

Head First JavaScript
by Michael Morrison

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Sanders Kleinfeld

Proofreader: Colleen Gorman

Indexer: Julie Hawks

Page Viewers: Masheed Morrison (wife), family, and pet fish

Printing History:
December 2007: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First JavaScript, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No rocks, stick figures, cube puzzles, or macho moviegoers were harmed in the making of this book. Just me, but
I can handle it...I’m wiry.

ISBN-10: 0-596-52774-8

ISBN-13: 978-0-596-52774-7

[M]

My family knows
how to celebrate
a book release...

...but my koi fish
couldn’t care less.

This book uses RepKover™, a durable and fl exible lay-fl at binding.
TMTM

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)
Intro

Who is this book for?	 xxiv

We know what you’re thinking	 xxv

Metacognition	 xxvii

Bend your brain into submission	 xxix

Read me	 xxx

The technical review team	 xxxii

Acknowledgments	 xxxiii

 	 Intro	 xxiii

1	 the interactive web: Reacting to the Virtual World	 1

2	 storing data: Everything Has Its Place	 33

3	 exploring the client: Browser Spelunking	 85

4	 decision making: If There’s a Fork in the Road, Take It	 135

5	 looping: At the Risk of Repeating Myself 	 189

6	 functions: Reduce, Reuse, Recycle	 243

7	 forms and validation: Getting the User to Tell All	 289

8	 wrangling the page: Slicing and Dicing HTML with the DOM	 343

9	 bringing data to life: Objects as Frankendata	 393

10	 creating custom objects: Having It Your Way with Custom Objects	 449

11	 kill bugs dead: Good Scripts Gone Wrong	 485

12	 dynamic data: Touchy-Feely Web Applications	 537

Your brain on JavaScript. � You’re sitting around trying to learn something,

but your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether naked water skiing is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning JavaScript?

table of contents

x

Reacting to the Virtual World1 Tired of thinking of the Web in terms of passive pages?
Been there, done that. They’re called books. And they’re good for reading, learning...

lots of good things. But they’re not interactive. And neither is the Web without a

little help from JavaScript. Sure, you can submit a form and maybe do a trick here

and there with some crafty HTML and CSS coding, but you’re really just playing

Weekend at Bernie’s propping up a lifeless web page. Real live interactivity requires

a bit more smarts and a little more work... but it has a much bigger payoff.

the interactive web

(Online) people have needs 2

Like talking to a brick wall... nothing happens 3

But JavaScript talks back 4

Lights, camera, interaction! 6

Use the <script> tag to tell the browser you’re writing JavaScript 11

Your web browser can handle HTML, CSS, AND JavaScript 12

Man’s virtual best friend... needs YOUR help 15

Making iRock interactive 16

Create the iRock web page 17

Test drive 17

JavaScript events: giving the iRock a voice 18

Alerting the user with a function 19

Add the iRock greeting 20

Now let’s make the iRock really interactive 22

Interaction is TWO-way communication 23

Add a function to get the user’s name 24

Instant replay: what just happened? 27

Test drive iRock 1.0 28

table of contents

xi

Everything Has Its Place2 In the real world, people often overlook the importance of
having a place to store all their stuff. Not so in JavaScript. You simply

don’t have the luxury of walk-in closets and three-car garages. In JavaScript, everything

has its place, and it’s your job to make sure of it. The issue is data—how to represent it,

how to store it, and how to find it once you’ve put it somewhere. As a JavaScript storage

specialist, you’ll be able to take a cluttered room of JavaScript data and impose your will

on it with a flurry of virtual labels and storage bins.

storing data

Your scripts can store data 34

Scripts think in data types 35

Constants stay the SAME, variables can CHANGE 40

Variables start out without a value 44

Initialize a variable with “=” 45

Constants are resistant to change 46

What’s in a name? 50

Legal and illegal variable and constant names 51

Variable names often use CamelCase 52

Plan the Duncan’s Donuts web page 56

A first take at the donut calculations 58

Initialize your data...or else 61

NaN is NOT a number 62

You can add more than numbers 64

parseInt() and parseFloat() convert text to a number 65

Why are extra donuts being ordered? 66

Duncan discovers donut espionage 70

Use getElementById() to grab form data 71

Validate the web form’s data 72

Strive for intuitive user input 77

table of contents

xii

Browser Spelunking3 Sometimes JavaScript needs to know what’s going on in the
world around it. Your scripts may begin as code in web pages but they ultimately

live in a world created by the browser, or client. Smart scripts often need to know more

about the world they live in, in which case they can communicate with the browser to

find out more about it. Whether it’s finding out the screen size or accessing the browser’s

snooze button, scripts have an awful lot to gain by cultivating their browser relationship.

exploring the client

Clients, servers, and JavaScript 86

What can a browser do for you? 88

The iRock needs to be more responsive 90

Timers connect action to elapsed time 92

Breaking down a timer 93

Set a timer with setTimeout() 94

A closer look: the setTimeout() function 95

Multiple size screens, multiple complaints 99

Use the document object to get the client window’s width 100

Use document object properties to set the client window width 101

Set the height and width of the iRock image 102

The iRock should be sized to the page 103

onresize is triggered when the browser’s resized 107

The onresize event resizes the rock 108

Have we met? Recognizing the user 110

Every script has a life cycle 111

Cookies outlive your script’s life cycle 112

Cookies have a name and store a value...
and can expire 117

Your JavaScript can live OUTSIDE your web page 119

Greet the user with a cookie 120

greetUser() is cookie-powered now 121

Don’t forget to set the cookie, too 122

Cookies affect browser security 124

A world without cookies 126

Talk to the users... it’s better than nothing 129

table of contents

xiii

If There’s a Fork in the Road, Take It4
decision making

Lucky contestant, come on down! 136

"if" this is true... then do something 138

An if statement evaluates a condition... and then takes action 139

Use if to choose between two things 141

You can make multiple decisions with if 142

Adding an else to your if statement 143

Variables drive the story 146

But part of the story is missing 147

Compounding your JavaScript efforts 148

Tiered decision making with if/else 154

An if can go inside another if 155

Your functions control your pages 157

Pseudocode lets you map out your adventure 158

Stick figure inequality 162

!= Psst, I’ve got nothing to tell you… 163

Crafting decisions with comparison operators 164

Comments, placeholders, and documentation 166

Comments in JavaScript start with // 167

Scope and context: Where data lives 169

Check your adventure variable score 170

Where does my data live? 171

Choice of five 174

Nesting if/else can get complicated 175

Switch statements have multiple cases 177

Inside the switch statement 178

A switchy stick figure adventure: test drive 183

Life is all about making decisions. Stop or go, shake or bake, plea bargain

or go to trial... without the ability to make decisions, nothing would ever get done. It works

the same in JavaScript—decisions allow scripts to decide between different possible

outcomes. Decision-making drives the “story” of your scripts, and even the most

mundane scripts involve a story of some sort. Do you trust what the user entered and

book her a trip on a Sasquatch expedition or do you double-check that maybe she really

just wanted to ride a bus to Saskatchewan? The choice is yours to make!

table of contents

xiv

At the Risk of Repeating Myself5
looping

X marks the spot	 190

Déjà vu all over again...for loops	 191

Treasure hunting with a for loop	 192

Dissect the for loop	 193

Mandango: a macho movie seat finder	 194

First check seat availability	 195

Looping, HTML, and seat availability	 196

Movie seats as variables	 197

Arrays collect multiple pieces of data	 198

Array values are stored with keys	 199

From JavaScript to HTML	 203

Visualizing Mandango seats	 204

Test drive: the solo seat finder	 209

Too much of a good thing: endless loops	 210

Loops always need an exit condition (or two!)	 211

A "break" in the action	 212

Boolean operator logic uncovered	 218

Looping for just a "while"…until a condition is met	 222

Breaking down the while loop	 223

Use the right loop for the job	 225

Movie seat data modeling	 231

An array of an array: two-dimensional arrays	 232

Two keys to access 2-D array data	 233

Mandango in 2-D	 235

An entire theater of manly seats	 238

Some say repetition is the spice of life.� Sure, doing something new and

interesting is certainly exciting, but it's the little repetitive things that really make it possible

to get through the day. Compulsive hand sanitizing, a nervous tick, clicking Reply To All

to every freaking message you receive! Okay, maybe repetition isn't always such a great

thing in the real world. However, it can be extremely handy in the world of JavaScript.

You'd be surprised how often you need a script to run a piece of code several times.

