, in a certain format. It
automatically places certain characters (such as a slash for dates) in the field while
allowing only a certain set of other characters to be entered, as determined in the
plugin options.

Tables
In Chapter 7, we discussed techniques for arranging, beautifying, and enhancing
tabular data. Many plugin developers have packaged together routines to assist us in
these tasks.

Chapter 10

[333]

Tablesorter
http://tablesorter.com/

http://plugins.jquery.com/project/tablesorter

The Tablesorter plugin can turn any table with <thead> and <tbody> elements
into a table that is sortable without page refreshes. Special features include
multiple-column sorting, parsers for sorting many different formats (e.g. date,
time, currency, URLs), secondary "hidden" sorting, and extensibility through a
widget system.

jqGrid
http://www.trirand.com/blog/

http://plugins.jquery.com/project/jqGrids

An AJAX-enabled JavaScript control, jqGrid allows developers to dynamically
represent and manipulate tabular data on the web. It provides options for inline
editing, cell editing, pager navigation, multiple-item selection, sub-grids, and
tree grids. The plugin comes with extensive documentation at
http://www.secondpersonplural.ca/jqgriddocs/

Using Plugins

[334]

Flexigrid
http://code.google.com/p/flexigrid/

http://plugins.jquery.com/project/flexigrid

Like jqGrid, Flexigrid is a full-featured grid plugin. Some of its many features
include JSON support, pagination, quick search, showing and hiding and resizing of
columns, and row sorting.

Images
Image manipulation is a task that often requires intense server-side processing.
However, some plugin authors have developed ways to do some simple image
handling in JavaScript using jQuery as a vehicle.

Jcrop
http://deepliquid.com/content/Jcrop.html

http://plugins.jquery.com/project/Jcrop

Jcrop offers a quick and easy way to add image cropping to web applications.
Features include aspect-ratio locking, minimum and maximum size, keyboard
nudging support, interaction hooks, and custom styling.

Chapter 10

[335]

Magnify
http://www.jnathanson.com/index.cfm?page=pages/jquery/magnify/magnify

http://plugins.jquery.com/project/magnify

When provided with a proportionally sized small and large image, the Magnify
plugin will generate a "magnifier" like those that are commonly used for product
detail and close-up images.

Using Plugins

[336]

Lightboxes and Modal Dialogs
One of our examples in Chapter 9 showed how to overlay detailed information on
top of a page without the use of a popup window—a feature often called a lightbox.
The following plugins assist in the creation of such overlays.

FancyBox
http://fancy.klade.lv/

This lightbox clone emphasizes style, with its Mac-like appearance and elegant
drop-shadow effect. In addition to displaying automatically scaled images, the
FancyBox plugin can show inline or <iframe> content.

Thickbox
http://jquery.com/demo/thickbox/

Thickbox is a versatile lightbox plugin that can show a single image, multiple
images, inline content, <iframe> content, or content served through AJAX in a
hybrid modal dialog.

Chapter 10

[337]

BlockUI
http://malsup.com/jquery/block/

http://plugins.jquery.com/project/blockUI

The BlockUI plugin simulates synchronous behavior, without locking the browser.
When activated, it will prevent user interaction with the page (or part of the page)
until it is deactivated.

Using Plugins

[338]

jqModal
http://dev.iceburg.net/jquery/jqModal/

http://plugins.jquery.com/project/jqModal

The jqModal plugin is a lightweight modal dialog solution that is also powerful
and flexible. With an emphasis on extensibility, it leaves much of the interaction
and theming up to web developers who implement it.

Charting
As with image manipulation, charting has traditionally been a server-side activity
requiring significant processing. Inventive programmers have developed several
ways to create charts in the browser, and have bundled these techniques into the
plugins shown here.

Flot
http://code.google.com/p/flot/

http://plugins.jquery.com/project/flot

The Flot plugin uses the <canvas> element to produce graphical plots of datasets
and optionally modify those plots based on user interaction. With the inclusion of
the bundled Excanvas translation script, Flot can render graphs in Internet Explorer
as well, because Canvas instructions are converted to Internet Explorer's proprietary
VML format.

Chapter 10

[339]

Sparklines
http://omnipotent.net/jquery.sparkline/

http://plugins.jquery.com/project/sparklines

Named after a concept popularized by data visualization expert Edward Tufte, the
Sparklines plugin generates small and simple inline charts. Like Flot, Sparklines
uses the <canvas> element to render the charts, but conversion for Internet Explorer
is done within the plugin rather than relying on Excanvas.

Using Plugins

[340]

Events
As we have seen time and again, jQuery provides a wealth of tools for intercepting
and reacting to user events such as mouse clicks and keystrokes. However, many
options are made available in the core library, though, there will always be more
advanced techniques to explore. These plugins make some less-common event
scenarios easy to implement.

hoverIntent
http://cherne.net/brian/resources/jquery.hoverIntent.html

http://plugins.jquery.com/project/hoverIntent

The hoverIntent plugin provides a single method to take the place of the .hover()
method when it's important to prevent the accidental firing of animations when
the user moves the mouse over or out of an element. It tries to determine the user's
intent by monitoring the change in speed of the user's mouse movement. This plugin
is especially effective when used with drop-down navigation.

Live query
http://github.com/brandonaaron/livequery/

http://plugins.jquery.com/project/livequery

Like jQuery's built-in .live() method, the Live Query plugin dynamically attaches
and maintains event bindings to elements in the DOM, no matter when the elements
are created. The plugin provides an alternate implementation that may be preferable
in some situations.

Summary
In this chapter we have examined ways in which we can incorporate third-party
plugins into our web pages. We've looked closely at the Form plugin and jQuery
UI and have listed quite a few others. In the next chapter, we'll take advantage of
jQuery's plugin architecture to develop a few different types of plugins of our own.

Developing plugins
The available third-party plugins provide a bevy of options for enhancing our coding
experience, but sometimes we need to reach a bit farther. When we write code that
could be reused by others, or even ourselves, we may want to package it up as a new
plugin. Fortunately, the process of developing a plugin is not much more involved
than writing the code that uses it.

In this chapter, we cover how to create many different kinds of plugins, from
the simple to the complex. We'll start with plugins that simply make new global
functions available, and move on to cover jQuery object methods of various types.
We will also cover extending the jQuery selector engine with new expressions, and
conclude with some tips on distributing a plugin for other developers to use.

Adding new global functions
Some of the built-in capabilities of jQuery are provided via what we have been
calling global functions. As we've seen, these are actually methods of the jQuery
object, but practically speaking, they are functions within a jQuery namespace.

A prime example of this technique is the $.ajax() function. Everything that
$.ajax() does could be accomplished with a regular global function called simply
ajax(), but this approach would leave us open for function name conflicts. By
placing the function within the jQuery namespace, we only have to worry about
conflicts with other jQuery methods.

To add a function to the jQuery namespace, we can just assign the new function as a
property of the jQuery object:

jQuery.globalFunction = function() {
 alert('This is a test. This is only a test.');
};

Now in any code which uses this plugin, we can write:
jQuery.globalFunction();

Developing plugins

[342]

We can also use the $ alias and write:
$.globalFunction();

This will work just like a basic function call, and the alert will be displayed.

Adding multiple functions
If our plugin needs to provide more than one global function, we could declare them
independently:

jQuery.functionOne = function() {
 alert('This is a test. This is only a test.');
};
jQuery.functionTwo = function(param) {
 alert('The parameter is "' + param + '".');
};

Now both methods are defined, so we can call them in the normal fashion:
$.functionOne();
$.functionTwo('test');

We can also employ an alternate syntax in defining our functions, using the
$.extend() function:

jQuery.extend({
 functionOne: function() {
 alert('This is a test. This is only a test.');
 },
 functionTwo: function(param) {
 alert('The parameter is "' + param + '".');
 }
});

This produces the same results.

We risk a different kind of namespace pollution here, though. Even though we are
shielded from most JavaScript function and variable names by using the jQuery
namespace, we could still have a conflict with function names defined in other
jQuery plugins. To avoid this, it is best to encapsulate all of the global functions
for a plugin into an object:

jQuery.myPlugin = {
 functionOne: function() {
 alert('This is a test. This is only a test.');
 },
 functionTwo: function(param) {
 alert('The parameter is "' + param + '".');
 }
};

Chapter 11

[343]

This pattern essentially creates another namespace for our global functions, called
jQuery.myPlugin. Though we will still informally call these functions "global,"
they are now methods of the myPlugin object, itself a property of the global jQuery
object. We therefore have to include the plugin name in our function calls:

$.myPlugin.functionOne();
$.myPlugin.functionTwo('test');

With this technique (and a sufficiently unique plugin name), we are fully protected
from namespace collisions in our global functions.

What's the point?
We now have the basics of plugin development in our bag of tricks. After saving our
functions in a file called jquery.myplugin.js, we can include this script and use
the functions from other scripts on the page. But how is this different from any other
JavaScript file we could create and include?

We already discussed the namespace benefits of gathering our code inside the
jQuery object. There is another advantage of writing our function library as a jQuery
extension, however: because we know that jQuery will be included, the functions can
use jQuery itself.

Even though jQuery will be included, we shouldn't assume that the
$ shortcut is available. Recall that the $.noConflict() method can
relinquish control of this shortcut. To account for this, our plugins
should always call jQuery methods using jQuery or internally define $
themselves, as described later.

Creating a utility method
Many of the global functions provided by the core jQuery library are utility
methods; that is, they provide shortcuts for tasks that are frequently needed, but
not difficult to do by hand. The array-handling functions $.each(), $.map(),
and $.grep() are good examples of these. To illustrate the creation of such utility
methods, we'll add a new $.sum() function to their number.

Our new method will accept an array, add the values in the array together, and
return the result. The code for our plugin is quite brief:

jQuery.sum = function(array) {
 var total = 0;

 jQuery.each(array, function(index, value) {

Developing plugins

[344]

 total += value;
 });

 return total;
};

Note that here, we have used the $.each() method to iterate over the array's values.
We could certainly use a simple for() loop here, but since we can be assured that
the jQuery library has been loaded before our plugin, we can use the syntax we've
grown comfortable with.

To test our plugin, we'll build a simple page to display the inputs and outputs of
the function:

<body>
 <p>Array contents:</p>
 <ul id="array-contents">
 <p>Array sum:</p>
 <div id="array-sum"></div>
</body>

Now we'll write a short script that appends the array values and the array sum to the
placeholders we've created.

$(document).ready(function() {
 var myArray = [52, 97, 0.5, -22];

 $.each(myArray, function(index, value) {
 $('#array-contents').append('' + value + '');
 });

 $('#array-sum').append($.sum(myArray));
});

 A look at the rendered HTML page verifies that our plugin is working correctly:

Chapter 11

[345]

So we've now seen the namespace protection and guaranteed library availability that
jQuery plugins grant. These are just organizational benefits, though. To really tap
into the power of jQuery plugins, we need to learn how to create new methods on
individual jQuery object instances.

Adding jQuery Object Methods
Most of jQuery's built-in functionality is provided through its object methods, and
this is where plugins shine as well. Whenever we would write a function that acts on
part of the DOM, it is probably appropriate instead to create an object method.

We have seen that adding global functions requires extending the jQuery object
with new methods. Adding instance methods is similar, but we instead extend the
jQuery.fn object:

jQuery.fn.myMethod = function() {
 alert('Nothing happens.');
}

The jQuery.fn object is an alias to jQuery.prototype, provided
for conciseness.

We can then call this new method from our code after using any selector expression:

$('div').myMethod();

Our alert is displayed when we invoke the method. We might as well have written a
global function, though, as we haven't used the matched DOM nodes in any way. A
reasonable method implementation acts on its context.

Object Method context
Within any plugin method, the keyword this is set to the current jQuery object.
Therefore, we can call any built-in jQuery method on this, or extract its DOM nodes
and work on them:

jQuery.fn.showAlert = function() {
 alert('You selected ' + this.length + ' elements.');
}

Developing plugins

[346]

To examine what we can do with object context, we'll write a small plugin to
manipulate the classes on the matched elements. Our new method will take two
class names, and swap which class is applied to each element with every invocation.

jQuery.fn.swapClass = function(class1, class2) {
 if (this.hasClass(class1)) {
 this.removeClass(class1).addClass(class2);

 }
 else if (this.hasClass(class2)) {
 this.removeClass(class2).addClass(class1);
 }
};

First, we test for the presence of class1 on the matched element and substitute
class2 if it is found. Otherwise, we test for class2 and switch in class1 if
necessary. If neither class is currently present, we do nothing.

To test out our method, we need some HTML to play with:

 Lorem ipsum dolor sit amet
 <li class="this">Consectetur adipisicing elit
 Sed do eiusmod tempor incididunt ut labore
 <li class="that">Magna aliqua
 <li class="this">Ut enim ad minim veniam
 Quis nostrud exercitation ullamco
 Laboris nisi ut aliquip ex ea commodo
 <li class="that">Duis aute irure dolor

<input type="button" value="Swap classes" id="swap" />

The class this is styled as bold text, and the class that is styled as italic text:

Chapter 11

[347]

Now, we can invoke our method whenever the button is clicked:

$(document).ready(function() {
 $('#swap').click(function() {
 $('li').swapClass('this', 'that');
 return false;
 });
});

But something is wrong. When we click the button, every row gets the that
class applied:

We need to remember that a jQuery selector expression can always match zero, one,
or multiple elements. We must allow for any of these scenarios when designing a
plugin method. In this case, we are calling .hasClass(), which only examines the
first matched element. Instead, we need to check each element independently and
act on it.

