j}'WA

PATTERNS

IAvA SERIES Em

Front Matter
Table of Contents
About the Author

Applied Java™ Patterns

Stephen Stelting

Olav Maassen

Publisher: Prentice Hall PTR
First Edition December 01, 2001
ISBN: 0-13-093538-7, 598 pages

Pattern-based solutions for every stage of the development lifecycle Documents 30 patterns,
including the 23 core patterns for the Sun Certified Enterprise Architect exam.

Increasingly, developers are recognizing the value of design patternsin helping to
create more robust, scalable, reliable, and maintainable applications. Now there’'s a
book that can help you bring the power of patterns to your Java-based projects.

Sun Microsystems experts Steve Stelting and Olav Maassen bring together today’s
best pattern-based techniques and demonstrate pattern use for a variety of business
systems. This practical guide features proven techniques for al types of patterns,
from system architecture to single classes.

After briefly reviewing the fundamentals of design patterns, the authors describe
how these patterns can be applied effectively to the Java platform. Next, they
provide a pattern catalog, organized into four major categories—the creational,
behavioral, structural, and system patterns. In addition, they identify patterns and
present techniques for pattern use in the core Java APIs as well asthe APIsfor
distributed development.

Applied Java Patterns al so features a section on pattern use in systems built with
J2EE and JINI technologies, and coverage of the servlet, JSP, EJB, and JavaSpaces
APls.

Without a doubt, this accessible and up—td-date guide can help you enhance your
Java platform programming ski .

Table of Content

LU= 101 L= o Oa | (= g AT S PSS 2
L Lot TSR 4
WHY WE WIGE TS BOOKveuicuieieiiesteste sttt e ettt st e ettt e s te s ae s e e es e se e tesseeeeeseeneesee e enseaeeseeneesaeeneeneenseneeneesresnensenneensensnns 4
What ThiS BOOK IS ADOULc.ieetiitiietiitieeestiee sttt sttt sttt b et et b e b s e st b e e e Rt s b e e bt b et e Rt e b et e Rt e b e e e st s b et e st s be b et sbe st eneeee 4
WhO ShOUld REBA TRIS BOOKciiiiiieitiitiie ettt ettt st be s h e a et e e e se et e s bt sheeh e e ae e s e e e e n b e seeeEeebeeaeeae e e e mbenbesbeabesbesbesneenseneans 4
L0010V o1 L0 0 ST U E <o H SRS 4
HOW ThiSBOOK IS OFQANIZEA ..ottt e ettt b e bt b e et e s e et e e e besh e eb e e ae e s e e eEebe e bt eheeb e e aeenbe e e besbesaesbeeneeneennaneas 5
[[0 (o T U LS =R I TS =T o ST RRURRRSRR 5
COMPBNION WED SITE........eeitiitiie ittt ettt sttt ee b e et e e e aeese e besbeeheeheeaeemeeaE e besEeeheebeeaeeR e e e e meeeEeeEenaeeReebeeaeenbeebesbesbesaeeaeeneeneenes 5
ACKNOWIEOGIMENES ...ttt ettt et h e bt st e s e e ee e besae e b e e Rt eaeeae e s embeseeeb e Rt eheeb £ e Re e e e e aeembeeEeeEeeEe e Rt ehe e e ambeseeebeabesbeebeeneansaneans 5
R ATV 1= 1 PRSP 6
HIStOry Of the PatterNS IMOVEMENTccviieiee ettt st e e e e e e s ee st e seeaeeneeneeneeseeeeaeesaeeseeneeseeneeneeseeseenrenneenennennsen 7
TS To @0 001 o (1 == 1SR 8
SOftWare ADSITECHION @NO REUSE. ..ottt sttt sttt et s e et be s e e st et e se e st s beseeb e s Eeseeb e s be st ebesbeseebesbeneebesbeseebenbeneenens 9
ST 0] 7= Y7 PSSP 10
Part I: COmMMONIY USEO PN NS.....c.uiiiieceeieiee sttt st es e e st st s et e ssees e e e e se s tesaeabesaeesee e e teseeseesaeeneense e e seseeneesseeneeneensensees 11
Chapter 1. CreationNal PATEINISottt sttt et bt b e b e et e ae e e e eeeEeebeebeeaeehe e e emeeseeebeebeeaeehe e e enbeseeebesbesaeeneesanteseens 11
INtroduction tO Creational PAtEINS.........c.oie ittt sttt bt b e st e st e e e e e s eese e besaeebe s bt e aeemeeee e beseeebesbeeaeenteneenbees 11
F N oS o = o (YU SSP 12
10T [OSSO RRURRRORN 17
L o0 VA1 = 1 oo OSSPSR 23
100 0= PSSR 27
ST 1= o PSSP 31
O{gT o1 2 = T= PV o = L = = o ISP RSS 34
INtroduction t0 BENAVIOIEl PAIEITIScoiiiiiiieiitisee ettt sttt b e et b e st e bt b e e e bt s b e n e eb e st en e e b e s b e e enenbe e ens 34
L0t 7= T 0 B =S 0] 1S T o1 Y/ S 35
L@C0] 0191070 NSRS 41
110 4 0= (= ST TP P USRI 46
1= = (o PR URR USRS 52
= o T o] ST 57
1Y 1 07 0 Lo T TSR U RS PRTOPPTOPRTORPI 63
S - 1= OSSO 74
S = (5 o |V TSR PP RTOPRTUPRTPPPI 8l
BT (o SRRSO 86
QLI 1010 L2111 o RSP 93
(L gT= o1 = B A (U T (0= 1 = o 1P RSS 97
[NErOAUCEION tO SEIUCTURAl PAIEEINS........eiteeiitiieeietesie ettt b et b bt b e e e Rt b e e e ne e bt s b e e e bt s e en e eb e et en s eb e st eneenenbeneens 97
0 7= o (= S 98
2o 0SS 103
L0000 0 1S 1 (= 2SRRI 108
(D oo = o QU PO U R URT U PP 114
L= = 0 [TSRS 120
L YAV o | SRS 125
Half-ObjECt PIUS ProtOCOI (HOPP)ottt sttt s e bbb et et e e e se et e sbe e b e e bt e aeeae e s e beseeebenaeeneensaneenbeee 129
10 SRR 134
LO{gT= 1= GBSV £ =0 g = 11 = o 1 S 139
INtrOdUCEION 10 SYSEEM PALEINS. ... ccvicieieeceecee ettt st et s e e e s e e besaeetesseesees e e e eneeseeabesaeaseeseensenseseesesaeeseenneneeneenennren 139
Y Koo L= RV AT Y @] g 1 0] = (1 YA S 140
=SS o o OSSPSR 148
LAY o= I == o OSSPSR 155
(07 1 1 7 oSSR 160
SN ol eSS A U oo = 1 SO S R T 167
I = 105" o o] o [OOSR 178
Part I1: Patternsin the Java Programming LanQUEAGE.cceerurrueririeiereeie ettt sie st eeseesbe e st saeesesae s e asseseesbesaesbesneeneensesseneas 183
Chapter 5. Introduction to Java Programming Language Patter NS...........coe et see e e 183
(O Tl G RN F- (V= W 0o g N o TSRS 184
Y= 0 00 | o S 184
JAVBBEANS ...ttt ettt h b bt h et e bR R Re R e E e R R e R e AR e R e SRR £ eRE SR e e AR e R e Rt ARe SR £ SR e oA R e R e R e AR eReeReeR e e AR e R e EenReeR e e Rt ehe e e e e e renrean 186
AWT and Swing — The Graphical USEr INTEITACE APIS........ccciiiice ettt et es e eneesaeseestesaesneeseeneeneeneenees 188
(@0 L= Lo =100 T= T o] OSSO 192
g 001 T 1011 o | 1) S 195
LR = 1o SRS 197
Chapter 7. DistribULted TECHNOIOGIESccueiueiuieieiee ettt h et se et e bt sbe b e e st eae e e e be s et ehesheeaeameere e beseesbesaeenseneeneenbees 199

DB ..tttk e b bbb b bRt SR e £ Rt SR SE e Rt SR SE oAt Re e e Rt AR e AE e Rt AR e REeRe AR e eeRe AR e e e Re e Ee e e Rt Ee e eRe e Ee e e Re e Ee e e Rt nbe e e R re e e 201
Y SRS ST 203
L@@ = SRS 205
Chapter 8. JiNi AN J2EE AT CNITECIUN ES...... oottt ettt se et et s be b e et e st e e e be s be s hesheeae e s e e e e besbeebesaeenseneeneenbeee 207
O 1 SRS 207
Java 2, ENterprise EQITION (J2EE) ...ttt et b e s he bt eae e e e b e s bt eh e e Rt e Rt e Rt e ee e ke seeebe e Rt eReeae e e ntennen 210
SEIVIEES NGO JSPS........ceeiiiiie ettt sttt h e ae et e e st e be s ee e bt sbe e heehe e st ea e e e e eeaEeeEeebeeReeae e e emeesEeeEeeEeeReeRe e e enbeeE e benReebeeaeeaeeneeneenbenee 213
ENEIPIISE JAVABEANS.ctiiteiteetieieie ettt sttt ettt be s h e s he et e st e st e b e s besheehe e Rt e R e e e e eeeEeSEeeh e eRe e R e e e e EeeEe AR e eReeReeRe et e besheebeeRe e Rt enee e e b ee 215
APPENdiX A. FUIl COUE EXAMPIESc.eciiieieisieiiecteseetete e e s este s s te s e esee e se e e saestesseaseeseeseesse s ensesaeasesaeeseensensenteseeatenseenenneensensesenns 218
SYSEEM REGUITEMENESeeveeieieestesieeteeseeees e sees e steseesseeseeseeseesteseeasesseaseeseeseesseseesteaeeaseaseeseeseeneeneeseeseaseaseeseeneenseneenseneearenseeneeneensnnseses 218
Creational Pattern COOE EXAMPIEScc.cieiiiiiieieeeiereeeseste s e se st sseeseeeeseestesaestesaessesseeseeseessenteseessesseaseeseensenseseentesaesseeneeseensnssensees 219
N 151 = = ()Y P 219
2T o L= OSSOSO 222

[0110 Y201/ =1 oo S 228

L (01011 o1 TSRO UR TP 232

g To = (o] o USSR 234
Behavioral Pattern COOE EXAMPIESooiii ettt h e he et e st e besbesbesbesaeeae e e e besbeebesheeaeene e s e beseeabesaeeneensaneenseses 238
Chain Of RESPONSIDIITY ...ttt bbbt h et e e e et e bt ehe e bt eaeea e e e e beebeehesheeaeeaseneenbesaeebeeneeneeneansenbesaens 238
L0001 010" To FO ST URRSRRTRN 243
1410 4 0= (= ST USSR UPROPRURTPIN 248
(L= 0] ST T TSP PR USRS 253

L= o = o OSSOSO 257

(1= 001 010 TP PR USSP 262
(@015 = PSPPSR 266

S - (= OSSPSR 270

S = (5 0)Y OO PRSP 277

RV AL o SRS 282
JLICE 101012 23 1Y/ 1 o o USSP 288
Structural Pattern COOE EXAIMPIES.......couiiiieieieieeeee ettt e b e ae bt et et et e s e e b e see e b e s beeheehe e e enbeseeebesaeebeene e s ensaseeneeses 291
F X 1= o 1 ST 291
(2770 o= U PURTT 293
L0 1010701 = SRS 296
(D= o0 = (o TP TSP PPPPR 302
0= o LTRSS 306

[AT || SR 312
Half-ObjeCt PIUS ProtOCOl (HOPP)coiiiiiiiecteeeetes e e st e e te e te e et e e se e e e ssetesae st esesaeeseeneeneessensesaearesneeneeneeneesenes 316
10 SRS 322
SyStemM Pattern COOE EXAMPIES.......oiueieeieereiite ettt ettt a ettt se e be s bt shesheeaeeae e e 2mbeseeebesbeeh e ehe e e enbeseeabesaeebeeneensaneeseenbeses 327
[\ KoTe L= BV AT YT @] g fe L= g (1Y YA 4 PRSP 327
ST o] o [PPSR 331
AT S g 1= USSP 338

L0 117 o: ST 344
SUCCESSIVE UPUALE ... ettt e e sttt se e e e s e e tesaeeaeeseeseenae e e eeeesaeeseeseeseeseenseaeeaEenseeneeneeneensesaenbeaneeneenennseneesenns 349
({01111 TP PRSP USSP 354

QLI 5= o Lo o PSR RSTS 360

N] = T L 2 TSRS 367
L 10 1 o S 367
L@ g= 1ol I 1= TSSO 367
BEhAVIOIAl PEILEINS.......ceiiteiee ettt ettt h et e e se e b e ae e bt e ae e ae e s eeee e beSbeeh e eb e e Rt eR e e e embesEeeE e eheeReeas e s enbeseeebenreeaeeneeneenberes 367
S e = = = 1 USSR 367
SYSLEIM PAITEINS. ...ttt ettt st s he e sbe e et e et eae e eheeehe 2 b e eabeea b e ea e e £h e e ehe e b e e e e S aseSae e eReeebe e b e an b e eabesanesReesheesaeeaneenneanns 367

Preface

Why We Wrote This Book

During the many Java™ programming language courses we teach, we have found that only afew programmers
know what design patterns are when asked. About one in ten is able to name a few patterns off the top of his or
her head. Of course, the concepts behind the patterns are familiar to many programmers. When we demonstrate
patterns in the classroom, developers know and recognize them.

We decided to create a pattern catalog for the Java programming language devel opers who understand at a basic
level why patterns are a good idea, and are interested in applying them, but want a practical, hands-on guide to
just how and why to use each individual pattern. We' ve kept the book casual and frank in tone, and included full
working Java code examples for each.

We will have succeeded when you complete this book having not only learned about design patterns and the Java
programming language, but having had fun reading it, as well.
What This Book Is About

This book will teach you the essential design patterns and how you can use them in your Java application.
Furthermore, this book will show you where patterns are used in Java technology APIs and why they were used.

Who Should Read This Book

This book isintended for experienced Java programmers who want to build better applications. Y ou should be
comfortable with the Java programming language and be familiar with most of the basic Java APIs. Some
knowledge of UML isuseful, but not required. We recommend UML Distilled by Martin Fowler asa UML
reference.

Conventions Used

Within this book, code examples are presented in monospaced font. The same font is used in the text when
talking about specific classes, interfaces, methods or variables. methodName isjust to indicate all methods that
have that name, where methodName () refers to a method with that name that takes no parameters.

Abstract classes have a name that starts with Abstract, whereas classes that either implement an interface or
subclass another class have a name that starts with Concrete (unless they are abstract). This naming convention

isshown in Figure 1.

Figure 1. Example class diagram

interface - -
Exampla ____|Ewample is the interface that
defines one method.
In these dizgrams a - means ey cemenddethody)
public access, and a - means -
private pocess 0 that f,.-.
member. |
|
AbstractExample AbstraciExample is an abstract class
— — — {that implements the Exarmple interface.
+yoid durmirmiidathod]) And imalameants the dummgkiethod).
T
ConcreleExample ConcreleExample is a class that
- — — — —pxlands AbsiractExample and
+wid durnmybethod overrides the dummytiethodi.

A client isthe general term used for a class that uses the classes of the design pattern, which is different from a
user. A user is ahuman being interacting with the application.

The notation “ [CIJ2EEP] ” in the Related Patterns section for a pattern refers to J2EE patterns, listed in the
bibliography.

How This Book Is Organized

This book isdivided into two parts. Part |, “ Commonly Used Patterns,” is organized like a pattern catal ogue,
reference-style.

Chapter 1: “ Creational Patterns” on page 3 discusses patterns that create objects. Abstract Factory, Builder,
Factory Method, Prototype, and Singleton.

Chapter 2: “ Behavioral Patterns” on page 39 is focused on the patterns that can determine the behavior of your
object model: Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State,
Strategy, Template Method, and Visitor.

Chapter 3: “ Structural Patterns” on page 139 describes patterns that can bring structure to your application and
has the following patterns. Adapter, Bridge, Composite, Decorator, Facade, Flyweight, HOPP, and Proxy.

Chapter 4: “ System Patterns” on page 205 describes the patterns that help you build better architectures: Callback,
Router, MV C, Session, Successive Update, Transaction, and Worker Thread.

Part |1, “ Patternsin the Java Programming Language,” presents many of the Java APIs and shows the use of
patterns in those APl and their benefit.

Chapter 6: “ Java Core APIS” on page 279 provides an overview in the familiar core APIs like Event Handling,
JavaBeans ™, AWT and Swing, Collections, Input/Output, and Reflection.

Chapter 7: “ Distributed Technologies” on page 303 describes selected distributed APIs and how patterns are used:
JNDI, JDBC, RMI, and CORBA.

Chapter 8: “ Jini and J2EE Architectures” on page 317 focuses on the two complementary frameworks Jini and
J2EE. J2EE isfurther divided into Servlets, JSP and EJB technologies.

How to Use This Book

There are several ways to read this book. Y ou could start at page one and read from cover to cover. However, we
recommend you start with some of the easier patterns: Factory Method, Singleton, Observer, and Composite.
Work your way through the book using those as starting points for your exploration. Alternatively, you might
want to turn to sectionsin Part 11 first. Find an APl you are familiar with and start looking for patterns there.

Y ou can read the patterns in any order you feel most comfortable with. Later, you can use this book as areference
to refresh your memory when you want to put your knowledge of patterns into practice

Companion Web Site

This book has a companion Web site to provide you with updates and other material: it islocated at
http://www.phptr.com/appliedjavapatterns.

Acknowledgments

A book is, above all else, ateam effort. We'd like to thank al the people who made this areality. We' ve worked
with an exceptionally fine group. This page is dedicated to them, to let them know that their efforts are
appreciated.

For Greg Doench, Prentice Hall visionary: Thank you for being the Great Unifier for this project. When we
started this work, we discovered Greg was a marathon runner. When Steve mentioned that he would like to try his
hand (feet?) at the sport, Greg said, “ After the book is done.” Now we understand why: writing abook isitself a
marathon. For your ongoing help and support, and for your belief in this book, our most sincere thanks.

For Rachel Borden, Sun Press luminary: Thank you for your guidance along the path to publication. If not for
your help, we'd still be scrawling ideas across massive expanses of sticky notes. Thank you for your ongoing
support and dedication, and for having patience when explaining to techies how publishing works. Our thanks for
getting up far too early on far too many mornings for conference calls with people on the other side of the world.
Most of al, thanks for being a continuing champion of our work.

http://www.phptr.com/appliedjavapatterns

For Solveig Haugland, content editor extraordinaire: Thank you for believing in the dream, and for helping to
make it areality. Thank you for working your mambo (mojo?) and turning a jumble of unconnected ideas into
something far greater—one big rambling idea, perhaps. And thank you for showing usthat it is possible to put a
bit of humor into atechnical book, after all.

For our talented technical reviewers. Thanks for making us think hard about what we actually wanted to say. Our
most sincere thanks go to Jennie Yip for spending long hours writing up every detail she could find, Bryan
Basham, Bert Bates, John Crupi, Jim Gallentine, Werner van Mook, Nanno Schering, Juergen Schimbera, Robert
Schrijvers and Fred Zuijdendorp.

Many thanks to the production team at Prentice Hall. We're genuinely sorry that we didn’t get a chance to meet
you, but we know that you' re out there turning ideas into reality. Y oursistruly inspiring work—hel ping to bring
dreams and ideas out into the world. For your commitment and hard work on this book, and the other books you
have made (many of which have aplace in our hearts and on our shelves) we thank you.

Stephen Stelting would like to thank: Steve Bradshaw, Annette Baldenegro, Cindy Lewis, and the rest of the
management team of Sun Educational Services: Thank you for the support you’ ve shown and for the faith you' ve
had in me during this past year. | appreciate your help and understanding more than | can say.

| promiseto try and get alife now.

Olav Maassen wishes to thank: Harry Pallandt and Andre Arnoldus, my managers, for letting me work late many
times, and for their support over the years.

Ingrid, Niels— The two biggest stars of my universe for providing all the support, encouragement and motivation
for meto finish this project.

Britt — The third star of my universe for waiting long enough to be born to allow me to finish the book first before
moving on to my next big project—my family.

Why Patterns?

“If builders built houses the way programmers wrote code, the first woodpecker that came along would destroy
civilization.”

If you wanted to build a house, how would you do it?

WEell, you could do what some people do to build a treehouse:

Find a sturdy tree.

Get a bunch of wood, a hammer, and some nails.

Apply the products from step 2 to step 1.

Hope for the best.

Of course, anyone who has tried this approach knows the results can be disappointing—in some cases, leading to
the loss of the tree along with the treehouse. A better plan would be to find an architect and get hisor her help in
developing blueprints.

But how does the architect, the expert in building houses, make decisions? How is it possible to take the lessons
from years of experience and apply them to creating a brand new home? There's a certain something, a base of
knowledge, experience and perhaps a little intuition, that seems to make the architect successful.

The questions about building and designing houses are really not all that different from the ones we facein the
software development world. How can we effectively design good software? How can we apply experience
gained in the past to projects in the future? How can we make decisions during design that will produce software
that has good characteristics, like flexibility, extensibility and efficiency?

Asin our building project, we need experienced guidance. We need some equivalent of our building architect,

someone who has a balance of knowledge, experience and good common sense in software design. We need a
software development guru.

There aren't alot of gurusin the world. And until cloning technology is alot more advanced, we frequently have
to fend for ourselves. In our projects, in our companies, we have to make our own software experts.

So we're back to square one. We want to design good software, but we don't know how to make the right
decisions, decisions that will ultimately lead us to produce a quality product. We want to grow experienced
software developers, but short of a brain transplant, we don't even know how to get the knowledge of effective
design from the current generation of software experts.

What if there were away to collect that knowledge? What if we could get experience from the gurus, and it didn't
even involve painful surgery? What if we could record and summarize key concepts of software design, building
afoundation for our next generation of software devel opers?

There is such away—it's called design patterns.

It's well-documented that experts often solve new problems by applying solutions that have worked in the past.
They identify parts of their problem that are like problems that they have encountered before. Next, they recall the
solution to their earlier problems and generalize it. Finally, they adapt the general solution to the context of their
current problem.

The idea behind design patternsis to devel op a standardized way to represent general solutions to commonly
encountered problems in software development. There are afew benefits to doing this:

Over time, we can build up catalogs of patterns. This enables newcomers to software development to more
effectively benefit from experience gained over the years.

Thereisformal documentation about the tradeoffs involved in software design decisions; about the pluses and
minuses of development choices. Standardizing patterns makes it easier for al development
professional s—beginners and experts alike—to explicitly understand the implications of their decisions.

The design patterns provide a common vocabulary. This makes communicating decisions to developers easier.
Rather than describing a design in detail, we can use a pattern name to explain our plans.

We can relate patterns to each other, so that a developer can easily see which patterns might belong together in a
project.

Design patterns give us an effective way to share experience throughout the object-oriented programming
community. Whether we've gained the knowledge in C++, Smalltalk, or the Java programming language, whether
the expertise has been built up from Web projects, legacy integration or custom work, we can collect our lessons
and share them with other developers. In the long run, we can improve software development across the industry.

History of the Patterns Movement
It Came From Outer Space... viaU.C. Berkeley

The inspiration for design patterns in software development is usually attributed to Christopher Alexander, a
professor of architecture at U.C. Berkeley. In the late * 70s, he published severa books that introduced the concept
of patterns and provided a catalog of patterns for architectural design.

Alexander's work sparked interest in the object-oriented (OO) community, and within the next decade, a number
of pioneers had developed patterns for software design. Kent Beck and Ward Cunningham were among the first,
discussing a set of Smalltalk design patternsin a presentation at the 1987 OOPSLA conference. James Coplien
was another who actively promoted the tenets of patterns, writing a book about C++ idioms, or patterns for C++
development, in the early *90s.

OOPSLA was an excellent venue for the growing patterns community, since it offered an environment for them
to share their ideas. Another important forum for the evolution of the patterns movement was the Hillside Group,
established by Kent Beck and Grady Booch.

Probably the best-known contribution to the popularity of design patterns was the 1995 book Design Patterns:
Elements of Reusable Object-Oriented Software. The authors—Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides—are also commonly known as the “ Gang of Four” or GoF. The book introduced a comprehensive
pattern language, and gave C++ examples for the patterns discussed. Another important work that gave
momentum to patterns was the book Pattern-Oriented Software Architecture, A System of Patterns, by
Buschmann, Meunier, Rohnert, Sommerlad and Stal.

Since the publication of these two books, design patterns have enjoyed substantial interest in the software
community. Java (“ Java technology”) grew up at the same time as patterns were gaining widespread popularity,
so it was inevitable that Java developers would take an interest in applying design patterns in their projects. The
growing popularity of design patterns in Java has been manifested in presentations at conferences like JavaOne,
aswell as patterns columnsin the Java trade journals.

Basic Concepts in Patterns

“Taking the Talk”

Central to the idea of patternsis the concept of standardizing the information about a common problem and its
solution. One of the most useful results of Alexander's work was the development of atemplate for representing
patterns —what is now called aform or format. The Alexandrian Form uses five topic areas to formalize the
discussion of a pattern and its solution.

Fundamentally, it’s important that a pattern provide a descriptive name for the pattern and the answer to the
guestion “What will this pattern do for you?” In addition, it should include a discussion of the problem, an
explanation of how the pattern solves the problem, and an indication of the benefits, drawbacks and tradeoffs
associated with the pattern’s use.

Naturally, when patterns were adopted by the OO community, variations on the Alexandrian form were

devel oped to meet the needs of software development. Most of the formsin use today are derived from one of
two forms—the Canonical or “Gang of Four” forms. This book is based on avariation of the Gang of Four form,
with the following topics forming our template:

Name— A descriptive name for the pattern.

Also Known As— Alternate names, if any.

Pattern Properties— The pattern's classification. We define a pattern in terms of two major topics.

Type:

Creational patternsfor object creation

Behavioral patternsthat coordinate functional interaction between objects

Structural patterns that manage static, structural relationships between objects

System patterns used to manage system-level interaction

Level:

Single Class— The pattern appliesto asingle class

Component — The pattern involves a group of classes

Architectural — The pattern is used to coordinate the actions of systems and subsystems

Purpose— A short explanation of what the pattern involves.

Introduction — A brief description of a problem you might be facing where this pattern may be useful, using an
exampleto illustrate.

Applicability — When and why you might want to use this design pattern.
Description— A more detailed discussion of the pattern, what it does and how it behaves.

Implementation — A discussion of what must be done to implement the pattern. If you know you want to use this
pattern, this section tells you how to implement it.

Benefits and Drawbacks — The consequences of using the pattern and tradeoffs associated with use of the
pattern.

Pattern Variants— Possible implementation alternatives and variations on the pattern.

Related Patterns— Other patterns that are either associated with or closely related to the pattern.
Example— A Javacode example.

Software Abstraction and Reuse

or “Run that by me one moretime...”

Design patterns represent an important evolutionary step in software abstraction and reuse. These two concepts
are central to theidea of programming—some would say they are the two most important ones.

Abstraction represents away for devel opers to solve complex problems by breaking them up into progressively
simpler ones. The solutions to simpler problems, when “tagged” with alabel or name, can then be used as
building blocks to solve the more complicated projects that we as devel opers encounter each day.

Reuseisequaly vita to software development. In a sense, the history of software development is marked by a
constant search to find progressively more sophisticated ways to reuse code. Why al the interest? What's the
motivation? Actually, reuse is a perfectly understandable goal given the nature of software development. After al,
given a complicated software project complete with atight deadline schedule, which would you rather do? (Select
the best answer.)

Write al the code from scratch, subjecting yourself and those around you to a slow and painful process of testing
and validating everything that you write.

Use proven and tested code as the foundation for your work.

Don't get me wrong—coding is a blast. It's the testing, debugging, documentation, and post-rel ease support that
we developers don't generally like all that much. Over the years, we've come up with quite afew waysto reuse
code and devel opment concepts.

The earliest kind of reuse was snippet reuse (a.k.a. CaP — Cut and Paste). The less said about this as a method for
effective software reuse, the better. Likewise, this approach does not offer any real qualitative benefitsin terms of
code abstraction.

Algorithmic reuse provided a more genera way to manage reuse. Y ou can reuse an algorithm, like searching and
sorting, to abstract an approach (usually mathematical) to solving a particular kind of computing problem.

Functional reuse, and its counterpart, data structure reuse, allow you to reuse a coding abstraction more directly.
For example, any developer who wants to model something like an address could define a structure with all the
necessary fields, then reuse the structure in any project which required an address. Likewise, an operation like
computeTax could be defined as afunction (or procedure or subroutine or method, depending on the
programming language), and subsequently copied as a whole to new projects.

Two extensions of these reuse concepts are the function library and the API. They represent ways to package
functionality and make functionality available to future applications without actually having to copy code.

The development of object-oriented languages represents a tremendous evolutionary leap forward in terms of
abstraction and reuse. With this technology, an entire generation of more sophisticated ways to get more mileage
out of code was born.

The concept of the class as blueprint for objects provided a major advancement by combining two earlier
mechanisms: functional and data abstraction. By packaging an entity’s structure (data) with functionality that
appliesto the entity (behavior), you gain away to effectively reuse a software element.

Beyond the core concept of the class, object-oriented languages gives us a variety of other waysto leverage
existing code. The concepts of subclasses and interfaces, for instance, opened new possibilities for reusein
software development. Finally, groups of classes can be associated with each other and effectively be treated as a
logical software component, providing avery powerful model for reuse at the system level.

In the table below, the Reusability heading indicates the repeatability of the approach.

Comparing approaches for reuse and abstraction

Type of reuse Reusability Abstraction Genericity
\Snippet \Very poor \Nothi ng \Very poor

Data structures Good Datatype 'Moderate — good
[Functional Good Method ‘Moderate — good
Template Good Operation to type Good
Algorithmic Good Formula Good

Class Good Data + method Good

Interface

\Pol ymorphism

Abstract class

Interface

Code library Good [Functions Good — very good
AP Good Utility classes Good — very good
‘Component Good Group of classes Good — very good
Design pattern Excellent Problem solution Very good

Abstraction is an indication of what has been abstracted. Genericity shows how easy it isto apply this method
without rewriting or modifying code. Note that the reusability of these approaches heavily depends on how
effectively the techniques are applied. Clearly, any capability can be used or misused.

Perhaps the most exciting possibility of adesign pattern isthat it enables us as devel opers to more effectively
apply the other reuse techniques. A pattern can, for example, provide us with guidelines to effectively manage
inheritance in a certain situation, or to effectively designate class relationships to solve a specific problem.
Summary

Design patterns are a valuabl e tool in software development; every developer is able to code more effectively

using them. This book presents some of the best known design patterns; there are many, many more. Welcome to
the world of patterns.

10

Part I: Commonly Used Patterns

Chapter 1. Creational Patterns

Introduction to Creational Patterns

These patterns support one of the most common tasks in object-oriented programming—the creation of objectsin
asystem. Most OO systems of any complexity require many objects to be instantiated over time, and these
patterns support the creation process by helping to provide the following capabilities:

Generic instantiation — This allows objects to be created in a system without having to identify a specific class
typein code.

Simplicity — Some of the patterns make object creation easier, so callers will not have to write large, complex
code to instantiate an object.

Creation constraints— Some patterns enforce constraints on the type or number of objects that can be created
within a system.

The following patterns are discussed in this chapter:

Abstract Factory — To provide a contract for creating families of related or dependent objects without having to
specify their concrete classes.

Builder — To simplify complex object creation by defining a class whose purpose is to build instances of another
class. The Builder produces one main product, such that there might be more than one class in the product, but
thereis always one main class.

Factory Method — To define a standard method to create an object, ap:f\rt from a constructor, but the decision of
what kind of an object to create isleft to subclasses.

Prototype— To make dynamic creation easier by defl nin Hose objects can create duplicates of

themselves.

Singleton— To have only one instance of tt
this instance.

n the system, while allowing other classes to get access to

Of these patterns, the Abstract Factory and Factory Method are explicitly based on the concept of defining
flexible object creation; they assume that the classes or interfaces to be created will be extended in an
implementing system. As aresult, these two patterns are frequently combined with other creational patterns.

11

Abstract Factory
Also known as Kit, Toolkit
Pattern Properties
Type: Creational, Object
Level: Component
Purpose

To provide a contract for creating families of related or dependent objects without having to specify their concrete
classes.

Introduction

Suppose you plan to manage address and telephone information as part of a personal information manager (PIM)
application. The PIM will act as a combination address book, personal planner, and appointment and contact
manager, and will use the address and phone number data extensively.

You can initially produce classes to represent your address and telephone number data. Code these classes so that
they store the relevant information and enforce business rules about their format. For example, all phone numbers
in North America are limited to ten digits and the postal code must be in a particular format.

Shortly after coding your classes, you realize that you have to manage address and phone information for another
country, such as the Netherlands. The Netherlands has different rules governing what constitutes avalid phone
number and address, so you modify your logic in the Address and PhoneNumber classes to take the new country
into account.

Now, as your personal network expands, you need to manage information from another foreign country... and
another... and another. With each additional set of business rules, the base Address and PhoneNumber classes
become even more bloated with code and even more difficult to manage. What's more, this code is brittle—with
every new country added, you need to modify and recompile the classes to manage contact information.

It's better to flexibly add these paired classes to the system; to take the general rules that apply to address and
phone number data, and allow any number of possible foreign variations to be “loaded” into a system.

The Abstract Factory solves this problem. Using this pattern, you define an AddressFactory—a generic
framework for producing objects that follow the general pattern for an Address and PhoneNumber. At runtime,
thisfactory is paired with any number of concrete factories for different countries, and each country hasits own
version of Address and PhoneNumber classes.

Instead of going through the nightmare of adding functional logic to the classes, extend the Address to a
DutchAddress and the PhoneNumber to a DutchPhoneNumber. Instances of both classes are created by a
DutchAddressFactory. Thisgives greater freedom to extend your code without having to make major structural
modificationsin the rest of the system.

Applicability

Use the Abstract Factory pattern when:

The client should be independent of how the products are created.

The application should be configured with one of multiple families of products.

Objects need to be created as a set, in order to be compatible.

Y ou want to provide a collection of classes and you want to reveal just their contracts and their relationships, not
their implementations.

12

Description

Sometimes an application needs to use a variety of different resources or operating environments. Some common
examplesinclude:

Windowing (an application’s GUI)
A file system
Communication with other applications or systems

In this sort of application you want to make the application flexible enough to use a variety of these resources
without having to recode the application each time a new resource is introduced.

An effective way to solve this problem isto define a generic resource creator, the Abstract Factory . The factory
has one or more create methods, which can be called to produce generic resources or abstract products.

Java (“ Java technology”) runs on many platforms, each with many different implementations of afile system or
windowing. The solution Java has taken is to abstract the concepts of files and windowing and not show the
concrete implementation. Y ou can devel op the application using the generic capabilities of the resources as
though they represented real functionality.

During runtime, ConcreteFactories and ConcreteProducts are created and used by the application. The
concrete classes conform to the contract defined by the AbstractFactory and AbstractProducts, so the
concrete classes can be directly used, without being recoded or recompiled.

Implementation

The Abstract Factory class diagram is shown in Figure 1.1.

Figure 1.1. Abstract Factory class diagram

interface
AbsiractFaciory

+Froguctd crealeFroductdi)

+FroguctB cragloProductEl)
N

r—— 77777~ 1

| |

| 1

ConcreteFactong ConcreteFactong2
+Products createPraductag +Products createProductald
+ProductB cresteProductBa +ProduciB creataFroductBi)

T]

| |

| r—-———"——"——~—"—T T T === |
_____________ L |
[[[[
| I | |
| Produscta | [Frodictd I
| I | |
| | | I
| I | m |
| i I | 4 |
| 1 [|
| I | |
I I I I

v y y y
ConcreteProduct Al ConcreleProducti2 ConcreteProductiB1 ConcreteProductB2

Y ou typically use the following to implement the Abstract Factory pattern:
AbstractFactory — An abstract class or interface that defines the create methods for abstract products.

AbstractProduct — An abstract class or interface describing the general behavior of the resource that will be
used by the application.

13

ConcreteFactory — A classderived from the abstract factory . It implements create methods for one or more
concrete products.

ConcreteProduct — A classderived from the abstract product, providing an implementation for a specific
resource or operating environment.

Benefits and Drawbacks

An Abstract Factory helps to increase the overall flexibility of an application. This flexibility manifestsitself both
during design time and runtime. During design, you do not have to predict all future uses for an application.
Instead, you create the generic framework and then devel op implementations independently from the rest of the
application. At runtime, the application can easily integrate new features and resources.

A further benefit of this pattern isthat it can ssimplify testing the rest of the application. Implementing a
TestConcreteFactory and TestConcreteProduct issimple ; it can simulate the expected resource behavior.

To realize the benefits of this pattern, carefully consider how to define a suitably generic interface for the abstract
product. If the abstract product isimproperly defined, producing some of the desired concrete products can be
difficult or impossible.

Pattern Variants

As mentioned earlier, you can define the AbstractFactory and AbstractProduct as an interface or an abstract
class, depending on the needs of the application and your preference.

Depending on how the factory isto be used, some variations of this pattern allow multiple ConcreteFactory
objects to be produced, resulting in an application that can simultaneously use multiple families of
ConcreteProducts.

Related Patterns

Related patterns include the following:

Factory Method (page 21) — Used to implement the Abstract Factory.

Singleton (page 34) — Often used in the Concrete Factory.

Data Access Object [CI2EEP] — The Data Access Object pattern can use the Abstract Factory pattern to add
flexibility in creating Database-specific factories.

Note —

“ [CIREEP] " refersto J2EE patterns, listed in the bibliography (see page 559).

Example

The following code shows how international addresses and phone numbers can be supported in the Personal
Information Manager with the Abstract Factory pattern. The AddressFactory interface represents the factory

itself:

Example 1.1 AddressFactory. java

1. public interface AddressFactory {

2. public Address createAddress();

3. public PhoneNumber createPhoneNumber();
4. }

Note that the AddressFactory defines two factory methods, createAddress and createPhoneNumber. The
methods produce the abstract products Address and PhoneNumber, which define methods that these products
support.

Example 1.2 Address.java

1. public abstract class Address {
2. private String street;
3. private String city;

14

private String region;
private String postalCode;

public static final String EOL_STRING =
System.getProperty(*'line.separator');
public static final String SPACE = " **;

RPPRPOO~NO U~

= O

public String getStreet() {
return street;

}
public String getCity() {
return city;

=
N

}
13. public String getPostalCode() {
return postalCode;

¥
14. public String getRegion() {
return region;

15. public abstract String getCountry();

16.

17. public String getFullAddress() {

18. return street + EOL_STRING +

19. city + SPACE + postalCode + EOL_STRING;
20. }

21.

22. public void setStreet(String newStreet) {

street = newStreet;

}
23. public void setCity(String newCity) {

city = newCity;

}
24. public void setRegion(String newRegion) {
region = newRegion;
}
25. public void setPostalCode(String newPostalCode) {
postalCode = newPostalCode;
}
26. }

Example 1.3 PhoneNumber. java
1. public abstract class PhoneNumber{

2. private String phoneNumber;
3. public abstract String getCountryCode();
4.
5. public String getPhoneNumber() {
return phoneNumber;

}
6.
7. public void setPhoneNumber(String newNumber) {
8 try {
9. Long.parseLong(newNumber) ;
10. phoneNumber = newNumber;
11.
12. catch (NumberFormatException exc) {
13. }
14. }
15. }

Address and PhoneNumber are abstract classes in this example, but could easily be defined as interfacesif you
did not need to define code to be used for all concrete products.

To provide concrete functionality for the system, you need to create Concrete Factory and Concrete Product
classes. In this case, you define a class that implements AddressFactory, and subclass the Address and
PhoneNumber classes. The three following classes show how to do thisfor U.S. address information.

Example 1.4 usAddressFactory.java

public class USAddressFactory implements AddressFactory{
public Address createAddress(){
return new USAddress();
}

public PhoneNumber createPhoneNumber(){
return new USPhoneNumber();
}

O~NO OB~ WNPE

15

9. }

Example 1.5 usAddress. java

1. public class USAddress extends Address{

2. private static final String COUNTRY = "UNITED STATES";
3. private static final String COMMA = ",";

4.

5. public String getCountry(){ return COUNTRY; }

6.

7. public String getFullAddress(){

8. return getStreet() + EOL_STRING +

9. getCity() + COMMA + SPACE + getRegion() +
10. SPACE + getPostalCode() + EOL_STRING +
11. COUNTRY + EOL_STRING;

12. }

13. }

Example 1.6 usPhoneNumber . java

1. public class USPhoneNumber extends PhoneNumber{

2. private static final String COUNTRY_CODE = "01";
3. private static final int NUMBER_LENGTH = 10;

4.

5. public String getCountryCode(){ return COUNTRY_CODE; }
6.

7. public void setPhoneNumber(String newNumber){

8. it (newNumber.length() == NUMBER_LENGTH){

9. super.setPhoneNumber (newNumber) ;

10. }

11. }

12. 3}

The generic framework from AddressFactory, Address, and PhoneNumber makes it easy to extend the system to
support additional countries. With each additional country, define an additional Concrete Factory class and a
matching Concrete Product class. These are files for French address information.

Example 1.7 FrenchAddressFactory. java

1. public class FrenchAddressFactory implements AddressFactory{
2. public Address createAddress(){

3. return new FrenchAddress();

4. }

5.

6. public PhoneNumber createPhoneNumber(){

7. return new FrenchPhoneNumber();

8. }

9. }

Example 1.8 FrenchAddress. java

1. public class FrenchAddress extends Address{

2. private static final String COUNTRY = "FRANCE";
3.

4. public String getCountry(){ return COUNTRY; }
5.

6. public String getFullAddress(){

7. return getStreet() + EOL_STRING +

8. getPostalCode() + SPACE + getCity() +
9. EOL_STRING + COUNTRY + EOL_STRING;

10. ¥

11. 3}

Example 1.9 FrenchPhoneNumber . java

1. public class FrenchPhoneNumber extends PhoneNumber{
2. private static final String COUNTRY_CODE = "33";
3. private static final int NUMBER_LENGTH = 9;

4.

5. public String getCountryCode(){ return COUNTRY_CODE; }
6.

7. public void setPhoneNumber(String newNumber){

8. if (newNumber.length() == NUMBER_LENGTH){

9. super.setPhoneNumber (newNumber) ;

10. ¥

11. ¥

12. 3}

16

Builder

Pattern Properties
Type: Creational, Object
Level: Component
Purpose

To simplify complex object creation by defining a class whose purpose is to build instances of another class. The
Builder produces one main product, such that there might be more than one class in the product, but thereis
always one main class.

Introduction

In a Personal Information Manager, users might want to manage a social calendar. To do this, you might define a
class called Appointment to the information for a single event, and track information like the following:

Starting and ending dates

A description of the appointment
A location for the appointment
Attendees for the appointment

Naturally, thisinformation is passed in by a user when he or sheis setting up the appointment, so you define a
constructor that allows you to set the state of a new Appointment object.

What exactly is needed to create an appointment, though? Different kinds of information are required depending
on the specific type of the appointment. Some appointments might require alist of attendees (the monthly Monty
Python film club meeting). Some might have start and end dates (JavaOne conference) and some might only have
asingle date—aplan to visit the art gallery for the M.C. Escher exhibit. When you consider these options, the
task of creating an Appointment object isnot trivial.

There are two possibilities for managing object creation, neither of them particularly attractive. Y ou create
constructors for every type of appointment you want to create, or you write an enormous constructor with alot of
functional logic. Each approach has its drawbacks—with multiple constructors, calling logic becomes more
complex; with more functional logic built into the constructor, the code becomes more complex and harder to
debug. Worse still, both approaches have the potential to cause problemsif you later need to subclass
Appointment.

Instead, delegate the responsibility of Appointment creation to a special AppointmentBui lder class, greatly
simplifying the code for the Appointment itself. The AppointmentBui Ider contains methods to create the parts
of the Appointment, and you call the AppointmentBui lder methods that are relevant for the appointment type.
Additionally, the AppointmentBui lder can ensure that the information passed in when creating the
Appointment isvalid, helping to enforce business rules. If you need to subclass Appointment, you either create a
new builder or subclass the existing one. In either case, the task is easier than the alternative of managing object
initialization through constructors.

Applicability

Use the Builder pattern when aclass:

Has complex internal structure (especially one with avariable set of related objects).

Has attributes that depend on each other. One of the things a Builder can do is enforce staged construction of a
complex object. Thiswould be required when the Product attributes depend on one another. For instance, suppose

you're building an order. Y ou might need to ensure that you have a state set before you move on to “building” the
shipping method, because the state would impact the sales tax applied to the Order itself.

17

Uses other objects in the system that might be difficult or inconvenient to obtain during creation.
Description

Because this pattern is concerned with building a complex object from possibly multiple different sources, it is
called the Builder. As object creation increases in complexity, managing object creation from within the
constructor method can become difficult. Thisis especialy trueif the object does not depend exclusively on
resources that are under its own control.

Business objects often fall into this category. They frequently require data from a database for initialization and
might need to associate with a number of other business objects to accurately represent the business model.
Another exampleisthat of composite objectsin a system, such as an object representing adrawing in avisua
editing program. Such an object might need to be related to an arbitrary number of other objects as soon asit’s
created.

In cases like this, it is convenient to define another class (the Builder) that is responsible for the construction. The
Builder coordinates the assembly of the product object: creating resources, storing intermediate results, and
providing functional structure for the creation. Additionally, the Builder can acquire system resources required for
construction of the product object.

Implementation

The Builder class diagram is shown in Figure 1.2.

Figure 1.2. Builder class diagram

Director oL* interface
-AbstractBuilder]) builder | AbstractBuilder
+Product buildProduct() - -

+yinle! HuicPar]
]

for each pant ofthe product |

| .l'ﬁl'l.
1

| _CTE3ES - Iproduct

+yoid buildPart(
+Product getProduct(

To implement the Builder pattern, you need:

Director — Hasareferenceto an AbstractBui lder instance. The Director callsthe creational methods on its
builder instance to have the different parts and the Builder build.

AbstractBuilder — Theinterface that defines the available methods to create the separate parts of the product.
ConcreteBuilder — Implementsthe AbstractBui lder interface. The ConcreteBui lder implements all the
methods required to create areal Product. The implementation of the methods knows how to process information
from the Director and build the respective parts of aProduct. The ConcreteBui lder aso has either a
getProduct method or a creational method to return the Product instance.

Product — Theresulting object. Y ou can define the product as either an interface (preferable) or class.

Benefits and Drawbacks

The Builder pattern makesit easier to manage the overall flow during the creation of complex objects. This
manifestsitself in two ways:

For objects that require phased creation (a sequence of stepsto make the object fully active), the Builder actsas a
higher-level object to oversee the process. It can coordinate and validate the creation of all resources and if
necessary provide afallback strategy if errors occur.

For objects that need existing system resources during creation, such as database connections or existing business
objects, the Builder provides a convenient central point to manage these resources. The Builder also provides a

18

single point of creational control for its product, which other objects within the system can use. Like other
creational patterns, this makes things easier for clients in the software system, since they need only access the
Builder object to produce aresource.

The main drawback of this pattern is that there istight coupling among the Builder, its product, and any other
creational delegates used during object construction. Changes that occur for the product created by the Builder
often result in modifications for both the Builder and its delegates.

Pattern Variants

At the most fundamental level, it is possible to implement a bare-bones Builder pattern around asingle Bui lder
class with a creational method and its product. For greater flexibility, designers often extend this base pattern with
one or more of the following approaches:

Create an abstract Bui Ider. By defining an abstract class or interface that specifies the creational methods, you
can produce a more generic system that can potentially host many different kinds of builders.

Define multiple create methods for the Bui 1der. Some Builders define multiple methods (essentially, they
overload their creational method) to provide avariety of ways to initialize the constructed resource.

Develop creational delegates. With this variant, aDirector object holds the overall Product create method and
calls aseries of more granular create methods on the Bui Ider object. In this case, the Director acts asthe
manager for the Builder’s creation process.

Related Patterns

Related patterns include Composite (page 157). The Builder pattern is often used to produce Composite objects,
since they have avery complex structure.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Builder " on page 343 of the“ Full Code Examples” appendix.

This code example shows how to use the Builder pattern to create an appointment for the PIM. The following list
summarizes each class’s purpose:

AppointmentBuilder, MeetingBuilder — Builder classes

Scheduler — Director class

Appointment — Product

Address, Contact — Support classes, used to hold information relevant to the A ppointment
InformationRequiredException — An Exception class produced when more datais required

For the base pattern, the AppointmentBuilder manages the creation of a complex product, an Appointment here.
The AppointmentBuilder uses a series of build methods—buildA ppointment, buildLocation, buildDates, and
buildAttendees—to create an Appointment and populate it with data.

Example 1.10 AppointmentBuilder. java
import java.util.Date;

import java.util_ArraylList;
public class AppointmentBuilder{

public static final int START_DATE_REQUIRED =
public static final int END DATE REQUIRED = 2;
public static final int DESCRIPTION_REQUIRED = 4;

1;

O~NO U WNPE

19

9. public static final int ATTENDEE REQUIRED = 8;

10. public static final int LOCATION_REQUIRED = 16;

11.

12. protected Appointment appointment;

13.

14. protected int requiredElements;

15.

16. public void buildAppointment(){

17. appointment = new Appointment();

18. ¥

19.

20. public void buildDates(Date startDate, Date endDate){
21. Date currentDate = new Date();

22. if ((startDate != null) && (startDate.after(currentDate))){
23. appointment.setStartDate(startDate);

24. ¥

25. if ((endDate '= null) && (endDate.after(startDate))){
26. appointment.setEndDate(endDate);

27. }

28. }

29.

30. public void buildDescription(String newDescription){
31. appointment.setDescription(newDescription);

32. }

33.

34. public void buildAttendees(ArrayList attendees){

35. if ((attendees != null) && (lattendees.isEmpty())){
36. appointment.setAttendees(attendees);

37. }

38. }

39.

40. public void buildLocation(Location newLocation){

41. if (newLocation = null){

42. appointment._setlLocation(newLocation);

43.

44 . }

45.

46. public Appointment getAppointment() throws InformationRequiredException{
47. requiredElements = 0;

48.

49. if (appointment.getStartDate() == null){

50. requiredElements += START_DATE_REQUIRED;

51. }

52.

53. if (appointment.getLocation() == null){

54. requiredElements += LOCATION_REQUIRED;

55. ¥

56.

57. if (appointment.getAttendees().isEmpty()){

58. requiredElements += ATTENDEE_REQUIRED;

59. ¥

60.

61. it (requiredElements > 0){

62. throw new InformationRequiredException(requiredElements);
63. ¥

64. return appointment;

65. }

66.

67. public int getRequiredElements(){ return requiredElements; }
68. }

Example 1.11 Appointment.java

1. import java.util_ArraylList;

2. import java.util.Date;

3. public class Appointment{

4. private Date startDate;

5. private Date endDate;

6. private String description;

7. private ArraylList attendees = new ArrayList();

8. private Location location;

9. public static final String EOL_STRING =

10. System._getProperty("'line.separator™);

11.

12. public Date getStartDate(){ return startDate; }

13. public Date getEndDate(){ return endDate; }

14. public String getDescription(){ return description; }
15. public ArrayList getAttendees(){ return attendees; }

20

16. public Location getLocation(){ return location; }

17.

18. public void setDescription(String newDescription){ description = newDescription; }
19. public void setLocation(Location newLocation){ location = newlLocation; }
20. public void setStartDate(Date newStartDate){ startDate = newStartDate; }
21. public void setEndDate(Date newEndDate){ endDate = newEndDate; }

22. public void setAttendees(ArrayList newAttendees){

23. if (newAttendees = null){

24. attendees = newAttendees;

25. ¥

26. ¥

27.

28. public void addAttendee(Contact attendee){

29. if (lattendees.contains(attendee)){

30. attendees.add(attendee);

31. ¥

32. ¥

33.

34. public void removeAttendee(Contact attendee){

35. attendees.remove(attendee);

36. ¥

37.

38. public String toString(Q){

39. return " Description: " + description + EOL_STRING +

40. ' Start Date: " + startDate + EOL_STRING +

41. " End Date: " + endDate + EOL_STRING +

42. " Location: " + location + EOL_STRING +

43. ' Attendees: " + attendees;

44. }

45. %}

The Scheduler class makes callsto the AppointmentBui Ider, managing the creation process through the
method createAppointment.

Example 1.12 Scheduler.java

1. import java.util._Date; .

2. import java.util.ArrayList; L

3. public class Scheduler{ W\

4. public Appointment createAppointment(Appo ntBuilder builder,
5. Date startDate, Date endDate, String de ption,

6. Location location, ArrayList attendees) throws InformationRequiredException{
7. iT (builder == null){

8. builder = new App

9. } <

10. builder.buildAppointment()

11. builder.buildDates(startDate, endDate);

12. builder.buildDescription(description);

13. builder_buildAttendees(attendees);

14. builder_buildLocation(location);

15. return builder.getAppointment();

16. ¥

17. 3}

The responsibilities of each class are summarized here:

Scheduler — Callsthe appropriate build methods on AppointmentBui lder; returns a complete Appointment
object toitscaller.

AppointmentBuilder — Contains build methods and enforces business rules; creates the actual Appointment
object.

Appointment — Holdsinformation about an appointment.
The MeetingBui lder classin Example 1.13 demonstrates one of the benefits of the Builder pattern. To add
additional rules for the Appointment, extend the existing builder. In this case, the MeetingBui lder enforces an

additional constraint: for a meeting Appointment, start and end dates must be specified.

Example 1.13 MeetingBuilder.java

1. import java.util.Date;

2. import java.util_Vector;

3.

4. public class MeetingBuilder extends AppointmentBuilder{

21

}

public Appointment getAppointment() throws InformationRequiredException {

try {
super.getAppointment();

by
finally {

if (appointment.getEndDate() == null) {
requiredElements += END DATE_REQUIRED;
}

if (requiredElements > 0) {
throw new InformationRequiredException(requiredElements);
}
}

return appointment;

}

22

Factory Method

Also known as Virtual Constructor
Pattern Properties

Type: Creational

Leve: Class

Purpose

To define a standard method to create an object, apart from a constructor, but the decision of what kind of an
object to create is | eft to subclasses.

Introduction

Imagine that you' re working on a Personal Information Manager (PIM) application. It will contain many pieces
of information essential to your daily life: addresses, appointments, dates, books read, and so on. Thisinformation
isnot static; for instance, you want to be able to change an address when a contact moves, or change the details of
an appointment if your lunch date needs to meet an hour later.

The PIM isresponsible for changing each field. It therefore has to worry about editing (and therefore the User
Interface) and validation for each field. The big disadvantage, however, is that the PIM has to be aware of all the
different types of appointments and tasks that can be performed on them. Each item has different fields and the
user needs to see an input screen appropriate to those fields. 1t will be very difficult to introduce new types of task
information, because you will have to add a new editing capability to the PIM every time, suitable to update the
new item type. Furthermore, every change in a specific type of task, such as adding a new field to an appointment,
means you also have to update the PIM so that it is aware of this new field. You end up with avery bloated PIM
that is difficult to maintain.

The solution isto let items, like appointments, be responsible for providing their own editors to manage additions
and changes. The PIM only needs to know how to request an editor using the method getEditor, which isin
every editable item. The method returns an object that implements the 1temEdi tor interface, and the PIM uses
that object to request a JComponent as the GUI editor. Users can modify information for the item they want to
edit, and the editor ensures that the changes are properly applied.

All the information on how to edit a specific item is contained in the editor, which is provided by the item itself.
The graphical representation of the editor is also created by the editor itself. Now you can introduce new types of
items without having to change PIM.

Applicability

Use Factory Method pattern when:

Y ou want to create an extensible framework. This means allowing flexibility by leaving some decisions, like the
specific kind of object to create, until later.

Y ou want a subclass, rather than its superclass, to decide what kind of an object to create.
Y ou know when to create an object, but not what kind of an object.

Y ou need several overloaded constructors with the same parameter list, which is not allowed in Java. Instead, use
severa Factory Methods with different names.

Description
This pattern is called Factory Method because it creates (manufactures) objects when you want it to.
When you start writing an application, it’s often not clear yet what kind of components you will be using.

Normally you will have a general idea of the operations certain components should have, but the implementation
is done at some other time and will not be of consequence at that moment.

23

Thisflexibility can be achieved by using interfaces for these components. But the problem with programming to
interfaces is that you cannot create an object from an interface. Y ou need an implementing class to get an object.
Instead of coding a specific implementing class in your application, you extract the functionality of the
constructor and put it in amethod. That method is the factory method.

To create these objects, instead of coding a specific implementing classin your application, you extract the
functionality of the constructor and put it in amethod. This produces a ConcreteCreator whose responsibility it
iSto create the proper objects. That ConcreteCreator creates instances of an implementation (ConcreteProduct)
of an interface (Product).

Implementation

The class diagram is shown in Figure 1.3.

Figure 1.3. Factory Method class diagram

interface)
Creat interface
eator
Product
+Pracivet factonafethoo] Z:\l

i |

[I

| I

ConcreteCreator ConcreteProduct

instantiates

+Product factoryMethodd

return new CnncretePruductt};ll\]

To implement the Factory Method you need:
Product — Theinterface of objects created by the factory.

ConcreteProduct — Theimplementing class of Product. Objects of this class are created by the
ConcreteCreator.

Creator — Theinterface that defines the factory method(s) (factoryMethod).

ConcreteCreator — Theclassthat extends Creator and that provides an implementation for the
factoryMethod. This can return any object that implements the Product interface.

Benefits and Drawbacks

A magjor benefit to this solution is that the PIM can be very generic. It only needs to know how to request an
editor for an item. The information about how to edit a specific item is contained in the editor. The editor can aso
create the graphical user interface (GUI) for editing. This makes the PIM more modular, making it easier to add
new types of information to be managed without changing the core program itself.

JDBC (Java database connectivity) uses the Factory Method pattern in many of itsinterfaces. You can use
another JDBC driver aslong as the correct driver isloaded. The rest of your application remains the same. (For
more information on patternsin JDBC, see“ JDBC ” on page 308.)

The drawback to this pattern is the fact that to add a new type of product, you must add another new
implementing class, and you must either change an existing ConcreteCreator or create anew class that
implements Product.

Pattern Variants

There are several variations for this pattern:

24

Creator can provide a standard implementation for the factory method. That way Creator doesn’t have to be an
abstract class or interface, but can be afull-blown class. The benefit is that you aren’t required to subclass the
Creator.

Product can be implemented as an abstract class. Because the Product is a class, you can add implementations
for other methods.

The factory method can take a parameter. It can then create more than one type of Product based on the given
parameter. This decreases the number of factory methods needed.

Related Patterns

Related patterns include the following:

Abstract Factory (page 6) — Might use one or more factory methods.

Prototype (page 28) — Prevents subclassing of Creator.

Template Method (page 131) — Template methods usually call factory methods.

Data Access Object [CI2EEP] — The Data Access Object pattern uses the Factory Method pattern to be able to
create specific instances of Data A ccess Objects without requiring knowledge of the specific underlying database.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Factory Method ” on page 352 of the * Full Code Examples” appendix.

The following example uses the Factory Method pattern to produce an editor for the PIM. The PIM tracks alot of
information, and there are many cases where users need an editor to create or modify data. The example uses
interfaces to improve the overal flexibility of the system.

The Editable interface defines a builder method, getEditor, which returns an I1temEditor interface. The
benefit isthat any item can provide an editor for itself, producing an object that knows what parts of a business
object can change and how they can be changed. The only thing the user interface needs to do is use the
Editable interface to get an editor.

Example 1.14 Editable.java

1. public interface Editable {
2. public ItemEditor getEditor();
3. }

The 1temEditor interface provides two methods: getGUI and commi tChanges. The getGUI method is another
Factory Method—it returns a JComponent that provides a Swing GUI to edit the current item. This makes avery
flexible system; to add a new type of item, the user interface can remain the same, because it only uses the
Editable and the I'temEditor interfaces.

The JComponent returned by getGUI can have anything in it required to edit the item in the PIM. The user
interface can simply the acquired JComponent in its editor window and use the JComponent functionality to edit
the item. Since not everything in an application needs to be graphical, it could also be a good ideato include a
getUl method that would return an object or some other non-graphical interface.

The second method, commi tChanges, alows the Ul to tell the editor that the user wants to finalize the changes he
or she has made.

Example 1.15 1temEditor. java

1 import javax.swing.JComponent;
2 public interface ItemEditor {
3. public JComponent getGUI();
4 public void commitChanges();
5 }

25

The following code shows the implementation for one of the PIM items, Contact. The Contact class defines two
attributes: the name of the person and their relationship with the user. These attributes provide a sample of some
of the information, which could be included in an entry in the PIM.

Example 1.16 Contact.java

1. import java.awt.GridlLayout;

2. import java.io.Serializable;

3. import javax.swing.JComponent;

4. import javax.swing.JLabel;

5. import javax.swing.JPanel;

6. import javax.swing.JTextField;

7.

8. public class Contact implements Editable, Serializable {
9. private String name;

10. private String relationship;

11.

12. public ItemEditor getEditor() {

13. return new ContactEditor();

14. ¥

15.

16. private class ContactEditor implements ltemEditor, Serializable {
17. private transient JPanel panel;

18. private transient JTextField nameField;

19. private transient JTextField relationField;
20.

21. public JComponent getGUI() {

22. if (panel == null) {

23. panel = new JPanel();

24. nameField = new JTextField(name);

25. relationField = new JTextField(relationship);
26. panel .setLayout(new GridLayout(2,2));
27. panel .add(new JLabel(*'Name:""));

28. panel .add(nameField);

29. panel .add(new JLabel (*'Relationship:'));
30. panel .add(relationField);

31. } else {

32. nameField.setText(name);

33. relationField.setText(relationship);
34. }

35. return panel;

36. }

37.

38. public void commitChanges() {

39. if (panel = null) {

40. name = nameField.getText();

41. relationship = relationField.getText();
42. }

43. ¥

44 .

45. public String toString(){

46. return '\nContact:\n" +

47. " Name: " + name + "\n" +

48. " Relationship: " + relationship;
49. ¥

50. ¥

51. }

Contact implements the Editable interface, and providesits own editor. That editor only applies to the Contact
class, and needs to change certain attributes of the Contact, it isbest to use an inner class. Theinner class has
direct access to the attributes of the outer class. If you used another (non-inner) class, Contact would need to
provide accessor and mutator methods, making it harder to restrict access to the object’ s private data.

Note that the editor itself is not a Swing component, but only an object that can serve as afactory for such a
component. The greatest benefit is that you can serialize and send this object across a stream. To implement this
feature, declare all Swing component attributes in ContactEditor transient—they’ re constructed when and
where they’ re needed.

26

Prototype

Pattern Properties

Type: Creational, Object

Level: Single Class

Purpose

To make dynamic creation easier by defining classes whose objects can create duplicates of themselves.
Introduction

In the PIM, you want to be able to copy an address entry so that the user doesn’'t have to manually enter all the
information when creating a new contact. One way to solve thisisto perform the following steps.

Create anew Address object.
Copy the appropriate values from the existing Address.

While this approach solves the problem, it has one serious drawback—it viol ates the object-oriented principle of
encapsulation. To achieve the solution mentioned above, you have to put method calls to copy the Address
information, outside of the Address class. This means that it becomes harder and harder to maintain the Address
code, since it exists throughout the code for the project. It is also difficult to reuse the Address class in some new
project in the future.

The copy code really belongs in the Address classitself, so why not instead define a* copy” method in the class?
This method produces a duplicate of the Address object with the same data as the original object—the prototype.
Calling the method on an existing Address object solves the problem in a much more maintainable way, much
truer to good object-oriented coding practices.

Applicability

Use the Prototype pattern when you want to create an object that is a copy of an existing object.

Description

The Prototype pattern is well named; as with other prototypes, it has an object that is used as the basisto create a
new instance with the same values. Providing a“ create based on existing state ” behavior allows programs to
perform operations like user-driven copy, and to initialize objects to a state that has been established through use
of the system. Thisis often preferable to initializing the object to some generic set of values.

Classic examples for this pattern exist in graphic and text editors, where copy-paste features can greatly improve
user productivity. Some business systems use this approach as well, producing an initial model from an existing
business object. The copy can then be modified to its desired new state.

Implementation

The Prototype class diagram is shown in Figure 1.4.

Figure 1.4. Prototype class diagram

Client Prototype

+ioid aperationg +Prototype copvi

Frototype p= prntntg.fpe.cnpyt};l_\.|

To implement Prototype, you need:

27

Prototype — Provides a copy method. That method returns an instance of the same class with the same values as
the original Prototype instance. The new instance can be a deep or shallow copy of the original (see the Benefits
and Drawbacks section of this pattern).

Benefits and Drawbacks
The Prototype is helpful because it allows systems to produce a copy of a usable object, with variables already set
to a (presumably) meaningful value, rather than depending on some base state defined in the constructor. An

example of Prototype useis shown in Figure 1.5.

Figure 1.5. Example of Prototype use
iClient original:Prototyme

[
I
— o
Pm1_0h'rl_e vopled, = == af the current instance.
copied = oniginal.copy(; B = R Then refurn the newinstance,

Creale new Instance and copy all
attributes

copied:Prodobge
creats

copy atributes

A key consideration for this pattern is copy depth.

A shallow copy duplicates only the top-level elements of a class; this provides afaster copy, but isn't suitable for
all needs. Since references are copied from the origina to the copy, they still refer to the same objects. The
lower-level objects are shared among copies of the object, so changing one of these objects affects all of the
copies.

Deep copy operations replicate not only the top-level attributes, but also the lower-level objects. Thistypically
takes longer than shallow copy operations, and can be very costly for objects with an arbitrarily complex structure.
This makes sure that changes in one copy are isolated from other copies.

By its nature, the clone method in Object supports only one form of copy. For cases where you must support
multiple methods of post-creation initialization.

Pattern Variants
Pattern variants include the following:

Copy constructor — One variant of the prototype is a copy constructor. A copy constructor takes an instance of
the same class as an argument and returns a new copy with the same values as the argument.

Example 1.17 copy constructor

public class Prototype {
private int someData;
// some more data
public Prototype(Prototype original) {
super();
this.someData = original .someData;
//copy the rest of the data

// rest of code
b

An exampleisthe string class, where you can create a new String instance by calling for instance: new
String(““text”);

28

The benefit of this variant is that the intention of creating anew instance is very clear, but only one type of copy
(deep or shallow) can be executed. It is possible to have a constructor that can use both. The constructor would
take two arguments: the object to be copied and a boolean to mark whether it should apply a deep or shallow

copy.

A drawback is that the copy constructor must check the incoming reference to see if it is not null. With the normal
Prototype implementation, the method is certain to be called on avalid object.

clone method — The Java programming language already defines a clone method in the java. lang.Object
class—the superclass of al Java classes. For the method to be usable on an instance, the class of that object hasto

implement the java. lang.Clonable interface to indicate that an instance of this class may be copied. Because
the clone method is declared protected in Object, it has to be overridden to make it publicly available.

According to Bloch, “clone() should be used judiciously” [Bloch01]. As mentioned, a class has to implement
Clonable, but that interface does not provide a guarantee that the object can be cloned. The Clonable interface
does not defined the clone method, so it is possible that the clone method is not available when it is not
overridden. Another drawback of the clone method isthat it has areturn type of Object, requiring you to cast it
to the appropriate type before using it.

Related Patterns

Related patterns include the following:

Abstract Factory (page 6) — Abstract Factories can use the Prototype to create new objects based on the current
use of the Factory.

Factory Method (page 21) — Factory Methods can use a Prototype to act as a template for new objects.
Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Prototype” on page 357 of the* Full Code Examples” appendix.

The Address classin this example uses the Prototype pattern to create an address based on an existing entry. The
core functionality for the pattern is defined in the interface Copyable.

Example 1.18 copyable.java
1. public interface Copyable{

2. public Object copy();
3. }

The Copyable interface defines a copy method and guarantees that any classes that implement the interface will
define a copy operation. This example produces a shallow copy—that is, it copies the object references from the
original addressto the duplicate.

The code also demonstrates an important feature of the copy operation: not al fields must necessarily be
duplicated. In this case, the address typeis not copied to the new object. A user would manually specify a new
address type from the PIM user interface.

Example 1.19 Address. java

1 public class Address implements Copyable{

2 private String type;

3 private String street;

4 private String city;

5. private String state;

6. private String zipCode;

7 public static final String EOL_STRING =

8 System.getProperty("'line.separator™);
9 public static final String COMMA = "',";
10. public static final String HOME ""home"';
11. public static final String WORK "work™;

RO 1 o

29

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.

public Address(String initType, String initStreet,

String initCity, String initState, String initZip){

type = initType;

street = initStreet;
city = initCity;
state = InitState;
zipCode = initZip;

}

public Address(String initStreet, String initCity,

String initState, String initZip){

this(WORK, initStreet, initCity,

}
public Address(String initType){
type = initType;

}
public AddressQ{ }

public String getType(){ return type; }

initState,

public String getStreet(){ return street; }

public String getCity(){ return city; }

public String getState(){ return state; }
public String getZipCode(){ return zipCode; }

initzip);

public void setType(String newType){ type = newType; }
public void setStreet(String newStreet){ street =
public void setCity(String newCity){ city = newCity; }

public void setState(String newState){ state = newState; }
public void setZipCode(String newZip){ zipCode = newZip; }

public Object copy(){

newStreet; }

return new Address(street, city, state, zipCode);

3
public String toString(Q){

return "\t" + street + COMMA + ™ "

30

+ EOL_STRING +

"\t" + city + COMMA + "™ " + state + " " + zipCode;

Singleton

Pattern Properties

Type: Creationd

Level: Object

Purpose

To have only one instance of this classin the system, while alowing other classes to get access to this instance.
Introduction

Oncein awhile, you need aglobal object: one that’ s accessible from anywhere but which should be created only
once. You want all parts of the application to be able to use the object, but they all should use the same instance.

An exampleisahistory list—alist of actions a user has taken while using the application. Multiple parts of the
application use the same HistoryList object to either add actions a user has taken or to undo previous actions.

One way to achieve thisisto have the main application create a global object, then passits reference to every
object that might ever need it. However, it can be very difficult to determine how you want to pass the reference,
and to know up front which parts of the application need to use the object. Another drawback to this solution is
that it doesn't prevent another object from creating another instance of the global object—in this case,
HistorylList.

Another way to create global valuesis by using static variables. The application has several static objectsinside
of aclass and accesses them directly.

This approach has several drawbacks.

|
A static object will not suffice because a static object will be oreated at the time the class loads and thus givesyou
no opportunity to supply any data beforeit instantiates. SN~

Y ou have no control over who accesses the object dy can access a publicly available static instance.
If you realize that the singleton should be, say, a "nlfy, you’re faced with modifying every piece of client code.

Thisiswhere the Singleton pattern comes in handy. It provides easy access for the whole application to the global
object.

Applicability
Use the Singleton when you want only one instance of a class, but it should be available everywhere.
Description

The Singleton ensures a maximum of one instance is created by the VM (not surprisingly, that’swhy it's called a
singleton). To ensure you have control over the instantiation, make the constructor private.

This poses a problem: it’simpossible to create an instance, so an accessor method is provided by a static method
(getinstance()). That method creates the single instance, if it doesn't already exist, and returns the reference of
the singleton to the caller of the method. The reference to the singleton is also stored as a static private attribute of
the singleton class for future calls.

Although the accessor method can create the singleton, most of thetimesit is created as the classis |oaded.
Postponing the construction is only necessary if some form of initialization has to be done before the singleton is
instantiated.

An example of asingleton isthe president of the United States of America. At any given time there should only

be one president. When the president of Russia picks up the red phone, he expectsto get a handle to the current
United States president.

31

Implementation
The Singleton class diagram is shown in Figure 1.6.

Figure 1.6. Singleton class diagram

Singleton
-Singleton instance=new Singleton
- Singletond
+Singleton getlnstanced

return instance; l_\]

To implement the Singleton pattern, you need:

Singleton — Provides a private constructor, maintains a private static reference to the single instance of this
class, and provides a static accessor method to return a reference to the single instance.

Therest of the implementation of the Singleton class is normal. The static accessor method can make decisions
about what kind of an instance to create, based on system properties or parameters passed into the accessor
method (see the Pattern Variants section for this pattern).

Benefits and Drawbacks

Benefits and drawbacks include the following:

The Singleton isthe only class that can create an instance of itself. You can’t create one without using the static
method provided.

Y ou don’t need to pass the reference to all objects needing this Singleton.

However, the Singleton pattern can present threading problems, depending upon the implementation. Y ou must
take care regarding control of the singleton initialization in a multithreaded application. Without the proper
control, your application will get into “thread wars.”

Pattern Variants

Pattern variants include the following:

One of the Singleton’ s often-overlooked options is having more than one instance inside the class. The benefit is
that the rest of the application can remain the same, while those that are aware of these multiple instances can use
other methods to get other instances.

The Singleton’ s accessor method can be the entry point to awhole set of instances, al of adifferent subtype. The
accessor method can determine at runtime what specific subtype instance to return. This might seem odd, but it's
very useful when you’ re using dynamic class loading. The system using the Singleton can remain unchanged,
while the specific implementation of the Singleton can be different.

Related Patterns

Related patterns include the following:

Abstract Factory (page 6)

Builder (page 13)

Prototype (page 28)

32

Example

Application users want the option of undoing previous commands. To support that functionality, a history list is
needed. That history list has to be accessible from everywhere in the PIM and only one instance of it is needed.
Therefore, it's a perfect candidate for the Singleton pattern.

Example 1.20 HistoryList.java

1. import java.util_ArraylList;

2. import java.util.Collections;

3. import java.util_List;

4. public class HistoryList{

5. private List history = Collections.synchronizedList(new ArrayList());
6. private static HistoryList instance = new HistoryList();
7.

8. private HistoryList(Q{ }

9.

10. public static HistoryList getlnstance(){

11. return instance;

12. ¥

13.

14. public void addCommand(String command){

15. history.add(command) ;

16. ¥}

17.

18. public Object undoCommand(){

19. return history.remove(history.size() - 1);
20. }

21.

22. public String toString(Q{

23. StringBuffer result = new StringBuffer();
24. for (int i = 0; 1 < history.size(); i++){
25. result._append(");

26. result.append(history.get(i));

27. result.append(*'\n"");

28. }

29. return result.toString();

30. }

31. }

TheHistoryList maintains a static reference to an instance of itself, has a private constructor, and uses a static
method getInstance to provide asingle history list object to all parts of the PIM. The additional variablein
HistoryList, history, iSaList object used to track the command strings. The HistoryList provides two
methods, addCommand and undoCommand to support adding and removing commands from the list.

33

Chapter 2. Behavioral Patterns

Introduction to Behavioral Patterns

Behavioral patterns are concerned with the flow of control through a system. Some ways of organizing control
within a system can yield great benefits in both efficiency and maintainability of that system. Behavioral patterns
distill the essence of proven practices into readily understood, well known, and easy-to-apply heuristics.

Behavioral patterns covered in this chapter are as follows:

Chain of Responsibility — To establish a chain within a system, so that a message can either be handled at the
level whereit isfirst received, or be directed to an object that can handleit.

Command — To wrap acommand in an object so that it can be stored, passed into methods, and returned like any
other object.

Interpreter — To define an interpreter for alanguage.

Iterator — To provide a consistent way to sequentially access itemsin a collection that is independent of and
separate from the underlying collection.

Mediator — To simplify communication among objects in a system by introducing a single object that manages
message distribution among the others.

Memento — To preserve a“snapshot” of an object’s state, so that the object can return to its original state
without having to reveal its content to the rest of the world.

Observer — To provide away for a component to flexibly broadcast messages to interested receivers.
State— To easily change an object’s behavior at runtime.

Strategy — To define agroup of classes that represent a set of possible behaviors. These behaviors can then be
flexibly plugged into an application, changing the functionality on the fly.

Visitor — To provide a maintainable, easy way to perform actions for afamily of classes. Visitor centralizes the
behaviors and allows them to be modified or extended without changing the classes they operate on.

Template Method — To provide a method that allows subclasses to override parts of the method without
rewriting it.

Note:
MVC, or Model-View-Controller, can be considered a behavioral pattern. However, because of its wide-ranging

implications for entire systems, particular in view of the J2EE specification recommendations for servlets and
JSPs, weincluded it in the “ System Patterns” chapter on page 208.

Chain of Responsibility
Pattern Properties

Type: Behavioral

Level: Component

Purpose

To establish a chain within a system, so that a message can either be handled at the level where it isfirst received,
or be directed to an object that can handleit.

Introduction

The Personal Information manager might be used to manage projects as well as contacts. Think of thisas atree
structure of task objects. One task isthe “root” of the tree, representing the project itself. The base task has a set
of subtasks, each subtask hasits own set of subtasks, and so on. In thisway, you divide a project up into an
increasingly detailed set of related objectives. This gives users the ability to group and organize actions relating to
their objectives, asin the following example:

Project (basetask): Own acountry

Subtask: Acquire asmall fortune

Subtask: Use psychic hotlines to predict winning lottery numbers

Subtask: Research whether the climate is better in the Atlantic or Pacific

Subtask: Locate anisland for sale

Subtask: See whether there are any islands for auction on E-Bay

Subtask: Research the U.N. rulesfor incorporation as a country

Subtask: Decide what to name the country

How do you manage information in a structure like this? For example, it would be helpful to be able to seewho is
responsible for a certain set of tasks or deliverables. How do you delegate groups of tasks to someone, or assign
the tasks to someone else?

One option is to define an attribute for each task to represent the owner. When the owner for atask changes, all
tasks and subtasks are updated with the new owner's name. However, this seems like an inefficient way to store a
task owner, requiring much more information to be stored and maintained than you would prefer.

An dlternative is to reference one or more central objects that store the task owners. While this approach more
effectively manages memory, it requires alot of work to manage the links between the tasks and the central
objects used to maintain data.

What happens if you use the task tree itself to manage owners? Define a method for the Task class called
getOwner, associated with an owner attribute. When called, the method checks whether the owner was specified
(not null). If an owner was specified, the name is returned; if not, the task calls the getowner method for its
parent. This solution requires less work than either of the previous solutions and is still efficient in memory use.
Y ou only need to specify the owner at asingle location in the tree. The Task objects themselves do the rest of the

work, delegating the getowner call to their parent tasks until one is found with the information. Thisis an
example of the Chain of Responsibility design pattern.

Applicability
Use Chain of Responsibility when:

Thereisagroup of objectsin a system that can all potentially respond to the same kind of message.

35

Messages must be handled by one of several objects within the system.

Messages follow the “handle or forward” model—that is, some events can be handled at the level where they are
received or produced, while others must be forwarded to some other object.

Description

When some action takes place in an object-oriented system, it is often represented by an event or a message. Such
amessage may take the form of amethod that will be called, or it may be an object within the system. Typically,
the message will be directed to another object that can respond to or handle the message.

In the ssimplest cases, the same object that produces a message also respondsto it. For instance, atext field might
produce events in response to user action (such as typing on a keyboard), and also respond to those events
(displaying text in the field).

In more complex cases, responding to messages can be more involved. A message requesting a change in the
appearance or layout of a GUI component might be dealt with at different levels. If the request is to change the
alignment of text within afield, the component itself might respond. A request to change the alignment of the
entire text field would probably have to be directed to some higher-level organizing object; perhaps a panel or
frame containing the text field. This kind of model is appropriate for the Chain of Responsibility pattern.

The Chain of Responsibility isareferral chain for messages. If an object cannot handle a given message, it passes
the message on to some other object. Frequently, the Chain of Responsibility isimplemented with a parent-child
or container-contained model. With this approach, messages not handled by a child object are sent to the parent,
and potentially the parent’ s parent, until a suitable handler object is reached.

The Chain of Responsibility iswell-suited for avariety of object-oriented GUI activities. GUI help functions,
component layout, formatting, and positioning all might use this pattern. In business models, the patternis
sometimes used with whole-part models. For example, aline item on an order might send a message to the order
it's on—the order composite—for action.

For area-world example of Chain of Responsibility, consider atravel request within acompany. Typically, such
arequest will be propagated upward to the appropriate manager. Therefore, arequest to travel to the grocery store
for more coffee might only require approval from your manager, whereas arequest to travel to Kansas could rise
through an organizational hierarchy until it finally reached an individual with approval authority (perhaps the
great and powerful Oz).

The Chain of Responsibility sequence diagram is shown in Figure 2.1.

Figure 2.1. Chain of Responsibility sequence diagram

Client :ConcreteHandler :ConcreteHandler

handlaMessage(:void

handleMessagedvaid

handlermethod(void

Implementation
The class diagram for Chain of Responsibility is shown in Figure 2.2

Figure 2.2. Chain of Responsibility class diagram

36

interface
Handler

Client

Wy

+woid handieMessage()

I\
(A
|
|

ConcreteHandler if fcan handle)
-Handler handler handlerMethod

. I~ = T |else
+yoid handleMessage

) ueg successorhandlieMessage()
+void handlerkethod])

To implement the Chain of Responsibility, you need:

Handler — Theinterface that defines the method used to pass a message to the next handler. That messageis
normally just the method call, but if more data needs to be encapsulated, an object can be passed as well.

ConcreteHandler — A classthat implementsthe Handler interface. It keeps areference to the next Handler
instance inline. This reference is either set in the constructor of the class or through a setter method. The
implementation of the handleMessage method can determine how to handle the method and call a handleMethod,
forward the message to the next Handler or acombination of both.

Benefits and Drawbacks

Chain of Responsibility offers great flexibility in event processing for an application, since it manages complex
event handling by dividing the responsibilities among a number of simpler elements. It allows a set of classesto
behave as awhole, since events produced in one class can be sent on to other handler classes within the
composite.

Of course, the flexibility that this pattern provides comes with a price; the Chain of Responsibility becomes
difficult to develop, test and debug. As the forwarding chain becomes more complex, you have to carefully
monitor whether events are being properly forwarded.

Failure to plan for the different forwarding possibilities can result in dropped messages (messages that have no
handler and so never have aresponse) or communication “chatter.” Chatter refers to a high volume of messages
and multiple forwarding stages in the chain. If many messages are produced during a short period of time and
they are passed along several times before they are handled, the system might slow down.

Pattern Variants

There are many ways to adapt Chain of Responsibility to suit application requirements. The two considerations
are handling strategies and forwarding strategies.

Handling strategies focus on exactly how handler behavior isimplemented. Some of the possible variants
include:

Default handler — Some implementations set up a base handler, which becomes the default for the chain. Itis
normally used only when there is no explicitly defined forwarding class. A default handler is especially helpful in
avoiding the problem of dropped messages previously mentioned in the Benefits and Drawbacks section for this
pattern.

Handle and extend — In thisvariant, event handling involves adding to a base behavior as the event is propagated
along the chain. Thisis often helpful for activities such as logging.

Dynamic handlers— Some Chain of Responsibility implementations allow the message forwarding structure to
be changed at runtime. By defining a setter method for each class of the chain, you can define and modify the
chain asit isused in the application (with all of the resulting complexity that involves).

Forwarding strategies define various approaches to handle or forward messages produced by a component:

Handle by default — Handle any message that is not specifically forwarded.

Propagate by default — Forward any message that is not explicitly handled.

37

Forward to default handler — More complex than the base pattern, this approach uses a default event handler.
Any message not explicitly handled at the component level, or forwarded to some other handler, will be sent to
the default handler.

Ignore by default — Any message that is not explicitly handled or forwarded is discarded. If the classesin the
chain produce events that are not used in the application, this can be an acceptable way to reduce chatter.
However, you must be careful in this approach to avoid inadvertently discarding messages that the system should
handle.

Related Patterns

Related patterns include the Composite (page 157). Chain of Responsibility is often used with the Composite
pattern. When both are used together, the Composite pattern provides support for a tree-based structure and basic
message propagation, and the Chain of Responsibility provides rules for how some of the messages are
propagated.

In addition, Composite tends to send messages “down” the tree (from the root to the branches) while Chain of
Responsibility usually sends messages “up” the tree (from branches to the root).

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Chain of Responsibility ” on page 366 of the “ Full Code Examples” appendix.

The PIM can act as a project manager as well as a contact manager. This code example shows how to use the
Chain of Responsibility pattern to retrieve information from within a project hierarchy.

The Projectltem interface defines common methods for anything that can be part of a project.

Example 2.1 Projectlitem. java

import java.io.Serializable;
import java.util_ArraylList;
public interface Projectltem extends Serializable{
public static final String EOL_STRING = System.getProperty(*'line.separator™);
public Projectltem getParent();
public Contact getOwner();
public String getDetails();
public ArrayList getProjectltems();

O©CoO~NOOOTA~AWNPE

}

The interface defines the methods getParent, getOwner, getDetails, and getProjectltems. Two classes
implement Projectltem in thisexample — Project and Task. The Project classis the base of a project, so its
getParent method returns null. The getowner and getDetai Is methods return the overal owner and details for
the project, and the getProjectltems method returns al of the project’simmediate children.

Example 2.2 pProject. java

import java.util_ArraylList;
public class Project implements Projectltem{
private String name;
private Contact owner;
private String details;
private ArraylList projectltems = new ArrayList();

public Project(Q{ }
public Project(String newName, String newDetails, Contact newOwner){
10. name = newName;

OCoO~NOOOTA~AWNPE

11. owner = newOwner;

12. details = newDetails;

13. }

14.

15. public String getName(){ return name; }

16. public String getDetails(){ return details; }
17. public Contact getOwner(){ return owner; }

18. public Projectltem getParent(){ return null; }

38

19. public ArrayList getProjectltems(){ return projectltems; }

20.

21. public void setName(String newName){ name = newName; }

22. public void setOwner(Contact newOwner){ owner = newOwner; }
23. public void setDetails(String newDetails){ details = newDetails; }
24.

25. public void addProjectltem(Projectltem element){

26. if (Iprojectltems.contains(element)){

27. projectltems.add(element);

28. ¥

29. ¥

30.

31. public void removeProjectltem(Projectltem element){

32. projectltems.remove(element);

33. ¥

34.

35. public String toString(Q{

36. return name;

37. }

38. }

The Task class represents some job associated with the project. Like Project, Task can keep a collection of
subtasks, and its getProjectltems method will return these objects. For Task, the getParent method returns the
parent, which will be another Task for the Project.

Example 2.3 Task. java

1. import java.util_ArraylList;

2. import java.util_Listlterator;

3. public class Task implements Projectltem{

4. private String name;

5. private ArrayList projectltems = new ArrayList();

6. private Contact owner;

7. private String details;

8. private Projectltem parent;

9. private boolean primaryTask;

10.

11. public Task(Projectltem newParent){

12. this(newParent, ", """, null, false);

13.

14. public Task(Projectltem newParent, String newName,

15. String newDetails, Contact newOwner, boolean newPrimaryTask){
16. parent = newParent;

17. name = newName;

18. owner = newOwner;

19. details = newDetails;

20. primaryTask = newPrimaryTask;

21. ¥

22.

23. public Contact getOwner(){

24. if (owner == null){

25. return parent.getOwner();

26. ¥

27. else{

28. return owner;

29. }

30. ¥

31.

32. public String getDetails(){

33. if (primaryTask){

34. return details;

35. ¥

36. else{

37. return parent._getDetails() + EOL_STRING + "\t" + details;
38. }

39. }

40.

41. public String getName(){ return name; }

42. public ArrayList getProjectltems(){ return projectltems; }

43. public Projectltem getParent(){ return parent; }

44 . public boolean isPrimaryTask(){ return primaryTask; }

45.

46. public void setName(String newName){ name = newName; }

47. public void setOwner(Contact newOwner){ owner = newOwner; }

48. public void setParent(Projectltem newParent){ parent = newParent; }
49. public void setPrimaryTask(boolean newPrimaryTask){ primaryTask = newPrimaryTask; }
50. public void setDetails(String newDetails){ details = newDetails; }

39

51.

52. public void addProjectltem(Projectltem element){
53. if (Iprojectltems.contains(element)){

54. projectltems.add(element);

55.

56. ¥

57.

58. public void removeProjectltem(Projectltem element){
59. projectltems.remove(element);

60. ¥

61.

62. public String toString(Q{

63. return name;

64. }

65. }

The Chain of Responsibility behavior is manifested in the getowner and getDetai I's methods of Task. For
getowner, a Task will either return itsinternally referenced owner (if non-null), or that of its parent. If the parent
was a Task and its owner was null as well, the method call is passed on to the next parent until it eventually
encounters a non-null owner or it reaches the Project itself. Thismakes it easy to set up a group of Tasks where
the same individual is the designated owner, responsible for the completion of aTask and all subTasks.

The getDetai Is method is another example of Chain of Responsibility behavior, but it behaves somewhat
differently. It calls the getDetai Is method of each parent until it reaches a Task or Project that isidentified as
aterminal node. This means that getDetai Is returns a series of Strings representing all the detailsfor a
particular Task chain.

40

Command

Also known as Action, Transaction

Pattern Properties

Type: Behaviord

Level: Object

Purpose

To wrap acommand in an object so that it can be stored, passed into methods, and returned like any other object.
Introduction

When a user selects an action to be performed, the application needs to know where to get the relevant data and
behavior. Normally, the application knows the number of options a user has and will keep the logic in a central
place (hardcoded). When an option is selected, the application looks up what to do, assembles the data required,
and invokes the necessary methods.

Of course, you are perfect (most programmers are), but your application is intended for normal users and they
sometimes make mistakes. That’s why many current applications allow users to undo every task back up to a
certain checkpoint, such as the last time the user saved.

Imagine doing that in your application with its current design. It means creating a history list—alist of al the
actions the user has performed, all the data that was required for the action, and the previous state. After about
three or four actions, the history list will be bigger than the entire application, because of all the redundant data.
It makes more sense to combine the user's action into one object: the Command object. This contains the behavior
and the data required for one specific action. Now an application just invokes the execute method on the

Command object to execute the command. The application no longer néds to know all the available options and
can be easily changed to include more user actions.

Applicability

Use the Command pattern to:
Support undo, logging, and/or transactions.

Queue and execute commands at different times.

Decoupl e the source of the request from the object that fulfills the request.

Description

An application that doesn't use the Command pattern would have to provide a method in its handler class for each
appropriate event that may occur. That means the handler needs to have all the information to be able to execute

the action. Introducing new actions would require adding new methods to the handler class.

The Command pattern encapsulates both the data and functionality required to fulfill a specific action or request.
It provides a separation between when an action needs to be taken and how it needs to be executed.

An application that uses the Command pattern creates a source (for instance, a GUI), areceiver (the object that
carries out part of the request), and the command (Listener). The command receives the reference to the
receiver and the source receives areference to the command . In this example, when the user clicks the button in
the GUI, the execute or listener method on a command object is created (see Figure 2.3).

Figure 2.3. Sequence diagram for invocation of Command

41

aGUl ‘Recenver dnvoker

| aCommand:Command
| new

[T==1
executeCnmmand(aCurr{mand}:vnid

[==

executedvoid

doActiondvoid

The command object is sent to the invoker, which implements the Command interface. In its ssmplest form, the
interface has an execute method. The implementing classes store the receiver as an instance variable. When the
execute method is called, the Command calls the doAction method on the Receiver. The Command can call several
methods on the Receiver.

Implementation

The Command class diagram is shown in Figure 2.4.

Figure 2.4. Command class diagram

Invoker interface
———= Conunand

+vilef execiitel

&

ConcreteCommand Receiver

-Receivertarget
+yoid executed

+yoid actiong

To implement the Command pattern, you need the following:

Command — The interface that defines the methods for the Invoker to use.

Invoker — Theinvoker of the execute method of the Command object.

Receiver — Thetarget of the Command and the object that fulfills the request; it has all the information needed.

ConcreteCommand — Implementation of the Command interface. It keeps areference to the intended Receiver.
When the execute method is called, ConcreteCommand will call one or more methods on the Receiver.

When implementing the Command pattern, you need to make some choices concerning the handling of calls. Do
one of the following:

The class that implements the Command interface can just be a coupling between the invoker and the receiver, and
forward all the calls directly. This makes the ConcreteCommand lightweight.

The ConcreteCommand can be the receiver and handle all the requests itself. Thisis most appropriate when there
is no specific receiver for that request.

42

Of course, you can combine these two approaches and choose to handle part of the request in the
ConcreteCommand and forward other parts.

Benefits and Drawbacks

The Command pattern offers flexibility in several ways:

Decoupling the source or trigger of the event from the object that has the knowledge to perform the task.
Sharing Command instances between several objects.

Allowing the replacement of Commands and/or Receivers at runtime.

Making Commands regular objects, thus allowing for al the normal properties.

Easy addition of new Commands; just write another implementation of the interface and add it to the application.
Pattern Variants

Pattern variants include the following:

Undo— The Command pattern lends itself to providing undo functions. When you extend the Command interface
with an undo method, the burden of reversing the last command is placed on the implementing class.

To support an undo for only the last command, the application needs to keep areference only to the last command.
When the client does an undo, the application hasto call the undo method of just the last command.

However, users might be dissatisfied with undoing only the last command. To support multi-level undo, the
application must keep track of al the commandsin ahistory list. This history list also simplifies the repetitive
execution of the same command.

To be able to undo a command, the Command needs to install some damage control. The command needs to save
all the information required to repair the changed object. Thisinformation includes, but is not limited to, the
receiver and any arguments and old values. The receiver has to be changed so that the command can restore the
original values.

Remember that you can use these Commands several times in different contexts. Y ou might therefore need to
copy the Command before placing it in the history list. Y ou can do that by implementing the Prototype pattern

(see” Prototype " on page 28).

Copying the command helps prevent the errors that arise from repeatedly undoing and redoing several Commands.
Going back and forth in the history list should be no problem, but if implemented incorrectly, any errors will add
up. To prevent this, the command should store as much information as necessary to reverse the action. If some of
theinformation is stored in the receiver, the Memento pattern (see “ Memento ” on page 88) would be most
appropriate to store the state of the receiver. The receiver can provide that Memento object to the Command object
asits previous state. When the command needs to be undone, the Command object hands the Memento object back
to thereceiver.

MacroCommand — A MacroCommand isa collection of other Commands. Y ou can create MacroCommand S by using
the Composite pattern. Figure 2.5 shows a class diagram for the undo and MacroCommand variant. (For more
information, see “ Composite ” on page 157.)

Figure 2.5. Class diagram showing both the undo and macroCommand variant

43

interface
Corrmand

+yole execLiter)

1

interface
UndoableConunand

+yiled Lncior)

r— | I 1

I I I

| I |
ConcreteCommandA ConcreteCommandB MacroCommand
+yoid executed +yoid execute) +ioid executed)
+yoid undof +yoid undo +yoid undog)

A MacroCommand contains alist of subcommands. When the execute method is called, the MacroCommand
forwards subcommands.

If the MacroCommand supports undo, al internal commands must support it as well. When undo is called, this call
must be forwarded to the children in the reverse order of the execute method.

Related Patterns

Related patterns include the following:

Composite (page 157) — Use the Composite pattern to implement MacroCommands.

Memento (page 88) — Keepsthe state of the receiver within the command to support undoing a Command.

Prototype (page 28) — The Prototype pattern can be used to copy the command before placing it in the history
list.

Singleton (page 34) — In most applications, the history list isimplemented as a Singleton.
Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Command ” on page 374 of the“ Full Code Examples” appendix.

In the Personal Information Manager, users might want to update or modify information in their system. This
code demonstrates how the Command pattern can provide update and undo behavior for alocation.

In this example, apair of interfaces model the generic command behavior. The basic command action is defined
by the execute method in Command, while UndoableCommand extends this interface by adding undo and redo
methods.

Example 2.4 command.java

1. public interface Command{

2. public void execute();

3. }

Example 2.5 undoableCommand. java

1. public interface UndoableCommand extends Command{
2. public void undo();

3. public void redo();
4. }

In the PIM, the location of an appointment will be used to implement an undoable command. An appointment
stores a description of an event, the people involved, the location, and the start and end time(s).

Example 2.6 Appointment. java

1. import java.util.Date;

2. public class Appointment{

3. private String reason;

4. private Contact[] contacts;

5. private Location location;

6. private Date startDate;

7. private Date endDate;

8.

9. public Appointment(String reason, Contact[] contacts, Location location, Date startDate,
Date endDate){

10. this.reason = reason;

11. this.contacts = contacts;

12. this.location = location;

13. this.startDate = startDate;

14. this.endDate = endDate;

15. ¥

16.

17. public String getReason(){ return reason; }

18. public Contact[] getContacts(){ return contacts; }

19. public Location getLocation(){ return location; }

20. public Date getStartDate(){ return startDate; }

21. public Date getEndDate(){ return endDate; }

22.

23. public void setLocation(Location location){ this.location = location; }

24.

25. public String toString(Q{

26. return "Appointment:" + "™\n Reason: " + reason +

27. "\n Location: " + location + '"\n Start: " +

28. startDate + '"\n End: " + endDate + "\n";

29. }

30. }

The class ChangeLocationCommand implements the UndoablleCommand interface and provides the behavior
required to change the location for an appointment.

Example 2.7 changeLocationCommand. java

1. public class ChangelLocationCommand implements UndoableCommand{
2. private Appointment appointment;

3. private Location oldLocation;

4. private Location newLocation;

5. private LocationEditor editor;

6.

7. public Appointment getAppointment(){ return appointment; }
8.

9. public void setAppointment(Appointment appointment){ this.appointment = appointment; }
10. public void setLocationEditor(LocationEditor locationEditor){ editor = locationEditor; }
11.

12. public void execute(){

13. oldLocation = appointment.getLocation();

14. newLocation = editor.getNewLocation();

15. appointment.setLocation(newLocation);

16. }

17. public void undo(){

18. appointment.setlLocation(oldLocation);

19. ¥

20. public void redo(){

21. appointment.setlLocation(newLocation);

22. }

23. }

The class provides the ability to change alocation using the execute method. It provides undo behavior by storing
the previous value of the location and allowing a user to restore that value by calling the undo method. Finally, it
supports aredo method that enables users to restore the new location, if they happen to be very indecisive.

45

Interpreter

Pattern Properties

Type: Behavioral

Level: Class

Purpose

To define an interpreter for alanguage.
Introduction

How do you solve ajigsaw puzzle? An incredibly gifted person might look through all 5,000 pieces and, after
some calculations, know where al the pieces belong.

Members of another school of puzzle-solving thought use a different approach. They sort all the pieces that
belong together in one part of the puzzle, then try to solve that smaller part first. Y ou would try pieces until two
of them match, repeating the process until asmall part is finished. Then combine that part with other small pieces,
and on and on until you complete the puzzle and discover you're missing a dozen pieces.

Solving a problem is often done this way; by splitting the problem up into subproblems, recursively. Not only that,
but you have to solve the subproblems as well. When the problems are interdependent, solving them is very
difficult.

The best solution is to create a simple language that describes relationships. Model a complex problem with a
language and solve the sentence that describes the problem. With this approach, you should be able to greatly
simplify the task of obtaining the solution. Like the puzzle, you divide the problem into progressively smaller
parts. Y ou solve the smaller parts, then you combine the solutions to obtain an overall solution. And hope that
when you're done, you won't have any pieces missing.

Applicability

Use Interpreter when:

Thereis asimple language to interpret.

Recurring problems can be expressed in that language.

Efficiency is not the main issue.

Description

The Interpreter dissects a problem by dividing it into small pieces, then puts these pieces back together as a
sentence in asimple language. The other part of the interpreter uses that sentence to interpret and solve the
problem step by step. Thisis done by creating an abstract syntax tree.

A well-known example of this approach is aregular expression. Regular expressions are used to describe patterns
for which to search and modify strings, and the language used to describe these patternsis very concise.

Here' s some terminology based on a mathematical example. On many occasions you might use certain formulas,
like the Pythagorean Theorem:

(A2 + BZ) — CZ
S0 here's asimple mathematical formula:
Result = (a+ b)/c

result’svalue depends on the valuesfor a, b, and c.

46

Suppose the values are 4, 2 and 3 respectively— result is 2. Now, how do you know that? First, you mentally
associated awith 4, b with 2, and c with 3. Next you added a and b, resulting in the value 6, which you then
divided by c (3).

Solving the problem using Interpreter pattern involves avery similar set of steps. Each of the variables (a, b, and
C) isan operand, asis each intermediate value (the value that is the result of some calculation).

The grammar rules (like + for adding and / for dividing) are operations or operators. Each grammar ruleis
implemented as a separate class, and each value to the right of that rule (the values are also called operands)
becomes an instance variable.

Implementation

Figure 2.6 shows the Interpreter pattern class diagram.

Figure 2.6. Interpreter class diagram

interface
Chent | = Exprassion

1.*

| +vioied interpreli Context ¢

Comtexty N

TerminalExpression MonterminalExpression

+ioid interpret{Context o) +ynid interpret{Context o)

The Interpreter pattern needs:
Expression — Theinterface through which the client interacts with the expressions.