Without loops, you'd be wasting a lot of time cutting and pasting a bunch of wasteful code.

table of contents

xv

Reduce, Reuse, Recycle6
functions

The mother of all problems 244

Functions as problem solvers 246

The nuts and bolts of a function 247

A function you’ve already met 248

Building a better thermostat 251

Passing information to functions 252

Function arguments as data 253

Functions eliminate duplicate code 254

Creating a seat setter function 257

The setSeat() function 259

The significance of feedback 261

Returning data from functions 262

Many happy return values 263

Getting the status of a seat 267

Showing the seat status 268

You can link the function to an image 269

Repetitive code is never a good thing 270

Separating functionality from content 271

Functions are just data 272

Calling or referencing your functions 273

Events, callbacks, and HTML attributes 277

Wiring events using function references 278

Function literals to the rescue 279

Where’s the wiring? 280

A shell of an HTML page 283

If there was an environmental movement within JavaScript,
it would be led by functions. Functions allow you to make JavaScript code

more efficient, and yes, more reusable. Functions are also task-oriented, good at code

organization, and excellent problem solvers. Sounds like the makings of a good resume!

In reality, all but the simplest of scripts stand to benefit from a functional reorganization.

While it’s hard to put a number on the carbon footprint of the average function, let’s just

say they do their part in making scripts as eco-friendly as possible.

table of contents

xvi

Getting the User to Tell All7
forms and validation

The Bannerocity HTML form	 291

When HTML is not enough	 292

Accessing form data	 293

Form fields follow a chain of events	 295

Losing focus with onblur	 296

Alert box validation	 297

Validate fields to make sure you have “not nothing”	 301

Validation without aggravating alert boxes	 302

A more subtle non-empty validator	 303

Size matters…	 305

Validating the length of data	 306

Validating a ZIP code	 311

Validating a date	 316

Regular expressions aren’t “regular”	 318

Regular expressions define patterns to match	 319

Metacharacters represent more than one literal character	 321

Drilling into regular expressions: quantifiers	 322

Validating data with regular expressions	 326

Matching mins and maxes	 329

Eliminating three-digit years with this...or that	 331

Leave nothing to chance	 332

Can you hear me now? Phone number validation	 333

You’ve got mail: validating email	 334

The exception is the rule	 335

Matching optional characters from a set	 336

Constructing an email validator	 337

You don’t have to be suave or sneaky to successfully get
information from users with JavaScript.� But you do have to be

careful. Humans have this strange tendency to make mistakes, which means you

can’t always count on the data provided in online forms being accurate. Enter

JavaScript. By passing form data through the right JavaScript code as it is being

entered, you can make web applications much more reliable, and also take some

load off of the server. We need to save that precious bandwidth for important

things like stunt videos and cute pet pictures.

table of contents

xvii

Slicing and Dicing HTML with the DOM8
wrangling the page

Functional but clumsy…interface matters 344

Describing scenes without alert boxes 345

Accessing HTML elements 347

Getting in touch with your inner HTML 348

Seeing the forest and the trees: the Document Object Model (DOM) 353

Your page is a collection of DOM nodes 354

Climbing the DOM tree with properties 357

Changing node text with the DOM 360

Standards compliant adventuring 365

Designing better options 367

Rethinking node text replacement 368

Replacing node text with a function 369

Dynamic options are a good thing 370

Interactive options are even better 371

A matter of style: CSS and DOM 372

Swapping style classes 373

Classy options 374

Test drive the stylized adventure options 375

Options gone wrong: the empty button 376

A la carte style tweaking 377

No more bogus options 379

More options, more complexity 380

Tracking the decision tree 382

Building the decision history in HTML 383

Manufacturing HTML code 384

Tracing the adventure story 387

Taking control of web page content with JavaScript is a lot
like baking. Well, without the mess... and unfortunately, also without the edible

reward afterward. However; you get full access to the HTML ingredients that go into a

web page, and more importantly, you have the ability to alter the recipe of the page. So

JavaScript makes it possible to manipulate the HTML code within a web page to

your heart’s desire, which opens up all kinds of interesting opportunities all made possible

by a collection of standard objects called the DOM (Document Object Model).

table of contents

xviii

Objects as Frankendata9
bringing data to life

A JavaScript-powered party 394

Data + actions = object 395

An object owns its data 396

Object member references with a dot 396

Custom objects extend JavaScript 401

Construct your custom objects 402

What’s in a constructor? 403

Bringing blog objects to life 404

The need for sorting 409

A JavaScript object for dating 410

Calculating time 411

Rethinking blog dates 412

An object within an object 413

Converting objects to text 416

Accessing pieces and parts of a date 417

Arrays as objects 420

Custom sorting an array 421

Sorting made simple with function literals 422

Searching the blog array 425

Searching within strings: indexOf() 427

Searching the blog array 428

Searching works now, too! 431

The Math object is an organizational object 434

Generate random numbers with Math.random 436

Turn a function into a method 441

Unveiling the shiny new blog object 442

What do objects really offer YouCube? 443

JavaScript objects aren’t nearly as gruesome as the good
doctor might have you think. But they are interesting in that they combine

pieces and parts of the JavaScript language together so that they’re more powerful

together. Objects combine data with actions to create a new data type that is much

more "alive" than data you’ve seen thus far. You end up with arrays that can sort

themselves, strings that can search themselves, and scripts that can grow fur and

howl at the moon! OK, maybe not that last one but you get the idea...

table of contents

xix

Having It Your Way with Custom Objects10
creating custom objects

Revisiting the YouCube Blog methods 450

Method overload 451

Classes vs. instances 452

Instances are created from classes 453

Access an instance’s properties with “this” 454

Own once, run many: class-owned methods 455

Use prototype to work at a class-level 456

Classes, prototypes, and YouCube 457

Class properties are shared, too 462

Creating class properties 463

Signed and delivered 465

A date formatting method 468

Extending standard objects 469

Custom date object = better YouCube 470

A class can have its own method 471

Examine the sort comparison function 473

Calling a class method 474

A picture is worth a thousand words 475

Incorporating images into YouCube 476

Adding imagery to YouCube 478

An object-powered YouCube 480

If it was only that easy, we’d surely have it made. JavaScript doesn’t

have a money-back guarantee, but you can definitely have it your way. Custom objects

are the JavaScript equivalent of a decaf triple shot grande extra hot no whip extra drizzle

no foam marble mocha macchiato. That is one custom cup of coffee! And with custom

JavaScript objects, you can brew up some code that does exactly what you want, while

taking advantage of the benefits of properties and methods. The end result is reusable

code that effectively extends the JavaScript language...just for you!

Calling a class method 474

A picture is worth a thousand words 475

table of contents

xx

Good Scripts Gone Wrong11
kill bugs dead

Real-world debugging	 486

The case of the buggy IQ calculator	 487

Try different browsers	 488

Debugging on easy street	 491

Variables gone wild undefined	 495

Crunching the intelligence numbers	 497

The case of the radio call-in bugs	 498

Opening up the investigation	 499

A question of syntax validation (Bug #1)	 500

Careful with those strings	 501

Quotes, apostrophes, and consistency	 502

When a quote isn’t a quote, use escape characters	 503

Undefined isn’t just for variables (Bug #2)	 504

Everyone’s a winner (Bug #3)	 506

Alert box debugging	 507

Watching variables with alert	 508

Bad logic is legal but buggy	 510

Everyone’s a loser! (Bug #4)	 514

Overwhelmed by annoying alerts	 515

Build a custom console for debugging	 517

The peskiest errors of all: runtime	 524

The JavaScript bug trifecta	 525

Comments as temporary code disablers	 528

The dangers of shadowy variables	 530

Even the best laid JavaScript plans sometimes fail.� When this

happens, and it will, your job is not to panic. The best JavaScript developers are not

the ones who never create bugs - those people are called liars. No, the best JavaScript

developers are those who are able to successfully hunt down and eradicate the bugs

they create. More importantly, top notch JavaScript bug exterminators develop good

coding habits that minimize the sneakiest and nastiest of bugs. A little prevention can

go a long way. But bugs happen, and you’ll need an arsenal of weapons to combat them...

table of contents

xxi

Touchy-Feely Web Applications12
dynamic data

Yearning for dynamic data 538

A data-driven YouCube 539

Ajax is all about communication 541

XML lets you tag YOUR data YOUR way 543

XML + HTML = XHTML 545

XML and the YouCube blog data 547

Injecting YouCube with Ajax 550

JavaScript to the Ajax rescue: XMLHttpRequest 552

Get or Post? A request with XMLHttpRequest 555

Making sense of an Ajax request 559

Interactive pages start with a request object 563

Call me when you’re done 564

Handling a response...seamlessly 565

The DOM to the rescue 566

YouCube is driven by its data 571

Dysfunctional buttons 573

The buttons need data 574

Time-saving web-based blog additions 577

Writing blog data 578

PHP has needs, too 581

Feeding data to the PHP script 582

Getting it up: Posting blog data to the server 585

Making YouCube more, uh, usable 590

Auto-fill fields for your users 591

Repetitive task? How about a function? 592

The modern Web is a very responsive place where pages
are expected to react to the user’s every whim. Or at least that’s

the dream of many web users and developers. JavaScript plays a vital role in this

dream through a programming technique known as Ajax that provides a mechanism for

dramatically changing the “feel” of web pages. With Ajax, web pages act much more like

full-blown applications since they are able to quickly load and save data dynamically

while responding to the user in real time without any page refreshes or browser trickery.

this is a new chapter 33

storing data2

Everything Has Its Place

In the real world, people often overlook the importance of  
having a place to store all their stuff.  Not so in JavaScript. You simply

don’t have the luxury of walk-in closets and three-car garages. In JavaScript, everything

has its place, and it’s your job to make sure of it. The issue is data—how to represent it,

how to store it, and how to find it once you’ve put it somewhere. As a JavaScript storage

specialist, you’ll be able to take a cluttered room of JavaScript data and impose your will

on it with a flurry of virtual labels and storage bins.