The easiest way to guarantee proper behavior regardless of the number of matched
elements is to always call .each() on the method context; this enforces implicit
iteration, which is important for maintaining consistency between plugin and built-in
methods. Within the .each() call, this refers to each DOM element in turn, so we can
adjust our code to separately test for and apply classes to each matched element.

jQuery.fn.swapClass = function(class1, class2) {
 this.each(function() {
 var $element = jQuery(this);
 if ($element.hasClass(class1)) {
 $element.removeClass(class1).addClass(class2);
 }
 else if ($element.hasClass(class2)) {
 $element.removeClass(class2).addClass(class1);
 }
 });
};

Developing plugins

[348]

Caution! The keyword this refers to a jQuery object within the
object method's body, but refers to a DOM element within the
.each() invocation.

Now when we click the button, the classes are switched without affecting the
elements that have neither class applied:

Method chaining
In addition to implicit iteration, jQuery users should be able to rely on chaining
behavior. This means that we need to return a jQuery object from all plugin methods,
unless the method is clearly intended to retrieve a different piece of information. The
returned jQuery object is usually just the one provided as this. If we use .each() to
iterate over this, we can just return its result:

jQuery.fn.swapClass = function(class1, class2) {
 return this.each(function() {

 var $element = jQuery(this);
 if ($element.hasClass(class1)) {
 $element.removeClass(class1).addClass(class2);
 }
 else if ($element.hasClass(class2)) {
 $element.removeClass(class2).addClass(class1);
 }
 });
};

Chapter 11

[349]

Previously, when we called .swapClass() we had to start a new statement to do
anything else with the elements. With the return statement in place, though, we
can freely chain our plugin method with built-in methods:

$(document).ready(function() {
 $('#swap').click(function() {
 $('li')
 .swapClass('this', 'that')
 .css('text-decoration', 'underline');

 return false;
 });
});

DOM traversal methods
In some cases, we may want a plugin method to change which DOM elements are
referenced by the jQuery object. For example, suppose we wanted to add a DOM
traversal method that found the grandparents of the matched elements:

jQuery.fn.grandparent = function() {
 var grandparents = [];
 this.each(function() {
 grandparents.push(this.parentNode.parentNode);
 });
 grandparents = jQuery.unique(grandparents);
 return this.setArray(grandparents);
};

Developing plugins

[350]

This method creates a new grandparents array, populating it by iterating over
all of the elements currently referenced by the jQuery object. The standard DOM
.parentNode property is used to find the grandparent elements, which are pushed
onto the grandparents array. This array is stripped of its duplicates with a call
to $.unique(). Then the internal jQuery .setArray() method changes the set
of matched elements to the new array. Now, we can find and operate on the
grandparent of an element with a single method call.

To test our method, we'll set up a deeply-nested <div> structure:

<div>Deserunt mollit anim id est laborum</div>
<div>Ut enim ad minim veniam
 <div>Quis nostrud exercitation
 <div>Ullamco laboris nisi
 <div>Ut aliquip ex ea</div>
 <div class="target">Commodo consequat
 <div>Lorem ipsum dolor sit amet</div>
 </div>
 </div>
 </div>
 <div>Duis aute irure dolor</div>
 <div>In reprehenderit
 <div>In voluptate</div>
 <div>Velit esse
 <div>Cillum dolore</div>
 <div class="target">Fugiat nulla pariatur</div>
 </div>
 <div>Excepteur sint occaecat cupidatat</div>
 </div>
 </div>
 <div>Non proident</div>
</div>
<div>Sunt in culpa qui officia</div>

Chapter 11

[351]

We'll identify the target elements (<div class="target">) by styling their
text bold:

Now we can locate the items' grandparent elements by using our new method:

$(document).ready(function() {
 $('.target').grandparent().addClass('highlight');
});

Developing plugins

[352]

The highlight class correctly italicizes both grandparent items on the page:

. The actual jQuery object is modified as a side

Chapter 11

[353]

The jQuery object stored in $target has changed to refer to the grandparent. To
avoid this, we need to make the method nondestructive. This is made possible by
the internal stack jQuery keeps for each object.

jQuery.fn.grandparent = function() {
 var grandparents = [];
 this.each(function() {
 grandparents.push(this.parentNode.parentNode);
 });
 grandparents = jQuery.unique(grandparents);
 return this.pushStack(grandparents);

};

By calling .pushStack() instead of .setArray(), we create a new jQuery object,
rather than modifying the old one. Now the $target object is not modified, and the
original target objects are hidden by our code:

Developing plugins

[354]

As a side benefit, .pushStack() also allows the .end() and .andSelf() methods to
work with our plugin, so we can chain methods together properly:

$(document).ready(function() {
 $('.target').grandparent().andSelf().addClass('highlight');
});

DOM traversal methods such as .children() were destructive
operations in jQuery 1.0, but became non-destructive in 1.1.

Adding new shortcut methods
Many of the methods included in jQuery are shortcuts for other underlying
methods. For example, most of the event methods are shortcuts for calls to .bind()
or .trigger(), and many AJAX methods internally call $.ajax(). These shortcuts
make it convenient to use features that are otherwise complicated by many options.

Chapter 11

[355]

The jQuery library must maintain a delicate balance between convenience and
complexity. Each method that is added to the library can help developers to write
certain pieces of code more quickly, but also adds to the overall size of the code
base and can reduce performance. For this reason, many shortcuts for built-in
functionality are relegated to plugins, so that we can pick and choose the ones
that are useful for each project and omit the irrelevant ones.

When we f﻿ind ourselves repeating an idiom in our code many times, it may call for
the creation of a shortcut method. For example, suppose we frequently animate items
using a combination of the built-in "slide" and "fade" techniques. Putting these effects
together means animating the height and opacity of an element simultaneously.
The .animate() method makes this easy:

.animate({height: 'hide', opacity: 'hide'});

We can create a trio of shortcut methods to perform this animation when showing
and hiding elements:

jQuery.fn.slideFadeOut = function() {
 return this.animate({
 height: 'hide',
 opacity: 'hide'
 });
};

jQuery.fn.slideFadeIn = function() {
 return this.animate({
 height: 'show',
 opacity: 'show'
 });
};

jQuery.fn.slideFadeToggle = function() {
 return this.animate({
 height: 'toggle',
 opacity: 'toggle'
 });
};

Now we can call .slideFadeOut() and trigger the animation whenever it is needed.
Because, within a plugin method definition, this refers to the current jQuery object,
the animation will be performed on all matched elements at once.

[356]

.fadeIn() can be customized
.animate() also takes these parameters,

Chapter 11

[357]

Our script will simply call our new methods when the buttons are clicked:

$(document).ready(function() {
 $('#out').click(function() {
 $('p').slideFadeOut('slow');
 return false;
 });
 $('#in').click(function() {
 $('p').slideFadeIn('slow');
 return false;
 });
 $('#toggle').click(function() {
 $('p').slideFadeToggle('slow');
 return false;
 });
});

And the animation occurs as expected.

Method parameters
We've now seen several examples of plugin methods, some of which take explicit
parameters, and some of which do not. As we have explored, the keyword this
is always available to provide context for the method, but we can also supply
additional information to influence the method's operation. So far, the parameters
have been few, but of course this list could grow large. There are several tricks we
can use to manage our method parameters and make life easier for those using
our plugins.

[358]

Chapter 11

Simple parameters
Now we can introduce some flexibility to the plugin method. The operation of the
method relies on several numeric values that the user might want to modify. We can
make these into parameters so they can be changed on demand.

jQuery.fn.shadow = function(slices, opacity, zIndex) {

 return this.each(function() {
 var $originalElement = jQuery(this);
 for (var i = 0; i < slices; i++) {

 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left + i,
 top: $originalElement.offset().top + i,
 margin: 0,
 zIndex: zIndex,

 opacity: opacity

 })
 .appendTo('body');
 }
 });
};

Now, when calling our method, we must provide these three values.

$(document).ready(function() {
 $('h1').shadow(10, 0.1, -1);
});

Our new parameters work as anticipated—the shadow is longer, using twice as
many slices as before—but the method interface is less than ideal. These three
numbers are easily confused, and their order cannot be logically deduced. It would
be an improvement to label the parameters, for the benefit of both the person writing
the method call, and anyone who later wishes to read and interpret it.

Developing plugins

[360]

Parameter maps
We have seen many examples in the jQuery API of maps being provided as method
parameters. This can be a much friendlier way to expose options to a plugin user
than the simple parameter list we just used. A map provides a visual label for each
parameter, and also makes the order of the parameters irrelevant. In addition, any
time we can mimic the jQuery API in our plugins, we should do so to increase
consistency and therefore ease-of-use.

jQuery.fn.shadow = function(opts) {
 return this.each(function() {
 var $originalElement = jQuery(this);
 for (var i = 0; i < opts.slices; i++) {
 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left + i,
 top: $originalElement.offset().top + i,
 margin: 0,
 zIndex: opts.zIndex,
 opacity: opts.opacity
 })
 .appendTo('body');
 }
 });
};

All we have changed to enable our new interface is the way each parameter is
referenced; instead of having a separate variable name, each value is accessed
as a property of the opts argument to the function.

Calling this method now requires a map of values rather than three
individual numbers:

$(document).ready(function() {
 $('h1').shadow({
 slices: 5,
 opacity: 0.25,
 zIndex: -1
 });
});

The purpose of each parameter is now obvious from a quick glance at the
method call.

Chapter 11

[361]

Default parameter values
As the number of parameters for a method grows, it becomes less likely that we
will always want to specify each one. A sensible set of default values can make a
plugin interface much more usable. Fortunately, using a map for our parameters
helps with this task as well; it is simple to omit any item from the map and replace
it with a default.

jQuery.fn.shadow = function(options) {
 var defaults = {
 slices: 5,
 opacity: 0.1,
 zIndex: -1
 };
 var opts = jQuery.extend(defaults, options);

 return this.each(function() {
 var $originalElement = jQuery(this);
 for (var i = 0; i < opts.slices; i++) {
 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left + i,
 top: $originalElement.offset().top + i,
 margin: 0,
 zIndex: opts.zIndex,
 opacity: opts.opacity
 })
 .appendTo('body');
 }
 });
};

Here, we have defined a new map, called defaults, within our method definition.
The utility function $.extend() lets us take the options map provided as an
argument and use it to override the items in defaults, leaving omitted items alone.

We still call our method using a map, but now we can specify only the parameters
that we want to differ from their defaults:

$(document).ready(function() {
 $('h1').shadow({
 opacity: 0.05
 });
});

Developing plugins

[362]

Unspecified parameters use their default values. The $.extend() method even
accepts null values, so if the default parameters are all acceptable, our method
can be called very simply without errors:

$(document).ready(function() {
 $('h1').shadow();
});

Callback functions
Of course, some method parameters can be quite a bit more complicated than
a simple numeric value. One common parameter type we have seen frequently
throughout the jQuery API is the callback function. Callback functions can lend a
large amount of flexibility to a plugin without requiring a great deal of preparation
when creating the plugin.

To employ a callback function in our method, we need simply accept the function
object as a parameter and call that function where appropriate in our method
implementation. As an example, we can extend our text shadow method to allow
the user to customize the position of the shadow relative to the text.

jQuery.fn.shadow = function(options) {
 var defaults = {
 slices: 5,
 opacity: 0.1,
 zIndex: -1,
 sliceOffset: function(i) {

 return {x: i, y: i};

 }

 };
 var opts = jQuery.extend(defaults, options);

 return this.each(function() {
 var $originalElement = jQuery(this);
 for (var i = 0; i < opts.slices; i++) {
 var offset = opts.sliceOffset(i);

 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left

 + offset.x,

 top: $originalElement.offset().top

 + offset.y,

Chapter 11

[363]

 margin: 0,
 zIndex: opts.zIndex,
 opacity: opts.opacity
 })
 .appendTo('body');
 }
 });
};

Each slice of the shadow has a different offset from the original text. Before, this
offset has simply been equal to the index of the slice. Now, though, we're calculating
the offset using the sliceOffset() function, which is a parameter that the user
can override. So, for example, we could provide negative values for the offset in
both dimensions:

$(document).ready(function() {
 $('h1').shadow({
 sliceOffset: function(i) {
 return {x: -i, y: -2*i};
 }
 });
});

This will cause the shadow to be cast up and to the left rather than down and to
the right:

The callback allows simple modifications to the shadow's direction, or much more
sophisticated positioning if the plugin user supplies the appropriate callback. If the
callback is not specified, then the default behavior is once again used.

Customizable defaults
We can improve the experience of using our plugins by providing reasonable
default values for our method parameters, as we have seen. However, sometimes
it can be difficult to predict what a reasonable default value will be. If a script will
be calling our plugin multiple times with a different set of parameters than we set
as the defaults, the ability to customize these defaults could significantly reduce the
amount of code that needs to be written.

Developing plugins

[364]

To make the defaults customizable, we need to move them out of our method
definition and into a location that is accessible by outside code:

jQuery.fn.shadow = function(options) {
 var opts = jQuery.extend({},

 jQuery.fn.shadow.defaults, options);

 return this.each(function() {
 var $originalElement = jQuery(this);
 for (var i = 0; i < opts.slices; i++) {
 var offset = opts.sliceOffset(i);
 $originalElement
 .clone()
 .css({
 position: 'absolute',
 left: $originalElement.offset().left + offset.x,
 top: $originalElement.offset().top + offset.y,
 margin: 0,
 zIndex: opts.zIndex,
 opacity: opts.opacity
 })
 .appendTo('body');
 }
 });
};

jQuery.fn.shadow.defaults = {

 slices: 5,

 opacity: 0.1,

 zIndex: -1,

 sliceOffset: function(i) {

 return {x: i, y: i};

 }

};

The defaults are now in the namespace of the shadow plugin, and can be directly
referred to with $.fn.shadow.defaults. Our call to $.extend() had to change
to accommodate this as well. Since we are now reusing the same defaults map
for every call to .shadow(), we can't allow $.extend() to modify it. Instead, we
provide an empty map {} as the first argument to $.extend(), and it is this new
object that gets modified.