TerminalExpression — Implementation of the Expression interface intended for terminal nodesin the
grammar and the syntax tree.

NonterminalExpression — The other implementation of the Expression interface, intended for the
nonterminal nodes in the grammar and syntax tree. It keeps a reference to the next Expression (s) and invokes
the interpret method on each of its children.

Context — Container for theinformation that is needed in severa placesin theinterpreter. It can serveasa
communication channel among several Expression instances.

Client — Either buildsor receives an instance of an abstract syntax tree. This syntax tree is composed of
instances of TerminalExpressions and NonterminalExpressions to model a specific sentence. The client
invokes the interpret method with the appropriate context where necessary.

Benefits and Drawbacks

Benefits and drawbacks include the following:

The interpreter can be very easily changed to reflect changes in the grammar. To add arule, create another class
that implements the Expression interface. This classimplements the new rule in the interpret method.

Y ou can easily change a rule by extending the old class and overriding the interpret method.

The Interpreter pattern is inappropriate when the grammar is large. (Does this means that the Interpreter will start
yelling loudly and breaking things and eventually have to be escorted out of your program? It's even worse.) The
Interpreter can result in alarge number of classes being produced if there are many rules in your language. Every
rule you add to your language requires one or more classes in the interpreter. As the grammar gets larger, the
number of classes used increases. This can eventually result in testing and maintenance problems.

47

The expressions are reusable for other purposes. Y ou can add methods to the Expression to increase the
functionality of the expressions. To add more flexibility, use the Visitor pattern, which lets you dynamically
change the interpret method. (See” Visitor ” on page 121.)

It might be difficult to create the abstract syntax tree—it isn’t defined by the Interpreter pattern. The Interpreter
assumes the syntax tree has been created somewhere, somehow.

Pattern Variants

The original pattern as described in the GoF Design Patterns book uses an abstract class instead of an interface.
As stated before, we recommend that you use interfaces wherever possible, unless a partial implementation
should be supplied.

Related Patterns

Related patterns include the following:

Composite (page 157) — The structure for interpreted expressions is based on the composite pattern, using
terminal expressions (leaf nodes) and nonterminal expressions (branch nodes).

Flyweight (page 183) — To reduce the number of redundant or similar objects, you can apply the Flyweight
pattern to some of the Expressions.

Iterator (page 69) — Iterator is used to iterate through the abstract syntax tree and its nodes.
Visitor (page 121) — When aVisitor pattern is used, the Interpreter gains flexibility.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or aRunPattern class,
see” Interpreter ” on page 381 of the* Full Code Examples™ appendix.

The Expression hierarchy is at the heart of the Interpreter pattern. It defines the grammar that can be used to
create and evaluate expressions. The Expression interface is the foundation for all expressions, and defines the
interpret method that performs an evaluation.

Table 2-1 lists the interface and corresponding information.

Table 2-1. Purpose of the Expression interface and its implementers

[Expression ‘Common interface for all expressions

‘ConstantExpression 'Represents a constant value

\Vari ableExpression |Represents avariable value, obtained by calling a method on some class
\CompoundExpr on |A pair of comparison expressions that evaluate to a boolean result
\AndExpr on |The logical “and” of two expressions

\OrExpr on |The logical “or” of two expressions

\ComparisonExpr on |A pair of expressions that evaluate to a boolean result

\Equal sExpression |Performs an equals method comparison between the two expressions
ContainsExpression Checks to seeif thefirst string expression contains the second one

Example 2.8 Expression.java

1. public interface Expression {
2 void interpret(Context c);

3.}

48

Example 2.9 constantExpression.java

1. import java.lang.reflect.Method;
2. import java.lang.reflect. InvocationTargetException;
3. public class ConstantExpression implements Expression {

4. private Object value;

5.

6. public ConstantExpression(Object newValue) {
7. value = newValue;

8. }

9.

10. public void interpret(Context c) {

11. c.addvariable(this, value);

12. }

13. }

Example 2.10 variableExpression.java

1. import java.lang.reflect_Method;
2. import java.lang.reflect. InvocationTargetException;
3. public class VariableExpression implements Expression {

4. private Object lookup;

5. private String methodName;

6.

7. public VariableExpression(Object newLookup, String newMethodName) {
8. lookup = newLookup;

9. methodName = newMethodName;

10. }

11.

12. public void interpret(Context c¢) {

13. try {

14. Object source = c.get(lookup);

15. if (source = null) {

16. Method method = source.getClass() -getMethod(methodName, null);
17. Object result = method. invoke(source, null);
18. c.addVvariable(this, result);

19. }

20. }

21. catch (NoSuchMethodException exc) {}

22. catch (1llegalAccessException exc) {}

23. catch (InvocationTargetException exc) {}

24, }

25. }

Example 2.11 compoundExpression.java
1. public abstract class CompoundExpression implements Expression {

2. protected ComparisonExpression expressionA;

3. protected ComparisonExpression expressionB;

4.

5. public CompoundExpression(ComparisonExpression expressionA, ComparisonExpression
expressionB) {

6. this.expressionA = expressionA;

7. this.expressionB = expressionB;

8. }

9. }

Example 2.12 AndExpression.java
1. public class AndExpression extends CompoundExpression {

2. public AndExpression(ComparisonExpression expressionA, ComparisonExpression expressionB) {

3. super(expressionA, expressionB);

4. ¥

5.

6. public void interpret(Context c) {

7. expressionA.interpret(c);

8. expressionB. interpret(c);

9. Boolean result = new Boolean(((Boolean)c.get(expressionA)).booleanvalue() &&
((Boolean)c.get(expressionB)) .booleanvValue());

10. c.addvariable(this, result);

11. }

12. }

Example 2.13 orExpression.java

49

1. public class OrExpression extends CompoundExpression{

2. public OrExpression(ComparisonExpression expressionA, ComparisonExpression expressionB) {

3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c) {

7. expressionA.interpret(c);

8. expressionB.interpret(c);

9. Boolean result = new Boolean(((Boolean)c.get(expressionA)) . _booleanvalue() ||
((Boolean)c.get(expressionB)) .booleanvValue());

10. c.addvariable(this, result);

11. }

12. }

Example 2.14 comparisonExpression.java

1. public abstract class ComparisonExpression implements Expression{

2. protected Expression expressionA;

3. protected Expression expressionB;

4.

5. public ComparisonExpression(Expression expressionA, Expression expressionB){
6. this.expressionA = expressionA;

7. this.expressionB = expressionB;

8. }

9. }

Example 2.15 EqualsExpression.java

1. public class EqualsExpression extends ComparisonExpression{

2. public EqualsExpression(Expression expressionA, Expression expressionB){
3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c){

7. expressionA.interpret(c);

8. expressionB.interpret(c);

9. Boolean result = new Boolean(c.get(expressionA).equals(c.get(expressionB)));
10. c.addVariable(this, result);

11. }

12, }

Example 2.16 containsExpression.java

1. public class ContainsExpression extends ComparisonExpression{

2. public ContainsExpression(Expression expressionA, Expression expressionB){
3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c){

7. expressionA.interpret(c);

8. expressionB.interpret(c);

9. Object exprAResult = c.get(expressionA);

10. Object exprBResult = c.get(expressionB);

11. if ((exprAResult instanceof String) && (exprBResult instanceof String)){
12. if (((String)exprAResult). indexOF((String)exprBResult) = -1){

13. c.addVvVariable(this, Boolean.TRUE);

14. return;

15. }

16. }

17. c.addVariable(this, Boolean.FALSE);

18. return;

19. }

20. }

The Context class represents shared memory for expressions during evaluation. Context isawrapper around a
HashMap. In this example, the Expression objects provide the keys for the Hashmap, and the results of calling the
interpret method are stored as its values.

Example 2.17 Context.java

1. import java.util_HashMap;
2. public class Context{

3. private HashMap map = new HashMap();
4.

5. public Object get(Object name) {

6. return map.get(name);

7. }

50

8.

9. public void addvVariable(Object name, Object value) {
10. map .put(name, value);

11. }

12. }

With this series of expressions, it is possible to perform fairly sophisticated comparisons. ContactList holds a
series of contacts in this example. It defines a method called getContactsMatchingExpression, which
evaluates the Expression for every Contact and returns an ArrayList.

Example 2.18 ContactList.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. import java.util.lterator;

4. public class ContactList implements Serializable {

5. private ArrayList contacts = new ArrayList();
6.
7. public ArrayList getContacts() {

return contacts;
8. public Contact[] getContactsAsArray() {

return (Contact [])(contacts.toArray(new Contact [1]));

}

9.
10. public ArrayList getContactsMatchingExpression(Expression expr, Context ctx, Object key) {
11. ArrayList results = new ArrayList();
12. Iterator elements = contacts.iterator();
13. while (elements.hasNext()) {
14. Object currentElement = elements_next();
15. ctx.addVariable(key, currentElement);
16. expr.interpret(ctx);
17. Object interpretResult = ctx.get(expr);
18. if ((interpretResult = null) && (interpretResult_equals(Boolean.TRUE))) {
19. results._add(currentElement);
20. }
21. } y
22. return results; ‘
23. }
24 .
25. public void setContacts(ArrayList newCont

contacts = newContacts;

}

26.
27. public void addContact(Contac ,
28. if (Icontacts.contains(element)) {
29. contacts.add(element);
30. }
31. }
32. public void removeContact(Contact element) {
33. contacts.remove(element);
34. }
35.
36. public String toString() {
37. return contacts.toString(Q);
38. }
39. }

With the Expression hierarchy and the ContactList, it is possible to perform database-like queries for the
Contacts in aContactList. For example, you could search for all those Contacts with atitle containing the
characters “Java’ by doing the following:

Create a ConstantExpression with the string “Java’.

Create avariableExpression With the target object and the string “ getTitle”.

Create aContainsExpression With the variableExpression asthefirst argument and the
ConstantExpression as the second.

Pass the ContainsExpression into aContactList Object's getContactsMatchingExpression method

51

Iterator

Also known as Cursor
Pattern Properties
Type: Behavioral, Object
Level: Component
Purpose

To provide a consistent way to sequentially access itemsin a collection that is independent of and separate from
the underlying collection.

Introduction

The Personal Information Manager uses many collections, since it keeps track of large amounts of user data.
Addresses, contacts, projects, appointments, notes, to-do lists—all require the ability to store groups of related
objects.

To meet the storage needs of all these kinds of information, you might create classes to hold each group of items
used by the information manager. In thisway, you could develop collections to meet the specific needs of each
group of objects.

This presents a problem, however, when you want to traverse each of the collections. If you create collection
classes that are specifically intended to meet the needs of the stored objects, there is no guarantee that the
elements will be retrieved and used in a uniform way. Appointments might be organized in subgroups according
to date, while contacts might be stored al phabetically, and notes might be sequentially ordered.

This means that you might have to write collection-specific code to move through items in each group, and copy
that code to any part of the system where you would need to use a group. Potentially, this could result in very
complicated, hard-to-maintain code. Furthermore, you need know in detail the different collection types used to
hold business objects of the PIM.

The Iterator pattern solves these problems by defining a uniform interface for traversing a collection—any
collection. When you use iterators in a system, you can use the same method calls when navigating through a list
of contacts as when you printed out ato-do list.

Applicability

Use the Iterator pattern:

To provide a uniform, consistent way to move through the elements in collections which is not tied to the
collection's implementation.

To allow multiple collection traversal, enabling several clients to simultaneously navigate within the same
underlying collection.

Description

At its foundation, the Iterator pattern allows you to standardize and simplify the code you write to move through
collectionsin your code. Collection classes tend to be created based on storage rather than traversal requirements.
The advantage of the Iterator pattern isthat it provides a consistent way to handle navigation within collections
regardless of the underlying structure.

An Iterator in the Java programming language (“ Java’) typically uses an interface to define its core operations,
then provides one or more implementations which link to the underlying aggregate. The Iterator described in
Design Patterns provides the following fundamental operations:

First

Next

52

IsDone
Currentltem

These operations define the basic services that an Iterator must provide in order to do itsjob. In more genera
terms, an Iterator should provide the following core capabilities:

Navigation — Moving forward or backward within the collection
Retrieval — Getting the currently referenced element
Validation— Determining if there are still elements in the collection, based on the Iterator's current position

Iterators may also provide extended operations. Some Iterators provide methods to move to the first or last
element in the Iterator, for example.

Implementation
The Iterator class diagram is shown in Figure 2.7.

Figure 2.7. Iterator class diagram

interface

fterator
+Qbject firsti) interface
+0fect hexdil Aggregale

+hoaleah hasMoreE iements()
+0fect petCurremtEismenti)

N ?

! .
Concretelterator ConcreteAgoregate

+lterator getiteraion)

+Object first) +[terator getlterator

+0hject nextd |
+hoolean hasmoreElements(|
+0hject getCurrentElement)

return new Concretelteratord; I_\I

To implement the Iterator pattern, you need:

Iterator — Thisinterface defines the standard iteration methods. At a minimum, the interface defines methods
for navigation, retrieval and validation (First, next, hasMoreElements and getCurrentltem)

Concretelterator — Classesthat implement the Iterator. These classes reference the underlying collection.
Normally, instances are created by the ConcreteAggregate. Because of the tight coupling with the
ConcreteAggregate, the Concretelterator oftenisan inner class of the ConcreteAggregate.

Aggregate — Thisinterface defines afactory method to produce the Iterator.

ConcreteAggregate — This classimplementsthe Aggregate, building a Concretelterator on demand. The
ConcreteAggregate performsthistask in addition to its fundamental responsibility of representing a collection
of objectsin asystem. ConcreteAggregate creates the Concretelterator instance.

Benefits and Drawbacks

Many of the Iterator pattern's benefits stem from the advantages of defining a uniform interface for collection
traversal. This greatly simplifies the use of collections, and allows you to use polymorphism when working with

collections. To print the elements in any collection, for instance, you could obtain an 1terator, then cal the
toString method on any object, regardiess of its underlying collection.

53

Additionally, Iterators allow clients to keep multiple navigation points to the same collection. Y ou can think of an
Iterator as a cursor or pointer into the collection; with each call to the Aggregate s factory method, you can get
another pointer into the collection.

A drawback of iteratorsisthat they give theillusion of order to unordered structures. For example, a set does not
support ordering, and its Iterator would likely provide the elementsin an arbitrary sequence that could change
over time. If you don’'t realize this, you could write code that assumed consistency in the underlying structure,
which would result in problems later on.

Pattern Variants
The Iterator pattern has a number of implementation options.

A Concretelterator may beinternal or external. External Iterators provide specific methodsto the clients to
navigate within the collection, whileinterna Iterators cycle through the elements, performing some action
requested by the client. The external iterator is the more flexible option, but requires more coding on the client to
use the iterator.

Concretelterators can be dynamic or static. A dynamic Concretelterator directly referencesits underlying
collection for elements, so is always guaranteed to reflect its state. A static Concretelterator, on the other hand,
creates a snapshot of the collection when it is created, and refers to the copy during client use.

Null iterators can be defined to make traversal of complex structures, such as trees, more straightforward. Using
an iterator that represents an “end node,” it is possible to write ssmple recursive code to visit al the nodesin the
tree.

Iterators can support avariety of different ways to move through a collection. Thisis particularly useful in
complex structures, such as the Composite pattern, where there might be a rationale to move through the elements
in avariety of different ways.

From a structural perspective, aConcretelterator can be defined as an inner class of the ConcreteAggregate,
or it can be defined in a separate class. The Concretelterator can hold the code to move through the collection,
or it might only represent the position within the collection.

Related Patterns

Related patterns include the following:

Factory Method (page 21) — Collection classes often define a factory method to produce the Iterator.

Visitor (page 121) — When the Visitor pattern is used on a group of objects, an Iterator is frequently used to
cycle through the elements.

Value List Handler [CJ2EEP] — The Value List Handler is based on the Iterator pattern in that it allows the client
to step through a collection.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or aRunPattern class,
see” |terator " on page 389 of the* Full Code Examples™ appendix.

This example uses the Java Collections Framework to provide iterating behavior for a pair of business aggregates.
The java.util . Iterator interface defines methods for the basic navigation methods required— hasNext
and next. Note that the 1'terator interface requires one-time-only traversal, since the only way to return to the
beginning is to get another 1terator from the collection.

The I'terating interface defines a single method, getlterator. Thisinterfaceis used to identify any classin
the PIM that is capable of producing an Iterator for collection traversal.

Example 2.19 1terating.java

import java.util.lterator;

import java.io.Serializable;

public interface lterating extends Serializable{
public Iterator getlterator();

}

abrhwNPEF

The ToDoList and ToDoL istCol lection interfaces, which extend the 1'terating interface, define the two
collections in the example. ToDoL i st defines a sequentia list of tasks or items, while ToDoListCol lection
represents a collection of ToDoL ists stored in the PIM.

Example 2.20 ToDoList. java

public interface ToDoList extends lterating{
public void add(String item);
public void add(String item, int position);
public void remove(String item);
public int getNumberOfltems();
public String getListName();
public void setListName(String newListName);

O~NOO OB~ WNPE

}

Example 2.21 ToDoListCollection.java

1 public interface ToDoListCollection extends Iterating{
2. public void add(ToDoList list);

3. public void remove(ToDoList list);

4 public int getNumberOfltems();

5 }

The classes ToDoListImpl and ToDoListCol lectionImpl implement the previous interfaces.
ToDoListImpl usesan ArrayList to hold its e ements, which provides absolute ordering and allows duplicate
entries. ToDoListCollectionImpl usesaHashTable, which does not support ordering and stores its entries
as key-value pairs. Although the collections behave very differently, both can provide Iterators for their stored
elements.

Example 2.22 ToboListCollectionlmpl.java

1. import java.util.lterator;

2. import java.util._HashMap;

3. public class ToDoListCollectionlmpl implements ToDoListCollection{
4. private HashMap lists = new HashMap();

5.

6. public void add(ToDoList list){

7. if (Mlists.containsKey(list.getListName())){

8. lists_put(list.getListName(), list);

9.

10.

11. public void remove(ToDoList list){

12. if (lists.containsKey(list.getListName())){

13. lists.remove(list.getListName());

14. }

15.

16. public int getNumberOFfltems(){ return lists.size(); }

17. public Iterator getlterator(){ return lists.values().iterator(); }
18. public String toString(){ return getClass().toString(); }

19. }

Example 2.23 ToDoListImpl . java

1. import java.util.lterator;

2. import java.util_ArraylList;

3. public class ToDoListImpl implements ToDoList{
4. private String listName;

5. private ArraylList items = new ArrayList();
6.

7. public void add(String item){

8. if (JTitems.contains(item)){

9. items.add(item);

10. }

11.

12. public void add(String item, int position){
13. if (Jitems.contains(item)){

14. items.add(position, item);

15. }

16. }

55

17. public void remove(String item){

18. if (items.contains(item)){

19. items.remove(items.indexOf(item));

20. }

21. }

22.

23. public int getNumberOFfltems(){ return items.size(); }

24. public Iterator getlterator(){ return items.iterator(); }
25. public String getListName(){ return listName; }

26. public void setListName(String newListName){ listName = newListName; }
27.

28. public String toString(Q{ return listName; }

29. }

Both classes can provide an Iterator, so it's straightforward to write code to move through their elements.
ListPrinter shows how the Iterators could be used to print the contents of collections out in their String
form. The class has three methods: printToDoList, printToDoListCollection and
printlteratingElement. In all three methods, the iteration processis based around avery ssimplewhile
loop.

Example 2.24 ListPrinter.java

1. import java.util.lterator;

2. import java.io.PrintStream;

3. public class ListPrinter{

4. public static void printToDoList(ToDoList list, PrintStream output){

5. Iterator elements = list.getlterator();

6. output.printIn(" List - " + list + ":");

7. while (elements._hasNext()){

8. output.printin(C"\t" + elements.next());

9. }

10. ¥

11.

12. public static void printToDoListCollection(ToDoListCollection lotsOfLists,
PrintStream output){

13. Iterator elements = lotsOfLists.getlterator();

14. output.printIn(""\"To Do\" List Collection:");

15. while (elements.hasNext()){

16. printToDoList((ToDoList)elements.next(), output);

17. ¥

18. ¥

19.

20. public static void printlteratingElement(lterating element, PrintStream output){

21. output.printIn("Printing the element " + element);

22. Iterator elements = element.getlterator();

23. while (elements.hasNext()){

24. Object currentElement = elements.next();

25. if (currentElement instanceof lterating){

26. printlteratingElement((lterating)currentElement, output);

27. output.printin(Q);

28. }

29. else{

30. output.printin(currentElement);

31. }

32. ¥

33. ¥

34. }

The method printlteratingElement best demonstrates the power of combining the Iterator pattern with
polymorphism. Here, any class that implements Iterating can be printed in String form. The method makes
no assumptions about the underlying collection structure except that it can produce an Iterator.

56

Mediator

Pattern Properties
Type: Behavioral
Level: Component
Purpose

To simplify communication among objects in a system by introducing a single object that manages message
distribution among the others.

Introduction

A useful feature in the PIM would be sharing information among several users, so that one user could set up a
meeting that other PIM users would attend. With a shared set of data, al the participants would be up-to-date on
the meeting plans.

How should you manage the appointments, assuming multiple PIMs are running? One way isto give each PIM a
copy of the Appointment object, ensuring that they have local access to the data. This presents a problem: how
do you ensure that information is consistent among all users? For example, if the user creates a meeting and | ater
changes the date, how do the other meeting participants find out?

Y ou can make the user's application responsible for managing the update. However, if any of the meeting participants are allowed to
make updates, that means that each PIM has to keep track of all of the other PIMs. Managing communication for a large number of
participants becomes very difficult. In the best case, it isinefficient and costly in terms of network bandwidth; in the worst case, the
planning for a meeting degenerates into chaos. And generally, you'd prefer to leave the chaos to the meetings themsel ves.

Given the potential complexity of the system, it’s better to delegate the task of sending and receiving specific requests to a central object,
which then makes decisions about what methods to call. Thisisthe essence of the Mediator pattern. Instead of making the

Appointment itself responsible for sending updates, create an AppointmentMediator. Each time Appointment
changes, call amethod in the Mediator object, which might decide to call methods on the Location object to
confirm. Depending on the result, the AppointmentManager broadcasts the original message, arevised version of
the message such as a meeting time change, or a cancellation.

Applicability

Use Mediator when:

There are complex rules for communication among objects in a system (often as aresult of the business mode!).
Y ou want to keep the objects simple and manageable.

Y ou want the classes for these objects to be redepl oyable, not dependent on the business model of the system.
Description

As communication among objects in an application becomes more complex, managing communication becomes
more and more difficult. Handling event processing for a simple spreadsheet control might involve writing code
for the grid component. However, if the GUI is expanded to include a grid, graph, and record-display fields, it
becomes much more difficult to manage the code. A change in one of the components might trigger changesin
some or al of the others.

The Mediator pattern hel ps solve this problem, since it defines a class that has overall communications
responsibility. This greatly smplifies the other classesin the system, since they no longer need to manage
communication themselves, and that can help you keep much of your hair and your sanity. The mediator
object—the central object to manage communication—has the role of arouter for the system, centralizing the
logic to send and receive messages. Components send messages to the mediator rather than to other components
of the system; likewise, they rely on the mediator to send change notifications to them.

Consider implementing Mediator whenever a set of GUI components should behave as a whole. The main factor

in deciding whether to implement the pattern is the overall complexity of the GUI model. Two other possible
scenarios for Mediator implementation are:

57

Whole-part business models, such as a product composed of a number of component parts

Models that represent business workflow, such as an order invoice being processed by accounting, manufacturing,
and shipping services

For areal-world illustration of the Mediator pattern, consider conference calls. Many telephone companies offer
teleconferencing, and you could consider the switchboard as a sort of mediator. It contains logic (presumably) to
route messages between the individuals involved in the conference call. The participants send messages (talk),
and the switchboard responds, directing messages to specific participants. Some callers are routed to Burma or
Antwerp, while messages that start with “manager” are routed only to the manager of the conference call.
Implementation

The Mediator class diagram is shown in Figure 2.8.

Figure 2.8. Mediator class diagram

interface interface
Mediator Chiemt
+vioid broadcastEvent) +voldd handlie Event)
+voidl Broadc astEvent)

| <

ConcreteClient
0.7 | -Mediator mediatar
+y0id handleEvent(
+y0id broadcastBEventd

ConcreteMediator
-zlient] clients
+ioid hroadcastEventf

for all clients ¢ trediator.broadoastEvent)
¢ handleBEvent)

The Mediator pattern requires:

Mediator — Theinterface that defines the methods clients can call on aMediator.

ConcreteMediator — The classthat implementsthe Mediator interface. This class mediates among several
client classes. It contains application-specific information about processes, and the ConcreteMediator might
have some hardcoded references to its clients. Based on the information the Mediator receives, it can either
invoke specific methods on the clients, or invoke a generic method to inform clients of a change or a combination
of both.

Client — Theinterface that defines the general methods aMediator can use to inform client instances.
ConcreteClient — A classthat implementsthe Client interface and provides an implementation to each of the
client methods. The ConcreteClient can keep areference to aMediator instance to inform colleague clients of
achange (through the Mediator).

Benefits and Drawbacks

The Mediator has three advantages:

The individual components become simpler and easier to deal with, since they no longer need to directly pass
messages to each other. Components are more generic, since they no longer need to contain logic to deal with

their communication with other components. This application-specific information is contained in the Mediator.

The overall communications strategy becomes easier to maintain aswell, since it is now the exclusive
responsibility of the mediator.

58

The Mediator is often application specific and difficult to redeploy. Thisis hardly surprising, since the Mediator
is created to encapsulate application-specific behavior so the other classes in the system remain generic.
Centralizing application-specific behavior in the Mediator improves maintainability. You can reuse all other
classes for other applications; you only need to rewrite the Mediator class for the new application.

Testing and debugging complex Mediator implementations can be challenging, since you must accurately test a
component that consists of the Mediator and its associated objects.

The Mediator’ s code can become hard to manage as the number and complexity of participants increases. A
possible solution is to make the mediator a composite structure, based on a number of highly focused individual
mediators. (For more information about the composite pattern, see “ Composite ” on page 157.) In this case, the
Mediator consists of a central managing object associated with a number of individual service classes, each
providing a specific piece of functionality.

Pattern Variants

The Mediator pattern has a number of behavioral variations.

Unidirectional communication — Some implementations alow send-only and receive-only clients for the system.
Threading— Like many behavioral patterns, the Mediator is a candidate for multithreading. If multithreaded, the
Mediator object can maintain a message queue, and perform tasks like managing communications with message
priority.

Configurableroles— In thisvariant, clients define arole (which could possibly be changed as the system runs)
that would define messaging requirements. Although complex to implement, defining participants in terms of
roles can lead to amore generic Mediator, and one that can be redeployed to other systems.

Client pull — A Mediator can store detailed messages and send only a general notification to clients. Clients can
then request detailed information about an event if required.

Related Patterns

Related patterns include the following:

Observer (page 94) — This pattern is often used to manage communication between the Client and Mediator
when the communication islocal. Thereis frequently only one Mediator per system, so they are sometimes coded

as Singletons or as class-level resources by making their methods static.

HOPP (page 189) — Mediator patterns that run across a network can use the Half-Object Plus Protocol (HOPP)
pattern to provide communication support.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Mediator " on page 395 of the* Full Code Examples ™ appendix.

In this example, a Mediator manages communication among the panels of a graphical user interface. The basic
design of this GUI uses one panel to select a Contact from alist, another panel to allow editing, and athird panel
to show the current state of the Contact. The Mediator interacts with each panel, calling the appropriate methods
to keep each part of the GUI up to date.

The classMediatorGui creates the main window and the three panels for the application. It also creates a
mediator and matches it with the three child panels.

Example 2.25 MediatorGui . java

1. import java.awt.Container;

2 import java.awt.event._WindowEvent;
3. import java.awt.event.WindowAdapter;
4 import javax.swing.BoxLayout;

59

5. import javax.swing.JButton;

6. import javax.swing.JFrame;

7. import javax.swing.JPanel;

8. public class MediatorGui {

9. private ContactMediator mediator;

10.

11. public void setContactMediator(ContactMediator newMediator){ mediator = newMediator; }
12.

13. public void createGui(){

14. JFrame mainFrame = new JFrame("Mediator example'™);

15. Container content = mainFrame.getContentPane();

16. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));
17. ContactSelectorPanel select = new ContactSelectorPanel(mediator);
18. ContactDisplayPanel display = new ContactDisplayPanel(mediator);
19. ContactEditorPanel edit = new ContactEditorPanel(mediator);
20. content.add(select);

21. content.add(display);

22. content.add(edit);

23. mediator.setContactSelectorPanel (select);

24. mediator.setContactDisplayPanel (display);

25. mediator.setContactEditorPanel (edit);

26. mainFrame.addWindowListener(new WindowCloseManager());

27. mainFrame.pack();

28. mainFrame._setVisible(true);

29. }

30. private class WindowCloseManager extends WindowAdapter{

31. public void windowClosing(WindowEvent evt){

32. System.exit(0);

33. }

34. }

35. }

36.

37.

The simplest of the GUI panelsisthe ContactDisplayPanel. It has amethod called contactChanged that
updates its display region with the values of the Contact argument.

Example 2.26 contactDisplayPanel . java

1. import java.awt.BorderlLayout;

2. import javax.swing.JPanel;

3. import javax.swing.JScrollPane;

4. import javax.swing.JTextArea;

5. public class ContactDisplayPanel extends JPanel{

6. private ContactMediator mediator;

7. private JTextArea displayRegion;

8.

9. public ContactDisplayPanel(){

10. createGui();

11.

12. public ContactDisplayPanel(ContactMediator newMediator){
13. setContactMediator(newMediator);

14. createGui();

15.

16. public void createGui(){

17. setLayout(new BorderLayout());

18. displayRegion = new JTextArea(l10, 40);

19. displayRegion.setEditable(false);

20. add(new JScrollPane(displayRegion));

21. }

22. public void contactChanged(Contact contact){

23. displayRegion.setText(

24. "Contact\n\tName: " + contact.getFirstName() +
25. " " + contact.getLastName() + "\n\tTitle: " +
26. contact._getTitle() + "\n\tOrganization: " +
27. contact.getOrganization());

28. ¥

29. public void setContactMediator(ContactMediator newMediator){
30. mediator = newMediator;

31. }

32. }

ContactSelectorPanel allows the user to choose a Contact for display and edit in the MediatorGui.

Example 2.27 contactSelectorPanel . java
1. import java.awt.event._ActionEvent;

60

2. import java.awt.event.ActionListener;

3. import javax.swing.JComboBox;

4. import javax.swing.JPanel;

5.

6. public class ContactSelectorPanel extends JPanel implements ActionListener{
7. private ContactMediator mediator;

8. private JComboBox selector;

9.

10. public ContactSelectorPanel O{

11. createGui();

12.

13. public ContactSelectorPanel (ContactMediator newMediator){
14. setContactMediator(newMediator);

15. createGui();

16. }

17.

18. public void createGui(){

19. selector = new JComboBox(mediator.getAllContacts());
20. selector.addActionListener(this);

21. add(selector);

22. }

23.

24. public void actionPerformed(ActionEvent evt){

25. mediator.selectContact((Contact)selector.getSelectedltem());
26. }

27. public void addContact(Contact contact){

28. selector.addltem(contact);

29. selector.setSelectedltem(contact);

30. }

31. public void setContactMediator(ContactMediator newMediator){
32. mediator = newMediator;

33. }

34. }

The ContactEditorPanel provides an editing interface for the currently selected Contact. It has buttons that
allow auser to add or update a Contact.

Example 2.28 contactEditorPanel . java

1. import java.awt.BorderlLayout;

2. import java.awt.GridlLayout;

3. import java.awt.event.ActionEvent;
4. import java.awt.event.ActionListener
5. import javax.swing.JButton; “

6. import javax.swing.JlLabel;

7. import javax.swing.JPanel; \

8. import javax.swing.JTextField;

9. public class ContactEditorPanel extends JPanel implements ActionListener{
10. private ContactMediator mediator;

11. private JTextField firstName, lastName, title, organization;
12. private JButton create, update;

13.

14. public ContactEditorPanel Q{

15. createGui();

16. }

17. public ContactEditorPanel (ContactMediator newMediator){
18. setContactMediator(newMediator);

19. createGui();

20. }

21. public void createGui(){

22. setLayout(new BorderLayout());

23.

24. JPanel editor = new JPanel();

25. editor.setLayout(new GridLayout(4, 2));
26. editor.add(new JLabel ("'First Name:""));
27. firstName = new JTextField(20);

28. editor.add(FirstName);

29. editor.add(new JLabel('Last Name:'));
30. lastName = new JTextField(20);

31. editor._add(lastName);

32. editor.add(new JLabel("'Title:""));

33. title = new JTextField(20);

34. editor.add(title);

35. editor.add(new JLabel("'Organization:'"));
36. organization = new JTextField(20);

37. editor.add(organization);

38. add(editor, BorderLayout.CENTER);

61

39.

40. JPanel control = new JPanel();

41. create = new JButton(''Create Contact');

42. update = new JButton("Update Contact');

43. create.addActionListener(this);

44 . update.addActionListener(this);

45. control .add(create);

46. control _.add(update);

47. add(control, BorderLayout.SOUTH);

48. }

49. public void actionPerformed(ActionEvent evt){

50. Object source = evt.getSource();

51. if (source == create){

52. createContact();

53.

54. else if (source == update){

55. updateContact();

56. }

57. }

58.

59. public void createContact(){

60. mediator.createContact(firstName.getText(), lastName.getText(),
61. title_getText(), organization.getText());

62. }

63. public void updateContact(){

64. mediator.updateContact(firstName.getText(), lastName.getText(),
65. title.getText(), organization.getText());

66. }

67.

68. public void setContactFields(Contact contact){

69. firstName.setText(contact.getFirstName());

70. lastName.setText(contact.getLastName());

71. title_setText(contact.getTitle());

72. organization.setText(contact.getOrganization());
73. }

74. public void setContactMediator(ContactMediator newMediator){
75. mediator = newMediator;

76. }

77. }

The ContactMediator interface defines set methods for each of the GUI components, and for the business
methods createContact, updateContact, selectContact and getAl IContacts.

Example 2.29 contactMediator. java

1. public interface ContactMediator{

2. public void setContactDisplayPanel(ContactDisplayPanel displayPanel);

3. public void setContactEditorPanel (ContactEditorPanel editorPanel);

4. public void setContactSelectorPanel (ContactSelectorPanel selectorPanel);

5. public void createContact(String FfirstName, String lastName, String title, String
organization);

6. public void updateContact(String firstName, String lastName, String title, String
organization);

7. public Contact [] getAllContacts();

8. public void selectContact(Contact contact);

9. }

ContactMediatorImpl isthe implementer of ContactMediator. It maintains a collection of Contacts, and
methods that notify the panels of changes within the GUI.

Example 2.30 CcontactMediatorimpl.java

1. import java.util_ArraylList;

2. public class ContactMediatorimpl implements ContactMediator{

3. private ContactDisplayPanel display;

4. private ContactEditorPanel editor;

5. private ContactSelectorPanel selector;

6. private ArrayList contacts = new ArrayList();

7. private int contactlndex;

8.

9. public void setContactDisplayPanel(ContactDisplayPanel displayPanel){
10. display = displayPanel;

11. ¥

12. public void setContactEditorPanel (ContactEditorPanel editorPanel){
13. editor = editorPanel;

14. }

15. public void setContactSelectorPanel (ContactSelectorPanel selectorPanel){

62

16. selector = selectorPanel;

17. ¥

18.

19. public void createContact(String FirstName, String lastName, String title, String
organization){

20. Contact newContact = new Contactlmpl(firstName, lastName, title, organization);

21. addContact(newContact);

22. selector.addContact(newContact);

23. display.contactChanged(newContact);

24.

25. public void updateContact(String firstName, String lastName, String title, String
organization){

26. Contact updateContact = (Contact)contacts.get(contactlindex);

27. if (updateContact = null){

28. updateContact.setFirstName(firstName);

29. updateContact.setLastName(lastName);

30. updateContact.setTitle(title);

31. updateContact.setOrganization(organization);

32. display.contactChanged(updateContact);

33.

34.

35. public void selectContact(Contact contact){

36. if (contacts.contains(contact)){

37. contactindex = contacts. indexOf(contact);

38. display.contactChanged(contact);

39. editor.setContactFields(contact);

40. ¥

41.

42. public Contact [] getAllContacts(){

43. return (Contact [])contacts.toArray(new Contact[1]);

44 .

45. public void addContact(Contact contact){

46. if (Icontacts.contains(contact)){

47. contacts.add(contact);

48. ¥

49. ¥

50. }

The ContactMediatorImpl interacts with each of the panels differently. For the ContactDisplayPanel, the
mediator callsits contactChanged method for the create, update and select operations. For the
ContactSelectorPanel, the mediator providesthelist of Contacts with the getAl IContacts method, receives
select notifications, and adds a new Contact object to the panel when oneis created. The mediator receives create
and update method calls from the ContactEditorPanel, and notifies the panel of select actions from the
ContactSelectorPanel.

Memento

Also known as Token, Snapshot
Pattern Properties

Type: Behaviord

Level: Object

Purpose

To preserve a*“snapshot” of an object’s state, so that the object can return to its original state without having to
reveal its content to the rest of the world.

Introduction

Every application has objects that need to preserve information beyond their lifespan. Often, this relates to shared
data, but what if the private data of an object needs to be preserved? Sending the data to another object isabad
idea, since it goes against the rules of encapsulation. If you sent data to other objects, they would be able to read
or, even worse, modify the data.

It'slike going to anational park where they preserve the moose. The object whose datais being saved is that

moose. Y ou’ re not allowed to take a moose home with you, but postcards and moose t-shirts are available at the
national park gift shop.

63

A better approach is to use an object to contain the data to be stored. Y ou would send this object that could be
used to recreate the original, instead of sending raw data. Other objects would not be able to read or modify the
data, since the data to be stored would be encapsul ated.

Thisisthe Memento pattern, where an object is used as a“ souvenir” that only has value to the origina holder and
helpsit remember a previous state.

Applicability

Use Memento when all of the following apply:

A snapshot of the state of an object should be taken.
That snapshot is used to recreate the original state.

A direct interface to the object to read itsinternal state would violate its encapsulation, because this would also
reveal the internal workings.

Description
If you have implemented encapsulation correctly, all objects have private states, and will allow access to the
attributes only through methods. But it might be necessary to pass the current state to another object: for instance,

when the object’ s state must be restorable at alater point in time (undo).

One way to do thisis by handing the state directly to the interested party. This has the potential for some huge
drawbacks:

It exposes the internal structure of your object.

It enables the other object to arbitrarily change the state of your object.

The solution isto wrap the state that you wish to preserve in an object, using Memento. A Memento is an object
that contains the current internal state of the Originator object. Only the Originator can store and retrieve
information from the Memento. To the outside world the Memento is just an arbitrary object.

The Memento pattern is like a credit card. Although you don’'t know what is actually really on the card, you know
what it provides (lots of buying power to buy lots of toys). In the Memento’s case, it allows you to preserve and
restore the state.

Implementation

The Memento class diagram is shown in Figure 2.9.

Figure 2.9. Memento class diagram

Originator
-State state
+y0id setMementoiMemento m)
+Chject gethementod
I

|creates

StateHolder

Memento

-State state
-State getState) Memento is a static inner
~void setState(State =) | class of the Originatar.

Implementing the Memento requires:
originator — Creates Memento and uses this Memento to later restore its state.

Memento — Static inner class of the Originator and holder of the Originator’s state. The Originator
determines how much is stored in the Memento and only the Originator should be able to read the Memento.

64

State within the Memento should be inaccessible to everybody except the Originator.

StateHolder — The object that wishesto preserve the state. It never needs to know what is within aMemento; it
only needs to know that the object it receives enables it to restore the state of the Originator.

Because the Memento should be accessible only to the Originator, it is best to make the Memento a public inner
classin theoriginator. All the methods are declared private so they are only available to the Memento and its
enclosing class, thus providing the appropriate encapsul ation.

Instances of an inner class are aways associated with an instance of the outer class. Thisis necessary because an
inner class always has access to instance variables of the outer class. That causes a problem in this situation; the
Memento should be independent of a specific instance of an Originator. Therefore the Memento class needs to be
adtatic inner class.

Memento objects can become very large, especially if the Originator keeps al its state in the Memento and
Mementos are created frequently. To compensate for this, you can change Mementos so that they record only
changesin state since the previous creation of aMemento. The state holder has to keep track of the order of the
Mementos. Job promotions are an example of when you might apply this. After every promotion your employee
benefits and salary are changed based on the previous salary, and you may get a new boss, new department or a
bigger car. Now every Memento of your employee benefits only needs to record the increase or decrease in
conditions/salaries since the last Memento.

Benefits and Drawbacks
Using the Memento pattern has the following consequences.

Preserves encapsulation — Even when the state of the Originator needs to be stored outside of the Originator
object in aclient, the state is inaccessible to the client. It has areference only to the Memento object, and no way
to access the information that’ sinside. It also makes the client simpler because it no longer needs to know
anything about the internal workings of the originator, except how to get aMemento and how to use it.

Simpler originator — Suppose the Originator hasto keep track of all the different states. The Originator
would soon become very bloated and very difficult to handle. It is much easier to give that responsibility to the
requesting party, the client. The originator now only needs to be able to create and use Mementos instead of
keeping track of multiple states.

Expensive Mementos — Mementos are very expensive to create if every piece of the Originator’s state hasto be
stored in the Memento. Thisincreases dramatically asthe Originator increasesin size. Thisis where the
incremental changes are important. If the Originator islarge, Memento might not be a suitable pattern.
Expensive Memento storage— The state holder is responsible for the life-cycle management after it receives the
Memento from the Originator. However, it does not know how large the Memento actualy is. If Mementos are
not kept as small as possible, the StateHolder will pay the price.

Pattern Variants

Pattern variants include the following:

If the Memento must be a standal one class, and not an inner class, you must define two interfaces. WideMemento
and NarrowMemento. The wide interface is for the Originator of the Memento S0 that it can access the Memento
to get its state. The state in the Memento is best set at construction time. Because you' re defining an interface,
you' || need to add a FactoryMethod.

The narrow interface isintended for the StateHolder and other clientsto use. If that interface doesn’t have any
methods, the NarrowMemento becomes obsolete and the interested parties only refer to the Memento asan Object.

To be able to extend the Originator but not need to change the Memento code, the methods can have package
access instead of being private. This allows subclasses of the Originator to use the same Memento class.

Related Patterns

Related patterns include the following:

65

Command (page 51) — Command can use Mementos to keep track of state for undoable actions.
State (page 104) — Most States use Memento.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Memento ” on page 403 of the “ Full Code Examples” appendixX.

Almost all parts of the Personal Information Manager keep some kind of state. These states can be saved by
applying the Memento pattern, as this example with an address book will demonstrate. The AddressBook class
represents a collection of addresses, a natural candidate for keeping arecord of state.

Example 2.31 AddressBook. java

1. import java.util_ArraylList;

2. public class AddressBook{

3. private ArraylList contacts = new ArrayList();
4.

5. public Object getMemento(){

6. return new AddressBookMemento(contacts);
7.

8. public void setMemento(Object object){

9. if (object instanceof AddressBookMemento){
10. AddressBookMemento memento = (AddressBookMemento)object;
11. contacts = memento.state;

12. ¥

13. ¥

14.

15. private class AddressBookMemento{

16. private ArraylList state;

17.

18. private AddressBookMemento(ArrayList contacts){
19. this.state = contacts;

20. }

21. }

22.

23. public AddressBook(){ }

24. public AddressBook(ArrayList newContacts){
25. contacts = newContacts;

26. }

27.

28. public void addContact(Contact contact){
29. if (Icontacts.contains(contact)){

30. contacts.add(contact);

31. }

32.

33. public void removeContact(Contact contact){
34. contacts.remove(contact);

35. }

36. public void removeAllContacts(){

37. contacts = new ArrayList();

38.

39. public ArrayList getContacts(){

40. return contacts;

41. }

42. public String toString(Q{

43. return contacts.toString(Q);

44. }

45. %}

Theinner class of AddressBook, AddressBookMemento, iS used to save the state of an AddressBook, which in
this case is represented by the internal ArrayList of Address objects. The memento object can be accessed by
using the AddressBook methods getMemento and setMemento. Note that AddressBookMemento iS a private inner
class and that it has only a private constructor. This ensures that, even if the memento object is saved somewhere
outside of an AddressBook object, no other object will be able to use the object or modify its state. Thisis
consistent with the role of the Memento pattern: producing an object to maintain a snapshot of state that cannot be
modified by other objectsin a system.

66

Observer

Also known as Publisher-Subcriber

Pattern Properties

Type: Behavioral

Level: Component

Purpose

To provide away for a component to flexibly broadcast messages to interested receivers.
Introduction

What if an object changed in the forest and nobody noticed?

Suppose you want to let Personal Information Manager users share information. This would be useful, for
instance, for coordinating a regular club meeting (Organized Organization for Zebra Encoders). Y ou could use an
Appointment object to provide club members with current information about the meeting location, date and time.
However, how do you ensure that, if the meeting time changes, a change to the appointment information is sent to
everyone who's interested? (What if you held a meeting and nobody came?)

You could maintain alist of al club members and send every member the updated information. This would be appropriate if attending
each meeting were required, but thisisn’t the case, and it seems wasteful to update everyone when some members might not choose to
attend. From atechnical viewpoint, such a solution could also be inefficient—for alarge club, this could involve a great deal of
communication overhead.

It’s better to allow individual users to decide whether to receive information for a particular meeting. An
Appointment object is stored on a central server. If club members want to receive updates for the meeting, they
register with the server. Anytime the Appointment is updated, the server sends the new information to the
currently registered attendees.

This solution, known as the Observer pattern because the central object is being observed by the interested objects,
provides great flexibility in sending update information. By making listeners responsible for registering with the
object, you reduce the communication overhead to only those participants who actually want to receive the
updated information.

Applicability

The Observer is generally appropriate when a system has:

At least one message sender.

One or more message receivers that might vary within an application or anong applications.

This pattern is frequently implemented in situations where the message sender does not need or want to know
how receivers act upon the information it provides; it is ssmply concerned with broadcasting information.

Description

Some message senders, also known as message producers, follow a simple point-to-point communication model,
creating messages that are intended for single, specific message receivers, or consumers. In these cases, event
handling isfairly straightforward. For other kinds of message producers, however, the behavior isnot so clear cut.
An action can trigger a variable series of reactions, and might involve the producer and one or more consumers.

Consider a customer address. In a business model, a change of address can trigger a wide-ranging set of responses
within a system. Customer information might have to be changed, customer subscriptions would have to be
updated, orders might have to be modified. Potentially, even information such as shipping cost and sales tax
might be affected. The Observable pattern is appropriate for this kind of problem.

In the Observer pattern, the message producers (observable components) send messages that generate events. One
or more message receivers (observers) receive and act upon the events. The observable component’s

67

responsibility isto transmit events to any interested observers; that is, any observers that are registered with the
observable component. A listener interface allows the observable component to indicate what events have
occurred and possibly to provide details to observers.

Y ou can think of the Observer pattern as a server-push solution. The server (in this case, the observable object or
event producer) contacts the interested listeners when there is a new event of some kind.

The Observer pattern is useful for a variety of applications. Notifications are only broadcast to elements who
identify themselves as interested receivers. This allows the receiversto respond in whatever way is meaningful to
them. Thisiswell-suited for any model where changes in one component might result in changes to others, and
where the behavior might be configurable during runtime.

In business models, Observer can be helpful when amodel exhibits complex update, delete, or refresh behavior.
The flexible nature of the pattern makes it possible for a change in a business element to be broadcast to some or
all other elementsin the model.

Activity in the Observer pattern is comparable to what happens during dating. A single person (the observable)
has one or more friends (observers) who have said they are interested in knowing how the dates go, and so they
become registered listeners. As new events (dates of varying quality and success) take place in the single’slife, he
or she broadcasts messages to friends, providing them with details about dating experiences. The friends respond
to the messages, with suggestions, congratulations, sympathy, or shock as appropriate.

Implementation

The Observable class diagram is shown in Figure 2.10.

Figure 2.10. Observable class diagram

interface
Obsenvable

+yiolef aoidChse el CbEe et 0l
+vialef removeQ hsane D hsaner o)
+yojicd hotifieQbaenaers()

A

ConcreteQhservable .
-Observer]] ohservers interface
0.r Observer

+i0id addOhsemnveriOhbsener o) e =

+yoid removeOhsener(Ohserver o) +yoid handieEvent)
+yoid notifvOhsemnersd Z}

: |
| |
for all obserers o ConcreteOQhserver
o.handleBEventd

+ioid handleBvent()

The Observable pattern includes the following:

Observable — Theinterface that defines how the observers/clients can interact with an Observable. These
methods include adding and removing observers, and one or more notification methods to send information
through the Observable toits clients.

ConcreteObservable — A classthat provides implementations for each of the methods in the Observable
interface. It needs to maintain a collection of Observers.

The notification methods copy (or clone) the Observer list and iterate through the list, and call the specific
listener methods on each Observer.

Observer — Theinterfacethe Observer usesto communicate with the clients.

68

ConcreteObserver — Implementsthe Observable interface and determinesin each implemented method how
to respond to the message received from the Observable.

Normally the application framework registers the specific observersto the observable.
Benefits and Drawbacks

The Observer pattern’s flexibility carries with it the added benefit that the observable object can be relatively
simple. Thereis not a substantial amount of coding overhead. In addition, the pattern is useful for:

Testing— Y ou can code an echo observer that can display the observable' s behavior.
Incremental development — It’svery easy to add additional observers as you code them.

The principal challenge for this pattern comes from implementation of the messaging model: you can use a
specific or generic message broadcast strategy. Each approach has potential disadvantages.

Generic messaging — As messaging becomes more generic, it can become more difficult to determine what is
going on for an observable component. Generic messaging can result in unnecessary message traffic; some events
could be broadcast to observers that would otherwise not care about them. Generic messaging also can result in
additional coding overhead for observers, because they have to decode messages.

Specific messaging — More-specific messages place greater coding requirements on the observable component,
since they must produce a series of notifications under specific conditions. They might also make observers more
complex, because observers must handle a variety of message types.

Pattern Variants

The Observer pattern has several variants that can be used in defining the relationship between observable and
observer:

Single observer versus multiple observers— Depending on the role of the observable component, it might
support only asingle observer.

Multithreaded observable components— If an observable object is multithreaded, it can provide support for a
message queue, and can provide services such as message priority and override behavior.

Client pull — Although the pattern is oriented toward server push, you can modify it to support alimited form of
client pull. In this variant, the observable typically provides the observers with notification that an event has taken
place. If observers require more detail, they contact the observable, calling a method that requests additional
information about the event.

Related Patterns

Related patterns include Proxy (page 197). For distributed communication, the Remote Proxy pattern is often used
to manage communication between the Observer and Observable.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Observer " on page 408 of the* Full Code Examples ™ appendix.

In the Observer example, an observer sends updates about the state of a Task to al registered listenersin a GUI.

It's important to recognize that any Java GUI code normally uses the Observer pattern for event handling. When
you write a class that implements a listener interface like ActionListener, you are creating an observer.
Registering that listener with a component through the method addActionListener associates the observer with
an observable element, the Java GUI component.

69

In this example, the observable element is represented by the Task being modified in the GUI. The class
TaskChangeObservable keeps track of the listeners for changes to the Task through the methods
addTaskChangeObserver and removeTaskChangeObserver.

Example 2.32 TaskChangeObservable. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class TaskChangeObservable{

4. private ArraylList observers = new ArraylList();

5.

6. public void addTaskChangeObserver(TaskChangeObserver observer){
7. if (lobservers.contains(observer)){

8. observers.add(observer);

9. }

10. }

11. public void removeTaskChangeObserver(TaskChangeObserver observer){
12. observers.remove(observer);

13. ¥

14.

15. public void selectTask(Task task){

16. Iterator elements = observers.iterator();

17. while (elements.hasNext()){

18. ((TaskChangeObserver)elements.next()) . taskSelected(task);
19. }

20. }

21. public void addTask(Task task){

22. Iterator elements = observers.iterator();

23. while (elements.hasNext()){

24. ((TaskChangeObserver)elements._next()) . taskAdded(task) ;
25. }

26. }

27. public void updateTask(Task task){

28. Iterator elements = observers.iterator();

29. while (elements.hasNext()){

30. ((TaskChangeObserver)elements.next()) . taskChanged(task) ;
31.

32. ¥

33. }

TaskChangeObservable has the business methods selectTask, updateTask, and addTask. These methods send
notifications of any changesto a Task.

Every observer must implement the TaskChangeObserver interface, allowing the TaskChangeObservable to call
the appropriate method on each observer. If aclient were to call the method addTask on the
TaskChangeObservable, for instance, the observable object would iterate through its observers and call the
taskAdded method on each.

Example 2.33 TaskChangeObserver . java

1 public interface TaskChangeObserver{

2. public void taskAdded(Task task);

3. public void taskChanged(Task task);
4 public void taskSelected(Task task);
5 }

The class ObserverGui provides a GUI in this demonstration, and creates a TaskChangeObservable object. In
addition, it creates three panels that implement the TaskChangeObserver interface, and matches them with the
TaskChangeObservable object. By doing this, the TaskChangeObservable is able to effectively send updates
among the three panels of the GUI.

Example 2.34 observerGui . java

import java.awt.Container;

import java.awt.event.WindowAdapter;

import java.awt.event._WindowEvent;

import javax.swing.BoxLayout;

import javax.swing.JFrame;

public class ObserverGui{

public void createGui(){

JFrame mainFrame = new JFrame(''Observer Pattern Example'™);
Container content = mainFrame.getContentPane();
content._setLayout(new BoxLayout(content, BoxLayout.Y_AXI1S));
TaskChangeObservable observable = new TaskChangeObservable();

PPRPOO~NOORAWNE

X

70

12. TaskSelectorPanel select = new TaskSelectorPanel (observable);

13. TaskHistoryPanel history = new TaskHistoryPanel();

14. TaskEditorPanel edit = new TaskEditorPanel (observable);
15. observable._addTaskChangeObserver(select);

16. observable.addTaskChangeObserver(history);

17. observable.addTaskChangeObserver(edit);

18. observable.addTask(new Task());

19. content._add(select);

20. content._add(history);

21. content.add(edit);

22. mainFrame.addWindowListener(new WindowCloseManager());
23. mainFrame.pack();

24. mainFrame._setVisible(true);

25. }

26.

27. private class WindowCloseManager extends WindowAdapter{
28. public void windowClosing(WindowEvent evt){

29. System.exit(0);

30. }

31. }

32. }

Example 2.35 TaskEditorPanel.java

1. import java.awt.BorderLayout;

2. import javax.swing.JPanel;

3. import javax.swing.JlLabel;

4. import javax.swing.JTextField;

5. import javax.swing.JButton;

6. import java.awt.event.ActionEvent;

7. import java.awt.event.ActionListener;

8. import java.awt.GridlLayout;

9. public class TaskEditorPanel extends JPanel implements ActionListener, TaskChangeObserver{
10. private JPanel controlPanel, editPanel;

11. private JButton add, update, exit;

12. private JTextField taskName, taskNotes, taskTime;
13. private TaskChangeObservable notifier;

14. private Task editTask; p
15. 3
16. public TaskEditorPanel (TaskChangeObservab eunewNwtifier){
17. notifier = newNotifier; Z\ N
18. createGui();

19. }

20. public void createGui(){

21. setLayout(new BorderlLay

22. editPanel = new JPanel ,

23. editPanel .setLayout(new G ayout(3, 2));

24. taskName = new JTextField(20);

25. taskNotes = new JTextField(20);

26. taskTime = new JTextField(20);

27. editPanel .add(new JLabel (""'Task Name'™));

28. editPanel _.add(taskName);

29. editPanel _.add(new JLabel ("*'Task Notes'));

30. editPanel .add(taskNotes);

31. editPanel .add(new JLabel ("'Time Required™));
32. editPanel .add(taskTime);

33.

34. controlPanel = new JPanel();

35. add = new JButton("Add Task'™);

36. update = new JButton(“Update Task');

37. exit = new JButton("Exit'");

38. controlPanel _.add(add);

39. controlPanel _.add(update);

40. controlPanel .add(exit);

41. add.addActionListener(this);

42. update.addActionListener(this);

43. exit.addActionListener(this);

44 . add(controlPanel, BorderLayout.SOUTH);

45. add(editPanel, BorderLayout.CENTER);

46. }

47. public void setTaskChangeObservable(TaskChangeObservable newNotifier){
48. notifier = newNotifier;

49. }

50. public void actionPerformed(ActionEvent event){
51. Object source = event.getSource();

52. if (source == add){

53. double timeRequired = 0.0;

54. try{

71

55. timeRequired = Double.parseDouble(taskTime.getText());

56.

57. catch (NumberFormatException exc){}

58. notifier._addTask(new Task(taskName.getText(), taskNotes.getText(), timeRequired));
59.

60. else if (source == update){

61. editTask.setName(taskName.getText());

62. editTask.setNotes(taskNotes.getText());

63. try{

64. editTask.setTimeRequired(Double.parseDouble(taskTime.getText()));
65. }

66. catch (NumberFormatException exc){}

67. notifier._updateTask(editTask);

68.

69. else if (source == exit){

70. System.exit(0);

71. }

72.

73. }

74. public void taskAdded(Task task){ }

75. public void taskChanged(Task task){ }

76. public void taskSelected(Task task){

7. editTask = task;

78. taskName.setText(task.getName());

79. taskNotes.setText(task.getNotes());

80. taskTime.setText("" + task.getTimeRequired());
81. }

82. }

Example 2.36 TaskHistoryPanel . java

1. import java.awt.BorderlLayout;

2. import javax.swing.JPanel;

3. import javax.swing.JScrollPane;

4. import javax.swing.JTextArea;

5. public class TaskHistoryPanel extends JPanel implements TaskChangeObserver{
6. private JTextArea displayRegion;

7.

8. public TaskHistoryPanel (){

9. createGui();

10. }

11. public void createGui(){

12. setLayout(new BorderLayout());

13. displayRegion = new JTextArea(l10, 40);

14. displayRegion.setEditable(false);

15. add(new JScrollPane(displayRegion));

16. }

17. public void taskAdded(Task task){

18. displayRegion.append(*'Created task "™ + task + "\n"");
19. }

20. public void taskChanged(Task task){

21. displayRegion.append(*'Updated task "™ + task + "\n'");
22. }

23. public void taskSelected(Task task){

24. displayRegion.append(*'Selected task " + task + "\n'");
25. }

26. }

Example 2.37 TaskSelectorPanel . java

1. import java.awt.event._ActionEvent;

2. import java.awt.event._ActionListener;

3. import javax.swing.JPanel;

4. import javax.swing.JComboBox;

5. public class TaskSelectorPanel extends JPanel implements ActionListener, TaskChangeObserver{
6. private JComboBox selector = new JComboBox();

7. private TaskChangeObservable notifier;

8. public TaskSelectorPanel (TaskChangeObservable newNotifier){
9. notifier = newNotifier;

10. createGui();

11. }

12. public void createGui(){

13. selector = new JComboBox();

14. selector.addActionListener(this);

15. add(selector);

16. }

17. public void actionPerformed(ActionEvent evt){

18. notifier.selectTask((Task)selector.getSelectedltem());
19. ¥

72

20. public void setTaskChangeObservable(TaskChangeObservable newNotifier){
21. notifier = newNotifier;

22. }

23.

24. public void taskAdded(Task task){

25. selector.addltem(task);

26. ¥

27. public void taskChanged(Task task){ }
28. public void taskSelected(Task task){ }
29. }

A feature of the Observer pattern isthat the Observable uses astandard interface for its Observers—in this case,
TaskChangeObserver. This means that the Observer pattern is more generic than the Mediator pattern, but also
that the observers may receive some unwanted message traffic. For instance, the TaskEditorPanel takesno
action when its taskAdded and taskChanged methods are called.

73

State

Also known as Objects for States

Pattern Properties

Type: Behaviord

Level: Object

Purpose

To easily change an object’s behavior at runtime.

Introduction

An application often behaves differently depending on the values of itsinternal variables. For instance, when
you're working on atext file, you need to periodically save your work. Most current text editors allow you to save
a document only when something has changed in the text. As soon as you save the content the text is considered
to be “clean;” the file content is the same as the content currently on display. At this point the Save option is not
available asit serves no purpose.

Implementing this decision-making in the individual methods makes the code hard to maintain and read. The
result is that these methods contain long if/ else statements. A common tactic is to store the state of an object in a
single variable using constants for a value. With this approach the methods normally contain large switch/case
statements that are very similar in each method.

Objects are state and behavior; state is kept in its attributes and the behavior is defined in methods. The State
pattern allows you to change the behavior of an object dynamically. This dynamic behavior is achieved by
delegating all method calls that rely on certain values to a State object. Such a State object is state and behavior as
well, so that when you change State objects, you also receive a different behavior. The methods in the specific
State classes no longer have to use if/else or switch statements; the State object defines the behavior for one state.
Applicability

Use the State pattern when:

The object’ s behavior depends on its state and the state changes frequently.

Methods have large conditiona statements that depend on the state of the object.

Description

Objects that have different behavior based on their current state might be difficult to implement without the State
pattern. As mentioned before, implementation without using the State pattern often results in using constants as a
way of keeping track of the current state, and in lengthy switch statements within methods. Most of those
methods in the same class have asimilar structure (determining the current state).

Consider adoor. What are the normal operations you can do with a simple door? Y ou can open and close a door,
leaving the door in one of its two states: Closed or Open. Calling the close method on a Closed door accomplishes
nothing, but calling the close method on an Open door changes the state of the door to Closed.

The State transition diagram is shown in Figure 2.11.

Figure 2.11. State transition diagram for a door

74

Open

o,
Doar Open

open

LIZ?II:u:nr Closed

close

close

The current state of the door makes it behave differently in response to the same command.
Implementation
The class diagram for the State pattern is shown in Figure 2.12.

Figure 2.12. State class diagram

Context interface
-State currentsState State
+ioid setCurrentStatedState)

+yold sormelfethoo)

i

[

I I
ConcreteStaten ConcreteStateB

+y0id somehmethod) +yoid somehethodd

Implementing the State pattern requires:

Context — Keepsareference to the current state, and is the interface for other clientsto use. It delegates all
state-specific method calls to the current State object.

State — Definesal the methods that depend on the state of the object.
ConcreteState — Implementsthe State interface, and implements specific behavior for one state.

The Context or the ConcreteState can determine the transition between states. Thisis not specified by the State
pattern. When the number of states isfixed, the most appropriate place to put the transition logicisin the
Context.

However, you gain more flexibility by placing the transition logic in the State subclasses. In that case, each
State determines the transition—which is the next State, under what circumstances the transition occurs, and
when it occurs. This makes it much easier to change part of the State transitions and add new States to the
system. The drawback is that each class that implements State is dependent on other classes—each State
implementation must know at least one other State. If the State implementations determine the transition, the
Context must provide away for the State to set the new current State in the Context.

Y ou can create state objects two using two methods: lazy instantiation or upfront creation.

Lazy instantiation creates the State objects at the time they are needed. Thisisuseful only if the state rarely
changes. It isrequired if the different states are unknown at the start of the application. Lazy instantiation
prevents large, costly states from being created if they will never be used.

Up-front creation is the most common choice. All the state objects are created at startup. Y ou reuse a state object

instead of destroying and creating one each time, meaning that instantiation costs are paid only once. This makes
sense if the state transitions are frequent—if a state is likely to be needed again soon.

75

Benefits and Drawbacks
Benefits and drawbacks include the following:

State partitions behavior based on state — This gives you a much clearer view of the behavior. When the object is
in a specific state, look at the corresponding State subclass. All the possible behavior from that state is included
there.

State offers structure and makes its intent clearer — The commonly used alternative to the State pattern isto use
constants, and to use a switch statement to determine the appropriate actions. Thisis a poor solution because it
creates duplication. A number of methods use almost exactly the same switch statement structure. If you want to
add a new state in such a system you have to change all the methods in the Context class by adding a new
element to each switch statement. Thisis both tedious and error-prone. By contrast, the same change in a system
that uses the State pattern isimplemented simply by creating one new state implementation.

State transitions are explicit — When using constants for state, it is easy to confuse a state change with avariable
assignment because they are syntactically the same. States are now compartmentalized in objects, making it
much easier to recognize a state change.

State can be shared — If State subclasses contain only behavior and no instance variables, they have effectively
become Flyweights. (See* Flyweight ” on page 183.) Any state they need can be passed to them by the Context.
This reduces the number of objectsin the system.

The State pattern uses alarge number of classes— The increased number of classes might be considered a
disadvantage. The State pattern creates at |east one class for every possible state. But when you consider the
aternative (long switch statements in methods), it’s clear that the large number of classesis an advantage,
because they present a much clearer view.

Pattern Variants

One of the challenges of the State pattern is determining who governs the state transitions. The choice between
the Context and the State subclasses was discussed previously. A third option isto look up the transitionsin a
table structure, with atable for each state, which maps every possible input to a succeeding state [Car92]. This
converts the transition code into a table lookup operation.

The benefit is the regularity. To change the transition criteria, only the data in the table has to be changed instead
of the actual code. But the disadvantages are numerous:

Table lookups are often less efficient than a method call.
Putting the transition logic in a table makes the logic harder to understand quickly.

The main difference is that the State pattern is focused on modeling the behavior based on the state, whereas the
table approach focuses on the transitions between the different states.

A combination of these two approaches combines the dynamics of the table-driven model with the State pattern.
Store the transitions in a HashMap, but instead of having a table for each state, create aHashMap for every method
in the State interface. That’'s because the next state is most likely different for each method.

Inthe HashMap, use the old state as the key and the new state as the value. Adding a new State isvery easy; add
the class and have the class change the appropriate HashMaps. This variant is also demonstrated in the Example
section for this pattern.

Related Patterns

Related patterns include the following:

Flyweight (page 183) — States can be shared using the Flyweight pattern.

Singleton (page 34) — Most States are Singletons, especially when they are Flyweights.

76

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” State ” on page 414 of the* Full Code Examples” appendix.

Inner classes are most appropriate for States. They are very closely coupled with their enclosing class and have
direct access to its attributes. The following example shows how this works in practice.

A standard feature of applicationsis that they only save files when necessary: when changes have been made.
When changes have been made but afile has not been saved, its state is referred to as dirty. The content might be
different from the persistent, saved version. When the file has been saved and no further changes have been made,
the content is considered clean. For a clean state, the content and the file will be identical if no one else edits the
file.

This example shows the State pattern being used to update Appointments for the PIM, saving them to afile as necessary.
The State transition diagram for afile is shown in Figure 2.13.

Figure 2.13. State transition diagram for a file
save content

s
Clean @E
edit cantent save content
S
Dirty
. E e

edit content

Two states (CleanState and DirtyState) implement the State interface. The states are responsible for
determining the next state, which in this case is reasonably easy, as there are only two.

The state interface defines two methods, save and edit. These methods are called by the CalendarEditor
when appropriate.

Example 2.38 state. java

public interface State{
public void save(Q);
public void edit();

A WNPF

}

The CalendarEditor class manages a collection of Appointment objects.

Example 2.39 calendarEditor.java

1. import java.io.File;

2. import java.util_ArraylList;

3. public class CalendarEditor{

4. private State currentState;

5. private File appointmentFile;

6. private ArraylList appointments = new ArrayList();
7. private static final String DEFAULT_APPOINTMENT_FILE = "appointments.ser";
8.

9. public CalendarEditor(){

10. this(DEFAULT_APPOINTMENT_FILE);

11. }

12. public CalendarEditor(String appointmentFileName){
13. appointmentFile = new File(appointmentFileName);

77

14. try{

15. appointments = (ArrayList)FilelLoader.loadData(appointmentFile);

16.

17. catch (ClassCastException exc){

18. System.err.printIn(""Unable to load information. The file does not contain a list of
appointments.™);

19. }

20. currentState = new CleanState();

21. }

22.

23. public void save(){

24. currentState.save();

25. }

26.

27. public void edit(){

28. currentState.edit();

29. }

30.

31. private class DirtyState implements State{

32. private State nextState;

33.

34. public DirtyState(State nextState){

35. this._nextState = nextState;

36. }

37.

38. public void save(){

39. FileLoader .storeData(appointmentFile, appointments);

40. currentState = nextState;

41. }

42. public void edit({ }

43. }

44 .

45. private class CleanState implements State{

46. private State nextState = new DirtyState(this);

47 .

48. public void save(){ }

49. public void edit(){ currentState = nextState; }

50. }

51.

52. public ArrayList getAppointments(){

53. return appointments;

54. }

55.

56. public void addAppointment(Appointment appointment){

57. if (Tappointments.contains(appointment)){

58. appointments.add(appointment);

59. }

60. }

61. public void removeAppointment(Appointment appointment){

62. appointments.remove(appointment);

63. }

64. }

The class StateGui provides an editing interface for the CalendarEditor*s appointments. Notice that the GUI
has areference to the CalendarEditor, and that it delegates edit or save actions to the editor. This alowsthe
editor to perform the required actions and to update its state as appropriate.

Example 2.40 StateGui . java

1. import java.awt.Container;

2. import java.awt.BorderLayout;

3. import java.awt.event.ActionListener;
4. import java.awt.event_WindowAdapter;
5. import java.awt.event._ActionEvent;
6. import java.awt.event.WindowEvent;
7. import javax.swing.BoxLayout;

8. import javax.swing.JButton;

9. import javax.swing.JComponent;

10. import javax.swing.JFrame;

11. import javax.swing.JPanel;

12. import javax.swing.JScrollPane;

13. import javax.swing.JTable;

14_. import javax.swing.table_AbstractTableModel;

15. import java.util_Date;

16. public class StateGui implements ActionListener{
17. private JFrame mainFrame;

18. private JPanel controlPanel, editPanel;

78

19. private CalendarEditor editor;

20. private JButton save, exit;

21.

22. public StateGui(CalendarEditor edit){

23. editor = edit;

24 }

25.

26. public void createGui(){

27. mainFrame = new JFrame(''State Pattern Example'™);

28. Container content = mainFrame.getContentPane();

29. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));

30.

31. editPanel = new JPanel();

32. editPanel .setLayout(new BorderLayout());

33. JTable appointmentTable = new JTable(hew StateTableModel ((Appointment [])
editor.getAppointments().toArray(new Appointment[1])));

34. editPanel .add(new JScrollPane(appointmentTable));

35. content.add(editPanel);

36.

37. controlPanel = new JPanel();

38. save = new JButton(''Save Appointments');

39. exit = new JButton("Exit'");

40. controlPanel _add(save) ;

41. controlPanel _add(exit);

42. content.add(controlPanel);

43.

44 . save.addActionListener(this);

45. exit.addActionListener(this);

46.

47. mainFrame.addWindowListener(new WindowCloseManager());

48. mainFrame.pack();

49. mainFrame.setVisible(true);

50. }

51.

52.

53. public void actionPerformed(ActionEvent evt){

54. Object originator = evt.getSource();

55. if (originator == save){

56. saveAppointments();

57.

58. else if (originator == exit){

59. exitApplication();

60. }

61. }

62.

63. private class WindowCloseManager extends WindowAdapter{

64. public void windowClosing(WindowEvent evt){

65. exitApplication();

66. }

67. }

68.

69. private void saveAppointments(){

70. editor._save();

71. }

72.

73. private void exitApplication(){

74. System.exit(0);

75. }

76.

77 . private class StateTableModel extends AbstractTableModel{

78. private final String [] columnNames = {

79. "Appointment", "Contacts', '"Location', "Start Date', "End Date" };

80. private Appointment [] data;

81.

82. public StateTableModel (Appointment [] appointments){

83. data = appointments;

84. }

85.

86. public String getColumnName(int column){

87. return columnNames[column];

88.

89. public int getRowCount(){ return data.length; }

90. public int getColumnCount(){ return columnNames.length; }

91. public Object getValueAt(int row, int column){

92. Object value = null;

93. switch(column){

94. case 0: value = data[row].getReason();

95. break;

79

96. case 1: value data[row].getContacts();

97. break;

98. case 2: value = data[row].getLocation();

99. break;

100. case 3: value = data[row].getStartDate();
101. break;

102. case 4: value = data[row].getEndDate();

103. break;

104. }

105. return value;

106. }

107. public boolean isCellEditable(int row, int column){
108. return ((column == 0) || (column == 2)) ? true : false;
109.

110. public void setValueAt(Object value, int row, int column){
111. switch(column){

112. case 0: data[row].setReason((String)value);
113. editor.edit();

114. break;

115. case 1:

116. break;

117. case 2: data[row].setLocation(new Locationlmpl((String)value));
118. editor.edit();

119. break;

120. case 3:

121. break;

122. case 4:

123. break;

124. }

125. }

126. }

127. }

80

Strategy

Also known as Policy
Pattern Properties
Type: Behaviord
Level: Component
Purpose

To define agroup of classes that represent a set of possible behaviors. These behaviors can then be flexibly
plugged into an application, changing the functionality on the fly.

Introduction

Suppose the PIM contains alist of contacts. As the number of contacts grows, you might want to provide away to
sort entries and summarize the contact information.

To do this, you could make a collection class to store contacts in memory, sort the objects, and summarize their
information. While this would provide a solution in the short term, a number of problems could surface (that is,
rear their hideous, slime-drenched heads) over time. The most serious drawback is that the solution cannot be
easily modified or extended. Any time you want to add a new variation of sorting or summarizing functionality,
you would need to change the collection classitself. What’s more, as the number of sorting or summarizing
options increases, the size and complexity of the code in the collection grows, making it harder to debug and
maintain.

What if you developed a series of classes instead, in which each class handles a specific way to sort or summarize
the contact data? The collection class del egates the tasks to one of these classes, and so has different approaches
or strategiesto perform its task without the complex code of the other approach.

oneéﬁj ect with another you can change behavior. And

The Strategy pattern relies on objects having state and behavior. By repl
he overall solution is very extensible.

athough this produces more classes, each classis easy to maintain andt

Applicability

Use the Strategy pattern when:

Y ou have avariety of ways to perform an action.

Y ou might not know which approach to use until runtime.

Y ou want to easily add to the possible ways to perform an action.

Y ou want to keep the code maintainable as you add behaviors.

Description

There are often many ways to perform the same task. Sorting, for example, can be performed with a number of
well-documented algorithms such as quick-sort and bubble sort, or by using multiple fields, or according to
different criteria. When an object has a number of possible ways to accomplish its goals, it becomes complex and
difficult to manage. Imagine the coding overhead required to produce a class to represent a document and save it
in avariety of formats: a plain text file, a StarOffice document, and a Postscript file, for instance. As the number
and complexity of the formats increase, the effort of managing the code in asingle class becomes prohibitive.

In such cases, you can use the Strategy pattern to maintain a balance between flexibility and complexity. The
pattern separates behaviors from an object, representing them in a separate class hierarchy. The object then uses
the behavior that satisfies its requirements at a given time. For the document example, you could develop a class

to save the document in each format, and their behavior could be collectively defined by a superclass or interface.

The Strategy pattern manages sets of basic algorithms, such as searching and sorting. Y ou can also use it
effectively with database queries, defining different approaches to perform queries, organize results, or manage

81

data caching strategies. In the business arena, the Strategy pattern is sometimes used to represent different
possible approaches to performing business actions. Placing an order for a workstation, for example, might be
implemented as a Strategy if processing an order that had to be custom built was significantly different from
processing one that was based on a standard product mode!.

Like the State pattern (see “ State ” on page 104), Strategy decouples part of a component into a separate group of
classes. Part of a component’s behavior is delegated to a set of handlers.

Benefits and Drawbacks

Each behavior is defined in its own class, so the Strategy |eads to more easily maintainable behaviors. It aso
becomes easier to extend a model to incorporate new behaviors without extensive recoding of the application.

The primary challenge in the Strategy pattern lies in deciding exactly how to represent the callable behavior. Each
Strategy must have the same interface for the calling object. Y ou must identify one that is generic enough to
apply to anumber of implementations, but at the same time specific enough for the various concrete Strategies
to use.

Implementation

The Strategy class diagram is shown in Figure 2.14.

Figure 2.14. Strategy class diagram

StrateqyClient interface
-Strategy strategy Strategy
+y0id setStrategy(Strategy s)
+ioid performoperation(

+voled aperationg)

] L

strategy.n:uperatil:ln|:]|;|ls| ConcreteStrategyb ConcreteStrategy

+yoid aperation() +yoid aperation()

To implement the Strategy pattern, use the following:

StrategyClient — Thisisthe classthat usesthe different strategiesfor certain tasks. It keeps areference to the
Strategy instance that it uses and has a method to replace the current Strategy instance with another Strategy
implementation.

Strategy — Theinterface that defines all the methods available for the StrategyClient to use.

ConcreteStrategy — A classthat implements the Strategy interface using a specific set of rules for each of the
methods in the interface.

Pattern Variants

None.

Related Patterns

Related patterns include the following:

Singleton (page 34) — Strategy implementations are sometimes represented as Singletons or static resources.

Flyweight (page 183) — Sometimes Strategy objects are designed as Flyweights to make them less expensive to
create.

Factory Method (page 21) — The Strategy pattern is sometimes defined as a Factory so that the using class can
use new Strategy implementations without having to recode other parts of the application.

82

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Strategy " on page 424 of the* Full Code Examples” appendix.

For many of the collectionsin the Persona Information Manager, it would be useful to be able to organize and
summarize individual entries. This demonstration uses the Strategy pattern to summarize entriesin a
ContactList, acollection used to store Contact objects.

Example 2.41 ContactList.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. public class ContactList implements Serializable{

4. private ArraylList contacts = new ArrayList();

5. private SummarizingStrategy summarizer;

6.

7. public ArrayList getContacts(){ return contacts; }

8. public Contact [] getContactsAsArray(){ return (Contact [])(contacts. toArray(new
Contact [1])):; }

9.

10. public void setSummarizer(SummarizingStrategy newSummarizer){ summarizer =
newSummarizer; }

11. public void setContacts(ArrayList newContacts){ contacts = newContacts; }

12.

13. public void addContact(Contact element){

14. if (Jcontacts.contains(element)){

15. contacts.add(element);

16. }

17.

18. public void removeContact(Contact element){

19. contacts.remove(element);

20. }

21.

22. public String summarize(){

23. return summarizer.summarize(getContactsAsArray());

24. ¥

25.

26. public String [] makeSummarizedList(){

27. return summarizer._makeSummarizedList(getContactsAsArray());

28. ¥

29. }

The ContactList has two methods, which can be used to provide summary information for the Contact objects
in the collection— summarize and make-SummarizedList. Both methods delegate to a SummarizingStrategy,
which can be set for the ContactList with the setSummarizer method.

Example 2.42 summarizingStrategy.java

public interface SummarizingStrategy{
public static final String EOL_STRING = System.getProperty(*'line._separator');
public static final String DELIMITER = ":";
public static final String COMMA = ",";
public static final String SPACE = " '';

public String summarize(Contact [] contactList);
public String [] makeSummarizedList(Contact [] contactList);

O©CoOo~NOOUTA~AWNPE

}

SummarizingStrategy isan interface that defines the two delegate methods summarize and
makeSummarizedList. Theinterface represents the Strategy in the design pattern. In this example, two classes
represent ConcreteStrategy objects: NameSummarizer and OrganizationSummarizer. Both classes summarize
the list of contacts; however, each provides adifferent set of information and groups the data differently.

The NameSummarizer class returns only the names of the contacts with the last name first. The class uses an inner

class as acomparator (NameComparator) to ensure that al of the Contact entries are grouped in ascending order
by both last and first name.

83

Example 2.43 NameSummarizer.java

1. import java.text.Collator;

2. import java.util_Arrays;

3. import java.util.Comparator;

4. public class NameSummarizer implements SummarizingStrategy{

5. private Comparator comparator = new NameComparator();

6.

7. public String summarize(Contact [] contactList){

8. StringBuffer product = new StringBuffer();

9. Arrays.sort(contactList, comparator);

10. for (int i = 0; 1 < contactList._length; i++){

11. product.append(contactList[i].getLastName());

12. product.append(COMMA) ;

13. product.append(SPACE);

14. product.append(contactList[i].getFirstName());

15. product.append(EOL_STRING);

16. }

17. return product.toString(Q);

18. }

19.

20. public String [] makeSummarizedList(Contact [] contactList){
21. Arrays.sort(contactList, comparator);

22. String [] product = new String[contactList.length];

23. for (int i = 0; 1 < contactList.length; i++){

24. product[i] = contactList[i].getLastName() + COMMA + SPACE +
25. contactList[i].getFirstName() + EOL_STRING;
26. }

27. return product;

28. }

29.

30. private class NameComparator implements Comparator{

31. private Collator textComparator = Collator.getinstance();
32.

33. public int compare(Object o0l, Object 02){

34. Contact cl, c2;

35. if ((0ol instanceof Contact) && (02 instanceof Contact)){
36. cl = (Contact)ol;

37. c2 = (Contact)o2;

38. int compareResult = textComparator.compare(cl.getLastName(),c2.getLastName());
39. if (compareResult == 0){

40. compareResult = textComparator.compare(cl.getFirstName(),c2.getFirstName());
41. }

42. return compareResult;

43. }

44 . else return textComparator.compare(ol, 02);

45. }

46.

47. public boolean equals(Object 0){

48. return textComparator.equals(o);

49. }

50. }

51. }

OrganizationSummarizer returns a summary with aContact"s organization, followed by their first and last
name. The comparator used to order the Contact objects returns entries with ascending organization, then
ascending last name.

Example 2.44 organizationSummarizer.java

1. import java.text.Collator;

2. import java.util _Arrays;

3. import java.util.Comparator;

4. public class OrganizationSummarizer implements SummarizingStrategy{
5. private Comparator comparator = new OrganizationComparator();
6.

7. public String summarize(Contact [] contactList){

8. StringBuffer product = new StringBuffer();

9. Arrays.sort(contactList, comparator);

10. for (int i = 0; 1 < contactList.length; i++){

11. product.append(contactList[i]-getOrganization());

12. product.append(DELIMITER) ;

13. product.append(SPACE);

14. product.append(contactList[i].getFirstName());

15. product.append(SPACE);

16. product.append(contactList[i].getLastName());

17. product.append(EOL_STRING);

18. }

19. return product.toString(Q);

20. }

21.

22. public String [] makeSummarizedList(Contact [] contactList){

23. Arrays.sort(contactList, comparator);

24. String [] product = new String[contactList.length];

25. for (int i = 0; 1 < contactList._length; i++){

26. product[i] = contactList[i].-getOrganization() + DELIMITER + SPACE +

27. contactList[i].getFirstName() + SPACE +

28. contactList[i].getLastName() + EOL_STRING;

29. }

30. return product;

31. }

32.

33. private class OrganizationComparator implements Comparator{

34. private Collator textComparator = Collator.getinstance();

35.

36. public int compare(Object 0l, Object 02){

37. Contact cl, c2;

38. if ((ol instanceof Contact) && (02 instanceof Contact)){

39. cl = (Contact)ol;

40. c2 = (Contact)o2;

41. int compareResult = textComparator.compare(cl.getOrganization(),
c2.getOrganization());

42. it (compareResult == 0) {

43. compareResult = textComparator.compare(cl.getLastName(), c2.getLastName());

44 . }

45. return compareResult;

46. }

47. else return textComparator.compare(ol, 02);

48. }

49.

50. public boolean equals(Object 0){

51. return textComparator.equals(o);

52. }

53. }

54, }

85

Visitor

Pattern Properties
Type: Behavioral, Object
Level: Component to System
Purpose

To provide amaintainable, easy way to perform actions for afamily of classes. Visitor centralizes the behaviors
and allows them to be modified or extended without changing the classes they operate on.

Introduction

Imagine you want the Personal Information Manager to have project planning capability, and the project planner
is used for things like bidding, risk analysis, and time estimation. The following classes represent a complex
project:

Project — Theroot of the project hierarchy, representing the project itself

Task — A work step in the project

DependentTask — A work step that depends on other tasks for its own completion

Deliverable: Anitem or document to be produced as a result of the project

To clearly identify these classes as part of a common model, they’ re organized around an interface called
Projectltem.

So far so good. Now, how do you code the ability to estimate the total cost for the project? The calculation will
probably depend on the specific type of Projectltem. In that interface you define a method getCost that should
calculate the costs for that specific part of the project. Thiswould allow you to compute the cost for every item in
the project structure.

Y ou might decide on an approach like this:
Project — No operation, since the cost is equal to the cost of al other project items.
Simpletask — Cost is based on estimated hours of effort.

Dependent task — Same as simpl e task, but adds an additional factor to represent coordination based on the task
dependencies.

Deliverable— Cost is abasic estimate of materials plus production cost.

However, how should you cal culate the time required for the project, and project risk? Using the same approach
asfor the cost makes the code harder to maintain. With every new capability, you have to write a bunch of new
methods that are spread throughout the project classes. With every new operation, the classes become larger,
more complex, and harder to understand.

It isaso difficult to keep track of information with this kind of approach. If you try to estimate cost, time, or risk
using localized methods, you have to figure out how to maintain the intermediate results, since each method
belongs to a specific project object. You will likely wind up passing the information through the entire project
tree, then crossing your fingers and hoping that you’ll never have to debug it.

The Visitor pattern offers an alternative. You define asingle class, with aname like CostProjectVisitor, that
performs all cost-related calculations. Instead of computing cost in the ProjectItems themselves, you pass them
to the visitor class, which keeps arunning tally of the total cost.

Projectltems no longer has agetCost method. Instead, it has a more generic acceptVisitor method that uses
aProjectVisitor to cal aspecific method on the ProjectVisitor. For instance, the acceptVisitor method

86

for aTask object callsthe method visitTask ontheVisitor. If the Visitor isaCostProjectVisitor, the
visitTask method computes the cost associated with the Task.

This design offers substantial benefits. Most importantly, it is very easy to add new operations to thisdesign. To
add a computation for time, you only have to write anew TimeProjectVisitor classwith all of the necessary
methods to compute project time. The code for the project objects remains unchanged, since it already supports
calling the generic methods defined in the ProjectVisitor.

Better till, the Visitor provides a place to centralize state. For the CostProjectVisitor, you can store the
intermediate result in the Visitor itself while you compute the cost estimate. The centralized estimation code
also makes it easier to adjust the basic calculations. Using the Visitor pattern lets you easily add features such as
an additional weighting factor, making it easy to calculate a project discounts or, preferably, a markup.
Applicability

Use the Visitor pattern when the following conditions are met:

A system contains a group of related classes.

Several non-trivial operations need to be carried out on some or all of the related classes.

The operations must be performed differently for different classes.

Description

The Visitor pattern involves taking related operations out of a group of classes and placing them together in a
single class. The motivation is code maintainability—in some situations, it simply becomes too complicated to
maintain operations in the classes themselves. Visitor is useful for these situations, since it provides avery
generic framework to support operations on a group of classes.

The pattern requires that all classes having operations performed on them, or Elements, support some form of
accept method, called when the Visitor should perform an operation on the Element. The argument for that accept
method is an instance of Visitor. Each Element implementation implements the accept method to call the visit

method in the Visitor for its own class type. Every Visitor implementation implements the specific visit method
for Element subtype.

Products that might benefit from use of the Visitor pattern include those that use complex rules for configuration. As a practical example,
consider avehicle as a purchasable product. There are dozens of decisions to make when buying a car, and many of the choices can have
an impact on things like price, financing or insurance rates.

Implementation
The Visitor class diagram is shown in Figure 2.15.

Figure 2.15. Visitor class diagram

87

| |
ConcreteVisitord ConcreteVisitorB

+ynld visit{ ConcreteElement® anElementa) +vold visi{ConcreleElements anElementa)
+ynid visif{ConcreteElements anElementB) +inid visifCancreteElementB anElemeantB)

interface
Element

ol acceplf 1Y islor viaito!)

ConcreteElementA ConcreteElementB

+yvold accept(visitor visitan +yoid acceptlyisitor visiton

visitor visit(ihis); P—\] |uisimr_u|5iu;:his}, [

To implement the Visitor pattern, use the following:

Visitor — The abstract class or interface that defines avisit method for each of the ConcreteElement classes.

ConcreteVisitor — Each concrete visitor class represents a specific operation to be performed for the system. It
implements all the methods defined in Visitor for a specific operation or algorithm.

Element — An abstract class or interface that represents the objects upon which the visitor operates. At a
minimum, it defines an accept method that receives aVvisitor as an argument.

ConcreteElement — A concrete element is a specific entity in the system. It implements the accept method
defined in Element, calling the appropriate visit method defined in Visitor.

One issue to watch for when implementing the Visitor pattern involves overloaded methods. The pattern uses
overloaded methods for the visit method. Figure 2.15 shows that the Visi tor interface has two visit methods,
each taking a different argument. These are two completely different methods from the language point of view.

Although the implementation of the accept method in each ConcreteElement classis very similar (even completely the
same), you cannot put that operation in a superclass. Doing so resultsin the visit method being called with the
supertype as argument, even though the actual type of the instance may be a specific ConcreteElement.

Benefits and Drawbacks

Because of its structure, the Visitor pattern makes adding behavior to a system very easy. When you initialy
implement the pattern, you develop a support framework for any other vVisitor action you might want to perform
in the future. To add new functionality, simply create a new class that implements the vVisitor interface and
write new functional code.

Visitors are useful because they allow you to centralize functional code for an operation. Apart from making the
code easier to extend or modify in the long term, this approach makes maintaining state straightforward. The
same Visitor object isnormally used to visit every Element in a structure, so it provides a central location to
hold data being collected, or to store intermediate results.

The downside of the pattern isthat thereis very little flexibility in the Element class chain. Any addition or
modification to the Element class hierarchy has a good chance of triggering a rewrite of the visitor code
structure. Any additional class requires a new method to be defined in the Visitor interface and each
ConcreteVisitor hasto provide an implementation for that method.

In addition, the pattern breaks, or at least severely bends, the object-oriented principle of code encapsulation. The
Visitor pattern takes code that applies to an object out of the object’ s class and moving it to another location.

88

The Element classes do not have to know the details of specific Visitors, but aConcreteVisitor generaly
does have to know the details of the Element classes. To perform a given function or calculation, the Visitor
frequently must use the methods of the Element classes in order to accomplish its task.

Pattern Variants

Aswith many patterns, you can represent the Element and Visitor as either abstract classes or interfacesin
Java.

Another decision you need to make is how to apply the Visitor to a collection of Elements. It'simportant to stress
that the Visitor pattern makes no assumptions about the structure of the Elements it operates on. Y ou can use a
ConcreteVisitor equaly effectively to traverse a simple collection, a chain structure, alist, or atree.

Although some implementations of the Visitor place the traversal code within the ConcreteVisitor itself, the pattern
doesn’t requirethis. It is equally valid to use an external class, like an 1terator, to move through a collection.

Y ou can then pair the visitor with the Iterator as required.

Related Patterns

Related patterns include the following. Y ou also can use a number of patternsin conjunction with the Visitor to
traverse various kinds of collections of Elements:

Interpreter (page 59) — Y ou can use the Visitor pattern to centralize the interpretation operation.
Iterator (page 69) — You can use the Iterator pattern to traverse a generic collection.

Composite (page 157) — Y ou can combine the Composite with Visitor to walk atree structure.
Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see* Vistor " on page 432 of the* Full Code Examples” appendix.

The Visitor pattern is often useful when operations must be performed over alarge structure, and composite
results must be calculated. In this demonstration, the Visitor pattern is used to calculate the total cost for a project.

Four classes are used to represent project elements, and all of the classes implement a common interface,
Projectltem. Inthis example, Projectltem defines the accept method required to host avisitor.

Example 2.45 Projectitem. java

import java.io.Serializable;

import java.util_ArraylList;

public interface Projectltem extends Serializable{
public void accept(ProjectVisitor v);
public ArrayList getProjectltems();

OB~ WNPE

}

The Project class represents the project itself, the Deliverable class a concrete product, the Task: ajob of
some sort. In addition, there is a subclass of Task called DependentTask. This class holds a set of other Tasks
upon which it depends for its own completion.

Example 2.46 peliverable.java

import java.util_ArraylList;
public class Deliverable implements Projectltem{
private String name;
private String description;
private Contact owner;
private double materialsCost;
private double productionCost;

public Deliverable(){ }
0. public Deliverable(String newName, String newDescription,

POO~NOUD_WNPE

89

11. Contact newOwner, double newMaterialsCost, double newProductionCost){
12. name = newName;

13. description = newDescription;

14. owner = newOwner;

15. materialsCost = newMaterialsCost;

16. productionCost = newProductionCost;

17. }

18.

19. public String getName(){ return name; }

20. public String getDescription(){ return description; }

21. public Contact getOwner(){ return owner; }

22. public double getMaterialsCost(){ return materialsCost; }

23. public double getProductionCost(){ return productionCost; }

24 .

25. public void setMaterialsCost(double newCost){ materialsCost = newCost; }
26. public void setProductionCost(double newCost){ productionCost = newCost; }
27. public void setName(String newName){ name = newName; }

28. public void setDescription(String newDescription){ description = newDescription; }
29. public void setOwner(Contact newOwner){ owner = newOwner; }

30.

31. public void accept(ProjectVisitor v){

32. v.visitDeliverable(this);

33. }

34.

35. public ArrayList getProjectltems(){

36. return null;

37. }

38. }

Example 2.47 DependentTask. java

1. import java.util_ArraylList;

2. public class DependentTask extends Task{

3. private ArrayList dependentTasks = new ArrayList();

4. private double dependencyWeightingFactor;

5.

6. public DependentTask(Q{ }

7. public DependentTask(String newName, Contact newOwner,

8. double newTimeRequired, double newWeightingFactor){

9. super(newName, newOwner, newTimeRequired);

10. dependencyWeightingFactor = newWeightingFactor;

11. }

12.

13. public ArrayList getDependentTasks(){ return dependentTasks; }

14. public double getDependencyWeightingFactor(){ return dependencyWeightingFactor; }

15.

16. public void setDependencyWeightingFactor(double
newFactor){ dependencyWeightingFactor = newFactor; }

17.

18. public void addDependentTask(Task element){

19. if (YdependentTasks.contains(element)){

20. dependentTasks.add(element);

21. }

22. }

23.

24. public void removeDependentTask(Task element){

25. dependentTasks.remove(element);

26. }

27.

28. public void accept(ProjectVisitor v){

29. v.visitDependentTask(this);

30. }

31. }

Example 2.48 project. java

1. import java.util_ArraylList;

2. public class Project implements Projectltem{

3. private String name;

4. private String description;

5. private ArraylList projectltems = new ArrayList();
6.

7. public Project(Q{ }

8. public Project(String newName, String newDescription){
9. name = newName;

10. description = newDescription;

11. }

12.

13. public String getName(){ return name; }

90

14. public String getDescription(){ return description; }

15. public ArrayList getProjectltems(){ return projectltems; }
16.

17. public void setName(String newName){ name = newName; }

18. public void setDescription(String newDescription){ description =
19.

20. public void addProjectltem(Projectltem element){

21. if (Iprojectltems.contains(element)){

22. projectltems.add(element);

23. ¥

24. ¥

25.

26. public void removeProjectltem(Projectltem element){

27. projectltems.remove(element);

28. ¥

29.

30. public void accept(ProjectVisitor v){

31. v.visitProject(this);

32. }

33. }

Example 2.49 Task. java

1. import java.util_ArraylList;

2. public class Task implements Projectltem{

3. private String name;

4. private ArraylList projectltems = new ArrayList();

5. private Contact owner;

6. private double timeRequired;

7.

8. public TaskQ{ }

9. public Task(String newName, Contact newOwner,

10. double newTimeRequired){

11. name = newName;

12. owner = newOwner;

13. timeRequired = newTimeRequired;

14. }

15. P

16. public String getName(){ return name; } ‘ ”

17. public ArrayList getProjectltems(){ return projectltems; }
18. public Contact getOwner(){ return owner;~ P

19. public double getTimeRequired(){ return timeRequired; }

20.

21. public

22. public wner: newOwner' }
23. public void setTimeRequir d(dﬁ bn‘ nelemeReqU|red){ timeRequired =
24 .

25. public void addProjectltem(PrOJectltem element){

26. if (Iprojectltems.contains(element)){

27. projectltems.add(element);

28. }

29. }

30.

31. public void removeProjectltem(Projectltem element){

32. projectltems.remove(element);

33. }

34.

35. public void accept(ProjectVisitor v){

36. v.visitTask(this);

37. }

38. }

newDescription; }

newTimeRequired; }

The basic interface that defines the Visitor behavior isthe ProjectVisitor. It definesavisit method for

each of the project classes.

Example 2.50 Projectvisitor.java

1. public interface ProjectVisitor{

2. public void visitDependentTask(DependentTask p);
3. public void visitDeliverable(Deliverable p);

4. public void visitTask(Task p);

5. public void visitProject(Project p);

6. %}

With this framework in place, you can define classes that implement the ProjectVisitor interface and perform
some computation on project items. The class ProjectCostVisitor shows how project cost calculations could

be managed.

91

Example 2.51 ProjectCostVisitor.java
public class ProjectCostVisitor implements ProjectVisitor{

O©CoO~NOOITAWNPE

}

private double totalCost;
private double hourlyRate;

public double getHourlyRate(){ return hourlyRate; }
public double getTotalCost(){ return totalCost; }

public void setHourlyRate(double rate){ hourlyRate = rate; }
public void resetTotalCost(){ totalCost = 0.0; }
public void visitDependentTask(DependentTask p){
double taskCost = p.getTimeRequired() * hourlyRate;
taskCost *= p.getDependencyWeightingFactor();
totalCost += taskCost;

public void visitDeliverable(Deliverable p){
totalCost += p.getMaterialsCost() + p.getProductionCost();
}

public void visitTask(Task p){
totalCost += p.getTimeRequired() * hourlyRate;

public void visitProject(Project p){ }

All behavior for the calculation, aswell as variable storage, is centralized in the Visitor class. To add a new
behavior, you would create a new class that implements ProjectVisitor and redefine the four visit methods.

92

Template Method

Pattern Properties

Type: Behavioral

Level: Object

Purpose

To provide a method that allows subclasses to override parts of the method without rewriting it.
Introduction

When working with projects, you frequently need to estimate the expense involved in performing a certain task or
producing adeliverable. The Persona Information Manager uses a number of classes to represent its projects. At
aminimum, the Task and Deliverable classes would be used to represent project elements. As a project grew
more complex, you might create additional classes like Project or DependentTask to satisfy more sophisticated
modeling needs.

Whileit is possible to create a getCostEstimate method for each of the classes, such an approach involves alot
of code duplication. As the number of classesincreases, it becomes more and more difficult to maintain the code
in all of the project classes.

A better approach isto group all of the project-related classes under a superclass, and define the method
getCostEstimate there. But what would you do if parts of the getCostEstimate method depended on
information that was specific to each of the Project classes? What if the Task had a different way of calculating
hours from the Deliiverable?

In that case, define getCostEstimate S0 that it calls an abstract method, getTimeRequired, and allows the Task
and Deliverable classes to define the method as appropriate. This approach, called the Template Method,
provides the benefits of code reusability, while still allowing classes to modify certain parts of the behavior to
meet their needs.

Applicability
Use the Template Method pattern:
To provide a skeleton structure for a method, allowing subclasses to redefine specific parts of the method.

To centralize pieces of amethod that are defined in all subtypes of a class, but which aways have a small
difference in each subclass.

To control which operations subclasses are required to override.
Description

When you are building complex class hierarchies for your application, code is often duplicated at several places.
Thisisundesirable, since you want to reuse as much code as you can. Refactoring your code so that the common
methods are in a superclassis a step in the right direction. The problem is that sometimes an operation that has
been refactored relies on specific information that is only available in a subclass. Because of this, developers
often decide not to refactor and accept the duplicate code in multiple subclasses.

When many methods in related classes have a similar structure, the Template Method can help. First, determine
which parts of the method are similar. These parts should be centralized in the superclass, while the other
operations should remain in the subclasses.

The newly defined template method contains the structure of the operation. For each part of the operation that can
vary, an abstract method is defined in the superclass. Subclasses override these methods to provide their own
implementation. When the template method is called on a subclass, the code in the superclass is executed.

When you make the template method in the superclass final, subclasses are limited in what parts of their
superclass they can override.

93

This pattern is called Template Method because it provides a method that contains the structure of the operation,
but leaves some of the steps open by calling abstract methods. It islike atemplate, since the subclassesfill in the
blanks by providing implementations for the abstract methods.

Implementation

Figure 2.16 shows the class diagram for the Template Method pattern.