In the real world, people often overlook the importance of  
having a place to store all their stuff.  Not so in JavaScript. You simply

don’t have the luxury of walk-in closets and three-car garages. In JavaScript, everything

has its place, and it’s your job to make sure of it. The issue is data—how to represent it,

how to store it, and how to find it once you’ve put it somewhere. As a JavaScript storage

specialist, you’ll be able to take a cluttered room of JavaScript data and impose your will

on it with a flurry of virtual labels and storage bins.

Every lady needs needs a
special place to store treasured
belongings...not to mention
some petty cash and a bogus
passport for a quick getaway.

34 Chapter 2

Your scripts can store data
Just about every script has to deal with data in one way or another, and
that usually means storing data in memory. The JavaScript interpreter that
lives in web browsers is responsible for setting aside little areas of storage
for JavaScript data. It’s your job, however, to spell out exactly what the
data is and how you intend to use it.

Think of the different real world pieces of
information you deal with on a daily basis.
How are they alike? Different? How would you
organize those different pieces of data?

Scripts use stored data to carry out calculations and remember
information about the user. Without the ability to store data, you’d never
find that new house or really get to know your iRock.

The information associated
with a house search must all
be stored within the script
that performs the calculations.

The user’s name entered into
the iRock page is stored away so
that the script can show you a
personalized greeting.

data storing scripts

you are here 4    35

storing data

Scripts think in data types
You organize and categorize real world data into types without even
thinking about it: names, numbers, sounds, and so on. JavaScript also
categorizes script data into data types. Data types are the key to
mapping information from your brain to JavaScript.

Data types directly affect how you work with data in JavaScript code.
For example, alert boxes only display text, not numbers. So numbers are
converted to text behind the scenes before they’re displayed.

Human Brain
JavaScript

JavaScript uses three basic data types:
text, number, and boolean.

$19.95

Turn dishwasher ON

Take me out to the

ballgame

number

text

boolean

Text
Text data is really just a sequence of characters, like the name of your favorite breakfast cereal. Text is usually words or sentences, but it doesn’t have to be. Also known as strings, JavaScript text always appears within quotes ("") or apostrophes ('').

Number

Boolean

Numbers are used to store numeric

data like the weights and quantities

of things. JavaScript numbers can

be either integer/whole numbers (2

pounds) or decimals (2.5 pounds).

Boolean data is always in one
of two possible states—true
or false. So you can use a
boolean to represent anything
that has two possible settings,
like a toaster with an On/Off
switch. Booleans show up
all the time and you can
use them to help in making
decisions. We’ll talk more
about that in Chapter 4.

36   Chapter 2

Find everything that could be represented by a JavaScript
data type, and write down what type that thing should be.

sharpen your pencil

you are here 4    37

storing data

38   Chapter 2

Your job was to find everything that JavaScript could
represent, and figure out the type JavaScript would use.

Boolean

Boolean

Object (more on

these in Chapter 9).

Text

Number

sharpen solution

you are here 4    39

storing data

Number

Text

Number (different

number for each state).Boolean

Boolean

Text

Number

Number

Text. When numbers and
characters are mixed, the data
is ALWAYS considered text.

40 Chapter 2

Constants stay the SAME,
variables can CHANGE
Storing data in JavaScript isn’t just about type, it’s also about purpose.
What do you want to do with the data? Or more specifically, will the data
change throughout the course of your script? The answers determine
whether you code your data type in JavaScript as a variable or a constant.
A variable changes throughout the course of a script, while a
constant never changes its value.

What other information types could involve both variables and constants?

Constant Variable

324 total page hits—a
variable since users are
constantly visiting the
page and changing the
hit count.

24 hours in a day—a
constant as far as
humans are concerned,
even though the moon
is slowly leaving us.

Land area of 3.5 million
square miles—a constant
(unless you wait around
long enough for the
Earth’s tectonic plates
to shift).

Sunrise at 6:43am—a
variable since the sunrise
changes every day.

Population of 300 million
people—a variable since the
U.S. population is still on
the rise.

URL of web page is
www.duncansdonuts.com—a
constant, unless the donut
biz takes a dramatic
downturn.

Variable data can
change—constant
data is fixed.

same versus difference

you are here 4    41

storing data

Circle all of the data at Duncan’s Donuts, and then identify each
thing you circled as being either a variable or a constant.

42   Chapter 2

Your job was to find all the variables and constants.

Constant

Constant

Variable

Variable

Variable

sharpen solution

you are here 4    43

storing data

Tonight’s talk: �Variable and Constant square off
over data storage.

Variable:

When it comes to storing data, I offer the most in
flexibility. You can change my value all you want. I
can be set to one value now and some other value
later—that’s what I call freedom.

Sure, but your mule-headed resistance to change
just won’t work in situations where data has to take
on different values over time. For example, a rocket
launch countdown has to change as it counts down
from 10 to 1. Deal with that!

Yeah, sure, whatever. How do you get off calling
variation a bad thing. Don’t you realize that change
can be a good thing, especially when you’ve got to
to store information entered by the user, perform
calculations, anything like that?

I suppose we’ll just have to agree to disagree.

Constant:

And I call that flip-flopping! I say pick a value and
stick to it. It’s my ruthless consistency that makes
me so valuable to scripters...they appreciate the
predictability of data that always stays the course.

Oh, so you think you’re the only data storage option
for mission critical applications, huh? Wrong! How
do you think that rocket ever got to the launch pad?
Because someone was smart enough to make the
launch date a constant. Show me a deadline that’s a
variable and I’ll show you a project behind schedule.

I say the more things change, the more they stay
the same. And really, why change in the first place?
Settle on a good value from the start and leave it
alone. Think about the comfort in knowing that
a value can never be changed, accidentally or
otherwise.

Actually, I’ve disagreed with you all along.

44 Chapter 2

Variables start out without a value
A variable is a storage location in memory with a unique name, like
a label on a box that’s used to store things. You create a variable using a
special JavaScript keyword called var, and the name of the new variable.
A keyword is a word set aside in JavaScript to perform a particular task,
like creating a variable.

var Variable name ;+ +

The var keyword
indicates that you’re
creating a new variable.

The variable name can
be just about anything
you want, as long as it’s
unique within your script.

The semicolon
ends this line of
JavaScript code.

When you create a variable using the var keyword, that variable’s
initially empty.... it has no value. It’s fine for a variable to start off being
empty as long as you don’t attempt to read its value before assigning
it a value. It’d be like trying to play a song on your MP3 player before
loading it with music.

var pageHits;

Yep, this is a
new variable.

The variable
name is pageHits.

The end of the line.

A newly-created variable has reserved storage space set aside, and is
ready to store data. And the key to accessing and manipulating the data
it stores is its name. That’s why it’s so important for the name of every
variable to be unique AND meaningful. For example, the name
pageHits gives you a pretty good clue as to what kind of data that
variable stores. Naming the page hit variable x or gerkin wouldn’t
have been nearly as descriptive.

Empty—ready
for storage.

pageHits

building a variable

you are here 4    45

storing data

= ;var Variable name+

Initialize a variable with "="
You don’t have to create variables without an initial value. In fact, it’s
usually a pretty good idea to give a variable a value when you first create it.
That’s called initializing a variable. That’s just a matter of adding a tiny
bit of extra code to the normal variable creation routine:

+

300

+Initial value+ +

The equals sign connects
the variable name to its
initial value.

This initial value is
stored in the variable.

Terminates the
line of code.

var population = 300;

Unlike its blank counterpart, an initialized variable is immediately
ready to be used... it already has a value stored in it. It’s like buying a
preloaded MP3 player—ready to play right out of the box.

Remember data types? Another thing this line of script does is assign the
 data type of the variable automatically. In this case, JavaScript creates
the population variable as a number because you gave it a numeric
initial value, 300. If the variable is ever assigned some other type, then
the type of the variable changes to reflect the new data. Most of the time
JavaScript handles this automatically; there will be cases where you will
need to be explicit and even convert to a different data type...but we’ll get
to all that a bit later.

Now the variable
contains numeric data.

Create the variable.

Give it a name.

Assign the value to the variable.

Specify its value.