Chapter 11

[365]

Now code that uses our plugin can change the defaults that all subsequent calls
to .shadow() will use. Options can also still be supplied at the time the method
is invoked.

$(document).ready(function() {
 $.fn.shadow.defaults.slices = 10;

 $('h1').shadow({
 sliceOffset: function(i) {
 return {x: -i, y: i};
 }
 });
});

This script will create a shadow with 10 slices, because that is the new default value,
but will also cast the shadow left and down, due to the sliceOffset callback that is
provided along with the method call.

Adding a selector expression
Built-in parts of jQuery can be extended as well. Rather than adding new methods,
we can customize existing ones. A common desire, for example, is to expand on the
selector expressions provided by jQuery to provide more esoteric options.

The easiest type of selector expression to add is a pseudo-class; these are the
expressions that start with a colon, such as :checked or :nth-child(). To illustrate
the process of creating a selector expression, we'll build a pseudo-class called
:css(). This new selector will allow us to locate elements based on the numeric
values of their CSS attributes.

When using a selector expression to find elements, jQuery looks for instructions in
an internal map called expr. This map contains JavaScript code to execute on an
element, causing the element to be contained in the result set if the code evaluates
to true. We can add new expressions to this map using the $.extend() function.

jQuery.extend(jQuery.expr[':'], {
 'css': function(element, index, matches, set) {
 var parts = /([\w-]+)\s*([<>=]+)\s*(\d+)/
 .exec(matches[3]);
 var value = parseFloat(jQuery(element).css(parts[1]));

 switch (parts[2]) {

Developing plugins

[366]

 case '<':
 return value < parseInt(parts[3]);
 case '<=':
 return value <= parseInt(parts[3]);
 case '=':
 case '==':
 return value == parseInt(parts[3]);
 case '>=':
 return value >= parseInt(parts[3]);
 case '>':
 return value > parseInt(parts[3]);
 }
 }
});

This code tells jQuery that css is a valid string that can follow a colon in a selector
expression, and that when it is encountered, the given function should be called to
determine whether the element should be included in the result set.

The function that is evaluated here is passed four parameters:

element: The DOM element under consideration. This is needed for
most selectors.
index: The index of the DOM element within the result set. This is helpful for
selectors like :eq() and :lt().
matches: An array containing the result of the regular expression that was
used to parse this selector. Typically, matches[3] is the only relevant item in
the array; in a selector of the form :a(b), the matches[3] item contains b, the
text within the parentheses.
set: The entire set of DOM elements matched up to this point. This
parameter is rarely needed.

Pseudo-class selectors need to use the information contained in these four arguments
to determine whether or not the element belongs in the result set. In this case,
element and matches are all that we require.

In our selector function, we first break down the selector into usable parts with
a regular expression. We want a selector like :css(width < 200) to return all
elements with a width of less than 200. So we need to look at the text within the
parentheses to pull out the property name (width), comparison operator (<), and
value to compare against (200). The regular expression /([\w-]+)\s*([<>=]+)\
s*(\d+)/ performs this search, placing these three portions of the string into the
parts array for our use.

•

•

•

•

Chapter 11

[367]

Next, we need to fetch the current value of the property. We can use jQuery's .css()
method to return the value of the property that has been named in the selector. Since
this property is returned as a string, we use parseFloat() to turn it into a number.

Finally, we perform the actual comparison. A switch statement determines which
type of comparison is done depending on the content of the selector, and the result
of the comparison (true or false) is returned.

We now have a new selector expression we can use anywhere in our jQuery code. A
simple HTML document can demonstrate this:

<body>
 <div>Deserunt mollit anim id est laborum</div>
 <div>Ullamco</div>
 <div>Ut enim ad minim veniam laboris</div>
 <div>Quis nostrud exercitation consequat nisi</div>
 <div>Ut aliquip</div>
 <div>Commodo</div>
 <div>Lorem ipsum dolor sit amet ex ea</div>
</body>

Developing plugins

[368]

With our new selector, it becomes trivial to highlight the smaller items in this list:

$(document).ready(function() {
 $('div:css(width < 100)').addClass('highlight');
});

Sharing a plugin with the world
Once a plugin is complete, we may want to publish it so that others can benefit
from—and possibly improve—the code. We can do this at the official jQuery Plugin
Repository at http://plugins.jquery.com/. Here we can log in, or register if we
need to, and follow the instructions to describe the plugin and upload a .zip archive
of its code. Before this, though, we should make sure the plugin is appropriately
polished and prepared for public consumption.

There are a few rules to follow in writing plugins in order to play well with other
code. We have covered some of these in passing already, but they are collected again
here for convenience.

Naming conventions
All plugin files should be named jQuery.myPlugin.js where myPlugin is the name
of the plugin. Within the file, all global functions should be grouped into an object
called jQuery.myPlugin, unless there is only one, in which case it may be a function
just called jQuery.myPlugin().

Chapter 11

[369]

Method names are more flexible, but should be kept as unique as possible. If only
one method is defined, it should be called jQuery.fn.myPlugin(). If more than
one is defined, attempt to prefix each method name with the plugin name to prevent
confusion. Avoid short, ambiguous method names such as .load() or .get() that
may be confused with methods defined in other plugins.

Use of the $ alias
jQuery plugins may not assume that the $ alias is available. Instead, the full jQuery
name must be written out each time.

In longer plugins, many developers find that the lack of the $ shortcut makes code
more difficult to read. To combat this, the shortcut can be locally defined for the
scope of the plugin by defining and executing a function. The syntax for defining and
executing a function at once looks like this:

(function($) {
 // Code goes here
})(jQuery);

The wrapping function takes a single parameter, to which we pass the global jQuery
object. The parameter is named $, so within the function we can use the $ alias with
no conflicts.

Method interfaces
All jQuery methods get called within the context of a jQuery object, so this refers
to an object that may refer to one or more DOM elements. All methods must behave
correctly regardless of the number of elements actually matched. In general, methods
should call this.each() to iterate over the matched elements, operating on each one
in turn.

Methods should return the jQuery object to preserve chaining. If the set of matched
objects is modified, a new object should be created by calling .pushStack() and
this object should be returned instead. If something other than a jQuery object is
returned, this must be prominently documented.

If methods take several options, it is preferable to use a map as an argument so that
the options are labeled and can be specified in any order. Default values should be
defined in a map that can be overridden if necessary.

Method definitions must end in a semicolon (;) character so that code compressors
can properly parse the files. In addition, plugins may begin with a semicolon, so that
other poorly-coded scripts do not cause conflicts after compression.

Developing plugins

[370]

Documentation style
In-file documentation should be prepended to each function or method definition in
ScriptDoc format. This format is documented at http://www.scriptdoc.org/.

Summary
In this final chapter, we have seen how the functionality that is provided by the
jQuery core need not limit the library's capabilities. Plugins that are readily available
extend the menu of features substantially, and we can easily create our own that
push the boundaries further.

The plugins we've created contain various features, including global functions
that use the jQuery library, new methods of the jQuery object for acting on DOM
elements, extensible methods that can be easily customized, and enhanced selector
expressions for finding DOM elements in new ways.

With these tools at our disposal, we can shape jQuery—and our own JavaScript
code—into whatever form we desire.

Online Resources
The following online resources represent a starting point for learning more about
jQuery, JavaScript, and web development in general, beyond what is covered in
this book. There are far too many sources of quality information on the web for this
appendix to approach anything resembling an exhaustive list. Furthermore, while
other print publications can also provide valuable information, they are not noted here.

jQuery documentation
These resources offer references and details on the jQuery library itself.

jQuery wiki
The documentation on jquery.com is in the form of a wiki, which means that the
content is editable by the public. The site includes the full jQuery API, tutorials,
getting started guides, and more:

http://docs.jquery.com/

jQuery API
In addition to the official documentation on jquery.com, the API is available at the
following location:

http://remysharp.com/jquery-api/

jQuery API browser
Jörn Zaeferrer has put together a convenient tree-view browser of the jQuery API with
a search feature and alphabetical, or categorical sorting:

http://jquery.bassistance.de/api-browser-1.2/

Online Resources

[372]

Visual jQuery
This API browser designed by Yehuda Katz, and updated by Remy Sharp, is both
beautiful and convenient. It also provides quick viewing of methods for a number
of jQuery plugins:

http://www.visualjquery.com/

Adobe AIR jQueryAPI viewer
Remy Sharp has packaged the jQuery API into an Adobe AIR application for
off-line viewing:

http://remysharp.com/downloads/jquery-api-browser.air.zip

JavaScript reference
These sites offer references and guides to JavaScript as a language in general, rather
than jQuery in particular.

Microsoft Developer Network JScript Reference provides descriptions of the full set

Appendix A

[373]

Quirksmode
Peter-Paul Koch's Quirksmode site is a terrific resource for understanding differences
in the way browsers implement various JavaScript functions, as well as many
CSS properties:

http://www.quirksmode.org/

JavaScript Toolbox
Matt Kruse's JavaScript Toolbox offers a large assortment of homespun JavaScript
libraries, as well as sound advice on JavaScript best practices and a collection of
vetted JavaScript resources elsewhere on the Web:

http://www.javascripttoolbox.com/

JavaScript code compressors
When putting the finishing touches on a site, it is often advisable to compress the
JavaScript code. This process reduces download time for all users of the site.

YUI Compressor
This JavaScript compressor from the Yahoo! UI Library is used to reduce the size
of the jQuery source code. The Java-based command-line tool is a free download.
The resulting code is very efficient in file size and performance, and can be further
slimmed down by Gzip compression if desired.

http://developer.yahoo.com/yui/compressor/

JSMin
Created by Douglas Crockford, JSMin is a filter that removes comments and
unnecessary white space from JavaScript files. It typically reduces file size by
half, resulting in faster downloads, especially when combined with server-based
file compression:

http://www.crockford.com/javascript/jsmin.html

Online Resources

[374]

Pretty printer
This tool prettifies JavaScript that has been compressed, restoring line breaks and
indentation where possible. It provides a number of options for tailoring the results:

http://www.prettyprinter.de/

(X)HTML reference
The jQuery library is at its best when working with properly-formatted, semantic
HTML and XHTML documents. The resource below provides assistance with these
markup languages.

W3C hypertext markup language home page
The World Wide Web Consortium (W3C) sets the standard for (X)HTML, and the
HTML home page is a great launching point for its specifications and guidelines:

http://www.w3.org/MarkUp/

CSS reference
The effects and animations we have seen time and again all rely on the power of
Cascading Stylesheets. To incorporate the visual flourishes we desire in our sites,
we may need to turn to these CSS resources for guidance.

W3C cascading style sheets home page
The W3C's CSS home page provides links to tutorials, specifications, test suites, and
other resources:

http://www.w3.org/Style/CSS/

Mezzoblue CSS cribsheet
Dave Shea provides this helpful CSS cribsheet in an attempt to make the design
process easier, and provides a quick reference to check when you run into trouble:

http://mezzoblue.com/css/cribsheet/

Appendix A

[375]

Position is everything
This site includes a catalog of CSS browser bugs along with explanations of how to
overcome them:

http://www.positioniseverything.net/

Useful blogs
New techniques and features are always being developed and introduced for any
living technology. Staying on top of innovations can be easy by checking in with
these sources of web development news from time to time.

The jQuery blog
John Resig and other contributors to the official jQuery blog posts announcements
about new versions and other initiatives among the project team, as well as
occasional tutorials and editorial pieces.

http://jquery.com/blog/

Learning jQuery
Karl Swedberg runs this blog for jQuery tutorials, techniques, and announcements.
Guest authors include jQuery team members Mike Alsup and Brandon Aaron:

http://www.learningjquery.com/

Ajaxian
This frequently updated blog begun by Dion Almaer and Ben Galbraith provides
a tremendous amount of news and features and the occasional tutorial
about JavaScript:

http://ajaxian.com/

John Resig
The creator of jQuery, John Resig, discusses advanced JavaScript topics on his
personal blog:

http://ejohn.org/

Online Resources

[376]

JavaScript ant
This site contains a repository of articles pertaining to JavaScript and its usage in
modern web browsers, as well as an organized list of JavaScript resources found
elsewhere on the web:

http://javascriptant.com/

Robert's talk
Robert Nyman writes about developing for the internet, especially
client-side scripting:

http://www.robertnyman.com/

Web standards with imagination
Dustin Diaz's blog features articles on web design and development, with an
emphasis on JavaScript:

http://www.dustindiaz.com/

Snook
Jonathan Snook's general programming/web-development blog:

http://snook.ca/

Matt Snider JavaScript resource
Matt Snider's blog is dedicated to the understanding of JavaScript and its many
popular frameworks:

http://mattsnider.com/

I can't
Three sites by Christian Heilmann provide blog entries, sample code, and lengthy
articles related to JavaScript and web development:

http://icant.co.uk/

http://www.wait-till-i.com/

http://www.onlinetools.org/

Appendix A

[377]

DOM scripting
Jeremy Keith's blog picks up where the popular DOM scripting book leaves off—a
fantastic resource for unobtrusive JavaScript:

http://domscripting.com/blog/

As days pass by
Stuart Langridge experiments with advanced use of the browser DOM:

http://www.kryogenix.org/code/browser/

A list apart
A List Apart explores the design, development, and meaning of web content, with a
special focus on web standards and best practices:

http://www.alistapart.com/

Web development frameworks
using jQuery
As developers of open-source projects become aware of jQuery, many are
incorporating the JavaScript library into their own systems. The following is an
abbreviated list of these adopters:

Digitalus Site Manager: http://code.google.com/p/digitalus-site-manager/

Drupal: http://drupal.org/

DutchPIPE: http://dutchpipe.org/

Hpricot: http://code.whytheluckystiff.net/hpricot/

JobberBase: http://www.jobberbase.com/

Laconica: http://laconi.ca/

Piwik: http://piwik.org/

Pommo: http://pommo.org/

simfony: http://www.symfony-project.org/

Online Resources

[378]

SPIP: http://www.spip.net/

Textpattern: http://www.textpattern.com/

Trac: http://trac.edgewall.org/

WordPress: http://wordpress.org/

Z-Blog: http://www.rainbowsoft.org/zblog

For a more complete list, visit the Sites Using jQuery page at:

http://docs.jquery.com/Sites_Using_jQuery

Development Tools
Documentation can help in troubleshooting issues with our JavaScript applications,
but there is no replacement for a good set of software development tools.
Fortunately, there are many software packages available for inspecting and
debugging JavaScript code, and most of them are available for free.