Figure 2.16. Template Method class diagram

AbstractClass iIskeleton ;Dde
subOperationt;
+yoid termplateMethod) f—— — — firnore skeleton code
+yold sLhOwerationd() ﬁg:;:fg;:;ngsi
+yioled sLHOwnerstion2i)

i

ConcreteClass

+y0id subOperationt
+yoid subOperation2)

Implementing the Template Method requires:

AbstractClass — TheAbstractClass is (perhaps not surprisingly) an abstract class that contains the template
method and defines one or more abstract methods. The template method contains the skeletal code and calls one
or more of the abstract methods. To prevent subclasses from overriding the template method it should be declared
final.

ConcreteClass — TheConcreteClass extends the AbstractClass and implements the abstract methods of the
AbstractClass. It relies on the AbstractClass to provide the structure of the operation contained in the
template method.

Benefits and Drawbacks

The main benefit of the Template Method pattern is that it promotes code reuse. Without the Template Method,
code is duplicated in many subclasses. This benefit makes the Template Method essential for frameworks. A
framework contains many methods that only minimally rely on specific implementations in the subclass. Using
the Template Method pattern means the entire structure can be provided by the framework. If you use this
framework, you only have to override afew methods to be able to use it.

If the template method calls too many abstract methods, you'll soon get tired of using the AbstractClass asa
superclass. It is better to have the template method call alimited number of abstract methods.

Pattern Variants

One variant isto have the Template Method call concrete methods instead of abstract methods. The
AbstractClass provides a default implementation for each of the methods called by the Template Method.
These methods are called hook methods.

Therationale is that when you use the AbstractClass, you don't have to override al the methods to be able to
use the Template Method. The AbstractClass might not even need to be abstract.

One responsibility the provider of the Template Method hasis to document which methods are used in other
template methods. In the normal Template Method pattern, it is clear which methods need to be overridden,
because all these methods are abstract. If the hook methods are not mentioned in the documentation, they cannot
be identified as such.

Related Patterns

Related patterns include the following:

94

Factory Method (page 21) — Template methods often call Factory Methods to create new instances without
knowing the exact class being created.

Strategy (page 114) — The Strategy pattern uses composition to completely replace behavior, while the Template
Method pattern uses inheritance to replace parts of the behavior.

Intercepting Filter [CI2EEP] — The Intercepting Filter uses the Template Method pattern to implement its
Template Filter Strategy.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Template Method ” on page 440 of the * Full Code Examples” appendixX.

This example uses project classes from the Personal Information Manager to illustrate the Template Method.

Projectltem isthe abstract class that defines the Template Method in this demonstration. Its method
getCostEstimate returns atotal value for the project item that is calculated using the following equation:

time estimate * hourly rate + materials cost

The hourly rateis defined in the Projectltem class (using the rate variable, getter and setter methods in the
class), but the methods getTimeRequired and getMaterialsCost are abstract. This requires the subclasses to
override them, providing their own way to calculate the values.

Example 2.52 pProjectitem. java

1. import java.io.Serializable;

2. public abstract class Projectltem implements Serializable{

3. private String name;

4. private String description;

5. private double rate;

6.

7. public Projectltem(Q{}

8. public Projectltem(String newName, String newDescription, double newRate){
9. name = newName;

10. description = newDescription;

11. rate = newRate;

12. }

13.

14. public void setName(String newName){ name = newName; }

15. public void setDescription(String newDescription){ description = newDescription; }
16. public void setRate(double newRate){ rate = newRate; }

17.

18. public String getName(){ return name; }

19. public String getDescription(){ return description; }

20. public final double getCostEstimate(){

21. return getTimeRequired() * getRate() + getMaterialsCost();
22.

23. public double getRate(){ return rate; }

24 .

25. public String toString(Q{ return getName(); }

26.

27. public abstract double getTimeRequired();

28. public abstract double getMaterialsCost();

29. }

TheDeliverable class represents a concrete product of some kind. Because it represents a physical item, the
value returned by its getTimeRequired method is afixed amount. Similarly, the getMaterialsCost method
returns afixed value.

Example 2.53 pDeliverable.java

1. public class Deliverable extends Projectltem{
2. private double materialsCost;
3. private double productionTime;

95

4.

5. public Deliverable(){ }

6. public Deliverable(String newName, String newDescription,

7. double newMaterialsCost, double newProductionTime,

8. double newRate){

9. super(newName, newDescription, newRate);

10. materialsCost = newMaterialsCost;

11. productionTime = newProductionTime;

12. }

13.

14. public void setMaterialsCost(double newCost){ materialsCost = newCost; }
15. public void setProductionTime(double newTime){ productionTime = newTime; }
16.

17. public double getMaterialsCost(){ return materialsCost; }

18. public double getTimeRequired(){ return productionTime; }

19. }

The Task class represents a job that can consist of any number of subtasks or deliverables. For this reason,
getTimeRequired calculates the total time for the Task and all its children by iterating through its list of project
items and calling the getTimeRequired method. The method getMaterialsCost follows asimilar strategy,
working through the list of project items and calling each child’s getMaterialsCost method.

Example 2.54 Task. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Task extends Projectltem{

4. private ArraylList projectltems = new ArrayList();

5. private double taskTimeRequired;

6.

7. public TaskQ{ }

8. public Task(String newName, String newDescription,

9. double newTaskTimeRequired, double newRate){

10. super(newName, newDescription, newRate);

11. taskTimeRequired = newTaskTimeRequired;

12. }

13.

14. public void setTaskTimeRequired(double newTaskTimeRequired) { taskTimeRequired =
newTaskTimeRequired; }

15. public void addProjectltem(Projectltem element){

16. if (Iprojectltems.contains(element)){

17. projectltems.add(element);

18.

19. }

20. public void removeProjectltem(Projectltem element){

21. projectltems.remove(element);

22. ¥

23.

24. public double getTaskTimeRequired(){ return taskTimeRequired; }

25. public Iterator getProjectltemlterator(){ return projectltems._iterator(); }

26. public double getMaterialsCost(){

27. double totalCost = O;

28. Iterator items = getProjectltemlterator();

29. while (items.hasNext()){

30. totalCost += ((Projectltem)items.next()).getMaterialsCost();

31. }

32. return totalCost;

33. ¥

34. public double getTimeRequired(){

35. double totalTime = taskTimeRequired;

36. Iterator items = getProjectltemlterator();

37. while (items.hasNext()){

38. totalTime += ((Projectltem)items.next()).getTimeRequired();

39. }

40. return totalTime;

41. }

42. %}

96

Chapter 3. Structural Patterns

Introduction to Structural Patterns

Structural patterns describe effective ways both to partition and to combine the elements of an application. The
ways structural patterns affect applications varies widely: for instance, the Adapter pattern can let two
incompatible systems communicate, while Facade lets you present asimplified interface to a user without
removing all the options available in the system.

Adapter — To act asan intermediary between two classes, converting the interface of one class so that it can be
used with the other.

Bridge— To divide acomplex component into two separate but related inheritance hierarchies: the functional
abstraction and the internal implementation. This makes it easier to change either aspect of the component.

Composite— To develop aflexible way to create hierarchical tree structures of arbitrary complexity, while
enabling every element in the structure to operate with a uniform interface.

Decorator — To provide away to flexibly add or remove component functionality without changing its external
appearance or function.

Facade— To provide asimplified interface to a group of subsystems or a complex subsystem.
Flyweight — To reduce the number of very low-level, detailed objects within a system by sharing objects.
Half-Object Plus Protocol (HOPP) — To provide asingle entity that livesin two or more address spaces.

Proxy — To provide arepresentative of another object, for reasons such as access, speed, or security.

97

Adapter

Also known as Wrapper
Pattern Properties
Type: Structural, Object
Level: Component
Purpose

To act as an intermediary between two classes, converting the interface of one class so that it can be used with the
other.

Introduction

One of the frequently cited advantages of object-oriented programming is that it enables code reuse. Since data
and behavior are centralized in aclass, you can (at least in principle) move the class from one project to another
and reuse the functionality with very little effort.

Unfortunately, we developers are somewhat limited in our ability to predict the future. Since we cannot know in
advance what the coding requirements will be for a project in the future, we cannot always know how to design a
class for optimum reusability.

Imagine that, in order to speed up the development of your Personal Information Manager application, you decide
to cooperate with one of your foreign friends. He has been working on asimilar project and he can provide you
with acommercia implementation of an address system. But when you receive the files, the interface doesn't
match the interfaces you have been using. To make matters worse, the code is not in English, but in your friend’s
native language.

Y ou see yourself faced with two equally unattractive solutions.

Your first option is to rewrite the new component so that it implements all the required interfaces. Rewriting the
new component is a bad idea because you will have to do the same rewrite every time you receive the newest
version from your friend.

The second option is to rewrite your own application and start using the new (foreign) interfaces. Here the
downsideisthat you have to go through your whole code to change every occurrence of the old interfaces, and
your code becomes harder to understand because you don't speak your friend’ s native language. What might be
meaningful names to your friend don't mean anything to you.

What you need here is atranslator—a component that trandlates the calls to one interface into calls on another
interface. Thisiswhat the Adapter pattern does. It behaves similarly to a power adapter, converting one type into
another otherwise-incompatible type. By using the Adapter pattern your application can keep on using your
interfaces while allowing use of the new components. And when anew version arrives, the only thing you have to
changeisthe Adapter.

Applicability

Use Adapter when:

Y ou want to use an object in an environment that expects an interface that is different from the object’ s interface.

Interface trans ation among multiple sources must occur.

An object should act as an intermediary for one of agroup of classes, and it is not possible to know which class
will be used until runtime.

98

Description

Sometimes you’'d like to use a class in anew framework without recoding it to match the new environment. In
such cases, you can design an Adaptee classto act as atrandator. This class receives calls from the environment
and modifies the calls to be compatible with the Adaptee class.

Typica environments where an Adapter can be useful include applications that support plug-in behavior like
graphics, text, or media editors. Web browsers are another environment where the Adapter can be useful.
Applications involving internationalization (language conversion, for example) might benefit from Adapters, as
well as those that use components (such as JavaBeans™) that are added on the fly.

A real-world example of the Adapter is aforeign language phrase book. The phrase book translates common
expressions (messages) from one language to another, enabling two otherwise incompatible individuals to
communicate with each other. This assumes, of course, that the phrase book translates the messages properly
based on the context: “1 need to buy some matches,” for example, might not map correctly to “My hovercraft is
full of eels” inal circumstances.

Implementation

The Adapter class diagram interface is shown in Figure 3.1.

Figure 3.1. Adapter class diagram interface

Framework Adapter Ataptee
-Aoapter adapter = -Adaplee adaptes)
+ioid perormOperationd +void oparation(+vold adaptedOperaliond
I I
I I
adapter.operation() Il‘-l auan!ee.aﬁameul:inerallunﬂb.'

Implementing the Adapter pattern requires the following:

Framework — TheFramework usesthe Adapter. It either constructs the ConcreteAdapter or it gets set
somewhere.

Adapter — Theinterface that defines the methods the Framework uses.
ConcreteAdapter — Animplementation of the Adapter interface. It keeps areference to the Adaptee and
trand ates the method calls from the Framework into method calls on the Adaptee. Thistransation also possibly

involves wrapping or modifying parameters and return types.

Adaptee — Theinterface that defines the methods of the type that will be adapted. Thisinterface allows the
specific Adaptee to be dynamically loaded at runtime.

ConcreteAdaptee — Animplementation of the Adaptee interface. The class that needs to be adapted so that the
Framework can use this class.

For more complex communication, it can be useful to establish an action map to better understand how to manage

the communication. An action map is a table showing how the Adapter maps methods and call parameters
between the caller and adaptee. Table 3-1 shows the mapping for a single method.

Table 3-1. Example action map

[Framework /Adapter Action /Adaptee
'method1 None 'method2
argument1 ‘None argument1
argument2 wrapper argument2
| create argument3

The Unified Modeling Language (UML) can effectively represent this; typically, the sequence diagram is a useful
tool for action mapping. The Adapter sequence diagram for action mapping is shown in Figure 3.2.

99

Figure 3.2. Sequence diagram for action mapping

|

| |
| I
| 1-melhod@as bB) |

Mirapper

T

2 new

30 ne)

I u
4 ar apteu:lrdethu:uula A, bbWrapper, cC)
|

R S ———

Benefits and Drawbacks

The Adapter offers greatly improved reuse, allowing two or more objects to interact that would otherwise be
incompatible. However, some planning and forethought are required in order to develop aframework flexible
enough to be conveniently adaptable. This problem has two aspects. functional call structure and parameter
trang ation.

If thereis afunctional mismatch between the call framework and the Adaptee, the Adapter needs to manage the
call requirements of the Adaptee, invoking any required setup methods before the framework’s call can be
satisfied.

Another challenge for the Adapter isthe transfer of parameters, since passed parameters are not always
compatible between the framework and the Adaptee. In these cases, the Adapter usually either creates appropriate
objects when there is no direct equivalent between the two environments, or wraps an object to make it usable by
the Adaptee.

The most generic of environments for the Adapter are typically built around the Command pattern, using some
form of messaging or introspection/reflection. In its most generic form, the Command pattern might eliminate the
need for an Adapter. (See“ Command ” on page 51.)

Pattern Variants

Adapters are, by their very nature, dynamic and it’ srare to see two that are exactly alike. Nevertheless, there are
some common variations. Three of these common variations are listed here:

Multi-Adaptee Adapters— Depending on the system design, it can be advantageous to make an Adapter part of
the calling framework. Such an Adapter often acts as an intermediary between the system and multiple Adaptees.

Non-Interface-based Adapters— Use of the interface in the Java programming language makes it possible to
develop even more flexible Adapters. But it may not always be possible to use interfaces. For instance, it’s not
possible when you're given compl ete components that do not implement any interface. In those situations you will
see the Adapter pattern used without using interfaces. It goes without saying that these implementations are less
flexible.

Aninterface layer between the caller and Adapter, and another between the Adapter and Adaptee— An interface
layer between caller and Adapter allows new Adapters to be more easily added to the system during runtime. An
interface between Adapter and Adaptee allows the Adaptees to be dynamically loaded during runtime. In
combination, these interface layers make it possible to develop atruly pluggable Adapter design, where the
Adaptees can be changed as needed in arunning system.

Related Patterns

Related patterns include the following:

100

Bridge (page 150) — Although the Adapter and the Bridge pattern are very similar, their intent is different. The
Bridge pattern separates the abstraction and the implementation of a component and allows each to be changed
independently. The Adapter pattern alows using an otherwise incompatible existing object.

Decorator (page 166) — The Adapter pattern is intended to change the interface of an object, but keep the same
functionality. The Decorator |leaves the interface of the object the same but enhances its functionality.

Proxy (page 197) — Both the Adapter pattern and the Proxy pattern provide a front interface to an object. The
difference isthat the Adapter pattern provides a different interface and the Proxy pattern provides the same
interface as the object.

Business Delegate [CJ2EEP] — The Business Delegate pattern can be used as a Proxy. The Business Delegate
can be alocal representative of the businesstier.

The Business Delegate can also operate as an Adapter for otherwise incompatible systems.

Example

In this example, the PIM uses an API provided by aforeign source. Two files represent the interface into a
purchased set of classes intended to represent contacts. The basic operations are defined in the interface called
Chovnatlh.

Example 3.1 chovnatlh.java
public interface Chovnatlh{

1
2
3
4
5.
6.
e
8
9
1
1

0
1

}

public String tlhapWa$DIchPong();
public String tlhapQavPong();
public String tlhapPatlh();
public String tlhapGhom();

public void cherWa$DlchPong(String chu$wa$DlchPong);
public void cherQavPong(String chu$QavPong);

public void cherPatlh(String chu$patlh);

public void cherGhom(String chu$ghom);

The implementation for these methods is provided in the asso fated“clﬂéss, Chovnatlhlmpl.

Example 3.2 chovnatlhimpl.java

O©CoO~NOOOTA~AWNPE

//
//
//
//
//
//
//
//
//

pong = name
wa"Dlch = first

Qav = last

patlh = rank (title)
ghom = group (organization)
tlhap = take (get)

cher = set up (set)

chu® = new

chovnatlh = specimen (contact)

public class Chovnatlhlmpl implements Chovnatlh{

private String wa$DIchPong;
private String QavPong;
private String patlh;
private String ghom;

public ChovnatlhimplOQ{ }
public Chovnatlhlmpl(String chuwaDlchPong, String chu$QavPong,
String chu$patlh, String chu$ghom){
wa$DlchPong = chu$wa$DIlchPong;
QavPong = chu$QavPong;
patlh = chu$patlh;
ghom = chu$ghom;
}

public String tlhapWa$DlchPong(){ return wa$DlchPong; }
public String tlhapQavPong(){ return QavPong; }

public String thlhapPatlh(){ return pathlh; }

public String tlhapGhom(){ return ghom; }

public void cherWa$DlchPong(String chu$wa$DlchPong){ wa$DlchPong = chuwaDlchPong; }

public void cherQavPong(String chu$QavPong){ QavPong = chu$QavPong; }
public void cherPatlh(String chu$patlh){ patlh = chu$patlh; }

101

34.
35.
36.
37.
38.
39.

}

public void cherGhom(String chu$ghom){ ghom = chu$ghom; }

public String toString(){

}

return wa$DIlchPong + "™ " + QavPong + ": " + patlh +

", " + ghom;

With help from atrangdlator, it is possible to match the methods to those found in the Contact interface. The
ContactAdapter class performs this task by using avariable to hold an internal Chovnatlhimpl object. This
object manages the information required to hold the Contact information: name, title, and organization.

Example 3.3 contact.java

import java.io.Serializable;
public interface Contact extends Serializable{

OCoO~NOUITAWNPE

}

public static final String SPACE = " '
public String getFirstName();

public String getLastName();

public String getTitle();

public String getOrganization();

public void setFirstName(String newFirstName);
public void setLastName(String newLastName);

public void setTitle(String newTitle);

public void setOrganization(String newOrganization);

Example 3.4 contactAdapter. java
public class ContactAdapter implements Contact{

O©CoO~NOOOITAWNPE

}

private Chovnatlh contact;

public ContactAdapter(){
contact = new Chovnatlhimpl();

public ContactAdapter(Chovnatlh newContact){
contact = newContact;

}

public String getFirstName(){
return contact.tlhapWa$DlchPong();

}

public String getLastName(){
return contact.tlhapQavPong();

}
public String getTitle({
return contact.tlhapPatlh();

public String getOrganization(){
return contact.tlhapGhom();
}
public void setContact(Chovnatlh newContact){

contact = newContact;

public void setFirstName(String newFirstName){
contact.cherWa$DlchPong(newFirstName);
}

public void setLastName(String newlLastName){
contact.cherQavPong(newLastName) ;

public void setTitle(String newTitle){
contact.cherPatlh(newTitle);

public void setOrganization(String newOrganization){
contact.cherGhom(nhewOrganization);
¥

public String toString(){
return contact.toString();
¥

102

Bridge

Also known as Handle/Body
Pattern Properties

Type: Structural, Object
Level: Component
Purpose

To divide a complex component into two separate but related inheritance hierarchies: the functional abstraction
and the internal implementation. This makes it easier to change either aspect of the component.

Introduction

If you want to develop aTo Do list for the Personal Information Manager, you might want to have flexibility in
how it's represented to the user—listed items like tasks or contacts with bullets, numbers, maybe hieroglyphs.
Additionally, you might want to have some way to modify the basic list functionality, giving users the ability to
choose between an unordered list, a sequential list or aprioritized list.

To support this feature in the software, develop a group of list classes, each of which would provide a specific
way to display the list and organize its information. This solution quickly becomes impractical, however, since
there are many combinations of ways to display alist, and waysto store the list information.

It is be better to separate the To Do list's representation from its underlying implementation. The Bridge pattern
accomplishes this by defining two classes or interfaces that work together. For the PIM, these are List and
Listlmpl. The List represents display functionality, but delegates the actual storage of list itemsto its
underlying implementation, the ListiImpl class.

The benefit of this approach is apparent when you add capabilities to the basic behavior. To add characters or
numbering, subclass List. To support features like grouping items sequentially, extend Listimpl. The beauty of
this solution is that you can “mix and match” the classes, producing a much greater range of total functionality.
Applicability

Use Bridge when:

Y ou want flexibility between the component’ s abstraction and implementation, avoiding a static relationship
between the two.

Any changes of the implementation should be invisible to clients.

Y ou identify multiple component abstractions and implementations.

Subclassing is appropriate, but you want to manage the two aspects of the system separately.

Description

Complex elementsin a system can sometimes vary in both their external functionality and their underlying
implementation. In such cases, inheritance is an undesirabl e solution, since the number of classes you must create
increases as a function of both these aspects. Two representations and implementations yield four classesto
develop, while three representations and implementations result in nine classes (see Table 3-2).

In addition, inheritance ties a component into a static model, making it difficult to change in the future. Changing
a component is particularly challenging since they tend to vary as a system is being developed and used. It would
be preferable to create a dynamic way to vary both aspects of the component on an as-needed basis.

Enter the Bridge pattern. The Bridge solves the problem by decoupling the two aspects of the component. With

two separate inheritance chains—one devoted to functionality, the other to implementation—it’s much easier to
mix and match elements from each side. This provides greater overall flexibility at alower coding cost.

103

In addition, the coding requirements for the Bridge give you an overall savingsin the number of classes written as
you increase the number of variations. Table 3-2 shows the number of terminal classes required using strict
inheritance compared with the Bridge pattern.

Table 3-2. Class coding requirements

IExternaI representations Ilmplementations |Classesrequired with inheritance ICIass& required with Bridge

2 2 4 4
3 2 6 5
4 4 16 8
5 4 20 9

Comparison of Inheritance Pattern and Bridge Pattern

The Bridge design allows you to multiplex the external representation and internal implementation choices for the
component. Multiplexing ssmply means associating any combination of external and internal elements, to get a
greater range of options.

Dividing the component according to its two differentiating concepts also tends to produce a component that is
easier to understand and maintain. This is because each inheritance chain revolves around a single concept,
abstraction or implementation.

The Bridge is a useful pattern for any system that should display localized flexibility during runtime. An example
is GUI systems that must be portable among platforms, requiring that an underlying implementation be applied
when the application is started in a different operating system. Systems that change their representation of data
depending on locale (for example, altering date, language, or monetary representation) are often good candidates
for the Bridge, aswell. Similarly, the Bridge is often effective for business entities that can potentially map back
to anumber of different database sources.

A conceptual example for the Bridge is atechnical support switchboard. A number of pre-established phone lines
connect a user with a variety of technical support personnel. Naturally, the response will be markedly different
depending on the experience of the technical support representative who is on the line. The response probably
varies according to the question as well; there will be a somewhat different response to users complaining about
broken cup-holders on their PCs.

Implementation

The Bridge class diagram is shown in Figure 3.3.

Figure 3.3. Bridge class diagram

Abstraction interfaca _
-implementation implementation fe-— implementation
+y0id operation () +void operationtmgil)

|

1
implementation.aperationimpl) I:?.s|

i
.'I II'
A

I

I

77777
I I
Concretelmplementation ConcretelmplementationB

RefineAbstraction

+yoid operationlmpl(+yoid operationlmpl()

Implementing the Bridge pattern requires the following classes:

Abstraction — TheAbstraction class defines the functional abstraction for the Bridge, providing standard
behavior and structure. It contains areference to an Implementation instance. This Implementation instanceis
usually set with either a setter method (to allow modification at run-time) or through the constructor.

RefineAbstraction — TheRefineAbstraction class extendsthe Abstraction class and provides additional or
modified behavior.

104

Implementation — The Implementation interface represents the underlying functionality used by the
Abstraction instances.

Concretelmplementation — Concretelmplementation implementsthe Implementation interface. It provides
the behavior and structure for Implementation classes.

Benefits and Drawbacks

The Bridge offers the potential to share underlying implementation objects among multiple abstraction objects. It
provides greater flexibility when changing implementations, and the changes can occur without any action
required on the part of the client.

When designing an application that uses the Bridge pattern, it isimportant to properly define which
responsibilities belong to the functional abstraction and which belong to the internal implementation class.
Likewise, you must carefully consider what represents the true base model for your implementation of the Bridge
pattern. A common problem you might experience when using the Bridge stems from devel oping the pattern
implementation around one or two possible variations. The danger is that future development of the pattern will
reveal that some of the assumed elements of core behavior actually represented specific variations based on the
abstraction and/or implementation.

Like many of the distributed object patterns, you might also need to consider what the concept of equality really
means for the Bridge. Does the abstraction or the implementation, or both, represent the important object for
comparison?

Pattern Variants

Pattern variants include the following:

Automatic Bridges— Some Bridge pattern implementations are made to vary their implementation without any
action by the end user, relying instead on information provided from the application or operating platform to
customize themselves.

Shared implementations— Some implementation classes, especially statel ess ones (classes that do not maintain
an internal state), can be shared among multiple application objects. Depending on how widely they can be shared,
such classes can potentially be implemented as an interface.

Singleimplementation — Sometimes there is only a single implementation class, which services multiple
abstraction classes. If thereisonly asingle implementation, it is probably not necessary to define a base class for
the implementation part of a Bridge.

Related Patterns

Related patterns include the following:

Adapter (page 142) — The Bridge and the Adapter pattern are very similar in structure but differ in their intent.
The Bridge pattern separates the abstraction and the implementation to allow both to change independently, and is
an upfront design choice. The Adapter pattern enables use of an object whose interface would otherwise be

incompatible.

Singleton (page 34) — As mentioned in the variants section the Singleton pattern can be used when
“ implementation ” classes can be shared.

Flyweight (page 183) — When the tree structure becomes large, applying the Flyweight pattern can help reduce
the number of objects managed by the tree.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Bridge " on page 448 of the* Full Code Examples” appendix.

105

This example shows how to use the Bridge pattern to extend the functionality of a To Do list for the PIM. The To
Do list isfairly straightforward—simply alist with the ability to add and remove Strings.

For the Bridge pattern, an element is defined in two parts; an abstraction and an implementation. The
implementation is the class that does all the real work—in this case, it stores and retrieveslist entries. The general
behavior for the PIM list isdefined in the Listimpl interface.

Example 3.5 ListImpl . java

public interface ListImpl{
public void addltem(String item);
public void addltem(String item, int position);
public void removeltem(String item);
public int getNumberOfltems();
public String getltem(int index);
public boolean supportsOrdering();

O~NO O~ WNPE

}

The orderedListImpl classimplements Listimpl, and storeslist entriesin an internal ArrayList object.

Example 3.6 orderedListImpl.java

1. import java.util_ArraylList;

2. public class OrderedListImpl implements ListImpl{
3. private ArraylList items = new ArrayList();
4.

5. public void addltem(String item){

6. if (Titems.contains(item)){

7. items.add(item);

8. }

9. }

10. public void addltem(String item, int position){
11. if (litems.contains(item)){

12. items.add(position, item);

13. }

14. }

15.

16. public void removeltem(String item){

17. if (items.contains(item)){

18. items.remove(items. indexOf(item));
19. }

20. }

21.

22. public boolean supportsOrdering(){

23. return true;

24 . }

25.

26. public int getNumberOfltems(){

27. return items.size();

28. }

29.

30. public String getltem(int index){

31. if (index < items.size()){

32. return (String)items.get(index);
33.

34. return null;

35. }

36. }

The abstraction represents the operations on the list that are available to the outside world. The BaseList class
provides general list capabilities.

Example 3.7 BaseList.java

public class BaselList{
protected Listimpl implementor;

public void setlmplementor(Listimpl impl){
implementor = impl;
}

public void add(String item){
implementor.addltem(item);

PPRPOO~NOUDMWNE

O

public void add(String item, int position){

106

12. if (implementor.supportsOrdering()){
13. implementor.addltem(item, position);
14. }

15. }

16.

17. public void remove(String item){

18. implementor.removeltem(item);

19. }

20.

21. public String get(int index){

22. return implementor.getltem(index);

23. }

24 .

25. public int count(){

26. return implementor.getNumberOfltems();
27. }

28. }

Note that all the operations are delegated to the implementer variable, which represents the list implementation.
Whenever operations are requested of the List, they are actually delegated “ across the bridge” to the associated
Listimpl object.

It's easy to extend the features provided by the BaseList —Yyou subclass the BaseL ist and add additional
functionality. The NumberedList class demonstrates the power of the Bridge; by overriding the get method, the
classis able to provide numbering of the items on the list.

Example 3.8 NumberedList. java

1 public class NumberedList extends BaseList{

2 public String get(int index){

3. return (index + 1) + . " + super.get(index);
4 }

5 }

107

Composite

Pattern Properties
Type: Structural, Object
Level: Component
Purpose

To develop aflexible way to create hierarchical tree structures of arbitrary complexity, while enabling every
element in the structure to operate with a uniform interface.

Introduction

Y ou’ ve decided to enhance the Personal Information Manager to let users manage a complex project. Features of
this enhancement include defining the project as a group of tasks and related subtasks, and associating
deliverables with tasks. A natural way to accomplish this from a programming perspective isto define atree
structure, where the root task (which represents the project itself) branches out to subprojects, subsubprojects, and
so on. Therefore, you define a Task class that holds a collection of other Task and Deliverable objects. Since
both the Task and Del iverable relate to the project, you define a common parent for them—the Projectitem
class.

However, what happens if users need to perform an action that depends on the whole tree? For example, a project
manager wants a time estimate for tasks and deliverables for one project. To accommodate this, you write code to
traverse the tree and call the appropriate methods at each branch. That's alot of work, however, involving
separate code to walk the tree, call the methods, and collect the results. And with different classes (Task and
Deliverable) at each branch of the tree, you might need to handle them differently when getting time estimates.
For alarge number of classes or a complex tree, the code quickly becomes difficult to manage.

There's a better way to solve this problem. With the Composite pattern, you can use polymorphism and recursion
to provide an efficient, simple, easy-to-maintain solution.

Begin by defining a standard method for all classes that provides the time estimate, called getTimeRequired.
Define this method for the Projectitem interface, and implement that behavior in all classes that are types of
Projectltem. For Deliverable, define getTimeRequired to return 0, because a deliverable does not have time
associated directly with it. For the Task class, return atime consisting of the time for the task plus the sum of the
getTimeRequired calsfor al of the Task children.

Using this pattern, you define getTimeRequired SO that it automatically calculates the project time estimates for
any part of the tree. Just call the getTimeRequired method for the part of the Task needed, and the code in the
method takes care of the job of traversing the tree and calcul ating results.

Applicability

Use the Composite pattern when:

There is a component model with a branch-leaf structure (whole-part or container-contained).

The structure can have any level of complexity, and is dynamic.

Y ou want to treat the component structure uniformly, using common operations throughout the hierarchy.
Description

Object-oriented developers are often interested in devel oping components that follow awhole-part model.
Whole-part model isamodel that allows you to treat a collection of identical objects (the parts) as one entity (the
whole). Typically, these structures should be flexible and easy to use. Users should be able to modify the
structure as an application runs, adding or removing parts to suit their needs. At the sametime, it'sdesirableto

keep the complexity of the structure hidden behind the scenes, so that users perceive only a seamless, unified
product.

108

The Composite pattern supports these characteristics by defining a class structure that supports extensibility. This
structure is composed of a component, leaf, and Composite class.

The base component provides the core model, defining standard methods or variables to be used by all the objects
in the Composite.

Leaf classes support terminal behavior. That is, they represent parts of the Composite, but they cannot contain
other components.

Composite or branch classes can have other components added to them, permitting extensibility of the Composite
structure.

A drawing created using graphical editing tools is a common example of the Composite pattern in action. With a
drawing, a number of elementary shapes can be associated and treated as a whole; you also can define drawings
so that they contain other drawings, or a mixture of drawings and shapes.

Additional possibilities for Composite pattern use include applications with organizational charts, task
breakdowns, schedules, and outlining features. Applications that support grouping are also good candidates for
the Composite pattern, provided that the grouping action can be performed recursively and that the final product,
aswell asits component elements, have the same functional behavior.

Implementation

The basic Composite class diagram is shown in Figure 3.4.

Figure 3.4. Composite class diagram

Component
.
+ioid operation(
Hode Composite

-Compaonent] components

+yoid addComponent{Component
+roid remaveComponent{Compon
+yoid operation(

+yoid operation(

I
1
for every child in components IL|

child.operationd

The Composite has three elements:

Component — The Component interface defines methods available for all parts of the tree structure. Component
may be implemented as abstract class when you need to provide standard behavior to all of the sub-types.
Normally, the component is not instantiable; its subclasses or implementing classes, also called nodes, are
instantiable and are used to create a collection or tree structure.

Composite — Thisclassisdefined by the componentsit contains; it is composed by its components. The
Composi te supports adynamic group of Components so it has methods to add and remove Component instances
from its collection. The methods defined in the Component are implemented to execute the behavior specific for
thistype of Composite and to call the same method on each of its nodes. These Composite classes are also called
branch or container classes.

Leaf — The classthat implements the Component interface and that provides an implementation for each of the

Component 's methods. The distinction between a Leaf class and a Composite classis that the Leaf contains no
references to other Components. The Leaf classes represent the lowest levels of the containment structure.

109

A general consideration when implementing this pattern is whether each component should have areference to its
container (composite). The benefit of such areferenceisthat it eases the traversal of the tree, but it also decreases
your flexibility.

Benefits and Drawbacks

The Composite pattern provides a powerful combination: considerable flexibility of structure and an extremely
manageabl e interface.

The structure can be changed at any time by calling the appropriate methods on a Composite to add or remove
Components. Changing a Composite’ s Components means you're able to change the behavior of the Composites.

No matter where you are in the tree structure, you can call the same method on each of the individual
components.

The use of interfaces further increases the flexibility. Interfaces allow the construction of frameworks using the
Composite pattern and they enable the introduction of new types at runtime.

At the same time, use of interfaces can be a drawback when you want to define attributes and provide default
implementations in order to let each of the nodes inherit behavior. In that case, the Component needs to be an
abstract class.

Another drawback of the pattern arises from its flexibility—because it is so dynamic, the Composite patternis
often difficult to test and debug. It normally requires a more sophisticated test/validation strategy that is designed
around the concept of the whole-part object hierarchy. If testing becomes a problem, the best approach isto build
the testing into the Composite class implementation.

Additionally, the Composite normally requires full advance knowledge of the structure being modeled (in other
words, afull class design for the Composite), or a more sophisticated class-loading mechanism. The interface
form of this pattern (discussed in the Pattern Variants section) can be a useful aternative for providing dynamic
behavior during runtime.

Pattern Variants

Some variations on the base Composite pattern include:

Theroot node— To improve manageability in systems, some Composite implementers define a distinct object
that acts as the base for the entire Composite object hierarchy. If the root object is represented as a separate class,
it can be implemented as a Singleton, or the access to the root node can be granted through a Singleton, without
the classitself being a Singleton.

Rule-based branching— For more complex Composite structures, typically those with multiple types of nodes
and branches, you might need to enforce rules about how and when certain kinds of nodes can be joined to certain
branch types.

Related Patterns

Related patterns include the following:

Chain of Responsibility (page 42) — Used with the Composite pattern when methods need to be propagated “up”
the tree, from leaves to branch nodes.

Flyweight (page 183) — When the tree structure becomes large, applying the Flyweight pattern can help reduce
the number of objects managed by the tree.

Iterator (page 69) — The Iterator pattern can be used with the Composite pattern to encapsulate the traversal of
the tree, which otherwise could become complicated. Iterator is sometimes used to traverse a Composite.

Visitor (page 121) — Used with Composite to centralize behavior that would otherwise have to be split among
the leaf and branch classes.

Composite View [CJ2EEP] — The Composite View pattern describes how aview can be composed of several
other views (which in turn can be composed of views), similar to the Composite pattern.

110

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Composite ” on page 453 of the* Full Code Examples” appendix.

The Composite class diagram for the code example is shown in Figure 3.5.

Figure 3.5. Composite class diagram for the code example
This type of interface {or class) is referred 1o as a no de.'ll

interface This tvpe of class is referred to as a leafl
Profacifiam Instances of this type would be the end
- - of @ paricular branch of the tree struciure.
=clanbie patTimeRequired()

Task Delverahle

+double getTimeRequired +double gelTimeRe quired])

|
This type of class is often referred 1o as the |:|:|n!;||nsir‘ll

becausa it may contaln other nodes.

The example demonstrates how to use the Composite pattern to calculate the time required to compl ete a project

/: “‘

or some part of a project. The example has four principal parts:

Deliverable — A classthat represents an end product of

Project — The classused asthe root of the composite, representing the entire project.

Projectltem — Thisinterface describesfunctit ahty common to al items that can be part of a project. The
getTimeRequired method is defined in thisinterface.

Task — A classthat represents a collection of actions to perform. The task has a collection of Projectltem
objects.

The general functionality available to every object that can be part of a project is defined in the Projectltem
interface. In this example, thereis only a single method defined: getTimeRequired.

Example 3.9 Projectlitem. java

1. import java.io.Serializable;

2 public interface Projectltem extends Serializable{
3. public double getTimeRequired();

4 }

Since the project items can be organized into atree structure, two kinds of classes are Projectltems. The
Deliverable class represents aterminal node, which cannot reference other project items.

Example 3.10 peliverable.java

1. import java.io.Serializable;

2 public interface Projectltem extends Serializable{
3. public double getTimeRequired();

4 }

The Project and Task classes are nonterminal or branch nodes. Both classes keep a collection of Projectltems
that represent children: associated tasks or deliverables.

111

Example 3.11 Project. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Project implements Projectltem{

4. private String name;

5. private String description;

6. private ArraylList projectltems = new ArrayList();

7.

8. public Project(Q{ }

9. public Project(String newName, String newDescription){
10. name = newName;

11. description = newDescription;

12. }

13.

14. public String getName(){ return name; }

15. public String getDescription(){ return description; }
16. public ArrayList getProjectltems(){ return projectltems; }
17. public double getTimeRequired(){

18. double totalTime = O;

19. Iterator items = projectltems.iterator();

20. while(items._hasNext()){

21. Projectltem item = (Projectltem)items.next();
22. totalTime += item.getTimeRequired();

23. }

24. return totalTime;

25. }

26.

27. public void setName(String newName){ name = newName; }
28. public void setDescription(String newDescription){ description = newDescription; }
29.

30. public void addProjectltem(Projectltem element){

31. if (Iprojectltems.contains(element)){

32. projectltems.add(element);

33. }

34. }

35. public void removeProjectltem(Projectltem element){
36. projectltems.remove(element);

37. }

38. }

Example 3.12 Project. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Project implements Projectltem{

4. private String name;

5. private String description;

6. private ArraylList projectltems = new ArrayList();

7.

8. public Project(Q{ }

9. public Project(String newName, String newDescription){
10. name = newName;

11. description = newDescription;

12. }

13.

14. public String getName(){ return name; }

15. public String getDescription(){ return description; }
16. public ArrayList getProjectltems(){ return projectltems; }
17. public double getTimeRequired(){

18. double totalTime = O;

19. Iterator items = projectltems.iterator();

20. while(items.hasNext()){

21. Projectltem item = (Projectltem)items.next();
22. totalTime += item.getTimeRequired();

23. }

24. return totalTime;

25. ¥

26.

27. public void setName(String newName){ name = newName; }
28. public void setDescription(String newDescription){ description = newDescription; }
29.

30. public void addProjectltem(Projectltem element){

31. if (Iprojectltems.contains(element)){

32. projectltems.add(element);

33. }

34.

35. public void removeProjectltem(Projectltem element){
36. projectltems.remove(element);

112

37. }
38. }

Example 3.13 Task. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Task implements Projectltem{

4. private String name;

5. private String details;

6. private ArrayList projectltems = new ArrayList();

7. private Contact owner;

8. private double timeRequired;

9.

10. public TaskQ{ }

11. public Task(String newName, String newDetails,

12. Contact newOwner, double newTimeRequired){

13. name = newName;

14. details = newDetails;

15. owner = newOwner;

16. timeRequired = newTimeRequired;

17. }

18.

19. public String getName(){ return name; }

20. public String getDetails(){ return details; }

21. public ArrayList getProjectltems(){ return projectltems; }
22. public Contact getOwner(){ return owner; }

23. public double getTimeRequired(){

24. double totalTime = timeRequired;

25. Iterator items = projectltems.iterator();

26. while(items._hasNext()){

27. Projectltem item = (Projectltem)items.next();
28. totalTime += item.getTimeRequired();

29. }

30. return totalTime;

31. }

32.

33. public void setName(String newName){ name = newName; }
34. public void setDetails(String newDetails){ details = newDetails; }
35. public void setOwner(Contact newOwner){ owner = newOwner; }
36. public void setTimeRequired(double newTimeRequired){ timeRequired = newTimeRequired; }
37.

38. public void addProjectltem(Projectltem element){

39. if (Iprojectltems.contains(element)){

40. projectltems.add(element);

41. }

42.

43. public void removeProjectltem(Projectltem element){

44 . projectltems.remove(element);

45. }

46. }

The getTimeRequired method shows how the Composite pattern runs. To get the time estimate for any part of
the project, you simply call the method getTimeRequired for aProject or Task object. This method behaves
differently depending on the method implementer:

Deliverable: Return 0.

Project or Task: Return the sum of the time required for the object plus the results of calling the
getTimeRequired method for all Projectltems associated with this node.

113

Decorator

Also known as Wrapper
Pattern Properties
Type: Structural, Object
Level: Component
Purpose

To provide away to flexibly add or remove component functionality without changing its external appearance or
function.

Introduction

The Composite pattern example in the previous section added project functionality to the Personal Information
Manager, with aProject composed of a hierarchy of Task and Deliverable objects. All classes implemented
the Projectltem interface, which identified them as classes that belonged to a project.

What if you wanted to extend the basic capabilities of the Task and Deliverable classes, adding extra features
like the following?

Dependent items— A Projectltem that depends on another Task or Deliverable for completion.
Supporting documents— A Task or Deliverable that can reference additional reference documentation.

If you added these capabilities by subclassing, you would have to code alot of classes. For instance, to make only
Deliverable support these features, you would have to write four classes: Deliverable,
DependentDeliverable, SupportedDeliverable, and SupportedDependentDeliverable.

Faced with this drawback, you might consider object composition as away to add the new functionality. Coding
optional support into Deliverable and Task for both new features, however, can mean maintaining duplicate
code in multiple locations. At the very least, you increase the amount and complexity of the code.

What if, instead, you produce classes that have “plugin” capabilities? Instead of trying to add featuresto Task and Deliverable
directly, you create dependent classes that can be attached to any Projectitem to extend the basic functionality.
Y ou could say it's the coding equivalent of adding a 3D sound set to your standard stereo. Y our basic audio
capabilities remain the same, only now you have some extra feature to play with. For example, define a
DependentProjectltem and a SupportedProjectltem. Each class has only the code needed to support its
optional capability, and areference to thereal Projectitem that it extends. This means you have less code to
maintain, and the freedom to use any combination of these Decorator classes to add groups of capabilitiesto
Projectltems.

Applicability

Use the Decorator pattern when:

Y ou want to make dynamic changes that are transparent to users, without the restrictions of subclassing.
Component capabilities can be added or withdrawn as the system runs.

There are anumber of independently varying features that you should apply dynamically, and which you can use
in any combination on a component.

Description
Some objects have complex functionality and/or structure that can be added or removed in an accurate component

model. In the same way that overlays can be added to a map, showing additional features such as cities or
elevation, you might want the flexibility to add and remove certain features for an object.

114

The Decorator pattern works by allowing layers to be added to and removed from a base object. Each layer can
provide behavior (methods) and state (variables) to augment the base object. The layers can be chained and freely
associated with this pattern, allowing you to create advanced object behavior from a set of fairly ssmple building
blocks.

The Decorator pattern is naturally suited for applications involving overlays and views that can be dynamically
built. Groupware products, which allow networked teams to combine edit work on a single base document, are
one example. Some image editors are well-suited to the Decorator, as well as most applications involving text,
paragraph or document formatting. At alower level, the Decorator allows functionality to be built up asa
combination of filters applied to a base model. Stream-based 1/0 or communication endpoints (sockets) offer a
few examples, like the BufferedReader, which allows you to read line by line from aReader object.

The Decorator pattern can be compared to the various optional extras available for an automobile. Working with a base model, the
factory can add additional features such as rust-proofing, cruise control, upgraded sound systems, remote entry, and so on. With each
“layer” added to the vehicle, the vehicle acquires new characteristics, and the price increases accordingly. (Of course, unlike the
Decorator pattern, customers cannot change these features once they drive the vehicle off thelot.)

Implementation
The Decorator class diagram is shown in Figure 3.6.

Figure 3.6. Decorator class diagram

interface
Commponent

+yojc operationg)

ConcreteComponent Decorator
-Component component

+i0id setComponent{Component ¢
+yoid operationg

+y0id operation)

I

I

1
cumpunent.uperatiunﬁ;ll\..

ConcreteDecorator
-int nenwAttribute
+yoid operation)
+yoid newmOperation(

For the Decorator pattern, implement the following:
Component — Represents the component containing generic behavior. It can be an abstract class or an interface.

Decorator — Decorator defines the standard behaviors expected of all Decorators. Decorator can be
an abstract class or an interface. The Decorator provides support for containment; that is, it holds areferenceto a
Component, which can be a ConcreteComponent or another Decorator. By defining the Decorator class
hierarchy as a subclass of the component(s) they extend, the same reference can be used for either purpose.

One or more ConcreteDecorators — Each Decorator subclass needs to support chaining (referenceto a
component, plus the ability to add and remove that reference). Beyond the base requirement, each Decorator can
define additional methods and/or variables to extend the component.

Benefits and Drawbacks
The Decorator offers the opportunity to easily adjust and augment the behavior of an object during runtime. In
addition, coding can become substantially easier, since you need to write a series of classes, each targeted at a

specific bit of functionality, rather than coding all behavior into the component itself. This also tends to make the
component more easily extensible in the future, since changes can be introduced by coding new classes.

115

Depending on their behavior, some Decorator layers may be shared among multiple component objects (normally,
layers that have stateless behavior, i.e. no state is maintained or used). This can reduce memory consumption in
the system.

When taken to an extreme, the Decorator pattern usually produces alarge number of layers: this means lots of
little objects between a user and the real object. This can have a number of consequences. Debugging and testing
code becomes more difficult, and the operating speed of a system can be reduced if the Decorator is improperly
designed.

Y ou must ensure that object equality istreated properly; thisis especially important for the Decorator pattern,
since object layers sit “in front” of each other. Typically, if equality testing isrequired in an application, you must
code an equality operation that identifies the underlying object, or the combination of the base object and the
order and “values’ of each of the layers, rather than just the top layer.

Finally, it might require some work to properly handle removing layers from a system, since they could exist
anywhere within the Decorator chain. To simplify matters, some Decorators define both aforward and a
backward reference to make them easier to remove.

Pattern Variants

Pattern variants include the following:

As mentioned in “ Benefits and Drawbacks,” it iS sometimes desirable to develop Decorator classes with aforward
and a backward reference to make them easier to remove as a system runs.

Some Decorator implementations don’t use an abstract becorator. Normally, this variation is used when there is
only asingle variation possible for the component.

Y ou can create overriding Decorators, which will redefine some parts of a component’s behavior. Take care
when using such aDecorator, however, since components based on this pattern can exhibit unpredictable
behavior unless there are strict rules in the code governing when and how behavior can be overridden.
Related Patterns

Related patterns include the following:

Adapter (page 142) — The Adapter pattern is intended to change the interface on the same functionality, whereas
the Decorator |leaves the interface the same but changes the functionality.

Composite (page 157) — The Decorator may be viewed as asimpler version of the Composite pattern; instead of
having a collection of Components, the Decorator keeps a maximum of one reference to another Component. The
other difference is that the Decorator enhances the functionality instead of just passing on the method calls.

Strategy (page 114) — The Decorator pattern is used to modify or extend an object's external functionality, while
the Strategy pattern is used to modify an object'sinternal behavior.

Intercepting Filter [CI2EEP] — The Intercepting Filter pattern uses the Decorator pattern to decorate a service
request without having to change the request.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see* Decorator " 0n page 462 of the* Full Code Examples” appendix.

This example demonstrates how to use the Decorator pattern to extend the capability of the elementsin a project.
The foundation of the project isthe Projectltem interface. It isimplemented by any class that can be used within
aproject. In this case, Projectltem defines a single method, getTimeRequired.

Example 3.14 Projectitem.java

116

1. import java.io.Serializable;

2. public interface Projectltem extends Serializable{

3. public static final String EOL_STRING = System.getProperty(*'line._separator');
4. public double getTimeRequired();

5. }

Task and Deliverable implement Projectltem and provide the basic project functionality. Asin previous
demonstrations, Task represents some job in a project and Deliverable represents some concrete product.

Example 3.15 peliverable.java

1. public class Deliverable implements Projectltem{

2. private String name;

3. private String description;

4. private Contact owner;

5.

6. public Deliverable(){ }

7. public Deliverable(String newName, String newDescription,
8. Contact newOwner){

9. name = newName;

10. description = newDescription;

11. owner = newOwner;

12. ¥

13.

14. public String getName(){ return name; }

15. public String getDescription(){ return description; }

16. public Contact getOwner(){ return owner; }

17. public double getTimeRequired(){ return 0; }

18.

19. public void setName(String newName){ name = newName; }
20. public void setDescription(String newDescription){ description = newDescription; }
21. public void setOwner(Contact newOwner){ owner = newOwner; }
22.

23. public String toString(){

24. return "Deliverable: " + name;

25. }

26. }

Example 3.16 Task.java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Task implements Projectltem{

4. private String name;

5. private ArraylList projectltems = new ArrayList();

6. private Contact owner;

7. private double timeRequired;

8.

9. public TaskQ{ }

10. public Task(String newName, Contact newOwner,

11. double newTimeRequired){

12. name = newName;

13. owner = newOwner;

14. timeRequired = newTimeRequired;

15. }

16.

17. public String getName(){ return name; }

18. public ArrayList getProjectltems(){ return projectltems; }
19. public Contact getOwner(){ return owner; }

20. public double getTimeRequired(){

21. double totalTime = timeRequired;

22. Iterator items = projectltems.iterator();

23. while(items._hasNext()){

24. Projectltem item = (Projectltem)items.next();
25. totalTime += item.getTimeRequired();

26. ¥

27. return totalTime;

28. }

29.

30. public void setName(String newName){ name = newName; }
31. public void setOwner(Contact newOwner){ owner = newOwner; }
32. public void setTimeRequired(double newTimeRequired){ timeRequired = newTimeRequired; }
33.

34. public void addProjectltem(Projectltem element){

35. if (Iprojectltems.contains(element)){

36. projectltems.add(element);

37. ¥

38. }

117

39. public void removeProjectltem(Projectltem element){
40. projectltems.remove(element);

41. }

42.

43. public String toString(Q{

44 . return "Task: " + name;

45. }

46. }

It's time to introduce a decorator to extend the basic capabilities of these classes. The class ProjectDecorator
will provide the central ability to augment Task and Deliverable.

Example 3.17 ProjectDecorator . java

1 public abstract class ProjectDecorator implements Projectltem{

2 private Projectltem projectltem;

3

4. protected Projectltem getProjectltem(){ return projectltem; }

5. public void setProjectltem(Projectltem newProjectltem){ projectltem = newProjectltem;
6

7 public double getTimeRequired(){

8 return projectltem.getTimeRequired();

9. }

10. }

The ProjectDecorator implements the ProjectItem interface and maintains a variable for another
Projectltem, which represents the “decorated” element. Note that ProjectDecorator delegates the
getTimeRequired method to itsinternal element. This would be done for any method that would depend on the
functionality of the underlying component. If a Task with arequired time of five days were decorated, you would
still expect it to return a value of five days, regardless of any other capabilitiesit might have.

There are two subclasses of ProjectDecorator in this example. Both demonstrate a way to add some extra
feature to project elements. The DependentProjectltem classis used to show that a Task or Deliverable
depends on another Projectltem for completion.

Example 3.18 DependentProjectltem. java

1. public class DependentProjectltem extends ProjectDecorator{

2. private Projectltem dependentltem;

3.

4. public DependentProjectlitem(Q{ }

5. public DependentProjectltem(Projectltem newDependentltem){

6. dependentltem = newDependentltem;

7. }

8.

9. public Projectltem getDependentltem(){ return dependentltem; }

10.

11. public void setDependentltem(Projectltem newDependentltem){ dependentltem =
newDependentltem; }

12.

13. public String toString(){

14. return getProjectltem().toString() + EOL_STRING

15. + "\tProjectltem dependent on: " + dependentltem;

16. }

17. 3}

SupportedProjectltem decorates aProjectltem, and keeps an ArrayL i st of supporting documents—file
objects that represent additional information or resources.

Example 3.19 SupportedProjectltenm. java

1. import java.util_ArraylList;

2. import java.io.File;

3. public class SupportedProjectltem extends ProjectDecorator{
4. private ArraylList supportingDocuments = new ArrayList();
5.

6. public SupportedProjectitemQ{ }

7. public SupportedProjectltem(File newSupportingDocument){
8. addSupportingDocument(newSupportingDocument) ;

9.

10.

11. public ArrayList getSupportingDocuments(){

12. return supportingDocuments;

13. }

118

14.

15. public void addSupportingDocument(File document){
16. if (IsupportingDocuments.contains(document)){

17. supportingDocuments.add(document) ;

18.

19. ¥

20.

21. public void removeSupportingDocument(File document){
22. supportingDocuments.remove(document) ;

23. ¥

24.

25. public String toString(Q{

26. return getProjectltem().toString() + EOL_STRING
27. + "\tSupporting Documents: ' + supportingDocuments;
28. ¥

29. }

The benefit of defining additional capabilitiesin thisway isthat it is easy to create project items that have a
combination of capabilities. Using these classes, you can make a simple task that depends on another project item,
or atask with supporting documents. Y ou can even chain Decorators together and create a task that depends on
another task and has supporting documents. This flexibility is akey strength of the Decorator pattern.

119

Facade

Pattern Properties

Type: Structural

Level: Component

Purpose

To provide asimplified interface to a group of subsystems or a complex subsystem.

Introduction

Userslike to be able to modify a GUI to make it more visually appealing or usable. For example, some users
might have a visual impairment and have trouble reading a small font, so they need to increase the font size.
Forcing the user to step through all the setup screens, (in the current small font size), wading through the modem
and printer and scanner settings until reaching the setup options needed, wouldn't be very user friendly. A wizard,
which would be designed for helping the visually impaired do setup, would be much better.

Thiskind of help should not limit the options to use and customize the application. Instead, you want to provide a
specialized view of the system, and at the same time keep all the other features. This kind of a Facade patternisa
front end, or wizard, for the system.

Applicability

Use Facade to:

Make complex systems easier to use by providing asimpler interface without removing the advanced options.
Reduce coupling between clients and subsystems.

Layer subsystems by providing Facades for sets of subsystems.

Description

Most modern software systems are fairly complex. Design patterns help you structure applications and better deal
with the complexity. They often accomplish this by dividing functionality among a series of smaller classes.
Additional classes can aso be produced as aresult of system partitioning. Dividing a system into several

subsystems helps you deal with complex systems and provides the opportunity to partition the work.

Dividing a system into a number of specialized classesis a good object-oriented design practice. However, having
alarge number of classesin a system can be adrawback as well.

Clients using that system have to deal with more objects. Users tend to become confused when presented with
hundreds of configuration options. Car manufacturers, among others, recognize this and adapt their products
accordingly; for instance, when was the last time you had to set the air/gas ratio inside your car engine? Doing
that every time you start your car is not practical. What you want is that you would only have to insert the car key
and turn it to start the car (or actually the car engine). The rest should be handled for you. A client benefits from

having only afew basic options. A Facade can provide these options and can then determine which subsystems to
cal.

Normally the Facade will delegate most of the work to the subsystems, but it can do some work itself.

Note that it is not the intent of a Facade to hide the subsystems. The intention isto provide asimpler interfaceto a
set of subsystems, but clients who need the more elaborate options can still interact with the subsystems.

A setup wizard is one example of a Facade.
Implementation

The Facade object diagram is shown in Figure 3.7.

120

Figure 3.7. Facade object diagram

:Facade Facade
N N
o I . [
[] I I [
[] I I [
[] I ng [
QT I I I Sub Em :
[I I [
[I I [
[I I | [
-~ W | | | |
1] 2m | | | |
| | W
-—————————— =:SubSystem
I
______ 4 _

I I 7

I I [

Y/ Wy |

Sub em Suhb em Sub em [

o

Implement the following for Facade:

Facade — Theclassfor clientsto use. It knows about the subsystems it uses and their respective responsibilities.
Normally all client requests will be delegated to the appropriate subsystems.

Subsystem — Thisisaset of classes. They can be used by clients directly or will do work assigned to them by
the Facade. It does not have knowledge of the Facade; for the subsystem the Facade will be just another client.

Benefits and Drawbacks ‘ I

The benefit of the Facade pattern isthat it provides asimple terfé‘cé"fo a complex system without reducing the
options provided by the total system. This interface protects the client from an overabundance of options.

The Facade trand ates the client requests to the subsystems that can fulfill those requests. Most of the time, one
request will be delegated to more than one subsystem. Because the client interacts only with the Facade, the
internal working of the system can change, while the client to the Facade can remain unchanged.

The Facade promotes low coupling between client and subsystems. It can also be used to reduce coupling
between subsystems. Every subsystem can have its own Facade and other parts of the system use the Facade to
communicate with the subsystem.

Pattern Variants

Pattern variants include the following:

Y ou can implement the Facade as an interface or an abstract class. This|leaves the implementation detailsto a
later time. It also reduces coupling.

Several Facades can provide different interfaces to the same set of subsystems.

The Facade pattern is sometimes varied in order to hide the subsystems. When the Facade pattern is used at the
boundary between systems in an architecture, one of its goalsis to reduce the complexity of system-system
interaction. For instance, a system where calls pass through a central facade is more maintainable than one with a
large number of cross-coupled classes).

Related Patterns

Related patterns include the following:

121

Abstract Factory (page 6) — The Abstract Factory creates families of related objects. To simplify access to the
different objects the factory has created, the factory can also create a Facade object.

Mediator (page 77) — The Mediator pattern and the Facade pattern seem very similar. The differenceisin the
intent and in the implementation. The Mediator helps ease the communication between components and it adds
behavior. The Facade is only an abstraction of the interface of one or more subsystems.

Singleton (page 34) — The Facade uses the Singleton pattern to guarantee a single, globally accessible point of
access for a subsystem.

Session Facade [CJ2EEP] — The Session Facade pattern is a Facade that encapsulates the complexities of
Enterprise JavaBeans™, to ssimplify the interface for its clients.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Facade” on page 468 of the “ Full Code Examples” appendixX.

To make the PIM more functional for users, you want to give them the opportunity to customize the application.
Some examples of itemsto customize include font type, font size, colors, which services to start when, default
currency, etc. This example tracks a set of nationality-based settings.

In this example, the Facade classisthe InternationalizationWizard. This class coordinates between a client
and a number of objects associated with a selected nationality.

Example 3.20 InternationalizationWizard.java

1. import java.util._HashMap;

2. import java.text_NumberFormat;

3. import java.util_Locale;

4. public class InternationalizationWizard{

5. private HashMap map;

6. private Currency currency = new Currency();

7. private InternationalizedText propertyFile = new InternationalizedText();

8.

9. public InternationalizationWizard() {

10. map = new HashMap(Q);

11. Nation[] nations = {

12. new Nation(''US™, "$", "+1', "us.properties', NumberFormat. getlnstance(Locale.US)),

13. new Nation("'The Netherlands'™, *"f", "+31", "dutch.properties’,
NumberFormat.getlnstance(Locale.GERMANY)),

14. new Nation(“France"™, "f", "+33", "french.properties', NumberFormat.
getlnstance(Locale.FRANCE))

15. ;

16. for (int i = 0; 1 < nations.length; i++) {

17. map.put(nations[i].getName(), nations[i]);

18.

19. }

20.

21. public void setNation(String name) {

22. Nation nation = (Nation)map.get(name);

23. if (nation = null) {

24. currency.setCurrencySymbol (nation.getSymbol());

25. currency.setNumberFormat(nation.getNumberFormat());

26. PhoneNumber.setSelectedInterPrefix(nation.getDialingPrefix());

27. propertyFile.setFileName(nation.getPropertyFileName());

28. }

29. }

30.

31. public Object[] getNations(){

32. return map.values().toArray();

33.

34. public Nation getNation(String name){

35. return (Nation)map.get(name);

36.

37. public char getCurrencySymbol(){

38. return currency.getCurrencySymbol();

39. }

122

40. public NumberFormat getNumberFormat(){

41. return currency.getNumberFormat();

42. }

43. public String getPhonePrefix(){

44 . return PhoneNumber.getSelectedInterPrefix();

45. }

46. public String getProperty(String key){

47. return propertyFile._getProperty(key);

48. }

49. public String getProperty(String key, String defaultValue){
50. return propertyFile.getProperty(key, defaultValue);
51. }

52. }

Note that the InternationalizationWizard has anumber of get methods, which it delegates to its associated
objects. It aso has a method setNation, used to change the nation used by the client.

Although the Facade manages the internationalized settings for a number of objectsin this example, it is still
possible to manage each object individually. Thisis one of the benefits of this pattern—it allows a group of
objects to be managed collectively in some situations, but still provides the freedom to individually manage the
components as well.

Cdlling the setNation method in this class sets the current nation. That makes the wizard alter the Currency
setting, the PhoneNumber, and a set of localized language strings, InternationalizedText.

Example 3.21 Currency.java

import java.text_NumberFormat;

public class Currency{
private char currencySymbol;
private NumberFormat numberFormat;

OB~ WNPE

public void setCurrencySymbol(char newCurrencySymbol){ currencySymbol =
newCurrencySymbol; }

7. public void setNumberFormat(NumberFormat newNumberFormat){ numberFormat =

newNumberFormat; }

8.

9. public char getCurrencySymbol(){ return currencySymbol; }

10. public NumberFormat getNumberFormat(){ return numberFormat; }
11. 3}

Example 3.22 InternationalizedText. java

1. import java.util_Properties;

2. import java.io.File;

3. import java.io.lOException;

4. import java.io.FilelnputStream;

5. public class InternationalizedText{

6. private static final String DEFAULT _FILE NAME = ""';
7. private Properties textProperties = new Properties();
8.

9. public InternationalizedText(){

10. this(DEFAULT_FILE_NAME);

11. ¥

12. public InternationalizedText(String FfileName){

13. loadProperties(fileName);

14. }

15.

16. public void setFileName(String newFileName){

17. if (newFileName = null){

18. loadProperties(newFileName);

19. }

20. }

21. public String getProperty(String key){

22. return getProperty(key, "");

23. }

24. public String getProperty(String key, String defaultValue){
25. return textProperties.getProperty(key, defaultvalue);
26. ¥

27.

28. private void loadProperties(String fileName){

29. try{

30. FilelnputStream input = new FilelnputStream(FfileName);
31. textProperties.load(input);

32.

33. catch (10Exception exc){

123

34. textProperties = new Properties();
35. }

36. }

37. }

Example 3.23 PhoneNumber. java

1. public class PhoneNumber {

2. private static String selectedInterPrefix;

3. private String internationalPrefix;

4. private String areaNumber;

5. private String netNumber;

6.

7. public PhoneNumber(String intPrefix, String areaNumber, String netNumber) {

8. this.internationalPrefix = intPrefix;

9. this.areaNumber = areaNumber;

10. this._netNumber = netNumber;

11. }

12.

13. public String getinternationalPrefix(){ return internationalPrefix; }

14. public String getAreaNumber(){ return areaNumber; }

15. public String getNetNumber(){ return netNumber; }

16. public static String getSelectedlnterPrefix(){ return selectedInterPrefix; }

17.

18. public void setinternationalPrefix(String newPrefix){ internationalPrefix =
newPrefix; }

19. public void setAreaNumber(String newAreaNumber){ areaNumber = newAreaNumber; }

20. public void setNetNumber(String newNetNumber){ netNumber = newNetNumber; }

21. public static void setSelectedInterPrefix(String prefix) { selectedInterPrefix =
prefix; }

22.

23. public String toString(Q){

24. return internationalPrefix + areaNumber + netNumber;

25. }

26. }

Genera country datais stored in a helper class, Nation. The InternationalizationWizard creates acollection
of nations when it isfirst instantiated.

Example 3.24 Nation.java

1. import java.text_NumberFormat;

2. public class Nation {

3. private char symbol;

4. private String name;

5. private String dialingPrefix;

6. private String propertyFileName;

7. private NumberFormat numberFormat;

8.

9. public Nation(String newName, char newSymbol, String newDialingPrefix,
10. String newPropertyFileName, NumberFormat newNumberFormat) {
11. name = newName;

12. symbol = newSymbol;

13. dialingPrefix = newDialingPrefix;

14. propertyFileName = newPropertyFileName;

15. numberFormat = newNumberFormat;

16. }

17.

18. public String getName(){ return name; }

19. public char getSymbol(){ return symbol; }

20. public String getDialingPrefix(){ return dialingPrefix; }

21. public String getPropertyFileName(){ return propertyFileName; }
22. public NumberFormat getNumberFormat(){ return numberFormat; }
23.

24. public String toString(Q{ return name; }

25. }

124

Flyweight

Pattern Properties

Type: Structural

Level: Component

Purpose

To reduce the number of very low-level, detailed objects within a system by sharing objects.
Introduction

Object-oriented programming causes many objects to exist during execution, especialy if there are severad
low-level objects. This places a big load on the Java Virtual Machine's (JVMs) memory.

Many objects in the Personal Information Manager can be edited, so they use the State pattern (see * State ” on
page 104) to determine whether to save theitems content. Each of these items can have its own collection of
State objects.

One way to aleviate the problem of having many objectsis to share objects. Many of these low-level objects only differ slightly, while
most of their state and behavior isidentical. Sharing instances reduces the number dramatically, without losing any functionality.

For a set of objects, the Flyweight pattern separates those parts of the objects that are the same from the parts that are different. The data
that distinguishes the different instances (also called the externalized data) is provided to the single generic instance when needed.

Applicability
Use Flyweight when al of the following are true:
The application uses many identical, or nearly identical, objects.

For each nearly identical object, the non-identical parts can be separated from the identical part allowing that
identical part to be shared.

Groups of nearly identical objects can be replaced by one shared object once the non-identical parts of the state
have been removed.

If the application needs to distinguish among the nearly identical objectsin their original state.
Description

The Flyweight pattern is intended to reduce the number of objects within an application, and does so by sharing
objects. The objects contain some internal data, but all the data concerning the context within which they operate
is supplied by an external source. Each shared object should be as generic as possible and independent of context.

By sharing objects, Flyweight significantly reduces the number of objects. The shared object is used by several
clients and is indistinguishable from an object that is not shared.

An example of a Flyweight is alayout manager. When building a GUI you use several components and
containers. To determine the layout, you use layout managers. In general, each layout manager is nearly identical,;
they differ only in the specific components they manage and some set attributes. If you would remove these
components and attributes, each instance of that specific layout manager typeisidentical. When the layout
manager functionality is required, the components and attributes are passed to the single shared instance. Having
a shared object for each layout manager type and feeding it the specific context reduces the number of objects.

The clients using the shared object are responsible for providing and/or calculating the context information. That
information is passed into the shared object when needed.

The Flyweight is shared, so a client should not create a Flyweight directly, but always obtain one through a
factory (see“ Abstract Factory ” on page 6). Such afactory ensures the proper sharing of the Flyweights.

125

Not all Flyweights have to be shared, nor do the implementing classes need to be shared. This pattern allows object sharing, but does not
requireit.

Use Flyweight only when it's easy to identify and extract the external data from the objects, and when the number of different statesis
limited.

Implementation
The Flyweight class diagram is shown in Figure 3.8.

Figure 3.8. Flyweight class diagram

FiyweightFactony 0. intetface
i 2 Flyweight

+yoi! somelperatiom Obiect externalstals)

+Fhyweight getF wwveightiObject key

)
L
I
I

Client ConcreteFhaweight

+yoid somaOperation(Object exdernalState)

To implement the Flyweight you need:
Flyweight — Theinterface definesthe methods clients can use to pass external state into the flyweight objects.

ConcreteFlyweight — Thisimplementsthe Flyweight interface, and implements the ability to store internal
data. The internal data hasto be representative for all the instances where you need the Flyweight.

FlyweightFactory (see”“ Abstract Factory ” on page 6) — Thisfactory is responsible for creating and managing
the Flyweights. Providing access to Flyweight creation through the factory ensures proper sharing. The factory
can create all the flyweights at the start of the application, or wait until they are needed.

Client (page 183) — Theclient isresponsible for creating and providing the context for the flyweights. The only
way to get areference to aflyweight isthrough FlyweightFactory.

Benefits and Drawbacks

The obvious benefit of this pattern is the reduced number of objectsto handle. This can save alot of space, both
in memory and on storage devices, if the objects are persisted.

The most space will be saved when the context information for the flyweight is computed instead of stored.
However, this also leads to the drawback of this pattern: runtime costs.

Instead of storing many objects, clients now have to calcul ate the context and provide this to the flyweight. The
flyweight then uses this information to compute/provide functions. Handling fewer objects should increase
runtime performance if implemented correctly. Note that if the context information is small, and the flyweight is
large, the savings will be significant.

Pattern Variants

None.

Related Patterns

Related patterns include the following:

Abstract Factory (page 6) — The Abstract Factory pattern is used to provide access to flyweights so that these
factories ensure proper sharing of the Flyweight instances.

Composite (page 157) — The Composite is often used to provide structure.

State (page 104) — The State pattern is often implemented using the Flyweight pattern.

126

Strategy (page 114) — The Strategy pattern is another pattern that can benefit from being implemented as a
Flyweight.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Flyweight " on page 477 of the“ Full Code Examples” appendix.

This example uses the Flyweight pattern to share common State objects within the PIM. The State pattern
example used state objects to edit and store information for a set of Appointments. In this example, the States
will be used to manage edits and save for multiple collections of objects.

The state interface provides standard behavior for al application states. It defines two basic methods, edit and
save.

Example 3.25 state. java
package flyweight.example;

import java.io.File;
import java.io.lOException;
import java.io.Serializable;

public interface State {
public void save(File f, Serializable s) throws I0Exception;
public void edit();

POOO~NOURAWNER

0. }

State is implemented by two classes—CleanState and DirtyState. This example uses these classes to track the
state of multiple objects, so the classes have additional support to track which items need to be refreshed.

Example 3.26 CleanState. java

1. import java.io.File;

2. import java.io.FileOutputStream;

3. import java.io.lOException;

4. import java.io.ObjectOutputStream;

5. import java.io.Serializable;

6.

7. public class CleanState implements State{

8. public void save(File file, Serializable s, int type) throws 10Exception{ }
9.

10. public void edit(int type){

11. StateFactory.setCurrentState(StateFactory.DIRTY);

12. ((DirtyState)StateFactory.DIRTY) . incrementStateValue(type);
13. }

14. 3}

Example 3.27 DirtyState. java

1. package flyweight.example;

2.

3. import java.io.File;

4. import java.io.FileOutputStream;

5. import java.io.lOException;

6. import java.io.ObjectOutputStream;

7. import java.io.Serializable;

8.

9. public class DirtyState implements State {

10. public void save(File file, Serializable s) throws I0Exception {
11. //serialize s to F

12. FileOutputStream fos = new FileOutputStream(Ffile);
13. ObjectOutputStream out = new ObjectOutputStream(fos);
14. out.writeObject(s);

15. }

16.

17. public void edit() {

18. //ignored

19. }

20. }

127

Since these two classes are used to track the overall state of the application, they are managed by a StateFactory
class that creates both objects and provides them on demand.

Example 3.28 stateFactory. java

1. public class StateFactory {

2. public static final State CLEAN = new CleanState();
3. public static final State DIRTY = new DirtyState();
4. private static State currentState = CLEAN;

5.

6. public static State getCurrentState(){

7. return currentState;

8. }

9.

10. public static void setCurrentState(State state){
11. currentState = state;

12. }

13. }

14.

128

Half-Object Plus Protocol (HOPP)

Pattern Properties

Type: Structural

Level: Component

Purpose

To provide asingle entity that livesin two or more address spaces.

Introduction

A distributed Java application spreads objects over different address spaces—multiple Java Virtua Machines. For
some technologies like RM1, remote objects can invoke methods on objects that actually reside on another VM,
allowing you to distribute state and behavior. Regardless of the technology used, objectsin different JVMs need
to communicate with each other in order for a distributed application to function. If they can’'t, what we haveisa
failure to communicate.

Suppose you have machine A and machine B, each with a VM running. An object in VM A needs object B’s
stub (see“ Proxy ” on page 197) to call methods on an object in JVM B. It can get it through several means. Once
A hasthe stub, A can call methods on the stub and those method calls will be forwarded to B.

The downside isthat all method calls on the stub will be forwarded across the network, which isn’'t always
desirable. Sometimes you want the stub to execute some of the invoked methods locally, without going to the
remote object.

Thisis an example of an object that existsin two or more address spaces. The proxy (the local representation of a
remote object) is considered to be part of the remote object. By executing methods locally and in the remote VM,
an object executes behavior in multiple address spaces. Thisis what the HOPP pattern accomplishes for you.
Applicability

Use the HOPP pattern when:

An object has to be in two different address spaces and cannot be split.

Part of the functionality should execute remotely but some methods need to be invoked locally.

Optimizations, such as caching, or the combining of multiple requests into a single network transaction, need to
be applied in away that is transparent to the caller.

Description

Distributed applications are hard to write. One of the problems encountered is that a single entity (object) needs to
be in several address spaces. This might be because the object needs to access multiple physical devices on
different machines or ssimply because the object cannot be split in alogical way.

To split an object in half and have the two halves communicate remotely can be accomplished by executing rmic
with the -keep or -keepgenerated option. This saves the source code of the stub. Next, edit the source so that
certain methods are handled by the stub and not forwarded to the remote object. When you compile the changed
source you have your own customized version of the stub.

Unfortunately, this limits your further use of rmic because each time you use rmic on the remote object, you will
have to do the manual editing again. And again. And again.

The solution isto split the object in half and provide communication between the two halves. Implement each

half so that it can interact with the objectsin its address space. The protocol is responsible for synchronizing the
two halves and sending information back and forth.

129

Thisisthe approach of the HOPP pattern—create an object that implements the required remote interfaces and
which contains areference to the original stub of the remote object. The methods that should behave normally
(send to the remote object) are forwarded to the stub. Methods that should execute locally are handled by the new
class.

The name HOPP comes from the fact that the client to the split object receives one half of the object. That one
half also contains the protocol how to communicate with the other half, hence Half-Object Plus Protocol.

Implementation
The HOPP class diagram is shown in Figure 3.9.

Figure 3.9. HOPP class diagram

interface
HOPP
Client =~
+void remotesthoc)
+void lacaiethod])
£
I L |
LocalHOPP : RemoteObject
+ioid remoteMethod() : +vold remotebeihod()
+yoid localMethodi) | ol localkethodd
|

i
RemoteQbjectProxy |
|
+ypid remotemlethodi) This object exists in a Bl

+yoid localethod different address space

To implement the HOPP pattern, you need:

HOPP — Thisinterface defines the methods that are available to the client of the HOPP. Both halves of the HOPP
object implement this interface.

LocalHOPP — This class implements the HOPP interface. Some of the methods are executed locally; others are
forwarded to the RemoteObjectProxy.

RemoteObjectProxy — ThisclassisaRemote Proxy and forwards all the requests to the other half of the object
in the other address space. This proxy encapsulates the protocol that links the two half objects.

RemoteObject — Thishalf of the HOPP contains all the methods to execute remotely.

Client — Client calls methods on the HOPP interface. These method calls are transparent to the client,
regardless of whether it is using a Remote Proxy (see “ Proxy ” on page 197), aHOPP, or alocal object.

Benefits and Drawbacks

The benefit of this pattern is having one object that resides in two address spaces, without too much overhead. For
the clients using one part of the HOPP, it is transparent. The clients do not care whether the object livesin one or
more address spaces.

It is even possible to hide the difference completely, so that the client thinksit isusing alocal object while parts
of it are not. Y ou can implement the opposite so that a client thinksit is using a Remote Proxy, whileinfactitis
using aHOPP that contains a Remote Proxy. This has the benefit that some of the methods that were intended to
be invoked remotely are now executed locally.

A very powerful advantage is that this pattern allows tail or-made optimizations. Each half of the HOPP can
determine when and how it wishes to communicate with the other half. These communication strategies can
improve performance by decreasing the number of calls across a network without the client code on either end
being affected.

The drawback to this pattern is that some of the functionality needs to be duplicated. Thisis necessary because
each half should have enough functionality to handle local objects.

130

Pattern Variants
Pattern variants include the following:

Both halves keep areference to each other and send messages back and forth. In the classic form only the HOPP
on the client side has a reference to the other half. This carries the consequence that communication can only be
initiated by the client side HOPP by calling a method on the remote half. The remote half is able to respond only
once to each call through the value it returns. When it's necessary that both halves can initiate communication,
they both need areference to the other half.

Smart HOPP (SHOPP). In this implementation, the local part of the HOPP can choose its counterpart from several connection strategies.
Thisis helpful when, for instance, the application is distributed across a flexible network where machines come and go.

Asymmetric HOPP. In this version of the HOPP, pattern both halves don't need to implement exactly the same interface. The remote
part of the HOPP may provide a new proxy for the other half to use. That new proxy can contain new optimizations, or may even be a
proxy to a different remote object.

Related Patterns
Related patterns include the following:

Mediator (page 77) — The objects that need to be mediated are distributed on multiple address spaces. The
Mediator can use the HOPP to simplify communication.

Proxy, specifically Remote Proxy (page 197) — The HOPP pattern uses the Proxy pattern for transparent
communication between the two halves.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or aRunPattern class,
see* Half-Object Plus Protocol (HOPP) " on page 483 of the * Full Code Exambles " appendix.

A Personal Information Manager should be a\/allable _yWhere but its data should only be stored in one place.
This example uses RMI and the HOPP pattern to old a personal calendar on a server, while making its
information available to remote callers. -

The calendar interface defines all methods that will be available remotely. Thisinterface extends
java.rmi.Remote and all its methods throw java.rmi .RemoteException. In thiscase, Calendar definesthree
methods: getHost, getAppointments, and addAppointment.

Example 3.29 calendar. java

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util_Date;
import java.util_ArraylList;
public interface Calendar extends Remote{
public String getHost() throws RemoteException;
public ArrayList getAppointments(Date date) throws RemoteException;
public void addAppointment(Appointment appointment, Date date) throws RemoteException;

©CoO~NOAMA~WNPE

}

Calendar isimplemented by two classes—the RMI remote object and its stub, or proxy. (See* Proxy ” on page
197.) The remote object class, CalendarImpl, provides method implementations, while the stub manages
communication to the remote object. The Java RMI compiler (rmic) needsto be run on the Calendarimpl to
generate a stub and a skeleton class. The skeleton classis provided for backward compatibility, but, as of Java 1.2,
isno longer necessary.

Example 3.30 calendarimpl .java

import java.rmi.Naming;

import java.rmi.server.UnicastRemoteObject;
import java.io.File;

import java.util_Date;

A WOWNPF

131

5 import java.util_ArraylList;

6. import java.util._HashMap;

7. public class Calendarimpl implements Calendar{

8 private static final String REMOTE_SERVICE = "calendarimpl™;

9 private static final String DEFAULT FILE NAME = "calendar.ser";

10. private HashMap appointmentCalendar = new HashMap(Q);

11.

12. public Calendarimpl(Q{

13. this(DEFAULT_FILE_NAME);

14. }

15. public CalendariImpl(String filename){

16. File inputFile = new File(Filename);

17. appointmentCalendar = (HashMap)FilelLoader.loadData(inputFile);
18. if (appointmentCalendar == null){

19. appointmentCalendar = new HashMap(Q);

20.

21. try {

22. UnicastRemoteObject.exportObject(this);

23. Naming.rebind(REMOTE_SERVICE, this);

24 }

25. catch (Exception exc){

26. System.err.printIn(""Error using RMI to register the Calendarimpl " + exc);
27. }

28. }

29.

30. public String getHost(){ return ""'; }

31. public ArrayList getAppointments(Date date){

32. ArrayList returnValue = null;

33. Long appointmentKey = new Long(date.getTime());

34. if (appointmentCalendar.containsKey(appointmentKey)){

35. returnValue = (ArrayList)appointmentCalendar.get(appointmentKey);
36. }

37. return returnValue;

38. }

39.

40. public void addAppointment(Appointment appointment, Date date){
41. Long appointmentKey = new Long(date.getTime());

42. if (appointmentCalendar.containsKey(appointmentKey)){

43. ArrayList appointments = (ArrayList)appointmentCalendar.get(appointmentKey);
44 . appointments.add(appointment);

45. }

46. else {

47. ArrayList appointments = new ArrayList();

48. appointments.add(appointment);

49. appointmentCalendar.put(appointmentKey, appointments);
50.

51. }

52. }

The calendarImpl object must use the RMI support class UnicastRemoteObject S0 that it can handle incoming
communication requests. In this case, the CalendarImpl constructor exportsitself using the static method
UnicastRemoteObject.exportObject.

CalendarImpl aso needs to have some way of publishing itself to the outside world. In RM1, the naming service
iscalled the rmiregistry. It must be running before the CalendarImpl object iscreated. The rmiregistry is
like a telephone book, providing a connection between a name and an object. When the CalendarImpl object
registersitself with the rmiregistry through the rebind method it binds the name “calendarimp” to the stub of
this remote object.

For aclient to use the remote object it hasto do alookup in the rmiregistry of the host machine and receive the
stub to the remote object. Y ou can compare the stub to a telephone number. Y ou can use that number from
anywhere, on any phone, and you get connected to someone answering the number you're calling. In this example,
the CalendarHOPP class acts as the client for the Calendarimpl object.

Example 3.31 calendarHoPP. java

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.util_Date;

import java.util_ArraylList;

public class CalendarHOPP implements Calendar, java.io.Serializable {
private static final String PROTOCOL = "'rmi://";
private static final String REMOTE_SERVICE = "/calendarimpl™;
private static final String HOPP_SERVICE = "calendar";

O~NO U WNPE

132

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24

25.
26.
27.
28.
29.

30.
31.

32.

}

private static final String DEFAULT _HOST = "localhost";
private Calendar calendar;
private String host;

public CalendarHOPPQ{
this(DEFAULT_HOST);

}
public CalendarHOPP(String host){
try {
this_host = host;
String url = PROTOCOL + host + REMOTE_SERVICE;
calendar = (Calendar)Naming. lookup(url);
Naming.rebind(HOPP_SERVICE, this);
}
catch (Exception exc){
System.err.printIn(""Error using RMI to look up the CalendarlImpl or register the
CalendarHOPP " + exc);

}
}

public String getHost(){ return host; }
public ArrayList getAppointments(Date date) throws RemoteException{ return
calendar.getAppointments(date); }

public void addAppointment(Appointment appointment, Date date) throws RemoteException
{ calendar.addAppointment(appointment, date); }

The calendarHOPP provides a key benefit over aconventional RMI client — it can locally run what would
normally be remote methods. This can provide a substantial benefit in terms of communication overhead. The
HOPP implements the same remote interface, but it will not export itself. It keeps areference to the stub and
forwards al the method calls to the stub that it does not (or cannot) handle. Now it can implement the methods
that it wants to execute locally—in this example, the getHost method. The HOPP can be registered with the
rmiregistry likeanormal stub, but it now has the ability to execute methods locally.

133

Proxy

Also known as Surrogate

Pattern Properties

Type: Structural

Level: Component

Purpose

To provide arepresentative of another object, for reasons such as access, speed, or security.
Introduction

Y our career istaking off and your socidl lifeis humming, so your Persona Information Manager has to manage
many appointments and dates. Y our address book contains all the addresses of all the people you've ever
socialized with or had professiona contact with, including information on their families, hobbies, and other
potentially valuable data. The number of contacts started out small but is now in the thousands.

However, you often pull out your PIM just to change a meeting time, make a note to buy beer, or something
equally smple. Being presented with the whole address book object every time you use the PIM would be
unnecessary and annoying. Just opening the book is a very expensive operation, unnecessarily delaying activities
that don’t require its use.

Asauser, you don't care about any of that—you just want the address book to be available when you need to use
it. (Ideally, the address book should be there even before you know you need to use it.) And when you useit, you
don’'t always need all of it. For example, you just want to know how many contacts you have in your address
book, or you want to add a new contact to your addressbook, without seeing and being able to edit the whole
thing. You just need a small part of the address book.

The solution is a placeholder object that provides the an interface to the address book, or a part of it. The
placeholder looks like the address book, but doesn’t involve the overhead of running it. However, when you do
need the whole address book to perform atask like updating a colleague’ s address, the placeholder object creates
the real address book, to perform address book tasks assigned to it. That placeholder object is a Proxy.

Applicability
Use the Proxy pattern when you need a more el aborate reference to an object instead of just aregular one:
Remote proxy — When you need alocal representative for an object in another address space (JVM).

Virtual proxy — Acts as a placeholder and delays creating expensive objects. (Thisisthe version described in the
Introduction section.)

Protection proxy — Determines access rights to the real object.
Description

A proxy (or stub) is a representative for another object. To enable the proxy to represent the real object, the proxy
has to implement the exact same interface as the real object. Furthermore, the proxy keeps areference to the real
object. The proxy needs the reference to the real object so that it can call methods on the real object if necessary.
The clients will be interacting with the proxy, but the proxy can delegate the execution to the real object. The
proxy implements the same interface as the real object, but can perform tasks that the real object does not, such as
remote communication or security.

The proxy isasort of stand-in for the real object. Y ou can compare the Proxy pattern to the system of filming
dangerous stunts for movies. The proxy isthe body double for the real object, the movie star. During the
dangerous stunts the proxy jumps out of the plane instead of the real object. Because the proxy implements the
same interface asthe real object, audiences cannot tell the difference, and think that real object jumped. But when
the camera switches to close-up (when the real object is needed for a full complement of movie star tasks), the
proxy calls the real object to perform the acting work.

134

Several rules govern the different kinds of proxies.

Remote— The remote proxy isresponsible for al the network hassle. It has to marshall (pack) and unmarshall
(unpack) al the arguments sent and received.

Virtua — Thereal object isvery expensive to create, so postpone the creation as long as possible, or perform the
creation apiece at atime, rather than all at once. If the proxy keeps alot of information for the real subject, you
don’'t need to instantiate the real object for access to these variables.

Protection — Y ou can use the protection proxy to control who accesses which method, and to give permission on
amethod based on the individual caller.

Implementation
The Proxy class diagram is shown in Figure 3.10.

Figure 3.10. Proxy class diagram

interface
Service

_______ L

| L
SenviceProxy Servicelmpl

For Proxy, implement the following:
Service — Theinterface that both the proxy and the real object will implement.

ServiceProxy — ServiceProxy implementsService and forwards method callsto the real object
(Servicelmpl) when appropriate.

Servicelmpl — Thereal, full implementation of the interface. This object will be represented by the Proxy
object.

Benefits and Drawbacks

The consequences of this pattern vary considerably depending on the specific type of proxy.

Remote proxy — The remote proxy benefit is that you can hide the network from the client. The client will think
it hasalocal object that performs the work. In fact it has alocal object that sends a request over the network to
get the work done. Don't forget that a potential downside to thisis that because you don’t realize you' re invoking
network behavior, you might not be prepared for the time penalties that result.

Virtual proxy — The great benefit of this proxy is that you have a placeholder to interact with and you don’t have
to create the real product until you really need it. Furthermore, it can perform some optimization as to when and
how to create the real object.

Protection proxy — This proxy’s benefit isthat it will allow access control to be determined.

Pattern Variants

One variant of this pattern is when the proxy does not know the real object other than by itsinterface. It allows
for greater flexibility, but thisworks only if the proxy is not responsible for creating and/or destroying the real
object.

Related Patterns

Related patterns include the following:

135

Adapter (page 142) — An Adapter provides afront interface to a specific object, as does the Proxy pattern.
However, the Proxy provides the same interface as the object, and the Adapter provides a different interface.

HOPP (page 189) — The HOPP pattern can use the Proxy pattern for the communication between the two
distributed halves of the HOPP.

Business Delegate [CJ2EEP] — The Business Delegate pattern can be used as a Proxy. The Business Delegate
can be alocal representative of the Businesstier.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Proxy ” on page 492 of the “ Full Code Examples” appendixX.

An address book grows tremendously over a period of time, sinceit stores all professional and social contacts. In
addition, users don't need the address book every time they use the PIM. They do need some kind of address book
placeholder to act as a starting point for them to use for graphical purposes, however. This example uses the
Proxy pattern to represent the address book.

AddressBook defines the interface for accessing the PIM address book. At the very least, it needsto have the
ability to add new contacts and to retrieve and store addresses.

Example 3.32 AddressBook. java

1. import java.io.lOException;

2. import java.util_ArraylList;

3. public interface AddressBook {

4. public void add(Address address);

5. public ArrayList getAllAddresses();

6. public Address getAddress(String description);
7.

8. public void open();

9. public void save();

10. }

Retrieving the data for the address book might be very time-consuming, given the incredible popularity of the
users. Therefore, the proxy should delay creation of the real address book for as long as possible. The proxy,
represented by AddressBookProxy, has the responsibility for creating the address book— but only when
absolutely necessary.

Example 3.33 AddressBookProxy . java

1. import java.io.File;

2. import java.io.lOException;

3. import java.util_ArraylList;

4. import java.util.lterator;

5. public class AddressBookProxy implements AddressBook{
6. private File file;

7. private AddressBooklmpl addressBook;

8. private ArrayList localAddresses = new ArrayList();
9.

10. public AddressBookProxy(String filename){

11. file = new File(filename);

12. }

13.

14. public void open(){

15. addressBook = new AddressBooklImpl(file);

16. Iterator addresslterator = localAddresses.iterator();
17. while (addresslterator.hasNext()){

18. addressBook.add((Address)addresslterator.next());
19. }

20. }

21.

22. public void save(){

23. if (addressBook != null){

24. addressBook.save();

25. } else if (MlocalAddresses. iseEmpty()){

26. open();

136

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

}

addressBook.save();

}
}

public ArrayList getAllAddresses(){
if (addressBook == null) {

openQ);

return addressBook.getAllAddresses();
}

public Address getAddress(String description){
if (MlocalAddresses.isEmpty()){

Iterator addresslterator = localAddresses.iterator();

while (addresslterator.hasNext()){
AddresslImpl address = (Addresslimpl)addresslterator.next();
if (address.getDescription().equalslgnoreCase(description)){

return address;

}

}

}
if (addressBook == null){
open();

return addressBook.getAddress(description);

}

public void add(Address address){
if (addressBook != null){
addressBook.add(address);
} else if (MlocalAddresses.contains(address)){
localAddresses.add(address);
}

}

Note that the AddressBookProxy hasits own ArrayList for addresses. If the user adds an address by calling the
add method, the proxy can use its internal address book without using the real address book.

The AddressBookImpl class represents the real address book for a user. It is associated with afile that stores an
ArrayList with all the user's addresses. AddressBookProxy would create an AddressBookImpl object only
when it is needed—when a user called the method getAl 1Addresses, for example.

Example 3.34 AddressBooklImpl . java
import java.io.File;

import java.io.lOException;
import java.util_ArraylList;
import java.util.lterator;

©CoO~NOOOAMAWNPE

public class AddressBooklImpl implements AddressBook {

private File file;
private ArraylList addresses = new ArrayList();

public AddressBooklImpl(File newFile) {
file = newFile;
open();

public ArrayList getAllAddresses(){ return addresses; }

public Address getAddress(String description){

Iterator addresslterator = addresses.iterator();

while (addresslterator._hasNext()){
Addresslimpl address = (AddressImpl)addresslterator_next();
if (address.getDescription().equalslgnoreCase(description)){

return address;

}

}

return null;

}

public void add(Address address) {
if (laddresses.contains(address)){
addresses.add(address) ;
}

}

137

32.
33.
34.
35.
36.
37.
38.
39.
40.

}

public void open(){

}

addresses = (ArrayList)FilelLoader.loadData(file);

public void save(Q{

}

FileLoader.storeData(file, addresses);

138

Chapter 4. System Patterns

Introduction to System Patterns

System patterns are the most diverse of the four pattern types. They embrace your application at its most abstract,
architectural level. System patterns can apply to maor processes within an application, or even between
applications.

System patterns include the following:

Model-View-Controller (MVC) — To divide acomponent or subsystem into three logical parts—model, view,
and controller—making it easier to modify or customize each part.

Session— To provide away for serversin distributed systems to distinguish among clients, allowing applications
to associate state with the client-server communication.

Worker Thread — To improve throughput and minimize average latency.

Callback — To alow aclient to register with a server for extended operations. This enables the server to notify
the client when the operation has been compl eted.

Successive Update— To provide away for clientsto receive updates from a server on an ongoing basis. The
updates generally reflect a change in server data, a new or updated resource, or a change in the state of the
business model.

Router — To decouple multiple sources of information from the targets of that information.

Transaction— To group a collection of methods so that they either all succeed or they al fail collectively.

139

Model-View-Controller (MVC)
Pattern Properties

Type: Behavioral

Level: Component / Architecture
Purpose

To divide a component or subsystem into three logical parts—model, view, and controller—making it easier to
modify or customize each part.

Introduction

Assume that you want to represent a contact in the Personal Information Manager, such as a professional
acquaintance (or even an unprofessional acquaintance; you could make the PIM very versatile). You create a
single class to represent contact information such as name, organization, position, and so on. Next, you need be
able to represent the contact visually so you add code for that to the class; perhaps as a series of datafieldsin a
panel. Finally, you add a series of methods so that any change in the GUI would trigger calls to update the
business information.

There are afew problems with this solution:

Although you could say that all these parts represent the contact and should be together, using a single class tends
to make the code more complex and harder to maintain.

The code is not easily extensible. What happens if you want different visual representations for the contact? Y ou
can't do this effectively with asingle class.

To manage complexity and plan for change, a better approach isto break out the three functional partsinto
separate classes. One class represents the business information, one the visual representation, and one the control
mapping between the GUI and the business information.

In this way, the three parts of the Contact business entity are associated together and work as awhole. Later, to
modify the Contact, you potentially limit changes to a single class. For instance, to update the Contact view for a
Web browser, you only need to create an “HTML Contact” view.

This pattern, called Model-View-Controller (or simply MV C), is very useful when you want to create
components that are both flexible and maintainable.

It isnormally used for cases where change and reuse is expected in the component, since dividing a complex
component into three classes or subsystems requires some design effort.

Applicability
MV C is useful when there is a component or subsystem that has some of the following characteristics:

It is possible to view the component or subsystem in different ways. The internal representation for the system
may be completely different from the representation on a screen.

There are different possible types of behavior, meaning that multiple sources are allowed to invoke behavior on
the same component but the behavior may be different.

Behavior or representation that changes as the component is used.

Y ou often want the ability to adapt or reuse such a component under avariety of circumstances with a minimum
amount of recoding.

Description

A problem that has always faced object-oriented developersis how to code suitably generic components. The
problem is especially challenging when a component is complex or flexible in its use.

140

Consider atable. The concept of atable could be applied many ways depending on the needs of an application.
Y ou can approach atable as away to store dataas alogical structure consisting of cells, rows and columns.
However, there are many ways to manage what is stored and how to represent that storage.

For storage decisions, atable might only allow some forms of data (decimal numbers) or it might permit special
operations (such as summing). It might behave like a database table, where rows represent records (groups of data
elements representing a single entity) and columns represent fields (a data type with consistent identity and
storage among al records). Alternatively, atable might have no restrictions on data storage and no special
significance attached to its rows and columns.

A table could also be presented in a number of ways in an application. It could be visually displayed as a grid,
graph, or chart. Or it might have no graphical presence at all. It could even use the same underlying storage to
supply information to more than one form of display, such as a grid that updates a chart when a user entered
values.

When there are so many possible ways to use a control like atable, you' re presented with adilemma. Clearly it
would be nice to be able to have some form of reuse, so you would not have to code every new table from scratch.
At the same time, it’s hard to imagine just how to code a single component like this to be reusable. An
implementation that was too generic would require a great deal of work to modify each time it was used,
eliminating many of the benefits of reuse.

MV C offers an elegant aternative. It defines acomplex element in terms of three logical subunits:

Model — The element’s state, and means for changing the state

View — The representation of the element (visua or non-visual)

Controller — The element’ s control functionality, mapping actions on the view to their impact on the model
Many businesses today are based on the MV C pattern. Corporate management provides the model, establishing
the company purpose and setting up rules that govern how the business grows and functions. The sales and
marketing departments provide the view, representing the company and its products to the outside world. Finally,

product development and manufacturing represent the controller‘?takl ng information from the view and
tranglating it to actions that have impact onthemodel. 2

By breaking the element down in this way, eachpar‘ fé treated independently of the others—or, at least,
almost independently. For the element to beha\/e,as awhole, each part must properly interface with the other two.
The view must be able to send messages to the controller and get information from the model in order to meet its
responsibilities. However, MV C offers a substantial benefit: it is possible to easily change parts of the component,
making a system using MV C extremely versatile. A table implemented this way can be converted from agridto a
graph representation by changing the view.

The table example focused on a component, but you can apply the MV C pattern at the architectural level aswell.
In an MV C component the model handles the component's state, the view represents the component's Ul, and the
controller performs the component's event handling (or action mapping) functions. At the architectural level, you
can trand ate these features to a subsystem: the model actually represents the business model, the view is the
presentation of the model (the face of the data), and the controller defines business actions or operations.

MV C is a pattern that encourages good encapsulation. The principles of good object-oriented programming
recommend that you define elementsin terms of their interface (how they interact with the outside world, other
objects, components or systems) and implementation (how they maintain state and function internally). MVC
supportsthis, since it explicitly breaks an element’ s responsibilities into:

Model — The implementation (state: attributes and internal behavior)

View — The outbound/outgoing interface (behavior: defines the services that can be used to represent the model)
Controller — The inbound/incoming interface (behavior: accepts request for updates on the model)

Implementation

The MV C component diagram is shown in Figure 4.1.

141

Figure 4.1. MVC component diagram

in the Model,

Data from the Model
is used in the View,

data fram the Model,

|

|

| |The Contraller maps

| |View aclions o change sll]
|

|

|

I

|

|

|
|
|
|
|
[The Wiew can regues
|
|
|
|

Interaction with the View
trigaers calls to the Canlroller,

A component diagram has been used to describe this pattern. Each of the three parts of the MV C patternisa
component, that can contain many classes and interfaces.

Implementing the MV C pattern requires the following components:

Model — Thiscomponent contains one or more classes and interfaces that are responsible for maintaining the
data model. The state of the model is kept in attributes and the implementation of methods. To be able to notify
view components of any change in the model, the model keeps a reference to each registered view (there can be
more than one at the same time). When a change occurs, every view component that has registered should be
notified.

View — The classes and interfaces of the view provide a representation of the datain the model component. The
view may consist of visual GUI components, but is not required to. A view must be registered with the model to
be notified of changes to the model data. When a notification of such a changeis received, the view component is
responsible for determining if and how to represent this change.

The view component also keeps areference to the model to retrieve data from the model, but it can only retrieve
information, not change it. The view can also be used to render the controller, but requests for change are always
forwarded to a controller component; so the view needs to keep areference to one or more controllers.

Controller — Thiscomponent manages changes to the model. It keeps areference to the model component who
isresponsible for carrying out the change, whereas the controller calls one or more update methods. The requests
for change may come from aview component.

Benefits and Drawbacks

MV C provides an excellent way to make an element that is flexible and adaptable to a variety of new situations.
The flexibility can be used both statically and dynamically. New view or controller classes can be added to the
application (static), and view or controller objects can be changed in the application at runtime.

Usualy, the greatest challenge for MV C isto determine the true base representation; to define a suitable set of
interfaces among model, view, and controller. An MV C element is often developed to satisfy a specific set of
needs, like most software, so vision and careful analysis are required in order to implement the element so that
you don’t impose application-specific restrictions on it.

Pattern Variants

MYV C variants often revolve around different implementation choices for the view.

Model push versus view pull — You can implement MV C in one of two ways the model can send updatesto its
view (or views), or aview can retrieve information as needed from the model. The choice affects how the
relationship isimplemented in the system.

Multiple view targets— A model can provide information to more than one view. Thisis particularly useful for
some GUI implementations, since the same data must sometimes drive multiple representations.

142

“Look but don’t touch” views— Not all views require a controller. Some provide only avisual representation of
model data, but don’t support any changes to the model from that view.

Related Patterns
Related patterns include the following:

Observer (page 94) — The MV C pattern often uses the Observabl e pattern to manage communication. Thisis
usually done for the following parts of the system:

Between the view and controller, so that a change in the view triggers a response in the controller
Between the model and view, so the view is notified of achange in the model.

Strategy (page 114) — The controller is often implemented with the Strategy pattern to ssmplify changing
controllers.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Model-View-Controller (MVC) ” on page 501 of the “ Full Code Examples” appendixX.