The end.

population

46 Chapter 2

Constants are resistant to change
Initializing a variable is all about setting its first value—there’s nothing
stopping that value from being changed later. To store a piece of data
that can never change, you need a constant. Constants are created just like
initialized variables, but you use the const keyword instead of var. And
the “initial” value becomes a permanent value...constants play for keeps!

TAXRATE

.925

This creates a constant
that can’t be changed.

It’s all over.

const TAXRATE = .925;

The biggest difference between creating a constant and a variable is you
have to use the const keyword instead of var. The syntax is the same as
when you’re initializing a variable. But, constants are often named using
all capital letters to make them STANDOUT from variables in your code.

The name of
the constant.

The constant value—this
value can never change.

Assign a value to
the constant.

Constants are handy for storing information that you might directly code in
a script, like a sales tax rate. Instead of using number like 0.925, your code
is much easier to understand if you use a constant with a descriptive name,
like TAXRATE. And if you ever need to change the value of the constant
in the script, you can make the change in one place—where the constant is
defined—instead of trying to find each time it appears in your script, which
could get really complicated.

This data will never,
ever, ever change...ever!

The ALL CAPS constant name helps to make it easily identifiable as compared to variables, which use mixedCase.

The value the constant
will have throughout
all eternity. This data

cannot change.

= ;const Constant name+ ++Constant value+ +

	 							 Not all
browsers
support
the const
keyword.

The	 const	keyword	is	
fairly	new	to	JavaScript,	
and	not	all	browsers	
support	it.	Be	sure	
to	double	check	your	
target	browsers	before	
releasing	JavaScript	
code	that	uses	const.

constants are stubborn

you are here 4    47

storing data

Decide whether each of the following pieces of information should be a variable or a constant,
and then write the code to create each, and initialize them (if that’s appropriate).

Hang on, I thought constants
couldn’t change.

The current temperature, which is initially unknown

The conversion unit from human years to dog years (1 human year = 7 dog years)

The countdown for a rocket launch (from 10 to 0)

The price of a tasty donut (50 cents)

Constants can’t change, at least
not without a text editor.
It’s true that constants can’t change while a script is
running...but there’s nothing stopping you from changing
the value of a constant where it’s first created. So from your
script’s perspective, a constant is absolutely fixed, but from
your perspective, it can be changed by going back to the point
where you created the constant. So a tax rate constant can’t
change while the script is running, but you can change the
rate in your initialization code, and the new constant value
will be reflected in the script from then on out.

48   Chapter 2

Your job was to decide whether each of the following pieces of information should be a variable
or a constant, and then write the code to create them, and initialize them when appropriate.

The current temperature, which is initially unknown

The conversion unit from human years to dog years (1 human year = 7 dog years)

The countdown for a rocket launch (from 10 to 0)

The price of a tasty donut (50 cents)

var temp;

const HUMANTODOG = 7;

var countdown = 10;

var donutPrice = 0.50; or const DONUTPRICE = 0.50;

The temperature changes all the
time and the value is unknown, so
a blank variable is the ticket.

This conversion rate doesn’t change, so it makes perfect sense as a constant.

The countdown has to count from
10 to 1, so it’s a variable, and it
has to be initialized to the start
count (10).

If the donut price changes, it makes sense as a variable that’s initialized to the current price.

...or maybe the donut price is
fixed, in which case a constant
set to the price works better.

exercise solution

you are here 4    49

storing data

Q: If I don’t specify the data type of
JavaScript data, how does it ever know
what the type is?

A: Unlike some programming languages,
JavaScript doesn’t allow you to explicitly set
the type of a constant or variable. Instead,
the type is implied when you set the value
of the data. This allows JavaScript variables
a lot of flexibility since their data types can
change when different values are assigned
to them. For example: if you assign the
number 17 to a variable named x, the
variable is a number. But if you turn around
and assign x the text “seventeen”, the
variable type changes to string.

Q: If the data type of JavaScript data
is taken care of automatically, why should
I even care about data types?

A: Because there are plenty of situations
where you can’t rely solely on JavaScript’s
automatic data type handling. For example,
you may have a number stored as text that
you want to use in a calculation. You have
to convert the text type to the number type
in order to do any math calculations with the
number. The reverse is true when displaying
a number in an alert box—it must first be
converted to text. JavaScript will perform the
number-to-text conversion automatically, but
it may not convert exactly like you want it to.

Q: Is it OK to leave a variable
uninitialized if I don’t know what it’s value
is up front?

A: Absolutely. The idea behind
initialization is to try to head off problems
where you might try to access a variable
when it doesn’t have a value. But, there are
also times where there’s no way to know
the value of a variable when you first create
it. If that happens, just make sure that the
variable gets set before you try to use it. And
keep in mind that you can always initialize
a variable to a “nothing” value, such as ""
for text, 0 for numbers, or false for
booleans. This helps eliminate the risk of
accidentally accessing uninitialized data.

Q: Is there any trick to knowing when
to use a variable and when to use a
constant?

A: While it’s easy to just say constants
can’t change and variables can, there’s a
bit more to it than that. In many cases you’ll
start out using variables for everything, and
only realize that there are opportunities to
make some of those variables into constants
later. Even then, it’s rare that you’ll be able
to turn a variable into a constant. More
likely, you’ll have a fixed piece of text or
number that is used in several places, like
a repetitive greeting or conversion rate.

Instead of duplicating the text or number
over and over, create a constant for it and
use that instead. Then if you ever need to
adjust or change the value, you can do it in
one place in your code.

Q: What happens to script data when
a web page is reloaded?

A: Script data gets reset to its initial
values, as if the script had never been run
before. In other words, refreshing a web
page has the same effect on the script as if
the script was being run for the first time.

Script data can usually be represented by one of the
three basic data types: text, number, or boolean.

A variable is a piece of data that can change over the
course of a script.

A constant is a piece of information that cannot change.







The var keyboard is used to create variables, while
const is used to create constants.

The data type of a piece of JavaScript data is
established when you set the data to a certain value,
and for variables the type can change.





Data
types are
established
when
variable’s and
constant’s
values are set.

50   Chapter 2

What’s in a name?
Variables, constants, and other JavaScript syntax constructs are identified
in scripts using unique names known as identifiers. JavaScript identifiers
are like the names of people in the real world, except they aren’t as
flexible (people can have the same name, but JavaScript variables can’t).
In addition to being unique within a script, identifiers must abide by a few
naming laws laid down by JavaScript:

When you create a JavaScript identifier for a variable or constant, you’re
naming a piece of information that typically has meaning within a script.
So, it’s not enough to simply abide by the laws of identifier naming. You
should definitely try to add context to the names of your data pieces so
that they are immediately identifiable.

Of course, there are times when a simple x does the job—not every piece
of data in a script has a purpose that is easily described.

Identifiers should be descriptive
so that data is easily identifiable,
not to mention legal...

I’m not going to tolerate
law breakers when it
comes to identifiers.

Sheriff J.S. Justice,
dedicated lawman.

An identifier must be at least one character in length.

The first character in an identifier must be a letter, an
underscore (_), or a dollar sign ($).

Each character after the first character can be a letter,
an underscore (_), a dollar sign ($), or a number.

Spaces and special characters other than _ and $ are
not allowed in any part of an identifier.

my name is

you are here 4    51

storing data

!guilty

The pastry wizards over at Duncan’s Donuts are trying to decide on a promotional cap design.
Unfortunately, they don’t realize that some of the designs violate JavaScript’s rules for naming
identifiers. Mark an X over the names on the caps that won’t cut it in JavaScript.

donuts! glaze1_tasty
#1crullerhot now

ka_chow

top100

_topSecret

firstName

5to10

$total

Not legal: can’t start
with a number.

Not legal: can’t
start with a special
character other
than _ or $.

Legal: all letters, so
everything is fine. Legal: numbers don’t

appear at the beginning,
so this is A-OK.

Legal: letters
and underscores
are all good.

Legal: although it looks
a little strange, starting
with a dollar sign is
perfectly legal.

Legal: Starting with an
underscore isn’t a problem at
all—some people even use this
technique to name variables
that have a special meaning.

Legal and illegal variable and constant names

52   Chapter 2

Variable names often use CamelCase
Although there aren’t any JavaScript laws governing how you style
identifier names, the JavaScript community has some unofficial
standards. One of these standards is using CamelCase, which means
mixing case within identifiers that consist of more than one word
(remember, you can’t have spaces in a variable name). Variables usually
use lower camel case, in which the first word is all lowercase, but
additional words are mixed-case.

Your job was to mark an X over the caps that have variable names that won’t cut it in JavaScript.

donuts! glaze1_tasty
#1crullerhot now

Exclamation points
aren’t allowed anywhere
in an identifier.

Sorry, spaces aren’t
allowed either.

The pound symbol is only
going to invoke the wrath
of Sheriff Justice.

num_cake_donuts

NumCakeDonuts

numCakeDonuts

Separating multiple words
with an underscore in a
variable identifier isn’t illegal,
but there’s a better way.