Tools for Firefox
Mozilla Firefox is the browser of choice for the lion's share of web developers, and
therefore has some of the most extensive and well-respected development tools.

Firebug
The Firebug extension for Firefox is indispensable for jQuery development:

http://www.getfirebug.com/

Some of the features of Firebug are :

An excellent DOM inspector for finding names and selectors for pieces of
the document
CSS manipulation tools for finding out why a page looks a certain way and
changing it
An interactive JavaScript console
A JavaScript debugger that can watch variables and trace code execution

•

•

•

•

Development Tools

[380]

Web developer toolbar
This not only overlaps Firebug in the area of DOM inspection, but also contains tools
for common tasks like cookie manipulation, form inspection, and page resizing. You
can also use this toolbar to quickly and easily disable JavaScript for a site to ensure
that functionality degrades gracefully when the user's browser is less capable:

http://chrispederick.com/work/web-developer/

Venkman
Venkman is the official JavaScript debugger for the Mozilla project. It provides a
troubleshooting environment that is reminiscent of the GDB system for debugging
programs that are written in other languages.

http://www.mozilla.org/projects/venkman/

Regular expressions tester
Regular expressions for matching strings in JavaScript can be tricky to craft. This
extension for Firefox allows easy experimentation with regular expressions using
an interface for entering search text:

http://sebastianzartner.ath.cx/new/downloads/RExT/

Tools for Internet Explorer
Sites often behave differently in IE than in other web browsers, so having debugging
tools for this platform is important.

Microsoft Internet Explorer Developer Toolbar
The Developer Toolbar primarily provides a view of the DOM tree for a web page.
Elements can be located visually, and modified on the fly with new CSS rules. It
also provides other miscellaneous development aids, such as a ruler for measuring
page elements:

http://www.microsoft.com/downloads/details.aspx?FamilyID=e59c3964-
672d-4511-bb3e-2d5e1db91038

Appendix B

[381]

Microsoft Visual Web Developer
Microsoft's Visual Studio package can be used to inspect and debug JavaScript code:

http://msdn.microsoft.com/vstudio/express/vwd/

To run the debugger interactively in the free version (Visual Web Developer
Express), follow the process outlined here:

http://www.berniecode.com/blog/2007/03/08/how-to-debug-javascript-
with-visual-web-developer-express/

DebugBar
The DebugBar provides a DOM inspector as well as a JavaScript console
for debugging:

http://www.debugbar.com/

Drip
Memory leaks in JavaScript code can cause performance and stability issues for
Internet Explorer. Drip helps to detect and isolate these memory issues:

http://Sourceforge.net/projects/ieleak/

To learn more about a common cause of Internet Explorer memory leaks, see
Appendix C, JavaScript Closures.

Tools for Safari
Safari remains the new kid on the block as a development platform, but there are
still tools available for situations in which code behaves differently in this browser
than elsewhere.

Develop Menu
As of Safari 3.1, an option in the advanced tab of the Preferences menu provides
a special menu called Develop. With this menu enabled, a Web Inspector and
JavaScript Console are available.

Development Tools

[382]

Web Inspector
Safari 3 includes the ability to inspect individual page elements and collect
information especially about the CSS rules that apply to each one.

http://trac.webkit.org/wiki/Web%20Inspector

Current builds of WebKit have substantially enhanced this web inspector tool,
granting it many of Firebug's excellent features such as an integrated JavaScript
debugger called Drosera.

http://trac.webkit.org/wiki/Drosera

Tools for Opera
While it has a limited market share as a desktop browser, Opera is a significant
player in embedded systems and mobile devices, and its capabilities should be
carefully considered during web development.

Dragonfly
While still in its early stages, Dragonfly is a promising debugging environment for
Opera browsers on computers or mobile devices. Dragonfly's feature set is similar to
that of Firebug, including JavaScript debugging, as well as CSS and DOM inspection
and editing.

Other tools
While the previous tools each focus on a specific browser, these utilities are broader
in their scope.

Firebug Lite
Though the Firebug extension itself is limited to the Firefox web browser, some of
the features can be replicated by including the Firebug Lite script on the web page.
This package simulates the Firebug console, including allowing calls to console.
log() to work in all browsers and not raise JavaScript errors:

http://www.getfirebug.com/lite.html

Appendix B

[383]

NitobiBug
Like Firebug Lite, NotobiBug is a cross-browser tool that covers some of the same
ground as the more robust and refined Firebug. Its strength lies in its DOM and
object inspection, though it has a capable console as well. The console and inspector
can be invoked by including a reference to the Nitobi JavaScript file and calling
nitobi.Debug.log().

http://www.nitobibug.com/

TextMate jQuery bundle
This extension for the popular Mac OS X text editor TextMate provides syntax
highlighting for jQuery methods and selectors, code completion for methods, and a
quick API reference from within your code. The bundle is also compatible with the
E text editor for Windows:

http://github.com/kswedberg/jquery-tmbundle/

Charles
When developing AJAX-intensive applications, it can be useful to see exactly what
data is being sent between the browser and the server. The Charles web debugging
proxy displays all HTTP traffic between two points, including normal web requests,
HTTPS traffic, Flash remoting, and AJAX responses:

http://www.xk72.com/charles/

Fiddler
Fiddler is another useful HTTP debugging proxy with features similar to those in
Charles. According to its site, Fiddler "includes a powerful event-based scripting
subsystem, and can be extended using any .NET language":

http://www.fiddlertool.com/fiddler/

Aptana
This Java-based web development IDE is free and cross-platform. Along with both
standard and advanced code editing features, it incorporates a full copy of the
jQuery API documentation, and has its own Firebug-based JavaScript debugger.

http://www.aptana.com/

JavaScript Closures
Throughout this book, we have seen many jQuery methods that take functions as
parameters. Our examples have thus created, called, and passed around functions
time and again. While usually we can do this with only a cursory understanding of
the inner JavaScript mechanics at work, at times side effects of our actions can seem
strange if we do not have knowledge of the language features. In this appendix,
we will study one of the more esoteric (yet prevalent) function-based constructs
called closures.

Our discussion will involve many small code examples, with which we will want to
print out a set of messages. Rather than use a browser-specific logging mechanism
(like Firefox's console.log()), or create a series of alert() dialogs, we will use a
small plugin method:

jQuery.fn.print = function(message) {
 return this.each(function() {
 $('<div class="result" />')
 .text(String(message))
 .appendTo($(this).find('.results'));
 });
};

With this method defined, we can call $('#example').print('hello') to add the
message "hello" within <div id="example">.

Inner functions
JavaScript is fortunate to include itself among the programming languages that
support inner function declarations. Many traditional programming languages, such
as C, collect all functions in a single top-level scope. Languages with inner functions,
on the other hand, allow us to gather small utility functions where they are needed,
avoiding namespace pollution.

JavaScript Closures

[386]

An inner function is simply a function that is defined inside of another function.
For example:

function outerFn() {
 function innerFn() {
 }
}

Here, innerFn() is an inner function, contained within the scope of outerFn(). This
means that a call to innerFn() is valid within outerFn(), but not outside of it. The
following code results in a JavaScript error:

function outerFn() {
 $('#example-2').print('Outer function');
 function innerFn() {
 $('#example-1').print('Inner Function');
 }
}
$('#example-1').print('innerFn():');
innerFn();

We can successfully run the code, though, by calling innerFn() from
within outerFn():

function outerFn() {
 $('#example-2').print('Outer function');
 function innerFn() {
 $('#example-2').print('Inner function');
 }
 innerFn();
}
$('#example-2').print('outerFn():');
outerFn();

This results in the output:

outerFn():
Outer function
Inner function

This technique is especially handy for small, single-purpose functions. For example,
algorithms that are recursive, but have a non-recursive API wrapper, are often best
expressed with an inner function as a helper.

Appendix C

[387]

The great escape
The plot thickens when function references come into play. Some languages, such
as Pascal, allow the use of inner functions for the purpose of code hiding only; those
functions are forever entombed within their parent functions. JavaScript, on the other
hand, allows us to pass functions around just as if they were any other kind of data.
This means inner functions can escape their captors.

The escape route can wind in many different directions. For example, suppose the
function is assigned to a global variable:

var globalVar;

function outerFn() {
 $('#example-3').print('Outer function');
 function innerFn() {
 $('#example-3').print('Inner function');
 }
 globalVar = innerFn;
}
$('#example-3').print('outerFn():');
outerFn();
$('#example-3').print('globalVar():');
globalVar();

The call to outerFn() after the function definition modifies the global variable
globalVar. It is now a reference to innerFn(). This means that the later call to
globalVar() operates just as an inner call to innerFn() would, and the print
statements are reached:

outerFn():
Outer function
globalVar():
Inner function

Note that a call to innerFn() from outside of outerFn() still results in an error!
Though the function has escaped by way of the reference stored in the global
variable, the function name is still trapped inside the scope of outerFn().

A function reference can also find its way out of a parent function through a
return value:

function outerFn() {
 $('#example-4').print('Outer function');
 function innerFn() {
 $('#example-4').print('Inner function');
 }

JavaScript Closures

[388]

 return innerFn;
}
$('#example-4').print('var fnRef = outerFn():');
var fnRef = outerFn();
$('#example-4').print(fnRef():');
fnRef();

Here, there is no global variable modified inside outerFn(). Instead, outerFn()
returns a reference to innerFn(). The call to outerFn() results in this reference,
which is stored and called itself in turn, triggering the message again:

var fnRef = outerFn():
Outer function
fnRef():
Inner function

The fact that inner functions can be invoked through a reference even after the
function has gone out of scope means that JavaScript needs to keep referenced
functions available as long as they could possibly be called. Each variable that refers
to the function is tracked by the JavaScript runtime, and once the last has gone away,
the JavaScript garbage collector comes along and frees up that bit of memory.

Variable scoping
Inner functions can of course have their own variables, which are restricted in scope
to the function itself:

function outerFn() {
 function innerFn() {
 var innerVar = 0;
 innerVar++;
 $('#example-5').print('innerVar = ' + innerVar);
 }
 return innerFn;
}
var fnRef = outerFn();
fnRef();
fnRef();
var fnRef2 = outerFn();
fnRef2();
fnRef2();

Appendix C

[389]

Each time the function is called, through a reference or otherwise, a new variable
innerVar is created, incremented, and displayed:
innerVar = 1
innerVar = 1
innerVar = 1
innerVar = 1

Inner functions can reference global variables in the same way as any other
function can:

var globalVar = 0;
function outerFn() {
 function innerFn() {
 globalVar++;
 $('#example-6').print('globalVar = ' + globalVar);
 }
 return innerFn;
}
var fnRef = outerFn();
fnRef();
fnRef();
var fnRef2 = outerFn();
fnRef2();
fnRef2();

Now our function will consistently increment the variable with each call:
globalVar = 1
globalVar = 2
globalVar = 3
globalVar = 4

But what if the variable is local to the parent function? Since the inner function
inherits its parent's scope, this variable can be referenced too:

function outerFn() {
 var outerVar = 0;
 function innerFn() {
 outerVar++;
 $('#example-7').print('outerVar = ' + outerVar);
 }
 return innerFn;
}
var fnRef = outerFn();
fnRef();
fnRef();
var fnRef2 = outerFn();
fnRef2();
fnRef2();

JavaScript Closures

[390]

Now our function calls have more interesting behavior:

outerVar = 1
outerVar = 2
outerVar = 1
outerVar = 2

We get a mix of the two earlier effects. The calls to innerFn() through each reference
increment outerVar independently. Note that the second call to outerFn() is not
resetting the value of outerVar, but rather creating a new instance of outerVar,
bound to the scope of the second function call. The upshot of this is that after the
above calls, another call to fnRef() will print the value 3, and a subsequent call to
fnRef2() will also print 3. The two counters are completely separate.

When a reference to an inner function finds its way outside of the scope in which
the function was defined, this creates a closure on that function. We call variables
that are neither parameters nor local to the inner function free variables, and the
environment of the outer function call closes them. Essentially, the fact that the
function refers to a local variable in the outer function grants the variable a stay of
execution. The memory is not released when the function completes, as it is still
needed by the closure.

Interactions between closures
When more than one inner function exists, closures can have effects that are not as
easy to anticipate. Suppose we pair our incrementing function with another function,
this one incrementing by two:

function outerFn() {
 var outerVar = 0;
 function innerFn1() {
 outerVar++;
 $('#example-8').print('(1) outerVar = ' + outerVar);
 }
 function innerFn2() {
 outerVar += 2;
 $('#example-8').print('(2) outerVar = ' + outerVar);
 }
 return {'fn1': innerFn1, 'fn2': innerFn2};
}
var fnRef = outerFn();
fnRef.fn1();
fnRef.fn2();
fnRef.fn1();

Appendix C

[391]

var fnRef2 = outerFn();
fnRef2.fn1();
fnRef2.fn2();
fnRef2.fn1();

We return references to both functions, using a map to do so (this illustrates another
way in which reference to an inner function can escape its parent). Both functions are
called through the references:

(1) outerVar = 1
(2) outerVar = 3
(1) outerVar = 4
(1) outerVar = 1
(2) outerVar = 3
(1) outerVar = 4

The two inner functions refer to the same local variable, so they share the same
closing environment. When innerFn1() increments outerVar by 1, this sets the
new starting value of outerVar when innerFn2() is called, and vice versa. Once
again, though, we see that any subsequent call to outerFn() creates new instances
of these closures with a new closing environment to match. Fans of object-oriented
programming will note that we have in essence created a new object, with the free
variables acting as instance variables and the closures acting as instance methods.
The variables are also private, as they cannot be directly referenced outside of their
enclosing scope, enabling true object-oriented data privacy.