This code example provides a component-level MV C pattern to manage a contact in the Personal Information
Manager. The ContactModel class provides the model for this demonstration, in this case storing the contact's
first name, last name, title and organization.

Example 4.1 contactModel . java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class ContactModel{

4. private String FirstName;

5. private String lastName;

6. private String title;

7. private String organization;

8. private ArraylList contactViews = new ArrayList();

9.

10. public ContactModel O{

11. this(null);

12.

13. public ContactModel (ContactView view){

14. firstName = "'";

15. lastName = ""*";

16. title = ""';

17. organization = """;

18. if (view = nul){

19. contactViews.add(view);

20. }

21. }

22.

23. public void addContactView(ContactView view){

24. if (IcontactViews.contains(view)){

25. contactViews.add(view);

26. }

27. }

28.

29. public void removeContactView(ContactView view){

30. contactViews.remove(view);

31. }

32.

33. public String getFirstName(){ return firstName; }

34. public String getLastName(){ return lastName; }

35. public String getTitle(Q{ return title; }

36. public String getOrganization(){ return organization; }
37.

38. public void setFirstName(String newFirstName){ firstName = newFirstName; }
39. public void setLastName(String newlLastName){ lastName = newLastName; }
40. public void setTitle(String newTitle){ title = newTitle; }

143

41. public void setOrganization(String newOrganization){ organization = newOrganization; }
42.

43. public void updateModel (String newFirstName, String newlLastName,

44 . String newTitle, String newOrganization){

45. if (NisEmptyString(newFirstName)){

46. setFirstName(newFirstName);

47 . }

48. if (TisEmptyString(newLastName)){

49. setLastName(hewLastName);

50. }

51. if (NisEmptyString(newTitle)){

52. setTitle(newTitle);

53. }

54. if (MisEmptyString(newOrganization)){

55. setOrganization(newOrganization);

56. }

57. updateView();

58. }

59.

60. private boolean isEmptyString(String input){

61. return ((input == null) || input.equals('"));

62. }

63.

64. private void updateView(){

65. Iterator notifyViews = contactViews.iterator();

66. while (notifyViews.hasNext()){

67. ((ContactView)notifyViews.next()).refreshContactView(FfirstName, lastName, title,
organization);

68. }

69. }

70. }

The ContactModel maintains an ArrayList of ContactView objects, updating them whenever the model data
changes. The standard behavior for all views is defined by the Contactview interface method
refreshContactView.

Example 4.2 contactView. java

1. public interface ContactView{

2. public void refreshContactView(String firstName,

3. String lastName, String title, String organization);
4. }

Two views are used in this example. The first, ContactDisplayView, displays the updated model information but
does not support a controller, an example of “view-only” behavior.

Example 4.3 contactDisplayView.java

1. import javax.swing.JPanel;

2. import javax.swing.JScrollPane;

3. import javax.swing.JTextArea;

4. import java.awt.BorderLayout;

5. public class ContactDisplayView extends JPanel implements ContactView{
6. private JTextArea display;

7.

8. public ContactDisplayView(){

9. createGui();

10. ¥

11.

12. public void createGui(){

13. setLayout(new BorderLayout());

14. display = new JTextArea(10, 40);

15. display.setEditable(false);

16. JScrollPane scrollDisplay = new JScrollPane(display);
17. this.add(scrollDisplay, BorderLayout.CENTER);

18. }

19.

20. public void refreshContactView(String newFirstName,

21. String newLastName, String newTitle, String newOrganization){
22. display.setText(""UPDATED CONTACT:\nNEW VALUES:\n" +
23. "\tName: " + newFirstName + " " + newlLastName +
24. "\n" + "\tTitle: " + newTitle + "\n" +

25. "\tOrganization: " + newOrganization);

26. }

27. }

144

The second view is ContactEditView, which allows a user to update the contact defined by the model.

Example 4.4 contactEditView. java

1. import javax.swing.BoxLayout;

2. import javax.swing.JButton;

3. import javax.swing.JlLabel;

4. import javax.swing.JTextField;

5. import javax.swing.JPanel;

6. import java.awt.GridlLayout;

7. import java.awt.BorderlLayout;

8. import java.awt.event._ActionListener;

9. import java.awt.event.ActionEvent;

10. public class ContactEditView extends JPanel implements ContactView{
11. private static final String UPDATE_BUTTON = "Update';

12. private static final String EXIT_BUTTON = "Exit";

13. private static final String CONTACT_FIRST _NAME = "First Name ";
14. private static final String CONTACT _LAST NAME = ''Last Name "';
15. private static final String CONTACT TITLE = "Title "';

16. private static final String CONTACT_ORG = "Organization ";
17. private static final int FNAME_COL_WIDTH = 25;

18. private static final int LNAME _COL_WIDTH = 40;

19. private static final int TITLE COL_WIDTH = 25;

20. private static final int ORG_COL _WIDTH = 40;

21. private ContactEditController controller;

22. private JLabel firstNamelLabel, lastNameLabel, titleLabel, organizationLabel;
23. private JTextField firstName, lastName, title, organization;
24. private JButton update, exit;

25.

26. public ContactEditView(ContactModel model){

27. controller = new ContactEditController(model, this);
28. createGui();

29. }

30. public ContactEditView(ContactModel model, ContactEditController newController){
31. controller = newController;

32. createGui();

33. }

34.

35. public void createGui(){

36. update = new JButton(UPDATE_BUTTON);

37. exit = new JButton(EXIT_BUTTON);

38.

39. firstNameLabel = new JLabel (CONTACT_FIRST_NAME);

40. lastNameLabel = new JLabel (CONTACT_LAST_NAME);

41. titleLabel = new JLabel (CONTACT_TITLE);

42. organizationLabel = new JLabel (CONTACT_ORG);

43.

44 . firstName = new JTextField(FNAME_COL_WIDTH);

45. lastName = new JTextField(LNAME_COL_WIDTH);

46. title = new JTextField(TITLE_COL_WIDTH);

47. organization = new JTextField(ORG_COL_WIDTH);

48.

49. JPanel editPanel = new JPanel();

50. editPanel .setLayout(new BoxLayout(editPanel, BoxLayout.X AX1S));
51.

52. JPanel labelPanel = new JPanel();

53. labelPanel .setLayout(new GridLayout(0, 1));

54.

55. labelPanel .add(FfirstNameLabel);

56. labelPanel .add(lastNameLabel) ;

57. labelPanel _add(titleLabel);

58. labelPanel .add(organizationLabel);

59.

60. editPanel .add(labelPanel);

61.

62. JPanel fieldPanel = new JPanel();

63. fieldPanel .setLayout(new GridLayout(0, 1));

64.

65. fieldPanel .add(FirstName);

66. fieldPanel .add(lastName);

67. fieldPanel _add(title);

68. fieldPanel .add(organization);

69.

70. editPanel .add(FieldPanel);

71.

72. JPanel controlPanel = new JPanel();

73. controlPanel .add(update);

74. controlPanel .add(exit);

145

75. update.addActionListener(controller);

76. exit.addActionListener(new ExitHandler());

77 .

78. setLayout(new BorderLayout());

79. add(editPanel, BorderLayout.CENTER);

80. add(controlPanel, BorderLayout.SOUTH);

81. }

82.

83. public Object getUpdateRef(){ return update; }

84. public String getFirstName(){ return firstName.getText(); }
85. public String getLastName(){ return lastName.getText(); }
86. public String getTitle(Q{ return title.getText(); }

87. public String getOrganization(){ return organization.getText(); }
88.

89. public void refreshContactView(String newFirstName,

90. String newLastName, String newTitle,

91. String newOrganization){

92. firstName.setText(newFirstName);

93. lastName.setText(newLastName) ;

94. title.setText(newTitle);

95. organization.setText(newOrganization);

96. }

97.

98. private class ExitHandler implements ActionListener{

99. public void actionPerformed(ActionEvent event){

100. System.exit(0);

101. }

102. }

103. }

The updates to the model are possible due to the controller associated with the ContactEditView. Inthisexample,
Java event-handling features (and by extension the Observer pattern) manage communication between the
ContactEditView and its associated Controller. ContactEditController updatesthe ContactModel when
the update behavior istriggered by the ContactEditView, calling the method updateModel with new data
provided by the editable fields of its associated view.

Example 4.5 contactEditController.java

1. import java.awt.event.*;

2.

3. public class ContactEditController implements ActionListener{
4. private ContactModel model;

5. private ContactEditView view;

6.

7. public ContactEditController(ContactModel m, ContactEditView v){
8. model = m;

9. view = v;

10. }

11.

12. public void actionPerformed(ActionEvent evt){
13. Object source = evt.getSource();

14. if (source == view.getUpdateRef()){

15. updateModel () ;

16. ¥

17. ¥

18.

19. private void updateModel (){

20. String firstName = null;

21. String lastName = null;

22. if (isAlphabetic(view.getFirstName())){

23. firstName = view.getFirstName();

24. }

25. if (isAlphabetic(view.getLastName())){

26. lastName = view.getlLastName();

27.

28. model _updateModel (firstName, lastName,

29. view.getTitle(), view.getOrganization());
30. }

31.

32. private boolean isAlphabetic(String input){

33. char [] testChars = {"1°, "2, *3", "4%, *5°, "6", "7", "8", "9", "0"};
34. for (int i = 0; 1 < testChars.length; i++){
35. if (input.indexOf(testChars[i]) !'= -1){
36. return false;

37. }

38. }

39. return true;

146

40.
41.

}

}

147

Session

Pattern Properties
Type: Processing
Level: Architectura
Purpose

To provide away for serversin distributed systems to distinguish among clients, allowing applications to
associate state with the client-server communication.

Introduction

In anetworked Personal Information Manager, it’ s likely that you want to centralize some of the information, like
acompany’s customers.

Clients would need to routinely update contact information on the server, and the updates might occur over
several stages. Users might modify information about the contact's position and company, then modify contact
addresses. Since there can be any number of address updates, and users can potentially be entering the
information in real time, you decide to alow the client to submit the changes over multiple interactions with the
server.

This brings up a problem—how do you track a user’ s changes that relate to a specific contact, when these changes
take place in stages? Multiple clients will be making updates at the same time, and the server will need to know
which updates come from which clients. Otherwise, one client might update the wrong customer record.

The most efficient approach isto associate atemporary identity with each user, so that the server can keep better
track of workflow. When a user beginsto edit information on the server, the server starts asession, issuing it a
session ID. Each time the user performs an edit, such as adding or removing an address, the user’ s application
sends the session’s ID to the server. When the contact information has been updated, the application the user is
using sends a finalize message to the server to indicate that the client is done updating that contact information.
The server then ends the session.

This solution, also known as the Session pattern, provides a number of benefits to the server. It provides the server with away to
differentiate among clients, and to keep track of a particular client's progress in workflow. Finally, it allows the server to store
information that isin flux, instead of storing the information on the client. With a session, the server can cache the user’sinformation in
memory until the user has completed the edits.

Applicability

The Session pattern is appropriate for client-server or peer-to-peer systems with the following requirement:
Client identity — Y ou need some way to distinguish among callers in amultiuser system.

Additionally, Session is normally used for systems with one or both of the following characteristics:

Operation continuity — Y ou want to be able to associate specified operations with each other in the system.
Operations might follow a transactional or aworkflow model.

Data persistence— Y ou need to associate data with the client over the time that the client interacts with the
server.

Description
Information about the Session pattern is divided into the following sections.
Stateful and Stateless Communication

Communication between distributed systems can be stateful or stateless.

148

An example of stateful communication is sockets. Requests from the client to the server can be made sequential
and the server is aware of the previous calls.

Statel ess communication is when the server does not take into account what has happened before. The server does
not distinguish one call from the other and each call is self-contained—all information needed is provided by the
call. Thismodel is usualy straightforward to implement, and can greatly simplify both client and server code.

The Internet is an example of this stateless model. In the Web, Hypertext Transfer Protocol (HTTP) is a stateless
communication mechanism between a Web browser and a server. With a core set of simple operations, it is
well-suited for its original purpose: the transfer of documents across the Web.

Applications Often Require Stateful Communication

Applications sometimes have more complex communication needs, and statel ess communication isn’'t appropriate.
In particular, business applications often require support for some or all of the following:

Workflow — A connected sequence of business operations
Transactions— An associated set of operations that succeed or fail asa unit
Application data— Information associated with client-server interaction

Consider a classic e-commerce application. While a customer shops for products, the system must store data that
represent the contents of the shopping cart. Online shopping also uses workflow to define the series of actions
required to check out, pay for items, and ship an order. Such applications clearly need a way to represent the
ongoing interaction between client and server over the duration of the shopping trip.

Session Pattern and Stateful Communication

The Session pattern is useful for these more-complex applications. The Session allows you to establish the
identity of multiple clients, and might also provide one or more objects to represent the conversational state
between a client and a server. It provides continuity between aclient and server over an extended period of time,
potentially spanning many requests over the application lifetime.

The Session pattern is quite useful when you want to support workflow between multiple client-server
interactions—associating multiple actions as awhole. Without the concept of a session, a server has no way to
effectively keep track of which operations belong to which client.

In Web applications, you can frequently see sessions being introduced for just this purpose. Under normal
circumstances, the Web operates with a stateless model. If you want to support e-commerce, however, you need a
way to manage a session. As users shop in a Web site, they can potentially add (and remove) many items from
their shopping cart before they purchase items. If you don’t use a session to track their activities and to store the
items that they might purchase, your e-commerce Web site is reduced to a simple online purchase form.

Real-World Stateful Communication

Any situation in the real world with the concept of identity and transactional state provides an example of a
Session. A delicatessen, for instance, uses face recognition to establish client (customer) identity and enable the
use of its services. This enables the server (deli worker) to distinguish among the requests of different customers,
and manage multiple requests. Perhaps customer 42 takes along time to make up his mind, asking first for a
pound of anchovies and pastrami, then cancelling the pastrami and switching to corned beef, and adding a ham on
rye to the order.

Even though the customer may make many requests, the server knows that the final order belongs to the same
customer, and no other customer will end up with 42’ s pastrami. The only danger in this system is the possibility
that other deli customers may lose patience with customer 42. Of course, that might motivate the owner to hire
more help and make the delicatessen multithreaded.

Implementation

The Session has two fundamental requirements:

149

Session identification — A server must be able to maintain the client’ sidentity over the lifetime of the
application.

Session representation — Depending on the needs of the application, one or more session objects might be used
to represent state.

Benefits and Drawbacks

The central benefits of the Session pattern are evident from its characteristics: identifying service requesters and
maintaining state-based resources. Secondary advantages might exist, as well, depending on the model chosen for
implementing the pattern. For instance, if client identity is established as a result of alogin, the Session can
manage accountability and prioritization when accessing server-side resources. If Session information is stored in
adatabase, the server can maintain information about a client’s state over a series of business transactions.

A drawback of the Session isits increased workload on the server, and the increased complexity required of
server software. Beyond its normal requirements, a Session-based server must have some way to establish client
identity, store and retrieve associated information, and validate client identity on a number of occasions during
the application.

Pattern Variants

The principal variations of the Session center around the key issues of identity and state.

Managing session identity — Y ou can use three approaches:

Security-based identification — A login provides asession ID for the client.

Implicit identification — A long-term connection between client and server automatically validates identity.

Arbitrary identification — The server assigns aunique session ID to each client. The ID isarbitrary and is used
only to track a client during a single use of the server.

Managing session state— In Sessions where state is required, you can maintain information in the following
ways, on the client or the server:

Object-based storage, client side— The client takes responsibility for data storage and sends what is required to
the server. This reduces overall application security; datais present on a client, potentially aless secure machine.
However, it is easy to associate the data with a client, since the client stores the information and sendsiit to the
server. Another benefit of this approach isthat it reduces the load on the server, requiring a client application to
store its own data.

How thisisimplemented varies depending on your technology; in HTTP, this approach is implemented using
cookies.

Object-based storage, server sside— The server stores any datafor its clients, and uses what is required during
client requests. The server maintains all the application data, so thereis aheavier load on the server. However,
overall system security tends to be higher since datais maintained on the server. System efficiency is usually
higher as well, since there is no redundant transfer of data. The challenge that you might face with server-side
storage lies in establishing client identity, since the client and its data are decoupled in the application.

In HTTP and Java, this approach means using HttpSession.

Related Patterns

None.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Session” on page 507 of the “ Full Code Examples” appendixX.

150

A Session component diagram for a client-matching session is shown in Figure 4.2.

Figure 4.2. Session component for a client-matching session

% client

]

Session

Server

A second Session component diagram, this time for server-maintained sessions, is shown in Figure 4.3.

Figure 4.3. Session component for server-maintained sessions

% Servet

Client I

-———— = SessionTracker

A Session tracker diagram is shown in Figure 4.4. |

n.*
Session

-long id

In this example, the client requester uses the server to perform a series of operations for updating contact

information in a shared address book. A user can perform four operations:
Add a contact

Add an address (associated with the current contact)

Remove an address (associated with the current contact)

Save the contact and address changes

These operations are defined in the class SessionClient.

Example 4.6 sessionClient.java

1. import java.net_MalformedURLException;
2. import java.rmi.Naming;

151

3. import java.rmi.NotBoundException;

4. import java.rmi.RemoteException;

5. public class SessionClient{

6. private static final String SESSION_SERVER_SERVICE_NAME = "sessionServer';
7. private static final String SESSION_SERVER_MACHINE_NAME = "localhost";
8. private long sessionliD;

9. private SessionServer sessionServer;

10.

11. public SessionClient(){

12. try{

13. String url = "//" + SESSION_SERVER_MACHINE_NAME + "'/' + SESSION_SERVER_SERVICE_NAME;
14. sessionServer = (SessionServer)Naming. lookup(url);

15. }

16. catch (RemoteException exc){}

17. catch (NotBoundException exc){}

18. catch (MalformedURLException exc){}

19. catch (ClassCastException exc){}

20. }

21.

22. public void addContact(Contact contact) throws SessionException{
23. try{

24. sessionlD = sessionServer.addContact(contact, 0);

25. }

26. catch (RemoteException exc){}

27. }

28.

29. public void addAddress(Address address) throws SessionException{
30. try{

31. sessionServer.addAddress(address, sessionliD);

32.

33. catch (RemoteException exc){}

34. }

35.

36. public void removeAddress(Address address) throws SessionException{
37. try{

38. sessionServer.removeAddress(address, sessionlD);

39.

40. catch (RemoteException exc){}

41. }

42.

43. public void commitChanges() throws SessionException{

44 . try{

45. sessionlD = sessionServer._finalizeContact(sessionlD);

46.

47. catch (RemoteException exc){}

48. }

49. %}

Each client method calls a corresponding method on the remote server. SessionServer defines the four methods
available to the clients through RMI.

Example 4.7 SessionServer.java

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. public interface SessionServer extends Remote{

4. public long addContact(Contact contact, long sessionlD) throws RemoteException,
SessionException;

5. public long addAddress(Address address, long sessionlD) throws RemoteException,
SessionException;

6. public long removeAddress(Address address, long sessionlD) throws RemoteException,
SessionException;

7. public long finalizeContact(long sessionlD) throws RemoteException, SessionException;

8. }

SessionServerImpl implements the SessionServer interface, providing an RMI server. It delegates business
behavior to the class SessionServerDelegate.

Example 4.8 sessionServerimpl.java

1. import java.rmi.Naming;

2. import java.rmi.server.UnicastRemoteObject;

3. public class SessionServerlImpl implements SessionServer{

4. private static final String SESSION_SERVER_SERVICE_NAME = "sessionServer';
5. public SessionServerimpl(){

6. try {

7. UnicastRemoteObject.exportObject(this);

152

8. Naming.rebind(SESSION_SERVER_SERVICE_NAME, this);

9.

10. catch (Exception exc){

11. System.err._printIn(""Error using RMlI to register the SessionServerlimpl ™ + exc);

12. }

13. }

14.

15. public long addContact(Contact contact, long sessionlD) throws SessionException{

16. return SessionServerDelegate.addContact(contact, sessionlD);

17. }

18.

19. public long addAddress(Address address, long sessionlD) throws SessionException{

20. return SessionServerDelegate.addAddress(address, sessionlD);

21. }

22.

23. public long removeAddress(Address address, long sessionlD) throws SessionException{

24. return SessionServerDelegate.removeAddress(address, sessionlD);

25. }

26.

27. public long finalizeContact(long sessionlD) throws SessionException{

28. return SessionServerDelegate.finalizeContact(sessionliD);

29. }

30. }

Example 4.9 sessionServerDelegate. java

1. import java.util_ArraylList;

2. import java.util_HashMap;

3. public class SessionServerDelegate{

4. private static final long NO_SESSION ID = O;

5. private static long nextSessionlD = 1;

6. private static ArrayList contacts = new ArrayList();

7. private static ArraylList addresses = new ArrayList();

8. private static HashMap editContacts = new HashMap(Q);

9.

10. public static long addContact(Contact contact, long sessionlD) throws SessionException{

11. if (sessionlD <= NO_SESSION_ID){

12. sessionlD = getSessionID();

13. }

14. if (contacts.indexOf(contact) 1= -1){

15. if (JeditContacts.containsValue(contact)){

16. editContacts.put(new Long(sessionlD), contact);

17. }

18. else{

19. throw new SessionException("'This contact is currently being edited by another
user.",

20. SessionException.CONTACT_BEING_EDITED);

21. }

22. }

23. else{

24. contacts.add(contact);

25. editContacts._put(new Long(sessionlD), contact);

26. }

27. return sessionlD;

28. }

29.

30. public static long addAddress(Address address, long sessionlD) throws SessionException{

31. if (sessionlD <= NO_SESSION_ID){

32. throw new SessionException("'A valid session ID is required to add an address',

33. SessionException.SESSION_ID _REQUIRED);

34. }

35. Contact contact = (Contact)editContacts.get(new Long(sessionlD));

36. if (contact == null){

37. throw new SessionException("'You must select a contact before adding an address",

38. SessionException.CONTACT_SELECT REQUIRED);

39. }

40. if (addresses.indexOf(address) == -1){

41. addresses.add(address) ;

42. }

43. contact.addAddress(address);

44 . return sessionlD;

45. }

46.

47. public static long removeAddress(Address address, long sessionlD) throws SessionException{

48. if (sessionlD <= NO_SESSION_ID){

49. throw new SessionException("'A valid session ID is required to remove an address',

50. SessionException.SESSION_ID_REQUIRED);

51. }

153

52. Contact contact = (Contact)editContacts.get(new Long(sessionlD));
53. if (contact == null){

54. throw new SessionException("'You must select a contact before removing an address',

55. SessionException.CONTACT_SELECT_REQUIRED);

56. }

57. if (addresses. indexOf(address) == -1){

58. throw new SessionkException(*'There is no record of this address",

59. SessionException.ADDRESS DOES NOT_EXIST);

60. }

61. contact.removeAddress(address);

62. return sessionlD;

63. }

64.

65. public static long finalizeContact(long sessionlD) throws SessionException{

66. if (sessionlD <= NO_SESSION_ID){

67. throw new SessionkException("*A valid session ID is required to finalize a contact",

68. SessionException.SESSION_ID_REQUIRED);

69. }

70. Contact contact = (Contact)editContacts.get(new Long(sessionlD));

71. if (contact == null){

72. throw new SessionException(’'You must select and edit a contact before committing
changes",

73. SessionException.CONTACT_SELECT_REQUIRED);

74. }

75. editContacts.remove(new Long(sessionlD));

76. return NO_SESSION_ID;

77 . }

78.

79. private static long getSessionID(){

80. return nextSessionlD++;

81. }

82.

83. public static ArrayList getContacts(){ return contacts; }

84. public static ArrayList getAddresses(){ return addresses; }

85. public static ArrayList getEditContacts(){ return new ArrayList(editContacts.values()); }

86. }

SessionServerDelegate generates asession ID for clients when they perform their first operation, adding a
Contact. Subsequent operations on the Contact*s addresses require the session ID, since the ID is used to
associate the addresses with a specific Contact within the SessionServerDelegate.

154

Worker Thread

Also known as Background Thread, Thread Pool

Pattern Properties

Type: Processing

Level: Architectural

Purpose

To improve throughput and minimize average latency.

Introduction

When you introduce threading to an application, your main goal is to use threads to eliminate bottlenecks.
However, it requires skill to implement correctly. One way to maximize efficiency in a multithreaded application
isto take advantage of the fact that not all threaded tasks have the same priority. For some of the tasks that need
to be performed, timing is crucial. For others, they just need to be executed; exactly when isn’t important.

To save yourself some long nights, you can separate these tasks from the rest of your application and use the
Worker Thread pattern. The worker thread picks up atask from a queue and executes it; when it’ sfinished, it just
picks up the next task from the queue.

Threading is easier with Worker Thread because when you want something done, but not specifically now, you
put it in the queue. And your code will become easier to read because all the thread object issues are in the worker
thread and the queue.

Applicability

Use Worker Thread when:

Y ou want to improve throughput

Y ou want to introduce concurrency

Description

One approach to implementing threads is as follows: when you start a new task, create a new Thread object and
start it. The thread performs its designated task, then dies. That’s simple enough. However, creating the thread
instance is very expensive in terms of performance, it takes alot of time, and you only get one task out of it. A
more efficient approach isto create alonger-lived “worker thread” that performs many tasks for you, one after the
other.

That's the essence of the Worker Thread pattern. The worker thread executes many unrelated tasks, one after the
other. Instead of creating a new thread whenever you have a new task, you give the task to the existing worker

thread, which handles the task for you.

The Worker Thread might still be handling the first task when you' re ready to hand it the next task. Solutions
include the following:

Y our application waits until the Worker Thread becomes available again, but that killsalot of the benefit you
gain from multithreading.

Y our application creates a new instance of the worker thread each time the other worker thread is unavailable, but
then you're back at square one—creating a new thread each time you have a new task.

The solution to this problem of the temporarily unavailable thread is to store the tasks until the worker thread is
available again. The new task is stored in a queue and when the worker thread has finished with atask, it checks
the queue and takes the next task. The task doesn’t get performed any sooner, but at least your application isn’'t
standing around waiting to hand off the task. If there are no tasks, it waits for the next task to arrive. Putting atask
on the queue is less expensive than creating a new thread.

155

Implementation
A Worker Thread class diagram is shown in Figure 4.5

Figure 4.5. Worker Thread class diagram

interface
Quele WorkerThread

Client

+yold puliRunnakble 1
+Runnable take)
L i)
Task |
|

ConcreteQueue

+oid putiRunnable r)
+Runnahle take

For the Worker Thread pattern, implement the following:
Client — Theclientisresponsible for creating the Task instances and putting the Tasks on the Queue.

Task — TheTask isthe class that contains the work that needs to be executed. It implements the
java. lang.Runnable interface.

Queue — The Queue interface defines the methods by which the Client is able to hand off the Tasks and the
WorkerThread to retrieve the Tasks.

ConcreteQueue — The ConcreteQueue classimplements the Queue interface and is responsible for storing and
retrieving the Tasks. It determines the order in which Tasks are provided to the WorkerThread.

WorkerThread — TheWorkerThread takes Tasks from the Queue and executes them. If there are no Tasks on
the Queue it waits. Because the Queue and the WorkerThread are tightly coupled, often the WorkerThread class
isan inner class of the ConcreteQueue class.

Benefits and Drawbacks
The workerThread influences performance in several ways.

The client no longer needs to create thread objects in order to run several tasks. It only needsto put the task on the
gueue, which in performance is less expensive than creating a thread object.

A Thread that is not running is taking up performance because the scheduler still schedules the thread to be run, if
the thread isin arunnable state. Creating and starting athread per task means that the scheduler has to schedule
each of these threads individually, which takes more time than when the scheduler has to schedule only one
worker thread. More threads means more scheduling. A task that is sitting in the queue and isn't running takes up
no time whatsoever.

The drawback of this design can occur when tasks are dependent on each other. Because the queue can be
sequential, the system can get into a deadlock. That's disastrous from a threading and from a performance point of
view.

There are a couple of possible solutions for this dilemma:

Make sure that there are as many worker threads as there are tasks that need to be run concurrently. That means
that you need to implement an expandable thread pool. The thread pool is discussed in the “ Pattern Variants ”
section.

Only allow tasks on the queue that do not depend on other tasks. Sometimes such behavior cannot be guaranteed.

In that case, the client cannot put the task on the queue, but has to instantiate its own thread or start another queue
with worker threads.

156

Create a smart queue that understands how the tasks work together and knows when to give which task to a
worker thread. This should be considered alast resort as this smart queue will be tightly bound to the application
and may become a maintenance nightmare.

Pattern Variants

Thread pool isavariant in which there is not just one instance of the worker thread, but several instancesin a
pool. (Hence the name thread pool.) This pool manages the WorkerThread class instances. The pool creates the
worker threads, determines when they are not needed for a while, and might ultimately destroy some worker
thread instances.

The pool decides how many workersto create at startup and what the maximum will be. The pool can either
choose to create some threads when it starts, so that it always has some threads available, or it can wait until the
first request is made (lazy instantiation).

When there are too many tasks for the current number of threads, however, the system (like adrain) gets clogged.
Several solutions exist:

Increase the number of workers— Thisworks for alimited time only; as this fixes the symptom, not the problem.
Generally, you should choose a better solution.

Don’'t limit the number of tasksin the queue— Just let the queue grow until the system runs out of memory. This
solution is better than increasing the number of workers, but still will fail due to a shortage of resources.

Limit the size of the queue— When the backlog gets too big, clients no longer make callsto add tasks to the
gueue. The queue can then focus on processing the backlog of tasks.

Ask clientsto stop sending tasks— Clients can then choose to send either no requests, or fewer requests.
Drop requests that are stored in the queue — If the pool can be certain that the client will retry, it's safe to drop
new requests. Dropping old requests is the right choice when it's likely that the clients posting the request have

gone away.

Let the client run thetask itself — The client becomes single-threaded while running the task, and can’t create
new tasks until the first task is completed.

Related Patterns
None.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Worker Thread ” on page 517 of the “ Full Code Examples” appendix.

In atypical application, certain jobs have to be done. It's not always important that they happen now, just that
they do happen. Y ou can compare this to cleaning a house. It's not important that it happen at a particular time, as
long as somebody does it sometime this week—or month, or year, depending on your standards.

This example uses aQueue to hold tasks. The Queue interface defines two basic methods, put and take. These
methods are used to add and remove tasks, represented by the RunnableTask interface, on the Queue.

Example 4.10 Queue.java

1. public interface Queue{
void put(RunnableTask r);
RunnableTask take();

A WN

}

Example 4.11 RunnableTask. java
1. public interface RunnableTask{

157

2. public void execute();

3. }

The ConcreteQueue classimplements the Queue and provides aworker thread to operate on the RunnableTask
objects. The inner class defined for ConcreteQueue, Worker, has a run method that continually searches the
gueue for new tasks to perform. When atask becomes available, the worker thread pops the RunnableTask off
the queue and runsits execute method.

Example 4.12 concreteQueue. java

1. import java.util_Vector;

2. public class ConcreteQueue implements Queue{
3. private Vector tasks = new Vector();

4. private boolean waiting;

5. private boolean shutdown;

6.

7. public void setShutdown(boolean isShutdown){ shutdown = isShutdown; }
8.

9. public ConcreteQueue(){

10. tasks = new Vector();

11. waiting = false;

12. new Thread(new Worker()).start();

13. ¥

14.

15. public void put(RunnableTask r){

16. tasks.add(r);

17. if (waiting){

18. synchronized (this){

19. notifyAll1();

20. }

21. }

22. ¥

23.

24. public RunnableTask take(){

25. if (tasks.isEmpty()){

26. synchronized (this){

27. waiting = true;

28. try{

29. wait(Q);

30. } catch (InterruptedException ie){
31. waiting = false;

32. ¥

33. }

34. }

35. return (RunnableTask)tasks.remove(0);
36. }

37.

38. private class Worker implements Runnable{
39. public void run(Q){

40. while (!shutdown){

41. RunnableTask r = take();

42. r.execute();

43. }

44. }

45. }

46. }

Two classes, AddressRetriever and ContactRetriever, implement the RunnableTask interfacein this
example. The classes are very similar; both use RMI to request that a business object be retrieved from a server.
Astheir names suggest, each class retrieves a specific kind of business object, making Address and Contact
objects from the server available to clients.

Example 4.13 AddressRetriever. java

import java.rmi.Naming;

import java.rmi.RemoteException;

public class AddressRetriever implements RunnableTask{
private Address address;
private long addressiD;
private String url;

public AddressRetriever(long newAddresslID, String newUrl){
addressID = newAddressliD;

10. url = newUrl;

11. }

O©CoO~NOOOITAWNPE

158

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24

public void execute(){
try{
ServerDataStore dataStore = (ServerDataStore)Naming.lookup(url);
address = dataStore.retrieveAddress(addressiD);
¥
catch (Exception exc){
}
}

public Address getAddress(){ return address; }

public boolean isAddressAvailable(){ return (address == null) ? false :

}

Example 4.14 contractRetriever.java

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24

import java.rmi.Naming;

import java.rmi.RemoteException;

public class ContactRetriever implements RunnableTask{
private Contact contact;
private long contactliD;
private String url;

public ContactRetriever(long newContactlD, String newUrl){
contactlD = newContactliD;
url = newUrl;

}
public void execute(){
try{
ServerDataStore dataStore = (ServerDataStore)Naming.lookup(url);
contact = dataStore.retrieveContact(contactiD);
catch (Exception exc){
}
}
public Contact getContact(){ return contact; }
public boolean isContactAvailable(){ return (contact == null) ? false :

}

159

true; }

true; }

Callback

Pattern Properties

Type: Processing (Behavioral)
Level: Architectural
Purpose

To allow aclient to register with a server for extended operations. This enables the server to notify the client
when the operation has been compl eted.

Introduction

A networked Personal Information Manager will periodically make expensive requests of a server. For example,
the time required to retrieve an entire project stored on a server is very unpredictable—the project might have
thousands of tasks and deliverables.

A networked Personal Information Manager will periodically make expensive requests of a server. If aclient
wants to retrieve an entire project— potentially hundreds or thousands of individual tasks with corresponding
budgets, timelines, and so on—it might take a lot of timeto retrieve that information. At best, the timeto retrieve
the project would be unpredictable.

In this situation, it would be limiting for the server to keep an open network connection. Although one open
connection might actually improve the server’s efficiency, having an open connection for each client severely
limits the number of client requestsit can process concurrently.

Rather than requiring that the client and server remain connected, it would be better to enable the server to contact
the client when it finishes the client's request. The Callback pattern uses this approach.

The client sends arequest for a project to the server, providing its callback information along with the request.
The client then disconnects from the server and allows the server to spend time on retrieving the project.

When the server completes the task, it contacts the client and sends the requested project information.

The benefits include conserving bandwidth and allowing the server to more effectively use its processing time.
This solution also gives the server freedom to perform tasks like request queuing and using task priority, to more
effectively manage its workload and available resources.

Applicability

Use the Callback pattern for a client-server system with time-consuming client operations, and when one or both
of the following are true:

Y ou want to conserve server resources for active communication.

The client can and should continue work until the information becomes available. This can be accomplished with
simple threading in the client.

Description

For some distributed systems, a server must perform longer-term processing to satisfy client requests. In these
systems, synchronous communication is probably not the best option. If the server maintains contact with the
client during processing, it uses resources that could be better applied to other tasks, such as communicating with
another client. Imagine a system where a user wanted to perform a complex query on amoderately large database
table; for instance, atable of customer information with more than 10,000 records. In a synchronous client-server
system, the client process has to wait, possibly for along time, for the server to finish. The server performs the
guery and handles any necessary tasks to organize, format, and package the data, until it finally returns the data to
the client.

160

The alternative isto create a system that allows a client to register for server notification. When the server has
completed the requested operation, it actively notifies the client. In the meantime, both the client and server are
freeto use their resources for more productive purposes than maintaining this specific communication link.

The Callback pattern provides this capability, allowing for asynchronous client-server communication. The
process consists of three simple steps:

Client registration — The client makes a request, providing contact information to the server.

For instance, the client contacts the server and makes a request. Normally, the client requests information, such as
all the salesfigures for the 2001 fiscal year, or action, like entering the user in the Frito-lay trip to Elbonia
sweepstakes. Since the client doesn't expect an immediate response, it provides contact information to the server.

Server processing— The server processes the client’ s request and formats aresponse if required. During this time,
the client can be involved in other tasks, and the server can handle communication requests for other clients.

Server callback — When the server has completed the client's request, it sends a notification message to the client.
The notification generally takes one of two forms:

The information requested by the client. This approach is generally used when the client definitely needs all the
data or when the datais relatively low-bandwidth to send.

A message informing the client that the data or parts of the datais available. Thisis generaly done for larger
amounts of information, so that the client may retrieve parts of the data, either as the parts become available or if
not all the datais needed by the client and the client just requests the data it needs.

For an example of the Callback pattern, consider a father and his three sons on a shopping trip. Number 1 son
wants a new Robot Laser Geek action figure; Number 2 son wants a laptop, and Number 3 son wants the latest
Soft Core Java book. However:

These things can take a long time to find, especially since they’re not sold in the same stores.
||

The sons have 5-minute attention spans and get cranky if they have to go shopping fo‘rfﬁa long time.

The father can only shop for one or two things at atime; if he has to do more, his performance plummets.

lay-games or fight amongst themselves, or do whatever else they want. The

Luckily, the father can drop his sons at the mall’s arcz \
ropsit off, sets off to find another item, and so on.

father then goes shopping for one of the items, buy ;;_i't,‘

Y ou can use Callback in anumber of applications.

Agent software, now popular on the Web, can use Callback to notify a client when the request is complete. For instance, consider ajob
search agent on Monster.com. A user can enter search criteriafor a desired job; for example, they might be
looking for jobs; one requiring a good nose for a good lager, for example. Subsequently, the server notifies the
user when atasting position at the local microbrewery becomes available.

Applications requiring costly database operations, such as data mining, frequently use Callback to increase the number of clients that
they can service effectively.

Y ou can use the Callback pattern for applications that have a detailed server-side workflow. For example, a server involved
in order processing often performs a variety of operations once a client has submitted an order. The server often
checks inventory, validates payment and shipping information, and coordinates with other information systems,
such as warehouse, manufacturing, invoicing, and shipping. The Callback pattern allows the server to notify the

client about the status of the order after these steps have been performed. Since these operations can take hours or days,
most customers prefer a Callback solution as well.

Implementation
The Callback component diagram is shown in Figure 4.6.

Figure 4.6. Callback component diagram

161

% _]C.Iiem % Server

sender || request | .| | _______
receiver 1
_I‘w’
WiorketThraad
recelver response
b - — — — — 1 L — I |

sander

The Callback sequence diagram is shown in Figure 4.7.

Figure 4.7. Callback sequence diagram

i Client Sener

User

I

I
L reguest
{: _________

FI

1
response
|
|
|
|
|

| —

Callback imposes some basi ¢ requirements on both client and server:

Client — The client must provide a callback interface for the server, so the server can contact the client when its
request is done.

Server — Beyond the traditional calling interface for the client, the server needs some way to notify clients when
processing is complete. In addition, the server must be able to process and possibly store client requests.

Benefits and Drawbacks

The Callback pattern’s major advantage is itsimprovement of a system’s operating efficiency, especially server
performance. Y ou can see most of the improvement in two areas:

Server-side processing — The server does not have to maintain communication threads to service waiting clients,
so it can channel those resources into processing client requests or servicing other callers. Furthermore the
processing can be performed when the server sees fit. It doesn’t have to process the request immediately.

Server communication — The server does not have to maintain an open connection while the client waits for its
results. This means that a server can support a greater number of callers with its limited communication resources,
such as sockets.

Thisisamajor motivation for some to choose the Callback pattern for their systems. In cases where server load is
large or unpredictable (such as on the Web), this capability offers substantial advantages to designers. In the most
extreme cases, it can mean the difference between running a group of serversin parallel and using asingle
machine to service client requests.

162

Another benefit is that the client does not have to wait for the full processing by the server and it can continue
with other tasks. The client can go about its business while it’s waiting for the server response. When results are
available, they can be displayed immediately.

Depending on the implementation of the pattern, Callback can queue client requests, allowing the server to
organize and prioritize its workload. It also potentially allows the server to notify clients of changes beyond the
typical lifetime of aclient. Web agents are a good example of this, since they allow aclient to enter aquery in
one Web session, and be notified of the results in another.

One challenge of the Callback isthat it requires aclient to listen for the callback from the server. This often
makes client code more complex, and increases the load on client systems. An additional drawback stems from
the fact that Callback decouples the request from the client. This often makesiit difficult to cancel or modify a
regquest once it has been sent to the server.

Pattern Variants

Variations of the Callback pattern generally center on server processing strategies and approaches to client
notification. Two major approaches are common in server-side processing:

Direct processing — With this approach, the server creates aworker thread to fulfill each client’srequest. Thisis
straightforward to implement, but is sometimes difficult to scale to large numbers of service requesters.

Request queue— The server maintains a queue of client requests and a pool of worker threads. The worker
threads (see” Worker Thread ” on page 231) are assigned to perform client processing on an ongoing basis.

A few options are available for client notification, depending on the application requirements:

Active callback — A client uses server-like processto listen for incoming communications. This allows the client
to directly receive server notification.

Client polling— Also known as client pull , thisrequires a client to periodically check on the status of its request.
When the request or parts of the request are complete, the client will request that information from the server.

Explicit acknowledgment — A server may retransmit a message until it receives client confirmation. This is sometimes used for
cases where the server processing can take longer than the client application’ s lifetime. Although thisis not
relevant in TCP since the socket won't open unless the client is there to do its part, it is meaningful when using
unreliable communication technologies like UDP.

Related Patterns

Related patterns include Worker Thread (page 231). The Worker Thread pattern is used to help schedule client
requests. The requests are put in a queue and the worker threads process them.

Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see*” Callback " on page 525 of the " Full Code Examples” appendix.

In the Personal Information Manager, one of the items that can vary most in sizeis aproject. A project might
consist of only afew tasks, or it could be made up of hundreds or even thousands of individual work steps. This
example demonstrates how the Callback pattern could be used to retrieve a project object stored on a server
machine.

The interface Cal IbackServer defines a single server-side method, getProject. Note that the method requires
callback information—the client machine name and the name of the RMI client object—in addition to the project
ID. The class CallbackServerlmpl implements this interface.

Example 4.15 callbackServer. java

1. import java.rmi.Remote;
2. import java.rmi.RemoteException;

163

3. public interface CallbackServer extends Remote{

4. public void getProject(String projectlD, String callbackMachine,

5. String callbackObjectName) throws RemoteException;

6. }

Example 4.16 callbackServerimpl.java

1. import java.rmi.Naming;

2. import java.rmi.server.UnicastRemoteObject;

3. public class CallbackServerimpl implements CallbackServer{

4. private static final String CALLBACK SERVER SERVICE_NAME = "callbackServer";

5. public CallbackServerImpl(Q{

6. try {

7. UnicastRemoteObject.exportObject(this);

8. Naming.rebind(CALLBACK_SERVER_SERVICE_NAME, this);

9.

10. catch (Exception exc){

11. System.err._printIn("Error using RMI to register the CallbackServerImpl " + exc);

12. }

13. }

14.

15. public void getProject(String projectlD, String callbackMachine,

16. String callbackObjectName){

17. new CallbackServerWorkThread(projectlD, callbackMachine, callbackObject-
Name) ;

18. }

19.

20. }

In the getProject method, Cal IbackServerImpl delegates the task of retrieving the project to a worker object,
Cal lbackServerDelegate. This object runs on its own thread and does the work of retrieving a project and
sending it to aclient.

Example 4.17 callbackServerDelegate.java

1. import java.net.MalformedURLException;

2. import java.rmi.Naming;

3. import java.rmi.NotBoundException;

4. import java.rmi.RemoteException;

5. public class CallbackServerDelegate implements Runnable{
6. private Thread processingThread;

7. private String projectlD;

8. private String callbackMachine;

9. private String callbackObjectName;

10.

11. public CallbackServerDelegate(String newProjectlD, String newCallbackMachine,
12. String newCallbackObjectName){

13. projectlD = newProjectlD;

14. callbackMachine = newCallbackMachine;

15. callbackObjectName = newCallbackObjectName;

16. processingThread = new Thread(this);

17. processingThread.start();

18. }

19.

20. public void run(Q{

21. Project result = getProject();

22. sendProjectToClient(result);

23. }

24 .

25. private Project getProject(){

26. return new Project(projectlD, "Test project');
27. }

28.

29. private void sendProjectToClient(Project project){
30. try{

31. String url = "//" + callbackMachine + "/ + callbackObjectName;
32. Object remoteClient = Naming.lookup(url);
33. if (remoteClient instanceof CallbackClient){
34. ((CallbackClient)remoteClient) .receiveProject(project);
35.

36. }

37. catch (RemoteException exc){}

38. catch (NotBoundException exc){}

39. catch (MalformedURLException exc){}

40. }

41. %}

164

In the Cal IbackServerDelegate run method, the object retrieves a project by calling the getProject method,
then sends it to a client with the sendProjectToClient method. The latter method represents the callback to the
client; the cal IbackServerDelegate makes acall to an RMI object of type Cal IbackClient on the client
machine. The interface Cal IbackClient also defines asingle RMI method, receiveProject.

Example 4.18 callbackClient. java

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. public interface CallbackClient extends Remote{

4. public void receiveProject(Project project) throws RemoteException;
5.}

The implementer of Cal IbackClient, CallbackClientImpl, isboth aclient and a server. Its method
requestProject |0oks up the Cal IbackServer and calls the remote method getProject. The class aso defines
the remote method receiveProject, which is called by the server work thread when the project is ready for the
client. cal lbackClientlImpl hasaboolean variable, projectAvailable, to alow aclient program to determine
when the project isready for display.

Example 4.19 callbackClientImpl.java

1. import java.net.lnetAddress;

2. import java.net.MalformedURLException;

3. import java.net.UnknownHostException;

4. import java.rmi.Naming;

5. import java.rmi.server._UnicastRemoteObject;

6. import java.rmi.NotBoundException;

7. import java.rmi.RemoteException;

8. public class CallbackClientImpl implements CallbackClient{

9. private static final String CALLBACK _CLIENT_SERVICE_NAME = "callbackClient";

10. private static final String CALLBACK_SERVER_SERVICE_NAME = "callbackServer";

11. private static final String CALLBACK_ SERVER_MACHINE_NAME = "localhost";

12.

13. private Project requestedProject;

14. private boolean projectAvailable;

15.

16. public CallbackClientimpl(Q{

17. try {

18. UnicastRemoteObject.exportObject(this);

19. Naming.rebind(CALLBACK_CLIENT_SERVICE_NAME, this);

20.

21. catch (Exception exc){

22. System.err.printIn("Error using RMI to register the CallbackClientlmpl " + exc);

23. ¥

24. }

25.

26. public void receiveProject(Project project){

27. requestedProject = project;

28. projectAvailable = true;

29. }

30.

31. public void requestProject(String projectName){

32. try{

33. String url = "//" + CALLBACK_SERVER_MACHINE_NAME + "/* +
CALLBACK_SERVER_SERVICE_NAME;

34. Object remoteServer = Naming.lookup(url);

35. if (remoteServer instanceof CallbackServer){

36. ((CallbackServer)remoteServer) .getProject(projectName,

37. InetAddress.getLocalHost() .getHostName(),

38. CALLBACK_CLIENT_SERVICE_NAME) ;

39. }

40. projectAvailable = false;

41. ¥

42. catch (RemoteException exc){}

43. catch (NotBoundException exc){}

44 . catch (MalformedURLException exc){}

45. catch (UnknownHostException exc){}

46. ¥

47.

48. public Project getProject(){ return requestedProject; }

49. public boolean isProjectAvailable(){ return projectAvailable; }

50. }

The basic sequence of action is as follows. When a client requires a project, the Cal IbackClientImpl object
calls the method getProject on the Cal IbackServerImpl object. The Cal IbackServerlimpl creates a

165

Cal lbackServerWorkThread object to retrieve the project. When the Cal IbackServerWorkThread completesits
task, it callsthe client method receiveProject, sending the Project instance to the requester, the
CallbackClientimpl object.

166

Successive Update

Also known as Client Pull / Server Push
Pattern Properties

Type: Processing (Behavioral)

Level: Architectura

Purpose

To provide away for clients to receive updates from a server on an ongoing basis. The updates generally reflect a
change in server data, a new or updated resource, or a change in the state of the business model.

Introduction
Suppose you wanted to use the Personal Information Manager as away to coordinate work between multiple
users. For example, you could enable multiple users to share information about the part of the project that they

were currently working on. If you subdivided a project into Task and Del iverable objects, you might want to
allow interested users (such as the project manager) to get updates on the progress of one or more Tasks.

If you create aserver, it is straightforward to centralize the project information—you would simply store the
Project, Task and Deliverable objects on the server. But how should you manage the task of keeping the
clients up to date?

Y ou can follow two strategies, each of which isaform of the Successive Update pattern. Make the client
responsible for regularly querying the server, requesting updates on a Task; or alternatively, make the server
responsible for sending Task updates out to clients.

In both cases, you expand the role of server and enable a groupware-style solution. Y ou can send periodic updates
to clients and ensure that they are coordinated in the work that they do.

Applicability

Use Successive Update for client-server systems when:

Server-side resources or data are in flux, changing due to interactions with multiple clients or external updates.

Y ou want aclient to receive updates without forcing the user to do a manual refresh.

Description

Successive Update is used for applications that require an ongoing refresh of the client’s state. Whileit is possible
to manually update the data, it is tedious and frustrating for an end user who must frequently refresh
information— imagine having to manually send a request to your server every minute that you used an
application. Although such a system might givesits users strong, muscular fingers, overall it would probably not
be popular in conventional IT businesses.

To provide an acceptable alternative, Successive Update automates what users would otherwise have to do
manually. The client and server establish an automatic update strategy, €liminating the need for the user to
become directly involved. Y ou can implement Successive Update using a variety of approaches, but it is
frequently associated with two techniques at two ends of a spectrum— client pull and server push.

Client Pull

Client pull schedules a periodic refresh of information that is managed on the client side. The server performsits
normal task, providing information when requested by its clients. Client pull is essentially aregular series of
requests for server information.

A Successive Update sequence diagram for client pull is shown in Figure 4.8.

Figure 4.8. Successive Update sequence diagram (client pull)

167

Client Senver

request

Client requests an updatEI_\I :
I
I

at reqular intervals.

request

I
|
|
| request

e~

Client pull is best suited to situations where some or al of the following are true:

The amount of information to transfer is small

Application dataisin constant flux

Information update does not have to be instantaneous

Examples of client pull are common on the Web. Stock tickers, sports tickers, and news tickers (pretty much
anything with aticker) are often managed using client pull. Applications that allow users to examine resources
that are updated over time, such as browsing a remote directory structure, offer another possible use for client
pull.

Anyone who has gone on an automobile trip with children has seen a direct example of client pull technology.
The clients (ages 3-12) periodically poll the servers for status updates. Client queries usually take the form of
“Are wethere yet?” or “Can we stop? | want adrink.” Requests generally occur with a polling rate between 30
seconds and a minute.

Server Push

Solutions using server push require the server process to send change notificationsto al interested clients. This
permits timely notification when changes have occurred in system data.

A Successive Update sequence diagram for server push is shown in Figure 4.9.

Figure 4.9. Successive Update sequence diagram (server push)

168

Client Senver Client Client

| operation

—
o
k=
i
“
i
=

register

L

K

operation

4:1

Server push is most appropriate for cases where:
Real-time (or near real-time) updates are required by the client
Data changes on an infrequent, unpredictable basis

Server push is frequently used on the Web for interactive applications such as gaming or chat rooms. Business
applications sometimes use it to provide updates for collaborative resources, such as documents that are managed
by groupware.

Mailing lists offer an excellent example of server push. After requesting to be put on acompany’s mailing list, the
client (customer) receives a series of messages from the server (company) notifying her or him about a variety of
products that are (or presumably will be) for sale. The client can then respond to these notifications by buying a
year’ s subscription to Horse and Hound magazine, or frantically trying to find the Web site that | ets you get off
mailing lists.

Implementation

Successive Update has different client and server requirements based on the strategy followed. For client pull
solutions, the client must have some way to establish a polling interval for the server. Frequently, thisis managed
by athread in the client to periodically query the server and provide the client with results. The server has no
special requirements in thisimplementation. Server push requires the server to keep track of the interested clients
in some way. The server must send a notification each time events occur on the server that warrant a client
update.

Benefits and Drawbacks

The benefits and drawbacks of the Successive Update pattern vary depending on whether the implementation uses
aclient pull or server push solution.

Depending on the rate at which the data changes, either strategy may put less load on the server. If the rate of
changeis high, client pull putslessload on the server; if the changes are less frequent, server push puts alower
demand on the server. Server push provides the most responsive update of information and might be a more
efficient communication overall.

Disadvantages for client pull include the lack of timely updates of information and the risk of redundant data
transfer. The client always asks for an update even when nothing has changed on the server, so the same data will
be resent. Both drawbacks stem from the fact that a client cannot truly determine when there has been a change
on the server. For server push, drawbacks may include increased server workload, or possible irrelevant traffic for

169

clients. A server usually sends information about all its changesto clients, and the client has to be able to be
contacted by the server, which might not be an easy task because of the client application or afirewall.

Pattern Variants

The most common variation in implementing a Successive Update strategy involves choosing an update approach
that is a combination of both client pull and server push. Depending on an application’ s requirements, an
application can rely on client pull for routine events, but use server push for time-critical notifications.
Applications that mix the two update strategies typically define time-critical notifications:

Notifications that could potentially cause an application error, such as deleting a customer record.

Normal events, such as those that cannot result in an error or loss of data, like creating a new customer.

For server push, the server module can transmit its notifications to explicitly defined clients, provided that the list
of clientsisrelatively short and the information is not large. As the number of supported clients grows, the server
can quickly become overwhelmed with such an approach, athough not as quickly as when being polled by all the
clients. For notification of many clients, broadcasting information is often preferable. In this case, the server
sends its message to one or more servers, which retransmit to clients that have registered themselves as interested
participants. This approach is used in the Web and multicasting technologies, and reduces the load on the
originating server.

Related Patterns

Related patterns include the following:

Observer (page 94) — Clients often use the Observer pattern to register with the server for a server push solution.

Callback (page 238) — Successive update might use the Callback pattern for server push.

Mediator (page 77) — In server push solutions, the server often acts as a Mediator, sending updates to interested
clients as the updates are received.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see* Successive Update ” on page 532 of the “ Full Code Examples” appendix.

The example code shows a simple client pull solution for the Personal Information Manager. Clients use the
server to centralize information about tasks they are working on. Each client stays up-to-date by periodically
requesting updates from the server.

In the sample code, the Pul ICIient classretrieves atask for aclient. Itsresponsibility isto locate the RMI server
so that it can request tasks on aregular basis.

Example 4.20 pullClient.java

1. import java.net_MalformedURLException;

2. import java.rmi.Naming;

3. import java.rmi.NotBoundException;

4. import java.rmi.RemoteException;

5. import java.util_Date;

6. public class PullClient{

7. private static final String UPDATE_SERVER SERVICE_NAME = "updateServer';
8. private static final String UPDATE_SERVER MACHINE_NAME = "localhost";
9. private ClientPullServer updateServer;

10. private ClientPullRequester requester;

11. private Task updatedTask;

12. private String clientName;

13.

14. public PullClient(String newClientName){

15. clientName = newClientName;

16. try{

170

17. String url = "//" + UPDATE_SERVER_MACHINE_NAME + */* + UPDATE_SERVER_SERVICE_NAME;

18. updateServer = (ClientPullServer)Naming.lookup(url);
19. }

20. catch (RemoteException exc){}

21. catch (NotBoundException exc){}

22. catch (MalformedURLException exc){}

23. catch (ClassCastException exc){}

24 . }

25.

26. public void requestTask(String taskID){

27. requester = new ClientPullRequester(this, updateServer, taskIiD);
28. }

29.

30. public void updateTask(Task task){

31. requester .updateTask(task);

32. }

33.

34. public Task getUpdatedTask(){

35. return updatedTask;

36. }

37.

38. public void setUpdatedTask(Task task){

39. updatedTask = task;

40. System.out._printIn(clientName + ": received updated task: " + task);
41. }

42.

43. public String toString(Q{

44 . return clientName;

45. }

46. }

When the client wants to receive updates on atask, it calls the method requestTask onthePulIClient. The
Pul IClient object creates aworker thread (see “ Worker Thread ” on page 231), which isthe

ClientPul IRequester object. This object resides on the client, and regularly issues arequest to the server for
updated task information.

Example 4.21 clientPul IRequester. java . ‘

1. import java.rmi.RemoteException; N\

2. public class ClientPullRequester implements: ablke{

3. private static final int DEFAULT_POLLIN TERVAL = 10000;
4. private Thread processingThread;

5. private PullClient parent; >

6. private ClientPullServer

7. private String tasklD;

8. private boolean shutdown; \

9. private Task currentTask = new Tasklmpl();

10. private int pollinglnterval = DEFAULT_POLLING_INTERVAL;
11.

12. public ClientPullRequester(PullClient newParent, ClientPullServer newUpdateServer,
13. String newTaskID){

14. parent = newParent;

15. taskID = newTasklID;

16. updateServer = newUpdateServer;

17. processingThread = new Thread(this);

18. processingThread.start();

19. }

20.

21. public void run(Q){

22. while (lisShutdown()){

23. try{

24. currentTask = updateServer.getTask(tasklD, currentTask. getLastEditDate());
25. parent.setUpdatedTask(currentTask) ;

26. }

27. catch (RemoteException exc){ }

28. catch (UpdateException exc){

29. System.out.printIn(* " + parent + ": " + exc.getMessage());
30. }

31. try {

32. Thread.sleep(pollinglnterval);

33. }

34. catch (InterruptedException exc){ }

35. }

36. }

37.

38. public void updateTask(Task changedTask){

39. try{

171

40. updateServer.updateTask(taskID, changedTask);

41. ¥

42. catch (RemoteException exc){ }

43. catch (UpdateException exc){

44 . System.out.printIn(’" " + parent + ": " + exc.getMessage());

45. ¥

46. ¥

47.

48. public int getPollinglnterval(Q){ return pollinglnterval; }

49. public boolean isShutdown(){ return shutdown; }

50.

51. public void setPollinglnterval(int newPollinglnterval){ pollinglnterval =
newPollinglnterval; }

52. public void setShutdown(boolean isShutdown){ shutdown = isShutdown; }

53. }

The RMI server's behavior is defined by the ClientPul IServer interface and managed by the
ClientPullServerimpl class. Two methods alow clientsto interact with a server, getTask and updateTask.

Example 4.22 clientPullServer.java

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. import java.util_Date;

4. public interface ClientPullServer extends Remote{

5. public Task getTask(String tasklID, Date lastUpdate) throws RemoteException, UpdateException;

6. public void updateTask(String tasklD, Task updatedTask) throws RemoteException,
UpdateException;

7.}

Example 4.23 clientPullServerimpl.java

1. import java.util_Date;

2. import java.rmi.Naming;

3. import java.rmi.server._UnicastRemoteObject;

4. public class ClientPullServerimpl implements ClientPullServer{

5. private static final String UPDATE_SERVER SERVICE_NAME = "updateServer";

6. public ClientPullServerIimpl(Q{

7. try {

8. UnicastRemoteObject.exportObject(this);

9. Naming.rebind(UPDATE_SERVER_SERVICE_NAME, this);

10. ¥

11. catch (Exception exc){

12. System.err._printIn("Error using RMI to register the ClientPullServerimpl ' + exc);

13. }

14. ¥}

15.

16. public Task getTask(String taskID, Date lastUpdate) throws UpdateException{

17. return UpdateServerDelegate.getTask(tasklD, lastUpdate);

18. }

19.

20. public void updateTask(String tasklD, Task updatedTask) throws UpdateException{

21. UpdateServerDelegate .updateTask(tasklD, updatedTask);

22. }

23. }

The class UpdateServerDelegate performs the server-side behavior for ClientPul IServerimpl. Specifically, it
retrieves Task objects, and ensures that up-to-date copies of Tasks are provided to clients by comparing the last
update Date.

Example 4.24 updateServerDelegate. java

1. import java.util.Date;

2. import java.util._HashMap;

3. public class UpdateServerDelegate{

4. private static HashMap tasks = new HashMap();

5.

6. public static Task getTask(String taskID, Date lastUpdate) throws UpdateException{
7. if (tasks.containsKey(taskID)){

8. Task storedTask = (Task)tasks.get(tasklD);

9. if (storedTask.getLastEditDate() .after(lastUpdate)){

10. return storedTask;

11. }

12. else {

13. throw new UpdateException(*Task " + taskID + ' does not need to be updated",

UpdateException.TASK_UNCHANGED) ;
14. }

172

15.
16.
17.
18.
19.
20.
21.
22.
23.
24
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

}

else{
return loadNewTask(tasklID);
}

}

public static void updateTask(String taskID, Task task) throws UpdateException{
if (tasks.containsKey(taskID)){
if (task.getlLastEditDate()-equals(((Task)tasks.get(taskID)). getLastEditDate())){
((TaskImpl)task) .setLastEditDate(new Date());
tasks.put(taskID, task);

else{
throw new UpdateException(‘'Task ' + taskID + ' data must be refreshed before
editing", UpdateException.TASK OUT_OF DATE);

}
}
}
private static Task loadNewTask(String taskID){
Task newTask = new TaskImpl(taskID, ', new Date(), null);
tasks.put(taskID, newTask);
return newTask;
}

173

Router

Also known as Request Router, Multiplexer

Pattern Properties

Type: Concurrency

Level: Architectural

Purpose

To decouple multiple sources of information from the targets of that information.
Introduction

Asasocialy and professionally sought-after PIM user who exchanges information frequently with other PIM
users, you put asignificant strain on the application. Thereis, as aresult, alot going on in the PIM application,
and many parts of the same application might need to respond to or be informed of the same event. Thisis not
necessarily a GUI event, but might be just anything that is going on. Y our boss might want to know if your 2:00
to 3:00 appointment clears up so you can go to another meeting in her place. Y ou might want to know if a certain
stock price plunges, so you can buy another 100 shares cheap.

In acomplex system like the PIM, there can certainly be multiple sources of information. There can also be
multiple destinations for information—multiple parties who want to receive information from the same event
source. To make things easier on an event source and to save it the effort of notifying all listeners, it'sa good idea
to separate the distribution of the event into a distinct entity. The Router pattern follows this practice, sinceit
combines multiple event source and multiple listeners.

Without away to identify individual clients, the server will be limited to operations that could be performed in a
single operation. This would force you to make one of two choices. Y ou could develop a huge operation—we're
talking an operation that would show up on satellite photos—that would hold all data. Y ou could redesign the
application model so it could handle statel ess operations, perhaps designing it around a checkout system for the
data. Of course, that would mean that you would also have to plan for error recovery, and security for the
check-out system. When you get right down to it, neither choiceis very appealing. Each solution would require a
radical redesign of the application and the way the user interacts with the system.

Applicability

Use Router when:

There are multiple sources of information

There are multiple destinations receiving that information
Description

In the PIM, information is central and is shared between the many parts of the application and the different
applications. The distribution of the information could be handled by each source.

Then every destination has to be registered with the source and that source has to maintain alist of all destinations
and notify them when a change has occurred. Suppose you wanted to enhance your application by using
multithreading when sending messages; you would have to implement that for each source. It would be much
easier to manage the distribution of information separately, which is what the Router pattern does.

The Router pattern works like arouter in network traffic. It receives information from a source and determines,
based on where the information is coming from, to which destination(s) it should send the message. To be able to
do that the router keeps a mapping between the various input channels (sources) and their destinations. The
management of the each of the routes from a source to its destinations is captured in the mapping. Destinations
can be added and removed by calling the appropriate methods on the router instead of on the source.

174

Because of the amount of information that is passed, the throughput of information should be done as fast as
possible, or the system slows down dramatically. If the throughput fails or is disruptive for some reason, that
specific target is dropped. By implementing this kind of control, the quality of service can be guaranteed for the
other destinations.

Implementation

A Router class diagram is shown in Figure 4.10

Figure 4.10. Router class diagram

intetface
et Channel

Message

+yvold sehdliessageifessage messagel
2
EE

Router

interface
mputChannel +roid sendiessageiessage message)
+y0id addRoutednputChannel in, QutputChannel] out)
+yoid removeRoutednputChannel in
+roid removeRoutedlnputChannel in, QutputChannel] outh

The Router pattern needs the following:

InputChannel — Can be of any type. It isused for mapping Input and Output in the Router; also known asthe
source.

OutputChannel — An interface that defines the method for sending the message.

Message — Thisclass containstheinformation that needed to be distributed. To allow the Router to map this
message to a specific route, the message also contains a reference to the source.

Router — TheRouter maintainsthe map between InputChannel and specific OutputChannels, and
implements the outputChannel interface. When it recelves messages, it forwards them to the specified
OutputChannels.

Benefits and Drawbacks

Benefits and drawbacks include the following:

Decouples the source from the destination. The input doesn't need to know the destination; it only needs to know
the router. The router knows the mapping between the source and destination.

When trouble occurs on one specific channel, it doesn't need to affect the other channels. One channel does not
have the ability to block the Router, it continues doing its work of routing messages from an input to outputs.

Different strategies for InputChannels and OutputChannels. The Router can have each Channel in itsown
Thread or combine all the InputChannels in one Thread.

Simplifiesthe Clients, because the Router takes over the task of message distribution.

Enhances reliability. One channel can no longer block the system. If it's not working, the Channel can be ignored or other
measures can be taken like dropping the problem channel. However, the Router still doesits job.

Pattern Variants
A variation to this pattern is to have the Router keep a mapping between an arbitrary key and the destinations. A

source might have different destinations based on certain conditions. For instance, if it has two separate methods
each with its own outputChannels. In the normal implementation of the Router pattern there is only one route

175

per InputSource. Thetrick hereisto create akey and let that key be registered with the Router as the
InputChannel, instead of the “real” InputChannel.

The source calls the send method on the Router with two parameters: the key and the actual message. The
Router looks up the key and sends the message to the OutputChannels that it has just looked up.

Related Patterns

Related patterns include the following:

Mediator (page 77) — The Router is similar to the Mediator pattern. The difference is that the Mediator makes
decisions based on the content of the message and can therefore be application specific. The Router makes

decisions based on the source of the message.

Observer (page 94) — The Router pattern can be made more flexible by using the Observer pattern to allow
listeners to be registered.

WorkerThread (page 231) — The Worker Thread can be applied to the Router to increase the efficiency.
Example
Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see” Router 7 on page 540 of the “ Full Code Examples” appendix.

The Router can be useful at various places in the example application. In amost every situation where thereis
more than one interested party in any event, you can use the Router. The Router is essentially an implementation
of alistener structure; you will see some similarities.

The code for the Message classis shown here. It is a container for the source (an InputChannel) and the actual
message—in this case, some String.

Example 4.25 Message. java

1. import java.io.Serializable;

2. public class Message implements Serializable{

3. private InputChannel source;

4. private String message;

5.

6. public Message(InputChannel source, String message){
7. this.source = source;

8. this.message = message;

9. }

10.

11. public InputChannel getSource(){ return source; }
12. public String getMessage(){ return message; }

13. }

Example 4.26 1nputChannel . java

1. import java.io.Serializable;
2. public interface InputChannel extends Serializable{}

The outputChannel isthe interface that defines the method for sending the message to the target. Since the
OutputChannel can be used to communicate between machines, it is defined as aremote interface.

Example 4.27 outputChannel . java

1 import java.rmi.Remote;

2 import java.rmi.RemoteException;

3. public interface OutputChannel extends Remote{

4 public void sendMessage(Message message) throws RemoteException;
5 }

The Router uses a hashmap to store links between the specific InputChannel and various OutputChannels.
When it receives a message, it looks up the destinations in its map.

176

It loops through the collection and sends the message to each of the destinations. In this example, the Router
creates aworker thread (see “ Worker Thread ” on page 231) to send a message to each of its OutputChannel
objects. Thread pools are often used to improve performance in applications such as these.

Example 4.28 Router. java

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.rmi.server._UnicastRemoteObject;
import java.util_HashMap;

public class Router implements OutputChannel{

©CoO~NOOAM~WNPE

}

private static final String ROUTER_SERVICE_NAME = "router";
private HashMap links = new HashMap();

public Router(){
try {
UnicastRemoteObject.exportObject(this);
Naming.rebind(ROUTER_SERVICE_NAME, this);

catch (Exception exc){
System.err.printIn("Error using RMI to register the Router "™ + exc);
}

}

public synchronized void sendMessage(Message message) {
Object key = message.getSource();
OutputChannel[] destinations = (OutputChannel[])links.get(key);
new RouterWorkThread(message, destinations);

}

public void addRoute(InputChannel source, OutputChannel[] destinations) {
links.put(source, destinations);
}

private class RouterWorkThread implements Runnable{
private OutputChannel [] destinations;
private Message message;
private Thread runner;

private RouterWorkThread(Message newMessage, OutputChannel[] newDestinations){
message = newMessage;
destinations = newDestinations;
runner = new Thread(this);
runner._start();

}

public void run(Q) {
for (int i = 0; 1 < destinations.length; i++){

try{
destinations[i]-sendMessage(message);

catch(RemoteException exc){
System_err._printIn("'Unable to send message to " + destinations[i]);
}

}
}
}

When using the Router pattern, be careful about the size of message to be delivered. Generally, the message
should be as small as possible. It is easy to be fooled by some Java objects, though. An object might have
references to other objects, which refer to other objects, and so on—and what seemed like a small object might
turn out to be very large indeed. For instance, sending a java.awt.Button ishot agood idea, because the whole
GUI will be serialized and sent.

It'salot like buying your child atoy in astore. The purchase of a single Outlaw Robot Laser Geek might not
seem expensive at first, but by the time you get all the accessories (extra pocket protector, laser-spitting
hornrimmed glasses), you might wonder if it would just be cheaper to buy him or her a sweater.

177

Transaction

Pattern Properties

Type: Concurrency

Level: Architectura

Purpose

To group a collection of methods so that they either al succeed or they all fail collectively.
Introduction

In object-oriented programming, you are usually dealing with multiple instances of multiple classes. Sometimes,
however, you must treat multiple objects as though they were a single object—at |least, you must ensure that state
remains consistent among objects as an operation is performed.

One exampleis transferring funds from one account to another. The tasks of removing money from one account
and adding it to another account should both be performed, or neither should be performed. The end results
should always be in balance: the amount deducted from the first must be added to the second and vice versa. If
the deduction from the first account fails (the first account is already over its limit) the second account should not
be increased.

If you simply trust that every operation is successful, transferring funds would be very easy and very risky. If the
transfer fails, you might see funds magically disappear from one of your accounts—a Bad Thing from your
perspective. Y ou might also see funds magically appear on another account—a Good Thing for you, but the
banks consider thisa Very Bad Thing. Invoking a series of methods in a situation like this should either
completely succeed or completely fail.

Thisiswhere the Transaction is needed. It makes sure that all participantsfail or succeed collectively. How the
participants deal with success or failure is up to the individual implementation.

Applicability

Transaction should be used when:

Several methods need to fully synchronized
A recovery option should be available
Description

For some tasks, multiple parts of an application must cooperate. When a single part of that task fails, al of its
parts should fail. The combined methods inside the task need to fail or succeed unanimousdly. If any one
participant failsto do its part, all participants should fail, and al participants should return to the state they had
before that task started.

The solution to this situation is the Transaction pattern. Every participant in the transaction tries to accomplish its
task. The transaction manager is informed when one of the tasks fails. The manager then informs al the
participants to revert back to their original state. The transaction manager can be just any object aslong asit
knows all the participants (directly or indirectly).

After al participants have reported to the transaction manager success in updating, the transaction manager tells
all the participants to commit their changes. Commit means that the temporary state they have kept is now the
permanent state.

If any participant fails, the manager cancels the transaction and calls the cancel method on each participant. The
participants revert back to their previous state they had before the transaction started. Thisroll-back, asit isalso
known, can also occur when the transaction manager decides to cancel the transaction even without afailing
participant. The result is the ssme—the transaction is called and rolled back.

178

To identify atransaction, atransaction ID may be used, either some arbitrary long or object. The benefit to using
an object as ID over along is that an object can contain information and behavior, the long doesn't contain
behavior but it is smaller. And sending along over a network is very much less expensive than sending an object.
The normal sequence to use atransaction is.

Create atransaction ID (either as object or long)

Invoke join on al participants and abort the transaction if the joining fails for any of the participants.

Try the action, invoke the necessary business methods and call cancel as soon as any participant fails.

When the action is completed, call commit on all participants.

Implementation

A Transaction class diagram is shown in Figure 4.11

Figure 4.11. Transaction class diagram

interface inferface
TransactionPariicipant SpecificParticipant
1
+hoolean foinfiong transactionfo) v + hoolean operationt fiong transactionl)
syl cormmit{ong fransachonin)) +hoolean operation2fiong transachonii)
syl cancellong transaction! o) ™
A
0.+ I
|
|
Cliewt ConcreteParticipant

i +hoolean joindong transactionlon
| +yoid commit{long transactionlD)

| +ynid cancel{long transaction|D)
iftransaction fails, client callsllx.l +boolean operationt (long fransactionlD)
cancel on all paricipants +hoolean operation2(long transactioniD)

The Transaction pattern needs:
TransactionParticipant — Theinterface that definesthe methods to control every participant.

SpecificParticipant — Asan extension to the generic interface, this interface contains the business methods.
All methods involved in the transaction take an ID as parameter. Methods involved in transaction can throw
Exceptions asasignal of falure.

ConcreteParticipant — Implements SpecificParticipant interface. It defines what happensif the
transaction manager (in this case, client) decides to roll-back or commit. It has to keep areference to the original
state to be able to restore it when cancel isinvoked.

Client — Actsastransaction manager. The client calls the join method on the participants to start the transaction
and ultimately calls either cancel or commit on the participants.

Benefits and Drawbacks

The obvious benefit of this pattern is that several methods can be combined to act as one atomic operation. The
result isthat the application will aways have a consistent state. The new state will not be persisted until all
participants have succeeded in their actions.

The drawback is that this setup will decrease performance. When an object is already involved in atransaction
and the join method is called again to start another transaction, the object has to decide what to do. The most
common choice isto throw an exception at the caller of the join method, which states that it is currently involved.
The transaction manager can either roll-back the second transaction or wait until the participant becomes
available.

179

Pattern Variants

Two-phase commit — The transaction manager wants to be sure that all participants can commit beforeit calls
commit on them. So before calling commit, it first performs a voting round where each participant tells the
manager if it can commit (first phase). If one of the participants fails to be able to commit, the transaction will be
cancelled and cancel will be called on dl the participants (roll-back is performed). When all participants agree,
commit will be called (second phase).

The difference is the pre-commit phase, which checksif everybody can commit and which signals al the
participants that the next signal will either be a cancel or a commit.

Optimistic versus conservative transactions— There are two approaches to implementing transactions: optimistic
and conservative. This choice has to be made at almost every point in the implementation. Pure forms only rarely
exist.

The basic differenceis that in the optimistic approach, the participants can always join, but may not always be
able to commit. While in the conservative approach, the join may fail, but when joined, the participant can always
commit.

One of the other differencesisin the way these approaches join transactions. In the conservative approach, the
client first hasto call join on the participant to join in a specific transaction before any sensitive methods can be
called. In the optimistic way the participant will do the join for the client if this has not been done yet.

Related Patterns

None.

Example

Note:

For afull working example of this code example, with additional supporting classes and/or a RunPattern class,
see*” Transaction ” on page 548 of the “ Full Code Examples” appendixX.

The Personal Information Manager stores appointments based on their date. Naturally, since users lead active
lives, appointments change all the time. A user’ s appointment book is constantly being updated with new or
changing appointments.

If anumber of users need to agree on a date for an appointment, it would be helpful if their appointment books
could coordinate, arriving at a date that would work for everybody. That’s what this example demonstrates—how
the Transaction pattern can be used to allow address books to reschedul e a date for an appointment.

The basic interface that supports transactions is AppointmentTransactionParticipant. It defines three
methods to manage transactions (join, commit, and cancel) and the business method changeDate. Thisclassis
aRemote class, sinceit is used to communicate between transaction participants that might reside on different
Java Virtual Machines.

Example 4.29 AppointmentTransactionParticipant.java

1. import java.util_Date;

2. import java.rmi.Remote;

3. import java.rmi.RemoteException;

4. public interface AppointmentTransactionParticipant extends Remote{

5. public boolean join(long transactionlD) throws RemoteException;

6. public void commit(long transactionlD) throws TransactionException, RemoteException;
7. public void cancel(long transactionlD) throws RemoteException;

8. public boolean changeDate(long transactionlD, Appointment appointment,

9. Date newStartDate) throws TransactionException, RemoteException;

10. }

The class AppointmentBook represents a user’ s calendar, and implements the
AppointmentTransactionParticipant interface. In addition to providing support to change an Appointment
date, the AppointmentBook can initiate a change of an Appointment. Its method changeAppointment acceptsa
transaction 1D, an Appointment object, an array of other AppointmentBooks that should be transaction

180

participants, and an array of possible alternate dates for the appointment. The changeAppointment method
allows one of the AppointmentBook objects to communicate with the others using RMI, calling the changeDate
method on every one of the participants until all agree on an alternate date for the Appointment.

Example 4.30 AppointmentBook.java

1. import java.util_ArraylList;

2. import java.util._HashMap;

3. import java.util.Date;

4. import java.rmi.Naming;

5. import java.rmi.server._UnicastRemoteObject;

6. import java.rmi.RemoteException;

7. public class AppointmentBook implements AppointmentTransactionParticipant{

8. private static final String TRANSACTION_SERVICE_PREFIX = "transactionParticipant";

9. private static final String TRANSACTION_HOSTNAME = "localhost";

10. private static int index = 1;

11. private String serviceName = TRANSACTION_SERVICE_PREFIX + index++;

12. private HashMap appointments = new HashMap();

13. private long currentTransaction;

14. private Appointment currentAppointment;

15. private Date updateStartDate;

16.

17. public AppointmentBook(){

18. try {

19. UnicastRemoteObject.exportObject(this);

20. Naming.rebind(serviceName, this);

21.

22. catch (Exception exc){

23. System.err.printIn(""Error using RMI to register the AppointmentBook " + exc);

24 . }

25. }

26.

27. public String getUrl (Q{

28. return "//" + TRANSACTION_HOSTNAME + /' + serviceName;

29. }

30.

31. public void addAppointment(Appointment appointment){

32. if (!appointments.containsVaIue(appointment))ﬁ

33. iT (Yappointments.containsKey(appointment.getStartDate())){

34. appointments.put(appointment Date(), appointment);

35.

36. }

37. ;

38. public void removeAppointme ppointnent appointment){

39. it (appointments.contain 'ue(appointment)){

40. appointments. remove(appointment.getStartDate());

42. }

43.

44 . public boolean join(long transactionlD){

45. if (currentTransaction = 0){

46. return false;

47. } else {

48. currentTransaction = transactionlD;

49. return true;

50. }

51. }

52. public void commit(long transactionlD) throws TransactionException{

53. if (currentTransaction != transactionlID){

54. throw new TransactionException("Invalid TransactionlD™);

55. } else {

56. removeAppointment(currentAppointment);

57. currentAppointment.setStartDate(updateStartDate);

58. appointments.put(updateStartDate, currentAppointment);

59. }

60.

61. public void cancel(long transactionlD){

62. if (currentTransaction == transactionlID){

63. currentTransaction = 0;

64. appointments.remove(updateStartDate);

65.

66. }

67. public boolean changeDate(long transactionlD, Appointment appointment,

68. Date newStartDate) throws TransactionException{

69. if ((appointments.containsValue(appointment)) && (lappointments.
containsKey(nhewStartDate))){

70. appointments.put(newStartDate, null);

181

updateStartDate = newStartDate;
currentAppointment = appointment;
return true;

return false;

}

public boolean changeAppointment(Appointment appointment, Date[] possibleDates,
AppointmentTransactionParticipant|[] participants, long transactionlID){
try{
for (int i = 0; 1 < participants.length; i++){
if (Iparticipants[i]-join(transactionlID)){
return false;
}
}

for (int i = 0; 1 < possibleDates.length; i++){
ifT (isDateAvailable(transactionlD, appointment, possibleDates[i],
participants)){
try{
commitAll (transactionlD, participants);
return true;

catch(TransactionException exc){ }

}
}
catch (RemoteException exc){ }
try{

cancelAll(transactionlD, participants);

catch (RemoteException exc){}
return false;

}

private boolean isDateAvailable(long transactionlD, Appointment appointment,
Date date, AppointmentTransactionParticipant[] participants){

try{
for (int i = 0; 1 < participants.length; i++){
try{
if (Iparticipants[i].changeDate(transactionlD, appointment, date)){
return false;
3
catch (TransactionException exc){
return false;
}
}

catch (RemoteException exc){
return false;

}
return true;
}
private void commitAll(long transactionlD, AppointmentTransactionParticipant[]
participants)
throws TransactionException, RemoteException{
for (int i = 0; 1 < participants.length; i++){
participants[i].commit(transactionlD);
}
}
private void cancelAll(long transactionlD, AppointmentTransactionParticipant[]
participants)
throws RemoteException{
for (int i = 0; 1 < participants.length; i++){
participants[i].cancel (transactionlD);
}
}

public String toString(){

return serviceName + " " + appointments.values().toString();
¥

182

Part II: Patterns in the Java Programming Language
Chapter 5. Introduction to Java Programming Language Patterns

In the first part of this book, a common set of patternsis discussed. The patterns are listed with descriptions of
their characteristics, the benefits and drawbacks associated with them, examples of their use and code samples
demonstrating the patternsin action.

The basic patterns discussed are platform and language-neutral. While it's true that Javais especially well-suited
to some of these patterns, they can be implemented in languages that support the core object-oriented properties
of inheritance, encapsulation, polymorphism, and abstract classes.

Now it's time to shift gears and look at pattern use in the Java APIs. Since the Java programming language and
the Design Patterns movement grew up together, the devel opers used a number of design patterns when they
created the Java APIs. The goal isto gain an understanding of how Javais put together, and to answer questions
like:

How does Java as a language make use of patterns?
How does it use patterns to make its APIs more effective?

The Java APIs provide additional demonstrations of pattern use. Like the Personal Information Manager
examplesin Part |, these real-world patterns provide useful insight into how patterns can be effectively applied to
solve problems.

At this point, it's worth explaining what exactly is meant by “API.” It's become a somewhat vague term in recent
years. These days, API is used to refer to asingle class, a group of classes, a single package or a set or related
packages. The important quality that defines an API isthe fact that it provides a programming framework for a set
of related functional capabilities.

A number of the APIs in the following chapters are actually designed as a set of related classes. To appreciate the
way that an API functions as awhole, it makes sense to spend some time discussing its basic structure. This
provides a perspective on how patterns support the API —how they help a specific API to better do itsjob. This
means that this section of the book is effectively part architectural evaluation, part pattern study. This provides a
few practical benefits:

It can help you appreciate some of the ways that patterns are actually used within the API. Studying the Java APIs
demonstrates how patterns can be applied to achieve practical goals.

It shows how you can use patterns with the APIs. Examining a set of APIs can help you see how to effectively
use a pattern to interact with an API or framework.

In the pages that follow, you' |l take alook at a number of Java APIs and see what makes them tick. This should
give you new insight into their use and usefulness — perhaps even on why they're designed the way they are. With
these thoughts in mind, let's begin our exploration.

Note

The APIs discussed in the following chapters are divided into several sections. First, the Packages section
describes which packages contain the classes and interfaces that make up the API. Next, the Overview section
provides a brief review of each API. The Overview section is not meant to teach an entire API. It isareminder to
those who know the API, and alist of highlights for those of you who plan to learn more about it as you continue
to program. The final section is called Pattern Use; it presents design patterns used in the APIs, and describes how
they are used.

183

Chapter 6. Java Core APIs
Event Handling

Packages

java.awt.event, javax.swing.event, java.util (Some classes)
Use: J2SE (delegation model since JDK1.1)

Overview

Event handling alows two or more objects to communicate about a change of state within a system. In an
event-based system, one object acts as the event producer, and creates an event object to represent some change in
its state. It then passes the event to one or more registered receivers by calling some method on each receiver
object.

Event handling has been part of Java since the beginning. It is part of the AWT and, since J2SE v1.2, has also
been part of Swing. Event handling plays an important role in many of the Java APIs, including AWT, Swing,
and JavaBeans. Therefore, support for event-handling is available in the java.util package.

Asof JDK 1.1, the current event handling model was introduced, the delegation model. It was designed to be
simple, flexible, and allow for a more robust system. Application code and GUI code can now be easily separated
and can be changed independently of each other. The introduction of specialized event types and listeners made
compile-time type-checking available.

Event handling happens this way. Each event type has its own Event class. The Event source, which iswhere an
event might occur, such as a Component, keeps alist of listeners that have registered with the source, stating they
are interested in any event that occurs at that source. When an event occurs, the Event source instantiates an
Event object and sendsit to the listeners for that event-specific interface. To do this, it invokes a listener method
on each of the listeners passing the Event object as an argument.

All events extend from java.util.EventObject, which keeps areference to the source of the event. Specific
types of events add functionality; for instance, the ActionEvent contains the ActionCommand, which can be set
on the source.

The event listeners are interfaces that define the methods the source can call when a certain condition occurs; for
instance, when a button is clicked or amouse is moved. These interfaces al extend the interface
jJava.util_EventListener.

The event sources don’t need to implement an interface or extend some class to be a source. However, they must
keep alist of event listeners who have registered for events from this source. The listeners are registered with the
source by calling addxXx Listener(XxX Listener) . To remove them from thelist, call removexxx

Listener (XXX Listener). XXX isreplaced by the name of the event type.

Generally speaking, event sources can be unicast (only one listener allowed) or multicast (multiple listeners
allowed). Within AWT and Swing, all event sources are multicast. To make things easier, a specialized
Multicaster exists, java.awt.AWTEventMulticaster. The AWTEventMul ticaster provides an efficient and
thread-safe multicast event dispatching for the AWT events defined in the java.awt.event package [JLS].

The AwTEventMul ticaster implementsall AWT event listener interfaces so it can be used for any of the AWT
events. The AWTEventMul ticaster constructor takes two event listeners. When a new listener is added, a new
AWTEventMulticaster iscreated passing the current AWTEventMul ticaster and the new listener as arguments.
This mechanism chains AWTEventMul ticasters together. To propagate an event, each multicaster callsthe
listener method on its two children: one is an event handler with alistener method, the other is the next
AWTEventMulticaster inthe chain). Thisis how event multicasting is achieved.

Swing uses a different class, instead of AWTEventMulticaster. The class
javax.swing.event.EventListenerList can even be used for keeping alist of listeners of an unknown type.
When one event source has listeners of different types, EventListenerList isresponsible for maintaining the
entirelist of listeners.

184

A package outside of the GUI APIsthat uses event handling is org.xml .sax, one of the newcomersin Java 1.4.
SAX isused to parse an XML document where event handling is used to notify the different handlers. However,
this APl doesn't use the java.util .EventListener and java.util.EventObject.

Pattern Use

Observer (See page 94): Thisisthe most obvious pattern in the event handling. There are many listener interfaces,
event types, and event sources. Each is avariation on the Observer pattern, whose objective is to decouple the
event source from the listener. The event source defines the type of event and the moment at which the event
occurred. The listener provides the information about what to do when the event occurs.

Adapter (see page 142): The java.awt.event package contains many classes that end with the word Adapter,
S0 you might expect that the Adapter pattern would be implemented there. However, the event adapters do not
perform the same function as atrue Adapter pattern implementation. They exist to convert event handling
interfaces into classes, For example, the MouseL i stener interface has a corresponding MouseAdapter, which
implements the interface and defines a series of empty methods. Since the event adapter classes do not actually
execute functional behavior or convert between two different interfaces, they cannot be considered as true
Adapters.

Factory Method (See page 21): The AWTEventMulticaster provides static factory methods to create a chain of
event listeners of the appropriate type. It has overloaded methods for registering (add) and de-registering (remove)
each type of event listener in the java.awt.event package. For example, public static ActionListener
add(ActionListener a, ActionListener b). Thereturn type of the method isalistener of the typejust
registered. The implementation of the method is such that the returned object can ssimply be the listener that was
registered, but most of thetimeit isanew AWTEventMul ticaster instance that has areference to the old
AWTEventMul ticaster and the new listener instance.

Composite (see page 157): The AWTEventMulticaster createsits own chain or tree of listeners. Every timea
new listener is added to the AWTEventMul ticaster, a new multicaster instance is created. That new instance
receives areference to the new registered listener and the old tree, represented by the current
AWTEventMulticaster.

When alistener method is called, the AWTEventMul ticaster propagates the method call to the two listenersto
which it has areference: oneisan AWT event listener (true listener) and an AWTEventMul ticaster instance,
which does the same for its own two references. With this approach, the entire tree is called recursively.

Chain of Responsibility (See page 42): The AWTEventMulticaster forwards al of the callsto the methods that are
defined in the listener interfaces, to the listeners AWTEventMul ticaster has areference to.

AWTEventMul ticaster doesn't have to do much itself. It smply calls the method on each of its children. If a
childisan AWT event listener, it executes the event handling behavior. If it isan AWTEventMul ticaster, it
forwards the method call to its own children.

Command (see page51): AwTEventMulticaster is structured much like the Macro Command. It contains a
collection, in this case a collection of two, of other Command objects. One object isterminal (the actual listener),
and the other is another Macro Command (another AWTEventMul ticaster). The different event listener methods
are used instead of the execute method in the Command pattern.

The caller of the method (the source of the event) is unaware of the structure, and doesn’t need to know anything

about it. The event source only needs to call the execute method once on the event listener, and that listener
behaves like aMacro Command executing the proper methods.

185

JavaBeans

Packages

java.beans, java.beans.beancontext
Use: J2SE (since JDK 1.1)
Overview

JavaBeans™ provides a standardized model for the Java programming language that enables classes to be
developed as components. Components have a standard way of representing data and behavior, so they're more
easily shared between developers. A component model such as JavaBeans potentially enables a developer to reuse
another developer's code even if they work in different companiesin different parts of the world. In the
component model, technical roles are divided into component programmers, component assemblers, and
application assemblers. The programmers are the only ones who actually have to code; the component and
application assemblers use devel opment tools that allowed them to visually manipulate and combine beans. This
enables them to build new beans, or entire applications. JavaBeans can be visual, but they don't have to be.

That a component model isagood ideais demonstrated by the fact that components also underlie Java 2
Enterprise Edition, but the visual use of JavaBeans was only moderately successful.

However, that isn’t to say that JavaBeans are insignificant. When JavaBeans were conceived they required quite a
changein Java. The old event model (hierarchical) had to be replaced with a more flexible event model so
responsibilities could properly be distributed. The new event model became known as the delegation model. (See
“ Event Handling ” on page 281.) This event model is core to the Java Beans architecture.

At the same time, emphasis was also placed on code conventions, because naming is an essential part of the introspection of JavaBeans.
All of the AWT components became JavaBeans.

JavaBeans are generally supposed to support events, properties, introspection, customization, and persistence.
The current event model allows decoupling event sources and event listeners. Every JavaBean can be a source of
events and/or alistener to events. The JavaBean identifiesitself as alistener by implementing the appropriate
listener interfaces and methods defined in those interfaces. To identify itself as an event source, the bean hasto
provide addxXXListener and removeXxX Listener methods.

For other tools and applications to find the properties of a JavaBean, the bean has to stick to specific method
naming. If the bean has what we now know as getters and setters with a particular name, like String getName()
and void setName(String n), then other applications can safely assume the bean has a property called name of a
type Sstring, even though the internal representation may be different. This property can then be used in property
sheets of avisual editor or in other applications. JSPs, JavaServer Pages, make use of JavaBeansin thisway.
Valuesreturned from an HTML form are set as properties, which can later be retrieved for some processing.

Normally, all public methods are exported. If bean providers want to limit the number of properties, events, and
methods exported, they can supply a class that implements the BeanInfo interface. The BeanInfo interface
defines methods for other objectsto easily query what members and events are available. The code that
determines which methods are exported is in the implementation of BeanInfo.

A bean can provide its own PropertyEditor for new datatypes, allowing the bean to be included in avisual
component environment. Such an editor can either support Strings asvalues, or it may even use its own
java.awt.Component to do the editing.

When the bean can provide its own customizer for more complex customization, that type of editor should extend
from java.awt.Component and implement java.beans.Customizer S0 that a graphical editor can integrate the
editor in the GUI.

A JavaBean needs to support some way of persisting itself, so it has to either implement java.io.Serializable
or java.io.Externalizable. When the bean is persisted, itsinternal state should be saved so that the bean may
later be restored with the same data. This serialized version of abean can even be treated asits own type. The
java.beans.Beans. instantiate method takes several arguments, one of which isthe name of aBean asa
String. Theinstantiate method first tries to locate afile with the specified name with atrailing . ser; if that fails,
it triesto locate a class with the bean name and, if found, instantiate that.

186

Pattern Use

Factory Method (See page 21): In JavaBeans, the Factory Method is used to instantiate beans through the

Beans. instantiate method and to abstract the real creation of the object. The caller of the method sees no
difference between whether the bean has been restored from serialization or that a new object has been
created—making it easier to reuse beans. A customizer only hasto change some propertiesto let the bean appear
asadifferent type, serialize the bean, and give it a name with the . ser extension.

Singleton (See page 34): Applications use the Introspector to find information about a Bean. The
Introspector provides information about what methods, events, and properties a bean instance supports. It
traverses the inheritance tree and looks for implicit and explicit information to use in building a Bean Info object.
Only one Introspector is needed to provide this functionality. To prevent redundancy, only asingleinstanceis
used so it can cache information for other requests.

Adapter (see page 142): The Adapter is specifically mentioned in the JavaBeans Specification ([JBS] athough
thereit is called Adaptor). The task of the Adapter isto decouple the event source from the actual listeners and
perform one or more of the following tasks:

Implement a queue for the incoming events so that events may be searched in the situation where a specific event
in aseries of eventsis missed.

Provide afilter to prevent all events from arriving at the actua target, letting only those events pass that fulfill
certain criteria. You could set up an Adapter between atemperature bean and a warning bean and only forward
the change events if the temperature changes more that 0.1 degrees Celsius instead of just every minuscule
change.

Demultiplexing. A class can implement a specific method from an interface only once. If the same object is going
to listen to multiple sources of the same event, but the reaction should be different based on the source, the
implementation of the listener method has to change for every new source and the method will become bloated
with large swi tch statements. Here the Adapter pattern is used to demultiplex. That means an Adapter instance
is created for every event source and that instance is registered with the source. When the listener method gets
called, the Adapter invokes another method on the actua listener, a different method for each different source.
Now the actual listener no longer needs to determine where the event came from. That is the responsibility of the
adapter.

Connect a source and a listener. Thisis useful when the event source and actua listener are of different event types. Its functionality is
essentially that of the “true” Adapter , as described in the Adapter pattern.

Observer (seepage 94): JavaBeans provides support for bound and constrained propertiesin beans.

Bound properties mean that beans can be connected together, and when a bound property changes, al interested
beans are notified. These properties are called bound because they allow other classes and objectsto bind
behavior to the changes of the property.

The bound property acts as the Observable and the beans interested in the changes are the Observers to that
property. They are registered through the method addPropertyChangeListener(PropertyChangelListener
listener) and must implement the PropertyChangeL istener interface .

When the property change occurs a PropertyChangeEvent is created with, among others, the old and new values
and the propertyChange method is called on the listeners passing the PropertyChangeEvent as the argument.

Constrained properties are a variation on this principle, the difference is that the listeners may throw a
PropertyVetoException if the listener objects to the change from the old to the new value. The listeners are
registered through the method addvetoableChangeListener(VetoableChangeListener listener) and they
must implement the VetoableChangeL istener interface. The bean where the property change occurs calls the
vetoableChange method on the registered listeners passing a PropertyChangeEvent as the argument. If a
PropertyVetoException occurs, the same bean will undo the change and call the same listeners but with a
PropertyChangeEvent that has reversed the new and old values, effectively rolling back the previous change.

187

AWT and Swing — The Graphical User Interface APIs
Packages

Primary AWT packages are java.awt and java.awt.event Other packagesinclude java.awt.color,
jJava.awt.datatransfer, java.awt.dnd, java.awt.font, java.awt.geom, java.awt.im,
Java.awt.im.spi, java.awt.image, java.awt.image.renderable, java.awt.print

Use: J2SE (JDK 1.0, greatly expanded in JDK 1.2 and 1.3)
Primary Swing package is javax.swing

Other packagesinclude javax.swing.border, javax.swing.colorchooser, javax.swing.event,
Javax.swing.filechooser, javax.swing.plaf, javax.swing.plaf.basic, javax.swing.plaf.metal,
Javax.swing.-plaf.multi, javax.swing.table, javax.swing.text, javax.swing.text_html,

Javax.swing.text.html .parser, javax.swing.text.rtf, javax.swing.tree, javax.swing.undo.
Use: J2SE (since JDK 1.2, expanded for JDK1.3)
Common Features

Central to both AWT and Swing are the concepts of the component, container, and layout manager. A component
isagraphical element of some kind like a button, label or text box. A container isaso akind of graphical element,
but is distinguished by its ability to hold other elements. Containers are the organizers of the Java graphics APIs,
enabling developers to group graphical elements within the GUI space. Windows are containers, holding
components such as buttons and checkboxes inside themsel ves.

Layout managers are not graphical. They're worker objects, specialists that can determine size and position for
components inside a container. A container delegates the task of managing its space to its associated |ayout
manager, relying on it for advice about how and where it should place elements.

Another important feature of AWT and Swing is the event-handling model. In Java graphical applications, user
interaction is represented by event objects that are produced by components. For example, if auser were to click
on abig red button in a Java GUI labeled “History Eraser”, that button would produce an ActionEvent.

So would this act irrevocably erase our existence? Luckily, not in this universe. Unless there is an associated event handler, the event
produced will not trigger any program response. In this example, there has to be a classimplementing the ActionListener

interface which has been registered with the button through a call to addActionListener. In that case, the
ActionEvent is passed to the associated ActionListener through acall to itsactionPerformed method. To
date, no one has written an event handler for the History Eraser button, so we're all still safe.

The AWT Architectural Model

The Abstract Window Toolkit (AWT) has been around as long as the language itself. It is built around asimple
set of components that allow you to create basic GUIs. When you create an AWT application, its components are
guaranteed to have the same look and feel as the platform where JVM runs. In other words, the same code
produces a Solaris GUI when run on Solaris, a Macintosh GUI on MacOS and a Windows GUI on a Wintel
platform.

There's avery straightforward explanation for this—an AWT application looks like its elements are native to a
platform because they really are. AWT bases its functionality on the concept of the peer. Every AWT component
has a peer class associated with the operating system, which does most of the real work. The classes that
developers use to create graphical componentsin AWT provide a programming wrapper around the peers. For
instance, in AWT a programmer uses the java.awt.Button class to create a button. Associated with that button
isan implementor of the java.awt.peer.ButtonPeer interface, which performs most of the real tasks associated
with painting the component on-screen.

It follows that there must be some way to keep track of the platform-specific peers within AWT. The Toolkit
class provides that capability. Inside Toolkit isthe code used to link to the underlying operating system.
Developersrarely use this class directly, but it isimportant to AWT, sinceit ultimately loads graphical libraries,
creates peer objects, and manages other platform-dependent resources such as cursors.

Because the basic AWT components are directly linked to the underlying operating system through their peers,
they are also referred to as heavyweight components since they rely directly on the operating system to do things

188

like draw them on-screen. The decision to base the AWT architecture around peers had some important
consequences, and devel opment efforts must usually take these into account:

Benefits

Thereisless code to write in the API, since the underlying platform does most of the work.
GUIslook and behave as they would on the operating system on which they are run.
Drawbacks

If you want to support true platform independence, you must consider the least common denominator when
providing components. This meansthat AWT GUIs are not as feature-rich as they could have been with other
approaches.

If there are any quirks in the graphical components of an operating system, the AWT application inherits those
along with the functionality.

Since peers have to be used for many operations of the GUI components, they can potentially slow down an
application and present scaling issues.

Because of the drawbacks of the peer components, it might be better for developers to directly extend one of the
two base classes of the model: Component or Container. Since neither of these classes has native platform peers,
any direct subclass of them would inherit the core functionality of AWT without suffering from the limitations of
the peer architecture. Naturally, this comes at a price—developers have to write the code to draw components
from scratch.

The Swing Architectural Model

The entire Swing architecture is based on the concept of extending functionality from the AWT Container class.
Thisincludes the vast majority of graphical componentsin Swing subclass JComponent, which isitself a subclass
of the Container classin AWT. This basic architectural decision has a number of consequences:

Swing is built on the core classes of AWT, so it inherits the basic AWT model. This means that Swing
applications use the same approach for arranging space (the layout managers, containers, and components) and
handling events. It also means that developers can use similar coding techniques for both Swing and AWT
applications.