Better... this style is known
as camel case, but it still isn’t
quite right for variables.

Ah, there it is—lower camel
case is perfect for naming
variables with multiple words.

lowerCamelCase is used to
name multiWord variables.

exercise solution

The first letter
of each word is
capitalized.

The first letter
of each word
except the first
is capitalized.

you are here 4    53

storing data

employee*of*the*Month

ALARM-STATUS

cups-o-coffee

eclairRECORDHOLDER

Employee of the Month

eclairRECORDHOLDER

Employee of the Month
alarm_status

JavaScript Magnets
The identifier magnets have gotten separated from the variables
and constants they identify at Duncan’s Donuts. Match up the
correct magnet to each variable/constant, and make sure you avoid
magnets with illegal names. Bonus points: identify each data type.

alarm_status

numCups

employee*of*the*Month cups-o-coffee

eclairRECORDHOLDER

FLOURPERBATCH

TAXNUM

ALARM-STATUSemployeeOfMonth

The number of
cups of coffee
sold today

The amount of
flour that goes
into a single
batch of donuts

The name of the employee of the month

The business tax number used to file sales taxThe record holder for most eclairs eaten in a sitting

alarmStatus
TAXNUM

eclairRecord

The status of
the alarm system

FLOURPERBATCHTax#

employeeOfMonth

eclairWinner!

flour quantity
#OfCups

54 Chapter 2

JavaScript Magnets Solution
The identifier magnets have gotten separated from the variables
and constants they identify at Duncan’s Donuts. Match up the
correct magnet to each variable/constant, and make sure you avoid
magnets with illegal names. Bonus points: identify each data type.

The number of
cups of coffee
sold today

The amount of
flour that goes
into a single
batch of donuts

The name of the employee of the month

The business tax number used to file sales taxThe record holder for most eclairs eaten in a sitting

The status of
the alarm system

numCups batch of donuts
FLOURPERBATCH

TAXNUM

employeeOfMonth

alarmStatus

eclairRecord

employee*of*the*Month

ALARM-STATUS

cups-o-coffee

eclairRECORDHOLDER

Employee of the Month

employee*of*the*MontheclairRECORDHOLDER

Employee of the Month
alarm_status

ALARM-STATUS

Tax#
employee*of*the*Month

Employee of the Month

eclairWinner!

flour quantity
#OfCups

Number

Text
Number

Text Boolean
Number

JavaScript magnets solution

All these leftovers
are illegal names in
JavaScript.

you are here 4    55

storing data

The next big thing (in donuts)
You may know about Duncan’s Donuts, but you haven’t met Duncan
or heard about his big plan to shake up the donut market. Duncan
wants to take the “Hot Donuts” business to the next level...he wants to
put it online! His idea is just-in-time donuts, where you place an
order online and enter a specific pick-up time, and have a hot order
of donuts waiting for you at the precise pick-up time. Your job is
to make sure the user enters the required data, as well as
calculate the tax and order total.

Hey, I’m Duncan. This online
ordering system for making
hot donuts is going to ROCK!

12 glazed

Hot and
on time!

x 12

The Donut
Blaster 3000.

Pick up in 45 minutes for Paul

JavaScript captures the user input and calculates the tax and total.

DB3000

56 Chapter 2

Plan the Duncan’s Donuts web page
Processing a just-in-time donut order involves both checking (or validating)
the order form for required data, and calculating the order total based
upon that data. The subtotal and total are calculated on the fly as the
data is entered so that the user gets immediate feedback on the total
price. The Place Order button is for submitting the final order, which isn’t
really a JavaScript issue...we’re not worrying about that here.

This information is
calculated on the fly
using JavaScript.

This information is required for
the order, and so it should be
validated by JavaScript.

JavaScript isn’t required for
the final form submission to
the web server.

JavaScript donut forms

you are here 4    57

storing data

subtotal + tax

subtotal x tax rate

With a little help from
JavaScript, each order is
filled just in time...genius!

The subtotal is calculated by multiplying the total number of donuts
by the price per donut:

(# of cake donuts + # of glazed donuts) x price per donut

The tax is calculated by multiplying the subtotal by the tax rate:

The order total is calculated by adding the subtotal and the tax:

What variables and constants will you
need to carry out these calculations?
What would you name them?

It looks like Duncan has a fair amount of data to keep track of in his form.
Not only does he have to keep up with the various pieces of information
entered by the user, but there are also several pieces of data that get
calculated in JavaScript code.

58 Chapter 2

A first take at the donut calculations
Duncan tried to write the JavaScript for the calculations himself, but
ran into problems. As soon as a user enters a number of donuts, the
on-the-fly calculations immediately go haywire. They’re coming up with
values of $NaN, which doesn’t make much sense. Even worse, orders
aren’t getting filled and customers aren’t exactly thrilled with Duncan’s
technological “advancements.”

x 0
That’s not good!

No donuts = big problem.

It’s time to take a look at the code for the donut script
and see exactly what’s going on. Look over on the next
page (or at the code samples you can download from
http://www.headfirstlabs.com/books/hfjs/), and see if you
can figure out what happened.

$NaN, is that code for
something terribly bad?

does not compute

you are here 4    59

storing data

<html>
 <head>
 <title>Duncan's Just-In-Time Donuts</title>
 <link rel="stylesheet" type="text/css" href="donuts.css" /> <script type="text/javascript">
 function updateOrder() {
 const TAXRATE;
 const DONUTPRICE;
 var numCakeDonuts = document.getElementById("cakedonuts").value; var numGlazedDonuts = document.getElementById("glazeddonuts").value; var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE; var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2); document.getElementById("tax").value = "$" + tax.toFixed(2); document.getElementById("total").value = "$" + total.toFixed(2); }
 function placeOrder() {
 // Submit order to server...
 form.submit();
 }
 </script>
 </head>
 <body>
 <div id="frame">
 ...
 <form name="orderform" action="donuts.php" method="POST"> ...
 <div class="field">
 # of cake donuts: <input type="text" id="cakedonuts" name="cakedonuts" value="" onchange="updateOrder();" />
 </div>
 <div class="field">
 # of glazed donuts: <input type="text" id="glazeddonuts" name="glazeddonuts" value="" onchange="updateOrder();" /> </div>
 ...
 <div class="field">
 <input type="button" value="Place Order"
 onclick="placeOrder(this.form);" />
 </div>
 </form>
 </div>
 </body>
</html>

Write down what you think went wrong with Duncan’s just-in-
time donut script code.

This code is called to
update the order by
calculating the subtotal
and total on the fly.

This code submits the
order to the server
and confirms the
order with the user.

The order is updated
when either number of
donuts changes.

The order is submitted
when the Place Order
button is clicked.

Since the data entered by the user looks OK, there must be something wrong with the constants.

60   Chapter 2

Write down what you think went wrong with Duncan’s just-in-
time donut script code.

OK, I understand that a constant always
has the same value, but if that’s the case
then how can it be uninitialized?

The two constants, TAXRATE and DONUTPRICE, aren’t initialized, which means
the calculations that depend on them can’t be completed.

You shouldn’t ever uninitialize a constant.
You can uninitialize a constant by never giving it a value,
but it’s a very bad idea. When you don’t initialize a
constant when you create it, that constant ends up in no
man’s land—it has no value, and even worse, it can’t
be given one. An uninitialized constant is essentially a
coding error, even though browsers don’t usually let
you know about it.

Always initialize constants
when you create them.

sharpen solution

you are here 4    61

storing data

Initialize your data...or else
When you don’t initialize a piece of data, it’s considered undefined,
which is a fancy way of saying it has no value. That doesn’t mean it
isn’t worth anything, it just means it doesn’t contain any information...
yet. The problem shows up when you try to use variables or constants
that haven’t been initialized.

const DONUTPRICE;

var numCakeDonuts = 0;

var numGlazedDonuts = 12;

var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE;

Uninitialized

Initialized

0 12 ?

subtotal = (0 + 12) * ?

This is a
big problem.

The DONUTPRICE constant is uninitialized, which means it has no
value. Actually JavaScript has a special value just for this “non-value”
state: undefined. It’s sort of like how your phone’s voice mail will
report “no messages” when you don’t have any messages—“no messages”
is technically still a message but it’s purpose is to represent the lack of
messages. Same deal with undefined—it indicates a lack of data.

A piece of data
is undefined
when it has
no value.

DONUTPRICE

You have no
messages.

No data
here, so it’s
undefined.

In JavaScript you
multiply numbers
using * instead of x

62   Chapter 2

Q: What does it mean that identifiers
must be unique within a script?

A: The whole point of identifiers is to
serve as a unique name that you can use to
identify a piece of information in a script. In
the real world, it isn’t all that uncommon for
people to have the same name... but then
again, people have the ability to deal with
such “name clashes” and figure out who
is who. JavaScript isn’t equipped to deal
with ambiguity, so it needs you to carefully
distinguish different pieces of information by
using different names. You do this by making
sure identifiers within your script code are
all unique.