Closures in jQuery
The methods we have seen throughout the jQuery library often take at least one
function as a parameter. For convenience, we often use anonymous functions so
that we can define the function behavior right when it is needed. This means that
functions are rarely in the top-level namespace; they are usually inner functions,
which means they can quite easily create closures.

Arguments to $(document).ready()
Nearly all of the code we write using jQuery ends up getting placed inside a
function passed as an argument to $(document).ready(). We do this to guarantee
that the DOM has loaded before the code is run, which is usually a requirement
for interesting jQuery code. When a function is created and passed to .ready(), a
reference to the function is stored as part of the global jQuery object. This reference
is then called at a later time, when the DOM is ready.

JavaScript Closures

[392]

We usually place the $(document).ready() construct at the top level of the code
structure, so this function is not really part of a closure. However, since our code is
usually written inside this function, everything else is an inner function:

$(document).ready(function() {
 var readyVar = 0;
 function innerFn() {
 readyVar++;
 $('#example-9').print('readyVar = ' + readyVar);
 }
 innerFn();
 innerFn();
});

This looks like many of our earlier examples, except that in this case, the outer
function is the callback passed to $(document).ready(). Since innerFn() is defined
inside of it, and refers to readyVar which is in the scope of the callback function,
innerFn() and its environment create a closure. We can see this by noting that the
value of readyVar persists between calls to the function:

readyVar = 1
readyVar = 2

The fact that most jQuery code is inside a function body is useful, because this can
protect against some namespace collisions. For example, it is this feature that allows
us to use jQuery.noConflict() to free up the $ shortcut for other libraries, while
still being able to define the shortcut locally for use within $(document).ready().

Event handlers
The $(document).ready() construct usually wraps the rest of our code, including
the assignment of event handlers. Since handlers are functions, they become inner
functions. Since those inner functions are stored and called later, they can create
closures. A simple click handler can illustrate this:

$(document).ready(function() {
 var counter = 0;
 $('#example-10 a.add').click(function() {
 counter++;
 $('#example-10').print('counter = ' + counter);
 return false;
 });
});

Appendix C

[393]

Because the variable counter is declared inside of the .ready() handler, it is
only available to the jQuery code inside this block and not to outside code. It can
be referenced by the code in the click handler, however, which increments and
displays the variable's value. Because a closure is created, the same instance of
counter is referenced each time the link is clicked. This means that the messages
display a continuously incrementing set of values, not just 1 each time:

counter = 1
counter = 2
counter = 3

Event handlers can share their closing environments, just like other functions can:

$(document).ready(function() {
 var counter = 0;
 $('#example-11 a.add').click(function() {
 counter++;
 $('#example-11').print('counter = ' + counter);
 return false;
 });
 $('#example-11 a.subtract').click(function() {
 counter--;
 $('#example-11').print('counter = ' + counter);
 return false;
 });
});

Since both of the functions reference the same counter variable, the incrementing
and decrementing operations of the two links affect the same value rather than
being independent:

counter = 1
counter = 2
counter = 1
counter = 0

These examples have used anonymous functions, as has been our custom in jQuery
code. This makes no difference in the construction of closures; closures can come
from named or anonymous functions. For example, we can write an anonymous
function to report the index of an item within a jQuery object:

$(document).ready(function() {
 $('#example-12 a').each(function(index) {
 $(this).click(function() {
 $('#example-12').print('index = ' + index);
 return false;
 });
 });
});

JavaScript Closures

[394]

Because the innermost function is defined within the .each() callback, this code
actually creates as many functions as there are links. Each of these functions is
attached as a click handler to one of the links. The functions have index in their
closing environment, since it is a parameter to the .each() callback. This behaves
the same way as if the click handler were written as a named function:

$(document).ready(function() {
 $('#example-13 a').each(function(index) {
 function clickHandler() {
 $('#example-13').print('index = ' + index);
 return false;
 }

 $(this).click(clickHandler);
 });
});

The version with the anonymous function is just a bit shorter. The position of this
named function is still relevant, however:

$(document).ready(function() {
 function clickHandler() {
 $('#example-14').print('index = ' + index);
 return false;
 }

 $('#example-14 a').each(function(index) {
 $(this).click(clickHandler);
 });
});

This version will trigger a JavaScript error whenever a link is clicked because
index is not found in the closing environment of clickHandler(). It remains a
free variable, and so is undefined in this context.

Memory leak hazards
JavaScript manages its memory using a technique known as garbage collection. This
is in contrast to low-level languages like C, which require programmers to explicitly
reserve blocks of memory and free them when they are no longer being used. Other
languages such as Objective-C assist the programmer by implementing a reference
counting system, which allows the user to note how many pieces of the program
are using a particular piece of memory so it can be cleaned up when no longer used.
JavaScript is a high-level language, on the other hand, and generally takes care of
this bookkeeping behind the scenes.

Appendix C

[395]

Whenever a new memory-resident item such as an object or function comes into
being in JavaScript code, a chunk of memory is set aside for this item. As the object
gets passed around to functions and assigned to variables, more pieces of code begin
to point to the object. JavaScript keeps track of these pointers, and when the last one
is gone, the memory taken by the object is released. Consider a chain of pointers:

A B C

Here object A has a property that points to B, and B has a property that points to C.
Even if object A here is the only one that is a variable in the current scope, all three
objects must remain in memory because of the pointers to them. When A goes out
of scope, however (such as at the end of the function it was declared in), then it can
be released by the garbage collector. Now B has nothing pointing to it, so can be
released, and finally C can be released as well.

More complicated arrangements of references can be harder to deal with:

A B C

Now we've added a property to object C that refers back to B. In this case, when A is
released, B still has a pointer to it from C. This reference loop needs to be handled
specially by JavaScript, which must notice that the entire loop is isolated from the
variables that are in scope.

Accidental reference loops
Closures can cause reference loops to be inadvertently created. Since functions
are objects that must be kept in memory, any variables they have in their closing
environment are also kept in memory:

function outerFn() {
 var outerVar = {};
 function innerFn() {
 alert(outerVar);
 }
 outerVar.fn = innerFn;
 return innerFnn;
};

JavaScript Closures

[396]

Here, an object called outerVar is created and referenced from within the inner
function innerFn(). Then, a property of outerVar that points to innerFn() is
created, and innerFn() is returned. This creates a closure on innerFn() that refers
to outerVar, which in turn refers back to innerFn(). But the loop can be more
insidious than this:

function outerFn() {
 var outerVar = {};
 function innerFn() {
 alert('hello');
 }
 outerVar.fn = innerFn;
 return innerFn;
};

Here, we've changed innerFn() so that it no longer refers to outerVar. However,
this does not break the loop! Even though outerVar is never referred to from
innerFn(), it is still in innerFn()'s closing environment. All variables in the scope
of outerFn() are implicitly referred to by innerFn() due to the closure. So, closures
make it easy to accidentally create these loops.

The Internet Explorer memory leak problem
All of this is generally not an issue because JavaScript is able to detect these loops
and clean them up when they become orphaned. Internet Explorer, however, has
difficulty handling one particular class of reference loops. When a loop contains both
DOM elements and regular JavaScript objects, IE cannot release either one because
they are handled by different memory managers. These loops are never freed until
the browser is closed, which can eat up a great deal of memory over time. A common
cause of such a loop is a simple event handler:

$(document).ready(function() {
 var div = document.getElementById('foo');
 div.onclick = function() {
 alert('hello');
 };
});

When the click handler is assigned, this creates a closure with div in the closing
environment. But div now contains a reference back to the closure—the onclick
property itself. Thus, the resulting loop can't be released by Internet Explorer even
when we navigate away from the page.

Appendix C

[397]

The good news
Now let's write the same code, but using normal jQuery constructs:

$(document).ready(function() {
 var $div = $('#foo');
 $div.click(function() {
 alert('hello');
 });
});

Even though a closure is still created, causing the same kind of loop as before, we
do not get an IE memory leak from this code. Thankfully, jQuery is aware of the
potential for leaks, and manually releases all of the event handlers that it assigns. As
long as we faithfully adhere to using jQuery event binding methods for our handlers,
we need not fear leaks caused by this particular common idiom.

This doesn't mean we're completely out of the woods; we must continue to take care
when we're performing other tasks with DOM elements. Attaching JavaScript objects
to DOM elements can still cause memory leaks in Internet Explorer; jQuery just helps
make this situation far less prevalent.

Because of this, jQuery gives us another tool to help avoid these leaks. In Chapter 7,
we saw that the .data() method allows us to attach information to DOM elements
in much the same way as we can with expando properties. Since this data is not
stored directly as an expando (jQuery uses an internal map to store the data using
IDs it creates), the reference loop is never formed and we sidestep the memory leak
issue. Whenever an expando seems like a convenient data storage mechanism, we
should consider whether .data() is a safer alternative.

Summary
JavaScript closures are a powerful language feature. They are often quite useful
in hiding variables from other code, so that we don't tread on variable names
being used elsewhere. Due to jQuery's frequent reliance on functions as method
arguments, they can also be inadvertently created quite often. Understanding them
allows us to write more efficient and concise code, and with a bit of care and the
use of jQuery's built-in safeguards, we can avoid the memory-related pitfalls they
can introduce.

Quick Reference
This appendix is intended to be a quick reference for the jQuery API, including
selector expressions and methods. A more detailed discussion on this topic is
available in this book's companion volume, jQuery Reference Guide, and on the
jQuery documentation site, http://docs.jquery.com.

Selector expressions
The jQuery factory function $() is used to find elements on the page to work
with. This function takes a string composed of CSS-like syntax, called a selector
expression. Selector expressions are discussed in detail in Chapter 2.

Selector Matches
* All elements.
#id The element with the given ID.
element All elements of the given type.
.class All elements with the given class.

a, b Elements that are matched by a or b.

a b Elements b that are descendants of a.

a > b Elements b that are children of a.

a + b Elements b that immediately follow a.

a ~ b Elements b that are siblings of a.
:first The first element in the result set.
:last The last element in the result set.
:not(a) All elements in the result set that are not matched by a.
:even Even elements in the result set (0-based).
:odd Odd elements in the result set (0-based).

Quick Reference

[400]

Selector Matches
:eq(index) A numbered element in the result set (0-based).
:gt(index) All elements in the result set after (greater than) the given

index (0-based).
:lt(index) All elements in the result set before (less than) the given index

(0-based).
:header Header elements (e.g. <h1>, <h2>).
:animated Elements with an animation in progress.
:contains(text) Elements containing the given text.
:empty Elements with no child nodes.
:has(a) Elements containing a descendant element matching a.
:parent Elements that have child nodes.
:hidden Elements that are hidden, either through CSS or because they

are <input type="hidden" />.
:visible The inverse of :hidden.
[attr] Elements that have the attribute attr.
[attr=value] Elements whose attr attribute is value.
[attr!=value] Elements whose attr attribute is not value.
[attr^=value] Elements whose attr attribute begins with value.
[attr$=value] Elements whose attr attribute ends with value.
[attr*=value] Elements whose attr attribute contains the

substring value.
:nth-child(index) Elements which are the indexth child of their parent element

(1-based).
:nth-child(even) Elements which are an even child of their parent element

(1-based).
:nth-child(odd) Elements which are an odd child of their parent element

(1-based).
Elements which are the nth child of their parent element
(1-based). Formulas are of the form an+b for integers a and b.
Elements which are the first child of their parent.
Elements which are the last child of their parent.
Elements which are the only child of their parent.
All <input>, <select>, <textarea>, and <button>
elements.
<input> elements with type="text".
<input> elements with type="password".
<input> elements with type="radio".

Appendix D

[401]

Selector Matches
:checkbox <input> elements with type="checkbox".
:submit <input> elements with type="submit".
:image <input> elements with type="image".
:reset <input> elements with type="reset".
:button <input> elements with type="button", and

<button> elements.
:file <input> elements with type="file".
:enabled Enabled form elements.
:disabled Disabled form elements.
:checked Checked checkboxes and radio buttons.
:selected Selected <option> elements.

DOM traversal methods
After creating a jQuery object using $(), we can alter the set of matched elements we
are working with by calling one of these DOM traversal methods. DOM traversal
methods are discussed in detail in Chapter 2.

Traversal Method Returns a jQuery object containing…
.filter(selector) Selected elements that match the given selector.
.filter(callback) Selected elements for which the callback function

returns true.
.eq(index) The selected element at the given 0-based index.
.slice(start, [end]) Selected elements in the given range of 0-based indices.
.not(selector) Selected elements that do not match the given selector.
.add(selector) Selected elements, plus any additional elements that

match the given selector.
.find(selector) Descendant elements that match the selector.
.contents() Child nodes (including text nodes).
.children([selector]) Child nodes, optionally filtered by a selector.
.next([selector]) The sibling immediately following each selected element,

optionally filtered by a selector.
.nextAll([selector]) All siblings following each selected element, optionally

filtered by a selector.
.prev([selector]) The sibling immediately preceding each selected element,

optionally filtered by a selector.