Since most Swing components are mostly Java code, there's alot more flexibility. It's possible to create a much
larger set of graphical components and make them much more customizable since they're basically smart pixels
on-screen.

Swing components are subclassed from Container, so they can all hold other components. Thisis a big change
from the AWT model, where only a few selected graphical el ements were able to hold other items.

Building an entire architecture on another one is not without drawbacks of course. The inheritance hierarchy for
the Swing classes can get fairly complex, and can sometimes make it difficult to see exactly where behavior is
being performed. The JButton classis atypical example; itsinheritance hierarchy is shown as follows:

Object > Component > Container > JComponent > AbstractButton >
JButton

There are till afew heavyweight classes that remain in Swing. They must be heavyweight in order to interact

with the underlying operating system. The four top-level windowing classes are heavyweights, subclassed from
their counterpartsin AWT, and are shown in Table 6-1:

Table 6-1. AWT and Swing classes

AWT Class Swing Equivalent
Applet JApplet

Dialog JDialog

Frame JFrame

Window JWindow

189

These four classes retain the look and feel of their underlying operating system. For all other graphical elements,
however, even their appearance can be changed. Swing components del egate the task of representing themselves
onscreen to an associated Ul class, which can be changed. The upshot of thisisthat a Swing application can look
like a Solaris GUI even if it isrun on a Windows platform. This capability is called pluggable ook and feel, or
PLaF for short.

General Pattern Use

Observer (see page 94): Ascomplex architectures, AWT and Swing both use their share of design patterns. The
most often used pattern is Observer, of course. The Observer pattern allows for aflexible way of communicating
between objects. Both architectures use the Observer pattern to manage event handling. In both cases, the
graphical components represent the Observable class, and programmers write the Observer.

Composite and Chain of Responsibility (see page 157 and page 42): Since both AWT and Swing graphical
elements are based on the AWT Container and Component classes, the APIs allow for GUI tree structures to be
created. This suggests Composite and Chain of Responsibility patternsin the API.

The Composite pattern is found in several Container-Component methods, although it occurs less frequently
than you might think. The list methods, used to print out the graphical components to a stream, use the Composite
pattern, as does the method readobject (used to serialize object state to a stream). Severa methods fall short of
true Composite behavior because they call different methods for Containers and Components rather than using a
single method defined in the Component class and overridden in the other classes.

Chain of Responsihility is demonstrated in a number of methods. Recall that Chain of Responsibility involves delegation of behavior,
often to the parent in atree structure. Most Component methods that involve getting standard component properties use
this pattern. Examples are getForeground, getBackground, getCursor, and getLocale.

Pattern Use in AWT

Singleton (See page 34): The Toolkit class provides an interesting example of the Singleton design pattern.
Toolkit uses Singleton to produce what is called a default Tool kit and to ensure that this single default Toolkit
isglobally available. This Toolkit isobtained by acall to the static getDefault-Toolkit method, and is
normally used by developersto obtain aToolkit if they need to do things like create a print job. Since Toolkit
is an abstract class, redefined for a specific operating system, it is entirely possible that concrete implementations
of Toolkit have constructors and allow other instances of Toolkit to be created within the system—in fact,
Sun's implementation for Windows does. The “default” toolkit, however, remains the same.

Bridge (see page 150): Y ou could potentially say that the AWT peer architecture is similar to the Bridge pattern,
which separates a component into two hierarchies: an abstraction and an implementation hierarchy. The AWT
components represent the Abstraction for the Bridge, the peers are their Implementor counterparts, and a specific
peer for an operating system is a Concretelmplementor. There are two slight deviations from the classic Bridge
pattern:

Many of the component classes actually perform some behavior, rather than delegating to their Implementor, the
peer.

The component classes are not refined. This means that there is not really a distinction between Abstraction and
RefinedAbstraction asthereisin the classic Bridge pattern.

Prototype (See page 28): AWT aso has anumber of Prototype implementors that have some way of making a
copy of an instance. Predictably, these classes represent potentially reusable resources in the AWT architecture:
Insets, GridBagConstraints, Area, and PageFormat.

Pattern Use in Swing

MV C (see page 208): Probably the best-documented design pattern in the Swing API isthe
Model-View-Controller (MVC) .

Almost all of the complex GUI elementsin Swing use the component-level form of the MV C pattern. There are a
number of excellent reasons for using the pattern, including the following:

It's possible to use a single underlying model to drive multiple view-controller pairs.

190

It's much easier to customize a component using this pattern, since programmers frequently only have to modify
select parts of the component functionality.

Swing implements the MV C pattern very consistently in the API. Model functionality is represented by interfaces,
asis controller behavior. The View elements are managed through a Ul class hierarchy, which has its foundation
in the javax.swing.plaf package. The basic view behavior is set out as a series of abstract classes, which can
subsequently be refined to provide a different look and feel.

Asan example, consider the JButton, the class which is used to represent a ssmple push button. It is associated with a
ButtonModel implementor for the model, aButtonul for its view, and possibly one or more event handlers for
its controller.

Prototype (See page 28): Like AWT, Swing also has anumber of utility classes that can be cloned, and which
therefore implement the Prototype design pattern: AbstractAction, SimpleAttributeSet, HTMLEditorKift,
DefaultTreeSelectionModel.

191

Collections Framework
Packages

jJava.util
Use: J2SE (1.0; organized as an explicit API since JDK1.2)
Description

The Collections Framework allows devel opers to use features, such as dynamic resizing without writing all the
code themselves. The Collections API has changed since collections were first introduced in Java. The
Collections Framework aims to provide a more sophisticated way for programmers to deal with collections of
objects.

It's important to recognize that there's really only one way to store a group of itemsin the Java language—an
array. Arrays are a pretty basic kind of object storage. They provide afixed set of references to objects. The data
type of al the referencesis set during array creation, and the size remains fixed throughout the array's existence.

The classes and interfaces used for the origina collection capability in JDK 1.0 were pretty basic. The JDK
provided just three concrete classes based on two kinds of collections:

Vector and Stack — Collections sorted with an integer index that provides absolute position with the collection.

Hashtable — A collection organized around key-value pairs. The key must be a unigue Object, which is used to
locate the value. The value can be any Object, and is the element intended for storage in the Hashtable. For any
hash structure, the test for uniqueness is based on the return value of the hashCode () method. If two objects
return the same value for hashCode, they are assumed to be equal for the purposes of comparison for their keys.

We've come along way since then. The modern Collections Framework consists of a set of ten concrete classes
that are built on top of an entire coordinating layer of interfaces and abstract classes. What's more, the framework
gives programmers away to modify the functionality of the individual collections. Programmers can use the
java.util.Collections classto enhance an existing collection, for instance to synchronize an unsynchronized
collection.

When the devel opment team created the Collections Framework for the JDK 1.2, they completely retrofitted the earlier collections so
that these “older” collections are part of the new model. It's fairly impressive that they managed to shoehorn the original classesinto the
new framework, especially with so little change to the API. The team was able to update the model with little functional modification
and no deprecation.

Of course, there are afew differences between the original classes and the ones from the new model. The older
collection classes were designed to be thread safe from the start. So, if you look in the documentation for the
Hashtable, Stack, Or Vector classes, you will see alot of synchronized methods.

Are there synchronized methods in any of the modern collection classes? Nope. The new model uses collection
classesto provide basic storage functionality, and that's all. The Col lections class provides methods to create
threadsafe versions of the collections. The example below shows how it's done:

Example 6.1 collections class and threadsafe versions of collections

List internalList = new LinkedList();
List threadSafeList =
Collections.synchronizedList(internalList);

The LinkedList provides storage, and the synchronizedList method makesit into a synchronized collection.
Making synchronization available as an option is areal advantage for programmers. Basically, it means they don't
have to use synchronized collection code (with the associated performance hit) unless they really need the

capability.

As stated earlier, the Collections Framework is based on a set of interfaces. The API has two basic behavioral
chains. Thefirst oneis based on the Col 1ection interface, which represents collections that perform simple
storage used to cross-reference the elements. The second is based on the Map interface, and describes collections
which are organized around key-value pairs.

Collection isthe parent to three subinterfaces:

192

Set — Thisinterface defines methods available to any collection without any defined sequence or ordering of the
contained elements.

List — Thisinterfaces defines behavior for collections which use a numeric index to define an element's
position.

SortedSet — Thisinterfaceis used to describe collections that use ‘ natural ordering” to organize elements. The
elements of aSortedSet must implement the interface Comparable, which defines a compareTo method. The
compareTo method returns a numeric result used to organize the objects within the Sortedset.

Map has a subinterface, as well—the Sortedvap. Like SortedSet, thisinterface is used for maps with natural
ordering. The collections that implement this interface must have a way to compare keys of the elements that will
indicate whether one is greater than, equal to or less than the other. The keys must implement the Comparable
interface.

Pattern Use

A number of patterns figure heavily in the Collections Framework. In the general framework, thereis strong use
of the Prototype and Iterator patterns. The Collections class also has a pattern associated with it—the Decorator.

Prototype (See page 28): The Prototype pattern uses one object as atemplate or basis for the creation of a new
object. Given the purpose of the collection classes, it's not surprising that they all support a copy operation clone.
That copy operation returns a new copy of the current collections. All of the collection classes implement the
Cloneable interface and provide a shallow copy when their clone method is called. In this case, a shallow copy
means that a new collection instance is returned, but all of the internally stored elements are the same objects as
those stored in the original collection.

Iterator (see page69): All Collection implementors give you the ability to retrieve an object to easily (and
generically) cycle through the elements of the collection. The Iterator pattern, too, enables simpler cycling
through the elements of a collection. The Col lection interface defines amethod called iterator, and the List
interface has a listlterator method. These methods return interface implementors that allow users to move
through a collection. The 1terator interface is for forward-only navigation, and the Listlterator provides
both forward and backward movement within a collection. The names are a not-so-subtle giveaway. Actually,
both interfaces fall a bit short of the classic Iterator pattern, since they don't define al of the core
methods—specifically, neither interface provides an explicit first method. The goal is to abstract navigational
functionality from the underlying collection implementation, though. So, the central intent of these interfacesis
the same as for the Iterator pattern.

Collection classes use inner classes to provide concrete Iterators. When you call iterator or listlterator, the
collection creates an inner class object and returns it to the caller.

Decorator (See page 166): The Collections class uses the Decorator pattern to extend the functionality of
collections by providing objects that modify the behavior of the collections without changing the collections. The
class has three groups of methods that generate classes with additional capabilities. Table 6-2 shows the groups of
methods and what they produce:

Table 6-2. Method names and functionality

Begins with Resulting functionality

singleton Produces an immutable, one-element collection
synchronized Produces a collection with synchronized methods
unmodifiable Produces an immutable collection

Calling any of the methods from these groups produces an object that enhances the capabilities of the collection
that you passin and adds to what it can do.

The Collections class actualy has a set of inner classes that it uses to provide these added capabilities. So,

calling synchronizedCol lection will generate awrapper object around the inner collection which will ensure
that methods belonging to the Col 1ection interface will be synchronized.

Note:

193

There's one exception to that rule. Creating a synchronized collection will not give you a synchronized iterator
method—you have to manually synchronize the Iterator and Listlterator.

It's tempting to think that the methods prefixed with the word singleton represent the Singleton design pattern.
However, the intent of the methods is quite different. These methods do not ensure that you can have only one
instance of the collection object—they ensure that the collection can only contain a single element. Any attempt
to add or remove elements from the resulting collection will result in an UnsupportedOperationException.

194

Input-Output (1/0O)

Packages

Java.io

Use: J2SE (since version 1.0)

Description

The main goal of the Javal/O API isto alow developers to use streams. Streams provide basic input-output
capabilitiesin Java. If you want to writeto afile, use a stream; if you want to read from standard input, use a
stream. If you want to write across a network—well, you get the idea.

The java. io package contains four general types of stream, which are based on four abstract classes. These

classes provide functionality based on stream direction (input or output) and level whether the stream information
is based on bytes or characters.

Table 6-3. Stream types in the java.io package

Low-level (bytes) High-level (characters)
Input ‘Output Input ‘Output
InputStream ‘OutputStream Reader \Writer

All other streams in Java subclass one of these four classes, and extend the functionality of the class by adding a
specific capability. For example, the FileWwriter isatype of Writer (output, writes characters) and it adds the
ability to write characters to afile on disk. The batalnputStream isakind of InputStream (input, reads bytes)
and it also alows developersto read different data types, such as an int, float, or boolean vaue.

How do you create a stream with combinations of abilitiesin Java? Y ou “chain” them together, using the concept
of afilter stream. Y ou can attach filter streamsto other streams by passing the target stream into the filter's
constructor. The filter can then add its own functionality to the associated stream. For example, you could read
lines of text from the standard input stream by using these lines of code:

Example 6.2 Streams in Java

BufferedReader readln =
new BufferedReader(new InputStreamReader(System.in));
String textlLine = readln.readLine();

In this example, input ultimately comes from System. in (keyboard input) in the form of bytes. By adding an
InputStreamReader, you can use the passed bytes to make Java language characters. Finally, the
BufferedReader places the characters from the InputStreamReader into a buffer. The BufferedReader can
detect when the end of line is reached, and release the buffered characters asa string.

Therearen't alot of stream classesin the java. io package. However, since you can mix and match filter streams,
you ultimately have much more functionality available than you might think. Y ou can think of Javal/O asa
pipeline. When you write code, you attach different 1/0 objects, or “pipes,” to each other. With each section of
pipe added, you modify the flow through the pipeline.

Pattern Use

It's evident that alot of 1/O programming involves stream chaining. To support this capability, the API relies
heavily on avariation of the structural pattern, the Decorator (See page 166).

Each of the four abstract classes— InputStream, OutputStream, Reader and Writer —acts as the base for a
decorator chain. The 1/0 classes that support decorator behavior have one or more constructors that accept an
argument of another 1/0O classto chain. java. io contains the following categories of 1/O classes:

Base /O classes (also called node streams) — These classes provide endpoints of communication; they are

actually attached to some end location. For example, aFi leReader is not a decorator becauseit is directly
connected to afile.

195

Paired streams— At first glance, these streams might appear to be Decorators, since they have the ability to be
attached to another stream. However, the classes are actually designed to work in complementary pairs— the
output of one feeds the input of another. Y ou can think of these classes as base /O classes; they can be decorated
themselves, but their true function is to establish a communication channel to another stream.

PipedWriterFilter streams— Thefilter streams use the Decorator pattern to support chaining. The filter
classes use the following rules to manage decorator behavior:

A filter decorates a class using a constructor that accepts one of the four base I/O classes. InputStream,
OutputStream, Reader, Or Writer.

Thefilter class usually decorates classes of the same type. This meansthat an InputStream that isalso afilter
will decorate another InputStream, for example. The important exceptions to thisrule are the
InputStreamReader and OutputStreamWriter, which translate between bytes and characters.

196

Reflection
Packages

jJava.lang.reflect
Use: J2SE (since JDK 1.1)
Overview

Thereflection API allows you to discover information about classes and objects at runtime. This capability is
called introspection, and is useful when you want to dynamically include new classes in your programs while they
are running. Using reflection, you can load a class dynamically using only its name.

Although most of the API isin java. lang.reflect, you should also regard java. lang.Class as part of this
API . TheclassClass acts as a gateway to the reflection functionalities. The reflection API defines several
classes that encapsulate the different types of information, classes like Method, Field, Constructor, and
ModiFfier. These classes are final and, except for the Modifier, only the VM can create instances of these types.

Thanks to this API, you can dynamically use instances of previously unknown origin; for instance, when the class of an object is
unknown at the time of development. Y ou can invoke methods, call constructors, modify fields, create new arrays, and
access and modify their elements.

Example 6.3 Using instances of unknown origin

Class class = Class.forName(''some class name');
Object o = class.newlnstance();

The code demonstrates how you can create an object from only having the name of the class. The method
forName takes a String as argument and tries to locate a class file matching that name and loads that classin the
class loader. The method returns an instance of Class which describes the class. When newlnstance is called on
the Class object it creates an instance using the constructor with no arguments. The String could be read from a
file, property or other source.

When you receive an object from somewhere and you want to find out the specific type of the instance, use code
similar to the following code. The method getClass returns the Class instance describing the class of the object.
The method getName returns the name of the Class.

It can be useful sometimes during debugging, when you don’'t know the type of areceived object:

Object unknownTypeObject = //received somehow
System.out.printIn(unknownTypeObject.getClass() .getName());

An addition to the Reflection APl was made when J2SE v1.3 was released. As of 1.3, you can use the dynamic
proxy class. The classis created at runtime and implements a number of interfaces specified at runtime. The
Proxy class, which isresponsible for creating this class, also acts as the superclassto every proxy.

The method to create an instance of the dynamic proxy takes three arguments: a ClassLoader, an array of
interfaces, and an InvocationHandler. The proxy instance created delegates all method calls to the
InvocationHandler, which isresponsible for carrying them out. To keep the invocation as generic as possible,
the InvocationHandler implements a single method, invoke.

The Reflection API provides many advanced features, many of which the average developer will never use. The
flexibility that reflection offers through these advanced features comes at a price, which is performance.
According to Effective Java [Bloch01], interfaces should be preferred to reflection.

However, this doesn't mean that reflection is obsolete. Certain applications can receive great benefits from
reflection, particularly those based on JavaBeans, object inspectors, interpreters, and services like object
serialization, which need to get information on an object at runtime.

Pattern Use

Factory Method (see page 21): The Factory Method pattern is used to create instances without having to call a
constructor directly. It also enables you to gain the option of returning different types instead of just the class of

197

the constructor called. Given the dynamic nature of the dynamic proxy, using aregular constructor wouldn't work,
because you need to know the name of the class/ constructor before you can invoke it. When using a constructor
isout of the question, the next best thing is a static method to create an instance. The class Proxy has two factory
methods; one (getProxyClass) gets the Class object that describes the dynamic proxy with the specified
interfaces. The other factory method (newProxy Instance) is more of a convenience method. It uses the
getProxyClass method to get the class, then uses that Class to get the constructor and invoke the constructor.

The Array class, which is the wrapper class for arrays implements the Factory Method for a different reason.
Creating an array requires knowing the exact type of the elements, and the resulting object is an array of elements
of that particular type, which cannot be changed later. Thisislike the normal array where you declare the type
when the array is created and cannot be changed. The object created by the factory method is not an instance of
Array, which eliminates the possibility of using a constructor, because the constructor of Array returns an Array
instance. So instead of a constructor, a Factory Method is used.

Facade (See page 175): In this API the class Class acts as afront to the whole reflection of areal class. The
most-used options are available through the Class. The other reflection classes are still available for more
specialized modification, invocation, or reflection.

Proxy (see page 197): TheclassesField, Method and Constructor encapsulate the whole concept of a specific
field, method, or constructor respectively. Y ou can request all information through the reflection classes. For
example, using aMethod object, which istied to a specific method in a class, you can request the declared
modifiers, alist of parameter types required to invoke the method, and the return type. Y ou can even use the
Method object to invoke the method.

The Method class acts as a proxy to the specific method. Instead of being a proxy to another object, here the
Field, Method, Constructor, and Modifier are proxiesto parts of an object.

Another implementation of the Proxy pattern is the Proxy class. The factory method in the Proxy class creates the
required class for the needed functionality. The resulting subclass of Proxy implements all specified interfaces
and methods. The implementation of the methods are such that all calls are forwarded to the single handler
method inside of the InvocationHandler.

To the outside world, an instance of the dynamic proxy behaves as expected. All of itsinterfaces and all defined

methods can be invoked on the proxy instance. The real implementation of the methodsisin the
InvocationHandler.

198

Chapter 7. Distributed Technologies
Java Naming and Directory Interface (JNDI)

Packages

Javax.naming, javax.naming.directory, jJavax.naming.event, javax. naming.ldap, javax.naming.spi
Use: J2SE (JDK 1.3), J2EE (J2EE1.2)
Description

The Java Naming and Directory Interface APl was developed to provide a standardized way to access |ookup
services from within Java code.

It's avague definition, but it’ s that way on purpose. JNDI allows you to standardize access across a whole range
of naming and directory services. It'slike having al the phonebooks in the world at your fingertips, without
actually having to carry them around with you. Which actually makes it more like having 24-hour accessto a
telephone operator who has the compl ete set of phonebooks.

In the pre-JNDI days, developers had to use individual APIsto access different services. For instance, to
communicate using RMI, an IT group would potentially have to set up and maintain an RMI registry
implementation so that applications could find out which servers hosted which remote objects. To manage JDBC
communication, the group would have to set up some way to store lookup information for a remote database. To
manage directory services, they would have to maintain some scheme to manage navigation within their directory
schema.

That’ s three different lookup services, with three different technologies, potentially handled three entirely
different ways. Some IT departments might welcome the challenge, but the frustration of development and
maintenance would quickly drive most devel opers bananas.

JINDI consolidated the task of managing lookup services, so that an application could use the single technology for all its
needs. What's more, INDI made it easy to separate the configuration of the resources from their lookup
characteristics, so that you need to put amost no environment-specific information in your code.

INDI isalso fairly easy to use. To access aresource, just create a helper object called aContext, Use it to retrieve aresource by
its logical name, then convert it to the expected object type, as shown in Example 7.1:

Example 7.1 using JNDI

Javax.naming. InitialContext jndiCtx = new InitialContext();
Object resource = jndiCtx.lookup(*'datasource™);
Javax.sql .DataSource hal = (Javax.sgl.DataSource)resource;

Once JNDI returns the resource, you just useit as you normally would. In this case, the DataSource could be
used to connect to a database.

Java applications use the INDI API to access a JINDI Naming Manager. The Naming Manager in turn uses one or
more JNDI service provider interface (SPI) implementations to access underlying managed services. These
services might be associated with directory structure and file storage, such as LDAP, NDS or NIS or they might
equally well be associated with distributed object communications, such as RMI or CosNaming for CORBA.

Two major types of INDI services are available. Naming services provide away to associate an object with a
name. Y ou can subsequently use The name to locate a specific object. Directory services offer away to group
lookup information in alogical hierarchy, like adirectory structure. In the hierarchy, names are associated with
directories, which can in turn maintain sets of attributes and values. For both naming and directory services, the
JNDI nameis simply shorthand used to identify an object in a computing environment. In the same way that
names are shorthand for representing people, the INDI names represent complex objects.

In INDI, a context represents the starting point that developers use to look up aresource. A context holds a set of
associations between names and objects called bindings. A context also enforces a naming convention, whichisa
set of rules used to establish what constitutes an acceptable name.

JINDI consists of five packages, which do an admirable job of partitioning related capabilities. Table 7-1 shows the functional
breakdown:

199

Table 7-1. Packages and corresponding use

Package Use

Javax.naming Provides the basic INDI framework.

Jjavax.naming.directory Provides extensions for directory services.

Jjavax.naming.event Provides extensions for event handling.

Jjavax.naming. Idap Provides extensions to support LDAP v.3.

Jjavax.naming.spi Service-provider interface. It’sthe core model that is extended to provide an
underlying service that INDI uses.

Pattern Use
The following patterns are features of certain kinds of JINDI resources:

Factory Method (see page 21): The Factory Method pattern provides a standard method to create some product,
so this pattern is typically encountered for any JNDI resource that is capable of producing a connection. This
pattern istypically encountered for any JNDI resource capable of producing a connection. One of the best
illustrations is the JDBC DataSource, often stored in INDI as part of a J2EE solution. The DataSource classis
actually a Factory for Connection objects enabling clients to communicate with aRDBMS.

Factory patterns are very much in evidence in the service provider interface. Underlying service implementations
that are paired with INDI require factories so that API calls can be paired to implementations that map to the
underlying service structure. The DirObjectFactory, DirStateFactory, InitialContextFactory,
ObjectFactory, and StateFactory al provide Factory Method implementations that subsequently produce
concrete products which are associated with specific kinds of services.

HOPP (see page 189): Many distributed communication technologies can support division of functionality
between local and remote objects, so it's no surprise that RMI, CORBA and EJB technologies are al capable of
supporting a HOPP implementation. Of course, INDI itself does not directly support or implement the pattern, but
since it provides a channel for these remote objects, it aids in the distribution.

Prototype (See page 28): The JNDI architecture provides afew Prototype implementations to support the
duplication of objects. In INDI, this pattern mostly applies to lookup resources, the objects used to keep track of
resource names or directory attributes:

Javax.naming: Reference, Name, CompoundName, CompositeName

Javax.naming.directory: BasicAttribute, Attributes, Attribute, BasicAttributes

200

JDBC

Packages

java.sgl JDBC 2.1 Core API

javax.sgl JDBC 2.0 Optional package

Use: J2SE (1.0; restructured to JDBC 2.1in 1.2)
Overview

Databases are everywhere; it’ s hard to imagine a big enterprise application without some kind of persistence. To
access the data in those databases from Java, you can use Java Database Connectivity (JDBC). JDBC isageneric
SQL database access framework that provides a uniform interface on top of avariety of different database
connectivity modules. JDBC provides away to manipulate the data in a database independent from any particular
DBMS.

One of the challenges with this kind of framework is that each database can have its own SQL version, with
minor but important differences. The framework had to be flexible as well as ssimple. This resultsin an API with
only afew interfaces, and only afew methods in each interface. The consequence is that JDBC is reasonably easy
of use.

To communicate with the database, you need a driver that understands and speaks the databases protocol. Y ou
can get this drive with the database from the vendor, or from some third party. The driver contains
implementations for the interfaces specific for this protocol.

Every driver has a class that implements the Driver interface. When the classis|oaded, it creates an instance of
itself and registers with the DriverManager. The DriverManager keepsalist of driversit can use. When a
connection is requested the DriverManager triesto locate a suitable driver. DriverManager checksitslist of
drivers and starts with the first driver specified at creation time (readlng ‘from the jdbc.drivers property) and
continues until a suitable driver has been located. Drivers that were loaded during execution are added to the end
of thelist, so they aretried aswell, but later. After aswtabl e lisfound, the getConnection method returns
aConnection instance. The Connection object representsth session with the database. When aclient calls the
createStatement method on a Connection object, the Co nection object creates a Statement objects for
executing SQL queries on the database. Other pes of Statements for more specialized purposes are available, as
well.

The statement object is the object that receives a SQL statement as a String from the client and executes the
guery on the database to change or retrieve information. Depending on the type of query, either executeUpdate or
exceuteQuery is called. The Statement returns a ResultSet when information is requested (SELECT).

The ResultSet object is arepresentation of atable of datathat encapsulates the result of the executed SELECT.
Every time you call the next method on the result set, to iterate through the data table, the cursor is set to the next
line in the results. When the cursor is moved to the next line, you can retrieve the values in the columns of that
specific line. To read other lines, you call the next method multiple times.

Databases tend to grow fairly large so the results could be big, as well. To prevent memory problems from occurring, the Resul tSet
fetches only alimited number of rows in batches. When the end of the current batch is reached, the Resul tSet
requests a new batch from the database. Thisis transparent for the user.Typical use could be as shown in Example 7.2:

Example 7.2 obtaining results from a database

Connection con = DriverManager.getConnection(‘'some url');
Statement stmt = con.createStatement();
String query = "SELECT * FROM students WHERE ' +
' 1q GREATER THAN 140 AND sociallife="non-existent™"

ResultSet nerds = stmt.executeQuery(query);
while (nerds.next()) {

String name = nerds.getString(l);

int Ig = nerds.getInt(2);

//read entries from the resultset and process them

}

201

JDBC originally only supported going to the next row in the result set, because this is the most basic functionality
that all supported datbaases provide. Currently many databases have a more advanced control structure, so more
advanced features are implemented in JDBC 2.1. Resul tSets now support moving forward and backward
through the results, as well as relative and absolute positioning of the cursor. Also they have the option of being
updatable. This means that if you execute a query and then the underlying database changes, the result set
changesto reflect it.

The more advanced features like support for INDI naming, Java Transaction Service (JTS) API, connection
pooling, and rowsets are in the optional package (javax.sql).

Pattern Use

The JDBC framework consists of many related objects that are only defined by their interfaces. This requires
static methods so that you can create instances of the implementing classes without knowing their actual class.

Abstract Factory (see page 6): Classes that implement the Connection interface use the Abstract Factory
pattern. The Abstract Factory provides flexibility. Y ou can write an application without knowing what database
has been or will be chosen. Y ou know the Connection interface, and you therefore know how to create
statements.

This benefit of flexibility also extends to runtime. The implementing class is determined at runtime, so the
application doesn’t need to be changed just because another database or another driver has been chosen.

Factory Method (see page 21): It's easy to see that JDBC uses Factory Methods quite heavily. JDBC was
designed to be flexible so that developers could use the framework without knowing the implementing classes.
Therefore most of the JIDBC API consists of interfaces. Because you can not call the constructor on an interface,
Factory Methods are used to create instances of the required type. Thisis the case with the getConnection
method in DriverManager. It instantiates an object that implements Connection and returns that object.

The Factory Methods provide a flexible way of creating objects without having to know their actual type.

Bridge (see page 150): The Bridge pattern underlies the whole JIDBC API. JDBC provides a uniform interface
to multiple databases. It is this collection of interfaces that provides the decoupling of the implementation from
the client, the purpose of the Bridge pattern. The interfaces are the functional abstraction that separates out the
implementation.

The application that uses JDBC can change without affecting the implementation of a JDBC driver. The

driver—that is, the implementation of the JIDBC interfaces—can change its internal workings, and the application
that uses the driver can remain unchanged.

202

RMI

Packages

Java.rmi, java.rmi.dgc, java.rmi.registry, java.rmi.server, java.rmi.activation
Use: J2SE
Overview

RMI enables you to communicate by making remote method calls. Basically, it allows an application to run
methods on objects that are not in the same address space. This enables Javato use the same approach for
distributed communication as it does for local communi cations—the Java client can make a series of simple
method calls to a object. Neither the client nor the server needs to write large amounts of code to manage remote
communication in RMI—the task is handled behind the scenes by the RMI communications infrastructure.

RMI uses an interface to define the methods which can be called on the RMI server by the client. Thisinterface
must extend java. rmi .Remote, which identifies any class that uses the interface as an RMI participant. The
interface is used by both the RMI client and server. The server implements the interface, providing the actual
functionality. The client uses the interface to identify which methods it can run remotely.

To call methods on an RM1 server, a client must get areference to the remote server object during runtime. The
client must obtain an object called a stub which enables it to locate and communicate with a specific remote
object running in some other address space. There are two ways to get a stub so that you can make remote method
calls. The most common way isto use a naming service, such as JNDI or the rmiregistry. Naming services allow
clientsto perform lookup operations for remote objects, and to obtain stubs for remote communication. Another
way to obtain a stub isto make a remote method call on an object which itself returns a stub.

The stub on the client is responsible for communicating with the remote object on the server. It greatly simplifies
the task of remote communication for the client. In client code, a remote method call looks exactly like an
ordinary method call. When a client application makes a remote method call, the stub receives the call,
communicates with the server, and returns the result to the client.

The stub marshalls arguments used in methods, and the stub unmarshalls the return value before returning it to the
client. Marshalling is a specialized form of serialization, where the object iswrapped in a
java.rmi.MarshalledObject. TheMarshal ledObject contains the serialized object URI where the class file of
the send object can be located, plus codebase, annotated with a codebase property. The codebase is a String
representation of the URL where the object's class file is located.

Creating an RMI application is not complicated. The first thing to do is define the remote interface; that is, the
interface that determines what methods are available remotely. It has to extend java.rmi.Remote and all methods
have to declare throwing at least ajava.rmi.RemoteException.

The remote object implements the remote interface however it sees fit. When aremote object is send across its
address space, not the remote object is send, but the stub is. To accomplish this the remote object has to “export”
itself, which means that the JVM has to be notified that thisis a remote object and it should behave accordingly.
An unexported remote object sent across the wire behaves like any other regular (non-remote) object and gets
copied across the network. This can lead to unexpected behaviour. There are two ways to export a remote object.
Thefirst isto extend java.rmi.server.UnicastRemoteObject. In the constructor of this class, the object is exported.
The other way to export the remote object is to explicitly call the exportObject method in UnicastRemoteObject.
Then the remote object is not required to extend UnicastRemoteObject.

To make the remote object available to other objects, the remote object can register itself with a name service.
The client looks up a remote object through a name service. It gets an object back, which it can cast to the
expected type (remote interface) tied to the name used in the request. From there on, the client uses that object to
invoke methods on. The stub forwards the calls to the remote object and waits for the return value. The stub may
throw java.rmi.RemoteException to signal that there was a problem in communicating with the remote object.

The stub can be automatically generated by the rmic tool.

203

Pattern Use

Abstract Factory (See page 6): The Abstract Factory pattern is used to create families of related products. In RMI,
the RMISocketFactory implements this pattern by defining methods to create the sockets used in RM|
communications. The RMISocketFactory defines abstract methods to create the client and server sockets used
for RMI communications. On a specific VM, a concrete subclass of RMISocketFactory will provide the
functionality to create the RM1 sockets.

Factory Method (See page 21): An Abstract Factory will often use one or more Factory Methods to create its
individual products. The two interfaces implemented by RMISocketFactory, RMICIientSocketFactory and
RMIServerSocketFactory, define factory methods for the creation of client and server sockets, respectively.
These interfaces are implemented in RMISocketFactory as abstract methods, and a subclass supplies concrete
implementations of these methods for RMI during runtime.

Decorator (see page 166): The Decorator pattern lets you extend an object's functionality by creating another
object. This object has the same interface as the original and references the original object for most operations,
but adds some additional features.

RMI uses the Decorator pattern during object serialization. When RMI sends objects to another address space, the
objects are marshalled; the java. rmi .Marshal ledObject class handles the task of sending and receiving copies
of the objects. To do this, the Marshal 1edObject class uses a sub-class of the java. io.ObjectOutputStream
and the java. io.ObjectInputStream during communication. These special subclasses extend the basic
functionality of their underlying java.io. InputStream and java. io.OutputStream by alowing two
MarshalledObjects to be compared for equality even if they reside on different VMs.

Proxy (see page 197): The RMI stub, which is used by a client to communicate with a server object, is an
implementation of the Proxy pattern. The stub implements the same remote interface as the remote object on the
server, so it acts as the remote object for the RMI client. When a client makes aremote call, the stub forwards the
method call to the real remote object on the server. The benefit here is that the network communication is hidden
from the client. It frees the client from setting up connections, managing a communication session and
participating in distributed garbage collection.

204

CORBA

Packages

JavalDL: org.omg.CORBA, org.omg.CORBA_2_3, org.omg.CORBA_2 3. portable,
org.omg.CORBA_DynAnyPackage, org.omg.CORBAORBPackage, org.omg.CORBA.portable,
org.omg.CORBATypeCodePackage

CosNaming: org.omg.CosNaming, org.omg.CosNaming. NamingContextPackage, org.omg.SendingContext
RMI-11OP: javax.rmi .CORBA, org.omg.stub.java.rmi

Use: J2SE (JDK 1.2)

Overview

The Common Object Request Broker Architecture, or CORBA, is a distributed object communication
architecture. In ssimplest terms, it's away for an application to request services from another application by calling
remote methods.

CORBA pretty much provides the ultimate in interoperability. Many programming languages support the
CORBA standard, and the architecture is defined so that a client and server written in different
CORBA-compliant languages can interact without knowing or caring about remote implementation details.

Central to the architecture is the Object Request Broker, or ORB. The ORB functions as the router for all
distributed communication. Every client and server in a system depends on an ORB for messaging.

To interact with the ORB, CORBA participants map their code to IDL, the Interface Definition Language. IDL is
aplatform-neutral language used to define calling interfaces for CORBA participants. Thisis key to the magic
behind client-server communication. IDL provides a description of the contract between a client and server. In
thisway, a client knows what methods it can invoke, but does not know what language the methods will be
written in.

The CORBA framework uses the Internet Inter-ORB Protocol (110P) to manage its distributed communication. This lower-level
protocol was introduced in recent revisions of the CORBA specification to enable distributed communications across the most pervasive
of networks—the Internet.

Java and CORBA

The Java APl was created to allow Java programs to interoperate with the CORBA model at several levels. Three
CORBA-related technologies are represented in Java APIs. JavalDL, CosNaming, and RMI-110P.

JavalDL — JavalDL represents direct CORBA capabilities in the Java programming language. The API, with its
associated compiler tool, provides away to map between Java code and the Interface Definition Language.
Practically speaking, this means that Java code can use the API to function as a CORBA client or server module.
In broader terms, the API alows a Java program to interact with an ORB, effectively allowing Java programsto
leverage the power of CORBA.

CosNaming — The CosNaming service provides a way for Java programs to use a CORBA naming service. CORBA’ s naming service
pretty much does what you'd expect it to do—it keeps track of an object with a string representing the object's name.

A Java server using CosNaming will register its remote objects with the service; a client will look them up and
use them. Thisis sort of like the services provided by the Java Naming and Directory Interface—well, actualy,
it'sidentical. CosNaming was introduced before INDI to accommodate Java CORBA applications. JINDI has
subsequently integrated CosNaming as one of its possible services. This means that you can write CORBA
programs that use the original API to implement Cos-Naming, or you can use JNDI to access the CosNaming
services.

RMI-11OP - RMI-110OP was arecent addition to the batch of CORBA technologies. It allows RMI programsto
communicate using CORBA’ s underlying protocol. Originally, RMI used a protocol called the Java Remote
Method Protocol (JRMP) to provide transport capabilities. This protocol was developed by Java and for Java;
there are no other technologies that use or support it. I1OP, on the other hand, which is CORBA’s communication
protocol, is very widely supported. It makes sense, given Java's goals of universality, to use a protocol like [1OP
for interapplication communication.

205

It's atribute to the RMI architecture team that they were able to transparently swap out JRMP for CORBA’s |10P.
There are no changes to developer code at all; it's all done behind the scenes. Y ou can convert an existing RM|
application to [1OP without changing aline of code.

Together, these three technol ogies compose the CORBA functionality in Java. Actually, Java developers use very
few of the classes in the packages when writing code. For JavalDL, the ORB classisthe one that is used in the
majority of applications. For CosNaming, there are about half a dozen classes and interfaces which are commonly
used. And RMI-110P solutions rarely use any of the classes defined in the packages.

So what about all the CORBA classes and interfaces? What happens to them? The CORBA APIs have atota of
143 classes that provide support services. That is, the classes are used by code that is generated by associated
CORBA utilities, such as idl2java.

Pattern Use
The CORBA APIsin Javaimplement afew basic design patterns.

Singleton (see page 34): The ORB is supposed to provide a single point of contact for CORBA communication in
aJVM. This means that there can only be one instance of an ORB in any running Java application. To satisfy this
requirement, the API uses the Singleton pattern. The ORB class in the org.omg.CORBA package provides an
implementation of the Singleton pattern. Its init method provides a single-instance ORB resource for usein Java
applications.

Factory Method (See page 21): The ORB class provides many create methods, since it isthe main resource

provider for CORBA solutions. A number of these methods satisfy the requirements for the Factory pattern,
producing objects that can be flexibly specified during the creation process.

206

Chapter 8. Jini and J2EE Architectures
Jini
Packages

Core packages. net.jini.core.discovery, net.jini.core.entry, net.jini.core.event,
net.jini.core.lease, net.jini.core.lookup, net.jini.core.transaction,
net.jini.core.transaction.server

Utilities and helper packages. net.jini.admin, net.jini.discovery, net.jini.entry, net.jini.event,
net_jini.lease, net_jini.lookup, net_jini.lookup.entry, net.jini.space, com.sun.jini.admin,
com.sun.jini.discovery, com.sun.jini.fiddler, com.sun.jini.lease, com.sun.jini.lease.landlord,
com.sun.jini.lookup, com.sun.jini.lookup.entry, com.sun.jini.mahout,
com.sun.jini._mahout.binder, com.sun._jini.mercury, com.sun.jini.norm, com.sun.jini.outrigger,

com.sun.jini.reggie, com.sun.jini.start (And you thought the Swing list waslong.)
Use Jini 1.0
Description

Although many applications claim to use a service-based architecture, Jini truly promotes a service-based
architecture. Thisis done by creating clear and simple interfaces.

The main assumption in Jini isthat the network is an entity to be aware of, and that is unreliable. How often have
you tried to download afile and it failed, or connect to some server and the server was not available. Not to
mention the incredible speed that all users get on the Internet. The network isnot just alinein your UML diagram;
itisavery rea part of your system. A disconnection can occur (user trips over awire), the bandwidth can be very
slim, and a multitude of errors can occur on any type of network. The same unreliability holds true for every
network.

Jini forces you to at least acknowledge that the network exists and things might go wrong. And that forced acknowledgement provides
you with the opportunity to handle the errors, before the application blows up in your face or the user’s.

The Jini architecture was designed with the following goals:
Enable network plug-and-work

Erase software/hardware distinction

Enable spontaneous networking

Promote service-based architecture

Promote simplicity

Lookup Service

If you want others to use your service in a service-based architecture, you provide them with your interface as
they know how to use your service. Because of this, interfaces are essential to Jini services. Service users are
unaware of the particular implementing class, so they want to be able to search for any implementing class for a
specified interface. Thisis somewhat similar to RMI.

RMI uses a naming service to bind a name to a particular object. However, using anameisvery limiting. If you
don’t know the exact name, you' re stuck. It makes much more sense to be able to look up something the same
way asin the yellow pages section of the phone book; by capability. And in Java, capability is specified in an
interface. For this purpose, looking up services by interface, Jini introduced lookup services. The lookup service
interface isdefined in net. jini.lookup.ServiceRegistrar.

ThisServiceRegistrar isthe repository for Jini services. Services register themselves with the
serviceRegistrar and service consumers (users of the service) ook up servicesin it. It supports the lookup
services based on atemplate (net. jini.core. lookup.ServiceTemplate) to retrieve any arbitrary service that
fulfills the template or a collection of services that comply to the template.

207

Another way Jini provides flexibility and ease of useisin how the lookup services are discovered. Although it is
possible to specify on what machine(s) alookup service is running, lookup services can be located dynamically at
runtime. So neither the Jini service nor the service consumer need to know where the lookup service is running.

Within Jini the part of a Jini service that is transported across the network is called the Service proxy even though that object may be the
full Jini service.

Leases

One of Jini’s most distinguishing features is leases. Every resource a service consumer uses, or isinterested in, is
leased. A lease is an acknowledgement from the user of the service to the service (holder of the resource) that it is
still interested in that particular resource. The lease has a duration after which the lease expires and the resource
can be reclaimed. If the service wants to continue to use the resource it has to renew the lease. If the service
consumer fails to renew the lease (no longer interested, network failure, and so on), the resource can be reclaimed
and re-used.

Thelease is not a guarantee. A service consumer can faithfully maintain the lease, but the lease can still fail. The
service can cancel leases and free resources whenever it sees fit. The recommendation here is of course that the
service should only do that when necessary. It can even happen while the service consumer is using the service.
However, lease failure is not as devastating as it may seem. Y ou have already recognized that the network is
unreliable, so the service consumer has to be prepared to deal with the unavailability.

Suppose the leased resource is a telephone line service and the service has 10 phone lines available. Normally
when those 10 lines are in use and anew lineis requested, it will be unavailable. But suppose afire has broken
out, the need for a phone line istop priority. The phone line service cancels the lease on one of the phone lines,
claims the resource (the phone line) and makes it available for the call to the fire department.

The lease concept is almost everywhere. When a service registers with the lookup service, one of the things the
servicereceivesback isanet.jini.core. lease.Lease instance. The service uses that object to cancel or renew
the lease it has on the lookup service. When the service fails to renew the lease (or cancelsit), it will be removed
from the lookup service. This practice keeps the lookup service up to date.

Distributed Events

The traditional Java event handling is not suitable for distributed events. One reason is that not a single method in
alistener interface throws aRemoteException, which isrequired for the listener to be in another address space.
Furthermore, the event objects keep areference to the source. If that source is a GUI component, that component
has to be serialized to be sent across the network. The trouble is that this results in the entire graphical user
interface being serialized and sent, because all components keep a reference to their parent. In distributed
programming the objects have to be as small as possible. The last reason is that the current event handling system
does not support leases.

The Jini event handling system has to keep the uncertainty of the network in mind. Instead of having many
different listener interfaces, Jini only provides one, net.jini.core.event.EventListener, with only one
listener method notify(net.jini.core.event.RemoteEvent re). And the notify method throwstwo
exceptions. UnknownEventException and RemoteException.

The RemoteEvent isintended to be as small as possible, while still carrying the information required by the
listener. It extends from java.util. EventObject, SO it contains a source (the remote service), an event ID, a
handback object, and a sequence number. The event ID serves as an identifier to the specific events the listener
has registered to. The handback object is, as the name suggests, the object that the listener provides when
registering and that the event source hands back to listener when the event occurs (see “Pattern Use” in this
section). Finally the sequence number is provided for the uncertainty in the network. Events could arrive out of
order or some may just disappear. It isup to the listener what action to take if events arrive out of order.

The event ID and the sequence number are unknown to the listener before registering. When the listener registers,
the event source returns an instance of net.jini.core.event.EventRegistration, which contains the eventID,
the current sequence number, aLease object, and a reference to the source.

Pattern Use

HOPP (see page 189): When aJini client (either a service wanting to register or a service consumer wanting to
look a service up) wants to use lookup service, it first locates one or more instances through the discovery

208

protocols. It can use a LookupLocator, aLookupDiscovery, OF alLookupLocatorDiscovery to discover a
lookup service.

When the client has discovered alookup service it receives an instance of aServiceRegistrar. The
ServiceRegistrar isvery likely to be aremote object and the instance received is a proxy to that remote object.

Every servicein Jini hasaunique ID. A lookup serviceisa Jini service, so it hasan unique ID. That ID should be received by the
service once and afterwards remembered whenever it restarts. Although the ServiceRegistrar proxy forwards most callsto
the remote object it doesn't make sense to make an expensive remote call when the result doesn’t change.
Therefore the service proxy keeps an attribute with the value of the service ID of the lookup service.

Proxy (See page 197): The meaning of aproxy in Jini isbroader than the Proxy design pattern. In the Proxy
design pattern, a proxy is a placeholder to another object. In Jini the part of the service that is downloaded to the
service consumer is called the service proxy. But that service proxy might very well be the full service, completely
transparent to the consumer.

Observer (see page 94): When a service consumer is looking for a specific type of service, the service might not
be available at the time of the request. It would be inefficient to repeat the lookup until aserviceisfound. It is
much better to do the lookup once and be notified when a change has occurred. To do that the client uses the
notify method on the ServiceRegistrar object. Because this involves remote event handling the consumer
supplies the template for the service it islooking for, the handback object, the remote listener instance to be
notified of the change, a requested |ease duration and the type of transitions.

209

Java 2, Enterprise Edition (J2EE)

Overview

The advent of J2EE marked an important evolutionary shift in Java, a shift from treating the language as a series
of APIsto representing it as a development framework. Conceptually, that's exactly what J2EE is—an
architectural framework used to create enterprise applications.

Since the release of JDK 1.1, distributed programming technologies have been a special strength for Java. Sockets,
JDBC, RMI, CORBA—all have offered programmers ways to develop multitier distributed applications.

With the introduction of J2EE, however, the application of these technologies underwent a dramatic
metamorphosis. J2EE went beyond providing APIsfor asingle form of distributed communication; it defined an
entire model intended to support distributed architectures.

Asits name implies, J2EE is substantially more than a single technology. As an “edition,” J2EE represents a
collection of Javatechnologies that can be used together to implement an architectural model. In this case, the
model isintended to support the development and deployment of large-scal e distributed applications.

Core J2EE Concepts

This section covers the core J2EE concepts, after which specific J2EE technologies will be covered.
J2EE Tiers

Fundamentally, the J2EE model is based on four logical units, or tiers, for an enterprise application:

Client tier — Provides auser interface. The client tier can be written in Java, or it can be designed using some
other programming language. In J2EE, the client tier usually communicates with the Web tier using HTTP. In
some J2EE applications, the client tier interacts directly with the EJB or database tiers.

Web tier — Represented by a Web browser or standal one client application, provides enterprise functionality to
an end user. The web tier hosts the Web application, which provides application functionality to clientsin the
form of arelated set of HTTP-transported content. Thisistypically scripted documents using technologies like
HTML or XML.

EJB tier (or application server tier) — Acts as host to the object-oriented business model, representing the
application in terms of arelated set of objects relating to the problem domain.

The database, or persistence, tier (also known as the Enterprise Information Servicetier) — Represents all
enterprise resources for the application, such as databases, legacy applications, or collaborating enterprise
systems.

Of the four tiers, the ones most strongly associated with Java technology are the web tier and application server
tier. Although the other two tiers of the system can potentially leverage Java technology, there is an implicit
assumption that the web server and application server use Java technology if they're part of a J2EE solution.

Core Technical Concepts

Central to the J2EE model are three related technical concepts. components, containers, and connectors. The
component is the basic program unit in J2EE. J2EE advocates the creation of enterprise architectures as a set of
collaborating Java components. There are afew motivations for this:

Components tend to make enterprise systems more flexible and extensible— All other things being equal, it is
much easier to modify a system composed of a set of components than to modify a monolithic architecture.

Components can be standardized — It is easier to enforce a standard coding convention for a specific kind of
component than for a monolithic application, code library, or framework. Doing this makes it easier to develop
components that can plug into other systems, frameworks, and application models. This opens the door for reuse
of parts of an enterprise architecture.

Components can be service-based — We tend to describe applications in terms of what they can do for us.
Moving to object-oriented development, it is natural to refine behavioral characteristicsinto a set of servicesto be

210

provided. It is much easier to develop an application when its basic building blocks naturally support the concept
of aservice.

Core Component Technologies

J2EE is based around three central component technologies:

Enterprise JavaBeans (EJBs), which are used for the Application Server tier.
JavaServer Pages (JSPs) and servlets, which are Web tier technologies.

The Java components, by definition, require something to act as a host for them, something to control when
they're created and how their methods are called—something to regulate their life within a system. Thisis the task
of the container.

A container provides the services that a J2EE component requiresin order to do its job. Naturally, these services
are different depending on what kind of component technology we're talking about. For the Web tier, for instance,
afundamental task of the container is trandating between Web communications (HT TP requests) and methods
calls on the Java components. For the Application Server, on the other hand, the container manages
communication with EJBs through some protocol layer on top of RMI-110P.

Containers provide required services to enterprise components, but they also provide necessary services for the
enterprise application itself. One of the main motivations to devel op enterprise systems based on existing
software products like Web servers, application server and databases is to leverage hard-to-code capabilities like
persistence management, security and transaction support. In today's world, there usually isn't enough time to
code these services—by the time a development wrote them, the system would already be obsol ete.

J2EE-compliant products provide these services to a J2EE application in a configurable way. Better still, they
separate the services and their use from the components themselves—ultimately improving the reusability of
components in awider range of application environments. J2EE manages the configuration of the container-based
services through XML documents. The documents provide away to speafy how the containers should handle
security, or persistence on a component-by-component basis. ‘ \1

Communication and the Connector Technologi

Enterprise systems, especially those designed in recent years, tend to bring groups of dissimilar technologies
together. Doing this often means managing com 'UnI,CaII on between very different kinds of applications. It's not
unusual, for instance, to have an enterprise appllcatlon which needs to communicate with a database, messaging
system, e-mail system and legacy system.

Of course, each technology tends to have its own communication standard, its own way of interacting with the
world. For a given kind of technology, there are often different standard communication methods, in fact. Within
the database arena, for example, nearly every RDBMS tends to have its own API. Historically, this has caused
major integration problems for enterprise systems —a large amount of effort has to be spent just getting
everything to talk together.

The way that J2EE solved the problem was to create generic communication technologies: the connector
technologies. Conceptually, connectors are Java APIs that buffer J2EE applications from the differences between
specific communication models. Java devel opers write their code to the API specification, which in turn is used to
link to some underlying communication layer. Often, this means that the APIs connect to an adaptor module
which in turn communicates with another application, system or service.

At aminimum, this approach can standardize communication within a technology category — JavaMail for e-mail
services or JDBC for relational database communication. Using this approach, J2EE devel opers can use the same
Java coding techniques when they write database code, developing implementation-neutral JDBC code. The exact
way that JDBC communicates with an associated RDBMS is handled by the JDBC driver; the API will be the
same for developer regardless of what lies beneath.

Main J2EE Resources
When we work with J2EE as developers, we naturally tend to think about it in terms of its Java technologies—as

aset of APIsthat play well together. In addition to the APIs, Sun has devel oped a number of other standard
resources that comprise what you think of as J2EE:

211

The specifications— Associated with the main J2EE technol ogies are documents that describe how the
technol ogies can be expected to work in an enterprise environment and how developers can use them in this
context.

The reference implementation — Like many Java technologies, J2EE has a sample implementation available to
both devel opers and vendors so that it's possible to work with a baseline implementation of the technology. It
implements the core J2EE APIs and provides a Web container, EJB container, relational database and various
toolsfor testing and deploying J2EE applications.

Blueprintsfor J2EE — Guidelines for creating enterprise applications, and best practices for J2EE devel opment.

The sample application — The Java Pet Store provides an open-source sample J2EE application to demonstrate
how the architecture can be used in practice.

Compatibility testing— Vendors who want to develop J2EE-compliant servers can use a Compatibility Test
Suite to validate that their applications fully support the specification.

Component Patterns
The three major component technologies for J2EE are EJBs, JSPs, and servlets. Although thereis potentially a
fourth technology in Applets, a potential technology for Client-tier Web applications, it isless central to the core

J2EE model. In the sections that follow, we'll discuss the three component APIs and present the design patterns
that they implement.

212

Servlets and JSPs

Packages

Javax.servlet, javax.servlet.http, javax.servlet.jsp, javax. servlet.jsp.taglib
Use: J2EE (J2EEL.2)
Overview

The servlet API provides one of the two Web component technologies for J2EE. The general model for the
servlet API is quite straightforward, based on two packages which hold all of the core functionality:

javax.servlet — Providesthe generic servlet model

javax.servlet_http — Adaptsthe serviet model to HTTPand HTTPS

The base architectural model for servlets makes no assumptions for the request-response protocol apart from the
fact that it runs on a TCP/IP backbone. Predictably, the resources which are available to a servlet built on this
model are a bit basic, consisting of only those things that would be available from a bare-bones set of assumptions
about the communication channel.

For al practical purposes, the mgority of servlet work is based on the functionality from the

javax.servlet.http package. This adapts the core servlet architecture to the Web world, providing a model
which assumes either HTTP or HTTPS as the underlying protocol.

Main API Elements

Three API elements provide the structural foundation for servlets: the Serviet interface, the GenericServlet
class and the HttpServiet class.

The servlet interface defines, among other things, the methods of a serviet'slifecycle: init, destroy and
service.

The GenericServlet isan abstract class that provides a basic implementation of the interface, with the exception
of the service method. Since any servlet will at least have to specify some behavior in response to a client request,
this method is left unimplemented for the Generic-Servliet.

The HttpServlet isaso an abstract class, but all of its methods are implemented. This class providesaservice
method that branches into seven doxxx methods, which correspond to most of the modern HTTP requests: doGet,
doPost, doPut, doHead, doOptions, doTrace and doDelete.

Life Cycle

As a component, the servlet's lifecycle depends on management by a Web container. The container orchestrates
callsto anumber of methodsin the serviet API. The following list shows the major servlet lifecycle methods and
the order in which they're called:

Create one or more servlet objects

Initialize the servlet through callsto init

Process client requests by using worker threads to run a servlet's service methods, which branch to a series of
doXxx methods that match basic HTTP commands (doGet, doPut, doPost, and so on)

Cdl the destroy method
Destroy the servlet objects

JavaServer Pages

213

JavaServer Pages are away for HTML specialists and scripting specialists to write dynamic HTML pages. These
pages use HTML-like JSP tags that can contain or call Java code. The JSP-specific elements of the HTML page
are converted to Java servlets.

Thefirst timeaJSPiscalled in aWeb server, it is run through an interpreter. The interpreter converts the file into
aJava source file, trandating the JSP tags into Java code. The Javafile isthen compiled and is structurally
equivalent to aservlet. In fact, when a JSP subsequently runs, its lifecycle is exactly the same as the serviet and
can basically be managed in the same way by the Web container.

JSPs and servlets share an architectural model as well as many of the same classes. The few modifications to the
JSP model, as well as the support classes for the technology, are located in the javax.servlet. jsp package. For
JSPs, the interfaces JspPage and HttpJspPage define the core functional model. However, athough there are
different interfaces that specify JSP structure, the type of methods are the same— jsplnit, jspDestroy and
_jspService arethe analogs of the servlet init, destroy, and service methods.

The JSP API also defines a set of classes that allow the creation of custom tag libraries. This technology allows
you to extend JSPs with Java code. Y ou only need to write three components. a Java class containing the Java
functionality to implement, and an XML file that functions as a deployment descriptor, stating basic information
about it, such as attributes that it can use. The third component is the use in the JSP itself, where the JSP scripter
specifiesthe Java class file, the XML file, and any other information for implementation, such as attributes.

Pattern Use

Template Method (see page 131): The servlet APl comes close to providing an example of the Template
Method design pattern in a couple of places, falling short in only one key areg; it actually provides a default
implementation for the methods. The methods in the HttpServlet that come close to this pattern implementation
are provided in the following list:

The service method branches to the doxxx methods. Devel opers usually override one or more of the doxxx
methods to implement servlet behavior.

The init(ServletConfig) method callsthe init method. Developers are supposed to override the init method
if thereisany required initialization behavior.

Session (see page 220): The servlet API provides two mechanisms in support of the Session pattern—the Cookie
class and the HttpSession interface. Asits name suggests, the Cookie class represents HT TP cookies, which
alow the servlet API to use session information stored on aWeb client. The HttpSession interface is used for
server-side storage of session information.

Observer (see page 94): Like many Java APIs, Servlets use the event handling model. By extension, this means
they use the Observer pattern. For Servlets, the Observer is used to notify listeners of changes to HttpSession and
ServletContext objects. Table 8-1 shows the Servlet listener interfaces which can be used to create observersin a
Web application::

Table Table 8-1 Interfaces and corresponding purpose

Interface "Purpose

HttpSessionActivationListener 'Session activation or passivation

HttpSessionAttributesListener ‘Change in attributes for a session

\HttpSessionBindi ngListener |Notifiesan object that it is being bound to or unbound from a session
HttpSessionListener 'Session creation or destruction

ServletContextAttributesListener |Changein attributes for the servlet context

'ServletContextListener 'Servlet creation and destruction

214

Enterprise JavaBeans

Packages

javax.ejb, javax.ejb. Spi

Use: J2EE (J2EEL.2)

Description

In a sense, Enterprise JavaBeans are the heart and soul of the J2EE architecture. They represent the core business
model, defined in terms of a collaborating set of components. EJBs are used to enforce business rules, to
encapsulate business logic, and to encompass the business model within an enterprise application.

There are three fundamental categories of EJBs:

Session Beans— EJBsthat directly support business logic. Session Beans can be either Sateful or Stateless. A
Stateful Session Bean is associated with a specific client session, while a Statel ess Session Bean represents a

generic business resource, not dependent on any specific client caller.

Entity Beans— Designed to be directly associated with aDBMS or other persistent data store, providing an
“objectized” form for the data

Message-driven Beans— Designed to be asynchronous receivers of message notifications from JM S technology.
These beans can receive and react to messages using the IMS API as a J2EE application runs.

To create an EJB, you need to write three Java code elements:

A Home interface, used to manage the EJBs lifecycle (contains create, locate and remove methods)

A Remote interface, used to define business methods

The Enterprise Bean implementation

In addition, you write an XML document called a deployment descriptor that specifies details about how the
Enterprise Bean should be managed: it contains configuration, administration, and resource management

information.

EJBs, even more than the other J2EE component technologies, depend strongly on their containers. In avery real
way, EJBs need their underlying container to create them, call them—really, to regulate every aspect of their life.

It's interesting to observe that the entire EJB architecture is interface-based. The only real classes that are defined
for the model are the exceptions. This illustrates even more dramatically the dependence of an EJB on its
container, since part of the task of the container is to generate the support code that implements the Home and
Remote interfaces and ties both of them to the underlying Enterprise Bean.

Deploying an Enterprise Bean involves producing the classes which implement the Home and Remote interfaces.
It involves providing code to map between method calls on the interfaces and actual method invocations on the
underlying Bean. In some cases, it involves producing additional management code based on information
supplied in the deployment descriptor.

It's often a big adjustment to former middleware programmersto “let go” and accept that the container takes care
of the additional services required by the EJBs. It can be difficult to get used to the concept of large amounts of
support code being automatically produced.

General Pattern Use

Enterprise JavaBeans have a number of patterns, but many of them are supplied by the container, implemented by
the underlying framework as part of the task of producing afunctional, integrated EJB.

HOPP (see page 189): Clients never interact with an Enterprise Bean directly. They always pass method calls to
either the Home or Remote interface, which then trigger calls to an EJB. Y ou could say that clients don't even talk

215

directly to the Home or Remote implementers, but to the stubs that then communicate with matching server-side
implementers. This demonstrates the application of the HOPP pattern, and it is used for all EJB communication.

Factory Method (See page 21): EJBs use the Home interface as the first point of contact for an EJB resource.
Clients, whether servlets, JSPs or other EJBs, call a create or locate method on the Home in order to obtain a
reference to the Remote stub, which can then be used to call business methods. The fact that the create method
triggers the creation of Enterprise Bean resources suggests that a Builder pattern is present for EJBs. Technically,
the pattern goes a bit beyond the simple Factory Method, since it generally involves creating a support framework
for the Enterprise Bean as well. For instance, calling create on a Stateful Session Bean triggers creation of both
the Bean itself and the Bean's remote implementer.

Proxy (see page 197): Conceptually, you could say that Enterprise JavaBeans provides Proxy-like pattern
behavior, because method calls to both the Home and Remote interfaces are ultimately translated to calls on the
underlying Enterprise Bean. Of course, there is processing which occurs and a change in the method name being
called, so the structure does not represent a classic Proxy implementation.

Session (see page 220): EJBs support the Session pattern through the Stateful Session Bean. It's important to
recognize that this pattern only applies to Session Beans that are explicitly designed to be Stateful. The Stateless
Session Bean does not maintain the concept of consistent caller identity, so evenif it does persist data over time,
the data cannot be associated with a specific client.

Connector Pattern Use: Factory Method

J2EE offers a great many APIsto bridge between different enterprise technologies. Thisis only natural, since the
express purpose of the J2EE architecture has more or less always been to allow integration with as many
enterprise systems as possible. The basic model for connector technologiesistried and proven—it represents the
refinement of amodel that was pioneered in JIDK 1.1 with JDBC.

For connector technologies, the API defines a programming abstraction, a layer of code between the Java
application and some underlying implementation. The implementation may be the system or service itself, but
more frequently it tends to be atrandator, an adaptor modul e between the API and the actual end resource.

By defining a code model in thisway, it's possible to make afairly generic API, something that can be used for
generic capability programming, then applied to any one of a number of implementations within afamily of
technologies.

The J2EE APIs that represent connector technologies are shown in the following list

Java Messaging Service (JMS) — Connector API to asynchronous messaging services. Examplesinclude
JMQueue and IMX.

JavaMail — Connector to e-mail technologies such as POP3.

Connector Architecture— A generic connector API, supporting a variety of Enterprise Information System (EIS)
resources, such as nonrelationa databases and ERP systems.

Two other J2EE connector technologies already discussed in this section are:

Java Database Connectivity APl (JDBC)

Java Naming and Directory Interface (JNDI)

Regardless of the specific technology being used, certain design patterns tend to naturally occur because of the
general architecture and distributed model behind the connector model. Since most of the connector technologies
rely on JNDI to supply initial connection capabilitiesto callers on any of the tiers, the connectors typically
provide a connection factory, which implements the Factory Method design pattern. Conceptually, most of the
connectors also provide adaptor capabilities, at |east at an architectural level

Architectural Pattern Use

A few patterns within J2EE are more accurately associated with the architecture as a whole than with any single

technology. Because J2EE operates as a federated enterprise model, many of these patterns can be leveraged at a
number of points, or even multiple points, within a 2EE system. Since J2EE is aflexible architectural model

216

which consists of a number of tiers which can be used together, the APIs that support these patterns can be used at
anumber of points, or even multiple points, within a J2EE system.

Transaction (See page 265): Frequently, the connectors link a J2EE application to some other system which
supports transaction management. The Java Transaction API (JTA) provides support for distributed transaction
coordination—what is commonly called a two-phase commit. For technologies that support this API, they must be
general transactional services. Thisin turn means that they must support the Commit/Rollback pattern.

Session (see page 220): J2EE also provides support for the Session pattern. The incentive for using this pattern
within a J2EE model is clear: mid-term data persistence is usually important in an enterprise application. Most
non-trivial business operations require some form of intermediate storage, to maintain state between operational
phases or to ensure that the datawill not be lost or corrupted whilein flux.

In atypical enterprise application, short-term data is stored on the clients and long-term datais stored in a
database or other EIS resource. Somewhere between these two extremesis datathat is related to business process;
that is, to work that is being done and requires several actions to complete. Mid-term persistence is what the
Session pattern is all about: the storage of information that isin flux due to a client's interaction with the system.
J2EE is an n-tier system, so there are a few options for where to store Session data:

Ontheclient tier — J2EE Web clients can use cookies to store session-based information.

Onthewebtier — The servliet API defines an HttpSession interface to address client storage requirements.

OntheEJB tier — Stateful session beans serve this purpose, as defined in the EJB specification.

217

Appendix A. Full Code Examples

System Requirements

This appendix includes full, runnable code examples for each pattern. Most of the patterns in the main part of this
book included only the code that is crucial for your understanding of the pattern. This appendix includes all
required class files, and aRunPattern class, which shows you how the code runs, and includes print statements
specifying what occurs in the code.

The following patterns use Remote Method Invocation (RM1) in their code examples. Callback, HOPP, Router,
Session, Successive Update, Transaction, and Worker Thread.

To run these examples, your computer must be network-enabled. Specifically, your system must be able to use
TCP/IP sockets for networking and recognize " 1ocalhost " asavalid loopback 1P address.

The rmiregistry is started from the RunPattern file in each of these examples. Because rmiregistry is a server
process, these examples will appear to block when they are finished. Y ou must manually terminate the Java
process to exit the rmiregistry.

218

Creational Pattern Code Examples
Abstract Factory
The following code samples show how international addresses and phone numbers can be supported in the

Personal Information Manager with the Abstract Factory pattern. The AddressFactory interface represents the
factory itself:

Example A.1 AddressFactory.java

1. public interface AddressFactory{

2. public Address createAddress();

3. public PhoneNumber createPhoneNumber();
4. }

Note that the AddressFactory defines two factory methods, createAddress and createPhoneNumber. The
methods produce the abstract products Address and PhoneNumber, which define methods that these products
support.

Example A.2 Address.java

1. public abstract class Address{

2. private String street;

3. private String city;

4. private String region;

5. private String postalCode;

6.

7. public static final String EOL_STRING =

8. System.getProperty("'line.separator™);

9. public static final String SPACE = " '';

10.

11. public String getStreet(){ return street; }

12. public String getCity(){ return city; }

13. public String getPostalCode(){ return postalCode; }

14. public String getRegion(){ return region; }

15. public abstract String getCountry(Q);

16.

17. public String getFullAddress(){

18. return street + EOL_STRING +

19. city + SPACE + postalCode + EOL_STRING;

20. }

21.

22. public void setStreet(String newStreet){ street = newStreet; }
23. public void setCity(String newCity){ city = newCity; }

24. public void setRegion(String newRegion){ region = newRegion; }
25. public void setPostalCode(String newPostalCode){ postalCode = newPostalCode; }
26. }

Example A.3 PhoneNumber . java

1. public abstract class PhoneNumber{

2. private String phoneNumber;

3. public abstract String getCountryCode();

4.

5. public String getPhoneNumber(){ return phoneNumber; }
6.

7. public void setPhoneNumber(String newNumber){
8. try{

9. Long.parseLong(newNumber) ;

10. phoneNumber = newNumber;

11.

12. catch (NumberFormatException exc){

13. ¥

14. ¥

5. }

Address and PhoneNumber are abstract classes in this example, but could easily be defined as interfaces if you
did not need to define code to be used for all concrete products.

To provide concrete functionality for the system, you need to create Concrete Factory and Concrete Product
classes. In this case, you define a class that implements AddressFactory, and subclass the Address and
PhoneNumber classes. The three following classes show how to do thisfor U.S. address information.

Example A.4 usaddressFactory. java

219

1. public class USAddressFactory implements AddressFactory{

2. public Address createAddress(){

3. return new USAddress();

4. }

5.

6. public PhoneNumber createPhoneNumber(){

7. return new USPhoneNumber();

8. }

9. }

Example A.5 usAddress. java

1. public class USAddress extends Address{

2. private static final String COUNTRY = "UNITED STATES";
3. private static final String COMMA = ",";

4.

5. public String getCountry(){ return COUNTRY; }
6.

7. public String getFullAddress(){

8. return getStreet() + EOL_STRING +

9. getCity() + COMMA + SPACE + getRegion() +
10. SPACE + getPostalCode() + EOL_STRING +
11. COUNTRY + EOL_STRING;

12. }

13. }

Example A.6 usPhoneNumber . java

1. public class USPhoneNumber extends PhoneNumber{

2. private static final String COUNTRY_CODE = "01";
3. private static final int NUMBER_LENGTH = 10;

4.

5. public String getCountryCode(){ return COUNTRY_CODE; }
6.

7. public void setPhoneNumber(String newNumber){

8. if (newNumber.length() == NUMBER_LENGTH){

9. super .setPhoneNumber (newNumber) ;

10. ¥

11. ¥

12. 3}

The generic framework from AddressFactory, Address, and PhoneNumber makes it easy to extend the system to
support additional countries. With each additional country, define an additional Concrete Factory classand a
matching Concrete Product class. These are files for French address information.

Example A.7 FrenchAddressFactory. java

1. public class FrenchAddressFactory implements AddressFactory{
2. public Address createAddress(){

3. return new FrenchAddress();

4. }

5.

6. public PhoneNumber createPhoneNumber(){

7. return new FrenchPhoneNumber();

8. }

9. }

Example A.8 FrenchAddress. java

1. public class FrenchAddress extends Address{

2. private static final String COUNTRY = "FRANCE";
3.

4. public String getCountry(){ return COUNTRY; }
5.

6. public String getFullAddress(){

7. return getStreet() + EOL_STRING +

8. getPostalCode() + SPACE + getCity() +
9. EOL_STRING + COUNTRY + EOL_STRING;

10. }

11. }

Example A.9 FrenchPhoneNumber. java

1. public class FrenchPhoneNumber extends PhoneNumber{

2. private static final String COUNTRY_CODE = "33";

3. private static final int NUMBER_LENGTH = 9;

4.

5. public String getCountryCode(){ return COUNTRY_CODE; }

220

6.

7. public void setPhoneNumber(String newNumber){
8. if (newNumber.length() == NUMBER_LENGTH){
9. super .setPhoneNumber (newNumber) ;

10. ¥

11. ¥

12, }

The RunPattern class provides an example of the AbstractFactory in use. It uses the USAddressFactory and
the FrenchAddressFactory to create two different sets of address/phone number combinations. It is significant
that once the factory objects have been |oaded, we can deal with their products by using the Address and

PhoneNumber interfaces. There are no method calls which depend on the distinction between ausAddress and a
FrenchAddress.

Example A.10 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments){

3. System.out.printIn("'Example for the AbstractFactory pattern™);

4. System._out._printin();

5. System.out._printIn("" (take a look in the RunPattern code. Notice that you can™);
6. System.out.printIn(" use the Address and PhoneNumber classes when writing");
7. System.out.printIn(’" almost all of the code. This allows you to write a very");
8. System._out._printIn(’" generic framework, and plug in Concrete Factories');
9. System.out.printIn(* and Products to specialize the behavior of your code)');
10. System._out._printin(Q);

11.

12. System.out.printIn(’'Creating U.S. Address and Phone Number:');

13. AddressFactory usAddressFactory = new USAddressFactory();

14. Address usAddress = usAddressFactory.createAddress();

15. PhoneNumber usPhone = usAddressFactory.createPhoneNumber();

16.

17. usAddress.setStreet(''142 Lois Lane');

18. usAddress.setCity("'Metropolis'™);

19. usAddress.setRegion("'WY');

20. usAddress.setPostalCode(*'54321™);

21. usPhone.setPhoneNumber (*'7039214722™); ﬁ

22. N

23. System.out._printIn("'U.S. address:"); N\

24. System.out.printIn(usAddress.getFull/

25. System.out.printIn('U.S. phone number ;

26. System.out.printIn(usPhone.getPhoneNumb ;

27. System.out.printin(Q); :)

28. System.out._printin(Q);

59 <

30. System.out.printIn(‘'Creating French Address and Phone Number:');

31. AddressFactory frenchAddressFactory = new FrenchAddressFactory();

32. Address frenchAddress = frenchAddressFactory.createAddress();

33. PhoneNumber frenchPhone = frenchAddressFactory.createPhoneNumber();

34.

35. frenchAddress.setStreet('21 Rue Victor Hugo™);

36. frenchAddress.setCity("'Courbevoie');

37. frenchAddress.setPostalCode(*'40792');

38. frenchPhone.setPhoneNumber(*'011324290™) ;

39.

40. System.out.printIn("'French address:");

41. System.out.printIn(frenchAddress.getFullAddress());

42. System.out.printIn("'French phone number:');

43. System._out.printIn(frenchPhone.getPhoneNumber());

44. }

45. %}

221

Builder

This code example shows how to use the Builder pattern to create an appointment for the PIM. The following list
summarizes each class’s purpose:

AppointmentBuilder, MeetingBuilder — Builder classes

Scheduler — Director class

Appointment — Product

Address, Contact — Support classes, used to hold information relevant to the Appointment
InformationRequiredException — An Exception class produced when more datais required

For the base pattern, the AppointmentBui Ider manages the creation of a complex product, which isan
Appointment in this example. The AppointmentBui lder uses a series of build methods— bui IdAppointment,

buildLocation, bui ldDates, and bui ldAttendees — tO create an Appointment and populate it.

Example A.11 AppointmentBui lder.java

1. import java.util_Date;

2. import java.util_ArraylList;

3.

4. public class AppointmentBuilder{

5.

6. public static final int START_DATE_REQUIRED = 1;

7. public static final int END DATE_REQUIRED = 2;

8. public static final int DESCRIPTION_REQUIRED = 4;

9. public static final int ATTENDEE REQUIRED = 8;

10. public static final int LOCATION_REQUIRED = 16;

11.

12. protected Appointment appointment;

13.

14. protected int requiredElements;

15.

16. public void buildAppointment(){

17. appointment = new Appointment();

18. }

19.

20. public void buildDates(Date startDate, Date endDate){
21. Date currentDate = new Date();

22. if ((startDate != null) && (startDate.after(currentDate))){
23. appointment.setStartDate(startDate);

24. ¥

25. if ((endDate '= null) && (endDate.after(startDate))){
26. appointment.setEndDate(endDate);

27. }

28. }

29.

30. public void buildDescription(String newDescription){
31. appointment.setDescription(nhewDescription);

32. }

33.

34. public void buildAttendees(ArrayList attendees){

35. if ((attendees !'= null) && (lattendees.isEmpty())){
36. appointment.setAttendees(attendees);

37.

38. }

39.

40. public void buildLocation(Location newLocation){

41. if (newLocation != null){

42. appointment._setLocation(newLocation);

43. }

44 . ¥

45.

46. public Appointment getAppointment() throws InformationRequiredException{
47. requiredElements = 0;

48.

49. if (appointment.getStartDate() == null){

50. requiredElements += START_DATE_REQUIRED;

51. }

52.

222

53. it (appointment.getLocation() == null){

54. requiredElements += LOCATION_REQUIRED;

55. }

56.

57. it (appointment.getAttendees().isEmpty()){

58. requiredElements += ATTENDEE_REQUIRED;

59. }

60.

61. if (requiredElements > 0){

62. throw new InformationRequiredException(requiredElements);
63. }

64. return appointment;

65. }

66.

67. public int getRequiredElements(){ return requiredElements; }
68. }

Example A.12 Appointment.java

1. import java.util_ArraylList;

2. import java.util.Date;

3. public class Appointment{

4. private Date startDate;

5. private Date endDate;

6. private String description;

7. private ArraylList attendees = new ArrayList();

8. private Location location;

9. public static final String EOL_STRING =

10. System.getProperty(''line.separator™);

11.

12. public Date getStartDate(){ return startDate; }

13. public Date getEndDate(){ return endDate; }

14. public String getDescription(){ return description; }
15. public ArrayList getAttendees(){ return attendees; }
16. public Location getLocation(){ return location; }

17.

18. public void setDescription(String newDescription){ description = newDescription; }
19. public void setLocation(Location newLocation){ location = newlLocation; }
20. public void setStartDate(Date newStartDate){ startDate = newStartDate; }
21. public void setEndDate(Date newEndDate){ endDate = newEndDate; }
22. public void setAttendees(ArrayList newAttendees){

23. if (newAttendees = null){

24. attendees = newAttendees;

25. }

26. }

27.

28. public void addAttendee(Contact attendee){

29. if (Tattendees.contains(attendee)){

30. attendees.add(attendee);

31. }

32. }

33.

34. public void removeAttendee(Contact attendee){

35. attendees.remove(attendee);

36. }

37.

38. public String toString(){

39. return " Description: " + description + EOL_STRING +
40. ' Start Date: " + startDate + EOL_STRING +

41. " End Date: " + endDate + EOL_STRING +

42. " Location: " + location + EOL_STRING +

43. ' Attendees: " + attendees;

44 . }

45. %}

The Scheduler class makes callsto the AppointmentBui Ider, managing the creation process through the
method createAppointment.

Example A.13 Scheduler.java

1. import java.util.Date;

2. import java.util_ArraylList;

3. public class Scheduler{

4. public Appointment createAppointment(AppointmentBuilder builder,

5. Date startDate, Date endDate, String description,

6. Location location, ArrayList attendees) throws InformationRequiredException {
7. iT (builder == null){

8. builder = new AppointmentBuilder();

223

9

10.
11.
12.
13.
14.
15.
16.
17.

}

}
builder.buildAppointment();
builder_buildDates(startDate, endDate);
builder_buildDescription(description);
builder.buildAttendees(attendees);
builder_.buildLocation(location);
return builder.getAppointment();

}

The responsibilities of each class are summarized here:

Scheduler — Callsthe appropriate build methods on AppointmentBui lder; returns a complete Appointment
object to its caler.

AppointmentBuilder — Contains build methods and enforces business rules; creates the actual Appointment

object.

Appointment — Holdsinformation about an appointment.

The MeetingBui lder classin Example A.14 demonstrates one of the benefits of using the Builder pattern. To add
additional rulesfor the Appointment, extend the existing builder. In this case, the MeetingBui lder enforces an
additional constraint: for an Appointment that is a meeting, both start and end dates must be specified.

Example A.14 MeetingBuilder. java

import java.util_Date;
import java.util_Vector;

OCoO~NOUITAWNPE

public class MeetingBuilder extends AppointmentBuilder{

}

public Appointment getAppointment() throws InformationRequiredException{

try{
super.getAppointment();

¥
finally{
if (appointment.getEndDate() == null){
requiredElements += END_DATE_REQUIRED;
3
if (requiredElements > 0){
throw new InformationRequiredException(requiredElements);
3
3

return appointment;

}

Support classes used for this example include the class InformationRequiredeException and the interfaces
Location and Contact. The Address and Contact interfaces are marker interfaces used to represent supporting
information for the Appointment in this example; their implementation is represented by the Locationimpl and
ContactlImpl classes.

Example A.15 InformationRequiredException.java

1.
2.

public class InformationRequiredException extends Exception{

}

private static final String MESSAGE = "Appointment cannot be created because further
information is required”;

public static final int START DATE_REQUIRED = 1;

public static final int END DATE_REQUIRED = 2;

public static final int DESCRIPTION_REQUIRED = 4;

public static final int ATTENDEE_REQUIRED 8;

public static final int LOCATION_REQUIRED 16;

private int informationRequired;

public InformationRequiredException(int itemsRequired){
super (MESSAGE) ;
informationRequired = itemsRequired;

}

public int getlnformationRequired(){ return informationRequired; }

Example A.16 Location.java

224

1. import java.io.Serializable;

2. public interface Location extends Serializable {
3. public String getLocation();

4. public void setLocation(String newLocation);

5. %}

Example A.17 Locationlmpl.java

1. public class LocationIlmpl implements Location{

2. private String location;

3.

4. public Locationlmpl(Q{ }

5. public Locationlmpl(String newLocation){

6. location = newLocation;

7. }

8.

9. public String getLocation(){ return location; }
10.

11. public void setLocation(String newLocation){ location = newLocation; }
12.

13. public String toString(Q{ return location; }
14. }

Example A.18 Contact.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.19 contactimpl.java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public Contactlmpl(String newFirstName, String newLastName,

8. String newTitle, String newOrganization){

9. firstName = newFirstName;

10. lastName = newlLastName;

11. title = newTitle;

12. organization = newOrganization;

13. }

14.

15. public String getFirstName(){ return firstName; }

16. public String getLastName(){ return lastName; }

17. public String getTitle(QQ{ return title; }

18. public String getOrganization(){ return organization; }

19.

20. public void setFirstName(String newFirstName){ firstName = newFirstName; }
21. public void setLastName(String newLastName){ lastName = newLastName; }
22. public void setTitle(String newTitle){ title = newTitle; }

23. public void setOrganization(String newOrganization){ organization = newOrganization; }
24 .

25. public String toString(Q){

26. return firstName + SPACE + lastName;

27. }

28. }

The RunPattern file executes this example. It demonstrates the use of the Bui lder pattern by creating three
separate Appointment objects using the AppointmentBui lder and MeetingBui lder.

Example A.20 RunPattern.java

1. import java.util_Calendar;
2. import java.util_Date;
3. import java.util_ArraylList;

225

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77 .
78.
79.
80.
81.

public class RunPattern{
private static Calendar dateCreator = Calendar.getlnstance();

public static void main(String [] arguments){

}

Appointment appt = null;

System.out.printIn("Example for the Builder pattern');
System._out._printin(Q);

System.out.printIn("'This example demonstrates the use of the Builder™);
System.out.printIn(‘'pattern to create Appointment objects for the PIM.");
System.out.printin(Q;

System.out.printIn("’‘Creating a Scheduler for the example.');
Scheduler pimScheduler = new Scheduler();

System.out.printIn(’'Creating an AppointmentBuilder for the example.');
System.out.printin(Q;
AppointmentBuilder apptBuilder = new AppointmentBuilder();
try{
System.out.printIn(""Creating a new Appointment with an AppointmentBuilder');
appt = pimScheduler.createAppointment(
apptBuilder, createDate(2066, 9, 22, 12, 30),
null, "Trek convention', new Locationlmpl(*'Fargo, ND"),
createAttendees(4));
System.out.printIn(*'Successfully created an Appointment.');
System.out.printIn(*"Appointment information:');
System.out.printin(appt);
System.out._printIn();

catch (InformationRequiredException exc){
printExceptions(exc);
}

System.out.printIn("'Creating a MeetingBuilder for the example.');
MeetingBuilder mtgBuilder = new MeetingBuilder();
try{
System.out.printIn(*'Creating a new Appointment with a MeetingBuilder™);
System.out.printIn(*"(notice that the same create arguments will produce™);
System.out.printIn(’" an exception, since the MeetingBuilder enforces a');
System.out.printIn(’" mandatory end date)');
appt = pimScheduler.createAppointment(
mtgBuilder, createDate(2066, 9, 22, 12, 30),
null, "Trek convention', new Locationlmpl(*'Fargo, ND"),
createAttendees(4));
System.out.printIn(*'Successfully created an Appointment.');
System.out.printIn(""Appointment information:');
System.out.printin(appt);
System.out._printIn();

catch (InformationRequiredException exc){
printExceptions(exc);
}

System.out.printIn('’'Creating a new Appointment with a MeetingBuilder™);
System.out.printIn("'(This time, the MeetingBuilder will provide an end date)');
try{
appt = pimScheduler.createAppointment(
mtgBuilder,
createDate(2002, 4, 1, 10, 00),
createDate(2002, 4, 1, 11, 30),
"000 Meeting",
new Locationimpl(*'Butte, MT™),
createAttendees(2));
System.out.printIn(*'Successfully created an Appointment.');
System.out.printIn(""Appointment information:');
System.out.printin(appt);
System.out.printin();

catch (InformationRequiredException exc){
printExceptions(exc);
}

public static Date createDate(int year, int month, int day, int hour, int minute){

}

dateCreator.set(year, month, day, hour, minute);
return dateCreator.getTime();

226

82. public static ArrayList createAttendees(int numberToCreate){

83. ArrayList group = new ArrayList();

84. for (int i = 0; 1 < numberToCreate; i++){

85. group.add(new Contactimpl(*'John', getLastName(i), "Employee (nonexempt)', *Yoyodyne

Corporation'™));

86. }

87. return group;

88. }

89.

90. public static String getLastName(int index){

91. String name = "'';

92. switch (index % 6){

93. case 0: name = "Worfin';

94. break;

95. case 1: name = "Smallberries";

96. break;

97. case 2: name = "Bigbootee";

98. break;

99. case 3: name = "Haugland';

100. break;

101. case 4: name = ''Maassen'';

102. break;

103. case 5: name = "'Sterling";

104. break;

105. }

106. return name;

107. }

108.

109. public static void printExceptions(InformationRequiredException exc){

110. int statusCode = exc.getlnformationRequired();

111.

112. System.out.printin(""Unable to create Appointment: additional information is
required™);

113. if ((statusCode & InformationRequiredException.START_DATE_REQUIRED) > 0){

114. System.out.printIn(’" A start date is required for this appointment to be
complete.");

115. }

116. if ((statusCode & InformationRequiredException.END _DATE_REQUIRED) > 0){

117. System.out.printIn(* An end date is required for this appointment to be
complete.");

118. }

119. if ((statusCode & InformationRequiredException.DESCRIPTION_REQUIRED) > 0){

120. System.out._printIn(’" A description is required for this appointment to be
complete.™);

121. }

122. if ((statusCode & InformationRequiredException.ATTENDEE_REQUIRED) > 0){

123. System.out.printIn(’" At least one attendee is required for this appointment to
be complete.™);

124. }

125. if ((statusCode & InformationRequiredException.LOCATION _REQUIRED) > 0){

126. System.out.printIn(*" A location is required for this appointment to be
complete.");

127. }

128. System.out._printin();
129. ¥

130. }

227

Factory Method

The following example uses the Factory Method pattern to produce an editor for the PIM. The PIM tracks alot of
information, and there are many cases where users need an editor to create or modify data. The example uses
interfaces to improve the overal flexibility of the system.

The Editable interface defines a builder method, getEditor, which returns an I1temEdi tor interface. The
benefit isthat any item can provide an editor for itself, producing an object that knows what parts of a business
object can change and how they can be changed. The only thing the user interface needsto do is use the
Editable interface to get an editor.

Example A.21 Editable.java

1. public interface Editable {
2. public ItemEditor getEditor();
3. %}

The 1temEdi tor interface provides two methods: getGUI and commitChanges. The getGUI method is another
Factory Method—it returns a JComponent that provides a Swing GUI to edit the current item. This makes avery
flexible system; to add a new type of item, the user interface can remain the same, because it only uses the
Editable and the I'temEditor interfaces.

The JComponent returned by getGUI can have anything in it required to edit the item in the PIM. The user
interface can simply the acquired JComponent in its editor window and use the JComponent functionality to edit
the item. Since not everything in an application needs to be graphical, it could also be agood ideato include a
getUl method that would return an object or some other nongraphical interface.

The second method, commi tChanges, allows the Ul to tell the editor that the user wants to finalize the changes he or
she has made.

Example A.22 1temEditor. java

1 import javax.swing.JComponent;
2 public interface ltemEditor {
3. public JComponent getGUI(Q);
4 public void commitChanges();
5 }

The following code shows the implementation for one of the PIM items, Contact. The Contact class defines two
attributes: the name of the person and their relationship with the user. These attributes provide a sample of some
of the information, which could be included in an entry in the PIM.

Example A.23 Contact.java

1. import java.awt.GridLayout;

2. import java.io.Serializable;

3. import javax.swing.JComponent;

4. import javax.swing.JLabel;

5. import javax.swing.JPanel;

6. import javax.swing.JTextField;

7.

8. public class Contact implements Editable, Serializable {
9. private String name;

10. private String relationship;

11.

12. public ItemEditor getEditor() {

13. return new ContactEditor();

14. }

15.

16. private class ContactEditor implements ltemEditor, Serializable {
17. private transient JPanel panel;

18. private transient JTextField nameField;

19. private transient JTextField relationField;

20.

21. public JComponent getGUI() {

22. if (panel == null) {

23. panel = new JPanel();

24. nameField = new JTextField(name);

25. relationField = new JTextField(relationship);
26. panel .setLayout(new GridLayout(2,2));

27. panel .add(new JLabel (*'Name:""));

228

28. panel .add(nameField);

29. panel .add(new JLabel ("'Relationship:"));
30. panel _.add(relationField);

31. } else {

32. nameField.setText(name);

33. relationField.setText(relationship);
34. }

35. return panel;

36. }

37.

38. public void commitChanges() {

39. if (panel = null) {

40. name = nameField.getText();

41. relationship = relationField.getText();
42. }

43. }

44 .

45. public String toString(Q){

46. return '\nContact:\n" +

47 . " Name: " + name + "\n" +

48. " Relationship: " + relationship;
49. }

50. }

51. }

Contact implements the Editable interface, and providesits own editor. That editor only applies to the Contact
class, and needs to change certain attributes of the Contact, it is best to use an inner class. The inner class has
direct access to the attributes of the outer class. If you used another (non-inner) class, Contact would need to
provide accessor and mutator methods, making it harder to restrict access to the object’s private data.

Note that the editor itself is not a Swing component, but only an object that can serve as afactory for such a
component. The greatest benefit is that you can serialize and send this object across a stream. To implement this
feature, declare all Swing component attributes in ContactEdi tor transient—they’ re constructed when and
where they’ re needed.

The EditorGui represents a generic editor you might use in the PIM. Note that the class uses the 1temEdi tor
interface to entirely manage its edit window. It constructs a JPanel for its edit window, and places the
JComponent obtained by the call to getGuUI inside. The Swing component provides al the edit capabilities for the
Contact, while the EditorGui provides control buttons and a JTextArea to display the state of the Contact
object.

Example A.24 EditorGui . java

1. import java.awt.Container;

2. import java.awt.event.ActionListener;

3. import java.awt.event_WindowAdapter;

4. import java.awt.event._ActionEvent;

5. import java.awt.event.WindowEvent;

6. import javax.swing.BoxLayout;

7. import javax.swing.JButton;

8. import javax.swing.JComponent;

9. import javax.swing.JFrame;

10. import javax.swing.JPanel;

11. import javax.swing.JTextArea;

12. public class EditorGui implements ActionListener{

13. private JFrame mainFrame;

14. private JTextArea display;

15. private JButton update, exit;

16. private JPanel controlPanel, displayPanel, editorPanel;
17. private ltemEditor editor;

18.

19. public EditorGui(ltemEditor edit){

20. editor = edit;

21. }

22.

23. public void createGui(){

24. mainFrame = new JFrame("'Factory Pattern Example'™);
25. Container content = mainFrame.getContentPane();
26. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));
27.

28. editorPanel = new JPanel();

29. editorPanel .add(editor._getGUI());

30. content.add(editorPanel);

31.

229

32. displayPanel = new JPanel();

33. display = new JTextArea(10, 40);

34. display.setEditable(false);

35. displayPanel _.add(display);

36. content.add(displayPanel);

37.

38. controlPanel = new JPanel();

39. update = new JButton(“Update ltem™);
40. exit = new JButton("Exit');

41. controlPanel .add(update);

42. controlPanel .add(exit);

43. content.add(controlPanel);

44.

45. update.addActionListener(this);

46. exit.addActionListener(this);

47.

48. mainFrame.addWindowListener(new WindowCloseManager());
49. mainFrame.pack();

50. mainFrame._setVisible(true);

51. ¥

52.

53.

54. public void actionPerformed(ActionEvent evt){
55. Object originator = evt.getSource();
56. if (originator == update){

57. updateltem();

58.

59. else if (originator == exit){

60. exitApplication();

61. ¥

62. ¥

63.

64. private class WindowCloseManager extends WindowAdapter{
65. public void windowClosing(WindowEvent evt){
66. exitApplication();

67. ¥

68. ¥

69.

70. private void updateltem(){

71. editor.commitChanges();

72. display.setText(editor.toString());
73. ¥

74.

75. private void exitApplication(){

76. System.exit(0);

77. ¥

78. }

79.

Note that the Update Item button makes a call to the 1temEdi tor 'S commi tChanges method.

The RunPattern class runsthis pattern by creating a Contact and an EditorGui object. The EditorGui
constructor sets the 1temeditor for the example.

Example A.25 RunPattern.java

1. import javax.swing.JComponent;

2. import javax.swing.JFrame;

3. import java.awt.event_WindowAdapter;

4. import java.awt.event._WindowEvent;

5.

6.

7. public class RunPattern{

8. public static void main(String [] arguments){

9. System.out.printIn(""Example for the FactoryMethod pattern™);

10. System.out.printin(Q;

11.

12. System.out.printIn(’'Creating a Contact object'™);

13. System._out._printin(Q);

14. Contact someone = new Contact();

15.

16. System.out.printIn(''Creating a GUl editor for the Contact");

17. System.out.printin(Q;

18. System._out._printIn("'The GUI defined in the EditorGui class is a truly generic
editor.");

19. System.out.printIn(’'It accepts an argument of type ltemEditor, and delegates™);

20. System.

out.printin(’ all editing tasks to its ltemEditor and the associated GUI.'");

230

21.

22.
23.
24
25.
26.
27.
28.
29.
30.
31.
32.

}

}

System.

System.
System.
System.
System.
System.

out

out
out
out
out
out

.printIn(’* The getEditor() Factory Method is used to obtain the
ItemEditor™);

-printIn(’" for the example.');

-printIn(Q);

.printIn("'Notice that the editor in the top portion of the GUI is,"™);

.printIn(’" in fact, returned by the ItemEditor belonging to the'™);

.printIn(’" Contact class, and has appropriate fields for that class.™);

EditorGui runner = new EditorGui(someone.getEditor());
runner .createGui();

231

Prototype

The Address classin this example uses the Prototype pattern to create an address based on an existing entry. The
core functionality for the pattern is defined in the interface Copyable.

Example A.26 copyable.java

1. public interface Copyable{
2. public Object copy(Q);

3. }

The Copyable interface defines a copy method and guarantees that any classes that implement the interface will
define a copy operation. This example produces a shallow copy—that is, it copies the object references from the
original addressto the duplicate.

The code also demonstrates an important feature of the copy operation: not all fields must necessarily be
duplicated. In this case, the address type is not copied to the new object. A user would manually specify a new
address type from the PIM user interface.

Example A.27 Address.java

1. public class Address implements Copyable{

2. private String type;

3. private String street;

4. private String city;

5. private String state;

6. private String zipCode;

7. public static final String EOL_STRING =

8. System._getProperty(*'line.separator™);

9. public static final String COMMA = ",";

10. public static final String HOME = "home";

11. public static final String WORK = "work";

12.

13. public Address(String initType, String initStreet,

14. String initCity, String initState, String initZip){
15. type = initType;

16. street = initStreet;

17. city = initCity;

18. state = initState;

19. zipCode = initZip;

20. ¥

21.

22. public Address(String initStreet, String InitCity,

23. String initState, String initZip){

24. this(WORK, initStreet, initCity, initState, initZip);
25. ¥

26. public Address(String initType){

27. type = initType;

28. }

29. public AddressQ{ }

30.

31. public String getType(){ return type; }

32. public String getStreet(){ return street; }

33. public String getCity(){ return city; }

34. public String getState(){ return state; }

35. public String getZipCode(){ return zipCode; }

36.

37. public void setType(String newType){ type = newType; }
38. public void setStreet(String newStreet){ street = newStreet; }
39. public void setCity(String newCity){ city = newCity; }
40. public void setState(String newState){ state = newState; }
41. public void setZipCode(String newZip){ zipCode = newZip; }
42.

43. public Object copy(){

44 . return new Address(street, city, state, zipCode);
45. ¥

46.

47. public String toString(){

48. return "\t" + street + COMMA + " " + EOL_STRING +
49. "\t" + city + COMMA + " " + state + " " + zipCode;
50. ¥

51. }

232

The RunPattern class demonstrates the use of this pattern by creating an Address object, then duplicating that
object by calling its copy method. The fact that the Address objects return two different hash code values
(numeric values that represent unique object identity) further confirms that the copy operation has produced a
different object from the first.

Example A.28 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments){

3. System.out.printIn(""Example for Prototype pattern');

4. System._out.printin();

5. System.out.printIn(*'This example will create an Address object,™);
6. System.out.printIn(* which it will then duplicate by calling the™);
7. System.out.printIn(’" object"s clone method.");

8. System.out.printin(Q);

9.

10. System.out.printIn("'Creating first address.™);

11. Address addressl = new Address(''8445 Silverado Trail", "Rutherford", "CA"™, "91734');
12. System.out.printIn("'First address created.™);

13. System.out.printIn(’" Hash code = " + addressl.hashCode());

14. System._out.printIn(addressl);

15. System._out._printin(Q);

16.

17. System.out.printIn(’'Creating second address using the clone() method.');
18. Address address2 = (Address)addressl.copy();

19. System.out.printIn('Second address created.");

20. System.out._printIn(’" Hash code = " + address2.hashCode());

21. System.out.printin(address?2);

22. System.out.printin(Q;

23.

24

25. }

26. }

233

Singleton

Application users want the option of undoing previous commands. To support that functionality, a history list is
needed. That history list has to be accessible from everywhere in the PIM and only one instance of it is needed.
Therefore, it's a perfect candidate for the implementation of the Singleton pattern.

Example A.29 HistoryList.java

1. import java.util_ArraylList;

2. import java.util_Collections;

3. import java.util_List;

4. public class HistoryList{

5. private List history = Collections.synchronizedList(new ArrayList());
6. private static HistoryList instance = new HistoryList();
7.

8. private HistoryList(Q{ }

9.

10. public static HistoryList getlnstance(){

11. return instance;

12. }

13.

14. public void addCommand(String command){

15. history.add(command) ;

16. }

17.

18. public Object undoCommand(){

19. return history.remove(history.size() - 1);
20. ¥

21.

22. public String toString(Q){

23. StringBuffer result = new StringBuffer();
24. for (int i = 0; i < history.size(Q); i++){
25. result.append(" ");

26. result._append(history.get(i));

27. result.append(''\n");

28. }

29. return result.toString();

30. ¥

31. }

TheHistoryList maintains a static reference to an instance of itself, has a private constructor, and uses a static
method getInstance to provide asingle history list object to all parts of the PIM. The additional variablein
HistoryList, history, iSaList object used to track the command strings. The HistoryList provides two
methods, addCommand and undoCommand to support adding and removing commands from the list.

The SingletonGui class provides abasic Swing GUI that demonstrates how the HistoryList might be usedin a
PIM editor. This GUI provides abasic set of commands: create contact, create appointment, undo, refresh and
exit. For the create commands, you retrieve the HistoryList with acall to its static getlnstance method, then call
the addCommand method. For the undo command, you call getInstance followed by the undoCommand method.
The refresh method calls the toString method in the HistoryList to retrieve the current set of history list
entries for display.

Example A.30 singletonGUl . java

1. import java.awt.Container;

2. import javax.swing.BoxLayout;

3. import javax.swing.JButton;

4. import javax.swing.JFrame;

5. import javax.swing.JPanel;

6. import javax.swing.JTextArea;

7. import java.awt.event.ActionEvent;

8. import java.awt.event.ActionListener;

9. import java.awt.event._WindowAdapter;

10. import java.awt.event_WindowEvent;

11. public class SingletonGui implements ActionListener{

12. private JFrame mainFrame;

13. private JTextArea display;

14. private JButton newContact, newAppointment, undo, refresh, exit;
15. private JPanel controlPanel, displayPanel;

16. private static int historyCount;

17.