Q: Does every identifier I create have
to be unique, or unique only in a specific
script?

A: Identifier uniqueness is really only
important within a single script, and in
some cases only within certain portions of
a single script. However, keep in mind that
scripts for big web applications can get quite
large, spread across lots of files. In this
case, it becomes more challenging to ensure
uniqueness among all identifiers. The good
news it that it isn’t terribly difficult to maintain
identifier uniqueness in scripts of your own,
provided you’re as descriptive as possible
when naming them.

Q: I still don’t quite understand when
to use camel case and lower camel case.
What gives?

A: Camel case (with the first word
capitalized) only applies to naming
JavaScript objects, which we’ll talk about
in Chapter 9. Lower camel case applies to
variables and functions, and is the same

as camel case, except the first letter in
the identifier is lowercase. So camel case
means you would name an object Donut,
while lower camel case means you would
name a function getDonut() and a
variable numDonuts. There isn’t a cute
name for constants—they’re just all caps.

Q: Are text and boolean data
considered NaN?

A: Theoretically, yes, since they definitely
aren’t numbers. But in reality, no. The
purpose of NaN is to indicate that a
number isn’t what you think it is. In other
words, NaN isn’t so much a description of
JavaScript data in general as it is an error
indicator for number data types. You typically
only encounter NaN when performing
calculations that expect numbers but for
some reason are given non-numeric data to
work with.

NaN is NOT a number
Just as undefined represents a special data condition, there’s another
important value used to indicate a special case with JavaScript variables:
NaN. NaN means Not a Number, and it’s what the subTotal variable
gets set to since there isn’t enough information to carry out the calculation.
In other words, you treated a missing value as a number... and got NaN.

subtotal = (0 + 12) * ? = NaN

Not a number!
NaN is a value
that isn’t a
number even
though you’re
expecting the
value to be one.

A number

Since this data is undefined, the
calculation can’t be carried out.

const DONUTPRICE = 0.50;

So solving the NaN problem requires initializing the DONUTPRICE
constant when you create it:

NaN not naan

you are here 4    63

storing data

Help!

Meanwhile, back at Duncan’s...
Back at Duncan’s Donuts, things have gone from bad to worse.
Instead of empty boxes, now there are donuts everywhere—every
order is somehow getting overcalculated. Duncan is getting
overwhelmed with complaints of donut overload and pastry gouging.

What could be wrong with how the donut quantity data is being handled?

I don’t get it. I’ve
gone from too few
donuts to too many.

The customer only ordered
9 donuts but he somehow
ended up getting a lot more.

64   Chapter 2

You can add more than numbers
In JavaScript, context is everything. Specifically, it matters what
kind of data you’re manipulating in a given piece of code, not
just what you’re doing with the data. Even something as simple
as adding two pieces of information can yield very different
results depending upon the type of data involved.

1 + 2 = 3 "do" + "nuts" = "donuts"

Numeric Addition

Adding two numbers does what

you might expect—it produces a

result that is the mathematical

addition of the two values.

String Concatenation
Adding two strings also does
what you might expect but it’s
very different than mathematical
addition—here the strings are
attached end-to-end.

Fancy word
for “stick these things together”.

Knowing that strings of text are added differently than
numbers, what do you think happens when an attempt is
made to add two textual numbers?

"1" + "2" = ?
Addition, concatenation,
what gives?

JavaScript doesn’t really care what’s in a string of text—it’s
all characters to JavaScript. So the fact that the strings hold
numeric characters makes no difference... string concatenation
is still performed, resulting in an unexpected result if the
intent was numeric addition.

"1" + "2" = "12"

Since these are strings and
not numbers, they are “added”
using string concatenation.

The result is a string
that doesn’t look like
mathematical addition at all.

	 Always make
sure you’re
adding what
you think
you’re adding.

Accidentally concatenating
strings when you intend to
add numbers is a common
JavaScript mistake. Be sure
to convert strings to numbers
before adding them if your
intent is numeric addition.

different types of addition

you are here 4    65

storing data

parseInt() and parseFloat(): converts
text to a number
Despite the addition/concatenation problem, there are legitimate
situations where you need to perform a mathematical operation
on a number that you’ve got stored as a string. In these cases, you
need to convert the string to a number before performing any
numeric operations on it. JavaScript provides two handy functions
for carrying out this type of conversion:

parseInt() parseFloat()

Give this function a string and it

converts the string to an integer
Give this function a string and it converts the string to a floating point (decimal) number

Each of these built-in functions accepts a string and returns
a number after carrying out the conversion:

parseInt("1") + parseInt("2") = 3

The string “2” is converted to the number 2.

1 2
parseInt() turns “1” into 1. This time the result

is the mathematical
addition of 1 and 2.

 Don’t worry if
this function
stuff is still a
little confusing.

You’ll get the formal lowdown on
functions a little later—for now
all you really need to know is that
functions allow you pass them
information and then give you back
something in return.

Keep in mind that the parseInt() and parseFloat()
functions aren’t guaranteed to always work. They’re
only as good as the information you provide them. They’ll
do their best at converting strings to numbers, but the idea
is that you should be providing them with strings that only
contain numeric characters.

parseFloat("$31.50") = NaN

This code is a problem
because the $ character
confuses the function.

Surprise, surprise, the result is Not a Number.

66 Chapter 2

Why are extra donuts being ordered?
Take a closer look at the just-in-time donut order form. We
should be able to figure out why so many donuts are being
accidentally ordered...

$31.50 / $0.50 = 63 donuts

More donuts are being charged for than are actually being ordered...but how many more?

The order subtotal.

The price per donut.
The total number of donuts actually ordered... hmmm.

This looks a whole lot like the numeric string addition problem, especially
when you consider that form data is always stored as strings regardless of
what it is. Even though numbers are entered into the form fields, from a
JavaScript perspective, they’re really just text. So we just need to convert
the strings to actual numbers to prevent a numeric addition from being
misinterpreted as a string concatenation.

when things don’t add up

We can divide the subtotal by the price for each
donut...and the answer is how many donuts are
getting ordered.

Remember “1” + “2” = “12”? Looks
kind of like that, doesn’t it?

you are here 4    67

storing data

Using the pieces of code below to grab the contents of the donut
quantity form fields, write the missing lines of code in Duncan’s
updateOrder() function so that the donut quantities are
converted from strings to numbers.

function updateOrder() {
 const TAXRATE = 0.0925;
 const DONUTPRICE = 0.50;
 var numCakeDonuts =

 var numGlazedDonuts =

 if (isNaN(numCakeDonuts))
 numCakeDonuts = 0;
 if (isNaN(numGlazedDonuts))
 numGlazedDonuts = 0;
 var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE;
 var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2);
 document.getElementById("tax").value = "$" + tax.toFixed(2);
 document.getElementById("total").value = "$" + total.toFixed(2);
}

document.getElementById("cakedonuts").value

document.getElementById("glazeddonuts").value

This code gets the number of
cake donuts entered by the
user in the donut form.

This code grabs the number of glazed donuts entered into the donut form.

68 Chapter 2

Using the pieces of code below to grab the contents of the donut
quantity form fields, write the missing lines of code in Duncan’s
updateOrder() function so that the donut quantities are
converted from strings to numbers.

function updateOrder() {
 const TAXRATE = 0.0925;
 const DONUTPRICE = 0.50;
 var numCakeDonuts =

 var numGlazedDonuts =

 if (isNaN(numCakeDonuts))
 numCakeDonuts = 0;
 if (isNaN(numGlazedDonuts))
 numGlazedDonuts = 0;
 var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE;
 var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2);
 document.getElementById("tax").value = "$" + tax.toFixed(2);
 document.getElementById("total").value = "$" + total.toFixed(2);
}

document.getElementById("glazeddonuts").value

parseInt(document.getElementById(“cakedonuts”).value);

parseInt(document.getElementById(“glazeddonuts”).value);

Since both numbers are
integers, parseInt() is
used for the conversion.

The toFixed() function rounds the
dollar values to two decimal places.

document.getElementById("cakedonuts").value

sharpen solution

you are here 4    69

storing data

Although not a strict JavaScript requirement, it’s a
good coding convention to name constants in ALL
UPPERCASE and variables in lowerCamelCase.

Always initialize constants when you create them, and
initialize variables whenever possible.

When a variable isn’t initialized, it remains undefined
until a value is eventually assigned to it.







 NaN stands for Not a Number, and is used to
indicate that a piece of data is not a number when the
expectation is that it should be.

String concatenation is very different from mathematical
addition, even though both use the familiar plus sign (+).

The built-in parseInt() and parseFloat()
functions are used to convert strings to numbers.







You figured out the problem...
Duncan is thrilled with the JavaScript code fixes you made. He’s finally
receiving orders that are accurate.... and business is booming.

Great, you got the online
order system working

perfectly!.