Quick Reference

[402]

Traversal Method Returns a jQuery object containing…
.prevAll([selector]) All siblings preceding each selected element, optionally

filtered by a selector.
.siblings([selector]) All siblings, optionally filtered by a selector.
.parent([selector]) The parent of each selected element, optionally filtered by

a selector.
.parents([selector]) All ancestors, optionally filtered by a selector.
.closest selector The first element that matches the selector, starting at the

selected element and moving up through its ancestors in
the DOM tree.

.offsetParent() The positioned parent (e.g. relative, absolute) of the
first selected element.

.andSelf() The selected elements, plus the previous set of selected
elements on the internal jQuery stack.

.end() The previous set of selected elements on the internal
jQuery stack.

.map(callback) The result of the callback function when called on each
selected element.

Event methods
To react to user behavior, we need to register our handlers using these event
methods. Note that many DOM events only apply to certain element types; these
subtleties are not covered here. Event methods are discussed in detail in Chapter 3.

Event Method Description
.ready(handler) Bind handler to be called when the DOM and CSS are

fully loaded.

.bind(type, [data],
handler)

Bind handler to be called when the given type of event
is sent to the element.

.one(type, [data],
handler)

Bind handler to be called when the given type of event
is sent to the element. Removes the binding when the
handler is called.

.unbind([type],
[handler])

Removes the bindings on the element (for an event
type, a particular handler, or all bindings).

.live(type, handler) Bind handler to be called when the given type of event
is sent to the element, using event delegation.

.die(type, [handler]) Removes the bindings on the element previously bound
with .live().

Appendix D

[403]

Event Method Description
.blur(handler) Bind handler to be called when the element loses

keyboard focus.
.change(handler) Bind handler to be called when the element's

value changes.
.click(handler) Bind handler to be called when the element is clicked.
.dblclick(handler) Bind handler to be called when the element is

double-clicked.
.error(handler) Bind handler to be called when the element receives

an error event (browser-dependent).
.focus(handler) Bind handler to be called when the element gains

keyboard focus.
.keydown(handler) Bind handler to be called when a key is pressed and

the element has keyboard focus.
.keypress(handler) Bind handler to be called when a keystroke occurs and

the element has keyboard focus.
.keyup(handler) Bind handler to be called when a key is released and

the element has keyboard focus.
.load(handler) Bind handler to be called when the element

finishes loading.
.mousedown(handler) Bind handler to be called when the mouse button is

pressed within the element.
.mouseenter(handler) Bind handler to be called when the mouse pointer

enters the element. Not affected by event bubbling.
.mouseleave(handler) Bind handler to be called when the mouse pointer

leaves the element. Not affected by event bubbling.
.mousemove(handler) Bind handler to be called when the mouse pointer

moves within the element.
.mouseout(handler) Bind handler to be called when the mouse pointer

leaves the element.
.mouseover(handler) Bind handler to be called when the mouse pointer

enters the element.
.mouseup(handler) Bind handler to be called when the mouse button is

released within the element.
.resize(handler) Bind handler to be called when the element is resized.
.scroll(handler) Bind handler to be called when the element's scroll

position changes.
.select(handler) Bind handler to be called when text in the element

is selected.

Quick Reference

[404]

Event Method Description
.submit(handler) Bind handler to be called when the form element

is submitted.
.unload(handler) Bind handler to be called when the element is

unloaded from memory.

.hover(enter, leave) Bind enter to be called when the mouse enters the
element, and leave to be called when the mouse
leaves it.

.toggle(handler1,
handler2, ...)

Bind handler1 to be called when the mouse is clicked
on the element, followed by handler2 and so on for
subsequent clicks.

.trigger(type, [data]) Trigger handlers for the event on the element, and
execute the default action for the event.

.triggerHandler(type,
[data])

Trigger handlers for the event on the element without
executing any default actions.

.blur() Trigger the blur event.

.change() Trigger the change event.

.click() Trigger the click event.

.dblclick() Trigger the dblclick event.

.error() Trigger the error event.

.focus() Trigger the focus event.

.keydown() Trigger the keydown event.

.keypress() Trigger the keypress event.

.keyup() Trigger the keyup event.

.select() Trigger the select event.

.submit() Trigger the submit event.

Effect methods
These effect methods may be used to perform animations on DOM elements. Effect
methods are discussed in detail in Chapter 4.

Effect Method Description
.show() Display the matched elements.
.hide() Hide the matched elements.
.show(speed, [callback]) Display the matched elements by animating

height, width, and opacity.
.hide(speed, [callback]) Hide the matched elements by animating height,

width, and opacity.

Appendix D

[405]

Effect Method Description
.toggle([speed],
[callback])

Display or hide the matched elements.

.slideDown([speed],
[callback])

Display the matched elements with a
sliding motion.

.slideUp([speed],
[callback])

Hide the matched elements with a sliding motion.

.slideToggle([speed],
[callback])

Display or hides the matched elements with a
sliding motion.

.fadeIn([speed],
[callback])

Display the matched elements by fading them
to opaque.

.fadeOut([speed],
[callback])

Hide the matched elements by fading them
to transparent.

.fadeTo(speed, opacity,
[callback])

Adjust the opacity of the matched elements.

.animate(attributes,
[speed], [easing],
[callback])

Perform a custom animation of the specified
CSS attributes.

.animate(attributes,
options)

A lower-level interface to .animate(), allowing
control over the animation queue.

.stop([clearQueue],
[jumpToEnd])

Stop the currently running animation, then start
queued animations, if any.

.queue() Retrieve the queue of animations on the first
matched element.

.queue(callback) Add callback to the end of the queue.

.queue(newQueue) Replace the queue with a new one.

.dequeue() Execute the next animation on the queue.

DOM manipulation methods
DOM manipulation methods are discussed in detail in Chapter 5.

Method Description
.attr(key) Get the attribute named key.

.attr(key, value) Set the attribute named key to value.

.attr(key, fn) Set the attribute named key to the result of fn
(called separately on each matched element).

.attr(map) Set attribute values, given as key-value pairs.

.removeAttr(key) Remove the attribute named key.

Quick Reference

[406]

Method Description
.addClass(class) Add the given class to each matched element.
.removeClass(class) Remove the given class from each matched element.
.toggleClass(class) Remove the given class if present, and adds it if not, for

each matched element.
.hasClass(class) Return true if any of the matched elements has the

given class.
.html() Get the HTML content of the first matched element.
.html(value) Set the HTML content of each matched element

to value.
.text() Get the textual content of all matched elements as a

single string.
.text(value) Set the textual content of each matched element

to value.
.val() Get the value attribute of the first matched element.
.val(value) Set the value attribute of each element to value.
.css(key) Get the CSS attribute named key.
.css(key, value) Set the CSS attribute named key to value.
.css(map) Set CSS attribute values, given as key-value pairs.
.offset() Get the top, and left, pixel coordinates of the first

matched element, relative to the viewport.
.position() Get the top, and left, pixel coordinates of the first

matched element, relative to the element returned
by .offsetParent().

.scrollTop() Get the vertical scroll position of the first
matched element.

.scrollTop(value) Set the vertical scroll position of all matched elements
to value.

.scrollLeft() Get the horizontal scroll position of the first
matched element.

.scrollLeft(value) Set the horizontal scroll position of all matched
elements to value.

.height() Get the height of the first matched element.

.height(value) Set the height of all matched elements to value.

.width() Get the width of the first matched element.

.width(value) Set the width of all matched elements to value.

.innerHeight() Get the height of the first matched element, including
padding, but not border.

Appendix D

[407]

Method Description
.innerWidth() Get the width of the first matched element, including

padding, but not border.
.outerHeight
(includeMargin)

Get the height of the first matched element, including
padding, border, and optional margin.

.outerWidth
(includeMargin)

Get the width of the first matched element, including
padding, border, and optional margin.

.append(content) Insert content at the end of the interior of each
matched element.

.appendTo(selector) Insert the matched elements at the end of the interior of
the elements matched by selector.

.prepend(content) Insert content at the beginning of the interior of each
matched element.

.prependTo(selector) Insert the matched elements at the beginning of the
interior of the elements matched by selector.

.after(content) Insert content after each matched element.

.insertAfter(selector) Insert the matched elements after each of the elements
matched by selector.

.before(content) Insert content before each matched element.

.insertBefore(selector) Insert the matched elements before each of the elements
matched by selector.

.wrap(content) Wrap each of the matched elements within content.

.wrapAll(content) Wrap all of the matched elements as a single unit
within content.

.wrapInner(content) Wrap the interior contents of each of the matched
elements within content.

.replaceWith(content) Replace the matched elements with content.

.replaceAll(selector) Replace the elements matched by selector with the
matched elements.

.empty() Remove the child nodes of each matched element.

.remove([selector]) Remove the matched nodes (optionally filtered by
selector) from the DOM.

.clone([withHandlers]) Make a copy of all matched elements, optionally also
copying event handlers.

.data(key) Get the data item named key associated with the first
matched element.

.data(key, value) Set the data item named key associated with each
matched element to value.

.removeData(key) Remove the data item named key associated with each
matched element.

Quick Reference

[408]

AJAX methods
We can retrieve information from the server without requiring a page refresh by
calling one of these AJAX methods. AJAX methods are discussed in detail in
Chapter 6.

AJAX Method Description
$.ajax(options) Make an AJAX request using the provided set of

options. This is a low-level method that is usually
called via other convenience methods.

.load(url, [data],
[callback])

Make an AJAX request to url, and place the response
into the matched elements.

$.get(url, [data],
[callback], [returnType])

Make an AJAX request to url using the GET method.

$.getJSON(url, [data],
[callback])

Make an AJAX request to url, interpreting the
response as a JSON data structure.

$.getScript(url,
[callback])

Make an AJAX request to url, executing the response
as JavaScript.

$.post(url, [data],
[callback], [returnType])

Make an AJAX request to url using the
POST method.

.ajaxComplete(handler) Bind handler to be called when any AJAX
transaction completes.

.ajaxError(handler) Bind handler to be called when any AJAX
transaction completes with an error.

.ajaxSend(handler) Bind handler to be called when any AJAX
transaction begins.

.ajaxStart(handler) Bind handler to be called when any AJAX transaction
begins, and no others are active.

.ajaxStop(handler) Bind handler to be called when any AJAX
transaction ends, and no others are still active.

.ajaxSuccess(handler) Bind handler to be called when any AJAX
transaction completes successfully.

$.ajaxSetup(options) Set default options for all subsequent
AJAX transactions.

.serialize() Encode the values of a set of form controls into a
query string.

.serializeArray() Encode the values of a set of form controls into a
JSON data structure.

$.param(map) Encode an arbitrary map of values into a query string.

Appendix D

[409]

Miscellaneous methods
These utility methods do not fit neatly into the above categories, but are often very
useful when writing scripts using jQuery.

Method or Property Description
$.support Return a map of properties indicating whether the

browser supports various features and standards

$.each(collection,
callback)

Iterate over collection, executing callback for
each item.

$.extend(target,
addition, ...)

Modify the object target by adding properties from
the other supplied objects.

$.grep(array, callback,
[invert])

Filter array by using callback as a test.

$.makeArray(object) Convert object into an array.

$.map(array, callback) Construct a new array consisting of the result of
callback being called on each item.

$.inArray(value, array) Determine whether value is in array.

$.merge(array1, array2) Combine the contents of array1 and array2.
$.unique(array) Remove any duplicate DOM elements from array.
$.isFunction(object) Determine whether object is a function.
$.trim(string) Remove whitespace from the ends of string.
$.noConflict([extreme]) Revert $ to its pre-jQuery definition.
.hasClass(className) Determine whether any matched element has the

given class.
.is(selector) Determine whether any matched element is matched

by the given selector expression.
.each(callback) Iterate over the matched elements, executing

callback for each element.
.length Get the number of matched elements.
.get() Get an array of DOM nodes corresponding to the

matched elements.
.get(index) Get the DOM node corresponding to the matched

element at the given index.
.index(element) Get the index of the given DOM node within the set of

matched elements.