18. public void createGui(){

19. mainFrame = new JFrame(*'Singleton Pattern Example');

234

Container content = mainFrame.getContentPane();
content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));

displayPanel = new JPanel();
display = new JTextArea(20, 60);
display.setEditable(false);
displayPanel .add(display);
content._add(displayPanel);

controlPanel = new JPanel();

newContact = new JButton(''Create contact');
newAppointment = new JButton("'Create appointment™);
undo = new JButton(*'Undo™);

refresh = new JButton(*'Refresh');

exit = new JButton("Exit'™);

controlPanel .add(newContact);

controlPanel .add(newAppointment);
controlPanel _.add(undo) ;

controlPanel _.add(refresh);

controlPanel .add(exit);
content.add(controlPanel);

newContact.addActionListener(this);
newAppointment.addActionListener(this);
undo.addActionListener(this);
refresh.addActionListener(this);
exit.addActionListener(this);

mainFrame.addWindowListener(new WindowCloseManager());
mainFrame.pack();
mainFrame.setVisible(true);

}

public void refreshDisplay(String actionMessage){
display.setText(actionMessage + ""\nCOMMAND HISTORY:\n" +
HistoryList.getlnstance().toString());

}

public void actionPerformed(ActionEvent evt){
Object originator = evt.getSource();
if (originator == newContact){
addCommand(** New Contact'™);

else if (originator == newAppointment){
addCommand(** New Appointment'™);

else if (originator == undo){
undoCommand() ;
else if (originator == refresh){

refreshDisplay(""");

else if (originator == exit){
exitApplication();
}

}

private class WindowCloseManager extends WindowAdapter{
public void windowClosing(WindowEvent evt){
exitApplication();

}

private void addCommand(String message){
HistoryList.getlInstance() .addCommand((++historyCount) + message);
refreshDisplay(""Add Command: " + message);

}

private void undoCommand(){
Object result = HistoryList.getlnstance() .undoCommand();
historyCount--;
refreshDisplay(""'Undo Command: " + result);

}

private void exitApplication(){
System.exit(0);
}

235

Example A.31 RunPattern.java

1. import java.awt.Container;

2. import javax.swing.BoxLayout;

3. import javax.swing.JButton;

4. import javax.swing.JFrame;

5. import javax.swing.JPanel;

6. import javax.swing.JTextArea;

7. import java.awt.event.ActionEvent;

8. import java.awt.event.ActionListener;

9. import java.awt.event_WindowAdapter;

10. import java.awt.event_WindowEvent;

11. public class SingletonGui implements ActionListener{
12. private JFrame mainFrame;

13. private JTextArea display;

14. private JButton newContact, newAppointment, undo, refresh, exit;
15. private JPanel controlPanel, displayPanel;

16. private static int historyCount;

17.

18. public void createGui(){

19. mainFrame = new JFrame(*'Singleton Pattern Example');
20. Container content = mainFrame.getContentPane();
21. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));
22.

23. displayPanel = new JPanel();

24. display = new JTextArea(20, 60);

25. display.setEditable(false);

26. displayPanel .add(display);

27. content.add(displayPanel);

28.

29. controlPanel = new JPanel();

30. newContact = new JButton(''Create contact');
31. newAppointment = new JButton(''Create appointment'™);
32. undo = new JButton(*'Undo™);

33. refresh = new JButton(*'Refresh');

34. exit = new JButton("Exit'"™);

35. controlPanel _.add(hewContact) ;

36. controlPanel .add(hewAppointment);

37. controlPanel .add(undo) ;

38. controlPanel .add(refresh);

39. controlPanel _add(exit);

40. content.add(controlPanel);

41.

42. newContact.addActionListener(this);

43. newAppointment.addActionListener(this);

44 . undo.addActionListener(this);

45. refresh_addActionListener(this);

46. exit.addActionListener(this);

47.

48. mainFrame.addWindowListener(new WindowCloseManager());
49. mainFrame.pack();

50. mainFrame._setVisible(true);

51. ¥

52.

53. public void refreshDisplay(String actionMessage){
54. display.setText(actionMessage + ""\nCOMMAND HISTORY:\n" +
55. HistoryList._.getlnstance().toString());

56. ¥

57.

58. public void actionPerformed(ActionEvent evt){

59. Object originator = evt.getSource();

60. if (originator == newContact){

61. addCommand(** New Contact'™);

62.

63. else if (originator == newAppointment){

64. addCommand(** New Appointment™);

65.

66. else if (originator == undo){

67. undoCommand() ;

68.

69. else if (originator == refresh){

70. refreshDisplay(""");

71.

72. else if (originator == exit){

73. exitApplication();

74.

75. }

76.

236

77 .
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

}

private class WindowCloseManager extends WindowAdapter{

}

public void windowClosing(WindowEvent evt){

exitApplication();
3

private void addCommand(String message){

}

HistoryList_getlInstance() -addCommand((++historyCount) + message);
refreshDisplay(""Add Command: *

private void undoCommand(){

}

Object result = HistorylList._getlnstance().undoCommand();

historyCount--;

refreshDisplay("'Undo Command:

private void exitApplication(){

}

System_exit(0);

+ message);

+ result);

237

Behavioral Pattern Code Examples
Chain of Responsibility

The PIM can act as a project manager as well as a contact manager. This code example shows how to use the Chain of
Responsibility pattern to retrieve information from within a project hierarchy.

The Projectltem interface defines common methods for anything that can be part of a project.

Example A.32 Projectlitenm. java

import java.io.Serializable;
import java.util_ArraylList;
public interface Projectltem extends Serializable{
public static final String EOL _STRING = System.getProperty(*'line.separator™);
public Projectltem getParent();
public Contact getOwner();
public String getDetails();
public ArrayList getProjectltems();

O©CoO~NOOOTA~AWNPE

}

The interface defines the methods getParent, getOwner, getDetails, and getProjectltems. Two classes
implement Projectltem in thisexample — Project and Task. The Project classis the base of a project, so its
getParent method returns null. The getowner and getDetai Is method returns the overall owner and details for
the project, and the getProjectltems method returns al of the project’simmediate children.

Example A.33 Project.java

1. import java.util_ArraylList;

2. public class Project implements Projectltem{

3. private String name;

4. private Contact owner;

5. private String details;

6. private ArraylList projectltems = new ArrayList();

7.

8. public Project(Q{ }

9. public Project(String newName, String newDetails, Contact newOwner){
10. name = newName;

11. owner = newOwner;

12. details = newDetails;

13. }

14.

15. public String getName(){ return name; }

16. public String getDetails(){ return details; }

17. public Contact getOwner(){ return owner; }

18. public Projectltem getParent(){ return null; }

19. public ArrayList getProjectltems(){ return projectltems; }
20.

21. public void setName(String newName){ name = newName; }

22. public void setOwner(Contact newOwner){ owner = newOwner; }
23. public void setDetails(String newDetails){ details = newDetails; }
24 .

25. public void addProjectltem(Projectltem element){

26. if (Iprojectltems.contains(element)){

27. projectltems.add(element);

28.

29. }

30.

31. public void removeProjectltem(Projectltem element){

32. projectltems.remove(element);

33. }

34.

35. public String toString(Q){

36. return name;

37. }

38. }

The Task class represents some job associated with the project. Like Project, Task can keep a collection of
subtasks, and its getProjectltems method will return these objects. For Task, the getParent method returns the
parent, which will be another Task or the Project.

Example A.34 Task. java

238

1. import java.util_ArraylList;

2. import java.util._Listlterator;

3. public class Task implements Projectltem{

4. private String name;

5. private ArrayList projectltems = new ArrayList();

6. private Contact owner;

7. private String details;

8. private Projectltem parent;

9. private boolean primaryTask;

10.

11. public Task(Projectltem newParent){

12. this(newParent, ", ", null, false);

13.

14. public Task(Projectltem newParent, String newName,

15. String newDetails, Contact newOwner, boolean newPrimaryTask){
16. parent = newParent;

17. name = newName;

18. owner = newOwner;

19. details = newDetails;

20. primaryTask = newPrimaryTask;

21. }

22.

23. public Contact getOwner(){

24. if (owner == null){

25. return parent.getOwner();

26. }

27. else{

28. return owner;

29. }

30. }

31.

32. public String getDetails(){

33. if (primaryTask){

34. return details;

35. }

36. else{

37. return parent.getDetails() + EOL_STRING + "\t" + details;
38. }

39. }

40.

41. public String getName(){ return name; }

42. public ArrayList getProjectltems(){ return projectltems; }
43. public Projectltem getParent(){ return parent; }

44 . public boolean isPrimaryTask(){ return primaryTask; }

45.

46. public void setName(String newName){ name = newName; }

47. public void setOwner(Contact newOwner){ owner = newOwner; }
48. public void setParent(Projectltem newParent){ parent = newParent; }
49. public void setPrimaryTask(boolean newPrimaryTask){ primaryTask = newPrimaryTask; }
50. public void setDetails(String newDetails){ details = newDetails; }
51.

52. public void addProjectltem(Projectltem element){

53. if (Iprojectltems.contains(element)){

54. projectltems.add(element);

55. }

56. }

57.

58. public void removeProjectltem(Projectltem element){

59. projectltems.remove(element);

60. }

61.

62. public String toString({

63. return name;

64. }

65. }

The Chain of Responsibility behavior is manifested in the getowner and getDetai I's methods of Task. For
getowner, a Task will either return itsinternally referenced owner (if non-null), or that of its parent. If the parent
was a Task and its owner was null as well, the method call is passed on to the next parent until it eventually
encountered a non-null owner or it reachesthe Project itself. Thismakes it easy to set up a group of Tasks
where the same individual is the designated owner, responsible for the completion of a Task and all subtasks of
Tasks.

The getDetai ls method is another example of Chain of Responsibility behavior, but it behaves somewhat
differently. It calls the getDetai I's method of each parent until it reaches a Task or Project that isidentified as

239

aterminal node. This means that getDetai Is returns a series of Strings representing all the detailsfor a
particular Task chain.

Support classes for the example include the Contact interface and ContactiImpl class, which are used by Project and
Task to define an owner.

Example A.35 cContact.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " "';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.36 contactimpl.java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplOQ{}

8. public Contactlmpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newlLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(QQ{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(Q){

27. return firstName + SPACE + lastName;

28. ¥

29. }

The bataCreator class provide support classes to generate data and serialize it to afile, while the
DataRetriever class retrieves the data for use in the example. The RunPattern class coordinates between the
other classes in the example, getting a project, then retrieving the owner and details for each Task and for the
Project itsdf.

Example A.37 DataCreator. java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5.

6. public class DataCreator{

7. private static final String DEFAULT FILE = "'data.ser";
8.

9. public static void main(String [] args){
10. String fileName;

11. if (args.length == 1){

12. fileName = args[0];

13. }

14. else{

15. fileName = DEFAULT_FILE;

240

16.

17. serialize(fileName);

18. }

19.

20. public static void serialize(String fileName){

21. try {

22. serializeToFile(createData(), fileName);

23. }

24. catch (10Exception exc){

25. exc.printStackTrace();

26. }

27. }

28.

29. private static Serializable createData(){

30. Contact contactl = new ContactImpl ("'Dennis", "Moore", ""Managing Director", ""Highway
Man, LTD");

31. Contact contact2 = new Contactimpl(*"Joseph', "Mongolfier™, "High Flyer","Lighter
than Air Productions'™);

32. Contact contact3 = new ContactImpl("Erik™"™, "Njoll'", "Nomad without Portfolio",
"Nordic Trek, Inc.");

33. Contact contact4 = new Contactlmpl(Lemming™, ", "Principal Investigator™, "BDA™);

34.

35. Project project = new Project("IslandParadise', "Acquire a personal island paradise',
contact?);

36.

37. Task taskl = new Task(project, "Fortune', "Acquire a small fortune', contact4, true);

38. Task task2 = new Task(project, "lIsle'", "Locate an island for sale', null, true);

39. Task task3 = new Task(project, ""Name', ""Decide on a name for the island", contact3,
false);

40. project.addProjectltem(taskl);

41. project.addProjectltem(task?);

42. project.addProjectltem(task3);

43.

44 . Task task4 = new Task(taskl, "Fortunel', "Use psychic hotline to predict winning
lottery numbers'™, null, false);

45. Task task5 = new Task(taskl, "Fortune2", "Invest winnings to ensure 50% annual
interest", contactl, true);

46. Task task6 = new Task(task2, "Islel", "Research whether climate is better in the
Atlantic or Pacific"”, contactl, true);

47. Task task7 = new Task(task2, "Isle2" >ate an island for auction on EBay", null,
false);) 5

48. Task task8 = new Task(task2, "lIsle2 tiate for sale of the island™, null,
false); N

49. Task task9 = new Task(task3,> "Research every possible name in the world",
null, true);

50. Task task1l0 = new Task(o ", "Eliminate any choices that are not
coffee-related", ~contact4, false);

51. taskl.addProjectltem(task4);

52. taskl.addProjectltem(task5);

53. task2.addProjectltem(taskob);

54. task2.addProjectltem(task?);

55. task2.addProjectltem(taskd);

56. task3.addProjectltem(task9);

57. task3.addProjectltem(taskl10);

58. return project;

59. }

60.

61. private static void serializeToFile(Serializable content, String fileName) throws
I0Exception {

62. ObjectOutputStream serOut = new ObjectOutputStream(new FileOutputStream(fileName));

63. serOut.writeObject(content);

64. serOut.close();

65. }

66. }

Example A.38 DataRetriever.java

1. import java.io.File;

2. import java.io.FilelnputStream;

3. import java.io.lOException;

4. import java.io.ObjectlnputStream;

5.

6. public class DataRetriever{

7. public static Object deserializeData(String FfileName){
8. Object returnvalue = null;

9. try{

10. File inputFile = new File(FileName);

11. if (inputFile._exists() && inputFile.isFile()){

241

12. ObjectlnputStream readln = new ObjectlnputStream(new FilelnputStream(FfileName));

13. returnValue = readln.readObject();
14. readln._close();

15. }

16. else {

17. System.err.printIn(*"Unable to locate the file " + fileName);
18. }

19. }

20. catch (ClassNotFoundException exc){

21. exc.printStackTrace();

22.

23. }

24. catch (10Exception exc){

25. exc.printStackTrace();

26.

27. }

28. return returnValue;

29. }

30. }

Example A.39 RunPattern.java

1. import java.io.File;

2. import java.util_ArraylList;

3. import java.util.lterator;

4. public class RunPattern{

5. public static void main(String [] arguments){

6. System.out.printIn("'Example for the Chain of Responsibility pattern™);

7. System.out.printin(Q);

8. System.out.printIn("'This code uses chain of responsibility to obtain™);
9. System.out.printIn("" the owner for a particular Projectltem, and to");
10. System.out.printIn(’" build up a list of project details. In each case,');
11. System.out.printIn(’" a call to the appropriate getter method, getOwner');
12. System.out.printIn(’" or getDetails, will pass the method call up the');
13. System.out.printIn(’" project tree.™);

14. System.out.printIn("'For getOwner, the call will return the Ffirst non-null'™);
15. System.out._printIn(’* owner field encountered. For getDetails, the method');
16. System.out.printIn(’* will build a series of details, stopping when it");
17. System.out.printIn(’" reaches a Projectltem that is designated as a');

18. System.out.printIn(’" primary task.');

19. System.out.printin(Q;

20.

21. System.out.printIn(‘'Deserializing a test Project for Visitor pattern™);
22. System.out.printin(Q;

23. if (M(new File('data.ser").exists())){

24. DataCreator.serialize('data.ser™™);

25. }

26. Project project = (Project)(DataRetriever._deserializeData('data.ser'));
27.

28. System.out.printIn("'Retrieving Owner and details for each item in the Project');
29. System.out.printin(Q;

30. getltemInfo(project);

31. }

32.

33. private static void getltemInfo(Projectltem item){

34. System.out.printIn("'Projectlitem: " + item);

35. System._out._printIn(’* Owner: " + item.getOwner());

36. System.out._printIn(’’ Details: " + item._getDetails());

37. System.out.printin(Q;

38. if (item.getProjectltems() !'= null){

39. Iterator subElements = item.getProjectltems().iterator();

40. while (subElements.hasNext()){

41. getltemInfo((Projectltem)subElements.next());

42. }

43. }

44 }

45. %

242

Command

In the Personal Information Manager, users might want to update or modify information in their system. This
code demonstrates how the Command pattern can provide update and undo behavior for alocation.

In this example, apair of interfaces model the generic command behavior. The basic command action is defined
by the execute method in Command, while UndoableCommand extends this interface by adding undo and redo
methods.

Example A.40 command.java

1. public interface Command{

2. public void execute();

3. }

Example A.41 undoableCommand. java

1. public interface UndoableCommand extends Command{
2. public void undo();

3. public void redo();

4. }

In the PIM, the location of an appointment will be used to implement an undoable command. An appointment
stores a description of an event, the people involved, the location, and the start and end time(s).

Example A.42 Appointment.java

1. import java.util.Date;

2. public class Appointment{

3. private String reason;

4. private Contact[] contacts;

5. private Location location;

6. private Date startDate;

7. private Date endDate;

8.

9. public Appointment(String reason, Contact[] contacts, Location location, Date startDate,
Date endDate){

10. this.reason = reason;

11. this.contacts = contacts;

12. this.location = location;

13. this.startDate = startDate;

14. this.endDate = endDate;

15. }

16.

17. public String getReason(){ return reason; }

18. public Contact[] getContacts(){ return contacts; }

19. public Location getLocation(){ return location; }

20. public Date getStartDate(){ return startDate; }

21. public Date getEndDate(){ return endDate; }

22.

23. public void setLocation(Location location){ this.location = location; }

24

25. public String toString({

26. return "Appointment:" + "\n Reason: " + reason +

27. '"\n Location: " + location + '"\n Start: " +

28. startDate + '"\n End: ' + endDate + '"\n";

29. }

30. }

The class ChangeLocationCommand implements the UndoablleCommand interface and provides the behavior
required to change the location for an appointment.

Example A.43 changelLocationCommand. java

1. public class ChangelLocationCommand implements UndoableCommand{

2. private Appointment appointment;

3. private Location oldLocation;

4. private Location newLocation;

5. private LocationEditor editor;

6.

7. public Appointment getAppointment(){ return appointment; }

8.

9. public void setAppointment(Appointment appointment){ this.appointment = appointment; }
10. public void setLocationEditor(LocationEditor locationEditor){ editor = locationEditor; }

243

11.

12. public void execute(){

13. oldLocation = appointment.getLocation();
14. newLocation = editor._getNewLocation();
15. appointment.setLocation(newLocation);
16. ¥

17. public void undo(){

18. appointment.setlLocation(oldLocation);
19. }

20. public void redo(){

21. appointment.setLocation(newLocation);
22. ¥

23. }

The class provides the ability to change alocation using the execute method. It provides undo behavior by storing
the previous value of the location and allowing a user to restore that value by calling the undo method. Finally, it
supports aredo method that enables users to restore the new location, if they happen to be very indecisive.

Support classes for this example include CommandGui, used to provide a user interface to edit the appointment
location.

Example A.44 commandGui . java

1. import java.awt.Container;

2. import java.awt.event.ActionListener;
3. import java.awt.event.WindowAdapter;
4. import java.awt.event.ActionEvent;
5. import java.awt.event_WindowEvent;
6. import javax.swing.BoxLayout;

7. import javax.swing.JButton;

8. import javax.swing.JComponent;

9. import javax.swing.JFrame;

10. import javax.swing.JLabel;

11. import javax.swing.JPanel;

12. import javax.swing.JTextArea;

13. import javax.swing.JTextField;
14. public class CommandGui implements ActionListener, LocationEditor{
15. private JFrame mainFrame;

16. private JTextArea display;

17. private JTextField updatedLocation;

18. private JButton update, undo, redo, exit;

19. private JPanel controlPanel, displayPanel, editorPanel;
20. private UndoableCommand command;

21. private Appointment appointment;

22.

23. public CommandGui (UndoableCommand newCommand){

24 command = newCommand;

25. }

26.

27. public void setAppointment(Appointment newAppointment){
28. appointment = newAppointment;

29. }

30.

31. public void createGui(){

32. mainFrame = new JFrame("'Command Pattern Example'™);
33. Container content = mainFrame.getContentPane();
34. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));
35.

36. editorPanel = new JPanel();

37. editorPanel .add(new JLabel(*'Location'));

38. updatedLocation = new JTextField(20);

39. editorPanel .add(updatedLocation);

40. content.add(editorPanel);

41.

42. displayPanel = new JPanel();

43. display = new JTextArea(10, 40);

44 . display.setEditable(false);

45. displayPanel _.add(display);

46. content._add(displayPanel);

47 .

48. controlPanel = new JPanel();

49. update = new JButton("Update Location'™);

50. undo = new JButton(*'Undo Location™);

51. redo = new JButton(''Redo Location™);

52. exit = new JButton("Exit'");

53. controlPanel .add(update);

244

54. controlPanel .add(undo) ;

55. controlPanel .add(redo);

56. controlPanel _add(exit);

57. content.add(controlPanel);

58.

59. update.addActionListener(this);

60. undo.addActionListener(this);

61. redo.addActionListener(this);

62. exit.addActionListener(this);

63.

64. refreshDisplay();

65. mainFrame.addWindowListener(new WindowCloseManager());
66. mainFrame.pack();

67. mainFrame._setVisible(true);

68. ¥

69.

70. public void actionPerformed(ActionEvent evt){
71. Object originator = evt.getSource();
72. if (originator == update){

73. executeCommand();

74. ¥

75. if (originator == undo){

76. undoCommand() ;

77. }

78. if (originator == redo){

79. redoCommand() ;

80.

81. else if (originator == exit){

82. exitApplication();

83. ¥

84. ¥

85.

86. private class WindowCloseManager extends WindowAdapter{
87. public void windowClosing(WindowEvent evt){
88. exitApplication();

89. ¥

90. ¥

91.

92. public Location getNewLocation(){

93. return new Locationlmpl(updatedLocation.getText());
94. ¥

95.

96. private void executeCommand(){

97. command .execute();

98. refreshDisplay();

99. ¥

100.

101. private void undoCommand(){

102. command.undo();

103. refreshDisplay();

104. ¥

105.

106. private void redoCommand(){

107. command.redo();

108. refreshDisplay();

109. ¥

110.

111. private void refreshDisplay(Q{

112. display.setText(appointment.toString());
113. ¥

114.

115. private void exitApplication(){

116. System_exit(0);

117. }

118. }

Notice that the CommandGui class implements the interface LocationEditor. Thisinterface defines a method
getNewLocation, which provides away for the ChangeLocationCommand to retrieve the new location from the
GUI.

Example A.45 LocationEditor.java

1. public interface LocationEditor{
2. public Location getNewLocation();
3. }

245

The interfaces Contact and Location, with their corresponding implementation classes Contactimpl and
LocationlImpl, provide additional business objects used by the Appointment class.

Example A.46 Contact.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newlLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.47 contactimpl.java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6. public static final String EOL_STRING =

7. System.getProperty("'line.separator™);

8.

9. public Contactimpl(Q{ }

10. public Contactlmpl(String newFirstName, String newLastName,
11. String newTitle, String newOrganization){

12. firstName = newFirstName;

13. lastName = newlLastName;

14. title = newTitle;

15. organization = newOrganization;

16. }

17.

18. public String getFirstName(){ return firstName; }

19. public String getLastName(){ return lastName; }

20. public String getTitle(QQ{ return title; }

21. public String getOrganization(){ return organization; }

22.

23. public void setFirstName(String newFirstName){ firstName = newFirstName; }
24. public void setLastName(String newlLastName){ lastName = newLastName; }
25. public void setTitle(String newTitle){ title = newTitle; }
26. public void setOrganization(String newOrganization){ organization = newOrganization; }
27.

28. public String toString(Q){

29. return firstName + ™ " + lastName;

30. }

31. }

Example A.48 Location.java

1. import java.io.Serializable;

2. public interface Location extends Serializable{

3. public String getLocation();

4. public void setLocation(String newLocation);

5. }

Example A.49 Locationlmpl.java

1. public class LocationIlmpl implements Location{

2. private String location;

3.

4. public Locationlmpl(Q{ }

5. public Locationlmpl(String newLocation){

6. location = newLocation;

7. }

8.

9. public String getLocation(){ return location; }
10.

11. public void setLocation(String newLocation){ location = newLocation; }
12.

13. public String toString(Q{ return location; }
14. }

246

RunPattern loads the data for a sample Appointment and creates an instance of CommandGui. The GUI enables
you to make changes to the location of the Appointment, with update, undo and redo behavior.

Example A.50 RunPattern.java

1. import java.util_Calendar;

2. import java.util_Date;

3.

4. public class RunPattern{

5. private static Calendar dateCreator = Calendar.getlnstance();

6.

7. public static void main(String [] arguments){

8. System.out.printIn(""Example for the Command pattern'™);

9. System.out.printin(Q);

10. System.out.printIn("'This sample will use a command class called™);
11. System._out._printIn(’* ChangeLocationCommand to update the location');
12. System._out._printIn(’* of an Appointment object.');

13. System.out.printIn("'The ChangelLocationCommand has the additional'™);
14. System.out.printIn(’" ability to undo and redo commands, so it can');
15. System._out._printIn(’" set the locaition back to its original value,™™);
16. System._out._printIn(’" if desired.™);

17. System._out._printin(Q);

18.

19. System.out.printIn(''Creating an Appointment for use in the demo™);
20. Contact [] people = { new Contactimpl(), new Contactimpl() };

21. Appointment appointment = new Appointment(*'Java Twister Semi-Finals",
22. people, new Locationlmpl(*"""), createDate(2001, 10, 31, 14, 30),
23. createDate(2001, 10, 31, 14, 31));

24.

25. System.out._.printIn('’'Creating the ChangelLocationCommand');

26. ChangelLocationCommand cmd = new ChangelLocationCommand();

27. cmd.setAppointment(appointment);

28.

29. System.out.printIn("'Creating the GUI");

30. CommandGui application = new CommandGui(cmd);

31. application.setAppointment(appointment);

32. cmd.setLocationEditor(application);

33. application.createGui();

34.

35. }

36. public static Date createDate(int year, int month, int day, int hour, int minute){
37. dateCreator.set(year, month, day, hour, minute);

38. return dateCreator.getTime();

39. ¥

40. %}

247

Interpreter

The Expression hierarchy is at the heart of the Interpreter pattern. It defines the grammar that can be used to
create and evaluate expressions. The Expression interface is the foundation for all expressions, and defines the
interpret method that performs an evaluation.

Table A-1 lists the interface and corresponding information.

Table A-1. Purpose of the Expression interface and its implementers

Expression Common interface for al expressions

ConstantExpression Represents a constant val ue

VariableExpression Represents a variable value, obtained by calling a method on some class
CompoundExpression A pair of comparison expressions that evaluate to a boolean result
AndExpression Thelogica “and” of two expressions

OrExpression Thelogica “or” of two expressions

ComparisonExpression A pair of expressions that evaluate to a boolean result

EqualsExpression Performs an equals method comparison between the two expressions
ContainsExpression Checksto seeif thefirst String expression contains the second one

Example A.51 Expression.java

1. public interface Expression{
2. void interpret(Context c);
3. %}

Example A.52 ConstantExpression.java

1. import java.lang.reflect_Method;

2. import java.lang.reflect.InvocationTargetException;
3. public class ConstantExpression implements Expression{
4. private Object value;

5.

6. public ConstantExpression(Object newValue){

7. value = newValue;

8. }

9.

10. public void interpret(Context c){

11. c.addvariable(this, value);

12. }

13. }

Example A.53 variableExpression.java

1. import java.lang.reflect._Method;

2. import java.lang.reflect.InvocationTargetException;

3. public class VariableExpression implements Expression{

4. private Object lookup;

5. private String methodName;

6.

7. public VariableExpression(Object newLookup, String newMethodName){
8. lookup = newlLookup;

9. methodName = newMethodName;

10. }

11.

12. public void interpret(Context c){

13. try{

14. Object source = c.get(lookup);

15. if (source = null){

16. Method method = source.getClass() .getMethod(methodName, null);
17. Object result = method. invoke(source, null);
18. c.addVvVariable(this, result);

19. }

20. }

21. catch (NoSuchMethodException exc){ }

22. catch (1llegalAccessException exc){ }

23. catch (InvocationTargetException exc){ }

24 . }

25. }

248

Example A.54 compoundExpression.java

1. public abstract class CompoundExpression implements Expression{

2. protected ComparisonExpression expressionA;

3. protected ComparisonExpression expressionB;

4.

5. public CompoundExpression(ComparisonExpression expressionA, ComparisonExpression

expressionB){

6. this.expressionA = expressionA;

7. this.expressionB = expressionB;

8. }

9. }

Example A.55 AndExpression. java

1. public class AndExpression extends CompoundExpression{

2. public AndExpression(ComparisonExpression expressionA, ComparisonExpression expressionB){

3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c){

7. expressionA.interpret(c);

8. expressionB. interpret(c);

9. Boolean result = new Boolean(((Boolean)c.get(expressionA)).booleanvalue()
&& ((Boolean)c.get(expressionB)).booleanvValue());

10. c.addVariable(this, result);

11. }

12. }

Example A.56 orExpression.java

1. public class OrExpression extends CompoundExpression{

2. public OrExpression(ComparisonExpression expressionA, ComparisonExpression expressionB){

3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c){

7. expressionA.interpret(c);

8. expressionB.interpret(c);

9. Boolean result = new Boolean(((Boolean)c.get(expressionA)).booleanvalue() ||
((Boolean)c.get(expressionB)) .booleanvValue());

10. c.addVariable(this, result);

11. }

12. 3}

Example A.57 ComparisonExpression.java

1. public abstract class ComparisonExpression implements Expression{

2. protected Expression expressionA;

3. protected Expression expressionB;

4.

5. public ComparisonExpression(Expression expressionA, Expression expressionB){
6. this.expressionA = expressionA;

7. this.expressionB = expressionB;

8. }

9. }

Example A.58 EqualsExpression.java

1. public class EqualsExpression extends ComparisonExpression{

2. public EqualsExpression(Expression expressionA, Expression expressionB){
3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c){

7. expressionA.interpret(c);

8. expressionB.interpret(c);

9. Boolean result = new Boolean(c.get(expressionA).equals(c.get(expressionB)));
10. c.addVariable(this, result);

11. ¥

12. 3}

Example A.59 ContainsExpression.java

1. public class ContainsExpression extends ComparisonExpression{

2. public ContainsExpression(Expression expressionA, Expression expressionB){
3. super(expressionA, expressionB);

4. }

5.

6. public void interpret(Context c){

249

7. expressionA.interpret(c);

8. expressionB.interpret(c);

9. Object exprAResult = c.get(expressionA);

10. Object exprBResult = c.get(expressionB);

11. if ((exprAResult instanceof String) && (exprBResult instanceof String)){
12. if (((String)exprAResult). indexOF((String)exprBResult) = -1){
13. c.addvariable(this, Boolean.TRUE);

14. return;

15. }

16. }

17. c.addVariable(this, Boolean.FALSE);

18. return;

19. }

20. }

The Context class represents shared memory for expressions during evaluation. Context isawrapper around a
HashMap. In this example, the Expression objects provide the keys for the Hashmap, and the results of calling the
interpret method are stored as its values.

Example A.60 Context.java

1. import java.util._HashMap;

2. public class Context{

3. private HashMap map = new HashMap(Q);
4.

5. public Object get(Object name){

6. return map.get(name);

7. }

8.

9. public void addVariable(Object name, Object value){
10. map.put(name, value);

11. }

12. }

With this series of expressions, it is possible to perform fairly sophisticated comparisons. ContactList holds a
series of contacts in this example. It defines a method called getContactsMatchingExpression, which
evaluates the Expression for every Contact and returns an ArrayList.

Example A.61 contactList.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. import java.util.lterator;

4. public class ContactList implements Serializable{

5. private ArraylList contacts = new ArrayList();

6.

7. public ArrayList getContacts(){ return contacts; }

8. public Contact [] getContactsAsArray(){ return (Contact [])(contacts. toArray(new
Contact [1])); }

9.

10. public ArrayList getContactsMatchingExpression(Expression expr, Context ctx, Object key){

11. ArrayList results = new ArrayList();

12. Iterator elements = contacts.iterator();

13. while (elements.hasNext()){

14. Object currentElement = elements.next();

15. ctx.addVariable(key, currentElement);

16. expr.interpret(ctx);

17. Object interpretResult = ctx.get(expr);

18. if ((interpretResult = null) && (interpretResult.equals(Boolean.TRUE))){

19. results._add(currentElement);

20. }

21. ¥

22. return results;

23. }

24.

25. public void setContacts(ArrayList newContacts){ contacts = newContacts; }

26.

27. public void addContact(Contact element){

28. if (Icontacts.contains(element)){

29. contacts.add(element);

30. }

31. ¥

32. public void removeContact(Contact element){

33. contacts.remove(element);

34. }

35.

250

36. public String toString(Q{

37. return contacts.toString(Q);
38. }

39. }

With the Expression hierarchy and the ContactList, it is possible to perform database-like queries for the
Contacts in aContactList. For example, you could search for all those Contacts with atitle containing the
characters “Java’ by doing the following:

Create a ConstantExpression with the string “Java’.

Create avariableExpression with the target object and the string “ getTitle ”.

Create a ContainsExpression With the variableExpression asthefirst argument and the
ConstantExpression asthe second.

Passthe ContainsExpression into a ContactList object's getContactsMatchingExpression method
Contact and itsimplementer Contactimpl represent the business objects to be evaluated in this example.

Example A.62 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);

11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. } (|

Example A.63 Contactlimpl . java

1. public class Contactimpl implements Contac

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organizatk¥

6.

7. public ContactimplQ{}

8. public Contactlmpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newlLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(QQ{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(Q){

27. return firstName + SPACE + lastName;

28. }

29. }

This code shows how the Interpreter could be used to search among a set of Contacts in astructure like an
address book. Recognize, however, that the Expressions could be used with any other classes, providing search
functionality for any of the PIM business objects.

251

RunPattern demonstrates the Interpreter functionality by creating aContactList and running a group of
matching expressions on the elementsin the list.

Example A.64 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments){

3. System.out.printIn(""Example for the Interpreter pattern™);

4. System._out._printIn(*'In this demonstration, the syntax defined™);

5. System.out.printIn(*" by the Interpreter can be used to search™);

6. System.out.printIn(" among a collection of Contacts, returning");

7. System.out.printIn(’" the subset that match the given search criteria."™);

8.

9. ContactList candidates = makeContactList();

10. Context ctx = new Context();

11.

12. System.out.printIn('’Contents of the ContactList:");

13. System.out.printin(candidates);

14. System._out._printin(Q);

15.

16. Contact testContact = new Contactimpl();

17. VariableExpression varLName = new VariableExpression(testContact, 'getLastName');

18. ConstantExpression constLName = new ConstantExpression(''u');

19. ContainsExpression egLName = new ContainsExpression(varLName, constLName);

20.

21. System.out.printIn('Contents of the search on ContactList:");

22. System.out.printIn(’'(search was contains "u® in Lase Name)');

23. Object result = candidates.getContactsMatchingExpression(eqLName, ctx, testContact);

24. System.out.printin(result);

25.

26. VariableExpression varTitle = new VariableExpression(testContact, "getTitle');

27. ConstantExpression constTitle = new ConstantExpression(''LT");

28. EqualskExpression eqTitle = new EqualsExpression(varTitle, constTitle);

29.

30. System.out._printIn(’’Contents of the search on ContactList:");

31. System.out.printIn(''(search was all LT personnel)');

32. result = candidates.getContactsMatchingExpression(eqTitle, ctx, testContact);

33. System.out.printin(result);

34. System._out._printin(Q);

35.

36. VariableExpression varLastName = new VariableExpression(testContact, ''getLastName');

37. ConstantExpression constLastName = new ConstantExpression(''S™);

38. ContainsExpression cLName = new ContainsExpression(varLastName, constLastName);

39.

40. AndExpression andExpr = new AndExpression(eqTitle, cLName);

41.

42. System.out.printIn(’'Contents of the search on ContactList:");

43. System.out.printIn(’'(search was all LT personnel with *S" in Last Name)');

44 . result = candidates.getContactsMatchingExpression(andExpr, ctx, testContact);

45. System.out.printin(result);

46. ¥

47.

48. private static ContactList makeContactList(){

49. ContactList returnList = new ContactList();

50. returnList.addContact(new Contactlmpl(*James™, "Kirk'™, "Captain’, "USS
Enterprise™));

51. returnList.addContact(new Contactimpl("Mr.", "Spock', "Science Officer", '"USS
Enterprise'™));

52. returnList.addContact(new Contactimpl("LT", "Uhura"™, "LT', "USS Enterprise'));

53. returnList.addContact(new Contactimpl (LT, *"Sulu™, "LT", "USS Enterprise'));

54. returnList.addContact(new Contactlmpl("Ensign", "Checkov', "Ensign', "USS
Enterprise™));

55. returnList.addContact(new Contactimpl(*Dr.", "McCoy', "Ship®"s Doctor", "USS
Enterprise™));

56. returnList.addContact(new Contactlmpl(*'"Montgomery'™, 'Scott"™, "LT', "USS
Enterprise™));

57. return returnList;

58. }

59. }

252

Iterator

This example uses the Java Collection Framework to provide iterating behavior for apair of business aggregates.
The java.util. Iterator interface defines methods for the basic navigation methods required— hasNext and
next. Note that the I1terator interface requires one-time-only traversal, since the only way to return to the
beginning is to get another 1terator from the collection.

The 1terating interface defines asingle method, getlterator. Thisinterface is used to identify any classin the
PIM that is capable of producing an Iterator for collection traversal.

Example A.65 Iterating.java

import java.util.lterator;

import java.io.Serializable;

public interface lterating extends Serializable{
public Iterator getlterator();

}

arwWNPEF

The ToDoList and ToDoListCol lection interfaces, which extend Iterating, define the two collectionsin the
example. ToDoList defines a sequential list of tasks or items, while ToDoListCol lection represents acollection
of to-do lists stored in the PIM.

Example A.66 ToDoList.java

public interface ToDoList extends lterating{
public void add(String item);
public void add(String item, int position);
public void remove(String item);
public int getNumberOfltems();
public String getListName(Q);
public void setListName(String newListName);

O~NOURWNPE

}

Example A.67 ToDoListCollection.java

1 public interface ToDoListCollection extends Ilterating{
2. public void add(ToDoList list);

3. public void remove(ToDoList list);

4 public int getNumberOfltems();

5 }

The classes ToboListImpl and ToDoListCol lectionlmpl implement the previous interfaces. ToDoListimpl
uses an ArrayList to hold its elements, which provides absolute ordering and allows duplicate entries.
ToDoListCollectionlmpl uses aHashTable, which does not support ordering and stores its entries as key-value
pairs. Although the collections behave very differently, both can provide Iterators for their stored elements.

Example A.68 ToDoListCollectionlmpl.java

1. import java.util.lterator;

2. import java.util_HashMap;

3. public class ToDoListCollectionlmpl implements ToDoListCollection{
4. private HashMap lists = new HashMap();

5.

6. public void add(ToDoList list){

7. if (Mlists.containsKey(list.getListName())){

8. lists_put(list.getListName(), list);

9. }

10.

11. public void remove(ToDoList list){

12. if (lists_containsKey(list._getListName())){

13. lists.remove(list.getListName());

14. ¥

15. ¥

16. public int getNumberOfltems(){ return lists.size(); }

17. public Iterator getlterator(){ return lists.values().iterator(); }
18. public String toString(){ return getClass().toString(); }

19. }

Example A.69 ToDoListImpl.java

1. import java.util.lterator;

2 import java.util_ArraylList;

3. public class ToDoListImpl implements ToDoList{
4 private String listName;

253

5. private ArraylList items = new ArrayList();

6.

7. public void add(String item){

8. if (Titems.contains(item)){

9. items.add(item);

10. ¥

11. ¥

12. public void add(String item, int position){

13. if (Jitems.contains(item)){

14. items.add(position, item);

15. ¥}

16. ¥

17. public void remove(String item){

18. if (items.contains(item)){

19. items.remove(items. indexOf(item));

20. ¥

21. ¥

22.

23. public int getNumberOfltems(){ return items.size(); }
24. public Iterator getlterator(){ return items.iterator(); }
25. public String getListName(){ return listName; }

26. public void setListName(String newListName){ listName = newListName; }
27.

28. public String toString(Q{ return listName; }

29. }

Both classes can provide an Iterator, so it's straightforward to write code to move through their elements.
ListPrinter shows how the Iterators could be used to print the contents of collections out in their String form.
The class has three methods:. printToDoList, printToDoListCollection and printlteratingElement. In all
three methods, the iteration process is based around avery simplewhi le loop.

Example A.70 ListPrinter.java

1. import java.util.lterator;

2. import java.io.PrintStream;

3. public class ListPrinter{

4. public static void printToDoList(ToDoList list, PrintStream output){

5. Iterator elements = list.getlterator();

6. output.printIn(’ List - " + list + ":");

7. while (elements.hasNext()){

8. output.printin(C"\t" + elements.next());

9. }

10. }

11.

12. public static void printToDoListCollection(ToDoListCollection lotsOfLists,
PrintStream output){

13. Iterator elements = lotsOfLists.getlterator();

14. output.printIn(""\""To Do\" List Collection:");

15. while (elements.hasNext()){

16. printToDoList((ToDoList)elements.next(), output);

17. }

18. }

19.

20. public static void printlteratingElement(lterating element, PrintStream output){

21. output.printIn("Printing the element " + element);

22. Iterator elements = element.getlterator();

23. while (elements.hasNext()){

24. Object currentElement = elements.next();

25. if (currentElement instanceof lterating){

26. printlteratingElement((lterating)currentElement, output);

27. output.printin(Q);

28. }

29. else{

30. output.printin(currentElement);

31. }

32. }

33. }

34. }

The method printlteratingElement best demonstrates the power of combining the Iterator pattern with
polymorphism. Here, any class that implements Iterating can be printed in String form. The method makes no
assumptions about the underlying collection structure except that it can produce an Iterator.

This example uses two support classes, DataCreator and DataRetriever, to produce a sample set of to-do lists
and store them in afile.

254

Example A.71 pataCreator. java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. public class DataCreator{

6. private static final String DEFAULT FILE = "data.ser";

7.

8. public static void main(String [] args){

9. String fileName;

10. if (args.-length == 1){

11. fileName = args[0];

12. Yelse{

13. fileName = DEFAULT_FILE;

14. }

15. serialize(fileName);

16. }

17.

18. public static void serialize(String fileName){

19. try{

20. serializeToFile(createData(), FileName);

21. } catch (10Exception exc){

22. exc.printStackTrace();

23. }

24 }

25.

26. private static Serializable createData(){

27. ToDoListCollection data = new ToDoListCollectionimpl();
28. ToDoList listOne = new ToDoListimpl();

29. ToDoList listTwo = new ToDoListimpl();

30. ToDoList listThree = new ToDoListimpl();

31. listOne.setListName(''Daily Routine™);

32. listTwo.setListName("'Programmer hair washing procedure'™);
33. listThree.setListName("'Reading List'");

34. listOne.add("Get up (harder some days than others)');
35. listOne.add("'Brew cuppa Java');

36. listOne.add("'Read JVM Times");

37. listTwo.add("Lather');

38. listTwo.add("'Rinse");

39. listTwo.add('"Repeat');

40. listTwo.add("(eventually throw a TooMuchHairConditioner exception)');
41. listThree.add(""The complete annotated aphorisms of Duke');
42. listThree.add(""How green was my Java');

43. listThree.add(""URL, sweet URL');

44 . data.add(listOne);

45. data.add(listTwo);

46. data.add(listThree);

47 . return data;

48. }

49.

50. private static void serializeToFile(Serializable data, String FfileName) throws 10Exception{
51. ObjectOutputStream serOut = new ObjectOutputStream(new FileOutputStream(fileName));
52. serOut.writeObject(data);

53. serOut.close();

54. }

55. }

Example A.72 DataRetriever.java

1. import java.io.File;

2. import java.io.FilelnputStream;

3. import java.io.lOException;

4. import java.io.ObjectlnputStream;

5.

6. public class DataRetriever{

7. public static Object deserializeData(String FfileName){

8. Object returnvalue = null;

9. try{

10. File inputFile = new File(FileName);

11. if (inputFile._exists() && inputFile.isFile()){

12. ObjectlnputStream readln = new ObjectlnputStream(new FilelnputStream(FfileName));
13. returnValue = readln.readObject();

14. readln._close();

15. Yelse{

16. System.err._printIn(*"Unable to locate the file " + fileName);
17. }

18. }catch (ClassNotFoundException exc){

19. exc.printStackTrace();

255

20. }catch (10Exception exc){

21. exc.printStackTrace();
22. }

23. return returnValue;

24 . }

25. }

RunPattern coordinates this example by loading the sample data, then calling the ListPrinter method
printToDoListCollection to print al lists and their elements.

Example A.73 RunPattern.java

1. import java.io.File;

2. import java.io.lOException;

3. public class RunPattern{

4. public static void main(String [] arguments){

5. System.out.printIn(""Example for the lterator pattern™);

6. System.out.printIn("" This code sample demonstrates how an lterator can enforce");

7. System.out.printIn(*" uniformity of processing for different collection types.™);

8. System.out.printIn(* In this case, there are two classes, ToDoListlmpl and™);

9. System._out.printIn(’" ToDoListCollectionlmpl, that have different storage needs.");

10. System.out.printIn(’" ToDoListImpl uses an ArrayList to store its elements in");

11. System.out.printIn(’" ordered form. The ToDoListCollectionlmpl uses a HashMap,');

12. System._out._printIn(’" since it must differentiate between ToDoListlmpl objects by');

13. System._out._printIn(’" their String identifiers.');

14. System._out._printin(Q);

15. System.out.printin("'Although the two classes use different underlying collections,™™);

16. System.out.printIn(’" the ListPrinter class can use the lterator produced by each');

17. System.out.printIn(’" to print out a set of list contents.');

18. System._out._printin(Q);

19.

20. if (J(new File('data.ser").exists())){

21. DataCreator.serialize('data.ser™™);

22. }

23. ToDoListCollection lists = (ToDoListCollection)(DataRetriever.
deserializeData(''data.ser'));

24.

25. System.out.printIn(''Lists retrieved. Printing out contents using the lterator');

26. System._out._printin(Q);

27. ListPrinter._printToDoListCollection(lists, System.out);

28. }

29. }

256

Mediator

In this example, a Mediator manages communication among the panels of a graphical user interface. The basic
design of this GUI uses one panel to select a Contact from alist, another panel to allow editing, and athird panel
to show the current state of the Contact. The Mediator interacts with each panel, calling the appropriate methods
to keep each part of the GUI up to date.

The classMediatorGui creates the main window and the three panels for the application. It also creates a
mediator and matches it with the three child panels.

Example A.74 mvediatorGui . java

1. import java.awt.Container;

2. import java.awt.event.WindowEvent;

3. import java.awt.event.WindowAdapter;

4. import javax.swing.BoxLayout;

5. import javax.swing.JButton;

6. import javax.swing.JFrame;

7. import javax.swing.JPanel;

8. public class MediatorGui{

9. private ContactMediator mediator;

10.

11. public void setContactMediator(ContactMediator newMediator){ mediator = newMediator; }
12.

13. public void createGui(){

14. JFrame mainFrame = new JFrame('Mediator example'™);

15. Container content = mainFrame.getContentPane();

16. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));
17. ContactSelectorPanel select = new ContactSelectorPanel(mediator);
18. ContactDisplayPanel display = new ContactDisplayPanel(mediator);
19. ContactEditorPanel edit = new ContactEditorPanel(mediator);
20. content._add(select);

21. content.add(display);

22. content.add(edit);

23. mediator.setContactSelectorPanel (select);

24. mediator.setContactDisplayPanel (display);

25. mediator.setContactEditorPanel (edit);

26. mainFrame.addWindowListener(new WindowCloseManager());

27. mainFrame.pack();

28. mainFrame.setVisible(true);

29. }

30. private class WindowCloseManager extends WindowAdapter{

31. public void windowClosing(WindowEvent evt){

32. System.exit(0);

33. }

34. }

35. }

36.

37.

The simplest of the GUI panelsisthe ContactDisplayPanel. It has amethod called contactChanged that
updates its display region with the values of the Contact argument.

Example A.75 contactDisplayPanel . java

1. import java.awt.BorderLayout;

2. import javax.swing.JPanel;

3. import javax.swing.JScrollPane;

4. import javax.swing.JTextArea;

5. public class ContactDisplayPanel extends JPanel{
6. private ContactMediator mediator;

7. private JTextArea displayRegion;

8.

9. public ContactDisplayPanel(){

10. createGui();

11. ¥

12. public ContactDisplayPanel(ContactMediator newMediator){
13. setContactMediator(newMediator);

14. createGui();

15. ¥

16. public void createGui(){

17. setLayout(new BorderLayout());

18. displayRegion = new JTextArea(l10, 40);
19. displayRegion.setEditable(false);

257

20. add(new JScrollPane(displayRegion));

21. }

22. public void contactChanged(Contact contact){

23. displayRegion.setText(

24. "Contact\n\tName: " + contact.getFirstName() +
25. " "™ + contact.getLastName() + "\n\tTitle: " +
26. contact.getTitle() + "\n\tOrganization: " +
27. contact._getOrganization());

28. }

29. public void setContactMediator(ContactMediator newMediator){
30. mediator = newMediator;

31. }

32. }

ContactSelectorPanel allows the user to choose a Contact for display and edit in the MediatorGui.

Example A.76 ContactSelectorPanel . java

1. import java.awt.event._ActionEvent;

2. import java.awt.event._ActionListener;

3. import javax.swing.JComboBox;

4. import javax.swing.JPanel;

5.

6. public class ContactSelectorPanel extends JPanel implements ActionListener{
7. private ContactMediator mediator;

8. private JComboBox selector;

9.

10. public ContactSelectorPanel O{

11. createGui();

12. }

13. public ContactSelectorPanel (ContactMediator newMediator){
14. setContactMediator(newMediator);

15. createGui();

16. }

17.

18. public void createGui(){

19. selector = new JComboBox(mediator.getAllContacts());
20. selector.addActionListener(this);

21. add(selector);

22. }

23.

24. public void actionPerformed(ActionEvent evt){

25. mediator.selectContact((Contact)selector.getSelectedltem());
26. }

27. public void addContact(Contact contact){

28. selector.addltem(contact);

29. selector.setSelectedltem(contact);

30. ¥

31. public void setContactMediator(ContactMediator newMediator){
32. mediator = newMediator;

33. }

34. }

The ContactEditorPanel provides an editing interface for the currently selected Contact. It has buttons that
allow auser to add or update a Contact.

Example A.77 ContactEditorPanel . java

1. import java.awt.BorderLayout;

2. import java.awt.GridLayout;

3. import java.awt.event._ActionEvent;

4. import java.awt.event._ActionListener;

5. import javax.swing.JButton;

6. import javax.swing.JLabel;

7. import javax.swing.JPanel;

8. import javax.swing.JTextField;

9. public class ContactEditorPanel extends JPanel implements ActionListener{
10. private ContactMediator mediator;

11. private JTextField firstName, lastName, title, organization;
12. private JButton create, update;

13.

14. public ContactEditorPanel Q{

15. createGui();

16. }

17. public ContactEditorPanel (ContactMediator newMediator){

18. setContactMediator(newMediator);

19. createGui();

258

20. }

21. public void createGui(){

22. setLayout(new BorderLayout());

23.

24. JPanel editor = new JPanel();

25. editor.setLayout(new GridLayout(4, 2));

26. editor.add(new JLabel(""First Name:"));

27. firstName = new JTextField(20);

28. editor._add(FirstName);

29. editor.add(new JLabel('Last Name:'));

30. lastName = new JTextField(20);

31. editor.add(lastName);

32. editor.add(new JLabel("'Title:""));

33. title = new JTextField(20);

34. editor.add(title);

35. editor.add(new JLabel("'Organization:'));

36. organization = new JTextField(20);

37. editor.add(organization);

38. add(editor, BorderLayout.CENTER);

39.

40. JPanel control = new JPanel();

41. create = new JButton(''Create Contact');

42. update = new JButton("Update Contact');

43. create.addActionListener(this);

44 . update.addActionListener(this);

45. control .add(create);

46. control .add(update);

47. add(control, BorderLayout.SOUTH);

48. }

49. public void actionPerformed(ActionEvent evt){
50. Object source = evt.getSource();

51. if (source == create){

52. createContact();

53.

54. else if (source == update){

55. updateContact();

56. }

57. }

58.

59. public void createContact(){

60. mediator.createContact(firstName.getText(), lastName.getText(),
61. title.getText(), organization.getText());
62. }

63. public void updateContact(){

64. mediator.updateContact(firstName.getText(), lastName.getText(),
65. title.getText(), organization.getText());
66. }

67.

68. public void setContactFields(Contact contact){
69. firstName.setText(contact.getFirstName());
70. lastName.setText(contact.getLastName());

71. title.setText(contact.getTitle());

72. organization.setText(contact.getOrganization());
73. }

74. public void setContactMediator(ContactMediator newMediator){
75. mediator = newMediator;

76. }

77. }

The ContactMediator interface defines set methods for each of the GUI components, and for the business
methods createContact, updateContact, selectContact and getAl IContacts.

Example A.78 ContactMediator. java

1. public interface ContactMediator{

2. public void setContactDisplayPanel(ContactDisplayPanel displayPanel);

3. public void setContactEditorPanel (ContactEditorPanel editorPanel);

4. public void setContactSelectorPanel (ContactSelectorPanel selectorPanel);

5. public void createContact(String FirstName, String lastName, String title, String
organization);

6. public void updateContact(String FirstName, String lastName, String title, String
organization);

7. public Contact [] getAllContacts();

8. public void selectContact(Contact contact);

9. }

259

ContactMediatorImpl istheimplementer of ContactMediator. It maintains a collection of Contacts, and
methods that notify the panels of changes within the GUI.

Example A.79 contactMediatorimpl.java

1. import java.util_ArraylList;

2. public class ContactMediatorimpl implements ContactMediator{

3. private ContactDisplayPanel display;

4. private ContactEditorPanel editor;

5. private ContactSelectorPanel selector;

6. private ArraylList contacts = new ArrayList();

7. private int contactlndex;

8.

9. public void setContactDisplayPanel(ContactDisplayPanel displayPanel){

10. display = displayPanel;

11. ¥

12. public void setContactEditorPanel (ContactEditorPanel editorPanel){

13. editor = editorPanel;

14.

15. public void setContactSelectorPanel (ContactSelectorPanel selectorPanel){

16. selector = selectorPanel;

17. }

18.

19. public void createContact(String FfirstName, String lastName, String title, String
organization){

20. Contact newContact = new Contactlmpl(firstName, lastName, title, organization);

21. addContact(newContact);

22. selector.addContact(newContact);

23. display.contactChanged(newContact);

24.

25. public void updateContact(String firstName, String lastName, String title, String
organization){

26. Contact updateContact = (Contact)contacts.get(contactlindex);

27. if (updateContact = null){

28. updateContact.setFirstName(firstName);

29. updateContact.setLastName(lastName);

30. updateContact.setTitle(title);

31. updateContact.setOrganization(organization);

32. display.contactChanged(updateContact);

33. }

34.

35. public void selectContact(Contact contact){

36. if (contacts.contains(contact)){

37. contactindex = contacts. indexOf(contact);

38. display.contactChanged(contact);

39. editor.setContactFields(contact);

40. ¥

41. }

42. public Contact [] getAllContacts(){

43. return (Contact [])contacts.toArray(new Contact[1]);

44 . ¥

45. public void addContact(Contact contact){

46. if (Icontacts.contains(contact)){

47. contacts.add(contact);

48. }

49. ¥

50. }

The ContactMediatorImpl interacts with each of the panels differently. For the ContactDisplayPanel, the
mediator callsits contactChanged method for the create, update and select operations. For the
ContactSelectorPanel, the mediator providesthelist of Contacts with the getAl 1Contacts method, receives
select notifications, and adds a new Contact object to the panel when oneis created. The mediator receives create
and update method calls from the ContactEditorPanel, and notifies the panel of select actions from the
ContactSelectorPanel.

Contact and Contactlimpl define the business class used in this example.

Example A.80 Contact.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{
3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

260

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);

10. public void setLastName(String newlLastName);

11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.81 Contactimpl . java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactimpl(String newFirstName, String newLastName,
9 String newTitle, String newOrganization){

10.

firstName = newFirstName;
11. lastName = newLastName;
12. title = newTitle;
13. organization = newOrganization;
14. }
15.
16. public String getFirstName(){ return firstName; }
17. public String getLastName(){ return lastName; }
18. public String getTitle(Q{ return title; }
19. public String getOrganization(){ return organization; }
20.
21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }
24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.
26. public String toString(Q{
27. return firstName + SPACE + lastName;
28. } p
29. } |

RunPattern creates the GUI and its mediator, and loads a s

Example A.82 RunPattern.java

1. public class RunPattern{ :

2. public static void main(Str ¥ arguments){

3. System.out_printin(*"Example for the Mediator pattern™);

4. System.out.printIn(’'In this demonstration, the ContactMediatorlImpl class will™);
5. System.out.printIn(*" coordinate updates between three controls in a GUl the™);
6. System.out.printIn(*" ContactDisplayPanel, the ContactEditorPanel, and the');

7. System.out.printIn("" ContactSelectorPanel. As its name suggests, the Mediator™);
8. System.out.printIn(’" mediates the activity between the elements of the GUI,™);
9. System.out.printIn(" translating method calls from one panel into the appropriate');
10. System._out.printIn(’ method calls on the other GUl components.');

11.

12. Contact contact = new Contactimpl(™, ", ", ");

13. Contact contactl = new ContactImpl('Duke™", "', "Java Advocate', "The Patterns Guild");
14. ContactMediatorImpl mediator = new ContactMediatorimpl();

15. mediator.addContact(contact);

16. mediator.addContact(contactl);

17. MediatorGui gui = new MediatorGui();

18. gui.setContactMediator(mediator);

19. gui.createGui();

20.

21.

22. ¥

23. }

24.

261

Memento

Almost all parts of the Personal Information Manager keep some kind of state. These states can be saved by
applying the Memento pattern, as this example with an address book will demonstrate. The AddressBook class
represents a collection of addresses, a natural candidate for keeping arecord of state.

Example A.83 AddressBook. java

1. import java.util_ArraylList;

2. public class AddressBook{

3. private ArraylList contacts = new ArrayList();
4.

5. public Object getMemento(){

6. return new AddressBookMemento(contacts);
7. }

8. public void setMemento(Object object){

9. if (object instanceof AddressBookMemento){
10. AddressBookMemento memento = (AddressBookMemento)object;
11. contacts = memento.state;

12. ¥

13. }

14.

15. private class AddressBookMemento{

16. private ArraylList state;

17.

18. private AddressBookMemento(ArrayList contacts){
19. this.state = contacts;

20. ¥

21. ¥

22.

23. public AddressBook(){ }

24. public AddressBook(ArrayList newContacts){
25. contacts = newContacts;

26. ¥

27.

28. public void addContact(Contact contact){
29. if (Icontacts.contains(contact)){

30. contacts.add(contact);

31. ¥

32. ¥

33. public void removeContact(Contact contact){
34. contacts.remove(contact);

35.

36. public void removeAllContacts(){

37. contacts = new ArrayList();

38.

39. public ArrayList getContacts(){

40. return contacts;

41. ¥

42. public String toString({

43. return contacts.toString(Q);

44. }

45. %}

Theinner class of AddressBook, AddressBookMemento, iS used to save the state of an AddressBook, which in
this case is represented by the internal ArrayList of Address objects. The memento object can be accessed by
using the AddressBook methods getMemento and setMemento. Note that AddressBookMemento iSaprivate
inner class and that it has only a private constructor. This ensures that, even if the memento object is saved
somewhere outside of an AddressBook object, no other object will be able to use the object or modify its state.
Thisis consistent with the role of the Memento pattern: producing an object to maintain a snapshot of state that
cannot be modified by other objectsin a system.

Support classes used in this example provide business objects for the contacts stored in the AddressBook, and
their associated addresses. The Address and Contact interfaces define the behavior expected of these business
objects, while the AddressImpl and ContactImpl classes implement the required behavior.

Example A.84 Address. java

1 import java.io.Serializable;

2 public interface Address extends Serializable{
3. public static final String EOL_STRING = System.getProperty(*'line.separator™);
4 public static final String SPACE "y
5 public static final String COMMA = ',

262

6. public String getType();

7. public String getDescription();

8. public String getStreet();

9. public String getCity();

10. public String getState();

11. public String getZipCode();

12.

13. public void setType(String newType);

14. public void setDescription(String newDescription);
15. public void setStreet(String newStreet);
16. public void setCity(String newCity);

17. public void setState(String newState);
18. public void setZipCode(String newZip);
19. }

Example A.85 Addressimpl.java

1. public class Addressimpl implements Address{

2. private String type;

3. private String description;

4. private String street;

5. private String city;

6. private String state;

7. private String zipCode;

8.

9. public Addressimpl(OQ{ }

10. public Addressimpl(String newDescription, String newStreet,
11. String newCity, String newState, String newZipCode){
12. description = newDescription;

13. street = newStreet;

14. city = newCity;

15. state = newState;

16. zipCode = newZipCode;

17. }

18.

19. public String getType(){ return type; }

20. public String getDescription(){ return description; }

21. public String getStreet(){ return street; }

22. public String getCity(){ return city; }

23. public String getState(){ return state; }

24. public String getZipCode(){ return zipCode; }

25.

26. public void setType(String newType){ type = newType; }

27. public void setDescription(String newDescription){ description = newDescription; }
28. public void setStreet(String newStreet){ street = newStreet; }
29. public void setCity(String newCity){ city = newCity; }

30. public void setState(String newState){ state = newState; }
31. public void setZipCode(String newZip){ zipCode = newZip; }
32.

33. public String toString(Q{

34. return street + EOL_STRING + city + COMMA + SPACE +

35. state + SPACE + zipCode + EOL_STRING;

36. }

37. }

Example A.86 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " "';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newlLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.87 Contactimpl .java

1. public class Contactimpl implements Contact{
2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6. private Address address;

263

7.

8. public ContactimplOQ{}

9. public Contactimpl(String newFirstName, String newlLastName,

10. String newTitle, String newOrganization, Address newAddress){

11. firstName = newFirstName;

12. lastName = newLastName;

13. title = newTitle;

14. organization = newOrganization;

15. address = newAddress;

16. }

17.

18. public String getFirstName(){ return firstName; }

19. public String getLastName(){ return lastName; }

20. public String getTitle(){ return title; }

21. public String getOrganization(){ return organization; }

22. public Address getAddress(){ return address; }

23.

24. public void setFirstName(String newFirstName){ firstName = newFirstName; }
25. public void setLastName(String newlLastName){ lastName = newLastName; }
26. public void setTitle(String newTitle){ title = newTitle; }

27. public void setOrganization(String newOrganization){ organization = newOrganization;
28. public void setAddress(Address newAddress){ address = newAddress; }
29.

30. public String toString(Q){

31. return firstName + " " + lastName;

32. }

33. }

The RunPattern class demonstrates the use of the Memento by creating an address book with aninitial set of
people. Next, RunPattern saves the state of this group of contacts to an AddressBookMemento object and creates
adifferent set of people. Finally, RunPattern restores the address book to its original state by calling its
setMemento method.

Example A.88 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments){

3. System.out.printIn(""Example for the Memento pattern'™);

4. System._out._printin();

5. System.out._printIn("'This example will use the AddressBook to demonstrate');

6. System.out.printIn(*" how a Memento can be used to save and restore state.');

7. System.out.printIn(*'The AddressBook has an inner class, AddressBookMemento,');

8. System.out.printIn(’" that is used to store the AddressBook state... in this™);

9. System.out.printIn(*" case, its internal list of contacts.™);

10. System._out._printin(Q);

11.

12. System.out.printIn("'‘Creating the AddressBook');

13. AddressBook book = new AddressBook();

14.

15. System.out.printIn("’Adding Contact entries for the AddressBook');

16. book.addContact(new ContactImpl (*'Peter™, "Taggart', ""Commander™, ""NSEA Protector™,
new Addressimpl()));

17. book.addContact(new Contactimpl (*"Tawny', ""Madison', "Lieutenant', ""NSEA Protector",
new Addressimpl()));

18. book.addContact(new Contactimpl(*'Dr.", "Lazarus', "Dr.", "NSEA Protector', new
Addressimpl()));

19. book.addContact(new Contactimpl(*"Tech Sargent', 'Chen', "Tech Sargent', "NSEA
Protector', new Addressimpl()));

20.

21. System.out.printIn("'Contacts added. Current Contact list:'");

22. System.out.printin(book);

23. System.out.printin(Q;

24.

25. System.out.printIn('’'Creating a Memento for the address book');

26. Object memento = book.getMemento();

27. System.out._printIn("'Now that a Memento exists, it can be used to restore');

28. System.out.printIn(’" the state of this AddressBook object, or to set the');

29. System.out.printIn(’" state of a new AddressBook.');

30. System._out._printin();

31.

32. System.out._printIn("'Creating new entries for the AddressBook™);

33. book.removeAllContacts();

34. book.addContact(new Contactimpl(*'Jason', "Nesmith"™, "', "Actor"s Guild", new
Addressimpl ()));

35. book.addContact(new Contactimpl(*'Gwen™, 'DeMarco', "', "Actor®s Guild"”, new

Addressimpl ()));

264

36. book.addContact(new Contactimpl(*"Alexander', "Dane', ", "Actor"s Guild", new
Addressimpl ()));
37. book.addContact(new Contactimpl(*'Fred'”, "Kwan', "', "Actor®s Guild"”, new
Addressimpl ()));

38.

39. System.out.printIn(''New Contacts added. Current Contact list:');
40. System.out.printin(book);

41. System._out._printin(Q);

42. System.out.printIn("'Using the Memento object to restore the AddressBook'™);
43. System.out.printIn(’" to its original state.);

44 . book.setMemento(memento);

45. System.out.printIn("'AddressBook restored. Current Contact list:");
46. System.out.printin(book);

47 .

48. }

49. %}

265

Observer
In the Observer example, an observer sends updates about the state of a Task to al registered listenersin a GUI.

It's important to recognize that any Java GUI code normally uses the Observer pattern for event handling. When
you write a class that implements a listener interface like ActionListener, you are creating an observer.
Registering that listener with a component through the method addActionListener associates the observer with
an observable element, the Java GUI component.

In this example, the observable element is represented by the Task being modified in the GUI. The class
TaskChangeObservable keeps track of the listenersfor changes to the Task through the methods

addTaskChangeObserver and removeTaskChangeObserver.

Example A.89 TaskChangeObservable.java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class TaskChangeObservable{

4. private ArraylList observers = new ArrayList();

5.

6. public void addTaskChangeObserver(TaskChangeObserver observer){
7. if (lobservers.contains(observer)){

8. observers.add(observer);

9. }

10. }

11. public void removeTaskChangeObserver(TaskChangeObserver observer){
12. observers.remove(observer);

13. }

14.

15. public void selectTask(Task task){

16. Iterator elements = observers.iterator();

17. while (elements.hasNext()){

18. ((TaskChangeObserver)elements.next()) . taskSelected(task);
19. }

20. }

21. public void addTask(Task task){

22. Iterator elements = observers.iterator();

23. while (elements.hasNext()){

24. ((TaskChangeObserver)elements.next()) . taskAdded(task) ;
25. }

26. }

27. public void updateTask(Task task){

28. Iterator elements = observers.iterator();

29. while (elements.hasNext()){

30. ((TaskChangeObserver)elements.next()) . taskChanged(task) ;
31. }

32. }

33. }

TaskChangeObservable has the business methods selectTask, updateTask, and addTask. These methods send
notifications of any changesto a Task.

Every observer must implement the TaskChangeObserver interface, allowing the TaskChangeObservable to call
the appropriate method on each observer. If aclient were to call the method addTask on the
TaskChangeObservable, for instance, the observable object would iterate through its observers and call the
taskAdded method on each.

Example A.90 TaskChangeObserver . java

1 public interface TaskChangeObserver{

2. public void taskAdded(Task task);

3. public void taskChanged(Task task);
4 public void taskSelected(Task task);
5 }

The class ObserverGui provides a GUI in this demonstration, and creates a TaskChangeObservable object. In
addition, it creates three panels that implement the TaskChangeObserver interface, and matches them with the
TaskChangeObservable object. By doing this, the TaskChangeObservable is able to effectively send updates
among the three panels of the GUI.

266

Example A.91 observerGui . java

1. import java.awt.Container;

2. import java.awt.event.WindowAdapter;

3. import java.awt.event.WindowEvent;

4. import javax.swing.BoxLayout;

5. import javax.swing.JFrame;

6. public class ObserverGui{

7. public void createGui(){

8. JFrame mainFrame = new JFrame(''Observer Pattern Example'™);
9. Container content = mainFrame.getContentPane();

10. content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS));
11. TaskChangeObservable observable = new TaskChangeObservable();
12. TaskSelectorPanel select = new TaskSelectorPanel (observable);
13. TaskHistoryPanel history = new TaskHistoryPanel();

14. TaskEditorPanel edit = new TaskEditorPanel (observable);
15. observable._addTaskChangeObserver(select);

16. observable.addTaskChangeObserver(history);

17. observable.addTaskChangeObserver(edit);

18. observable.addTask(new Task());

19. content._add(select);

20. content.add(history);

21. content.add(edit);

22. mainFrame.addWindowListener(new WindowCloseManager());

23. mainFrame.pack();

24. mainFrame._setVisible(true);

25. }

26.

27. private class WindowCloseManager extends WindowAdapter{

28. public void windowClosing(WindowEvent evt){

29. System.exit(0);

30. }

31. }

32. }

Example A.92 TaskEditorPanel.java

1. import java.awt.BorderLayout;

2. import javax.swing.JPanel;

3. import javax.swing.JlLabel;

4. import javax.swing.JTextField;

5. import javax.swing.JButton;

6. import java.awt.event.ActionEvent;

7. import java.awt.event._ActionListener;

8. import java.awt.GridlLayout;

9. public class TaskEditorPanel extends JPanel implements ActionListener, TaskChangeObserver{
10. private JPanel controlPanel, editPanel;

11. private JButton add, update, exit;

12. private JTextField taskName, taskNotes, taskTime;
13. private TaskChangeObservable notifier;

14. private Task editTask;

15.

16. public TaskEditorPanel (TaskChangeObservable newNotifier){
17. notifier = newNotifier;

18. createGui();

19. }

20. public void createGui(){

21. setLayout(new BorderLayout());

22. editPanel = new JPanel();

23. editPanel .setLayout(new GridLayout(3, 2));
24. taskName = new JTextField(20);

25. taskNotes = new JTextField(20);

26. taskTime = new JTextField(20);

27. editPanel _.add(new JLabel ("*'Task Name'™));
28. editPanel _.add(taskName);

29. editPanel _.add(new JLabel ("*'Task Notes'));
30. editPanel .add(taskNotes);

31. editPanel .add(new JLabel (""Time Required™));
32. editPanel _.add(taskTime);

33.

34. controlPanel = new JPanel();

35. add = new JButton("'Add Task'™);

36. update = new JButton(“Update Task');

37. exit = new JButton("Exit'");

38. controlPanel _add(add);

39. controlPanel _.add(update);

40. controlPanel .add(exit);

41. add.addActionListener(this);

42. update.addActionListener(this);

267

43. exit.addActionListener(this);

44 . add(controlPanel, BorderLayout.SOUTH);

45. add(editPanel, BorderLayout.CENTER);

46. }

47. public void setTaskChangeObservable(TaskChangeObservable newNotifier){
48. notifier = newNotifier;

49. }

50. public void actionPerformed(ActionEvent event){

51. Object source = event.getSource();

52. if (source == add){

53. double timeRequired = 0.0;

54. try{

55. timeRequired = Double._parseDouble(taskTime.getText());
56.

57. catch (NumberFormatException exc){}

58. notifier.addTask(new Task(taskName.getText(), taskNotes.getText(), timeRequired));
59.

60. else if (source == update){

61. editTask.setName(taskName.getText());

62. editTask.setNotes(taskNotes.getText());

63. try{

64. editTask.setTimeRequired(Double.parseDouble(taskTime.getText()));
65. }

66. catch (NumberFormatException exc){}

67. notifier.updateTask(editTask);

68.

69. else if (source == exit){

70. System.exit(0);

71. }

72.

73. }

74. public void taskAdded(Task task){ }

75. public void taskChanged(Task task){ }

76. public void taskSelected(Task task){

77 . editTask = task;

78. taskName.setText(task.getName());

79. taskNotes.setText(task.getNotes());

80. taskTime.setText("" + task.getTimeRequired());

81. }

82. }

Example A.93 TaskHistoryPanel . java

1. import java.awt.BorderLayout;

2. import javax.swing.JPanel;

3. import javax.swing.JScrollPane;

4. import javax.swing.JTextArea;

5. public class TaskHistoryPanel extends JPanel implements TaskChangeObserver{
6. private JTextArea displayRegion;

7.

8. public TaskHistoryPanel (){

9. createGui();

10. }

11. public void createGui(){

12. setLayout(new BorderLayout());

13. displayRegion = new JTextArea(l10, 40);

14. displayRegion.setEditable(false);

15. add(new JScrollPane(displayRegion));

16.

17. public void taskAdded(Task task){

18. displayRegion.append(*'Created task " + task + "\n"");
19. }

20. public void taskChanged(Task task){

21. displayRegion.append(*'Updated task " + task + "\n"");
22. ¥

23. public void taskSelected(Task task){

24. displayRegion.append(*'Selected task " + task + "\n'");
25. }

26. }

Example A.94 TaskSelectorPanel . java

1. import java.awt.event.ActionEvent;

2. import java.awt.event.ActionListener;

3. import javax.swing.JPanel;

4. import javax.swing.JComboBox;

5. public class TaskSelectorPanel extends JPanel implements ActionListener,
TaskChangeObserver{

6. private JComboBox selector = new JComboBox();

268

7. private TaskChangeObservable notifier;

8. public TaskSelectorPanel (TaskChangeObservable newNotifier){
9. notifier = newNotifier;

10. createGui();

11.

12. public void createGui(){

13. selector = new JComboBox();

14. selector.addActionListener(this);

15. add(selector);

16.

17. public void actionPerformed(ActionEvent evt){

18. notifier.selectTask((Task)selector.getSelectedltem());
19. }

20. public void setTaskChangeObservable(TaskChangeObservable newNotifier){
21. notifier = newNotifier;

22. }

23.

24. public void taskAdded(Task task){

25. selector.addltem(task);

26. }

27. public void taskChanged(Task task){ }

28. public void taskSelected(Task task){ }

29. }

A feature of the Observer pattern is that the Observable uses a standard interface for its Observers —in this
case, TaskChangeObserver. This means that the Observer pattern is more generic than the Mediator pattern, but
also that the observers may receive some unwanted message traffic. For instance, the TaskEditorPanel takesno
action when its taskAdded and taskChanged methods are called.

The Task class represents the business object in the GUI, which in this demonstration isa simple job.

Example A.95 Task. java

1. public class Task{

2. private String name = ""';

3. private String notes = ""';

4. private double timeRequired;

5.

6. public TaskQ{ }

7. public Task(String newName, String newNotes, double newTimeRequired){
8. name = newName;

9. notes = newNotes;

10. timeRequired = newTimeRequired;

11. }

12.

13. public String getName(){ return name; }

14. public String getNotes(){ return notes; }

15. public double getTimeRequired(){ return timeRequired; }

16. public void setName(String newName){ name = newName; }

17. public void setTimeRequired(double newTimeRequired){ timeRequired = newTimeRequired; }
18. public void setNotes(String newNotes){ notes = newNotes; }

19. public String toString(QQ{ return name + " " + notes; }

20. }

RunPattern creates the GUI for this example, creating the observable and its observersin the process.

Example A.96 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments){

3. System.out._printIn("'Example for the Observer pattern™);

4. System.out.printIn(*"'This demonstration uses a central observable'™);

5. System.out.printIn(’ object to send change notifications to several');
6. System.out.printIn(" JPanels in a GUl. Each JPanel is an Observer,"™);
7. System.out.printIn(*"" receiving notifcations when there has been some™);
8. System.out.printIn(*" change in the shared Task that is being edited.™);
9. System._out._printin();

10.

11. System.out.printIn("'Creating the ObserverGui');

12. ObserverGui application = new ObserverGui();

13. application.createGui();

14. }

5. }

269

State

Inner classes are most appropriate for States. They are very closely coupled with their enclosing class and have
direct access to its attributes. The following example shows how thisworksin practice.

A standard feature of applicationsis that they only save files when necessary: when changes have been made.
When changes have been made but afile has not been saved, its state is referred to as dirty. The content might be
different from the persistent, saved version. When the file has been saved and no further changes have been made,
the content is considered clean. For a clean state, the content and the file will be identical if no one else edits the
file.

This example shows the State pattern being used to update Appointments for the PIM, saving them to afile as necessary.
The State transition diagram for afileis shown in Figure A.1.

Figure A.1. State transition diagram for afile
Sawe content

s
Clean @E
edit cantent save content
S
Dirty
. E e

edit content

Two states (CleanState and DirtyState) implement the State interface. The states are responsible for
determining the next state, which in this case is reasonably easy, as there are only two.

The state interface defines two methods, save and edit. These methods are called by the CalendarEditor
when appropriate.

Example A.97 state.java

public interface State{
public void save();
public void edit();

A WOWN P

}

The CalendarEditor class manages a collection of Appointment objects.

Example A.98 calendarEditor.java

1. import java.io.File;

2. import java.util_ArraylList;

3. public class CalendarEditor{

4. private State currentState;

5. private File appointmentFile;

6. private ArraylList appointments = new ArrayList();

7. private static final String DEFAULT_APPOINTMENT_FILE = "appointments.ser";
8.

9. public CalendarEditor(){

10. this(DEFAULT_APPOINTMENT_FILE);

11.

12. public CalendarEditor(String appointmentFileName){

13. appointmentFile = new File(appointmentFileName);

14. try{

15. appointments = (ArrayList)FilelLoader.loadData(appointmentFile);

16.

17. catch (ClassCastException exc){

18. System.err.printIn(""Unable to load information. The file does not contain a list

of appointments.');

270

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64. }

The class StateGui provides an editing interface for the CalendarEditor s appointments. Notice that the GUI
has areference to the CalendarEditor, and that it delegates and edit or save actions to the editor. This allows the

}

currentState = new CleanState();

}

public void save(){
currentState.save();
}

public void edit(){
currentState.edit();
}

private class DirtyState implements State{
private State nextState;
public DirtyState(State nextState){
this.nextState = nextState;
}

public void save(){

FileLoader.storeData(appointmentFile, appointments);

currentState = nextState;

+
public void edit(Q{ }
}

private class CleanState implements State{
private State nextState = new DirtyState(this);

public void save(){ }
public void edit(){ currentState = nextState; }

}

public ArrayList getAppointments(){
return appointments;
¥

public void addAppointment(Appointment appointment){
if (lappointments. contalns(app0|ntment)){ ||
appointments.add(appointment); N\
}
¥

public void removeAppointment(Appo
appointments.remove(appointm
}

editor to perform the required actions and to update its state as appropriate.

Example A.99 stateGui . java

1. import java.awt.Container;

2. import java.awt.BorderLayout;

3. import java.awt.event.ActionListener;
4. import java.awt.event.WindowAdapter;
5. import java.awt.event._ActionEvent;
6. import java.awt.event._WindowEvent;
7. import javax.swing.BoxLayout;

8. import javax.swing.JButton;

9. import javax.swing.JComponent;

10. import javax.swing.JFrame;

11. import javax.swing.JPanel;

12. import javax.swing.JScrollPane;

13. import javax.swing.JTable;

14. import javax.swing.table.AbstractTableModel;
15. import java.util_Date;

16. public class StateGui implements ActionListener{
17. private JFrame mainFrame;

18. private JPanel controlPanel, editPanel;

19. private CalendarEditor editor;

20. private JButton save, exit;

21.

22. public StateGui(CalendarEditor edit){

23. editor = edit;

24 }

271

25.

26. public void createGui(){

27. mainFrame = new JFrame(''State Pattern Example'™);

28. Container content = mainFrame.getContentPane();

29. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));

30.

31. editPanel = new JPanel();

32. editPanel .setLayout(new BorderLayout());

33. JTable appointmentTable = new JTable(hew StateTableModel ((Appointment [])
editor.getAppointments().toArray(new Appointment[1])));

34. editPanel .add(new JScrollPane(appointmentTable));

35. content.add(editPanel);

36.

37. controlPanel = new JPanel();

38. save = new JButton(''Save Appointments'™);

39. exit = new JButton("Exit'");

40. controlPanel .add(save);

41. controlPanel _add(exit);

42. content._add(controlPanel);

43.

44 . save.addActionListener(this);

45. exit.addActionListener(this);

46.

47. mainFrame.addWindowListener(new WindowCloseManager());

48. mainFrame.pack();

49. mainFrame.setVisible(true);

50. }

51.

52.

53. public void actionPerformed(ActionEvent evt){

54. Object originator = evt.getSource();

55. if (originator == save){

56. saveAppointments();

57.

58. else if (originator == exit){

59. exitApplication();

60. }

61. }

62.

63. private class WindowCloseManager extends WindowAdapter{

64. public void windowClosing(WindowEvent evt){

65. exitApplication();

66. }

67. }

68.

69. private void saveAppointments(){

70. editor.save();

71. }

72.

73. private void exitApplication(){

74. System.exit(0);

75. }

76.

77 . private class StateTableModel extends AbstractTableModel{

78. private final String [] columnNames = {

79. "Appointment", "Contacts', '"Location', "Start Date', "End Date" };

80. private Appointment [] data;

81.

82. public StateTableModel (Appointment [] appointments){

83. data = appointments;

84. }

85.

86. public String getColumnName(int column){

87. return columnNames[column];

88. }

89. public int getRowCount(){ return data.length; }

90. public int getColumnCount(){ return columnNames.length; }

91. public Object getValueAt(int row, int column){

92. Object value = null;

93. switch(column){

94. case 0: value = data[row].getReason();

95. break;

96. case 1: value = data[row].getContacts();

97. break;

98. case 2: value = data[row].getLocation();

99. break;

100. case 3: value = data[row].getStartDate();

101. break;

272

102. case 4: value = data[row].getEndDate();

103. break;

104. }

105. return value;

106.

107. public boolean isCellEditable(int row, int column){

108. return ((column == 0) || (column == 2)) ? true : false;
109.

110. public void setValueAt(Object value, int row, int column){
111. switch(column){

112. case 0: data[row].setReason((String)value);

113. editor.edit(Q);

114. break;

115. case 1:

116. break;

117. case 2: data[row].setLocation(new Locationlmpl((String)value));
118. editor.edit(Q);

119. break;

120. case 3:

121. break;

122. case 4:

123. break;

124. }

125. }

126. }

127. }

Five business support classes and interfaces are used in this example: Appointment, Contact, Contactimpl,
Location, and LocationlImpl.

Example A.100 Appointment.java

1. import java.io.Serializable;

2. import java.util_Date;

3. import java.util_ArraylList;

4. public class Appointment implements Serializable{

5. private String reason;

6. private ArraylList contacts;

7. private Location location;

8. private Date startDate;

9. private Date endDate;

10.

11. public Appointment(String reason, ArrayList contacts, Location location, Date startDate,
Date endDate){

12. this.reason = reason;

13. this.contacts = contacts;

14. this.location = location;

15. this.startDate = startDate;

16. this.endDate = endDate;

17. }

18.

19. public String getReason(){return reason;}

20. public ArrayList getContacts({return contacts;}

21. public Location getLocation(){return location;}

22. public Date getStartDate(){return startDate;}

23. public Date getEndDate(){return endDate;}

24.

25. public void setReason(String reason){this.reason = reason;}

26. public void setContacts(ArrayList contacts){this.contacts = contacts;}

27. public void setLocation(Location location){this.location = location;}

28. public void setStartDate(Date startDate){this.startDate = startDate;}

29. public void setEndDate(Date endDate){this.endDate = endDate;}

30.

31. public String toString(Q){

32. return “Appointment:” + "\n Reason:” + reason +

33. "\n Location: ” + location + '"\n Start:” +

34. startDate + ""\n End:” + endDate + "\n”’;

35. ¥

36. }

Example A.101 contact.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{
3. public static final String SPACE = " ";

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

273

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);

10. public void setLastName(String newlLastName);

11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.102 contactimpl .java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactimpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(Q{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(Q{

27. return firstName + SPACE + lastName;

28. }

29. }

Example A.103 Location.java

1. import java.io.Serializable;

2. public interface Location extends Serializable{

3. public String getLocation();

4. public void setLocation(String newLocation);
5.}

Example A.104 Locationlmpl .java

1. public class LocationIlmpl implements Location{

2. private String location;

3.

4. public Locationlmpl(Q{ }

5. public Locationlmpl(String newLocation){

6. location = newLocation;

7. }

8.

9. public String getLocation(){ return location; }
10.

11. public void setLocation(String newLocation){ location = newLocation; }
12.

13. public String toString(){ return location; }
14. 3}

DataCreator and FileLoader are used to create a sample set of Appointment objects, and to manage their
storage and retrieval from afile.

Example A.105 pataCreator. java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;
3. import java.io.FileOutputStream;
4. import java.io.lOException;

5. import java.util_Calendar;

6. import java.util.Date;

7. import java.util_ArraylList;

274

8. public class DataCreator{

9. private static final String DEFAULT FILE = "data.ser";

10. private static Calendar dateCreator = Calendar.getlnstance();

11.

12. public static void main(String [] args){

13. String fileName;

14. if (args.length == 1){

15. fileName = args[O0];

16. }

17. else{

18. fileName = DEFAULT_FILE;

19. }

20. serialize(fileName);

21. }

22.

23. public static void serialize(String fileName){

24. try{

25. serializeToFile(createData(), FileName);

26. }

27. catch (10Exception exc){

28. exc.printStackTrace();

29. }

30. }

31.

32. private static Serializable createData(){

33. ArrayList appointments = new ArrayList();

34. ArrayList contacts = new ArrayList();

35. contacts.add(new Contactlmpl("Test", "Subject', "Volunteer'™, "United Patterns
Consortium™));

36. Location locationl = new Locationlmpl(*'Punxsutawney, PA'™);

37. appointments.add(new Appointment(*'Slowpokes anonymous', contacts, locationl,
createDate(2001, 1, 1, 12, 01), createbDate(2001, 1, 1, 12, 02)));

38. appointments.add(new Appointment(**'Java focus group', contacts, locationl,
createDate(2001, 1, 1, 12, 30), createDate(2001, 1, 1, 14, 30)));

39. appointments.add(new Appointment(*'Something else", contacts, locationl,
createDate(2001, 1, 1, 12, 01), createbDate(2001, 1, 1, 12, 02)));

40. appointments.add(new Appointment(*'Yet another thingie'", contacts, locationl,

createDate(2001, 1, 1, 12, 01), createDate(2001, 1, 1, 12, 02)));
41 . return appointments;

42. }

43.

44 . private static void serializeToFile(Serializable content, String fileName) throws
10Exception{

45. ObjectOutputStream serOut = new ObjectOutputStream(new FileOutputStream(fileName));

46. serOut.writeObject(content);

47. serOut.close();

48. }

49.

50. public static Date createDate(int year, int month, int day, int hour, int minute){

51. dateCreator.set(year, month, day, hour, minute);

52. return dateCreator.getTime();

53. }

54, }

Example A.106 FileLoader.java

1. import java.io.File;

2. import java.io.FilelnputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. import java.io.ObjectlnputStream;

6. import java.io.ObjectOutputStream;

7. import java.io.Serializable;

8. public class FilelLoader{

9. public static Object loadData(File inputFile){

10. Object returnvalue = null;

11. try{

12. if (inputFile._exists()){

13. it (inputFile.isFileQ){

14. ObjectlnputStream readln = new ObjectlnputStream(new
FilelnputStream(inputFile));

15. returnValue = readln.readObject();

16. readln._close();

17. ¥

18. else {

19. System_err._printIn(inputFile + " is a directory.");

20. }

21. }

275

22. else {

23. System.err.printIn("File "™ + inputFile + " does not exist.");

24 . }

25. }

26. catch (ClassNotFoundException exc){

27. exc.printStackTrace();

28.

29. }

30. catch (10Exception exc){

31. exc.printStackTrace();

32.

33. }

34. return returnValue;

35. }

36. public static void storeData(File outputFile, Serializable data){

37. try{

38. ObjectOutputStream writeOut = new ObjectOutputStream(new
FileOutputStream(outputFile));

39. writeOut.writeObject(data);

40. writeOut.close();

41.

42. catch (10Exception exc){

43. exc.printStackTrace();

44 . }

45. }

46. }

RunPattern runs the demonstration, creating a CalendarEditor object (which retrievesitsinitial entries from
the file with test Appointments) and matching it with a StateGui object.

Example A.107 RunPattern.java

1. import java.io.File;

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out.printIn(""Example for the State pattern'™);
5. System.out.printin(Q);

6.

7. if (I(new File(Tappointments.ser™) .exists())){

8. DataCreator.serialize("appointments.ser™);

9. }

10.

11. System.out.printIn(''Creating CalendarEditor'™);

12. CalendarEditor appointmentBook = new CalendarEditor();
13. System_out._printIn(’"");

14.

15. System.out.printIn(''Created. Appointments:');

16. System.out.printin(appointmentBook.getAppointments());
17.

18. System.out._printIn("’‘Created. Creating GUI:");

19. StateGui application = new StateGui(appointmentBook);
20. application.createGui();

21. System.out.printin(’"");

22. }

23. }

276

Strategy

For many of the collectionsin the Persona Information Manager, it would be useful to be able to organize and
summarize individual entries. This demonstration uses the Strategy pattern to summarize entriesin a
ContactList, acollection used to store Contact objects.

Example A.108 contactList.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. public class ContactList implements Serializable{

4. private ArraylList contacts = new ArrayList();

5. private SummarizingStrategy summarizer;

6.

7. public ArrayList getContacts(){ return contacts; }

8. public Contact [] getContactsAsArray(){ return (Contact [])(contacts. toArray(new
Contact [1])):; }

9.

10. public void setSummarizer(SummarizingStrategy newSummarizer){ summarizer =
newSummarizer; }

11. public void setContacts(ArrayList newContacts){ contacts = newContacts; }

12.

13. public void addContact(Contact element){

14. if (Jcontacts.contains(element)){

15. contacts.add(element);

16. }

17. }

18. public void removeContact(Contact element){

19. contacts.remove(element);

20. }

21.

22. public String summarize(){

23. return summarizer.summarize(getContactsAsArray());

24 }

25.

26. public String [] makeSummarizedList(){

27. return summarizer._makeSummarizedList(getContactsAsArray());

28. }

29. }

The ContactList has two methods, which can be used to provide summary information for the Contact objects
in the collection— summarize and make-SummarizedList. Both methods delegate to a SummarizingStrategy,
which can be set for the ContactList with the setSummarizer method.

Example A.109 summarizingStrategy.java

1. public interface SummarizingStrategy{

2. public static final String EOL_STRING = System.getProperty(*'line._separator');
3. public static final String DELIMITER = ":"';

4. public static final String COMMA = ",";

5. public static final String SPACE = " '';

6.

7. public String summarize(Contact [] contactList);

8. public String [] makeSummarizedList(Contact [] contactList);

9. }

SummarizingStrategy isan interface that defines the two delegate methods summarize and
makeSummarizedList. The interface represents the Strategy in the design pattern. In this example, two classes
represent ConcreteStrategy objects: NameSummarizer and OrganizationSummarizer. Both classes summarize
the list of contacts; however, each provides adifferent set of information and groups the data differently.

The NameSummarizer class returns only the names of the contacts with the last name first. The class uses an inner
class as acomparator (NameComparator) to ensure that al of the Contact entries are grouped in ascending order
by both last and first name.

Example A.110 NameSummarizer.java

1. import java.text.Collator;

2. import java.util_Arrays;

3. import java.util.Comparator;

4. public class NameSummarizer implements SummarizingStrategy{
5. private Comparator comparator = new NameComparator();

6.

277

7. public String summarize(Contact [] contactList){

8. StringBuffer product = new StringBuffer();

9. Arrays.sort(contactList, comparator);

10. for (int i = 0; 1 < contactList._length; i++){

11. product.append(contactList[i].getLastName());

12. product.append(COMMA) ;

13. product.append(SPACE) ;

14. product.append(contactList[i].getFirstName());

15. product.append(EOL_STRING);

16. }

17. return product.toString(Q);

18. }

19.

20. public String [] makeSummarizedList(Contact [] contactList){

21. Arrays.sort(contactList, comparator);

22. String [] product = new String[contactList.length];

23. for (int i = 0; 1 < contactList.length; i++){

24. product[i] = contactList[i].getLastName() + COMMA + SPACE +

25. contactList[i].getFirstName() + EOL_STRING;

26. }

27. return product;

28. }

29.

30. private class NameComparator implements Comparator{

31. private Collator textComparator = Collator.getinstance();

32.

33. public int compare(Object o0l, Object 02){

34. Contact cl, c2;

35. if ((ol instanceof Contact) && (02 instanceof Contact)){

36. cl = (Contact)ol;

37. c2 = (Contact)o2;

38. int compareResult = textComparator.compare(cl.getLastName(),
c2.getLastName());

39. if (compareResult == 0){

40. compareResult = textComparator.compare(cl.getFirstName(),
c2.getFirstName());

41. }

42. return compareResult;

43. }

44 . else return textComparator.compare(ol, 02);

45. }

46.

47. public boolean equals(Object 0){

48. return textComparator.equals(o);

49. }

50. }

51. }

OrganizationSummarizer returns a summary with aContact"s organization, followed by their first and last
name. The comparator used to order the Contact objects returns entries with ascending organization, then
ascending last name.

Example A.111 OrganizationSummarizer.java

1. import java.text.Collator;

2. import java.util_Arrays;

3. import java.util.Comparator;

4. public class OrganizationSummarizer implements SummarizingStrategy{
5. private Comparator comparator = new OrganizationComparator();
6.

7. public String summarize(Contact [] contactList){

8. StringBuffer product = new StringBuffer();

9. Arrays.sort(contactList, comparator);

10. for (int i = 0; 1 < contactList._length; i++){

11. product.append(contactList[i].getOrganization());

12. product.append(DELIMITER) ;

13. product.append(SPACE);

14. product.append(contactList[i].getFirstName());

15. product.append(SPACE) ;

16. product.append(contactList[i].getLastName());

17. product.append(EOL_STRING);

18. }

19. return product.toString();

20. }

21.

22. public String [] makeSummarizedList(Contact [] contactList){
23. Arrays.sort(contactList, comparator);

278

24. String [] product = new String[contactList.length];

25. for (int i = 0; 1 < contactList.length; i++){

26. product[i] = contactList[i].-getOrganization() + DELIMITER + SPACE +

27. contactList[i].getFirstName() + SPACE +

28. contactList[i].getLastName() + EOL_STRING;

29. }

30. return product;

31. }

32.

33. private class OrganizationComparator implements Comparator{

34. private Collator textComparator = Collator.getinstance();

35.

36. public int compare(Object 0l, Object 02){

37. Contact cl, c2;

38. if ((ol instanceof Contact) && (02 instanceof Contact)){

39. cl = (Contact)ol;

40. c2 = (Contact)o2;

41. int compareResult = textComparator.compare(cl.getOrganization(),
c2.getOrganization());

42. it (compareResult == 0){

43. compareResult = textComparator.compare(cl.getLastName(), c2.getLastName());

44 . }

45. return compareResult;

46. }

47. else return textComparator.compare(ol, 02);

48. }

49.

50. public boolean equals(Object 0){

51. return textComparator.equals(o);

52. }

53. }

54, }

The ContactList usesthe Contact interface and its implementer, Contactimpl, to represent individual contacts.

Example A.112 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " ";

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.113 Contactimpl .java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactimpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newlLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(QQ{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

279

26. public String toString(Q{
27. return firstName + SPACE + lastName;

28. }
29. }

The bataCreator and DataRetriever classes are used to create and retrieve atest group of contactsfor usein

the example.

Example A.114 pataCreator. java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. public class DataCreator{

6. private static final String DEFAULT FILE = "data.ser";
7.

8. public static void main(String [] args){

9. String fileName;

10. if (args.length == 1){

11. fileName = args[0];

12 ¥

13. else{

14. fileName = DEFAULT_FILE;

15.

16. serialize(fileName);

17. ¥

18.

19. public static void serialize(String FileName){

20. try{

21. serializeToFile(makeContactList(), FfileName);
22.

23. catch (10Exception exc){

24. exc.printStackTrace();

25. ¥

26. ¥

27.

28. private static Serializable makeContactList(){

29. ContactList list = new ContactList();

30. list.addContact(new Contactimpl(*David'”, "St. Hubbins', "Lead Guitar'™, "The New

31. list.

32. list.

33. list.
34. list.

Originals™));

addContact(new Contactimpl('Mick", "Shrimpton', "Drummer"™, "The New
Originals™));

addContact(new ContactImpl(*’'Nigel', "Tufnel™, "Lead Guitar', "The New
Originals™));

addContact(new ContactImpl ("'Derek", "Smalls", "Bass', "The New Originals'™));

addContact(new Contactimpl(''Viv", '"Savage', "Keyboards', "The New
Originals™));

35. ist.addContact(new ContactImpl(*'Nick", "Shrimpton', "CEO", "Fishy Business, LTD"));

36. list.addContact(new Contactimpl("'Nickolai', "Lobachevski', "Senior Packer", "Fishy
Business, LTD™));

37. list.addContact(new Contactimpl(*Alan', "Robertson"™, "Comptroller', "Universal
Exports'™));

38. list_addContact(new Contactimpl("William™, "Telle", "President", "Universal
Exports'™));

39. list.addContact(new Contactlmpl('Harvey", "Manfredjensenden', "lnspector',
"Universal Imports'));

40. list._addContact(new Contactlmpl(*'Deirdre', "Pine', "Chief Mechanic', "The
Universal Joint'));

41. list.addContact(new Contactimpl(*"Martha", "Crump-Pinnett", 'Lead Developer",
"Avatar Inc.'™));

42. list.addContact(new Contactimpl(*Bryan', "Basham'™, 'CTO", "IOVA'));

43. return list;

44 . }

45.

46. private static void serializeToFile(Serializable content, String fileName) throws
I10Exception{

47. ObjectOutputStream serOut = new ObjectOutputStream(new FileOutputStream(fileName));

48. serOut.writeObject(content);

49. serOut.close();

50. }

51. }

Example A.115 DataRetriever. java

1. import java.io.File;
2. import java.io.FilelnputStream;
3. import java.io.lOException;

280

4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24
25.
26.
27.
28.
29.
30.

import java.io.ObjectlnputStream;

public class DataRetriever{

}

public static Object deserializeData(String FileName){
Object returnvalue = null;
try{
File inputFile = new File(FileName);
if (inputFile._exists() && inputFile.isFile()){
ObjectlnputStream readln = new ObjectlnputStream(new
FilelnputStream(fileName));
returnValue = readln.readObject();
readln.close();

}
else {

System.err.printIn(*"Unable to locate the file " + fileName);
}

catch (ClassNotFoundException exc){
exc.printStackTrace();

catch (10Exception exc){
exc.printStackTrace();

}

return returnValue;

}

RunPattern demonstrates how the Strategy works by first creating a ContactList, then printing out its entries
with each of the two SummarizingStrategy objects.

Example A.116 RunPattern.java

1. import java.io.File;
2. public class RunPattern {
public static void main(String[] arguments){

3.
4.
5.
6.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37. }

}

System.out.printIn("Example for the Strategy paFtern")
System.out._printin();
System.out._printIn(""This code uses two Str
OrganizationSummarizer,'™);
System.out.printin(’" to provide a sorte
ContactList object™);
System.out._printIn(’ maintain
representing')
System.out.printIn(*" its info
SummarizingStrategy.');
System.out.printin(Q);

Y classes NameSummarizer and

vsummarized list for a ContactList. The

colllection of Contacts, and delegates the task of

ition to an associated object which implements

System.out.printIn(‘'Deserializing stored ContactList from the data.serfile');
System.out._printin();
if (I(new File('data.ser™).exists())){
DataCreator.serialize(‘'data.ser');
}

ContactList list = (ContactList)(DataRetriever. deserializeData(''data.ser'));

System.out.printIn(*'Creating NameSummarizer for the ContactList");
System.out._printIn(*"(this Strategy displays only the last and Ffirst name,');
System.out.printIn(” and sorts the list by last name, followed by the first)");
list.setSummarizer(new NameSummarizer());

System.out.printIn(*'Name Summarizer Output for the ContactList:");
System.out.printIn(list.summarize());
System.out._printin();

System.out._printIn(*'Creating OrganizationSummarizer for the ContactList'");

System.out.printIn("'(this Strategy displays the organization, followed by the first");

System.out.printIn(* and last name. It sorts by the organization, followed by last
name)');

list.setSummarizer(new OrganizationSummarizer());

System.out.printIn(*'Organization Summarizer Output for the ContactList:'");

System.out.printIn(list.summarize());
System.out._printin();

281

Visitor

The Visitor pattern is often useful when operations must be performed over alarge structure, and composite
results must be calculated. In this demonstration, the Visitor pattern is used to calculate the total cost for a project.