Of course, it’s risky to assume that a few quick fixes here and there
will solve your problems for all eternity. In fact, sometimes the peskiest
problems are exposed by unexpected outside forces...

6 cake
3 glazed
Pick up in 20 minutes for Greg

70 Chapter 2

Duncan discovers donut espionage
Duncan’s got a new problem: a weasel competitor named Frankie.
Frankie runs the hotdog business across the street from Duncan, and is
now offering a Breakfast Hound. Problem is, Frankie’s playing dirty and
submitting bogus donut orders with no names. So now we have orders
with no customers—and that’s not good.

I’m not worried about my
competitors, I just need to
make the donut code smarter
about how it accepts data.

18 cake
30 glazed
Pick up in 15 minutes for ?

Even though no
name has been
entered, the order
is still accepted.

Duncan is wasting precious time, energy, and donuts filling bogus orders...
and he needs you to make sure all the form data has been entered before
allowing an order to go through.

the d’oh thickens

you are here 4    71

storing data

Use getElementById() to grab form data
In order to check the validity of form data, you need a way to grab the
data from your Web page. The key to to accessing a web page element
with JavaScript is the id attribute of the HTML tag:

document.getElementById("cakedonuts")

document.getElementById()

Give this method the ID of an

element on a web page and it gives

you back the element itself, which

can then be used to access web data

<input type="text" id="cakedonuts" name="cakedonuts" />

JavaScript allows you to retrieve a web page element with its ID using a
function called getElementById(). This function doesn’t grab an
element’s data directly, but instead provides you with the HTML field
itself, as a JavaScript object. You then access the data through the field’s
value property.

The id attribute is what you use to access the form field in JavaScript code.

document.getElementById("cakedonuts").value

With this code in hand, you’re now ready to check Duncan’s form data to
make sure the fields aren’t empty before accepting an order.

 Don’t sweat objects, properties,
and methods right now.

JavaScript supports an advanced data
type called an object that allows you to

do some really cool things. In fact, the JavaScript language
itself is really just a bunch of objects. We’ll talk a lot more
about objects later in the book—for now, just know that a
method is a lot like a function, and a property is a lot like a
variable.

The cake donut quantity
HTML input element.

The ID is the
key to accessing
an element.

The value property gives
you access to the data.

The getElementById()
method belongs to
the document object.

Technically, getElementById() is a method on the document object, and not a function.

72 Chapter 2

Validate the web form’s data
You need to check to make sure a name is entered into the donut form.
Not entering the number of minutes until pick-up could also be a problem,
since the whole point is to provide hot donuts just in time. So, best case,
you want to ensure both pieces of data are filled-in and valid.

Checking for empty data in a form field is a matter of checking to see if
the form field value is an empty string ("").

document.getElementById("name").value

"" If the value
is an empty
string, we have
a problem.

Empty
form field.

If the name field value is an empty string, then you know the order needs
to be halted and the user should get asked to enter their name. The same
thing goes for the minutes field, except it’s also helpful to go a step further
and look to see if the data in that field is a number. The built-in isNaN()
function is what makes this check possible—you pass it a value and it tells
you whether the value is not a number (true) or if it is a number (false).

18 cake
30 glazed
Pick up in NaN minutes for ?

Donut order.

isNaN(document.getElementById("pickupminutes").value);

true
If the value is true, the data is not a number, so the order can’t be processed.

Bad form data—it’s
not actually a number.

isNaN() checks
to see if a value
is not a number.

An empty string is
a clue that a form
field has no data.

did you fill everything out?

you are here 4    73

storing data

JavaScript Magnets
The placeOrder() function is where the name and pick-up minutes
data validation takes place. Use the magnets to finish writing the code
that checks for the existence of name and pick-up minutes data, along
with making sure that the pick-up minutes entered is a number. You’ll
need to use each magnet, and some magnets more than once.

function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

 " before submitting an ord
er.");

 else
 // Submit the order to the s

erver

 form.submit();

}

“if” is used to test for a condition and then take
action accordingly—if this, then do something.

This means one of two
conditions can result in the
action—if this OR that,
then do something.

This is an equality
test—is one thing equal
to another thing?

"name" .

getElementById

""

"pickupminutes"

isNaN

document

value

)

(

74 Chapter 2

function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

 " before submitting an ord
er.");

 else
 // Submit the order to the s

erver

 form.submit();

}

JavaScript Magnets Solution
The placeOrder() function is where the name and pick-up
minutes data validation takes place. Use the magnets to finish writing
the code that checks for the existence of name and pick-up minutes
data, along with making sure that the pick-up minutes entered is a
number. All of the magnets are used, and some are used several times.

function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)document

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==).

function placeOrder() {

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)getElementById

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)getElementById
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)(

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)"name"

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==))

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

""

 else if (

 ||

 else if (

 ||.
 alert("I'm sorry but you mus

t provide your name before submi
tting an order.");

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||getElementById (
 alert("I'm sorry but you mus

t provide your name before submi
tting an order.");

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 ||

 else if (

 ||

 else if (

 ||"pickupminutes"
 alert("I'm sorry but you mus

t provide your name before submi
tting an order.");

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||
 alert("I'm sorry but you mus

t provide your name before submi
tting an order.");

""

 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)isNaN

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)isNaN

)

)

)

)

)

)(

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)getElementById

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)
 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)
 else if (

 ||

 else if (

 ||

 else if (

 ||

)

)

)(

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)
 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
"pickupminutes"

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
)

This says, if the name value is empty, then pop up an
alert...else do something
different.

Here, we’re saying if the
value is empty, OR if the
value is not a number.

This checks the value
of the name field to
see if it’s equals to “”.

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||.
 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||document

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)(

)

)

)

)

)

)document

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)getElementById

)

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

).
)

.

 else if (

 ||

 else if (

 ||"pickupminutes"

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

"pickupminutes"
 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

"pickupminutes"
 else if (

 ||)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order.");

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||

 else if (

 ||
value

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==)
 if (

 ==)

 if (

 ==).

 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)
 if (

 ==)

 alert("I'm sorry but you mus
t provide your name before submi

tting an order."); if (

 ==)value

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
.

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)

)

)

)

)

)

)

)
 else if (

 ||

)

 alert("I'm sorry but you mus
t provide the number of minutes

until pick-up" +

)

)

)

)

)

)

)
value

JavaScript magnets solution

you are here 4    75

storing data

You saved Duncan’s Donuts... again!
The new and improved just-in-time donut form with data validation has
put an end to Frankie’s pastry espionage, and also made the page more
robust for real customers. Using JavaScript to protect the integrity of data
entered by the user is a win-win, especially in the cutthroat breakfast biz!

Non-numeric data
is no longer a
problem in the pick-
up minutes field.

Leaving the
name field blank
now results in a
warning instead
of allowing the
order to go
through.

76   Chapter 2

Q: How does the plus sign (+) know to
add or concatenate?

A: Like many things in JavaScript,
functionality is determined by context. This
means the plus sign takes a look at the two
things being “added” and decides whether to
numerically add them or concatenate them
as text based upon their data types. You
already know that “adding” two words means
sticking them end-to-end. But problems can
occur when you mistakenly assume that
you’re working with one type of data when
it’s actually another. That’s another reason
why it’s always a good idea to check to
make sure you provide numeric data when
you intend numeric addition, and text for text.

Q: What happens when you attempt to
add a string to a number?

A: Since number-to-string conversion
is automatic in JavaScript, mixing the two
data types in an addition always results in
a string concatenation. So, the number first
gets converted to a string, and then the two
strings get concatenated. If you intended to
add the two numbers, you need to explicitly
convert the string to a number using
parseInt() or parseFloat().

Q: What happens if you use
parseInt() to convert a string
containing a decimal number?

A: Don’t worry, nothing catches on fire.
All that happens is that JavaScript assumes
you don’t care about the fractional part of the
number, so it returns only the integer portion
of the number.

Q: How does the id HTML attribute
tie web elements to JavaScript code?

A: Think of the id attribute as the portal
through which JavaScript code accesses
HTML content. When people say JavaScript
code runs on a web page, they don’t literally
mean the web page itself—they mean the
browser. In reality, JavaScript code is fairly
insulated from HTML code, and can only
access it through very specific mechanisms.
One of these mechanisms involves the id
attribute, which lets JavaScript retrieve an
HTML element. Tagging a web element
with an ID allows the element to be found
by JavaScript code, opening up all kinds of
scripting possibilities.

Q: That’s pretty vague. How
specifically does JavaScript code access
an HTML element?

A: The getElementById()
method of the document object is
the key to accessing an HTML element
from JavaScript, and this method uses
the id attribute of the element to find it
on the page. HTML IDs are like JavaScript
identifiers in that they should be unique
within a given page. Otherwise, the
getElementById() method would
have a tough time knowing what web
element to return.

Q: I know you said we’ll talk more
about them in Chapter 9, but objects have
already come up a few times. What are
they?