Index
Symbols
$() factory function

about 20, 94
back to top link 95
feature 94
insertion methods, using 95

$() factory function, building blocks
class 21
explicit iteration, avoiding 21
ID 21
tag name 21

$() function 20
(X)HTML reference

W3C hypertext markup language
homepage 374

$.ajax(options), 408
$.ajaxSetup(options), 408
$.boxModel, 409
$.each(collection, callback), 409
$.extend(target, addition, ...), 409
$.get(url, [data], [callback], [returnType]),

408
$.getJSON(url, [data], [callback]), 408
$.getScript(url, [callback]), 408
$.grep(array, callback, [invert]), 408
$.inArray(value, array), 409
$.isFunction(object), 409
$.makeArray(object), 409
$.map(array, callback), 409
$.merge(array1, array2), 409
$.noConflict([extreme]), 409
$.param(map), 408
$.post(url, [data], [callback], [returnType]),

408
$.trim(string), 409

$.unique(array), 409
.add(selector, 401
.addClass(class), 406
.after(content), 407
.ajaxComplete(handler), 408
.ajaxError(handler), 408
.ajaxSend(handler), 408
.ajaxStart(handler), 408
.ajaxStart() method 139,140
.ajaxStop() method 139
.ajaxStop(handler), 408
.ajaxSuccess(handler), 13
.andSelf(), 402
.animate() method, 77
.animate(attributes, [speed], [easing],

[callback]), 405
.animate(attributes, options), 405
.append(content), 407
.appendTo(selector), 407
.attr(key), 405
.attr(key, fn), 405
.attr(key, value), 405
.attr(map), 405
.before(content), 407
.bind(‘load’) syntax 311
.bind(type, [data], handler), 402
.blur(), 404
.blur(handler), 403
.change(), 404
.change(handler), 403
.children([selector]), 404
.click(), 404
.click(handler), 403
.clone([withHandlers]), 407
.closest(selector), 402
.contents(), 401

[412]

.css(key), 406

.css(key, value), 406

.css(map), 406

.data(key), 407

.data(key, value), 407

.dblclick(), 404

.dblclick(handler), 403

.dequeue(), 405

.die(type, [handler]), 402

.each(call back), 409.
empty(), 407
.end(), 402
.eq(index), 401
.error(), 404
.error(handler), 403
.fadeIn([speed], [callback]), 405
.fadeOut([speed], [callback]), 405
.fadeToggle() method 78
.fade In() method 78
.fadeTo(speed, opacity, [callback]), 405
.filter(callback), 401
.filter(selector), 401
.find(selector), 401
.focus(), 404
.focus(handler), 403
.get(), 409
.get(index), 409
.hasClass(class), 406
.hasClass(className), 409
.height(), 406
.height(value), 406
.hide(), 404
.hide() method 72

elements, restoring 72
inline style attribute, setting 72

hide(speed, [callback]), 404
.hover(enter, leave), 403
.html(), 406
.html(value), 406
.index(element), 409
.innerHeight(), 406
.innerWidth(), 407
.insertAfter(selector), 407
.insertBefore(selector), 407
.is(selector), 409
.keydown(), 404
.keydown(handler), 403

.keypress(), 404

.keypress(handler), 403

.keyup(), 404

.keyup(handler), 403

.length, 409

.live(type, handler), 402

.load(handler), 403

.load(url, [data], [callback]), 408

.map(callback), 402

.mousedown(handler), 403

.mouseenter(handler, 403

.mouseleave(handler), 403

.mousemove(handler), 403

.mouseout(handler), 403

.mouseover(handler), 403

.mouseup(handler), 403

.next([selector]), 401

.nextAll([selector]), 401

.not(selector), 401

.offset(),406

.offsetParent(), 402

.one(type, [data], handler), 402

.outerHeight(includeMargin), 407

.outerWidth(includeMargin), 407

.parent([selector]), 402

.parents([selector]), 401

.position(), 406

.prepend(content), 407

.prependTo(selector), 407

.prev([selector]), 402

.prevAll([selector]), 402

.queue(), 405

.queue(callback), 405

.queue(newQueue), 405

.ready(handler), 402

.remove([selector]), 407

.removeAttr(key), 405

.removeClass(class), 406

.removeData(key), 407

.replaceAll(selector), 407

.replaceWith(content), 407

.resize(handler), 403

.scroll(handler), 403

.scrollLeft(), 406

.scrollLeft(value), 406

.scrollTop(), 406

.scrollTop(value), 406

[413]

.select(), 404

.select(handler), 403

.serialize(), 408

.serializeArray(), 408

.show(), 404

.show() method 72

.show(speed, [callback]), 404

.siblings([selector]), 401

.slice(start, [end]), 401

.slideDown([speed], [callback]), 405

.slideToggle([speed], [callback]), 405

.slideUp([speed], [callback]), 405

.stop([clearQueue], [jumpToEnd]), 405

.submit(), 404

.submit(handler), 404

.text(), 406

.text(value), 406

.toggle([speed], [callback]), 405

.toggle(handler1, handler2, ...), 404

.toggleClass(class), 406

.trigger() method
graceful degradation, implementing 62
page, collapsing 62
page, expanding 62
shortcuts 63

.triggerHandler(type, [data]), 404

.unbind([type], [handler]), 402

.unload(handler), 404

.val(), 406

.val(value), 406

.width(),406

.width(value), 406

.wrap method, 105

.wrap(content), 407

.wrapAll(content), 407

.wrapInner(content), 407

A
actions, jQuery

Asynchronous JavaScript And XML
(AJAX) 8

document’s content, altering 8
document changes, animating 8
document elements, accessing 7
information, retrieving 8
JavaScript tasks, simplifying 8

user’s interaction, responding 8
web page appearance, modifying 8

AHAH 117
AJAX

.ajaxStart() method 139, 140

.ajaxStop() method 139

.load() method used 149
about 115
additional options 146
click handlers, adding 142
data, loading 115
default options, modifying 147
event delegation, implementing 142
HTML snippet, loading 147-149
JavaScript 115
low-level AJAX method 146
observer functions 139, 140-142
rebind handlers, using 142
security limitations 143
XML files 115
XMLHttpRequest object 115

AJAX-powered 115
AJAX methods 408
anonymous functions 16
Asynchronous HTTP and HTML. See

AHAH
Asynchronous JavaScript and XML.

See AJAX
attributes

each() method 93
class attributes, manipulating 91
non-class attributes, modifying 91-94

attribute selectors
about 24
classes, adding 25
links, styling 25, 26
styles, defining 25

auto-completion, compact form
about 235
arrow keys, handling 241, 242
built-in web browser mechanism 238
Enter key, handling 242
in browser 237
keyboard, navigating through 239, 240
purpose 236
search box text, setting 238
server-side code used 236

[414]

suggestion list, hiding 243
versus live search 244

B
basic alphabetical sorting, JavaScript sorting

comparator, using 157-160
graceful degradation example 159
JavaScript’s built in .sort()method,

using 157
plugins, modifications 161
sorting behavior, applying 163

blogs
advanced DOM browser, uses 377
Ajaxian 375
A List Apart 377
Christian Heilmann’s sites 376
DOM scripting 377
internet developments, by Robert

Nyman 376
JavaScript ant 376
John Resig 375
jQuery blog 375
jQuery tutorials 375
Matt Snider JavaScript resource 376
programming/web-development blog 376
web design articles, by Dustin Diaz 376

C
Cascading Style Sheets. See CSS
charting, plugins

Flot plugin 338
Sparklines plugin 339

client and server communication
form, constructing 137, 138
GET request, performing 132-135
jQuery’s AJAX toolkit, using 137
POST request, performing 136

closures 17, 385
anonymous function example 393
argument to $(document).ready(), passing

391, 392
event handlers, assigning 392, 394
in jQuery, anonymous functions used 391
interacting with 390, 391
interacting with, map used 391

code brevity, shortcuts
 $() factory function 37
.ready()function 38

compact form
about 232
auto-completion 235
field, labeling 232
label, styling 233
label text, hiding 234
search field code 244-246
solutions, to problems 233-235

compound effects, using 76
compound events

advanced features, hiding 48, 49
advanced features, showing 48, 49
click event 50
DOM elements, hierarchy 51
hover()method 48, 50
toggle() method 48, 49

CSS 19
CSS reference

Mezzoblue CSS cribsheet 374
CSS browser catalog 375
W3C cascading style sheets homepage 374

CSS selectors
about 21
child combinator used 23
list-item levels, styling 23, 24
negation pseudo-class used 24
using 21-23

custom animations, creating
.animate() method 77
.animate() method, first form 77
.animate() method, second form 77
.fadeToggle() method 78
fadeIn() method 78
properties, CSS positions 81
properties, modifying 79, 81

custom selectors
about 26
alternate rows, styling 27-29
CSS pseudo-class syntax 26
form selectors 29, 30
one-based numbering 27
zero-based numbering 26

[415]

D
data, AJAX

choosing from, HTML snippets 130
choosing from, JavaScript files 131
choosing from, JSON files 131
choosing from, XML document 131
event handler links, adding 116
HTML, appending 117-120
JavaScript object, working with 120
JavaScript objects, retrieving 120, 121
progressive enhancement 116
XML document, loading 127-130

Document Object Model. See DOM
DOM

about 7, 19, 20
example 19, 20

DOM elements
accessing 33
event bubbling 52, 53
event capturing 52
hierarchy 51

DOM manipulation methods
list 406, 407
using 113, 114

DOM traversal method, adding 349-354
internal stack jQuery used 353
side benefit 354
side effect 352

DOM traversal methods
about 30
category cell, styling 31, 32
chaining 32, 33
DOM elements, accessing 33
filter function 30, 31
list 401, 402

E
effect method 48, 405
effects

.dequeue() method, using 85
callback function 87, 88
multiple effects, applying 82
multiple set elements, working with 85-89
non-effect methods, adding 84, 85
queuing 82, 84

simultaneous effects, creating 82
single set elements, working with 82-89

element opacity 297
elements

.wrap() method 105
clone() method used 106, 107
context, linking 101, 102
context, numbering 101, 102
copying 106, 107
CSS rule, applying 99
footnotes, appending 103
inserting 96, 97
jQuery, starting with 109, 110
moving 98, 100
pull quotes, styling 111, 113
pull quotes used 107
style rules, applying 108
three linked footnote markers 103

event bubbling 303
event handler

event namespacing, using 59
events, rebinding 60-62
removing 58, 59

event methods 402-404
event object

.is() method used 57

.preventDefault() method 56
accessing 54
default actions 56
event.stopPropagation() method 55
event.target property 54
event delegation 56-58
event target property 55
using 54

events
compound events 48
handling 39
shorthand event methods 47
style switcher 39-41

F
fadeIn(slow) method, using 75
fadeOut method, using 76
feed, headline rotator

loading indicator, adding 282, 283
retrieving from different domain 281

[416]

field messages, form

199

7

211
, 216

320

client-side validation, advantage over
server-side validation 218

code tasks 222
fields 218-220
input formats, implementing 221
regular expression 222, 223
rule 217

G
garbage collection 394
global functions, adding

advantage 343
example 341
function, adding to jQuery

namespace 341, 342
multiple functions, adding 342, 343
utility methods, creating 343-345

GNU Public License 10
gradient fade effect, headline

rotator 283-285

H
headline rotator

about 269
code 285-287
feed, retrieving 272-274
feed, retrieving from different domain 281
graceful degradation scenario 270
gradient fade effect 283-285
headline rotate function 276- 278
page, setting up 270
setting up 275
success handler used 272
usability issue, addressing 279-281

hide() method
disadvantage 74
example 72, 73
features 72

hide(speed) ,method 74
HTML form elements. See form

I
image carousel

code 313-316
images, shuffling 291, 292

[417]

implementing 287
page, setting up 288, 289

image enlargement, image carousel
about 300
animations, deferring 310, 311
badging 304, 306
close button used 302, 303
enlarged cover, dismissing 301, 302
enlarged image, badging 302
enlargement animation 306, 307
loading indicator, adding 311, 312
singleton element, creating 305

images, image carousel
action icons, displaying 295-299
enlarging 299, 300
shuffling 291
sliding animation, adding 294, 295
user interaction anomalies, avoiding 293
wrap around 291, 292

images, plugins
Jcrop plugin 334
Magnify plugin 335

inline CSS modifications
.css() method 67, 68
addClass() method 69
button elements used 68- 71
object literals 68

inner functions
about 386
advantage 385
function, assigning to global variable 387
garbage collector 388
JavaScript runtime 388
return value used 387
use 386, 387
variable scoping 388, 390

Internet Explorer tools
DebugBar 381
Developer Toolbar 380
Drip 381
Microsoft Visual Web Developer 381

J
JavaScript closures. See closures
JavaScript code compressors

(X)HTML reference 374

JSMin 373
Packer 373
pretty printer 374

JavaScript object
$.getjson() function, as class method 122
$.getjson() function, as global function 122
$.getjson() function, defining 122-124
global Query object 122-124
retrieving 120, 121
retrieving, $.getJSON() method used 121
script, executing 125, 126
working with 120

JavaScript Object Notation. See JSON
JavaScript pagination

adding 173
current page number, highlighting 176
custom event data, adding 175
pager, displaying 173
pager buttons, enabling 174
sort operations, with page

selection 177, 178
JavaScript reference

Dev.opera 372
JavaScript Toolbox 373
Mozilla developer center 372
MSDN JScript reference 372
Quirksmode 373

JavaScript sorting, sorting
.data() method 163
ascending sort orders, allowing 169
basic alphabetical sorting 156
bubble sort 161
column, highlighting 168
data, sorting 165, 167
descending sort orders, allowing 169
example 154, 155
expando 162
plugins 161
row grouping tags 155, 156
sort algorithm 161
sort, reversing 169, 170
sorting behavior, applying 164

jQuery
$() factory function 20
$() function 20
.animate() method 77
.insertAfter() method 96

[418]

.insertBefore() method 96
about 7, 17
actions 7
adding 14
callback function, using 87-89
CSS selectors 21
custom selectors 26
DOM manipulation methods 113
DOM traversal methods 30
downloading 11
elements, inserting 96, 97
HTML document, setting up 11-13
object methods, adding 345
online resources 371
plugin architecture 317
poem text, adding 15
using 11
web development frameworks 377, 378

jQuery, features
abstraction layer, adding 9
chaining pattern 9
implicit iteration technique 9
leverage knowledge of CSS 9
multiple actions, allowing 9, 10
support extensions, plugins 9

jQuery documentation
Adobe AIR jQuery API viewer 372
jQuery API 371
jQuery API browser 371
jQuery wiki 371
visual jQuery 372

jQuery object 15
code, executing 15-17
implicit iteration used 15
new class, injecting 15

jQuery object methods, adding 345
chaining behavior 348
object context, examining 345-347

jQuery online resources
blogs 375
CSS reference 374
JavaScript code compressors 373
JavaScript reference 372
jQuery documentation 371

jQuery project
jQuery 1.1 10
jQuery 1.1.3 10

jQuery 1.2 10
jQuery 1.2.6 10
jQuery 1.3 10
jQuery UI 10
public development phase 10

jQuery reference
AJAX methods 408
DOM manipulation methods 406, 407
DOM traversal methods 401, 402
effect methods 404, 405
event methods 402, 403, 404
miscellaneous methods 409
selector expressions 399-401

jQuery UI plugin library
.dialog() method options, sampling 328
about 321
add message button, adding 328
Dialog widget 326, 327
effects 321
erase message button, adding 328
interaction components 324, 325
interaction components, enhancing 325, 326
theme, applying 327
ThemeRoller 329, 330

jQuery UI plugin library, effects
advanced easing functions 322, 323
class animations 322
color animations 322
effect() method 323, 324
explode effect 323