Four classes are used to represent project elements, and all of the classes implement a common interface,
Projectltem. Inthisexample, Projectltem defines the accept method required to host avisitor.

Example A.117 Projectitem.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. public interface Projectltem extends Serializable{
4. public void accept(ProjectVisitor v);

5. public ArrayList getProjectltems();

6. }

The Project class represents the project itself, the Deliverable class a concrete product, the Task: ajob of
some sort. In addition, there is a subclass of Task called DependentTask. This class holds a set of other Tasks
upon which it depends for its own completion.

Example A.118 peliverable.java

1. import java.util_ArraylList;

2. public class Deliverable implements Projectltem{

3. private String name;

4. private String description;

5. private Contact owner;

6. private double materialsCost;

7. private double productionCost;

8.

9. public Deliverable(){ }

10. public Deliverable(String newName, String newDescription,

11. Contact newOwner, double newMaterialsCost, double newProductionCost){
12. name = newName;

13. description = newDescription;

14. owner = newOwner;

15. materialsCost = newMaterialsCost;

16. productionCost = newProductionCost;

17. }

18.

19. public String getName(){ return name; }

20. public String getDescription(){ return description; }

21. public Contact getOwner(){ return owner; }

22. public double getMaterialsCost(){ return materialsCost; }

23. public double getProductionCost(){ return productionCost; }

24

25. public void setMaterialsCost(double newCost){ materialsCost = newCost; }
26. public void setProductionCost(double newCost){ productionCost = newCost; }
27. public void setName(String newName){ name = newName; }

28. public void setDescription(String newDescription){ description = newDescription; }
29. public void setOwner(Contact newOwner){ owner = newOwner; }

30.

31. public void accept(ProjectVisitor v){

32. v.visitDeliverable(this);

33. }

34.

35. public ArrayList getProjectltems({

36. return null;

37. }

38. }

Example A.119 DependentTask. java

1. import java.util_ArraylList;

2. public class DependentTask extends Task{

3. private ArrayList dependentTasks = new ArrayList();

4. private double dependencyWeightingFactor;

5.

6. public DependentTask(Q{ }

7. public DependentTask(String newName, Contact newOwner,
8. double newTimeRequired, double newWeightingFactor){
9. super(newName, newOwner, newTimeRequired);

10. dependencyWeightingFactor = newWeightingFactor;
11. }

282

12.

13. public ArrayList getDependentTasks(){ return dependentTasks; }
14. public double getDependencyWeightingFactor(){ return dependencyWeightingFactor; }
15.
16. public void setDependencyWeightingFactor(double
newFactor){ dependencyWeightingFactor = newFactor; }
17.
18. public void addDependentTask(Task element){
19. if (YdependentTasks.contains(element)){
20. dependentTasks.add(element);
21. ¥}
22. ¥
23.
24. public void removeDependentTask(Task element){
25. dependentTasks.remove(element);
26. ¥}
27.
28. public void accept(ProjectVisitor v){
29. v.visitDependentTask(this);
30. ¥
31. }

Example A.120 Project. java

1. import java.util_ArraylList;

2. public class Project implements Projectltem{

3. private String name;

4. private String description;

5. private ArrayList projectltems = new ArrayList();

6.

7. public Project(Q{ }

8. public Project(String newName, String newDescription){
9. name = newName;

10. description = newDescription;

11. }

12.

13. public String getName(){ return name; }

14. public String getDescription(){ return description; }
15. public ArrayList getProjectltems(){ return projectltems; }
16.

17. public void setName(String newName){ name = newName; }
18. public void setDescription(String newDescription){ description = newDescription; }
19.

20. public void addProjectltem(Projectltem element){

21. if (Iprojectltems.contains(element)){

22. projectltems.add(element);

23. }

24 }

25.

26. public void removeProjectltem(Projectltem element){
27. projectltems.remove(element);

28. }

29.

30. public void accept(ProjectVisitor v){

31. v.visitProject(this);

32. }

33. }

Example A.121 Task.java

1. import java.util_ArraylList;

2. public class Task implements Projectltem{

3. private String name;

4. private ArraylList projectltems = new ArrayList();
5. private Contact owner;

6. private double timeRequired;

7.

8. public TaskQ{ }

9. public Task(String newName, Contact newOwner,

10. double newTimeRequired){

11. name = newName;

12. owner = newOwner;

13. timeRequired = newTimeRequired;

14. }

15.

16. public String getName(){ return name; }

17. public ArrayList getProjectltems(){ return projectltems; }
18. public Contact getOwner(){ return owner; }

283

19. public double getTimeRequired(){ return timeRequired; }

20.

21. public void setName(String newName){ name = newName; }

22. public void setOwner(Contact newOwner){ owner = newOwner; }

23. public void setTimeRequired(double newTimeRequired){ timeRequired =
newTimeRequired; }

24.

25. public void addProjectltem(Projectltem element){

26. if (Iprojectltems.contains(element)){

27. projectltems.add(element);

28. ¥}

29. ¥

30.

31. public void removeProjectltem(Projectltem element){

32. projectltems.remove(element);

33.

34.

35. public void accept(ProjectVisitor v){

36. v.visitTask(this);

37. ¥

38. }

The basic interface that defines the Visitor behavior isthe ProjectVisitor. It definesavisit method for each
of the project classes.

Example A.122 projectVisitor.java

public interface ProjectVisitor{
public void visitDependentTask(DependentTask p);
public void visitDeliverable(Deliverable p);
public void visitTask(Task p);
public void visitProject(Project p);

OO WNER

}

With this framework in place, you can define classes that implement the ProjectVisitor interface and perform
some computation on project items. The class ProjectCostVisitor shows how project cost calculations could
be managed.

Example A.123 ProjectCostVisitor.java

1. public class ProjectCostVisitor implements ProjectVisitor{
2. private double totalCost;

3. private double hourlyRate;

4.

5. public double getHourlyRate(){ return hourlyRate; }

6. public double getTotalCost(){ return totalCost; }

7.

8. public void setHourlyRate(double rate){ hourlyRate = rate; }
9.

10. public void resetTotalCost(){ totalCost = 0.0; }

11.

12. public void visitDependentTask(DependentTask p){

13. double taskCost = p.getTimeRequired() * hourlyRate;
14. taskCost *= p.getDependencyWeightingFactor();

15. totalCost += taskCost;

16. }

17. public void visitDeliverable(Deliverable p){

18. totalCost += p.getMaterialsCost() + p.getProductionCost();
19. ¥

20. public void visitTask(Task p){

21. totalCost += p.getTimeRequired() * hourlyRate;

22.

23. public void visitProject(Project p){ }

24, }

All behavior for the calculation, aswell as variable storage, is centralized in the Visitor class. To add a new
behavior, you would create a new class that implements ProjectVisitor and redefine the four visit methods.

The Contact interface and Contactlimpl class represent the owner for a Task or Deliverable.
Example A.124 contact. java

1. import java.io.Serializable;

284

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newlLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.125 Contactimpl .java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactimpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(Q){ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ FfirstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(Q{

27. return firstName + SPACE + lastName;

28. }

29. }

DataCreator isasupport class which generates a sample Project and savesit to afile. The DataRetriever
class loads the data from the file, restoring the saved Project.

Example A.126 pataCreator.java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. public class DataCreator{

6. private static final String DEFAULT FILE = "data.ser";
7.

8. public static void main(String [] args){

9. String fileName;

10. if (args.-length == 1){

11. fileName = args[0];

12. ¥

13. else{

14. fileName = DEFAULT_FILE;

15.

16. serialize(fileName);

17. ¥

18.

19. public static void serialize(String FileName){
20. try{

21. serializeToFile(createData(), fileName);
22. ¥

23. catch (10Exception exc){

24. exc.printStackTrace();

25. }

26. ¥

27.

28. private static Serializable createData(){

285

29. Contact contact = new Contactlmpl("Test", "Subject"™, "Volunteer™, "United Patterns
Consortium'™);

30.

31. Project project = new Project("Project 1", "Test Project');

32.

33. Task taskl = new Task("Task 1", contact, 1);

34. Task task2 = new Task("Task 2", contact, 1);

35.

36. project._addProjectltem(new Deliverable(*'Deliverable 1", "Layer 1 deliverable",
contact, 50.0, 50.0));

37. project.addProjectltem(taskl);

38. project.addProjectltem(task?);

39. project._addProjectltem(new DependentTask(''Dependent Task 1", contact, 1, 1));

40.

41. Task task3 = new Task("Task 3", contact, 1);

42. Task task4 = new Task("Task 4", contact, 1);

43. Task task5 = new Task("Task 5", contact, 1);

44 . Task task6 = new Task("Task 6", contact, 1);

45.

46. DependentTask dtask2 = new DependentTask(''Dependent Task 2", contact, 1, 1);

47 .

48. taskl.addProjectltem(task3);

49. taskl._addProjectltem(task4);

50. taskl._addProjectltem(task5);

51. taskl.addProjectltem(dtask?);

52.

53. dtask2.addDependentTask(task5);

54. dtask?2 .addDependentTask(task6) ;

55. dtask2._addProjectltem(new Deliverable('Deliverable 2", "Layer 3 deliverable",
contact, 50.0, 50.0));

56.

57. task3.addProjectltem(new Deliverable(''Deliverable 3", "Layer 3 deliverable",
contact, 50.0, 50.0));

58. task4_addProjectltem(new Task('Task 7', contact, 1));

59. task4.addProjectltem(new Deliverable(''Deliverable 4", "Layer 3 deliverable",
contact, 50.0, 50.0));

60. return project;

61. }

62.

63. private static void serializeToFile(Serializable content, String fileName) throws
10Exception{

64. ObjectOutputStream serOut = new ObjectOutputStream(new FileOutputStream(fileName));

65. serOut.writeObject(content);

66. serOut.close();

67. }

68. }

Example A.127 DataRetriever.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " ";

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

14.

RunPattern gives ademonstration of the ProjectCostVisitor in action. It retrieves a stored project, then
iterates through al of the items of that project and cal culates the total cost estimate.

Example A.128 RunPattern.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " "';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);

286

10. public void setLastName(String newLastName);

11. public void setTitle(String newTitle);
12. public void setOrganization(String newOrganization);
13. }

287

Template Method
This example uses project classes from the Personal Information Manager to illustrate the Template Method.

Projectltem isthe abstract class that defines the Template Method in this demonstration. Its method
getCostEstimate returns atotal value for the project item that is calculated using the following equation:

time estimate * hourly rate + materials cost

The hourly rateis defined in the Projectltem class (using the rate variable, getter and setter methods in the
class), but the methods getTimeRequired and getMaterialsCost are abstract. This requires the subclasses to
override them, providing their own way to calculate the values.

Example A.129 Projectitem. java

1. import java.io.Serializable;

2. public abstract class Projectltem implements Serializable{

3. private String name;

4. private String description;

5. private double rate;

6.

7. public Projectltem(Q{}

8. public Projectltem(String newName, String newDescription, double newRate){
9. name = newName;

10. description = newDescription;

11. rate = newRate;

12. ¥

13.

14. public void setName(String newName){ name = newName; }

15. public void setDescription(String newDescription){ description = newDescription; }
16. public void setRate(double newRate){ rate = newRate; }

17.

18. public String getName(){ return name; }

19. public String getDescription(){ return description; }

20. public final double getCostEstimate(){

21. return getTimeRequired() * getRate() + getMaterialsCost();
22. ¥

23. public double getRate(){ return rate; }

24.

25. public String toString(){ return getName(); }

26.

27. public abstract double getTimeRequired();

28. public abstract double getMaterialsCost();

29. }

The Deliverable class represents a concrete product of some kind. Because it represents a physical item, the
value returned by its getTimeRequired method is afixed amount. Similarly, the getMaterialsCost method
returns afixed value.

Example A.130 peliverable.java

1. public class Deliverable extends Projectltem{

2. private double materialsCost;

3. private double productionTime;

4.

5. public Deliverable(){ }

6. public Deliverable(String newName, String newDescription,

7. double newMaterialsCost, double newProductionTime,

8. double newRate){

9. super(newName, newDescription, newRate);

10. materialsCost = newMaterialsCost;

11. productionTime = newProductionTime;

12. }

13.

14. public void setMaterialsCost(double newCost){ materialsCost = newCost; }
15. public void setProductionTime(double newTime){ productionTime = newTime; }
16.

17. public double getMaterialsCost(){ return materialsCost; }

18. public double getTimeRequired(){ return productionTime; }

19. }

288

The Task class represents ajob that can consist of any number of subtasks or deliverables. For this reason,
getTimeRequired calculates the total time for the Task and all its children by iterating through itslist of project
items and calling the getTimeRequired method. The method getMaterialsCost follows asimilar strategy,
working through the list of project items and calling each child’s getMaterialsCost method.

Example A.131 Task.java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Task extends Projectltem{

4. private ArraylList projectltems = new ArrayList();

5. private double taskTimeRequired;

6.

7. public TaskQ{ }

8. public Task(String newName, String newDescription,

9. double newTaskTimeRequired, double newRate){

10. super(newName, newDescription, newRate);

11. taskTimeRequired = newTaskTimeRequired;

12. ¥

13.

14. public void setTaskTimeRequired(double newTaskTimeRequired){ taskTimeRequired =
newTaskTimeRequired; }

15. public void addProjectltem(Projectltem element){

16. if (Iprojectltems.contains(element)){

17. projectltems.add(element);

18.

19. }

20. public void removeProjectltem(Projectltem element){

21. projectltems.remove(element);

22. }

23.

24. public double getTaskTimeRequired(){ return taskTimeRequired; }

25. public Iterator getProjectltemlterator(){ return projectltems.iterator(); }

26. public double getMaterialsCost(){

27. double totalCost = 0O;

28. Iterator items = getProjectltemlterator();

29. while (items.hasNext()){

30. totalCost += ((Projectltem)items.next()).getMaterialsCost();

31. ¥

32. return totalCost;

33. }

34. public double getTimeRequired(){

35. double totalTime = taskTimeRequired;

36. Iterator items = getProjectltemlterator();

37. while (items.hasNext()){

38. totalTime += ((Projectltem)items.next()).getTimeRequired();

39. }

40. return totalTime;

41. ¥

42. %}

RunPattern creates aDeliverable object and asimple Task chain, then computes a cost estimate for each by
calling the method getCostEstimate. Each object uses the template defined in the Projectitem class, but
appliesits own methods when computing the time required and cost of materials.

Example A.132 RunPattern.java

1. public class RunPattern {

2. public static void main(String [] arguments) {

3. System.out._printIn("'Example for the Template Method pattern™);

4. System._out._printIn("'This code demonstrates how the template method can');

5. System.out.printIn(’" be used to define a variable implementation for a");

6. System.out.printIn(*" common operation. In this case, the Projectltem");

7. System.out.printIn("" abstract class defines the method getCostEstimate,');

8. System.out.printIn(* which iIs a combination of the cost for time and");

9. System._out._printIn(’" materials. The two concrete subclasses used here,');

10. System.out.printIn(’" Task and Deliverable, have different methods of'");

11. System.out.printIn(’" providing a cost estimate.™);

12. System._out._printin(Q);

13.

14. System.out.printIn(''Creating a demo Task and Deliverable'™);

15. System.out.printin(Q;

16. Task primaryTask = new Task("Put a JVM on the moon"™, "Lunar mission as part of the
JavaSpace program ;)', 240.0, 100.0);

17. primaryTask.addProjectltem(new Task(“Establish ground control*, "', 1000.0, 10.0));

18. primaryTask.addProjectltem(new Task("'Train the Javanaughts'™, ', 80.0, 30.0));

289

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

}

}

Deliverable deliverableOne = new Deliverable(*'Lunar landing module', "Ask the local
garage if they can make a few minor modifications to one of their cars",
2800, 40.0, 35.0);

System.out.printin('Calculating the cost estimates using the Template Method,
getCostEstimate.™);

System.out.printin(Q;

System.out._.printIn("'Total cost estimate for: " + primaryTask);

System._out._printIn("’"\t" + primaryTask.getCostEstimate());

System.out.printin(Q;

System.out.printIn("'Total cost estimate for: " + deliverableOne);
System.out.printIn("’\t" + deliverableOne.getCostEstimate());

290

Structural Pattern Code Examples
Adapter

In this example, the PIM uses an API provided by aforeign source. Two files represent the interface into a
purchased set of classes intended to represent contacts. The basic operations are defined in the interface called
Chovnatlh.

Example A.133 chovnatlh.java

public interface Chovnatlh{
public String tlhapwa$DlchPong(Q);
public String tlhapQavPong();
public String tlhapPatlh();
public String tlhapGhom();

1
2
3
4
5.
6.
7 public void cherWa$DlchPong(String chu$wa$DlchPong);
8 public void cherQavPong(String chu$QavPong);

9. public void cherPatlh(String chu$patlh);

10. public void cherGhom(String chu$ghom);

11. }

The implementation for these methods is provided in the associated class, Chovnatihimpl.

Example A.134 chovnatlhimpl.java

1. // pong = name

2. // wa"Dlch = Ffirst

3. // Qav = last

4. // patlh = rank (title)

5. // ghom = group (organization)

6. // tlhap = take (get)

7. // cher = set up (set)

8. // chu® = new

9. // chovnatlh = specimen (contact)

10.

11. public class Chovnatlhlmpl implements Chovna

12. private String wa$DIlchPong;

13. private String QavPong;

14. private String patlh;

15. private String ghom;

16.

17. public ChovnatlhimplQ{ ¥ '

18. public ChovnatlhImpl(String chuwaDlchPong, String chu$QavPong,
19. String chu$patlh, String chu$ghom){

20. wa$DlchPong = chu$wa$DIlchPong;

21. QavPong = chu$QavPong;

22. patlh = chu$patlh;

23. ghom = chu$ghom;

24. }

25.

26. public String tlhapWa$DlchPong(){ return wa$DlchPong; }

27. public String tlhapQavPong(){ return QavPong; }

28. public String tlhapPatlh(Q){ return patlh; }

29. public String tlhapGhom(){ return ghom; }

30.

31. public void cherWa$DIlchPong(String chu$wa$DlchPong){ wa$DlchPong = chuwaDlchPong; }
32. public void cherQavPong(String chu$QavPong){ QavPong = chu$QavPong; }
33. public void cherPatlh(String chu$patlh){ patlh = chu$patlh; }
34. public void cherGhom(String chu$ghom){ ghom = chu$ghom; }

35.

36. public String toString(Q{

37. return wa$DlchPong + " " + QavPong + ": " + patlh + ", " + ghom;
38. }

39. }

With help from atrangdlator, it is possible to match the methods to those found in the Contact interface. The
ContactAdapter class performs this task by using avariable to hold an internal Chovnatlhimpl object. This
object manages the information required to hold the Contact information: name, title, and organization.

Example A.135 contact. java

1. import java.io.Serializable;
2. public interface Contact extends Serializable{

291

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);

10. public void setLastName(String newlLastName);

11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.136 ContactAdapter.java

1. public class ContactAdapter implements Contact{
2. private Chovnatlh contact;

3.

4. public ContactAdapter(){

5. contact = new Chovnatlhimpl();

6. }

7. public ContactAdapter(Chovnatlh newContact){
8. contact = newContact;

9. }

10.

11. public String getFirstName(){

12. return contact.tlhapWa$DIlchPong();

13. }

14. public String getLastName(){

15. return contact.tlhapQavPong();

16. }

17. public String getTitle({

18. return contact.tlhapPatlh();

19.

20. public String getOrganization(){

21. return contact.tlhapGhom();

22. }

23.

24. public void setContact(Chovnatlh newContact){
25. contact = newContact;

26.

27. public void setFirstName(String newFirstName){
28. contact.cherWa$DlchPong(newFirstName);
29. }

30. public void setLastName(String newLastName){
31. contact.cherQavPong(newLastName) ;

32. }

33. public void setTitle(String newTitle){

34. contact.cherPatlh(newTitle);

35. }

36. public void setOrganization(String newOrganization){
37. contact.cherGhom(nhewOrganization);

38. }

39.

40. public String toString(Q{

41. return contact.toString(Q);

42. }

43. }

The RunPattern class demonstrates the use of the adapter by creating a ContactAdapter, then using it to create
asample Contact. The Chovnatlhlmpl object stores the actual information and makesit available to
RunPattern when the toString method is called on the ContactAdapter

Example A.137 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

292

Bridge

This example shows how to use the Bridge pattern to extend the functionality of ato-do list for the PIM. The
to-do list isfairly straightforward—simply alist with the ability to add and remove Strings.

For the Bridge pattern, an element is defined in two parts. an abstraction and an implementation. The
implementation is the class that does all the real work—in this case, it stores and retrieveslist entries. The general
behavior for the PIM list isdefined in the Listimpl interface.

Example A.138 ListImpl.java

public interface Listimpl{
public void addltem(String item);
public void addltem(String item, int position);
public void removeltem(String item);
public int getNumberOfltems();
public String getltem(int index);
public boolean supportsOrdering();

O~NO U WNPE

}

TheorderedListiImpl classimplements Listimpl, and stores list entriesin an internal ArrayList object.

Example A.139 orderedListImpl.java

1. import java.util_ArraylList;

2. public class OrderedListImpl implements ListImpl{
3. private ArraylList items = new ArrayList();
4.

5. public void addltem(String item){

6. if (Titems.contains(item)){

7. items._add(item);

8. }

9. }

10. public void addlitem(String item, int position){
11. if (litems.contains(item)){

12. items.add(position, item);

13. }

14. ¥

15.

16. public void removeltem(String item){

17. if (items.contains(item)){

18. items.remove(items.indexOf(item));
19. ¥

20. ¥

21.

22. public boolean supportsOrdering(){

23. return true;

24. ¥

25.

26. public int getNumberOfltems(){

27. return items.size();

28. }

29.

30. public String getltem(int index){

31. if (index < items.size()){

32. return (String)items.get(index);
33.

34. return null;

35. ¥

36. }

The abstraction represents the operations on the list that are available to the outside world. The BaseList class
provides genera list capabilities.

Example A.140 BaseList. java

public class BaselList{
protected Listimpl implementor;

public void setlmplementor(Listimpl impl){
implementor = impl;
}

public void add(String item){

O~NOOOPA~WNPE

293

9 implementor.addltem(item);

10. ¥

11. public void add(String item, int position){
12. if (implementor.supportsOrdering()){
13. implementor.addltem(item, position);
14. ¥

15. ¥

16.

17. public void remove(String item){

18. implementor.removeltem(item);

19. ¥

20.

21. public String get(int index){

22. return implementor.getltem(index);

23. ¥

24.

25. public int count(){

26. return implementor.getNumberOfltems();
27. }

28. }

Note that all the operations are delegated to the implementer variable, which represents the list implementation.
Whenever operations are requested of the List, they are actually delegated “ across the bridge” to the associated
Listimpl object.

It’s easy to extend the features provided by the BaseList —Yyou subclass the BaseL ist and add additional
functionality. The NumberedList class demonstrates the power of the Bridge; by overriding the get method, the
classis able to provide numbering of the items on the list.

Example A.141 NumberedList. java

1 public class NumberedList extends BaselList{

2 public String get(int index){

3. return (index + 1) + . ' + super.get(index);
4 }

5 }

The ornamentedList class shows another abstraction. In this case, the extension allows each list item to be
prepended with a designated symbol, such as an asterisk or other character.

Example A.142 OrnamentedList. java

1. public class OrnamentedList extends BaselList{
2. private char itemType;

3.

4. public char getltemType(){ return itemType; }
5. public void setltemType(char newltemType){
6. if (newltemType > " "){

7. itemType = newltemType;

8. }

9. }

10.

11. public String get(int index){

12. return itemType + " " + super.get(index);
13. }

14. }

RunPattern demonstrates this example in action. The main method creates an OrderedListImpl object and
populates it with items. Next, it associates the implementation with three different abstraction objects, and prints
the list contents. Thisillustrates two important principles. that the same implementation can be used with multiple
abstractions, and that each abstraction can modify the appearance of the underlying data.

Example A.143 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments){

3. System.out.printIn(""Example for the Bridge pattern™);

4. System._out.printin();

5. System.out.printIn(*'This example divides complex behavior among two™);

6. System.out._printIn(’" classes - the abstraction and the implementation.');

7. System.out.printin(Q);

8. System.out.printIn("'In this case, there are two classes which can provide the');
9. System.out.printIn(*’" abstraction - BaselList and OrnamentedList. The BaseList");
10. System.out._.printIn(’" provides core funtionality, while the OrnamentedList");
11. System.out.printIn(’" expands on the model by adding a list character.');

294

12. System.out.printin(Q;

13. System.out.printIn("'The OrderedListimpl class provides the underlying storage');
14. System.out._printIn(’"" capability for the list, and can be flexibly paired with™);
15. System.out._printIn(’" either of the classes which provide the abstraction.');
16.

17. System.out.printIn(’'Creating the OrderedListImpl object.');
18. Listimpl implementation = new OrderedListimpl();

19.

20. System.out.printIn(''Creating the BaselList object.');

21. BaseList listOne = new BaseList();

22. listOne.setImplementor(implementation);

23. System.out.printin(Q;

24 .

25. System.out.printIn("’Adding elements to the list.");

26. listOne.add("'One");

27. listOne.add(""Two");

28. listOne.add(""Three™);

29. listOne.add(""Four™);

30. System._out._printin(Q);

31.

32. System.out.printIn(''Creating an OrnamentedList object.");

33. OrnamentedList listTwo = new OrnamentedList();

34. listTwo.setImplementor(implementation);

35. listTwo.setltemType("+");

36. System.out.printin(Q;

37.

38. System.out.printIn(’'Creating an NumberedList object.');

39. NumberedList listThree = new NumberedList();

40. listThree._setlmplementor(implementation);

41. System.out.printin(Q;

42.

43. System.out.printIn("'Printing out first list (BaselList)");

44 . for (int i = 0; 1 < listOne.count(); i++){

45. System.out._printIn(’'\t" + listOne.get(i));

46. }

47. System.out.printin(Q;

48.

49. System._out._printIn("'Printing out second list (OrnamentedList)");
50. for (int i = 0; 1 < listTwo.count(); i++){

51. System.out.printIn(’'\t" + listTwo.get(i));

52. }

53. System.out.printin(Q;

54.

55. System._out._printIn("'Printing our third list (NumberedList));
56. for (int i = 0; i < listThree.count(); i++){

57. System.out.printIn(''\t" + listThree.get(i));

58. }

59. }

60. 1}

295

Composite

The example demonstrates how to use the Composite pattern to calculate the time required to compl ete a project
or some part of a project. The example has four principal parts:

Deliverable — A classthat represents an end product of a completed Task.
Project — Theclassused asthe root of the composite, representing the entire project.

Projectltem — Thisinterface describes functionality common to all items that can be part of a project. The
getTimeRequired method is defined in thisinterface.

Task — A classthat represents a collection of actions to perform. The task has a collection of Projectltem
objects.

The general functionality available to every object that can be part of a project is defined in the Projectltem
interface. In this example, thereis only a single method defined: getTimeRequired.

Example A.144 Projectitem.java

1. import java.io.Serializable;

2 public interface Projectltem extends Serializable{
3. public double getTimeRequired();

4 }

Since the project items can be organized into atree structure, two kinds of classes are Projectltems. The
Deliverable class represents aterminal node, which cannot reference other project items.

Example A.145 peliverable.java

1. import java.io.Serializable;

2. public interface Projectltem extends Serializable{
3. public double getTimeRequired();

4. 3

The Project and Task classes are nonterminal or branch nodes. Both classes keep a collection of Projectltems
that represent children: associated tasks or deliverables.

Example A.146 Project. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Project implements Projectltem{

4. private String name;

5. private String description;

6. private ArraylList projectltems = new ArrayList();

7.

8. public Project(Q{ }

9. public Project(String newName, String newDescription){
10. name = newName;

11. description = newDescription;

12. ¥

13.

14. public String getName(){ return name; }

15. public String getDescription(){ return description; }
16. public ArrayList getProjectltems(){ return projectltems; }
17. public double getTimeRequired(){

18. double totalTime = O;

19. Iterator items = projectltems.iterator();

20. while(items._hasNext()){

21. Projectltem item = (Projectltem)items.next();
22. totalTime += item.getTimeRequired();

23. }

24. return totalTime;

25. }

26.

27. public void setName(String newName){ name = newName; }
28. public void setDescription(String newDescription){ description = newDescription; }
29.

30. public void addProjectltem(Projectltem element){

31. if (Iprojectltems.contains(element)){

32. projectltems.add(element);

296

33. }

34. ¥

35. public void removeProjectltem(Projectltem element){
36. projectltems.remove(element);

37. ¥

38. }

Example A.147 Project. java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Project implements Projectltem{

4. private String name;

5. private String description;

6. private ArrayList projectltems = new ArrayList();

7.

8. public Project(Q{ }

9. public Project(String newName, String newDescription){
10. name = newName;

11. description = newDescription;

12. }

13.

14. public String getName(){ return name; }

15. public String getDescription(){ return description; }
16. public ArrayList getProjectltems(){ return projectltems; }
17. public double getTimeRequired(){

18. double totalTime = O;

19. Iterator items = projectltems.iterator();

20. while(items.hasNext()){

21. Projectltem item = (Projectltem)items.next();
22. totalTime += item.getTimeRequired();

23. }

24. return totalTime;

25. }

26.

27. public void setName(String newName){ name = newName; }
28. public void setDescription(String newDescription){ description = newDescription; }
29.

30. public void addProjectltem(Projectltem element){

31. if (Iprojectltems.contains(element)){

32. projectltems.add(element);

33. }

34. }

35. public void removeProjectltem(Projectltem element){
36. projectltems.remove(element);

37. }

38. }

Example A.148 Task.java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Task implements Projectltem{

4. private String name;

5. private String details;

6. private ArraylList projectltems = new ArrayList();
7. private Contact owner;

8. private double timeRequired;

9.

10. public TaskQ{ }

11. public Task(String newName, String newDetails,
12. Contact newOwner, double newTimeRequired){
13. name = newName;

14. details = newDetails;

15. owner = newOwner;

16. timeRequired = newTimeRequired;

17. }

18.

19. public String getName(){ return name; }

20. public String getDetails(){ return details; }

21. public ArrayList getProjectltems(){ return projectltems; }
22. public Contact getOwner(){ return owner; }

23. public double getTimeRequired(){

24. double totalTime = timeRequired;

25. Iterator items = projectltems.iterator();

26. while(items._hasNext()){

27. Projectltem item = (Projectltem)items.next();
28. totalTime += item.getTimeRequired();

29. ¥

297

30. return totalTime;

31. }

32.

33. public void setName(String newName){ name = newName; }

34. public void setDetails(String newDetails){ details = newDetails; }
35. public void setOwner(Contact newOwner){ owner = newOwner; }

36. public void setTimeRequired(double newTimeRequired){ timeRequired = newTimeRequired; }
37.

38. public void addProjectltem(Projectltem element){

39. if (Iprojectltems.contains(element)){

40. projectltems.add(element);

41.

42. }

43. public void removeProjectltem(Projectltem element){

44 . projectltems.remove(element);

45. }

46. }

The getTimeRequired method shows how the Composite pattern runs. To get the time estimate for any part of
the project, you simply call the method getTimeRequired for aProject or Task object. This method behaves
differently depending on the method implementer:

Deliverable: ReturnO.

Project or Task: Return the sum of the time required for the object plus the results of calling the
getTimeRequired method for all Projectltems associated with this node.

The Contact interface and Contactlimpl class provide support code to represent the owner of atask or
deliverable.

Example A.149 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " "';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.150 Contactimpl .java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactlmpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newlLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(QQ{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString() {

27. return firstName + SPACE + lastName;

298

28. ¥
29. %}

This example uses a small demonstration project to illustrate the Command pattern. To ssimplify the task of
managing a stored copy of the project information, the DataCreator class creates a sample project and serializes
ittoafile.

Example A.151 pataCreator. java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. public class DataCreator {

6. private static final String DEFAULT FILE = "data.ser";

7.

8. public static void main(String [] args){

9. String fileName;

10. if (args.length == 1){

11. fileName = args[0];

12. }

13. else{

14. fileName = DEFAULT_FILE;

15.

16. serialize(fileName);

17. }

18.

19. public static void serialize(String FileName){

20. try{

21. serializeToFile(createData(), fileName);

22. }

23. catch (10Exception exc){

24. exc.printStackTrace();

25. ¥

26. ¥

27.

28. private static Serializable createData(){

29. Contact contactl = new ContactImpl ("’'Dennis', "Moore', "Managing Director", ""Highway
Man, LTD");

30. Contact contact2 = new Contactimpl(*"Joseph', "Mongolfier", "High Flyer"™, "Lighter
than Air Productions'™);

31. Contact contact3 = new ContactImpl("Erik™"™, "Njoll'", "Nomad without Portfolio",
"Nordic Trek, Inc.™);

32. Contact contact4 = new Contactlmpl(“Lemming™, ", "Principal Investigator™, "BDA™);

33.

34. Project project = new Project("IslandParadise', "Acquire a personal island
paradise'™);

35. Deliverable deliverablel = new Deliverable("Island Paradise'™, "', contactl);

36. Task taskl = new Task("'Fortune', "Acquire a small fortune', contact4, 11.0);

37. Task task2 = new Task("Isle", "Locate an island for sale', contact2, 7.5);

38. Task task3 = new Task(''Name'™, '"Decide on a name for the island", contact3, 3.2);

39. project._addProjectltem(deliverablel);

40. project.addProjectltem(taskl);

41. project.addProjectltem(task?);

42. project.addProjectltem(task3);

43.

44 . Deliverable deliverablell = new Deliverable("$1,000,000", "(total net worth after
taxes)', contactl);

45. Task taskll = new Task("'Fortunel', "Use psychic hotline to predict winning lottery
numbers', contact4, 2.5);

46. Task task1l2 = new Task("'Fortune2™, "Invest winnings to ensure 50% annual interest",
contactl, 14.0);

47. taskl.addProjectltem(taskll);

48. taskl.addProjectltem(taskl2);

49. taskl.addProjectltem(deliverablell);

50.

51. Task task21 = new Task("'Islel™, ""Research whether climate is better in the Atlantic
or Pacific", contactl, 1.8);

52. Task task22 = new Task("'Isle2", "Locate an island for auction on EBay', contact4,
5.0);

53. Task task23 = new Task("Isle2a', ""Negotiate for sale of the island", contact3, 17.5);

54. task2._addProjectltem(task2l);

55. task2._addProjectltem(task22);

56. task2.addProjectltem(task23);

57.

58. Deliverable deliverable31 = new Deliverable(Island Name', "', contactl);

59. task3.addProjectltem(deliverable3l);

299

60. return project;

61. ¥

62.

63. private static void serializeToFile(Serializable content, String fileName) throws
I0Exception {

64. ObjectOutputStream serOut = new ObjectOutputStream(new FileOutputStream(fileName));

65. serOut.writeObject(content);

66. serOut.close();

67. }

68. }

The DataRetriever class provides aresource to deserialize an object from afile with the deserializeData
method.

Example A.152 DataRetriever.java

1. import java.io.File;

2. import java.io.FilelnputStream;

3. import java.io.lOException;

4. import java.io.ObjectlnputStream;

5.

6. public class DataRetriever{

7. public static Object deserializeData(String FileName){
8. Object returnvValue = null;

9. try{

10. File inputFile = new File(FileName);

11. if (inputFile.exists() && inputFile.isFile()){
12. ObjectlnputStream readln = new ObjectlnputStream(new FilelnputStream(FfileName));
13. returnValue = readln.readObject();

14. readln.close();

15. Yelse{

16. System.err.printIn(*"'Unable to locate the file " + fileName);
17. }

18. }catch (ClassNotFoundException exc){

19. exc.printStackTrace();

20.

21. }catch (10Exception exc){

22. exc.printStackTrace();

23. }

24. return returnValue;

25. ¥

26. }

The RunPattern class uses DataRetriever to deserialize the project, then calls the getTimeRequired method to
calculate the time requirements for the entire project.

Example A.153 RunPattern.java

1. import java.io.File;

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out.printIn(""Example for the Composite pattern'™);

5. System._out.printin();

6. System.out.printIn(*'This code sample will propagate a method call throughout™);

7. System.out.printIn(’" a tree structure. The tree represents a project, and is");

8. System.out.printIn("" composed of three kinds of Projectltems - Project, Task,'™);
9. System.out.printIn(" and Deliverable. Of these three classes, Project and Task");
10. System.out._printIn(’" can store an ArrayList of Projectltems. This means that');
11. System.out._printIn(’" they can act as branch nodes for our tree. The Deliverable'™);
12. System.out.printIn(’" is a terminal node, since it cannot hold any Projectltems.™);
13. System.out.printin(Q;

14. System.out.printIn("'In this example, the method defined by Projectltem,'™);

15. System.out._printIn(’" getTimeRequired, provides the method to demonstrate the');
16. System.out._.printIn(’" pattern. For branch nodes, the method will be passed on™);
17. System.out.printIn(’" to the children. For terminal nodes (Deliverables), a);

18. System.out.printIn(’" single value will be returned.');

19. System.out.printin(Q;

20. System.out._printIn("'Note that it is possible to make this method call ANYWHERE™);
21. System._out._printIn(’" in the tree, since all classes implement the getTimeRequired™);
22. System.out.printIn(’" method. This means that you are able to calculate the time');
23. System.out.printIn(’ required to complete the whole project OR any part of it.");
24. System.out.printin(Q;

25.

26. System.out.printIn('Deserializing a test Project for the Composite pattern™);

27. System.out.printin(Q;

28. if (M(new File(''data.ser").exists()){

29. DataCreator.serialize('data.ser™™);

300

30. }

31. Project project = (Project)(DataRetriever.deserializeData("'data.ser'™));
32.

33. System.out.printIn('Calculating total time estimate for the project');
34. System.out.printIn(""\t" + project.getDescription());

35. System.out.printIn("'Time Required: " + project.getTimeRequired());

36.

37. }

38. }

301

Decorator

This example demonstrates how to use the Decorator pattern to extend the capability of the elementsin a project.
The foundation of the project isthe Projectltem interface. It isimplemented by any class that can be used within
aproject. In this case, Projectltem defines a single method, getTimeRequired.

Example A.154 Projectitem. java

1. import java.io.Serializable;

2. public interface Projectltem extends Serializable{

3. public static final String EOL_STRING = System.getProperty(*'line.separator™);
4. public double getTimeRequired();

5.}

Task and Deliverable implement Projectltem and provide the basic project functionality. Asin previous
demonstrations, Task represents some job in a project and Deliverable represents some concrete product.

Example A.155 peliverable.java

1. public class Deliverable implements Projectltem{

2. private String name;

3. private String description;

4. private Contact owner;

5.

6. public Deliverable(){ }

7. public Deliverable(String newName, String newDescription,
8. Contact newOwner){

9. name = newName;

10. description = newDescription;

11. owner = newOwner;

12. }

13.

14. public String getName(){ return name; }

15. public String getDescription(){ return description; }

16. public Contact getOwner(){ return owner; }

17. public double getTimeRequired(){ return O; }

18.

19. public void setName(String newName){ name = newName; }
20. public void setDescription(String newDescription){ description = newDescription; }
21. public void setOwner(Contact newOwner){ owner = newOwner; }
22.

23. public String toString(Q{

24. return "Deliverable: " + name;

25. }

26. }

Example A.156 Task.java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class Task implements Projectltem{

4. private String name;

5. private ArraylList projectltems = new ArrayList();
6. private Contact owner;

7. private double timeRequired;

8.

9. public TaskQ{ }

10. public Task(String newName, Contact newOwner,

11. double newTimeRequired){

12. name = newName;

13. owner = newOwner;

14. timeRequired = newTimeRequired;

15. }

16.

17. public String getName(){ return name; }

18. public ArrayList getProjectltems(){ return projectltems; }
19. public Contact getOwner(){ return owner; }

20. public double getTimeRequired(){

21. double totalTime = timeRequired;

22. Iterator items = projectltems.iterator();

23. while(items.hasNext()){

24. Projectltem item = (Projectltem)items.next();
25. totalTime += item.getTimeRequired();

26. }

27. return totalTime;

302

28. }

29.

30. public void setName(String newName){ name = newName; }

31. public void setOwner(Contact newOwner){ owner = newOwner; }
32. public void setTimeRequired(double newTimeRequired){ timeRequired = newTimeRequired; }
33.

34. public void addProjectltem(Projectltem element){

35. if (Iprojectltems.contains(element)){

36. projectltems.add(element);

37. ¥

38.

39. public void removeProjectltem(Projectltem element){

40. projectltems.remove(element);

41. }

42.

43. public String toString(Q{

44 . return “Task: " + name;

45. }

46. }

It's time to introduce a decorator to extend the basic capabilities of these classes. The class ProjectDecorator
will provide the central ability to augment Task and Deliverable.

Example A.157 ProjectDecorator.java

1 public abstract class ProjectDecorator implements Projectltem{

2 private Projectltem projectltem;

3

4. protected Projectltem getProjectltem(){ return projectltem; }

5. public void setProjectltem(Projectltem newProjectltem){ projectltem = newProjectltem;
6

7 public double getTimeRequired(){

8 return projectltem.getTimeRequired();

9. }

10. }

The ProjectDecorator implements the ProjectItem interface and maintains a variable for another
Projectltem, which represents the “decorated” element. Note that ProjectDecorator delegates the
getTimeRequired method to itsinternal element. Thiswould be done for any method that would depend on the
functionality of the underlying component. If a Task with arequired time of five days were decorated, you would
still expect it to return a value of five days, regardless of any other capabilitiesit might have.

There are two subclasses of ProjectDecorator in this example. Both demonstrate a way to add some extra
feature to project elements. The DependentProjectltem classis used to show that aTask or Deliverable
depends on another Projectltem for completion.

Example A.158 DependentProjectltem. java

1. public class DependentProjectltem extends ProjectDecorator{

2. private Projectltem dependentltem;

3.

4. public DependentProjectitem(Q{ }

5. public DependentProjectltem(Projectltem newDependentltem){

6. dependentltem = newDependentltem;

7. }

8.

9. public Projectltem getDependentltem(){ return dependentltem; }

10.

11. public void setDependentltem(Projectltem newDependentltem){ dependentltem =
newDependentltem; }

12.

13. public String toString(Q{

14. return getProjectltem().toString() + EOL_STRING

15. + "\tProjectltem dependent on: " + dependentltem;

16. }

17. 3}

SupportedProjectltem decorates aProjectltem, and keeps an ArrayList of supporting documents—file
objects that represent additional information or resources.

Example A.159 supportedProjectltem. java

1.
2.

import java.util_ArraylList;
import java.io.File;

303

3 public class SupportedProjectltem extends ProjectDecorator{
4 private ArraylList supportingDocuments = new ArrayList();
5.

6. public SupportedProjectlitem(Q{ }

7 public SupportedProjectltem(File newSupportingDocument){
8 addSupportingDocument(newSupportingDocument);

9. }

10.

11. public ArrayList getSupportingDocuments(){

12. return supportingDocuments;

13. }

14.

15. public void addSupportingDocument(File document){

16. if (IsupportingDocuments.contains(document)){

17. supportingDocuments.add(document) ;

18.

19. }

20.

21. public void removeSupportingDocument(File document){

22. supportingDocuments.remove(document);

23. }

24

25. public String toString(Q){

26. return getProjectltem().toString() + EOL_STRING

27. + "\tSupporting Documents: " + supportingDocuments;
28. }

29. }

The benefit of defining additional capabilitiesin thisway isthat it is easy to create project items that have a
combination of capabilities. Using these classes, you can make a simple task that depends on another project item,
or atask with supporting documents. Y ou can even chain Decorators together and create a task that depends on
another task and has supporting documents. This flexibility is akey strength of the Decorator pattern.

In this example, the Contact interface and its implementer Contactimpl provide support for an owner of a Task
or Deliverable.

Example A.160 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newlLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.161 contactimpl.java

1. public class Contactimpl implements Contact{

2. private String FfirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplOQ{}

8. public Contactimpl(String newFirstName, String newLastName,
9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(Q{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

304

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(){

27. return firstName + SPACE + lastName;
28. }

29. }

The RunPattern class creates several Projectltems and prints out their String values. Next, it creates severa
Decorators, associates them with one of the Task objects by calling the setProjectltem methods, and shows
the String value of the newly decorated Task.

Example A.162 RunPattern.java

1. import java.io.File;

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out.printIn(""Example for the Decorator pattern'™);

5. System.out.printin(Q);

6. System._out._printIn("'This demonstration will show how Decorator classes can be
used™);

7. System._out._printIn(’" to extend the basic functionality of Projectltems. The Task
and™);

8. System.out.printIn("" Deliverable classes provide the basic Projectltems, and
their™);

9. System._out.printIn(*" functionality will be extended by adding subclasses of the');

10. System.out._.printIn(’" abstract class ProjectDecorator.');

11. System.out.printin(Q;

12. System.out.printIn(''Note that the toString method has been overridden for all
Projectltems,');
13 System.out.printIn(*" to more effectively show how Decorators are
associated with their™);

14. System.out.printIn(’" Projectltems.™);

15. System.out.printin(Q;

16.

17. System.out._printIn('’‘Creating Projectltems.');

18. Contact contactl = new ContactImpl(*'Simone", ""Roberto', "Head Researcher and Chief
Archivist"”, "Institute for Advanced (Java) Studies');

19. Task taskl = new Task(''Perform months of diligent research", contactl, 20.0);

20. Task task2 = new Task('Obtain grant from World Java Foundation', contactl, 40.0);

21. Deliverable deliverablel = new Deliverable(*"Java History", ""Comprehensive history
of the design of all Java APIs"™, contactl);

22. System.out.printIn("'Projectltem objects created. Results:");

23. System.out.printin(taskl);

24. System.out.printin(task?2);

25. System.out.printin(deliverablel);

26. System._out._printin();

27.

28. System.out.printIn(’'Creating decorators'™);

29. ProjectDecorator decoratorl = new SupportedProjectltem(new File(*" JavaHistory.txt'));

30. ProjectDecorator decorator2 = new DependentProjectltem(task?);

31. System.out.printIn('Decorators created. Adding decorators to the first task');

32. decoratorl.setProjectltem(taskl);

33. decorator2.setProjectltem(decoratorl);

34. System._out._printin(Q);

35. System._out._printIn('’'Decorators added. Results™);

36. System.out.printin(decorator?);

37.

38. System.out.printin(’"");

39. }

40. %}

305

Facade

To make the PIM more functional for users, you want to give them the opportunity to customize the application.
Some examples of itemsto customize include font type, font size, colors, which services to start when, default
currency, etc. This example tracks a set of nationality-based settings.

In this example, the Facade classisthe InternationalizationWizard. This class coordinates between a client
and a number of objects associated with a selected nationality.

Example A.163 InternationalizationWizard.java

import java.util_HashMap;

import java.text_NumberFormat;

import java.util_Locale;

public class InternationalizationWizard{

OCoO~NOUITAWNPE

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.

}

private HashMap map;
private Currency currency = new Currency();
private InternationalizedText propertyFile = new InternationalizedText();

public InternationalizationWizard() {
map = new HashMap(Q);
Nation[] nations = {
new Nation(''US™, "$", "+1', "us.properties", NumberFormat. getlnstance(Locale.US)),
new Nation("'The Netherlands'™, *"f", "+31", "dutch.properties’,
NumberFormat.getlnstance(Locale.GERMANY)),
new Nation("France'™, "f", "+33", "french.properties', NumberFormat.
getlnstance(Locale.FRANCE))

fér (int 1 = 0; 1 < nations.length; i++) {
map.put(nations[i].getName(), nations[i]);

}

public void setNation(String name) {
Nation nation = (Nation)map.get(name);
if (nation = null) {
currency.setCurrencySymbol (nation.getSymbol());
currency.setNumberFormat(nation.getNumberFormat());
PhoneNumber.setSelectedInterPrefix(nation.getDialingPrefix());
propertyFile.setFileName(nation.getPropertyFileName());
}
}

public Object[] getNations(){
return map.values().toArray();

public Nation getNation(String name){
return (Nation)map.get(name);

}
public char getCurrencySymbol(){
return currency.getCurrencySymbol();

public NumberFormat getNumberFormat(){
return currency.getNumberFormat();

¥
public String getPhonePrefix(){
return PhoneNumber.getSelectedInterPrefix();

}
public String getProperty(String key){
return propertyFile.getProperty(key);

}

public String getProperty(String key, String defaultValue){
return propertyFile._getProperty(key, defaultValue);

}

Note that the InternationalizationWizard has anumber of get methods, which it delegates to its associated
objects. It a'so has a method setNation, used to change the nation used by the client.

Although the Facade manages the internationalized settings for a number of objectsin this example, it is still
possible to manage each object individually. Thisis one of the benefits of this pattern—it allows a group of
objects to be managed collectively in some situations, but still provides the freedom to individually manage the
components as well.

306

Cadlling the setNation method in this class sets the current nation. That makes the wizard alter the Currency
setting, the PhoneNumber, and a set of localized language strings, International izedText.

Example A.164 currency.java

1. import java.text_NumberFormat;

2. public class Currency{

3. private char currencySymbol;

4. private NumberFormat numberFormat;

5.

6. public void setCurrencySymbol(char newCurrencySymbol){ currencySymbol =
newCurrencySymbol; }

7. public void setNumberFormat(NumberFormat newNumberFormat){ numberFormat =
newNumberFormat; }

8.

9. public char getCurrencySymbol(){ return currencySymbol; }

10. public NumberFormat getNumberFormat(){ return numberFormat; }

11. 3}

Example A.165 InternationalizedText.java

1. import java.util_Properties;

2. import java.io.File;

3. import java.io.lOException;

4. import java.io.FilelnputStream;

5. public class InternationalizedText{

6. private static final String DEFAULT _FILE NAME = ""';
7. private Properties textProperties = new Properties();
8.

9. public InternationalizedText(){

10. this(DEFAULT_FILE_NAME);

11. }

12. public InternationalizedText(String FfileName){

13. loadProperties(fileName);

14. }

15.

16. public void setFileName(String newFileName){

17. if (newFileName = null){

18. loadProperties(newFileName);

19. }

20. }

21. public String getProperty(String key){

22. return getProperty(key, "");

23. }

24. public String getProperty(String key, String defaultValue){
25. return textProperties.getProperty(key, defaultvalue);
26. }

27.

28. private void loadProperties(String fileName){

29. try{

30. FilelnputStream input = new FilelnputStream(FileName);
31. textProperties. load(input);

32.

33. catch (10Exception exc){

34. textProperties = new Properties();

35. }

36. }

37. }

Example A.166 PhoneNumber . java

1. public class PhoneNumber {

2. private static String selectedInterPrefix;

3. private String internationalPrefix;

4. private String areaNumber;

5. private String netNumber;

6.

7. public PhoneNumber(String intPrefix, String areaNumber, String netNumber) {
8. this.internationalPrefix = intPrefix;

9. this.areaNumber = areaNumber;

10. this_netNumber = netNumber;

11. }

12.

13. public String getinternationalPrefix(){ return internationalPrefix; }

14. public String getAreaNumber(Q){ return areaNumber; }

15. public String getNetNumber(){ return netNumber; }

16. public static String getSelectedInterPrefix(){ return selectedInterPrefix; }
17.

307

18. public void setinternationalPrefix(String newPrefix){ internationalPrefix =
newPrefix; }

19. public void setAreaNumber(String newAreaNumber){ areaNumber = newAreaNumber; }

20. public void setNetNumber(String newNetNumber){ netNumber = newNetNumber; }

21. public static void setSelectedInterPrefix(String prefix) { selectedInterPrefix =
prefix; }

22.

23. public String toString(){

24. return internationalPrefix + areaNumber + netNumber;

25. ¥

26. }

Genera country datais stored in a helper class, Nation. The InternationalizationWizard creates acollection
of nationswhen it isfirst instantiated.

Example A.167 Nation.java

1. import java.text_NumberFormat;

2. public class Nation {

3. private char symbol;

4. private String name;

5. private String dialingPrefix;

6. private String propertyFileName;

7. private NumberFormat numberFormat;

8.

9. public Nation(String newName, char newSymbol, String newDialingPrefix,
10. String newPropertyFileName, NumberFormat newNumberFormat) {
11. name = newName;

12. symbol = newSymbol;

13. dialingPrefix = newDialingPrefix;

14. propertyFileName = newPropertyFileName;

15. numberFormat = newNumberFormat;

16. }

17.

18. public String getName(){ return name; }

19. public char getSymbol(){ return symbol; }

20. public String getDialingPrefix(){ return dialingPrefix; }

21. public String getPropertyFileName(){ return propertyFileName; }
22. public NumberFormat getNumberFormat(){ return numberFormat; }
23.

24. public String toString(Q{ return name; }

25. }

To better illustrate the use of the Facade in auser environment, the class FacadeGui creates a simple Swing GUI
which demonstrates the effect of changing the country, calling the get methods for the
InternationalizationWizard to provide language, currency and phone number information.

Example A.168 FacadeGui .java

1. import java.awt.Container;

2. import java.awt.GridLayout;

3. import java.awt.event.ActionListener;
4. import java.awt.event._ActionEvent;
5. import java.awt.event.ltemListener;
6. import java.awt.event.ltemEvent;

7. import java.awt.event.WindowAdapter;
8. import java.awt.event.WindowEvent;
9. import javax.swing.BoxLayout;

10. import javax.swing.JButton;

11. import javax.swing.JComboBox;

12. import javax.swing.JFrame;

13. import javax.swing.JLabel;

14. import javax.swing.JPanel;

15. import javax.swing.JTextField;
16. public class FacadeGui implements ActionListener, ltemListener{

17. private static final String GUI_TITLE = "title";

18. private static final String EXIT_CAPTION = "exit";

19. private static final String COUNTRY_LABEL = "country";
20. private static final String CURRENCY_LABEL = "currency";
21. private static final String PHONE LABEL = "‘phone";

22.

23. private JFrame mainFrame;

24. private JButton exit;

25. private JComboBox countryChooser;

26. private JPanel controlPanel, displayPanel;

27. private JLabel countrylLabel, currencylLabel, phoneLabel;
28. private JTextField currencyTextField, phoneTextField;

308

29. private InternationalizationWizard nationalityFacade;

30.

31. public FacadeGui(InternationalizationWizard wizard){

32. nationalityFacade = wizard;

33. }

34.

35. public void createGui(){

36. mainFrame = new JFrame(nationalityFacade.getProperty(GUI_TITLE));
37. Container content = mainFrame.getContentPane();

38. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));

39.

40. displayPanel = new JPanel();

41. displayPanel .setLayout(new GridLayout(3, 2));

42.

43. countrylLabel = new JLabel(nationalityFacade.getProperty(COUNTRY_LABEL));
44 . countryChooser = new JComboBox(nationalityFacade.getNations());
45. currencylLabel = new JLabel(nationalityFacade.getProperty(CURRENCY_LABEL));
46. currencyTextField = new JTextField();

47. phoneLabel = new JlLabel(nationalityFacade.getProperty(PHONE_LABEL));
48. phoneTextField = new JTextField();

49.

50. currencyTextField.setEditable(false);

51. phoneTextField.setEditable(false);

52.

53. displayPanel .add(countryLabel);

54. displayPanel .add(countryChooser);

55. displayPanel .add(currencyLabel);

56. displayPanel .add(currencyTextField);

57. displayPanel .add(phoneLabel);

58. displayPanel .add(phoneTextField);

59. content.add(displayPanel);

60.

61. controlPanel = new JPanel();

62. exit = new JButton(nationalityFacade.getProperty(EXIT_CAPTION));
63. controlPanel .add(exit);

64. content.add(controlPanel);

65.

66. exit.addActionListener(this);

67. countryChooser.addltemListener(this);

68.

69. mainFrame.addWindowListener(new WindowCloseManager());

70. mainFrame.pack();

71. mainFrame._setVisible(true);

72. }

73.

74. private void updateGui({

75. national ityFacade.setNation(countryChooser.getSelectedltem().toString());
76. mainFrame.setTitle(nhationalityFacade.getProperty(GUl_TITLE));

77 . countrylLabel .setText(national ityFacade.getProperty(COUNTRY_LABEL));
78. currencylLabel .setText(nationalityFacade.getProperty(CURRENCY_LABEL));
79. phonelLabel .setText(nationalityFacade.getProperty(PHONE_LABEL));
80. exit.setText(nationalityFacade.getProperty(EXIT_CAPTION));

81.

82. currencyTextField.setText(nationalityFacade.getCurrencySymbol() + "™ " +
83. nationalityFacade.getNumberFormat() .format(5280.50));

84. phoneTextField.setText(nationalityFacade.getPhonePrefix());

85.

86. mainFrame.invalidate();

87. countrylLabel _invalidate();

88. currencylLabel . invalidate();

89. phoneLabel .invalidate();

90. exit.invalidate();

91. mainFrame.validate();

92. }

93.

94. public void actionPerformed(ActionEvent evt){

95. Object originator = evt.getSource();

96. if (originator == exit){

97. exitApplication();

98. }

99. }

100. public void itemStateChanged(ltemEvent evt){

101. Object originator = evt.getSource();

102. if (originator == countryChooser){

103. updateGui();

104.

105. }

106.

309

107. public void setNation(Nation nation){

108. countryChooser.setSelectedl tem(nation);
109. }

110.

111. private class WindowCloseManager extends WindowAdapter{
112. public void windowClosing(WindowEvent evt){
113. exitApplication();

114. }

115. }

116.

117. private void exitApplication(){

118. System.exit(0);

119. }

120. }

The class DataCreator produces a set of InternationalizedText objectsto usein this example.

Example A.169 DataCreator.java

1. import java.util_Properties;

2. import java.io.lOException;

3. import java.io.FileOutputStream;

4. public class DataCreator{

5. private static final String GUI_TITLE = "title";

6. private static final String EXIT_CAPTION = "exit";

7. private static final String COUNTRY_LABEL = "country";

8. private static final String CURRENCY_LABEL = "currency";

9. private static final String PHONE LABEL = "‘phone";

10.

11. public static void serialize(String FileName){

12. saveFrData();

13. saveUsData();

14. saveNIData();

15. }

16.

17. private static void saveFrData(){

18. try{

19. Properties textSettings = new Properties();

20. textSettings.setProperty(GUI_TITLE, "Demonstration du Pattern Facade™);
21. textSettings.setProperty(EXIT_CAPTION, "Sortir');

22. textSettings.setProperty(COUNTRY_LABEL, "Pays'™);

23. textSettings.setProperty(CURRENCY_LABEL, "'Monnaie');

24. textSettings.setProperty(PHONE_LABEL, ""Numero de Telephone'™);
25. textSettings.store(new FileOutputStream(*'french.properties'™), "French Settings');
26.

27. catch (10Exception exc){

28. System.err.printIn(""Error storing settings to output');

29. exc.printStackTrace();

30. }

31. }

32. private static void saveUsData(){

33. try{

34. Properties textSettings = new Properties();

35. textSettings.setProperty(GUI_TITLE, "Facade Pattern Demonstration'™);
36. textSettings.setProperty(EXIT_CAPTION, "EXit');

37. textSettings.setProperty(COUNTRY_LABEL, "'Country'™);

38. textSettings.setProperty(CURRENCY_LABEL, "Currency'™);

39. textSettings.setProperty(PHONE_LABEL, '"Phone Number');

40. textSettings.store(new FileOutputStream(‘'us.properties™), ""US Settings');
41.

42. catch (10Exception exc){

43. System.err.printIn("Error storing settings to output');

44 . exc.printStackTrace();

45. }

46. }

47. private static void saveNIData(){

48. try{

49. Properties textSettings = new Properties();

50. textSettings.setProperty(GUI_TITLE, "Facade Pattern voorbeeld™);
51. textSettings.setProperty(EXIT_CAPTION, "EXit');

52. textSettings.setProperty(COUNTRY_LABEL, "Land™);

53. textSettings.setProperty(CURRENCY_LABEL, "Munt eenheid");

54. textSettings.setProperty(PHONE_LABEL, "Telefoonnummer'™);

55. textSettings.store(new FileOutputStream(‘'dutch.properties'™), "Dutch Settings'™);
56.

57. catch (10Exception exc){

58. System.err.printIn("Error storing settings to output');

59. exc.printStackTrace();

310

60.

61. }

62. }

}

The RunPattern class creates the International izationWizard and associates it with the GUI; subsequently,
the InternationalizationWizard (Facade) can be used to obtain information about the currently selected

country.

Example A.170 RunPattern. java

1. import java.io.File;

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out.printIn(""Example for the Facade pattern™);

5. System.out.printin(Q);

6. System.out.printIn("'This code sample uses an InternationalizatgionWizard (a
Facade)'™);

7. System.out.printIn(*" to manage communication between the rest of the application
and™);

8. System.out.printIn(’" a series of other classes.™);

9. System.out.printin(Q);

10. System.out.printIn(''The InternationalizatgionWizard maintains a colleciton of
Nation™);

11. System.out._printIn(’’ objects. When the setNation method is called, the wizard sets
the™);

12. System.out.printIn(’" default nation, updating the Currency, PhoneNumber and
localized™);

13. System.out._printIn(’" String resources (InternationalizedText) available.');

14. System._out._printin();

15. System.out.printin('Calls to get Strings for the GUI, the currency symbol or the
dialing');

16. System.out.printIn(’" prefix are routed through the Facade, the
InternationalizationWizard.");

17. System._out._printin(Q);

18.

19. if (M(new File(''data.ser").exists())){

20. DataCreator.serialize('data.ser™™); a

21. }]

22. .

23. System.out.printIn(’'Creating the Int lizationWizard and setting the nation
to US.™); -

24. System.out.printin(Q; \

25. InternationalizationWizard wi ~hew InternationalizationWizard();

26. wizard.setNation("'US™);

27. AN -

28. System.out.printIn('Creating the FacadeGui.');

29. System.out.printIn(Q); -

30. FacadeGui application = new FacadeGui(wizard);

31. application.createGui();

32. application.setNation(wizard.getNation("'US'™"));

33. }

34. }

311

Flyweight

This example uses the Flyweight pattern to share common State objects within the PIM. The State pattern
example used state objects to edit and store information for a set of Appointments. In this example, the States
will be used to manage edits and save for multiple collections of objects.

The state interface provides standard behavior for al application states. It defines two basic methods, edit and
save.

Example A.171 state.java
package flyweight.example;

import java.io.File;
import java.io.lOException;
import java.io.Serializable;

public interface State {
public void save(File f, Serializable s) throws I0Exception;
public void edit();

POO~NOUD_WNPE

0. }

State is implemented by two classes— CleanState and DirtyState. This example uses these classes to track the
state of multiple objects, so the classes have additional support to track which items need to be refreshed.

Example A.172 CleanState. java

1. import java.io.File;

2. import java.io.FileOutputStream;

3. import java.io.lOException;

4. import java.io.ObjectOutputStream;

5. import java.io.Serializable;

6.

7. public class CleanState implements State{

8. public void save(File file, Serializable s, int type) throws 10Exception{ }
9.

10. public void edit(int type){

11. StateFactory.setCurrentState(StateFactory.DIRTY);

12. ((DirtyState)StateFactory.DIRTY) . incrementStateValue(type);
13. }

14. }

Example A.173 DirtyState.java

1. package flyweight.example;

2.

3. import java.io.File;

4. import java.io.FileOutputStream;

5. import java.io.lOException;

6. import java.io.ObjectOutputStream;

7. import java.io.Serializable;

8.

9. public class DirtyState implements State {

10. public void save(File file, Serializable s) throws I0Exception {
11. //serialize s to F

12. FileOutputStream fos = new FileOutputStream(Ffile);
13. ObjectOutputStream out = new ObjectOutputStream(fos);
14. out.writeObject(s);

15. }

16.

17. public void edit() {

18. //ignored

19. }

20. }

Since these two classes are used to track the overall state of the application, they are managed by a StateFactory
classthat creates both objects and provides them on demand.

Example A.174 stateFactory.java

public class StateFactory {
public static final State CLEAN = new CleanState();
public static final State DIRTY = new DirtyState();
private static State currentState = CLEAN;

A WNPEP

312

© 00 ~NO O

10.
11.
12.
13.

The example tracks collections of items which are held within the class ManagedList. This class makesit
possible to ensure that only classes of a certain type are allowed to be stored in a specific ManagedList.

}

public static State getCurrentState(){
return currentState;
}

public static void setCurrentState(State state){
currentState = state;
}

Example A.175 ManagedList. java

import java.util_ArraylList;
public class ManagedList{

O©CoO~NOOITAWNPE

The Address and Contact classes (interface and implementations) provide support for the business objects used

}

private ArrayList elements = new ArrayList();
private Class classType;

public ManagedList(){ }

public ManagedList(Class newClassType){
classType = newClassType;

}

public void setClassType(Class newClassType){
classType = newClassType;
}

public void addltem(Object item){
if ((item = null) && (classType.islnstance(item))){
elements.add(item);
} else {
elements._add(item);
}

}

public void removeltem(Object item){
elements.remove(item);
}

public ArrayList getltems(Q{
return elements;
}

in this pattern.

Example A.176 Address.java
import java.io.Serializable;

©CO~NOOOITAWNPE

public interface Address extends Serializable{
public static final String EOL_STRING = System.getProperty(*'line.separator');

public static final String SPACE = " '
public static final String COMMA = ',
public String getType();

public String getDescription();

public String getStreet();

public String getCity();

public String getState();

public String getZipCode();

public void setType(String newType);

public void setDescription(String newDescription);
public void setStreet(String newStreet);

public void setCity(String newCity);

public void setState(String newState);

public void setZipCode(String newZip);

Example A.177 Addressimpl.java

1.
2.
3.

public class Addressimpl implements Address{

private String type;
private String description;

313

4. private String street;

5. private String city;

6. private String state;

7. private String zipCode;

8. public static final String HOME = "home";

9. public static final String WORK = "work";

10.

11. public Addressimpl(Q{ }

12. public Addressimpl(String newDescription, String newStreet,
13. String newCity, String newState, String newZipCode){
14. description = newDescription;

15. street = newStreet;

16. city = newCity;

17. state = newState;

18. zipCode = newZipCode;

19. }

20.

21. public String getType(){ return type; }

22. public String getDescription(){ return description; }

23. public String getStreet(){ return street; }

24. public String getCity(){ return city; }

25. public String getState(){ return state; }

26. public String getZipCode(){ return zipCode; }

27.

28. public void setType(String newType){ type = newType; }

29. public void setDescription(String newDescription){ description = newDescription; }
30. public void setStreet(String newStreet){ street = newStreet; }
31. public void setCity(String newCity){ city = newCity; }

32. public void setState(String newState){ state = newState; }
33. public void setZipCode(String newZip){ zipCode = newZip; }
34.

35. public String toString(Q{

36. return street + EOL_STRING + city + COMMA + SPACE +

37. state + SPACE + zipCode + EOL_STRING;

38. }

39. }

Example A.178 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " "';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);

10. public void setLastName(String newLastName);

11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);

13. }

Example A.179 Contactimpl .java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactlmpl(String newFirstName, String newLastName,
9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newlLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(QQ{ return title; }

19. public String getOrganization(){ return organization; }
20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }
24. public void setOrganization(String newOrganization){ organization = newOrganization; }

314

25.

26. public String toString(Q{

27. return firstName + SPACE + lastName;
28. }

29. }

RunPattern provides away to test the Flyweight. It creates ManagedList objects for addresses and contacts, then
uses common State objects to manage saving the objects to two different files.

Example A.180 RunPattern.java

1. public class RunPattern{

2. public static void main(String [] arguments) throws java.io.lOException{

3. System.out.printIn("'Example for the Flyweight pattern'™);

4. System.out.printin(Q);

5. System.out.printIn("'In this sample, State objects are shared between multiple™);

6. System.out.printIn(" parts of the PIM. Two lists, representing a Contact list");

7. System.out.printIn(* and an Address Book, are used for the demonstration.');

8. System.out.printIn(’" The State objects - CleanState and DirtyState - represent');

9. System.out.printIn("" the Flyweight objects in this example.™);

10. System.out.printin(Q;

11.

12. System.out._printIn(’’'Creating ManagedList objects to hold Contacts and Addresses™);

13. ManagedList contactList = new ManagedList(Contact.class);

14. ManagedList addressList = new ManagedList(Address.class);

15. System.out.printin(Q;

16.

17. System.out._printIn("'Printing the State for the application™);

18. printPIMState();

19. System.out.printin(Q;

20.

21. System.out.printIn("'Editing the Address and Contact lists");

22. StateFactory.getCurrentState() -edit(State.CONTACTS);

23. StateFactory.getCurrentState() -edit(State.ADDRESSES) ;

24. contactList.addltem(new Contactimpl (", "I, "t", "0'"));

25. addressList.addltem(new Addressimpl(*d", "s", "c", "st', "z'));

26. System.out.printIn("'Printing the State for the application™);

27. printPIMState();

28. System._out._printin(Q);

29.

30. System.out.printIn('Saving the Contact list');

31. StateFactory.getCurrentState() .save(new java.io.File(''contacts.ser™),
contactList._getltems(), State.CONTACTS);

32. System.out._printIn("'Printing the State for the application™);

33. printPIMState();

34. System.out.printin(Q;

35.

36. System.out.printIn('Saving the Address list');

37. StateFactory.getCurrentState() .save(new java.io.File("'addresses.ser'),
addressList.getltems(), State.ADDRESSES);

38. System.out.printIn("'Printing the State for the application™);

39. printPIMState();

40. }

41.

42. private static void printPIMState(){

43. System.out.printIn(’" Current State of the PIM: " + StateFactory.
getCurrentState() .getClass());

44 . System.out.printIn(’" Object ID: " + StateFactory.getCurrentState(). hashCode());

45. System._out._printin();

46. ¥

47. %}

315

Half-Object Plus Protocol (HOPP)

A Personal Information Manager should be available everywhere, but its data should only be stored in one place.
This example uses RMI and the HOPP pattern to hold a personal calendar on a server, while making its
information available to remote callers.

The calendar interface defines all methods that will be available remotely. Thisinterface extends
java.rmi.Remote and all its methods throw java.rmi .RemoteException. In this case, Calendar definesthree
methods: getHost, getAppointments, and addAppointment.

Example A.181 calendar.java

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util_Date;
import java.util_ArraylList;
public interface Calendar extends Remote{
public String getHost() throws RemoteException;
public ArrayList getAppointments(Date date) throws RemoteException;
public void addAppointment(Appointment appointment, Date date) throws RemoteException;

OCO~NOUITAWNER

}

Calendar isimplemented by two classes—the RMI remote object and its stub, or proxy. (See* Proxy ” on page
492.) The remote object class, CalendarImpl, provides method implementations, while the stub manages
communication to the remote object. The Java RMI compiler (rmic) needsto be run on the Calendar impl to
generate a stub and a skeleton class. The skeleton classis provided for backward compatibility, but, as of Java 1.2,
isno longer necessary.

Example A.182 calendarimpl.java

1. import java.rmi.Naming;

2. import java.rmi.server.UnicastRemoteObject;

3. import java.io.File;

4. import java.util_Date;

5. import java.util_ArraylList;

6. import java.util._HashMap;

7. public class CalendarImpl implements Calendar{

8. private static final String REMOTE_SERVICE = "calendarimpl™;

9. private static final String DEFAULT_FILE_NAME = "calendar.ser";
10. private HashMap appointmentCalendar = new HashMap(Q);

11.

12. public CalendarimplQ{

13. this(DEFAULT_FILE_NAME);

14. }

15. public CalendarImpl(String filename){

16. File inputFile = new File(Filename);

17. appointmentCalendar = (HashMap)FilelLoader.loadData(inputFile);
18. if (appointmentCalendar == null){

19. appointmentCalendar = new HashMap(Q);

20.

21. try {

22. UnicastRemoteObject.exportObject(this);

23. Naming.rebind(REMOTE_SERVICE, this);

24 . }

25. catch (Exception exc){

26. System.err.printIn("Error using RMI to register the CalendarImpl " + exc);
27. }

28. }

29.

30. public String getHost(){ return ""'; }

31. public ArrayList getAppointments(Date date){

32. ArrayList returnValue = null;

33. Long appointmentKey = new Long(date.getTime());

34. if (appointmentCalendar.containsKey(appointmentKey)){

35. returnValue = (ArrayList)appointmentCalendar.get(appointmentKey);
36. }

37. return returnValue;

38. }

39.

40. public void addAppointment(Appointment appointment, Date date){
41. Long appointmentKey = new Long(date.getTime());

42. it (appointmentCalendar.containsKey(appointmentKey)){

43. ArrayList appointments = (ArrayList)appointmentCalendar.get(appointmentKey);

316

44 . appointments.add(appointment);

45. }

46. else {

47. ArrayList appointments = new ArrayList();

48. appointments.add(appointment);

49. appointmentCalendar.put(appointmentKey, appointments);
50. }

51. }

52. }

The calendarImpl object must use the RMI support class UnicastRemoteObject S0 that it can handle incoming
communication requests. In this case, the CalendarImpl constructor exports itself using the static method
UnicastRemoteObject.exportObject.

CalendarImpl aso needs to have some way of publishing itself to the outside world. In RM1, the naming service
iscalled the rmiregistry. It must be running before the CalendarImpl object iscreated. The rmiregistry is
like a telephone book, providing a connection between a name and an object. When the CalendarImpl object
registersitself with the rmiregistry through the rebind method it binds the name "calendarimpl” to the stub of
this remote object.

For aclient to use the remote object it hasto do alookup in the rmiregistry of the host machine and receive the
stub to the remote object. Y ou can compare the stub to atelephone number. Y ou can use that number from
anywhere, on any phone, and you get connected to someone answering the number you're calling. In this example,
the CalendarHOPP class acts as the client for the CalendarImpl object.

Example A.183 calendarHoPP. java

1. import java.rmi.Naming;

2. import java.rmi.RemoteException;

3. import java.util_Date;

4. import java.util_ArraylList;

5. public class CalendarHOPP implements Calendar, java.io.Serializable{

6. private static final String PROTOCOL = "rmi://";

7. private static final String REMOTE_SERVICE = "/calendarimpl™;

8. private static final String HOPP_SERVICE = "calendar';

9. private static final String DEFAULT _HOST = "localhost";

10. private Calendar calendar;

11. private String host;

12.

13. public CalendarHOPP(){

14. this(DEFAULT_HOST);

15. }

16. public CalendarHOPP(String host){

17. try {

18. this.host = host;

19. String url = PROTOCOL + host + REMOTE_SERVICE;

20. calendar = (Calendar)Naming. lookup(url);

21. Naming.rebind(HOPP_SERVICE, this);

22. }

23. catch (Exception exc){

24. System.err.printIn("'Error using RMI to look up the CalendarlImpl or register the
CalendarHOPP " + exc);

25. }

26. }

27.

28. public String getHost(){ return host; }

29. public ArrayList getAppointments(Date date) throws RemoteException{ return
calendar.getAppointments(date); }

30.

31. public void addAppointment(Appointment appointment, Date date) throws RemoteException
{ calendar.addAppointment(appointment, date); }

32. }

The calendarHoOPP provides a key benefit over aconventional RMI client — it can locally run what would
normally be remote methods. This can provide a substantial benefit in terms of communication overhead. The
HOPP implements the same remote interface, but it will not export itself. It keeps areference to the stub and
forwards all the method calls to the stub that it does not (or cannot) handle. Now it can implement the methods
that it wants to execute locally—in this example, the getHost method. The HOPP can be registered with the
rmiregistry likeanormal stub, but it now has the ability to execute methods locally.

Support classes for this example provide the ability to create Appointment objectsto be stored by Calendarimpl.

317

Example A.184 Appointment. java

1. import java.io.Serializable;

2. import java.util.Date;

3. import java.util_ArraylList;

4. public class Appointment implements Serializable{

5. private String description;

6. private ArraylList contacts;

7. private Location location;

8. private Date startDate;

9. private Date endDate;

10.

11. public Appointment(String description, ArrayList contacts, Location location, Date
startDate, Date endDate){

12. this.description = description;

13. this.contacts = contacts;

14. this.location = location;

15. this.startDate = startDate;

16. this.endDate = endDate;

17. }

18.

19. public String getDescription(){ return description; }

20. public ArrayList getContacts(){ return contacts; }

21. public Location getLocation(){ return location; }

22. public Date getStartDate(){ return startDate; }

23. public Date getEndDate(){ return endDate; }

24

25. public void setDescription(String description){ this.description = description; }

26. public void setContacts(ArrayList contacts){ this.contacts = contacts; }

27. public void setLocation(Location location){ this.location = location; }

28. public void setStartDate(Date startDate){ this.startDate = startDate; }

29. public void setEndDate(Date endDate){ this.endDate = endDate; }

30.

31. public String toString(Q{

32. return "Appointment:" + "\n Description: " + description +

33. "\n Location: " + location + '"\n Start: ' +

34. startDate + '"\n End: ' + endDate + '"\n";

35. }

36. }

Example A.185 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " ";

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.186 Contactimpl .java

1. public class Contactimpl implements Contact{

2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactlmpl(String newFirstName, String newLastName,
9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newlLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(QQ{ return title; }

19. public String getOrganization(){ return organization; }
20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }

318

22. public void setLastName(String newLastName){ lastName = newLastName; }

23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(Q{

27. return firstName + SPACE + lastName;

28. ¥

29. }

Example A.187 Location.java

1. import java.io.Serializable;

2. public interface Location extends Serializable{

3. public String getLocation();

4. public void setLocation(String newLocation);

5. }

Example A.188 LocationImpl.java

1. public class LocationIlmpl implements Location{

2. private String location;

3.

4. public LocationimplOQ{ }

5. public LocationImpl(String newLocation){

6. location = newLocation;

7. }

8.

9. public String getLocation(){ return location; }
10.

11. public void setLocation(String newlLocation){ location = newLocation; }
12.

13. public String toString(){ return location; }
14. }

FileLoader class provides methods to load the Appointment collection from afile and saveit to afile when
required.

Example A.189 FileLoader.java

1. import java.io.File;

2. import java.io.FilelnputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. import java.io.ObjectlnputStream;

6. import java.io.ObjectOutputStream;

7. import java.io.Serializable;

8. public class FilelLoader{

9. public static Object loadData(File inputFile){

10. Object returnvalue = null;

11. try{

12. if (inputFile._exists()){

13. if (inputFile.isFile()){

14. ObjectlnputStream readln = new ObjectlnputStream(new
FilelnputStream(inputFile));

15. returnValue = readln.readObject();

16. readln._close();

17. }

18. else {

19. System.err.printIn(inputFile + " is a directory.");

20. }

21. }

22. else {

23. System.err.printIn(""File " + inputFile + " does not exist.");

24 }

25.

26. catch (ClassNotFoundException exc){

27. exc.printStackTrace();

28.

29.

30. catch (10Exception exc){

31. exc.printStackTrace();

32.

33. }

34. return returnValue;

35. }

36. public static void storeData(File outputFile, Serializable data){

37. try{

319

38. ObjectOutputStream writeOut = new ObjectOutputStream(new
FileOutputStream(outputFile));

39. writeOut.writeObject(data);
40. writeOut.close();

41.

42. catch (10Exception exc){

43. exc.printStackTrace();

44 . }

45. }

46. }

The RunPattern class demonstrates this pattern by creating CalendarHoPP and Calendar Impl objects. It uses
the calendarHoPP to perform alocal call (getHost), then as away to access the remote resources—the stored
collection of appointments managed by the CalendarImpl object.

Example A.190 RunPattern.java

1. import java.util.Calendar;

2. import java.util_Date;

3. import java.util_ArraylList;

4. import java.io.lOException;

5. import java.rmi.RemoteException;

6. public class RunPattern{

7. private static Calendar dateCreator = Calendar.getlnstance();

8. public static void main(String [] arguments) throws RemoteException{

9. System.out.printIn("'Example for the HOPP pattern'™);

10. System.out.printin(Q;

11. System.out.printIn("'This example will use RMI to demonstrate the HOPP pattern.');

12. System.out._printIn(’" In the sample, there will be two objects created,
Calendarimpl');

13. System.out.printIn(’' and CalendarHOPP. The CalendarImpl object provides the true'™);

14. System.out.printIn(’ server-side implementation, while the CalendarHOPP would be'™);

15. System.out.printIn(’" a client or middle-tier representative. The CalendarHOPP
will™);

16. System.out._printIn(’" provide some functionality, in this case supplying the
hostname') ;

17. System.out.printIn(’" in response to the getHost method.™);

18. System.out.printin(Q;

19. System.out._printIn("’'Note: This example runs the rmiregistry, CalendarHOPP and
Calendarimpl');

20. System.out._printIn(’" on the same machine.');

21. System.out.printin(Q;

22.

23. try{

24. Process pl = Runtime.getRuntime().exec('rmic Calendarimpl™);

25. Process p2 = Runtime.getRuntime().exec('rmic CalendarHOPP™);

26. pl.waitFor(Q);

27. p2.waitFor();

28.

29. catch (10Exception exc){

30. System.err._printIn(*"Unable to run rmic utility. Exiting application.");

31. System.exit(l);

32.

33. catch (InterruptedException exc){

34. System.err._printIn(""Threading problems encountered while using the rmic

utility.");

35. ¥

36.

37. System.out._printIn('Starting the rmiregistry');

38. System._out._printin();

39. Process rmiProcess = null;

40. try{

41. rmiProcess = Runtime.getRuntime().exec("'rmiregistry');

42. Thread.sleep(15000);

43. }

44 . catch (10Exception exc){

45. System.err.printIn(""Unable to start the rmiregistry. Exiting application.');

46. System.exit(l);

47. }

48. catch (InterruptedException exc){

49. System.err._printIn(""Threading problems encountered when starting the

rmiregistry.");

50. ¥

51.

52. System.out.printIn("'Creating the CalendarlImpl object, which provides the

server-side implementation.');

320

53.

54.

55.
56.
57.
58.

59.
60.
61.
62.

63.
64 .
65.
66.

67.
68.

69.
70.
71.
72.

73.
74.
75.
76.
77 .
78.
79.
80.
81.

82.
83.
84.
85.
86.
87.
88.
89.
90.

System.out.printIn(’*(Note: If the CalendarImpl object does not have a file containing
Appointments,'™);

System.out.printIn(’" this call will produce an error message. This will not affect
the example.)™);

CalendarlImpl remoteObject = new Calendarimpl();

System.out.printin(Q;

System.out._.printIn(''Creating the CalendarHOPP object, which provides client-side
functionality.™);

CalendarHOPP localObject = new CalendarHOPP();

System.out.printin(Q;

System.out.printIn('Getting the hostname. The CalendarHOPP will handle this method
locally.");

System.out.printIn('’'Hostname is " + localObject.getHost());

System.out.printin(Q;

System.out.printIn("'Creating and adding appointments. The CalendarHOPP will
forward™);
System.out.printIn(’" these calls to the Calendarimpl object.™);
Contact attendee = new Contactimpl("Jenny”, "Yip", "Chief Java Expert', "MuchoJava
LTD™);
ArrayList contacts = new ArrayList();
contacts.add(attendee);
Location place = new Locationlmpl("Albuquerque, NM'");
localObject.addAppointment(new Appointment("'Opening speeches at annual Java Guru®s
dinner",
contacts, place, createDate(2001, 4, 1, 16, 0),
createDate(2001, 4, 1, 18, 0)), createDate(2001, 4, 1, 0, 0));
localObject.addAppointment(new Appointment(''Java Guru post-dinner Cafe time",
contacts, place, createDate(2001, 4, 1, 19, 30),
createDate(2001, 4, 1, 21, 45)), createDate(2001, 4, 1, 0, 0));
System._out._printIn("'Appointments added.');
System._out._printin(Q);

System.out.printIn(''Getting the Appointments for a date. The CalendarHOPP will
forward™);
System.out._printIn(’" this call to the Calendarimpl object.');
System.out.printin(localObject.getAppointments(createDate(2001, 4, 1, 0, 0)));
} . \

public static Date createDate(int year;
dateCreator.set(year, month, AN
return dateCreator.getTime();

m h, int day, int hour, int minute){
, minute);

o!

}
}

321

Proxy

An address book grows tremendously over a period of time, sinceit stores all professional and social contacts. In
addition, users don't need the address book every time they use the PIM. They do need some kind of address book
placeholder to act as a starting point for them to use for graphical purposes, however. This example uses the
Proxy pattern to represent the address book.

AddressBook defines the interface for accessing the PIM address book. At the very least, it needs to have the
ability to add new contacts and to retrieve and store addresses.

Example A.191 AddressBook. java

1. import java.io.lOException;

2. import java.util_ArraylList;

3. public interface AddressBook {

4. public void add(Address address);

5. public ArrayList getAllAddresses();

6. public Address getAddress(String description);
7.

8. public void open();

9. public void save();

10. }

Retrieving the data for the address book might be very time-consuming, given the incredible popularity of the
users. Therefore, the proxy should delay creation of the real address book for as long as possible. The proxy,
represented by AddressBookProxy, has the responsibility for creating the address book— but only when
absolutely necessary.

Example A.192 AddressBookProxy.java

1. import java.io.File;

2. import java.io.lOException;

3. import java.util_ArraylList;

4. import java.util.lterator;

5. public class AddressBookProxy implements AddressBook{

6. private File file;

7. private AddressBooklmpl addressBook;

8. private ArraylList localAddresses = new ArrayList();

9.

10. public AddressBookProxy(String filename){

11. file = new File(filename);

12. }

13.

14. public void open(){

15. addressBook = new AddressBooklImpl(file);

16. Iterator addresslterator = localAddresses.iterator();
17. while (addresslterator.hasNext()){

18. addressBook.add((Address)addresslterator.next());
19. }

20. }

21.

22. public void save(){

23. if (addressBook != null){

24. addressBook.save();

25. } else if (MlocalAddresses. iseEmpty()){

26. open();

27. addressBook.save();

28. }

29. }

30.

31. public ArrayList getAllAddresses(){

32. if (addressBook == null) {

33. open();

34.

35. return addressBook.getAllAddresses();

36. }

37.

38. public Address getAddress(String description){

39. if (MlocalAddresses.isEmpty()){

40. Iterator addresslterator = localAddresses.iterator();
41. while (addresslterator.hasNext()){

42. AddresslImpl address = (Addresslimpl)addresslterator.next();
43. if (address.getDescription().equalslgnoreCase(description)){
44 . return address;

322

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

Note that the AddressBookProxy hasits own ArrayList for addresses. If the user adds an address by calling the

}

}
}

}
if (addressBook == null){
open();

return addressBook.getAddress(description);

}

public void add(Address address){
if (addressBook = null){
addressBook.add(address);
} else if (MlocalAddresses.contains(address)){
localAddresses.add(address);
}

}

add method, the proxy can use its internal address book without using the real address book.

The AddressBookImpl class represents the real address book for a user. It is associated with afile that stores an
ArrayList with all the user's addresses. AddressBookProxy would create an AddressBookImpl object only

when it is needed—when a user called the method getAl 1Addresses, for example.

Example A.193 AddressBooklImpl . java

import java.io.File;

import java.io.lOException;

import java.util_ArraylList;

import java.util.lterator;

public class AddressBooklmpl implements AddressBook {

O©CoO~NOOOUTA~AWNPE

AddressBookImpl delegates the task of loading and saving filesto a worker class called FileLoader. This class

}

private File file;
private ArraylList addresses = new ArrayList();

public AddressBookImpl(File newFile) {
file = newFile;
open();

public ArrayList getAllAddresses(){ return addresses; }

public Address getAddress(String description){
Iterator addresslterator = addresses.iterator();
while (addresslterator.hasNext()){
Addressimpl address = (AddresslImpl)addresslterator.next();
if (address.getDescription().equalslgnoreCase(description)){
return address;
}

return null;

}

public void add(Address address) {
if (Jaddresses.contains(address)){
addresses.add(address) ;
}

}

public void open(){
addresses = (ArrayList)FilelLoader.loadData(file);
}

public void save(){
FileLoader.storeData(file, addresses);
s

has methods to read and write Serializable objectsto afile.

Example A.194 FileLoader.java

import java.io.File;
import java.io.FilelnputStream;
import java.io.FileOutputStream;

1.
2.
3.

323

4. import java.io.lOException;

5. import java.io.ObjectlnputStream;

6. import java.io.ObjectOutputStream;

7. import java.io.Serializable;

8. public class FileLoader{

9. public static Object loadData(File inputFile){

10. Object returnvalue = null;

11. try{

12. if (inputFile._exists()){

13. if (inputFile.isFile()){

14. ObjectlnputStream readln = new ObjectlnputStream(new

FilelnputStream(inputFile));

15. returnValue = readln.readObject();

16. readln._close();

17. Yelse{

18. System.err.printIn(inputFile + " is a directory."™);

19. }

20. }else{

21. System.err._printIn("'File "™ + inputFile + ' does not exist.');

22.

23. }catch (ClassNotFoundException exc){

24. exc.printStackTrace();

25. }catch (10Exception exc){

26. exc.printStackTrace();

27. }

28. return returnValue;

29. }

30. public static void storeData(File outputFile, Serializable data){

31. try{

32. ObjectOutputStream writeOut = new ObjectOutputStream(new
FileOutputStream(outputFile));

33. writeOut.writeObject(data);

34. writeOut.close();

35. }catch (10Exception exc){

36. exc.printStackTrace();

37. }

38. }

39. }

The interface Address and its implementer AddressImpl provide storage for address objectsin this example.

Example A.195 Address. java

1. import java.io.Serializable;

2. public interface Address extends Serializable{

3. public static final String EOL_STRING = System.getProperty(*'line._separator');
4. public static final String SPACE = " '';

5. public static final String COMMA = ",";

6. public String getAddress();

7. public String getType();

8. public String getDescription();

9. public String getStreet();

10. public String getCity();

11. public String getState();

12. public String getZipCode();

13.

14. public void setType(String newType);

15. public void setDescription(String newDescription);
16. public void setStreet(String newStreet);

17. public void setCity(String newCity);

18. public void setState(String newState);

19. public void setZipCode(String newZip);

20. }

Example A.196 Addressimpl .java

1. public class Addressimpl implements Address{
2. private String type;

3. private String description;

4. private String street;

5. private String city;

6. private String state;

7. private String zipCode;

8. public static final String HOME = "‘home";
9. public static final String WORK = "work";
10.

11. public Addressimpl(OQ{ }

12. public Addressimpl(String newDescription, String newStreet,

324

13. String newCity, String newState, String newZipCode){

14. description = newDescription;

15. street = newStreet;

16. city = newCity;

17. state = newState;

18. zipCode = newZipCode;

19. }

20.

21. public String getType(){ return type; }

22. public String getDescription(){ return description; }

23. public String getStreet(){ return street; }

24. public String getCity(){ return city; }

25. public String getState(){ return state; }

26. public String getZipCode(){ return zipCode; }

27.

28. public void setType(String newType){ type = newType; }

29. public void setDescription(String newDescription){ description = newDescription; }
30. public void setStreet(String newStreet){ street = newStreet; }
31. public void setCity(String newCity){ city = newCity; }

32. public void setState(String newState){ state = newState; }

33. public void setZipCode(String newZip){ zipCode = newZip; }

34.

35. public String toString(Q){

36. return description;

37. }

38. public String getAddress(){

39. return description + EOL_STRING + street + EOL_STRING +

40. city + COMMA + SPACE + state + SPACE + zipCode + EOL_STRING;
41. }

42. %}

The DataCreator class creates atest file with a set of sample addresses.

Example A.197 DataCreator. java

1. import java.io.Serializable;

2. import java.io.ObjectOutputStream;

3. import java.io.FileOutputStream;

4. import java.io.lOException;

5. import java.util_ArraylList;

6. public class DataCreator{

7. private static final String DEFAULT FILE = "data.ser";

8.

9. public static void main(String [] args){

10. String fileName;

11. if (args.-length == 1){

12. fileName = args[0];

13. Yelse{

14. fileName = DEFAULT_FILE;

15.

16. serialize(fileName);

17. ¥

18.

19. public static void serialize(String FileName){

20. try{

21. serializeToFile(createData(), FileName);

22. } catch (10Exception exc){

23. exc.printStackTrace();

24. }

25. }

26.

27. private static Serializable createData(){

28. ArrayList items = new ArrayList();

29. items.add(new Addressimpl ("'Home address', '"1418 Appian Way', "Pleasantville™, ""NH",
"'27415™));

30. items.add(new Addressimpl('Resort'™, "711 Casino Ave.", "Atlantic City", "NJ",
''91720));

31. items.add(new Addressimpl(*'Vacation spot", "90 Ka"ahanau Cir.", "Haleiwa"™, "HI",
""41720™));

32. return items;

33. }

34.

35. private static void serializeToFile(Serializable data, String fileName) throws
I0Exception {

36. ObjectOutputStream serOut = new ObjectOutputStream(new
FileOutputStream(fileName));

37. serOut.writeObject(data);

38. serOut.close();

325

39.
40.

RunPattern demonstrates how the proxy could work in practice. First, it creates an AddressBookProxy and adds
several new Address objects to the Proxy. These new addresses will initially be stored locally. It is only when the
example calls the method getAl 1Addresses that the Proxy will create an AddressBookImpl object and retrieve

addresses stored in thefile.

Example A.198 RunPattern.java

1. import java.io.File;

2. import java.io.lOException;

3. import java.util.ArraylList;

4. public class RunPattern{

5. public static void main(String [] arguments){

6. System.out._printIn(""Example for the Proxy pattern™);

7. System.out.printin(Q);

8. System.out._printIn(""'This code will demonstrate the use of a Proxy to');

9. System.out.printIn(’ provide functionality in place of its underlying™);

10. System.out._printIn(’" class.");

11. System.out.printin();

12.

13. System.out._printIn(’" Initially, an AddressBookProxy object will provide™);

14. System.out.printIn(’ address book support without requiring that the');

15. System.out._printIn(’" AddressBooklmpl be created. This could potentially™);

16. System.out.printIn(’ make the application run much faster, since the');

17. System.out._printIn(’* AddressBooklImpl would need to read in all addresses');

18. System.out.printIn(’" from a file when it is first created.');

19. System.out._printin();

20.

21. if (1(new File("data.ser™).exists())){

22. DataCreator.serialize(''data.ser");

23. }

24 . System.out.printIn("'Creating the AddressBookProxy™);

25. AddressBookProxy proxy = new AddressBookProxy(‘''data.ser™);

26. System.out.printIn(Adding entries to the AddressBookProxy');

27. System.out._printIn("*(this operation can be done by the Proxy, without');

28. System.out.printIn(’ creating an AddressBookImpl object)');

29. proxy.add(new Addressimpl(**'Sun Education [CO]", "500 El Dorado Blvd.", "Broomfield", ™
''80020™));

30. proxy.add(new Addressimpl(*"Apple Inc.", "1 Infinite Loop"™, "Redwood City", "CA'™, "93741"));

31. System.out.printIn(""Addresses created. Retrieving an address');

32. System.out._printIn(’*(since the address is stored by the Proxy, there is");

33. System.out.printIn(’ still no need to create an AddressBooklmpl object)");

34. System.out._printin();

35. System.out.println(proxy.getAddress(*'Sun Education [CO]").getAddress());

36. System.out._printin();

37.

38. System.out.printIn(*'So far, all operations have been handled by the Proxy,');

39. System.out._printIn(’* without any involvement from the AddressBooklImpl.'");

40. System.out.printIn(’* Now, a call to the method getAllAddresses will");

41. System.out._printIn(’* force instantiation of AddressBooklImpl, and will');

42. System.out.printIn(’ retrieve ALL addresses that are stored.');

43. System.out._printin();

44.

45. ArrayList addresses = proxy.getAllAddresses();

46. System.out.printIn("Addresses retrieved. Addresses currently stored:');

47. System.out.println(addresses);

48. ¥

49. }

326

System Pattern Code Examples
Model-View-Controller (MVC)
This code example provides a component-level MV C pattern to manage a contact in the Personal Information

Manager. The ContactModel class provides the model for this demonstration, in this case storing the contact's
first name, last name, title and organization.

Example A.199 contactModel . java

1. import java.util_ArraylList;

2. import java.util.lterator;

3. public class ContactModel{

4. private String FirstName;

5. private String lastName;

6. private String title;

7. private String organization;

8. private ArraylList contactViews = new ArrayList();
9.

10. public ContactModel O{

11. this(null);

12.

13. public ContactModel (ContactView view){

14. firstName = ""';

15. lastName = ""';

16. title = ""';

17. organization = "'";

18. if (view = null){

19. contactViews.add(view);

20. }

21. }

22.

23. public void addContactView(ContactView view){

24. if (JcontactViews.contains(view)){

25. contactViews.add(view);

26. }

27. }

28.

29. public void removeContactView(ContactView view){
30. contactViews.remove(view);

31. }

32.

33. public String getFirstName(){ return firstName; }
34. public String getLastName(){ return lastName; }
35. public String getTitle(QQ{ return title; }

36. public String getOrganization(){ return organization; }
37.

38. public void setFirstName(String newFirstName){ firstName = newFirstName; }
39. public void setLastName(String newLastName){ lastName = newLastName; }
40. public void setTitle(String newTitle){ title = newTitle; }
41. public void setOrganization(String newOrganization){ organization = newOrganization; }
42.

43. public void updateModel (String newFirstName, String newlLastName,
44 . String newTitle, String newOrganization){

45. if (MisEmptyString(newFirstName)){

46. setFirstName(newFirstName);

47 . }

48. if (lisEmptyString(newLastName)){

49. setLastName(hewLastName);

50. }

51. if (lisEmptyString(newTitle)){

52. setTitle(newTitle);

53. }

54. if (MisEmptyString(newOrganization)){

55. setOrganization(newOrganization);

56. }

57. updateView();

58. }

59.

60. private boolean isEmptyString(String input){

61. return ((input == null) || input.equals("));
62. }

63.

64. private void updateView(){

65. Iterator notifyViews = contactViews. iterator();

327

66. while (notifyViews.hasNext()){

67. ((ContactView)notifyViews.next()) .refreshContactView(FirstName, lastName, title,
organization);

68. }

69. }

70. }

The ContactModel maintains an ArrayList of ContactView objects, updating them whenever the model data
changes. The standard behavior for all views is defined by the Contactview interface method

refreshContactView.

Example A.200 ContactView.java

1. public interface ContactView{

2. public void refreshContactView(String firstName,

3. String lastName, String title, String organization);
4. ¥

Two views are used in this example. The first, ContactDisplayView, displays the updated model information but
does not support a controller, an example of “view-only” behavior.

Example A.201 contactDisplayView. java

1. import javax.swing.JPanel;

2. import javax.swing.JScrollPane;

3. import javax.swing.JTextArea;

4. import java.awt.BorderLayout;

5. public class ContactDisplayView extends JPanel implements ContactView{
6. private JTextArea display;

7.

8. public ContactDisplayView(){

9. createGui();

10. }

11.

12. public void createGui(){

13. setLayout(new BorderLayout());

14. display = new JTextArea(10, 40);

15. display.setEditable(false);

16. JScrollPane scrollDisplay = new JScrollPane(display);
17. this.add(scrollDisplay, BorderLayout.CENTER);

18. }

19.

20. public void refreshContactView(String newFirstName,

21. String newLastName, String newTitle, String newOrganization){
22. display.setText(""UPDATED CONTACT:\nNEW VALUES:\n" +
23. "\tName: " + newFirstName + " " + newlLastName +
24 "\n" + "\tTitle: " + newTitle + "\n" +

25. '"\tOrganization: " + newOrganization);

26. }

27. }

The second view is ContactEditView, which allows a user to update the contact defined by the model.

Example A.202 ContactEditView. java

1. import javax.swing.BoxLayout;

2. import javax.swing.JButton;

3. import javax.swing.JlLabel;

4. import javax.swing.JTextField;

5. import javax.swing.JPanel;

6. import java.awt.GridlLayout;

7. import java.awt.BorderlLayout;

8. import java.awt.event._ActionListener;

9. import java.awt.event.ActionEvent;

10. public class ContactEditView extends JPanel implements ContactView{
11. private static final String UPDATE_BUTTON = "Update';

12. private static final String EXIT_BUTTON = "“Exit";

13. private static final String CONTACT_FIRST_NAME = "First Name ";
14. private static final String CONTACT _LAST NAME = ''Last Name '';
15. private static final String CONTACT TITLE = "Title "';

16. private static final String CONTACT_ORG = "Organization ";
17. private static final int FNAME_COL_WIDTH = 25;

18. private static final int LNAME_COL_WIDTH = 40;

19. private static final int TITLE COL_WIDTH = 25;

20. private static final int ORG_COL _WIDTH = 40;

21. private ContactEditController controller;

328

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77 .
78.
79.
80.
81.