A: We’re jumping ahead a little here, so
don’t tell anyone. Objects are an advanced
JavaScript data type that can combine
functions, constants, and variables into one
logical entity. A method is just a function
that is part of an object, while a property
is a variable or constant in an object. On
a practical level, JavaScript uses objects
to represent just about everything—the
browser window is an object, as is the
web page document. That’s why the
getElementById() method must be
called through the document object—it’s
a part of the object, which represents the
entire web page. OK, back to Chapter 2...

Q: I still don’t understand the
difference between a web page element
and its value. What gives?

A: Web page elements are exposed to
JavaScript as objects, which means they
have properties and methods you can use to
manipulate them. One of these properties is
value, which holds the value stored in the
element. As an example, the value of a form
field is the data entered into the field.

Q: Why is it necessary to know if a
value is not a number? Wouldn’t it make
more sense to see if it is a number?

A: Good question. What it boils down to is
why you care about a value being a number
or not. In most cases the assumption is
that you’re dealing with a number, so it
makes sense to check for the exception (the
unexpected). By checking for NaN, you’re
able to make number-handling script code
more robust, and hopefully alleviate a weird
computation involving a non-number.

ask them... you know you want to

you are here 4    77

storing data

Strive for intuitive user input
Now that Duncan is no longer putting out fires, he really wants to improve
the user experience of the just-in-time donut form. Just as the “hot donuts”
sign is intuitive to people passing by his storefront, he wants the online
form to be similarly intuitive. Duncan knows that donuts are typically
ordered and served in dozens. Very few people order 12 or 24 donuts—
they order 1 or 2 dozen donuts. He thinks the donut form should allow
users to enter data in the most natural way possible.

Problem is, the current script doesn’t take into account the user entering
the word “dozen” when specifying the quantity of donuts.

Is it possible for the donut script to allow users to enter either a number or a number and the
word “dozen” for ordering by the dozen? How?

The script doesn’t complain when the user enters the word “dozen”
alongside a number... the parseInt() function ignores any text present
after a number in a string. So, the word “dozen” is just discarded, and all
that’s kept is the number.

“3 dozen” donuts gets converted into the number 3 thanks to the parseInt() function.

parseInt("3 dozen")

3

This is a number,
not a string.

78 Chapter 2

Is it possible to search the user
input text for the word “dozen”?

If the user wants a “dozen,” multiply by 12!
The order-by-the-dozen option can be added to the donut
script by checking the user input for the word “dozen”
before calculating the subtotal. If the word “dozen”
appears, just multiply the number by 12. Otherwise, use
the number as-is since it refers to individual donuts.

parseInt("18")
parseInt("3 dozen")

18 3 * 12 = 36

The number entered
is the exact number
of donuts ordered.

The number entered is multiplied by 12 since the word “dozen” appears in the input data.

cheaper by the dozen…or not

you are here 4    79

storing data

Ready Bake
JavaScript

The custom parseDonuts() function is responsible for processing donut
quantity input data. It first converts the data to a number, and then checks for
the appearance of the word “dozen” in the input data. If “dozen” appears,
the number of donuts is multiplied by 12. Get this recipe at http://www.
headfirstlabs.com/books/hfjs/.

function parseDonuts(donutString) {
 numDonuts = parseInt(donutString);
 if (donutString.indexOf("dozen") != -1)
 numDonuts *= 12;
 return numDonuts;
}

function updateOrder() {
 const TAXRATE = 0.0925;
 const DONUTPRICE = 0.50;
 var numCakeDonuts = parseDonuts(document.getElementById("cakedonuts").value); var numGlazedDonuts = parseDonuts(document.getElementById("glazeddonuts").value); if (isNaN(numCakeDonuts))
 numCakeDonuts = 0;
 if (isNaN(numGlazedDonuts))
 numGlazedDonuts = 0;
 var subTotal = (numCakeDonuts + numGlazedDonuts) * DONUTPRICE; var tax = subTotal * TAXRATE;
 var total = subTotal + tax;
 document.getElementById("subtotal").value = "$" + subTotal.toFixed(2); document.getElementById("tax").value = "$" + tax.toFixed(2); document.getElementById("total").value = "$" + total.toFixed(2);}

Check to see if the word “dozen” appears in the input data.

Parsing dozens of donuts
The parseDonuts() function is called in the updateOrder()
function, which is when the subtotal and total are calculated from the
user-entered data.

Multiply the number
of donuts by 12.

Initialize the two
constants. Get the number of donuts

from the form field.

If the number of donuts entered is not a number, set them to 0.

Show the dollar amounts
on the page.

Calculate the subtotal, tax, and total.

Round the dollar amounts to two decimal places (cents).

80 Chapter 2

Just-in-time donuts a smashing success!
Life is good now that Duncan and his just-in-time hot donut idea has
been fully realized in a JavaScript-powered page that carefully validates
orders entered by the user.

Now donut lovers can
order their piping hot
donuts online and just
in time.

Hot Donuts

Just in time!

slam dunc donuts

you are here 4    81

storing data

JavaScriptcross
Data isn’t always stored in JavaScript code. Sometimes
it gets stored in the rows and columns of a crossword
puzzle, where it waits patiently for you to uncover it.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across

4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down

1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across

4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down

1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across

4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down

1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

82   Chapter 2

JavaScriptcross Solution

Untitled Puzzle
Header Info 1

Header Info 2

etc...

1

2 3

4

5

6

7

8

9

10

11

12

13

Across

4. When you set the value of a piece of data upon creating it,
you it.
6. The unique name used to reference a piece of data.
7. The JavaScript keyword used to create a variable.
9. 3.14, 11, and 5280 are all this data type.
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName.
11. It's not a num-bah.
12. A piece of information whose value can change.
13. An piece of data with an on/off value would be stored as this
data type.

Down

1. A piece of data whose value cannot change.
2. The data type used to store characters, words, and phrases.
3. When a value isn't set for a variable or constant, the data is
considered
5. The built-in JavaScript function used to convert a string to an
integer.
8. The process of checking to make sure user-entered data is
accurate is called
10. The JavaScript keyword used to create a constant.

Untitled Puzzle
Header Info 1

Header Info 2

etc...

C
1

O T
2

U
3

I
4

N I T I A L I Z E N

S X D P
5

T I
6

D E N T I F I E R A

V
7

A R F R

N V
8

I S

T A N
9

U M B E R

C
10

A M E L C A S E I

O I D N

N
11

A N D T

S A

T T

V
12

A R I A B L E

O

B
13

O O L E A N

Across

4. When you set the value of a piece of data upon creating it,
you it. [INITIALIZE]
6. The unique name used to reference a piece of data.
[IDENTIFIER]
7. The JavaScript keyword used to create a variable. [VAR]
9. 3.14, 11, and 5280 are all this data type. [NUMBER]
10. A coding convention that involves naming identifiers with
mixed case, as in ThisIsMyName. [CAMELCASE]
11. It's not a num-bah. [NAN]
12. A piece of information whose value can change. [VARIABLE]
13. An piece of data with an on/off value would be stored as this
data type. [BOOLEAN]

Down

1. A piece of data whose value cannot change. [CONSTANT]
2. The data type used to store characters, words, and phrases.
[TEXT]
3. When a value isn't set for a variable or constant, the data is
considered [UNDEFINED]
5. The built-in JavaScript function used to convert a string to an
integer. [PARSEINT]
8. The process of checking to make sure user-entered data is
accurate is called [VALIDATION]
10. The JavaScript keyword used to create a constant. [CONST]

JavaScriptcross solution

you are here 4    83

storing data

 User input is the kind of data that
 you shouldn’t trust. It’s just not safe
 to assume that users will enter data and
 check to make sure it is OK. A more secure
 storage solution involves using JavaScript.

What do we all want for our script data?

There are lots of things
I want for my script
data, but one thing in
particular comes to mind.

Yum.

Page Bender

It’s a meeting of the minds!

Fold the page vertically
to line up the two brains
and solve the riddle.

	Head First Javascript
	Table of Contents (Summary)
	Advanced Praise for Head First JavaScript
	The Author
	Intro
	Chapter 1. the interactive web: Reacting to the Virtual World
	Chapter 2. storing data: Everything Has Its Place
	Chapter 3. exploring the client: Browser Spelunking
	Chapter 4. decision making: If There’s a Fork in the Road, Take It
	Chapter 5. looping: At the Risk of Repeating Myself
	Chapter 6. functions: Reduce, Reuse, Recycle
	Chapter 7. forms and validation: Getting the User to Tell All
	Chapter 8. wrangling the page: Slicing and Dicing HTML with the DOM
	Chapter 9. bringing data to life: Objects as Frankendata
	Chapter 10. creating custom objects: Having It Your Way with Custom Objects
	Chapter 11. kill bugs dead: Good Scripts Gone Wrong
	Chapter 12. dynamic data: Touchy-Feely Web Applications