JSON 120
JSONP 144
JSON with padding. See JSONP

K
keyboard events, style switcher

.keyCode property 64
adding 63, 64, 65
keyboard focus 63
keydown 63
keyup 63

L
lambda functions 16
lightbox, plugins

BlockUI plugin 337

[419]

FancyBox plugin 336
jqModal plugin 338
Thickbox plugin 336

live search 243
low-level AJAX method

about 146
capabilities 146

M
memory leak hazards

accidental reference loops 395
Internet Explorer memory leak

problem 396
method parameters

about 357
block shadow 358
call-back function 363
call-back function, employing 362
default parameter values 361
defaults, customizing 364
maps 360
simple parameters 359

Microsoft Developer Network JScript. See
MSDN JScript

miscellaneous methods 409
MIT License 10
modulus operator (%) 276
MSDN JScript 372

N
namespaced events 10
numeric calculations, numeric form data

.each() loop used 252
currency, formatting 252, 253
currency, parsing 252, 253
decimal places, dealing with 254, 255
shipping calculations 257
subtotal calculations 255, 256
tax values, rounding up 256, 257

numeric form data, working with
buttons, adding 258, 259
buttons, modifying 259-261
delete button, adding 258
input masking 250, 251
input validation 250
numeric calculations 251

rows, deleting 261, 262
shipping information, editing 263-266
shopping cart, table structure 247-250
shopping cart page code 266-268

O
Opera tools

Dragonfly 382
Web Inspector 382

P
page load, tasks

$(document).ready(), using 35, 36
code brevity, shortcuts 37
code execution timing 35
collisions, preventing 38
multiple scripting 36, 37
noConflict() method 38
performing 35

page setup, image carousel
style revision, JavaScript used 290, 291

paginating, data
JavaScript pagination 173
server-side pagination 171

paging
sorting and paging code 178-180

passed-in handler 37
PHP scripting language 132
plugins

charting 338
finding 317
forms 330
images 334
lightbox 336
tables 332
user events 340
using 318
writing, rules 368

plugins, developing
DOM traversal method, adding 349-354
global functions, adding 341
method parameters 357
plugins, publishing 368
selector expression, adding 365
shortcut methods, adding 354

[420]

plugins, writing
$ alias, using 369
documentation style 370
method interfaces 369
naming conventions 368, 369

Plugin Repository 317
pointers 395

Q
queued effects 82

R
reference counting system 394
reference loop 395
rows, table appearances

highlighting 181, 182
highlighting, with user interaction 186-188
striping 182-184
striping, advanced methods 185

S
Safari tools

about 381
Develop Menu 381
Web Inspector 382

security limitations
<iframe> HTML tag, using 144
JSONP, using for remote data 144
remote data, loading 143

selector expression
:first, 399
:last, 399
:not(a), 399
:even, 399
:odd, 399
:eq(index),400
:gt(index), 400
:lt(index), 400
:header, 400
:animated, 400
:contains(text), 400
:empty, 400
:has(a), 400
:parent, 400
:hidden, 400
:visible, 400

:nth-child(index), 400
:nth-child(even), 400
:nth-child(odd), 400
:nth-child(formula), 400
:first-child, 400
:last-child, 400
:only-child, 400
:input, 400
:text, 400
:password, 400
:radio, 400
:submit, 401
:image, 401
:reset, 401
:button, 401
:file, 401
:enabled, 401
:disabled, 401
:checked, 401
:selected, 401
#id, 399
*, 399
.class, 399
[attr=value], 400
[attr!=value], 400
[attr^=value], 400
[attr$=value], 400
[attr*=value], 400
[attr], 400
a ~ b, 399
a + b, 399
a > b, 399
a b, 399
a, b, 399
element, 399
creating 365
list 399, 400
parameters, element 366
parameters, index 366
parameters, matches 366
parameters, set 366
pseudo-class, adding 365
using 365-367

selectors
custom selectors 26

server-side pagination
about 171

[421]

sorting and paging 171, 172
server-side sorting, sorting

page refreshes, eliminating 153
progressive enhancement example 153
query string used 152

shortcut methods, adding
.animate() method 355
advantage 355
custom shortcut methods 356, 357
elements, hiding 355
elements, showing 355
event methods 354

show() method
disadvantage 74
example 72, 73
features 72

show(fast) method, using 74
show(normal) method, using 74
show(slow) method, using 74
show(speed), method 74
sorting

about 152
JavaScript sorting 153
server-side sorting 152
sorting and paging code 178-180

style switcher, events
codes, executing 46
default button, enabling 43
event context, exploiting 46
handler context 43, 44, 45
keyboard events, adding 63
large print button, enabling 41
narrow column button, enabling 42
refactoring 45

styling
alternate rows 27-29
category cell 31, 32
links 25

T
table appearances, modifying

clickable class 189
filtering 196
JavaScript code 202-205
rows, highlighting 181
sections, collapsing 194, 196
sections, expanding 194, 196

tooltip 189
tooltip, hiding 191
tooltip, placing 190
tooltip, positioning 190
tooltip, showTooltip() function 192, 194
tooltip, text styling 192

tables, plugins
Flexigrid plugin 334
jqGrid plugin 333
Tablesorter plugin 333

tabular data
about 151
paginating 171
paging 152
sorting 152

tools
Aptana tool 383
Charles tool 383
Fiddler tool 383
Firebug Lite tool 382
Firefox tools 379
Internet Explorer tools 381
NitobiBug tool 383
Opera tools 382
Safari tools 381
TextMate jQuery tool 383

U
user events, plugins

hoverIntent plugin 340
Live Query plugin 340

V
Venkman, Firefox tools 380

W
W3C 374
Wide Web Consortium. See W3C

X
XMLPath Language (XPath) 24

Z
zero- based numbering, custom selectors 26

	Cover
	Preface
	Table of Content
	Chapter 1: Getting Started
	What jQuery does
	Why jQuery works well
	History of the jQuery project
	Our first jQuery-powered web page
	Downloading jQuery
	Setting up the HTML document
	Adding jQuery
	Finding the poem text
	Injecting the new class
	Executing the code

	The finished product

	Summary

	Chapter 2: Selectors
	The document object model
	The $() factory function
	CSS selectors
	Styling list-item levels

	Attribute selectors
	Styling links

	Custom selectors
	Styling alternate rows
	Form selectors

	DOM traversal methods
	Styling specific cells
	Chaining

	Accessing DOM elements
	Summary

	Chapter 3: Events
	Performing tasks on page load
	Timing of code execution
	Multiple scripts on one page
	Shortcuts for code brevity
	Coexisting with other libraries

	Simple events
	A simple style switcher
	Enabling the other buttons
	Event handler context
	Further consolidation

	Shorthand events

	Compound events
	Showing and hiding advanced features
	Highlighting clickable items

	The journey of an event
	Side effects of event bubbling

	Altering the journey: the event object
	Event targets
	Stopping event propagation
	Default actions
	Event delegation

	Removing an event handler
	Event namespacing
	Rebinding events

	Simulating user interaction
	Keyboard events

	Summary

	Chapter 4: Effects
	Inline CSS modification
	Basic hide and show
	Effects and speed
	Speeding in
	Fading in and fading out

	Compound effects
	Creating custom animations
	Toggling the fade
	Animating multiple properties
	Positioning with CSS

	Simultaneous versus queued effects
	Working with a single set of elements
	Working with multiple sets of elements
	Callbacks
	In a nutshell

	Summary

	Chapter 5: DOM Manipulation
	Manipulating attributes
	Non-class attributes
	The $() factory function revisited

	Inserting new elements
	Moving elements
	Marking, numbering, and linking the context
	Appending footnotes

	Wrapping elements
	Copying elements
	Clone with events
	Cloning for pull quotes
	A CSS diversion
	Back to the code
	Prettifying the pull quotes

	DOM manipulation methods in a nutshell
	Summary

	Chapter 6: AJAX
	Loading data on demand
	Appending HTML
	Working with JavaScript objects
	Retrieving a JavaScript object
	Global jQuery functions
	Executing a script

	Loading an XML document

	Choosing a data format
	Passing data to the server
	Performing a GET request
	Performing a POST request
	Serializing a form

	Keeping an eye on the request
	AJAX and events
	Security limitations
	Using JSONP for remote data

	Additional options
	The low-level AJAX method
	Modifying default options
	Loading parts of an HTML page

	Summary

	Chapter 7: Table Manipulation
	Sorting and paging
	Server-side sorting
	Preventing page refreshes

	JavaScript sorting
	Row grouping tags
	Basic alphabetical sorting
	The power of plug-ins
	Performance concerns
	Finessing the sort keys
	Sorting other types of data
	Column highlighting
	Alternating sort directions

	Server-side pagination
	Sorting and paging go together

	JavaScript pagination
	Displaying the pager
	Enabling the pager buttons
	Marking the current page
	Paging with sorting

	The finished code

	Modifying table appearance
	Row highlighting
	Row striping
	Advanced row striping
	Interactive row highlighting

	Tooltips
	Collapsing and expanding sections
	Filtering
	Filter options
	Reversing the filters
	Interacting with other code

	The finished code

	Summary

	Chapter 8: Forms with Function
	Improving a basic form
	Progressively enhanced form styling
	The legend
	Required field messages

	Conditionally displayed fields
	Form validation
	Required fields
	Required formats
	A final check

	Checkbox manipulation
	The finished code

	Compact forms
	Placeholder text for fields
	AJAX auto-completion
	On the server
	In the browser
	Populating the search field
	Keyboard navigation
	Handling the arrow keys
	Inserting suggestions in the field
	Removing the suggestion list
	Auto-completion versus live search

	The finished code

	Working with numeric form data
	Shopping cart table structure
	Rejecting non-numeric input
	Numeric calculations
	Parsing and formatting currency
	Dealing with decimal places
	Other calculations
	Rounding values
	Finishing touches

	Deleting items
	Editing shipping information
	The finished code

	Summary

	Chapter 9: Shufflers and Rotators
	Headline rotator
	Setting up the page
	Retrieving the feed
	Setting up the rotator
	The headline rotate function
	Pause on hover
	Retrieving a feed from a different domain
	Adding a loading indicator

	Gradient fade effect
	The finished code

	An image carousel
	Setting up the page
	Revising the styles with JavaScript

	Shuffling images when clicked
	Adding sliding animation
	Displaying action icons

	Image enlargement
	Hiding the enlarged cover
	Displaying a close button
	More fun with badging
	Animating the cover enlargement
	Deferring animations until image loads
	Adding a loading indicator

	The finished code

	Summary

	Chapter 10: Using Plug-Ins
	Finding plug-ins and help
	How to use a plug-in
	The Form plug-in
	Tips and tricks

	The jQuery UI plug-in library
	Effects
	Color animations
	Class animations
	Advanced easing
	Additional effects

	Interaction components
	Widgets
	jQuery UI ThemeRoller

	Other recommended plug-ins
	Forms
	Autocomplete
	Validation
	Jeditable
	Masked input

	Tables
	Tablesorter
	jqGrid
	Flexigrid

	Images
	Jcrop
	Magnify

	Lightboxes and Modal Dialogs
	FancyBox
	Thickbox
	BlockUI
	jqModal

	Charting
	Flot
	Sparklines

	Events
	hoverIntent
	Live query

	Summary

	Chapter 11: Developing plug-ins
	Adding new global functions
	Adding multiple functions
	What's the point?
	Creating a utility method

	Adding jQuery Object Methods
	Object Method context
	Method chaining

	DOM traversal methods
	Adding new shortcut methods
	Method parameters
	Simple parameters
	Parameter maps
	Default parameter values
	Callback functions
	Customizable defaults

	Adding a selector expression
	Sharing a plug-in with the world
	Naming conventions
	Use of the $ alias
	Method interfaces
	Documentation style

	Summary

	Appendix A: Online Resources
	jQuery documentation
	jQuery wiki
	jQuery API
	jQuery API browser
	Visual jQuery
	Adobe AIR jQueryAPI viewer

	JavaScript reference
	Mozilla developer center
	Dev.opera
	MSDN JScript Reference
	Quirksmode
	JavaScript Toolbox

	JavaScript code compressors
	YUI Compressor
	JSMin
	Pretty printer

	(X)HTML reference
	W3C hypertext markup language home page

	CSS reference
	W3C cascading style sheets home page
	Mezzoblue CSS cribsheet
	Position is everything

	Useful blogs
	The jQuery blog
	Learning jQuery
	Ajaxian
	John Resig
	JavaScript ant
	Robert's talk
	Web standards with imagination
	Snook
	Matt Snider JavaScript resource
	I can't
	DOM scripting
	As days pass by
	A list apart

	Web development frameworks using jQuery

	Appendix B:: Development Tools
	Tools for Firefox
	Firebug
	Web developer toolbar
	Venkman
	Regular expressions tester

	Tools for Internet Explorer
	Microsoft Internet Explorer Developer Toolbar
	Microsoft Visual Web Developer
	DebugBar
	Drip

	Tools for Safari
	Develop Menu
	Web Inspector

	Tools for Opera
	Dragonfly

	Other tools
	Firebug Lite
	NitobiBug
	TextMate jQuery bundle
	Charles
	Fiddler
	Aptana

	Appendix C:: JavaScript Closures
	Inner functions
	The great escape
	Variable scoping

	Interactions between closures
	Closures in jQuery
	Arguments to $(document).ready()
	Event handlers

	Memory leak hazards
	Accidental reference loops
	The Internet Explorer memory leak problem
	The good news

	Summary

	Appendix D: Quick Reference
	Selector expressions
	DOM traversal methods
	Event methods
	Effect methods
	DOM manipulation methods
	AJAX methods
	Miscellaneous methods

	Index