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94 .
95.
96.
97.
98.
99.

private JLabel firstNameLabel, lastNameLabel, titleLabel, organizationLabel;
private JTextField firstName, lastName, title, organization;
private JButton update, exit;

public ContactEditView(ContactModel model){
controller = new ContactEditController(model, this);
createGui();
3
public ContactEditView(ContactModel model, ContactEditController newController){
controller = newController;
createGui();

}

public void createGui(){
update = new JButton(UPDATE_BUTTON);
exit = new JButton(EXIT_BUTTON);

FfirstNameLabel = new JLabel (CONTACT_FIRST_NAME);
lastNamelLabel = new JLabel (CONTACT_LAST_NAME);
titleLabel = new JLabel (CONTACT _TITLE);
organizationLabel = new JLabel (CONTACT_ORG);

FfirstName = new JTextField(FNAME_COL_WIDTH);
lastName = new JTextField(LNAME_COL_WIDTH);
title = new JTextField(TITLE_COL_WIDTH);
organization = new JTextField(ORG_COL_WIDTH);

JPanel editPanel = new JPanel();
editPanel .setlLayout(new BoxLayout(editPanel, BoxLayout.X AXIS));

JPanel labelPanel = new JPanel();
labelPanel .setLayout(new GridLayout(0, 1));

labelPanel .add(firstNameLabel);
labelPanel .add(lastNameLabel) ;
labelPanel .add(titleLabel);
labelPanel .add(organizationLabel);

editPanel _.add(labelPanel);

JPanel fieldPanel = new JPanel();
fieldPanel .setLayout(new GridLayout(0, 1));

FfieldPanel _.add(firstName);
fieldPanel .add(lastName);
fieldPanel .add(title);
fieldPanel .add(organization);

editPanel .add(fieldPanel);

JPanel controlPanel = new JPanel();
controlPanel .add(update);

controlPanel _add(exit);
update.addActionListener(controller);
exit.addActionListener(new ExitHandler());

setLayout(new BorderLayout());
add(editPanel, BorderLayout.CENTER);
add(controlPanel, BorderLayout.SOUTH);

}

public Object getUpdateRef(){ return update; }

public String getFirstName(){ return firstName.getText(); }
public String getLastName(){ return lastName.getText(); }

public String getTitle(Q{ return title.getText(); }

public String getOrganization(){ return organization.getText(); }

public void refreshContactView(String newFirstName,
String newLastName, String newTitle,
String newOrganization){
firstName.setText(newFirstName);
lastName.setText(newLastName);
title.setText(nhewTitle);
organization.setText(newOrganization);

}

private class ExitHandler implements ActionListener{
public void actionPerformed(ActionEvent event){

329

100. System.exit(0);
101. }

102. }

103. }

The updates to the model are possible due to the controller associated with the ContactEditView. Inthisexample,
Java event-handling features (and by extension the Observer pattern) manage communication between the
ContactEditView and its associated Controller. ContactEditControl ler updates the ContactModel when
the update behavior istriggered by the ContactEditView, calling the method updateModel with new data
provided by the editable fields of its associated view.

Example A.203 contactEditController.java

1. import java.awt.event.*;

2.

3. public class ContactEditController implements ActionListener{
4. private ContactModel model;

5. private ContactEditView view;

6.

7. public ContactEditController(ContactModel m, ContactEditView v){
8. model = m;

9. view = v;

10. }

11.

12. public void actionPerformed(ActionEvent evt){
13. Object source = evt.getSource();

14. if (source == view.getUpdateRef()){

15. updateModel () ;

16. ¥

17. ¥

18.

19. private void updateModel (){

20. String firstName = null;

21. String lastName = null;

22. it (isAlphabetic(view.getFirstName())){

23. firstName = view.getFirstName();

24. }

25. if (isAlphabetic(view.getLastName())){

26. lastName = view.getlLastName();

27.

28. model _updateModel (firstName, lastName,

29. view.getTitle(), view.getOrganization());
30. }

31.

32. private boolean isAlphabetic(String input){
33. char [] testChars = {"1°, "2, *3", "4%, *5°, "6", "7", "8", "9", "0"};
34. for (int i = 0; 1 < testChars.length; i++){
35. if (input.indexOf(testChars[i]) = -1){
36. return false;

37. }

38. }

39. return true;

40. }

41. %}

RunPattern runs the demonstration for this pattern, creating the model and Swing GUIs for both of the
associated views. The update information provided by the ContactEditView isreflected in the
ContactDisplayView, demonstrat-ing the fact that a single model can provide information to multiple view
objects.

Example A.204 RunPattern.java

public interface ContactView{
public void refreshContactView(String firstName,
String lastName, String title, String organization);

A WN P

330

Session

In this example, the client requester uses the server to perform a series of operations for updating contact
information in a shared address book. A user can perform four operations:

Add a contact

Add an address (associated with the current contact)
Remove an address (associated with the current contact)
Save the contact and address changes

These operations are defined in the class SessionClient.

Example A.205 SessionClient.java

1. import java.net._MalformedURLException;

2. import java.rmi.Naming;

3. import java.rmi.NotBoundException;

4. import java.rmi.RemoteException;

5. public class SessionClient{

6. private static final String SESSION_SERVER_SERVICE_NAME = "sessionServer';

7. private static final String SESSION_SERVER_MACHINE_NAME = "localhost";

8. private long sessionliD;

9. private SessionServer sessionServer;

10.

11. public SessionClient(){

12. try{

13. String url = "//" + SESSION_SERVER_MACHINE_NAME + "'/' +
SESSION_SERVER_SERVICE_NAME;

14. sessionServer = (SessionServer)Naming. lookup(url);

15. }

16. catch (RemoteException exc){}]

17. catch (NotBoundException exc){} |

18. catch (MalformedURLException exc){} \ AN

19. catch (ClassCastException exc){}

20. }

21.

22. public void addContact(Contact c throws SessionException{

23. try{ |

24. sessionlD = sessionServer-addContact(contact, 0);

26. catch (RemoteException exc){}

27. }

28.

29. public void addAddress(Address address) throws SessionException{

30. try{

31. sessionServer.addAddress(address, sessioniD);

32. }

33. catch (RemoteException exc){}

34. }

35.

36. public void removeAddress(Address address) throws SessionException{

37. try{

38. sessionServer.removeAddress(address, sessionlD);

39. }

40. catch (RemoteException exc){}

41. }

42.

43. public void commitChanges() throws SessionException{

44 . try{

45. sessionlD = sessionServer._finalizeContact(sessionlD);

46.

47. catch (RemoteException exc){}

48. }

49. }

Each client method calls a corresponding method on the remote server. SessionServer defines the four methods
available to the clients through RMI.

Example A.206 SessionServer.java

331

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. public interface SessionServer extends Remote{

4. public long addContact(Contact contact, long sessionlD) throws RemoteException,
SessionException;

5. public long addAddress(Address address, long sessionlD) throws RemoteException,
SessionException;

6. public long removeAddress(Address address, long sessionlD) throws RemoteException,
SessionException;

7. public long finalizeContact(long sessionlD) throws RemoteException, SessionException;

8. }

SessionServerImpl implements the SessionServer interface, providing an RMI server. It delegates business
behavior to the class SessionServerDelegate.

Example A.207 sessionServerimpl.java

1. import java.rmi.Naming;

2. import java.rmi.server._UnicastRemoteObject;

3. public class SessionServerlImpl implements SessionServer{

4. private static final String SESSION_SERVER_SERVICE_NAME = "sessionServer';

5. public SessionServerimpl(){

6. try {

7. UnicastRemoteObject.exportObject(this);

8. Naming.rebind(SESSION_SERVER_SERVICE_NAME, this);

9.

10. catch (Exception exc){

11. System.err.printIn("Error using RMI to register the SessionServerlimpl "™ + exc);
12. }

13. }

14.

15. public long addContact(Contact contact, long sessionlD) throws SessionException{
16. return SessionServerDelegate.addContact(contact, sessionlD);

17. }

18.

19. public long addAddress(Address address, long sessionlD) throws SessionException{
20. return SessionServerDelegate.addAddress(address, sessionlD);

21. }

22.

23. public long removeAddress(Address address, long sessionlD) throws SessionException{
24. return SessionServerDelegate.removeAddress(address, sessionlD);

25. }

26.

27. public long finalizeContact(long sessionlD) throws SessionException{

28. return SessionServerDelegate.finalizeContact(sessionlD);

29. }

30. }

Example A.208 sessionServerDelegate. java

1. import java.util_ArraylList;

2. import java.util._HashMap;

3. public class SessionServerDelegate{

4. private static final long NO_SESSION_ID = O;

5. private static long nextSessionlD = 1;

6. private static ArrayList contacts = new ArrayList();

7. private static ArrayList addresses = new ArrayList();

8. private static HashMap editContacts = new HashMap();

9.

10. public static long addContact(Contact contact, long sessionlID) throws SessionException{
11. if (sessionlD <= NO_SESSION_ID){

12. sessionlD = getSessionID();

13. }

14. if (contacts.indexOf(contact) 1= -1){

15. if (TeditContacts.containsValue(contact)){

16. editContacts.put(new Long(sessionlD), contact);

17. }

18. else {

19. throw new SessionException(*"This contact is currently being edited by another
user.",

20. SessionException.CONTACT _BEING_EDITED);

21. }

22. }

23. else{

24. contacts.add(contact);

25. editContacts.put(new Long(sessionlD), contact);

26. ¥

27. return sessionlD;

332

28. }
29.
30. public static long addAddress(Address address, long sessionlD) throws SessionException
{
31. if (sessionlD <= NO_SESSION_ID){
32. throw new SessionException("'A valid session ID is required to add an address',
33. SessionException.SESSION_ID_REQUIRED);
34. }
35. Contact contact = (Contact)editContacts.get(new Long(sessionlD));
36. if (contact == null){
37. throw new SessionException(''You must select a contact before adding an address",
38. SessionException.CONTACT_SELECT REQUIRED);
39. }
40. if (addresses.indexOf(address) == -1){
41. addresses.add(address) ;
42. }
43. contact.addAddress(address);
44 . return sessionlD;
45. }
46.
47. public static long removeAddress(Address address, long sessionlD) throws
SessionException{
48. if (sessionlD <= NO_SESSION_ID){
49. throw new SessionException("’A valid session ID is required to remove an address™,
50. SessionException.SESSION_ID _REQUIRED);
51. }
52. Contact contact = (Contact)editContacts.get(new Long(sessionlD));
53. if (contact == null){
54. throw new SessionException("'You must select a contact before removing an address',
55. SessionException.CONTACT_SELECT REQUIRED);
56. }
57. if (addresses. indexOf(address) == -1){
58. throw new SessionException(“'There is no record of this address",
59. SessionException.ADDRESS DOES NOT_EXIST);
60. }
61. contact.removeAddress(address);
62. return sessionlD;
63. }
64.
65. public static long finalizeContact(long sessionlD) throws SessionException{
66. if (sessionlD <= NO_SESSION_ID){
67. throw new SessionException("'A valid session ID is required to finalize a contact",
68. SessionException.SESSION_ID_REQUIRED);
69. }
70. Contact contact = (Contact)editContacts.get(new Long(sessionlD));
71. if (contact == null){
72. throw new SessionException(''You must select and edit a contact before committing
changes”,
73. SessionException.CONTACT_SELECT_REQUIRED);
74. }
75. editContacts.remove(new Long(sessionlD));
76. return NO_SESSION_ID;
77 . }
78.
79. private static long getSessionID(Q{
80. return nextSessionlID++;
81. }
82.
83. public static ArrayList getContacts(){ return contacts; }
84. public static ArrayList getAddresses(){ return addresses; }
85. public static ArrayList getEditContacts(){ return new
ArrayList(editContacts.values()); }
86. 1}

SessionServerDelegate generates asession ID for clients when they perform their first operation, adding a
Contact. Subsequent operations on the Contact"s addresses require the session ID, since the ID is used to
associate the addresses with a specific Contact within the SessionServerDelegate.

Any errors produced in the example are represented by using the SessionException class.

Example A.209 sessionException.java

1. public class SessionException extends Exception{

2. public static final int CONTACT_BEING_EDITED = 1;

3. public static final int SESSION_ID REQUIRED = 2;

4. public static final int CONTACT_SELECT REQUIRED = 3;
5. public static final int ADDRESS DOES NOT _EXIST = 4;

333

6. private int errorCode;

7.

8. public SessionException(String cause, Int newErrorCode){
9. super(cause);

10. errorCode = newErrorCode;

11.

12. public SessionException(String cause){ super(cause); }
13.

14. public int getErrorCode(){ return errorCode; }

5. }

The interfaces Address and Contact, and their implementing classes AddressiImpl and Contactlimpl, represent
the business objects used in this example.

Example A.210 Address. java

1. import java.io.Serializable;

2. public interface Address extends Serializable{

3. public static final String EOL_STRING = System.getProperty(*'line.separator');
4. public static final String SPACE = " '';

5. public static final String COMMA = ",";

6. public String getType();

7. public String getDescription();

8. public String getStreet();

9. public String getCity();

10. public String getState();

11. public String getZipCode();

12.

13. public void setType(String newType);

14. public void setDescription(String newDescription);
15. public void setStreet(String newStreet);

16. public void setCity(String newCity);

17. public void setState(String newState);

18. public void setZipCode(String newZip);

19. }

Example A.211 Addressimpl.java

1. public class Addressimpl implements Address{

2. private String type;

3. private String description;

4. private String street;

5. private String city;

6. private String state;

7. private String zipCode;

8.

9. public Addressimpl(Q{ }

10. public Addressimpl(String newDescription, String newStreet,
11. String newCity, String newState, String newZipCode){
12. description = newDescription;

13. street = newStreet;

14. city = newCity;

15. state = newState;

16. zipCode = newZipCode;

17. }

18.

19. public String getType(){ return type; }

20. public String getDescription(){ return description; }

21. public String getStreet(){ return street; }

22. public String getCity(){ return city; }

23. public String getState(){ return state; }

24. public String getZipCode(){ return zipCode; }

25.

26. public void setType(String newType){ type = newType; }

27. public void setDescription(String newDescription){ description = newDescription; }
28. public void setStreet(String newStreet){ street = newStreet; }
29. public void setCity(String newCity){ city = newCity; }

30. public void setState(String newState){ state = newState; }
31. public void setZipCode(String newZip){ zipCode = newZip; }
32.

33. public boolean equals(Object 0){

34. if (1(o instanceof Addressimpl)){

35. return false;

36. }

37. else{

38. Addresslimpl address = (Addressimpl)o;

39. if (street.equals(address.street) &&

40. city_equals(address.city) &&

334

41. state.equals(address.state) &&

42. zipCode.equals(address.zipCode)){
43. return true;

44 .

45. return false;

46. }

47 . }

48.

49. public String toString(Q){

50. return street + EOL_STRING + city + COMMA + SPACE +
51. state + SPACE + zipCode + EOL_STRING;
52. }

53. }

Example A.212 contact.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. public interface Contact extends Serializable{

4. public static final String SPACE = " '';

5. public static final String EOL_STRING = System.getProperty("'line.separator™);
6. public String getFirstName();

7. public String getLastName();

8. public String getTitle();

9. public String getOrganization();

10. public ArrayList getAddresses();

11.

12. public void setFirstName(String newFirstName);

13. public void setLastName(String newLastName);

14. public void setTitle(String newTitle);

15. public void setOrganization(String newOrganization);
16. public void addAddress(Address address);

17. public void removeAddress(Address address);

18. }

Example A.213 contactimpl.java

1. import java.util_ArraylList;

2. public class Contactimpl implements Contact{

3. private String FirstName;

4. private String lastName;

5. private String title;

6. private String organization;

7. private ArraylList addresses = new ArrayList();

8.

9. public ContactimplQ{}

10. public Contactimpl(String newFirstName, String newlLastName,
11. String newTitle, String newOrganization, ArrayList newAddresses){
12. firstName = newFirstName;

13. lastName = newlLastName;

14. title = newTitle;

15. organization = newOrganization;

16. if (newAddresses '= null){ addresses = newAddresses; }
17. }

18.

19. public String getFirstName(){ return firstName; }

20. public String getLastName(){ return lastName; }

21. public String getTitle(QQ{ return title; }

22. public String getOrganization(){ return organization; }

23. public ArrayList getAddresses(){ return addresses; }

24 .

25. public void setFirstName(String newFirstName){ FfirstName = newFirstName; }
26. public void setLastName(String newLastName){ lastName = newLastName; }
27. public void setTitle(String newTitle){ title = newTitle; }
28. public void setOrganization(String newOrganization){ organization = newOrganization; }
29. public void addAddress(Address address){

30. if(laddresses.contains(address)){

31. addresses.add(address) ;

32. }

33. }

34. public void removeAddress(Address address){

35. addresses.remove(address);

36. }

37.

38. public boolean equals(Object 0){

39. if (1(o instanceof Contactimpl)){

40. return false;

41. }

335

42. else{

43. Contactlimpl contact = (Contactimpl)o;

44 . if (firstName.equals(contact.firstName) &&

45. lastName.equals(contact. lastName) &&

46. organization.equals(contact.organization) &&
47. title.equals(contact.title)){

48. return true;

49.

50. return false;

51. }

52. }

53.

54. public String toString(Q){

55. return firstName + SPACE + lastName + EOL_STRING + addresses;
56. }

57. }

RunPattern demonstrates how sessions can be used for communication between clients and servers. Themain
method creates a server and two clients, and subsequently uses both clients to make edits on Contact objects,
adding and removing Address objects.

Example A.214 RunPattern.java

1. import java.io.lOException;

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out.printIn(""Example for the Session pattern'™);

5. System.out.printIn("'This demonstration will show how a Session can be used™);

6. System.out.printIn(*" to organize a series of actions between a client and");

7. System.out.printIn(*" server.');

8. System.out.printIn(*'In this case, clients will use sessions to coordinate');

9. System.out.printIn(’" edits of Contact addresses.");

10. System.out.printin(Q;

11.

12. System._out._printIn("'Running the RMI compiler (rmic)');

13. System._out._printin(Q);

14. try{

15. Process pl = Runtime.getRuntime().exec('rmic SessionServerlimpl'™);

16. pl.waitFor();

17.

18. catch (10Exception exc){

19. System.err.printIn(*"Unable to run rmic utility. Exiting application.");

20. System.exit(l);

21.

22. catch (InterruptedException exc){

23. System_err._printIn("'Threading problems encountered while using the rmic utility.");

24. }

25.

26. System.out._printIn(*'Starting the rmiregistry');

27. System.out._printin();

28. Process rmiProcess = null;

29. try{

30. rmiProcess = Runtime.getRuntime().exec("'rmiregistry');

31. Thread.sleep(15000);

32.

33. catch (10Exception exc){

34. System.err.printIn(*'Unable to start the rmiregistry. Exiting application.");

35. System.exit(l);

36.

37. catch (InterruptedException exc){

38. System.err._printIn(""Threading problems encountered when starting the rmiregistry.');

39. }

40.

41. System.out._printIn(*'Creating the SessionServer and two SessionClient objects');

42. System.out.printin();

43. SessionServer serverObject = new SessionServerImpl();

44 . SessionClient clientOne = new SessionClient();

45. SessionClient clientTwo = new SessionClient();

46.

47. System.out._printIn(*"Creating sample Contacts and Addresses™);

48. System.out.printin();

49. Contact firstContact = new ContactImpl(First"”, "Contact", "primo', "00I'", null);

50. Contact secondContact = new Contactlmpl(*'Second", "Contact", 'secondo', "00I'", null);

51. Address workAddress = new Addressimpl (""Work address', ""5440 Division", "Fargo', ""ND",
"54321");

52. Address homeAddress = new Addressimpl ("*"Home address', "40 Planar Way', "Paris', "TX",
''84301™);

336

53.

54. System.out.printIn(""Adding a contact. Both clients will attempt to edit'");
55. System.out.printIn(*" the same contact at first, which will result in a');
56. System.out.printIn(*" SessionException.");

57. try {

58. clientOne.addContact(firstContact);

59. clientTwo.addContact(firstContact);

60.

61. catch (SessionException exc){

62. System.err.printIn(""Exception encountered:');

63. System.err.println(exc);

64 . }

65. try {

66. System.out.printIn(*’'Adding a different contact to the second client™);
67. clientTwo.addContact(secondContact);

68. System.out.printIn("’'Adding addresses to the first and second clients");
69. clientTwo.addAddress(workAddress);

70. clientOne.addAddress(homeAddress);

71. clientTwo.addAddress(workAddress);

72. clientTwo.addAddress(homeAddress);

73. System.out.printIn(*’'Removing address from a client™);

74. clientTwo.removeAddress(homeAddress);

75. System.out.printIn(*'Finalizing the edits to the contacts');

76. clientOne.commitChanges();

77 . clientTwo.commitChanges();

78. System.out.printIn(*'‘Changes finalized™);

79. clientTwo.addContact(firstContact);

80. }

81. catch (SessionException exc){

82. System.err.printIn(""Exception encountered:');

83. System.err.println(exc);

84. }

85. System.out._printIn(""The following lines will show the state');

86. System.out.printIn(’" of the server-side delegate, which in this"™);
87. System.out.printIn(’" example represents a persistent data store.™);
88. System.out.printin();

89. System.out.printIn(*"Contact list:");

90. System.out.printlIn(SessionServerDelegate.getContacts());

91. System.out._printIn(""Address list:");

92. System.out.println(SessionServerDelegate.getAddresses());

93. System.out.printIn(""Edit contacts:");

94. System.out.println(SessionServerDelegate.getEditContacts());

95. }

96. 1}

337

Worker Thread

In atypical application, certain jobs have to be done. It's not always important that they happen now, just that
they do happen. Y ou can compare this to cleaning a house. It's not important that it happen at a particular time, as
long as somebody does it sometime this week—or month, or year, depending on your standards.

This example uses aQueue to hold tasks. The Queue interface defines two basic methods, put and take. These
methods are used to add and remove tasks, represented by the RunnableTask interface, on the Queue.

Example A.215 Queue.java

public interface Queue{
void put(RunnableTask r);
RunnableTask take();

A WOWNPF

}

Example A.216 RunnableTask. java

1. public interface RunnableTask{
2. public void execute();
3. }

The ConcreteQueue classimplements the Queue and provides aworker thread to operate on the RunnableTask
objects. The inner class defined for ConcreteQueue, Worker, has a run method that continually searches the
gueue for new tasks to perform. When atask becomes available, the worker thread pops the RunnableTask off
the queue and runs its execute method.

Example A.217 ConcreteQueue. java

1. import java.util_Vector;

2. public class ConcreteQueue implements Queue{
3. private Vector tasks = new Vector();

4. private boolean waiting;

5. private boolean shutdown;

6.

7. public void setShutdown(boolean isShutdown){ shutdown = isShutdown; }
8.

9. public ConcreteQueue(){

10. tasks = new Vector();

11. waiting = false;

12. new Thread(new Worker()).start();

13. ¥

14.

15. public void put(RunnableTask r){

16. tasks.add(r);

17. if (waiting){

18. synchronized (this){

19. notifyAll();

20. }

21. }

22. }

23.

24. public RunnableTask take(){

25. if (tasks.isEmpty()){

26. synchronized (this){

27. waiting = true;

28. try{

29. wait();

30. } catch (InterruptedException ie){
31. waiting = false;

32. }

33. }

34. ¥

35. return (RunnableTask)tasks.remove(0);
36. }

37.

38. private class Worker implements Runnable{
39. public void run(){

40. while (!shutdown){

41. RunnableTask r = take();

42. r.execute();

43. }

44 . ¥

45. }

338

46. }

Two classes, AddressRetriever and ContactRetriever, implement the RunnableTask interfacein this
example. The classes are very similar; both use RMI to request that a business object be retrieved from a server.
Astheir names suggest, each class retrieves a specific kind of business object, making Address and Contact
objects from the server available to clients.

Example A.218 AddressRetriever. java

1. import java.rmi.Naming;

2. import java.rmi.RemoteException;

3. public class AddressRetriever implements RunnableTask{

4. private Address address;

5. private long addressiD;

6. private String url;

7.

8. public AddressRetriever(long newAddresslID, String newUrl){
9. addressID = newAddressiD;

10. url = newUrl;

11. ¥

12.

13. public void execute(){

14. try{

15. ServerDataStore dataStore = (ServerDataStore)Naming.lookup(url);
16. address = dataStore.retrieveAddress(addressiD);

17.

18. catch (Exception exc){

19. }

20. ¥

21.

22. public Address getAddress(){ return address; }

23. public boolean isAddressAvailable(){ return (address == null) ? false : true; }
24. }

Example A.219 contractRetriever. java

1. import java.rmi.Naming;

2. import java.rmi.RemoteException;

3. public class ContactRetriever implements RunnableTask{

4. private Contact contact;

5. private long contactliD;

6. private String url;

7.

8. public ContactRetriever(long newContactlD, String newUrl){
9. contactlD = newContactliD;

10. url = newUrl;

11. }

12.

13. public void execute(){

14. try{

15. ServerDataStore dataStore = (ServerDataStore)Naming.lookup(url);
16. contact = dataStore.retrieveContact(contactiD);

17. }

18. catch (Exception exc){

19. }

20. }

21.

22. public Contact getContact(){ return contact; }

23. public boolean isContactAvailable(){ return (contact == null) ? false : true; }
24, }

The RMI server in this example is defined by the ServerDataStore interface and its implementer,
ServerDataStorelmpl.

Example A.220 serverDataStore. java

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. public interface ServerDataStore extends Remote{

4. public Address retrieveAddress(long addressID) throws RemoteException;
5. public Contact retrieveContact(long contactlD) throws RemoteException;
6. %}

Example A.221 serverDataStorelmpl.java

1. import java.rmi.Naming;

2. import java.rmi.server._UnicastRemoteObject;

339

3. public class ServerDataStorelmpl implements ServerDataStore{

4. private static final String WORKER_SERVER_SERVICE_NAME = "workerThreadServer";

5.

6. public ServerDataStorelmpl(){

7. try {

8. UnicastRemoteObject.exportObject(this);

9. Naming.rebind(WORKER_SERVER_SERVICE_NAME, this);

10. }

11. catch (Exception exc){

12. System.err.printIn(""Error using RMI to register the ServerDataStorelmpl " + exc);

13. }

14. }

15.

16. public Address retrieveAddress(long addressiD){

17. if (addresslID == 5280L){

18. return new Addressimpl(""Fine Dining", "416 Chartres St.", "New Orleans', "LA",
"51720™);

19. }

20. else if (addressID == 2010L){

21. return new Addressimpl (""Mystic Yacht Club', ""19 Imaginary Lane", "Mystic", "CT",
"'46802') ;

22. }

23. else{

24. return new Addressimpl();

25. }

26. }

27. public Contact retrieveContact(long contactliD){

28. if (contactlD == 5280L){

29. return new Contactlmpl(“'Dwayne™, "Dibley", "Accountant', "Virtucon'™);

30. }

31. else{

32. return new Contactimpl();

33. }

34. }

35.

36. }

The Address and Contact interfaces define the business objects used in this example, and the implementers
AddressImpl and ContactImpl provide underlying functional behavior.

Example A.222 Address. java

1. import java.io.Serializable;

2. public interface Address extends Serializable{

3. public static final String EOL_STRING = System.getProperty(*'line.separator');
4. public static final String SPACE = " "';

5. public static final String COMMA = ",";

6. public String getType();

7. public String getDescription();

8. public String getStreet();

9. public String getCity();

10. public String getState();

11. public String getZipCode();

12.

13. public void setType(String newType);

14. public void setDescription(String newDescription);
15. public void setStreet(String newStreet);

16. public void setCity(String newCity);

17. public void setState(String newState);

18. public void setZipCode(String newZip);

19. }

Example A.223 Addressimpl .java

1. public class Addressimpl implements Address{

2. private String type;

3. private String description;

4. private String street;

5. private String city;

6. private String state;

7. private String zipCode;

8.

9. public Addressimpl(Q{ }

10. public Addressimpl(String newDescription, String newStreet,
11. String newCity, String newState, String newZipCode){
12. description = newDescription;

13. street = newStreet;

14. city = newCity;

340

15. state = newState;

16. zipCode = newZipCode;

17. }

18.

19. public String getType(){ return type; }

20. public String getDescription(){ return description; }

21. public String getStreet(){ return street; }

22. public String getCity(){ return city; }

23. public String getState(){ return state; }

24. public String getZipCode(){ return zipCode; }

25.

26. public void setType(String newType){ type = newType; }

27. public void setDescription(String newDescription){ description = newDescription; }
28. public void setStreet(String newStreet){ street = newStreet; }
29. public void setCity(String newCity){ city = newCity; }

30. public void setState(String newState){ state = newState; }
31. public void setZipCode(String newZip){ zipCode = newZip; }
32.

33. public String toString(Q){

34. return street + EOL_STRING + city + COMMA + SPACE +

35. state + SPACE + zipCode + EOL_STRING;

36. }

37. }

Example A.224 contact.java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String EOL_STRING = System.getProperty("'line.separator™);
4. public static final String SPACE = " '';

5. public String getFirstName();

6. public String getLastName();

7. public String getTitle();

8. public String getOrganization();

9.

10. public void setFirstName(String newFirstName);

11. public void setLastName(String newlLastName);

12. public void setTitle(String newTitle); p
13. public void setOrganization(String newOrganizatign);
14. 3} R

Example A.225 contactimpl.java
1. public class Contactimpl implements Contact

2. private String FirstName;

3. private String lastName;

4. private String title; “

5. private String organization;

6.

7. public ContactimplQ{}

8. public Contactimpl(String newFirstName, String newlLastName,

9. String newTitle, String newOrganization){

10. firstName = newFirstName;

11. lastName = newLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(Q{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newlLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString({

27. return firstName + SPACE + lastName + EOL_STRING;

28. }

29. }

RunPattern creates a ConcreteQueue, then usesit to retrieve a sample Contact and two Addresses. The worker
thread in the queue processes these requests as they are added to the queue. The ConcreteQueue and its
associated worker thread can be used throughout the lifetime of a client application, performing any background
task required by the client asRunnableTask objects are added to its queue.

341

Example A.226 RunPattern.java

1. import java.io.lOException;

2. public class RunPattern{

3. private static final String WORKER_SERVER URL = "//localhost/ workerThread-
Server'"';

4. public static void main(String [] arguments){

5. System.out.printIn(""Example for the WorkerThread pattern'™);

6. System.out.printIn(’"In this example, a ConcreteQueue object which uses a');

7. System.out.printIn(’" worker thread, will retrieve a number of objects
from'™);

8. System.out._printIn("" the server.");

9. System.out.printin(Q);

10.

11. System.out.printIn("'Running the RMI compiler (rmic)");

12. System._out._printin(Q);

13. try{

14. Process pl = Runtime.getRuntime().exec('rmic ServerDataStorelmpl™);

15. pl.waitFor();

16.

17. catch (10Exception exc){

18. System.err._printIn(*"'Unable to run rmic utility. Exiting application.");

19. System.exit(l);

20.

21. catch (InterruptedException exc){

22. System_err._printIn("'Threading problems encountered while using the rmic
utility.");

23. }

24

25. System.out.printIn(’'Starting the rmiregistry');

26. System._out._printin(Q);

27. Process rmiProcess = null;

28. try{

29. rmiProcess = Runtime.getRuntime().exec("'rmiregistry');

30. Thread.sleep(15000);

31.

32. catch (10Exception exc){

33. System.err.printIn(""Unable to start the rmiregistry. Exiting applica-
tion.");

34. System.exit(l);

35. }

36. catch (InterruptedException exc){

37. System.err.printIn(""Threading problems encountered when starting the
rmiregistry.');

38.

39.

40. System.out._printIn(""Creating the queue, which will be managed by the worker
thread);

41. System.out.printin(Q;

42. ConcreteQueue workQueue = new ConcreteQueue();

43.

44 . System.out._printIn(""Creating the RMI server object, ServerDataStorelmpl™);

45. System.out.printin(Q;

46. ServerDataStore server = new ServerDataStorelmpl();

47 .

48. System.out.printIn(''Creating AddressRetrievers and ContactRetreivers.');

49. System.out._printIn(’" These will placed in the queue, as tasks to be');

50. System.out.printIn(’" performed by the worker thread.');

51. System.out.printin(Q;

52. AddressRetriever firstAddr = new AddressRetriever(5280L, WORKER_SERVER URL);

53. AddressRetriever secondAddr = new AddressRetriever(2010L, WORKER_SERVER_URL);

54. ContactRetriever firstContact = new ContactRetriever(5280L, WORKER_SERVER_URL);

55.

56. workQueue . put(FirstAddr);

57. workQueue.put(firstContact);

58. workQueue . put(secondAddr) ;

59.

60. while (YsecondAddr.isAddressAvailable()){

61. try{

62. Thread.sleep(1000);

63. }

64. catch (InterruptedException exc){}

65. }

66.

67. System.out.printIn(*"WorkerThread completed the processing of its Tasks'™);

68. System.out._printIn("'Printing out the retrieved objects now:"");

69. System._out._printin();

70. System.out.printIn(FfirstAddr.getAddress());

342

71.
72.
73.
74.
75.
76.

System.out.printIn(firstContact.getContact());
System.out.printin(secondAddr.getAddress());

343

Callback

In the Personal Information Manager, one of the items that can vary most in sizeis aproject. A project might
consist of only afew tasks, or it could be made up of hundreds or even thousands of individual work steps. This
example demonstrates how the Callback pattern could be used to retrieve a project object stored on a server
machine.

The interface Cal IbackServer defines a single server-side method, getProject. Note that the method requires
callback information—the client machine name and the name of the RMI client object—in addition to the project
ID. The class Cal IbackServerImpl implements this interface.

Example A.227 callbackServer.java

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface CallbackServer extends Remote{
public void getProject(String projectlD, String callbackMachine,
String callbackObjectName) throws RemoteException;

OO WNER

}

Example A.228 callbackServerimpl .java

1. import java.rmi.Naming;

2. import java.rmi.server.UnicastRemoteObject;

3. public class CallbackServerimpl implements CallbackServer{

4. private static final String CALLBACK_ SERVER_SERVICE_NAME = "callbackServer";

5. public CallbackServerImpl(Q{

6. try {

7. UnicastRemoteObject.exportObject(this);

8. Naming.rebind(CALLBACK SERVER_SERVICE_NAME, this);

9.

10. catch (Exception exc){

11. System.err.printIn("Error using RMI to register the CallbackServerimpl " + exc);
12. }

13. }

14.

15. public void getProject(String projectlD, String callbackMachine,

16. String callbackObjectName){

17. new CallbackServerWorkThread(projectlD, callbackMachine, callbackObjectName);
18. }

19.

20. }

In the getProject method, Cal IbackServerImpl delegates the task of retrieving the project to a worker object,
Cal lbackServerDelegate. This object runs on its own thread and does the work of retrieving a project and
sending it to aclient.

Example A.229 callbackServerDelegate.java

1. import java.net._MalformedURLException;

2. import java.rmi.Naming;

3. import java.rmi.NotBoundException;

4. import java.rmi.RemoteException;

5. public class CallbackServerDelegate implements Runnable{
6. private Thread processingThread;

7. private String projectlD;

8. private String callbackMachine;

9. private String callbackObjectName;

10.

11. public CallbackServerDelegate(String newProjectlD, String newCallbackMachine,
12. String newCallbackObjectName){

13. projectlD = newProjectlD;

14. callbackMachine = newCallbackMachine;

15. callbackObjectName = newCallbackObjectName;
16. processingThread = new Thread(this);

17. processingThread.start();

18. ¥

19.

20. public void run(Q{

21. Project result = getProject();

22. sendProjectToClient(result);

23. ¥

24.

25. private Project getProject(){

344

26. return new Project(projectlD, "Test project');

27. ¥

28.

29. private void sendProjectToClient(Project project){

30. try{

31. String url = "//" + callbackMachine + "/ + callbackObjectName;
32. Object remoteClient = Naming. lookup(url);

33. if (remoteClient instanceof CallbackClient){

34. ((CallbackClient)remoteClient) .receiveProject(project);
35. }

36.

37. catch (RemoteException exc){}

38. catch (NotBoundException exc){}

39. catch (MalformedURLException exc){}

40. ¥

41. %}

In the Cal IbackServerDelegaterun method, the object retrieves a project by calling the getProject method,
then sends it to a client with the send-ProjectToClient method. The latter method represents the callback to the
client; the Cal 1backServerDelegate makes acall to an RMI object of type Cal IbackClient on the client
machine. The interface Cal IbackClient also defines asingle RMI method, receiveProject.

Example A.230 callbackClient.java

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. public interface CallbackClient extends Remote{

4. public void receiveProject(Project project) throws RemoteException;
5. %}

The implementer of Cal IbackClient, CallbackClientImpl, isboth aclient and a server. Its method
requestProject |0oks up the Cal IbackServer and calls the remote method getProject. The class aso defines
the remote method receiveProject, which is called by the server work thread when the project is ready for the
client. cal IbackClientlImpl hasaboolean variable, projectAvailable, to alow aclient program to determine
when the project is ready for display.

Example A.231 callbackClientImpl.java

1. import java.net.lInetAddress;

2. import java.net_MalformedURLException;

3. import java.net.UnknownHostException;

4. import java.rmi.Naming;

5. import java.rmi.server.UnicastRemoteObject;

6. import java.rmi.NotBoundException;

7. import java.rmi.RemoteException;

8. public class CallbackClientimpl implements CallbackClient{

9. private static final String CALLBACK CLIENT_SERVICE NAME = "callbackClient";

10. private static final String CALLBACK SERVER SERVICE_NAME = "callbackServer";

11. private static final String CALLBACK SERVER_ MACHINE_NAME = "localhost";

12.

13. private Project requestedProject;

14. private boolean projectAvailable;

15.

16. public CallbackClientimpl(Q{

17. try {

18. UnicastRemoteObject.exportObject(this);

19. Naming.rebind(CALLBACK_CLIENT_SERVICE_NAME, this);

20. }

21. catch (Exception exc){

22. System.err._printIn("Error using RMI to register the CallbackClientlmpl " + exc);

23. }

24 }

25.

26. public void receiveProject(Project project){

27. requestedProject = project;

28. projectAvailable = true;

29. }

30.

31. public void requestProject(String projectName){

32. try{

33. String url = "//" + CALLBACK_SERVER_MACHINE_NAME + "'/' +
CALLBACK_SERVER_SERVICE_NAME;

34. Object remoteServer = Naming. lookup(url);

35. if (remoteServer instanceof CallbackServer){

36. ((CallbackServer)remoteServer) .getProject(projectName,

345

37. InetAddress.getLocalHost() .getHostName(),

38. CALLBACK_CLIENT_SERVICE_NAME) ;

39. }

40. projectAvailable = false;

41.

42. catch (RemoteException exc){}

43. catch (NotBoundException exc){}

44 . catch (MalformedURLException exc){}

45. catch (UnknownHostException exc){}

46. ¥

47.

48. public Project getProject(){ return requestedProject; }
49. public boolean isProjectAvailable(){ return projectAvailable; }
50. }

The basic sequence of action is as follows. When a client requires a project, the Cal IbackClientImpl object
calls the method getProject on the Cal IbackServerImpl object. The Cal IbackServerlimpl creates a

Cal IbackServerWorkThread object to retrieve the project. When the Cal IbackServerWorkThread completesits
task, it calls the client method receiveProject, sending the Project instance to the requester, the
CallbackClientImpl object.

In this example, the interface Projectltem and the classes Project and Task are used to represent the project
resource to be retrieved by the client.

Example A.232 Project.java

1. import java.util_ArraylList;

2. public class Project implements Projectltem{

3. private String name;

4. private String description;

5. private ArrayList projectltems = new ArrayList();

6.

7. public Project(Q{ }

8. public Project(String newName, String newDescription){
9. name = newName;

10. description = newDescription;

11. }

12.

13. public String getName(){ return name; }

14. public String getDescription(){ return description; }
15. public ArrayList getProjectltems(){ return projectltems; }
16.

17. public void setName(String newName){ name = newName; }
18. public void setDescription(String newDescription){ description = newDescription; }
19.

20. public void addProjectltem(Projectltem element){

21. if (Iprojectltems.contains(element)){

22. projectltems.add(element);

23. }

24. ¥

25.

26. public void removeProjectltem(Projectltem element){
27. projectltems.remove(element);

28. }

29.

30. public String toString(Q{ return name + ", " + description; }
31. }

Example A.233 Projectlitem.java

1. import java.io.Serializable;

2. import java.util_ArraylList;

3. public interface Projectltem extends Serializable{
4. public ArrayList getProjectltems();

5. }

Example A.234 Task.java

1. import java.util_ArraylList;

2. public class Task implements Projectltem{

3. private String name;

4. private ArraylList projectltems = new ArrayList();
5. private double timeRequired;

6.

7. public TaskQ{ }

8. public Task(String newName, double newTimeRequired){

346

9 name = newName;

10. timeRequired = newTimeRequired;

11. }

12.

13. public String getName(){ return name; }

14. public ArrayList getProjectltems(){ return projectltems; }
15. public double getTimeRequired(){ return timeRequired; }
16.

17. public void setName(String newName){ name = newName; }
18. public void setTimeRequired(double newTimeRequired){ timeRequired = newTimeRequired; }
19.

20. public void addProjectltem(Projectltem element){

21. if (Iprojectltems.contains(element)){

22. projectltems.add(element);

23. }

24 }

25.

26. public void removeProjectltem(Projectltem element){

27. projectltems.remove(element);

28. }

29.

30. }

RunPattern creates a demonstration RMI client and server object. In the example, the main program thread uses
the callbackClientImpl object to request a project from the server, then enters await loop until the project is
returned.

Example A.235 RunPattern. java

1. import java.io.lOException;

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out._printIn("'Example for the Callback pattern™);

5. System.out.printIn(*"'This code will run two RMI objects to demonstrate'™);

6. System.out.printIn(*"" callback capability. One will be CallbackClientimpl,™);

7. System.out.printIn("" which will request a project from the other remote');

8. System.out.printIn(’" object, CallbackServerimpl."™);

9. System._out._printIn("'To demonstrate how the Callback pattern allows the');

10. System.out.printIn(’" client to perform independent processing, the main');

11. System.out.printIn(’" progam thread will go into a wait loop until the'™);

12. System.out.printIn(’" server sends the object to its client.");

13. System.out.printin(Q;

14.

15. System._out._printIn("'Running the RMI compiler (rmic)');

16. System.out.printin(Q;

17. try {

18. Process pl = Runtime.getRuntime().exec("'rmic CallbackServerimpl');

19. Process p2 = Runtime.getRuntime().exec("'rmic CallbackClientimpl');

20. pl.waitFor(Q);

21. p2.waitFor();

22.

23. catch (10Exception exc) {

24. System.err._printIn(""Unable to run rmic utility. Exiting application.');

25. System.exit(l);

26.

27. catch (InterruptedException exc){

28. System.err.printIn(""Threading problems encountered while using the rmic
utility.");

29. }

30.

31. System.out.printIn(’'Starting the rmiregistry');

32. System.out.printin(Q;

33. Process rmiProcess = null;

34. try{

35. rmiProcess = Runtime.getRuntime().exec("rmiregistry');

36. Thread.sleep(15000);

37. }

38. catch (10Exception exc){

39. System.err._printIn(""Unable to start the rmiregistry. Exiting application.');

40. System.exit(l);

41. }

42. catch (InterruptedException exc){

43. System.err._printIn(""Threading problems encountered when starting the
rmiregistry.");

44 . }

45.

46. System.out.printIn(’'Creating the client and server objects');

347

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

System.out.printin();

CallbackServerimpl callbackServer = new CallbackServerimpl();

CallbackClientImpl callbackClient

new CallbackClientimpl();

System.out.printin('CallbackClientImpl requesting a project');
callbackClient.requestProject("'New Java Project');

try {

while(IcallbackClient.isProjectAvailable()){

System.out.printIn("'Project not available yet; sleeping for 2 seconds™™);

Thread.sleep(2000);
3

catch (InterruptedException exc){}

System.out.printIn("'Project retrieved: "

348

+ callbackClient.getProject());

Successive Update

The example code shows a simple client pull solution for the Personal Information Manager. Clients use the
server to centralize information about tasks they are working on. Each client stays up-to-date by periodically
requesting updates from the server.

In the sample code, the Pul IClient class retrieves atask for a client. Itsresponsibility isto locate the RMI server
so that it can request tasks on aregular basis.

Example A.236 PullClient.java

1. import java.net._MalformedURLException;

2. import java.rmi.Naming;

3. import java.rmi.NotBoundException;

4. import java.rmi.RemoteException;

5. import java.util.Date;

6. public class PullClient{

7. private static final String UPDATE_SERVER_ SERVICE_NAME = "‘updateServer';
8. private static final String UPDATE_SERVER_MACHINE_NAME = "localhost";
9. private ClientPullServer updateServer;

10. private ClientPullRequester requester;

11. private Task updatedTask;

12. private String clientName;

13.

14. public PullClient(String newClientName){

15. clientName = newClientName;

16. try{

17. String url = "//" + UPDATE_SERVER_MACHINE_NAME + "/'" + UPDATE_SERVER_SERVICE_NAME;
18. updateServer = (ClientPullServer)Naming.lookup(url);

19. ¥

20. catch (RemoteException exc){}

21. catch (NotBoundException exc){}

22. catch (MalformedURLException exc){}

23. catch (ClassCastException exc){}

24. ¥

25.

26. public void requestTask(String taskID){

27. requester = new ClientPullRequester(this, updateServer, taskID);
28. }

29.

30. public void updateTask(Task task){

31. requester .updateTask(task);

32. }

33.

34. public Task getUpdatedTask(){

35. return updatedTask;

36. }

37.

38. public void setUpdatedTask(Task task){

39. updatedTask = task;

40. System.out.printin(clientName + ": received updated task: " + task);
41. }

42.

43. public String toString(){

44 . return clientName;

45. ¥

46. }

When the client wants to receive updates on atask, it calls the method requestTask on the PulIClient. The
PulIClient object creates aworker thread (see” Worker Thread ” on page 517), which isthe

ClientPul IRequester object. This object resides on the client, and regularly issues arequest to the server for
updated task information.

Example A.237 clientPul IRequester. java

1. import java.rmi.RemoteException;

2. public class ClientPullRequester implements Runnable{

3. private static final int DEFAULT_POLLING_INTERVAL = 10000;
4. private Thread processingThread;

5. private PullClient parent;

6. private ClientPullServer updateServer;

7. private String tasklD;

8. private boolean shutdown;

9. private Task currentTask = new Tasklmpl();

349

10. private int pollinglnterval = DEFAULT_ POLLING_ INTERVAL;

11.

12. public ClientPullRequester(PullClient newParent, ClientPullServer newUpdateServer,

13. String newTaskID){

14. parent = newParent;

15. taskID = newTasklID;

16. updateServer = newUpdateServer;

17. processingThread = new Thread(this);

18. processingThread.start();

19. ¥

20.

21. public void run(Q{

22. while (lisShutdown()){

23. try{

24. currentTask = updateServer.getTask(tasklD, currentTask.getLastEditDate());

25. parent.setUpdatedTask(currentTask);

26. }

27. catch (RemoteException exc){ }

28. catch (UpdateException exc){

29. System.out.printIn(*" " + parent + ": " + exc.getMessage());

30. }

31. try{

32. Thread.sleep(pollinglnterval);

33. }

34. catch (InterruptedException exc){ }

35. ¥

36. ¥

37.

38. public void updateTask(Task changedTask){

39. try{

40. updateServer.updateTask(taskID, changedTask);

41. ¥

42. catch (RemoteException exc){ }

43. catch (UpdateException exc){

44 . System.out.printIn(* " + parent + ": " + exc.getMessage());

45. ¥

46. ¥

47.

48. public int getPollinglnterval(Q){ return pollinglnterval; }

49. public boolean isShutdown(){ return shutdown; }

50.

51. public void setPollinglnterval(int newPollinglnterval){ pollinglnterval =
newPollinglnterval; }

52. public void setShutdown(boolean isShutdown){ shutdown = isShutdown; }

53. }

The RMI server's behavior is defined by the ClientPul IServer interface and managed by the
ClientPullServerimpl class. Two methods alow clientsto interact with a server, getTask and updateTask.

Example A.238 clientPullServer.java

1. import java.rmi.Remote;

2. import java.rmi.RemoteException;

3. import java.util_Date;

4. public interface ClientPullServer extends Remote{

5. public Task getTask(String tasklID, Date lastUpdate) throws RemoteException,
UpdateException;

6. public void updateTask(String tasklD, Task updatedTask) throws RemoteException,
UpdateException;

7.}

Example A.239 clientPullServerimpl.java

1. import java.util_Date;

2. import java.rmi.Naming;

3. import java.rmi.server.UnicastRemoteObject;

4. public class ClientPullServerimpl implements ClientPullServer{

5. private static final String UPDATE_SERVER_SERVICE_NAME = "‘updateServer';

6. public ClientPullServerIimpl(Q{

7. try {

8. UnicastRemoteObject.exportObject(this);

9. Naming.rebind(UPDATE_SERVER_SERVICE_NAME, this);

10.

11. catch (Exception exc){

12. System.err._printIn("Error using RMI to register the ClientPullServerimpl " + exc);

13. ¥

14. ¥

15.

350

16.
17.
18.
19.
20.
21.
22.
23.

}

public Task getTask(String taskID, Date lastUpdate) throws UpdateException{
return UpdateServerDelegate.getTask(tasklD, lastUpdate);
}

public void updateTask(String tasklD, Task updatedTask) throws UpdateException{
UpdateServerDelegate.updateTask(tasklD, updatedTask);
}

The class UpdateServerDelegate performs the server-side behavior for ClientPul IServerimpl. Specifically, it
retrieves Task objects, and ensures that up-to-date copies of Tasks are provided to clients by comparing the last
update Date.

Example A.240 updateServerDelegate. java

import java.util_Date;
import java.util._HashMap;
public class UpdateServerDelegate{

O©CoO~NOOITAWNPE

}

private static HashMap tasks = new HashMap();

public static Task getTask(String taskID, Date lastUpdate) throws UpdateException{
if (tasks.containsKey(taskID)){
Task storedTask = (Task)tasks.get(tasklID);
if (storedTask.getLastEditDate() .after(lastUpdate)){
return storedTask;

}
else{
throw new UpdateException("Task " + taskID + ' does not need to be updated",
UpdateException.TASK _UNCHANGED) ;
}
else{

return loadNewTask(tasklID);

+
+

public static void updateTask(String tasklID, Task task) throws UpdateException{
if (tasks.containsKey(taskID)){
iT (task.getLastEditDate(). equals(((Task)tasks get(tasklD)). getLastEditDate())){
((TaskImpl)task) .setlLastEditDa w _Date());
tasks.put(taskID, task); \ v

else{
throw new UpdateExq
editing", Update

5 " + taskID + " data must be refreshed before
ceptlon TASK_OUT_OF _DATE);

}
¥
}
private static Task loadNewTask(String taskID){
Task newTask = new TaskImpl(taskID, ", new Date(), null);
tasks.put(taskID, newTask);
return newTask;
}

Any problems encountered during the periodic client pull operations are represented by the UpdateException
class. The Task interface and TasklImpl class represent the business elements of the example.

Example A.241 Task.java

import java.util_Date;

import java.io.Serializable;

import java.util_ArraylList;

public interface Task extends Serializable{

O©CoO~NOOOTA~AWNPE

public String getTaskID();
public Date getLastEditDate();
public String getTaskName();
public String getTaskDetails();
public ArrayList getSubTasks();

public void setTaskName(String newName);
public void setTaskDetails(String newDetails);
public void addSubTask(Task task);

public void removeSubTask(Task task);

351

Example A.242 Taskimpl.java

1. import java.util.Date;

2. import java.io.Serializable;

3. import java.util_ArraylList;

4. public class Tasklmpl implements Task{

5. private String tasklD;

6. private Date lastEditDate;

7. private String taskName;

8. private String taskDetails;

9. private ArraylList subTasks = new ArrayList();

10.

11. public Tasklmpl(OQ{

12. lastEditDate = new Date();

13. taskName = ""*';

14. taskDetails = ""';

15. }

16. public Tasklmpl(String newTaskName, String newTaskDetails,
17. Date newEditDate, ArrayList newSubTasks){

18. lastEditDate = newEditDate;

19. taskName = newTaskName;

20. taskDetails = newTaskDetails;

21. if (newSubTasks !'= null){ subTasks = newSubTasks; }
22. }

23.

24. public String getTaskID(){

25. return tasklID;

26. }

27. public Date getLastEditDate(){ return lastEditDate; }
28. public String getTaskName(){ return taskName; }

29. public String getTaskDetails(){ return taskDetails; }
30. public ArrayList getSubTasks(){ return subTasks; }
31.

32. public void setLastEditDate(Date newDate){

33. if (newDate.after(lastEditDate)){

34. lastEditDate = newDate;

35. }

36. }

37. public void setTaskName(String newName){ taskName = newName; }
38. public void setTaskDetails(String newDetails){ taskDetails = newDetails; }
39. public void addSubTask(Task task){

40. if (IsubTasks.contains(task)){

41. subTasks.add(task);

42. }

43. }

44 . public void removeSubTask(Task task){

45. subTasks. remove(task);

46. }

47 .

48. public String toString(Q{

49. return taskName + " " + taskDetails;

50. }

51. }

Example A.243 updateException.java

1. public class UpdateException extends Exception{

2. public static final int TASK UNCHANGED = 1;

3. public static final int TASK OUT_OF DATE = 2;

4. private int errorCode;

5.

6. public UpdateException(String cause, int newErrorCode){
7. super(cause);

8. errorCode = newErrorCode;

9.

10. public UpdateException(String cause){ super(cause); }
11.

12. public int getErrorCode(){ return errorCode; }

13. }

RunPattern demonstrates how updates of a Task can be propagated to multiple clients. The main method creates
acClientPullServer and two PulIClient objects. Both clients are used to request a common Task, then one of
the Pul IClients makes an update to the Task. The change is reflected in the other client asits worker thread, the
ClientPul IRequester, pollsthe server for changes.

Example A.244 RunPattern.java
1. import java.io.lOException;

352

2. public class RunPattern{

3. public static void main(String [] arguments){

4. System.out._printIn("'Example for the SuccessiveUpdate pattern™);

5. System.out._printIn(*'This code provides a basic demonstration™);

6. System.out.printIn(*" of how the client pull form of this pattern™);
7. System.out.printIn("" could be applied.™);

8. System.out.printIn(*'In this case, a change made by a client to a');
9. System.out.printIn(’" central Task object is subsequently retrieved™);
10. System._out.printIn(’" and displayed by another client.');

11.

12. System.out.printIn("'Running the RMI compiler (rmic)");

13. System.out.printin(Q;

14. try{

15. Process pl = Runtime.getRuntime().exec('rmic ClientPullServerimpl™);
16. pl.waitFor();

17. }

18. catch (10Exception exc){

19. System.err._printIn(""Unable to run rmic utility. Exiting application.');
20. System.exit(l);

21. }

22. catch (InterruptedException exc){

23. System.err.printIn(""Threading problems encountered while using the rmic utility.');
24 . }

25.

26. System.out.printIn(’'Starting the rmiregistry');

27. System.out.printin(Q;

28. Process rmiProcess = null;

29. try{

30. rmiProcess = Runtime.getRuntime().exec("'rmiregistry");

31. Thread.sleep(15000);

32. }

33. catch (10Exception exc){

34. System.err._printIn(""Unable to start the rmiregistry. Exiting application.');
35. System.exit(l);

36. }

37. catch (InterruptedException exc){

38. System.err.printIn(""Threading problems encountered when starting the rmiregistry.');
39. }

40.

41. System.out.printIn(''Creating the ClientPullServer and two PullClient objects');
42. ClientPullServer server = new ClientPullServerimpl();

43. PullClient clientOne = new PullClient("'Thing I');

44 . PullClient clientTwo = new PullClient("'Thing 11');

45. clientOne.requestTask("'First work step™);

46. clientTwo.requestTask("'First work step'™);

47 .

48. try{

49. Thread.sleep(10000);

50.

51. catch (InterruptedException exc){ }

52.

53. Task task = clientOne.getUpdatedTask();

54. task.setTaskDetails("'Trial for task update™);

55. clientOne.updateTask(task);

56.

57. Task newTask = clientTwo.getUpdatedTask();

58. newTask.setTaskDetails(""New details string');

59. clientTwo.updateTask(newTask);

60.

61.

62. }

63. }

353

Router

The Router can be useful at various places in the example application. In amost every situation where thereis
more than one interested party in any event, you can use the Router. The Router is essentially an implementation
of alistener structure; you will see some similarities.

The code for the Message classis shown here. It is acontainer for the source (an InputChannel) and the actual
message—in this case, some String.

Example A.245 Message. java

1. import java.io.Serializable;

2. public class Message implements Serializable{

3. private InputChannel source;

4. private String message;

5.

6. public Message(InputChannel source, String message){
7. this.source = source;

8. this.message = message;

9. }

10.

11. public InputChannel getSource(){ return source; }
12. public String getMessage(){ return message; }

13. }

Example A.246 1nputChannel . java

1. import java.io.Serializable;
2. public interface InputChannel extends Serializable{}

The outputChannel istheinterface that defines the method for sending the message to the target. Since the
OutputChannel can be used to communicate between machines, it is defined as a remote interface.

Example A.247 outputChannel . java

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface OutputChannel extends Remote{
public void sendMessage(Message message) throws RemoteException;
}

abrwNPE

The Router uses a hash map to store links between the specific InputChannel and various OutputChannels.
When it receives a message, it looks up the destinations in its map.

It loops through the collection and sends the message to each of the destinations. In this example, the Router
creates aworker thread (see “ Worker Thread ” on page 517) to send a message to each of its OutputChannel
objects.

Thread pools are often used to improve performance in applications such as these.

Example A.248 Router. java

1. import java.rmi.Naming;

2. import java.rmi.RemoteException;

3. import java.rmi.server._UnicastRemoteObject;

4. import java.util_HashMap;

5. public class Router implements OutputChannel{

6. private static final String ROUTER_SERVICE_NAME = "router";
7. private HashMap links = new HashMap();

8.

9. public Router(){

10. try {

11. UnicastRemoteObject.exportObject(this);

12. Naming.rebind(ROUTER_SERVICE_NAME, this);

13. }

14. catch (Exception exc){

15. System.err._printIn("Error using RMI to register the Router ™ + exc);
16. ¥

17. ¥

18.

19. public synchronized void sendMessage(Message message) {

20. Object key = message.getSource();

21. OutputChannel[] destinations = (OutputChannel[])links.get(key);

354

22. new RouterWorkThread(message, destinations);

23. ¥

24.

25. public void addRoute(lnputChannel source, OutputChannel[] destinations) {
26. links.put(source, destinations);

27. ¥

28.

29. private class RouterWorkThread implements Runnable{

30. private OutputChannel [] destinations;

31. private Message message;

32. private Thread runner;

33.

34. private RouterWorkThread(Message newMessage, OutputChannel[] newDestinations){
35. message = newMessage;

36. destinations = newDestinations;

37. runner = new Thread(this);

38. runner.start();

39. }

40.

41. public void run(Q) {

42. for (int i = 0; 1 < destinations.length; i++){

43. try{

44 . destinations[i]-sendMessage(message);

45. }

46. catch(RemoteException exc){

47. System.err.printIn("'Unable to send message to " + destinations[i]);
48. ¥

49. }

50. }

51. ¥

52. }

When using the Router pattern, be careful about the size of message to be delivered. Generally, the message
should be as small as possible. It is easy to be fooled by some Java objects, though. An object might have
references to other objects, which refer to other objects, and so on—and what seemed like a small object might
turn out to be very large indeed. For instance, sending a java.awt.Button isnot agood idea, because the whole
GUI will be serialized and sent.

It'salot like buying your child atoy in astore. The purchase of a single Out-law Robot Laser Geek might not
seem expensive at first, but by the time you get all the accessories (extralaser pistol, laser-spitting horn-rimmed
glasses), you might wonder if it would just be cheaper to buy him or her a sweater.

In this example, the InputKey class implements the InputChannel interface. It must be sent to the Router using
RMI, so this class must redefine the hashCode and equals methods to make sure objects on different JVMs can
be tested for equality.

Example A.249 InputKey.java

1 public class InputKey implements InputChannel{

2 private static int nextValue = 1;

3 private int hashval = nextValue++;

4. public int hashCode(){ return hashval; }

5. public boolean equals(Object object){

6 if (J(object instanceof InputKey)){ return false; }

7 if (object.hashCode() !'= hashCode()){ return false; }
8 return true;

9

1

- }
0. }
The RouterClient class provides aclient to the Router; this class both sends and receives messages using RMI.

The method sendMessageToRouter transmits a message to the central router, and the method sendvessage
(defined by the outputChannel interface) receives messages from the Router.

Example A.250 RouterClient. java

import java.rmi.Naming;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;
public class RouterClient implements OutputChannel{
private static final String ROUTER_CLIENT_SERVICE_PREFIX = "routerClient";
private static final String ROUTER_SERVER MACHINE_NAME = "localhost";
private static final String ROUTER_SERVER_SERVICE_NAME = "router";
private static int clientindex = 1;
private String routerClientServiceName = ROUTER_CLIENT_SERVICE_PREFIX + clientlndex++;

©CoO~NOOOM~AWNPE

355

10. private OutputChannel router;

11. private Receiver receiver;

12.

13. public RouterClient(Receiver newReceiver){

14. receiver = newReceiver;

15. try {

16. UnicastRemoteObject.exportObject(this);

17. Naming.rebind(routerClientServiceName, this);
18. String url = "//" + ROUTER_SERVER_MACHINE_NAME + "/" + ROUTER_SERVER_SERVICE_NAME;
19. router = (OutputChannel)Naming.lookup(url);
20.

21. catch (Exception exc){

22. System.err._printIn(""Error using RMI to register the Router ™ + exc);
23. }

24

25. }

26.

27. public void sendMessageToRouter(Message message){
28. try{

29. router.sendMessage(message) ;

30.

31. catch (RemoteException exc){}

32. }

33.

34. public void sendMessage(Message message){

35. receiver.receiveMessage(message);

36. }

37.

38. public String toString(){

39. return routerClientServiceName;

40. }

41. %}

Each RoutercClient communicates with a client represented by the RouterGui class. This class provides a
simple Swing GUI for sending and receiving messages via the Router. RouterGui implements the Receiver
interface, which allows the RoutercClient to provide it with real-time updates when it receives aRouter

message.

Example A.251 Receiver.java

1. public interface Receiver{

2. public void receiveMessage(Message message);
3. }

Example A.252 RouterGui . java

1. import java.awt.Container;

2. import java.awt.event._ActionListener;
3. import java.awt.event.ActionEvent;

4. import java.awt.event.WindowAdapter;
5. import java.awt.event.WindowEvent;

6. import javax.swing.JFrame;

7. import javax.swing.BoxLayout;

8. import javax.swing.JButton;

9. import javax.swing.JTextArea;

10. import javax.swing.JScrollPane;

11. import javax.swing.JTextField;

12. import javax.swing.JLabel;

13. import javax.swing.JPanel;

14. import java.io.Serializable;
15. public class RouterGui implements ActionListener, Receiver{

16. private static int instanceCount = 1;

17. private RouterClient routerClient;

18. private JFrame mainFrame;

19. private JButton exit, clearDisplay, sendMessage;
20. private JTextArea display;

21. private JTextField inputTextField;

22. private InputChannel inputChannel;

23.

24. public OutputChannel getOutputChannel(){

25. return routerClient;

26. }

27.

28. public RouterGui(InputChannel newlnputChannel){
29. inputChannel = newlnputChannel;

30. routerClient = new RouterClient(this);

31. }

356

32

33. public void createGui(){

34. mainFrame = new JFrame("'Demonstration for the Router pattern - GUI #" +
instanceCount++);

35. Container content = mainFrame.getContentPane();

36. content.setLayout(new BoxLayout(content, BoxLayout.Y_ AXIS));

37.

38. JPanel displayPanel = new JPanel();

39. display = new JTextArea(10, 40);

40. JScrollPane displayArea = new JScrollPane(display);

41. display.setEditable(false);

42. displayPanel .add(displayArea);

43. content._add(displayPanel);

44 .

45. JPanel dataPanel = new JPanel();

46. dataPanel .add(new JLabel ("'Message:""));

47. inputTextField = new JTextField(30);

48. dataPanel _.add(inputTextField);

49. content.add(dataPanel);

50.

51. JPanel controlPanel = new JPanel();

52. sendMessage = new JButton(''Send Message');

53. clearDisplay = new JButton(''Clear™);

54. exit = new JButton(Exit'™);

55. controlPanel .add(sendMessage) ;

56. controlPanel .add(clearDisplay);

57. controlPanel .add(exit);

58. content.add(controlPanel);

59.

60. sendMessage.addActionListener(this);

61. clearDisplay.addActionListener(this);

62. exit.addActionListener(this);

63. inputTextField.addActionListener(this);

64.

65. mainFrame.addWindowListener(new WindowCloseManager());

66. mainFrame.pack();

67. mainFrame.setVisible(true);

68. }

69.

70. public void actionPerformed(ActionEvent evt){

71. Object source = evt.getSource();

72. if (source == sendMessage){ sendMessage(); }

73. else if (source == inputTextField){ sendMessage(); }

74. else if (source == clearDisplay){ clearDisplay(Q); }

75. else if (source == exit){ exitApplication(); }

76. }

77 .

78. private class WindowCloseManager extends WindowAdapter{

79. public void windowClosing(WindowEvent evt){

80. exitApplication();

81. }

82. }

83.

84. private void exitApplication(){

85. System.exit(0);

86. }

87.

88. private void clearDisplay(Q{

89. inputTextField.setText(""");

90. display.setText(*""'");

91. }

92.

93. private void sendMessage(){

94. String data = inputTextField.getText();

95. routerClient.sendMessageToRouter(new Message(inputChannel, data));

96. inputTextField.setText(""");

97. }

98.

99. public void receiveMessage(Message message){

100. display.append(message.getMessage() + ""\n"");

101. }

102. }

RunPattern coordinates a demonstration of the pattern by creating a series of RouterGui objects. In the example,
each RouterGui is connected up to some of the others through the Router. This means that a message sent by
RouterGui # 4 will be delivered to al of the GUIs, while one sent from RouterGui # 1 will be sent to GUIs# 2
and 3.

357

Example A.253 RunPattern.java
import java.io.lOException;

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .

45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.

66.
67.
68.
69.

70.
71.

public class

RunPattern{

public static void main(String [] arguments){

System
System
System
System
System
System

.out_printIn(""Example for the Router pattern™);

out_printIn(*"This code same will create a series of GUls, and use™);
.out.printIn(’ the Router pattern to map message notifications between™);
out.printIn(” them. In this code example, the Router will send messages");
out.printIn(’" between the GUI clients based on the following mapping:");
out_printIn(Q);

System._out.printIn(""\tGUI # 1:\tGUI #2\tGUIl #3'");
System.out_printIn("'\tGUl # 2:\tGUl #1\tGUIl #4™");
System.out_printIn("'\tGUl # 3:\tGUl #1\tGUIl #4™");
System.out.printIn(""\tGUI # 4:\tGUI #1I\tGUI #2\tGUIl #3\tGUl #4");
System._out._printin(Q);

System.out.printIn("'Running the RMI compiler (rmic)");

try{

Process pl = Runtime.getRuntime().exec('rmic Router™);
Process p2 = Runtime.getRuntime().exec('rmic RouterClient™);

pl.
p2.

catch

waitFor();
waitFor(Q);

(10Exception exc){

System.err._printIn(""Unable to run rmic utility. Exiting application.');
System.exit(l);

}

catch

(InterruptedException exc){

System.err.printIn(""Threading problems encountered while using the rmic

utility.");

System.out.printIn(’'Starting the rmiregistry');
System._out._printin();
Process rmiProcess = null;

try{

rmiProcess = Runtime.getRuntime().exec("'rmiregistry');
Thread.sleep(15000);

catch (10Exception exc){
System.err.printIn(""Unable to start the rmiregistry. Exiting application.');
System.exit(l);

}

catch (InterruptedException exc){
System.err._printIn(""Threading problems encountered when starting the

}

rmiregistry.");

System.out.printIn("’'Creating the Router object');
System._out._printin();
Router mainRouter = new Router();

Inputkey keyOne = new InputKey();

InputkKey keyTwo

new InputkKey(Q);

InputkKey keyThree = new InputkKey();
InputkKey keyFour = new InputkKey();

System
System

.out.printIn("'Creating the four RouterGui objects');
out_printIn();

RouterGui first = new RouterGui(keyOne);

RouterGui second = new RouterGui(keyTwo);
RouterGui third = new RouterGui(keyThree);
RouterGui fourth = new RouterGui(keyFour);

System
System

out_printIn("'Creating GUl OutputChannel lists for the Router');
.out.printIn();

OutputChannel [] subscriptionListOne =

{ second.getOutputChannel (), third.getOutputChannel () };

OutputChannel [] subscriptionListTwo =

{ first_getOutputChannel (), fourth.getOutputChannel() };

OutputChannel [] subscriptionListThree = { first.getOutputChannel(),

second.getOutputChannel (),

third.getOutputChannel (), fourth.getOutputChannel () };

mainRouter.addRoute(keyOne, subscriptionListOne);
mainRouter.addRoute(keyTwo, subscriptionListTwo);

358

72. mainRouter.addRoute(keyThree, subscriptionListTwo);

73. mainRouter.addRoute(keyFour, subscriptionListThree);
74.

75. first_createGui();

76. second.createGui();

77 . third.createGui();

78. fourth.createGui();

79. }

80. }

359

Transaction

The Personal Information Manager stores appointments based on their date. Naturally, since users lead active
lives, appointments change all the time. A user's appointment book is constantly being updated with new or
changing appointments.

If anumber of users need to agree on a date for an appointment, it would be helpful if their appointment books
could coordinate, arriving at a date that would work for everybody. That's what this example demonstrates—how
the Transaction pattern can be used to allow address books to reschedul e a date for an appointment.

The basic interface that supports transactionsis AppointmentTransactionParticipant. It definesthree
methods to manage transactions (join, commit, and cancel) and the business method changeDate. Thisclassis
aRemote class, sinceit is used to communicate between transaction participants that might reside on different
Java Virtual Machines.

Example A.254 AppointmentTransactionParticipant.java

import java.util_Date;
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface AppointmentTransactionParticipant extends Remote{
public boolean join(long transactionlD) throws RemoteException;
public void commit(long transactionlD) throws TransactionException, RemoteException;
public void cancel(long transactionlD) throws RemoteException;
public boolean changeDate(long transactionlD, Appointment appointment,
Date newStartDate) throws TransactionException, RemoteException;

P OO~NOUD_WNE

0. }

The class AppointmentBook represents a user's calendar, and implements the
AppointmentTransactionParticipant interface. In addition to providing support to change an Appointment
date, the AppointmentBook can initiate a change of an Appointment. Its method changeAppointment accepts a
transaction 1D, an Appointment object, an array of other AppointmentBooks that should be transaction
participants, and an array of possible alternate dates for the appointment. The changeAppointment method
allows one of the AppointmentBook objects to communicate with the others using RMI, calling the changeDate
method on every one of the participants until all agree on an alternate date for the Appointment.

Example A.255 AppointmentBook. java

1. import java.util_ArraylList;

2. import java.util_HashMap;

3. import java.util_Date;

4. import java.rmi.Naming;

5. import java.rmi.server.UnicastRemoteObject;

6. import java.rmi.RemoteException;

7. public class AppointmentBook implements AppointmentTransactionParticipant{
8. private static final String TRANSACTION_SERVICE_PREFIX = "transactionParticipant’;
9. private static final String TRANSACTION_HOSTNAME = "localhost";

10. private static int index = 1;

11. private String serviceName = TRANSACTION_SERVICE_PREFIX + index++;
12. private HashMap appointments = new HashMap();

13. private long currentTransaction;

14. private Appointment currentAppointment;

15. private Date updateStartDate;

16.

17. public AppointmentBook(){

18. try {

19. UnicastRemoteObject.exportObject(this);

20. Naming.rebind(serviceName, this);

21. }

22. catch (Exception exc){

23. System.err._printIn(""Error using RMI to register the AppointmentBook ' + exc);
24. ¥

25. ¥

26.

27. public String getUrl (Q{

28. return "//" + TRANSACTION_HOSTNAME + "/' + serviceName;

29. ¥

30.

31. public void addAppointment(Appointment appointment){

32. if (Tappointments.containsValue(appointment)){

33. if (Tappointments.containskKey(appointment.getStartDate())){
34. appointments.put(appointment.getStartDate(), appointment);

360

35.

37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64 .
65.
66.
67.
68.
69.

70.
71.
72.
73.
74.
75.
76.
77 .
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

88.
89.
90.
91.
92.
93.
94 .
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.

}
¥
}
public void removeAppointment(Appointment appointment){

if (appointments.containsValue(appointment)){
appointments.remove(appointment.getStartDate());

}
}
public boolean join(long transactionliD){
if (currentTransaction = 0){
return false;
} else {
currentTransaction = transactionlD;
return true;
}
}
public void commit(long transactionlD) throws TransactionException{
if (currentTransaction != transactionlID){
throw new TransactionkException("Invalid TransactionlID™);
} else {
removeAppointment(currentAppointment);
currentAppointment.setStartDate(updateStartDate);
appointments._put(updateStartDate, currentAppointment);
¥
¥
public void cancel(long transactionlID){
if (currentTransaction == transactionlID){
currentTransaction = 0;
appointments.remove(updateStartDate);
}

public boolean changeDate(long transactionlD, Appointment appointment,
Date newStartDate) throws TransactionException{
if ((appointments.containsValue(appointment)) && (lappointments.
containsKey(hewStartDate))){
appointments.put(newStartDate, null);
updateStartDate = newStartDate; 1
currentAppointment = appointment;
return true;

return false;

}

public boolean changeAppointmen
AppointmentTransactionP.
try { Y

for (int i = 0; i < participants.length; i++){
if (Iparticipants[i]-join(transactionlID)){

return false;

}

}

for (int i = 0; 1 < possibleDates.length; i++){
if (isDateAvailable(transactionlD, appointment, possibleDates[i],
participants)){
try {
commitAll (transactionlD, participants);
return true;

ntment appointment, Date[] possibleDates,
ipant[] participants, long transactionlD){

catch(TransactionException exc){ }

}
}
catch (RemoteException exc){ }
try{

cancelAll (transactionlD, participants);

catch (RemoteException exc){}
return false;

}

private boolean isDateAvailable(long transactionlD, Appointment appointment,
Date date, AppointmentTransactionParticipant[] participants){
try{
for (int i = 0; 1 < participants.length; i++){
try{
if (Iparticipants[i].changeDate(transactionlD, appointment, date)){
return false;

361

111. }

112.

113. catch (TransactionException exc){

114. return false;

115. ¥

116. }

117.

118. catch (RemoteException exc){

119. return false;

120. }

121. return true;

122. ¥

123. private void commitAll(long transactionlD,
AppointmentTransactionParticipant[]participants)

124. throws TransactionException, RemoteException{

125. for (int i = 0; 1 < participants.length; i++){

126. participants[i].commit(transactionlD);

127. }

128. }

129. private void cancelAll(long transactionlD, AppointmentTransactionParticipant[]
participants)

130. throws RemoteException{

131. for (int i = 0; 1 < participants.length; i++){

132. participants[i].cancel (transactionlD);

133. }

134. ¥

135. public String toString(Q{

136. return serviceName + " " + appointments.values().toString();

137. }

138. }

The TransactionException isasignal exception; it has no special content and gets thrown when an invalid
transactionlD is supplied to some methods. The receiver might report the exception or ignore it, depending on
its processing needs.

Example A.256 TransactionException.java

1. public class TransactionException extends Exception{
2. public TransactionException(String msg){

3. super(msg);

4. }

5. }

Support classes for this example represent the appointment and its elements, Three interfaces— Appointment,
Contact, and Location — define the core business behavior. The classes Appointmentimpl, Contactimpl, and
LocationlImpl provide implementation for the interface behavior.

Example A.257 Appointment.java

1. import java.util_ArraylList;

2. import java.util_Date;

3. import java.io.Serializable;

4. public interface Appointment extends Serializable{

5. public static final String EOL_STRING = System.getProperty(*'line.separator™);
6.

7. public Date getStartDate();

8. public String getDescription();

9. public ArrayList getAttendees();

10. public Location getLocation();

11.

12. public void setDescription(String newDescription);
13. public void setLocation(Location newLocation);

14. public void setStartDate(Date newStartDate);

15. public void setAttendees(ArrayList newAttendees);
16. public void addAttendee(Contact attendee);

17. public void removeAttendee(Contact attendee);

18. }

Example A.258 Appointmentimpl .java

1. import java.util_ArraylList;

2. import java.util.Date;

3. public class Appointmentimpl implements Appointment{
4. private Date startDate;

5. private String description;

6. private ArraylList attendees = new ArrayList();

7. private Location location;

362

8.

9. public Appointmentimpl(String newDescription, ArrayList newAttendees,
10. Location newLocation, Date newStartDate){

11. description = newDescription;

12. attendees = newAttendees;

13. location = newLocation;

14. startDate = newStartDate;

15. }

16.

17. public Date getStartDate(){ return startDate; }

18. public String getDescription(){ return description; }
19. public ArrayList getAttendees(){ return attendees; }
20. public Location getLocation(){ return location; }

21.

22. public void setDescription(String newDescription){ description = newDescription; }
23. public void setLocation(Location newLocation){ location = newLocation; }
24. public void setStartDate(Date newStartDate){ startDate = newStartDate; }
25. public void setAttendees(ArrayList newAttendees){

26. if (newAttendees = null){

27. attendees = newAttendees;

28. }

29. }

30.

31. public void addAttendee(Contact attendee){

32. if (lattendees.contains(attendee)){

33. attendees.add(attendee);

34. }

35. }

36.

37. public void removeAttendee(Contact attendee){

38. attendees.remove(attendee);

39. }

40.

41. public int hashCode(){

42. return description.hashCode() ™ startDate.hashCode();
43. }

44 .

45. public boolean equals(Object object){

46. if (I(object instanceof Appointmentimpl)){

47 . return false;

48. }

49. if (object.hashCode() !'= hashCode()){

50. return false;

51. }

52. return true;

53. }

54.

55. public String toString(){

56. return " Description: " + description + EOL_STRING +
57. " Start Date: " + startDate + EOL_STRING +

58. " Location: " + location + EOL_STRING +

59. " Attendees: " + attendees;

60. }

61. 1}

Example A.259 contact. java

1. import java.io.Serializable;

2. public interface Contact extends Serializable{

3. public static final String SPACE = " '';

4. public String getFirstName();

5. public String getLastName();

6. public String getTitle();

7. public String getOrganization();

8.

9. public void setFirstName(String newFirstName);
10. public void setLastName(String newlLastName);
11. public void setTitle(String newTitle);

12. public void setOrganization(String newOrganization);
13. }

Example A.260 Contactimpl .java

1. public class Contactimpl implements Contact{
2. private String FirstName;

3. private String lastName;

4. private String title;

5. private String organization;

6.

363

7. public ContactimplOQ{}

8. public Contactlmpl(String newFirstName, String newLastName,

9. String newTitle, String newOrganization){

10. FfirstName = newFirstName;

11. lastName = newLastName;

12. title = newTitle;

13. organization = newOrganization;

14. }

15.

16. public String getFirstName(){ return firstName; }

17. public String getLastName(){ return lastName; }

18. public String getTitle(Q{ return title; }

19. public String getOrganization(){ return organization; }

20.

21. public void setFirstName(String newFirstName){ firstName = newFirstName; }
22. public void setLastName(String newLastName){ lastName = newLastName; }
23. public void setTitle(String newTitle){ title = newTitle; }

24. public void setOrganization(String newOrganization){ organization = newOrganization; }
25.

26. public String toString(Q{

27. return firstName + SPACE + lastName;

28. }

29. }

Example A.261 Location.java

1. import java.io.Serializable;

2. public interface Location extends Serializable{

3. public String getLocation();

4. public void setLocation(String newLocation);

5. }

Example A.262 LocationImpl.java

1. public class LocationIlmpl implements Location{

2. private String location;

3.

4. public LocationimplQ{ }

5. public LocationImpl(String newLocation){

6. location = newlLocation;

7. }

8.

9. public String getLocation(){ return location; }
10.

11. public void setLocation(String newLocation){ location = newLocation; }
12.

13. public String toString(){ return location; }
14. 3}

RunPattern demonstrates coordination among the AddressBook objects to reschedul e an appointment. It creates
three AddressBooks, setting up conflict-ing appointmentsin two of them. Next, it instructs an AddressBook to
update the appointment. This results in an appointment in the address books with the first start time available to
al three AddressBooks: 12 noon.

Example A.263 RunPattern.java

1. import java.io.lOException;

2. import java.rmi.Naming;

3. import java.util.Date;

4. import java.util.Calendar;

5. import java.util_ArraylList;

6. public class RunPattern{

7. private static Calendar dateCreator = Calendar.getlnstance();

8.

9. public static void main(String [] arguments){

10. System.out._printIn("'Example for the Transaction pattern'™);

11. System._out._printIn("'This code example shows how a Transaction can');
12. System.out.printIn(’" be applied to support change across a distributed");
13. System.out.printIn(’" system. In ths case, a distributed transaction');
14. System.out.printIn(’" is used to coordinate the change of dates iIn');
15. System._out._printIn(’" appointment books.™);

16.

17. System.out.printIn("'Running the RMI compiler (rmic)");

18. System.out.printin(Q;

19. try{

20. Process pl = Runtime.getRuntime().exec('rmic AppointmentBook™);
21. pl.waitFor();

364

22. }

23. catch (10Exception exc){

24. System.err._printIn(""Unable to run rmic utility. Exiting application.');

25. System.exit(l);

26. }

27. catch (InterruptedException exc){

28. System.err.printIn(""Threading problems encountered while using the rmic utility.');

29. }

30.

31. System.out.printIn(’'Starting the rmiregistry');

32. System.out.printin(Q;

33. try{

34. Process rmiProcess = Runtime.getRuntime().exec('rmiregistry');

35. Thread.sleep(15000);

36. }

37. catch (10Exception exc){

38. System.err.printIn(""Unable to start the rmiregistry. Exiting application.');

39. System.exit(l);

40.

41. catch (InterruptedException exc){

42. System.err.printIn(""Threading problems encountered when starting the rmiregistry.');

43. }

44 .

45. System._out._printIn(’’'Creating three appointment books™);

46. System.out.printin(Q;

47. AppointmentBook apptBookOne = new AppointmentBook();

48. AppointmentBook apptBookTwo = new AppointmentBook();

49. AppointmentBook apptBookThree = new AppointmentBook();

50.

51. System.out.printIn(''Creating appointments');

52. System.out.printin(Q;

53. Appointment apptOne = new Appointmentimpl(*'Swim relay to Kalimantan (or Java)', new
ArrayList(),

54. new Locationlmpl(*'Sidney, Australia'), createDate(2001, 11, 5, 11, 0));

55. Appointment apptTwo = new Appointmentimpl (""Conference on World Patternization', new
ArrayList(),

56. new Locationlmpl(*'London, England'), createDate(2001, 11, 5, 14, 0));

57. Appointment apptThree = new AppointmentImpl(*’'Society for the Preservation of Java
- Annual Outing",

58. new ArrayList(), new Locationlmpl (’Kyzyl, Tuva'), createDate(2001, 11, 5, 10,

0));

59.

60. System.out.printIn("’'Adding appointments to the appointment books™);

61. System.out._printin();

62. apptBookOne.addAppointment(apptThree);

63. apptBookTwo.addAppointment(apptOne);

64. apptBookOne.addAppointment(apptTwo);

65. apptBookTwo .addAppointment(apptTwo) ;

66. apptBookThree.addAppointment(apptTwo);

67.

68. System.out.printin("'AppointmentBook contents:');

69. System.out.printin(Q;

70. System.out.printin(apptBookOne);

71. System.out.printin(apptBookTwo) ;

72. System.out.printin(apptBookThree);

73. System.out.printin(Q;

74.

75. System.out.printIn("'Rescheduling an appointment™);

76. System_out._printin(Q);

77 . System.out.printin(Q;

78. boolean result = apptBookThree.changeAppointment(apptTwo, getDates(2001, 11, 5, 10,

3,
79. lookUpParticipants(new String[] { apptBookOne.getUrl(), apptBookTwo.getUrl(),
apptBookThree.geturl () 1}),

80. 20000L) ;

81.

82. System.out.printIn("'Result of rescheduling was " + result);

83. System._out._printIn("'AppointmentBook contents:');

84. System._out._printin();

85. System.out.printin(apptBookOne);

86. System.out.printin(apptBookTwo);

87. System.out.printin(apptBookThree);

88. }

89.

90. private static AppointmentTransactionParticipant|[] lookUpParticipants(String[]
remoteUrils){

91. AppointmentTransactionParticipant[] returnValues =

92. new AppointmentTransactionParticipant[remoteUrls.length];

365

93.
94 .
95.

96.

97.

98.

99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.

}

for (int i = 0; 1 < remoteUrls.length; i++){
try {
returnValues[i] = (AppointmentTransactionParticipant)
Naming. lookup(remoteUrls[i]);
}
catch (Exception exc){
System.out.printIn(Error using RMI to look up a transaction participant');
}
}

return returnValues;

}

private static Date[] getDates(int year, int month, int day, int hour, int increment){
Date[] returnDates = new Date[increment];
for (int i = 0; 1 < increment; i++){
returnDates[i] = createDate(year, month, day, hour + i, 0);
}

return returnDates;

}

public static Date createDate(int year, int month, int day, int hour, int minute){
dateCreator.set(year, month, day, hour, minute);
return dateCreator.getTime();

}

366

Appendix B.
Pattern Origins
This section lists the original source for each pattern

Creational Patterns

Abstract Factory GoF
Builder GoF
Factory Method GoF
Prototype GoF
Singleton GoF

Behavioral Patterns

Chain of Responsibility GoF
Command GoF
Interpreter GoF
Iterator GoF
Mediator GoF
Momento GoF
Observer GoF
State GoF
Strategy GoF
Template Method GoF
MVC GoF
Visitor GoF
Structural Patterns

Adapter GoF

Bridge GoF

Composite GoF

Decorator GoF

Facade GoF

Flyweight GoF

HOPP Coplien

Proxy GoF

System Patterns

Session Lea0l
Worker Thread Lea0l
Callback Lea0l
Successive Update [Noneg]
Router DPCS
(based on Non-Blocking Buffered I/O Pattern)

Transaction Lea0l

367

[CI2EEP]

Deepak Alur, John Crupi, Dan Malks
Core J2EE Patterns

Prentice Hall, 2001

ISBN 0-13-066586-X

[BlochO1]

Joshua Bloch,

Effective Java, Programming Language Guide
Addison Wesley, 2001

ISBN 0-201-31005-8

[Coplien]

Jim O. Coplien, Douglas C. Schmidt (Editors)
Pattern Languages of Program Design Addison-Wesley, 1995
ISBN 0-201-60734-4

[DPCS]

Design Patterns for Communications Software
Linda Rising (Editor)

Cambridge University Press, 2000

ISBN 0-521-79040-9

[Fowler00]

Martin Fowler

UML Distilled, Second Edition
Addison Wesley, 2000

ISBN 0-201-65783-X

[GoF]

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Design Patterns, Elements of Reusable Object-Oriented Software
Addison Wesley, 1995

ISBN 0-201-63361-2

[LeaO0]

Doug Lea

Concurrent Programming in Java, Second Edition
Addison Wesley, 2000

ISBN 0-201-31009-0

368

[JLS]

Bill Joy (Editor), Guy Steele, James Gosling, Gilad Bracha
The Java Language Specification, Second Edition

Addison Wesley, 2000

ISBN 0-201-31008-2

[JBS]

JavaBeans Specification 1.01
http://java.sun.com/products/javabeans/docs/spec.html

[J2EEQO]

Bill Shannon, Mark Hapner, Vlada Matena, James Davidson,

Eduardo Pelegri-Llopart, Larry Cable, Enterprise Team

Java 2 Platform, Enterprise Edition, Platform and Component Specification
Addison Wesley, 2000

ISBN 0-201-70456-0

[Jinio1]

Jm Waldo, the Jini Technology Team
The Jini Specifications, Second Edition
Addison Wesley, 2001

ISBN 0-201-72617-3

369

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Applied Java Patterns v1.4.pdf
	Table of Content
	Preface
	Why We Wrote This Book
	What This Book Is About
	Who Should Read This Book
	Conventions Used
	
	Figure 1. Example class diagram

	How This Book Is Organized
	How to Use This Book
	Companion Web Site
	Acknowledgments
	Why Patterns?
	History of the Patterns Movement
	Basic Concepts in Patterns
	Software Abstraction and Reuse
	Summary

	Part I: Commonly Used Patterns
	Chapter 1. Creational Patterns
	Introduction to Creational Patterns
	Abstract Factory
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 1.1. Abstract Factory class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 1.1 AddressFactory.java
	Example 1.2 Address.java
	Example 1.3 PhoneNumber.java
	Example 1.4 USAddressFactory.java
	Example 1.5 USAddress.java
	Example 1.6 USPhoneNumber.java
	Example 1.7 FrenchAddressFactory.java
	Example 1.8 FrenchAddress.java
	Example 1.9 FrenchPhoneNumber.java

	Builder
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 1.2. Builder class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 1.10 AppointmentBuilder.java
	Example 1.11 Appointment.java
	Example 1.12 Scheduler.java
	Example 1.13 MeetingBuilder.java

	Factory Method
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 1.3. Factory Method class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 1.14 Editable.java
	Example 1.15 ItemEditor.java
	Example 1.16 Contact.java

	Prototype
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 1.4. Prototype class diagram

	Benefits and Drawbacks
	Figure 1.5. Example of Prototype use

	Pattern Variants
	Example 1.17 Copy constructor

	Related Patterns
	Example
	Example 1.18 Copyable.java
	Example 1.19 Address.java

	Singleton
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 1.6. Singleton class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 1.20 HistoryList.java

	Chapter 2. Behavioral Patterns
	Introduction to Behavioral Patterns
	Chain of Responsibility
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Figure 2.1. Chain of Responsibility sequence diagram

	Implementation
	Figure 2.2. Chain of Responsibility class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.1 ProjectItem.java
	Example 2.2 Project.java
	Example 2.3 Task.java

	Command
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Figure 2.3. Sequence diagram for invocation of Command

	Implementation
	Figure 2.4. Command class diagram

	Benefits and Drawbacks
	Pattern Variants
	Figure 2.5. Class diagram showing both the undo and MacroCommand variant

	Related Patterns
	Example
	Example 2.4 Command.java
	Example 2.5 UndoableCommand.java
	Example 2.6 Appointment.java
	Example 2.7 ChangeLocationCommand.java

	Interpreter
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.6. Interpreter class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Table?2-1. Purpose of the Expression interface and its implementers
	Example 2.8 Expression.java
	Example 2.9 ConstantExpression.java
	Example 2.10 VariableExpression.java
	Example 2.11 CompoundExpression.java
	Example 2.12 AndExpression.java
	Example 2.13 OrExpression.java
	Example 2.14 ComparisonExpression.java
	Example 2.15 EqualsExpression.java
	Example 2.16 ContainsExpression.java
	Example 2.17 Context.java
	Example 2.18 ContactList.java

	Iterator
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.7. Iterator class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.19 Iterating.java
	Example 2.20 ToDoList.java
	Example 2.21 ToDoListCollection.java
	Example 2.22 ToDoListCollectionImpl.java
	Example 2.23 ToDoListImpl.java
	Example 2.24 ListPrinter.java

	Mediator
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.8. Mediator class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.25 MediatorGui.java
	Example 2.26 ContactDisplayPanel.java
	Example 2.27 ContactSelectorPanel.java
	Example 2.28 ContactEditorPanel.java
	Example 2.29 ContactMediator.java
	Example 2.30 ContactMediatorImpl.java

	Memento
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.9. Memento class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.31 AddressBook.java

	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.10. Observable class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.32 TaskChangeObservable.java
	Example 2.33 TaskChangeObserver.java
	Example 2.34 ObserverGui.java
	Example 2.35 TaskEditorPanel.java
	Example 2.36 TaskHistoryPanel.java
	Example 2.37 TaskSelectorPanel.java

	State
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Figure 2.11. State transition diagram for a door

	Implementation
	Figure 2.12. State class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Figure 2.13. State transition diagram for a file
	Example 2.38 State.java
	Example 2.39 CalendarEditor.java
	Example 2.40 StateGui.java

	Strategy
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Benefits and Drawbacks
	Implementation
	Figure 2.14. Strategy class diagram

	Pattern Variants
	Related Patterns
	Example
	Example 2.41 ContactList.java
	Example 2.42 SummarizingStrategy.java
	Example 2.43 NameSummarizer.java
	Example 2.44 OrganizationSummarizer.java

	Visitor
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.15. Visitor class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.45 ProjectItem.java
	Example 2.46 Deliverable.java
	Example 2.47 DependentTask.java
	Example 2.48 Project.java
	Example 2.49 Task.java
	Example 2.50 ProjectVisitor.java
	Example 2.51 ProjectCostVisitor.java

	Template Method
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 2.16. Template Method class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 2.52 ProjectItem.java
	Example 2.53 Deliverable.java
	Example 2.54 Task.java

	Chapter 3. Structural Patterns
	Introduction to Structural Patterns
	Adapter
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.1. Adapter class diagram interface
	Table?3-1. Example action map
	Figure 3.2. Sequence diagram for action mapping

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.1 Chovnatlh.java
	Example 3.2 ChovnatlhImpl.java
	Example 3.3 Contact.java
	Example 3.4 ContactAdapter.java

	Bridge
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Table?3-2. Class coding requirements

	Comparison of Inheritance Pattern and Bridge Pattern
	Implementation
	Figure 3.3. Bridge class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.5 ListImpl.java
	Example 3.6 OrderedListImpl.java
	Example 3.7 BaseList.java
	Example 3.8 NumberedList.java

	Composite
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.4. Composite class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Figure 3.5. Composite class diagram for the code example
	Example 3.9 ProjectItem.java
	Example 3.10 Deliverable.java
	Example 3.11 Project.java
	Example 3.12 Project.java
	Example 3.13 Task.java

	Decorator
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.6. Decorator class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.14 ProjectItem.java
	Example 3.15 Deliverable.java
	Example 3.16 Task.java
	Example 3.17 ProjectDecorator.java
	Example 3.18 DependentProjectItem.java
	Example 3.19 SupportedProjectItem.java

	Facade
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.7. Facade object diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.20 InternationalizationWizard.java
	Example 3.21 Currency.java
	Example 3.22 InternationalizedText.java
	Example 3.23 PhoneNumber.java
	Example 3.24 Nation.java

	Flyweight
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.8. Flyweight class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.25 State.java
	Example 3.26 CleanState.java
	Example 3.27 DirtyState.java
	Example 3.28 StateFactory.java

	Half-Object Plus Protocol (HOPP)
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.9. HOPP class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.29 Calendar.java
	Example 3.30 CalendarImpl.java
	Example 3.31 CalendarHOPP.java

	Proxy
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 3.10. Proxy class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 3.32 AddressBook.java
	Example 3.33 AddressBookProxy.java
	Example 3.34 AddressBookImpl.java

	Chapter 4. System Patterns
	Introduction to System Patterns
	Model-View-Controller (MVC)
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 4.1. MVC component diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 4.1 ContactModel.java
	Example 4.2 ContactView.java
	Example 4.3 ContactDisplayView.java
	Example 4.4 ContactEditView.java
	Example 4.5 ContactEditController.java

	Session
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Stateful and Stateless Communication
	Applications Often Require Stateful Communication
	Session Pattern and Stateful Communication
	Real-World Stateful Communication
	Implementation
	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Figure 4.2. Session component for a client-matching session
	Figure 4.3. Session component for server-maintained sessions
	Figure 4.4. Session tracker
	Example 4.6 SessionClient.java
	Example 4.7 SessionServer.java
	Example 4.8 SessionServerImpl.java
	Example 4.9 SessionServerDelegate.java

	Worker Thread
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 4.5. Worker Thread class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 4.10 Queue.java
	Example 4.11 RunnableTask.java
	Example 4.12 ConcreteQueue.java
	Example 4.13 AddressRetriever.java
	Example 4.14 ContractRetriever.java

	Callback
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 4.6. Callback component diagram
	Figure 4.7. Callback sequence diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 4.15 CallbackServer.java
	Example 4.16 CallbackServerImpl.java
	Example 4.17 CallbackServerDelegate.java
	Example 4.18 CallbackClient.java
	Example 4.19 CallbackClientImpl.java

	Successive Update
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Client Pull
	Figure 4.8. Successive Update sequence diagram (client pull)

	Server Push
	Figure 4.9. Successive Update sequence diagram (server push)

	Implementation
	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 4.20 PullClient.java
	Example 4.21 ClientPullRequester.java
	Example 4.22 ClientPullServer.java
	Example 4.23 ClientPullServerImpl.java
	Example 4.24 UpdateServerDelegate.java

	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 4.10. Router class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 4.25 Message.java
	Example 4.26 InputChannel.java
	Example 4.27 OutputChannel.java
	Example 4.28 Router.java

	Transaction
	Pattern Properties
	Purpose
	Introduction
	Applicability
	Description
	Implementation
	Figure 4.11. Transaction class diagram

	Benefits and Drawbacks
	Pattern Variants
	Related Patterns
	Example
	Example 4.29 AppointmentTransactionParticipant.java
	Example 4.30 AppointmentBook.java

	Part II: Patterns in the Java Programming Language
	Chapter 5. Introduction to Java Programming Language Patterns
	Chapter 6. Java Core APIs
	Event Handling
	Packages
	Overview
	Pattern Use

	JavaBeans
	Packages
	Overview
	Pattern Use

	AWT and Swing – The Graphical User Interface APIs
	Packages
	Common Features
	The AWT Architectural Model
	Benefits
	Drawbacks

	The Swing Architectural Model
	Table?6-1. AWT and Swing classes

	General Pattern Use
	Pattern Use in AWT
	Pattern Use in Swing

	Collections Framework
	Packages
	Description
	Example 6.1 Collections class and threadsafe versions of collections

	Pattern Use
	Table?6-2. Method names and functionality

	Input-Output (I/O)
	Packages
	Description
	Table?6-3. Stream types in the java.io package
	Example 6.2 Streams in Java

	Pattern Use

	Reflection
	Packages
	Overview
	Example 6.3 Using instances of unknown origin

	Pattern Use

	Chapter 7. Distributed Technologies
	Java Naming and Directory Interface (JNDI)
	Packages
	Description
	Example 7.1 Using JNDI
	Table?7-1. Packages and corresponding use

	Pattern Use

	JDBC
	Packages
	Overview
	Example 7.2 Obtaining results from a database

	Pattern Use

	RMI
	Packages
	Overview
	Pattern Use

	CORBA
	Packages
	Overview
	Java and CORBA
	Pattern Use

	Chapter 8. Jini and J2EE Architectures
	Jini
	Packages
	Description
	Lookup Service

	Distributed Events
	Pattern Use

	Java 2, Enterprise Edition (J2EE)
	Overview
	Core J2EE Concepts
	J2EE Tiers
	Core Technical Concepts
	Core Component Technologies
	Communication and the Connector Technologies
	Main J2EE Resources

	Component Patterns

	Servlets and JSPs
	Packages
	Overview
	Main API Elements
	Life Cycle
	JavaServer Pages

	Pattern Use
	Table?Table 8-1 Interfaces and corresponding purpose

	Enterprise JavaBeans
	Packages
	Description
	General Pattern Use
	Connector Pattern Use: Factory Method
	Architectural Pattern Use

	Appendix A. Full Code Examples
	System Requirements
	Creational Pattern Code Examples
	
	Example A.1 AddressFactory.java
	Example A.2 Address.java
	Example A.3 PhoneNumber.java
	Example A.4 USAddressFactory.java
	Example A.5 USAddress.java
	Example A.6 USPhoneNumber.java
	Example A.7 FrenchAddressFactory.java
	Example A.8 FrenchAddress.java
	Example A.9 FrenchPhoneNumber.java
	Example A.10 RunPattern.java
	Example A.11 AppointmentBuilder.java
	Example A.12 Appointment.java
	Example A.13 Scheduler.java
	Example A.14 MeetingBuilder.java
	Example A.15 InformationRequiredException.java
	Example A.16 Location.java
	Example A.17 LocationImpl.java
	Example A.18 Contact.java
	Example A.19 ContactImpl.java
	Example A.20 RunPattern.java
	Example A.21 Editable.java
	Example A.22 ItemEditor.java
	Example A.23 Contact.java
	Example A.24 EditorGui.java
	Example A.25 RunPattern.java
	Example A.26 Copyable.java
	Example A.27 Address.java
	Example A.28 RunPattern.java
	Example A.29 HistoryList.java
	Example A.30 SingletonGUI.java
	Example A.31 RunPattern.java

	Behavioral Pattern Code Examples
	
	Example A.32 ProjectItem.java
	Example A.33 Project.java
	Example A.34 Task.java
	Example A.35 Contact.java
	Example A.36 ContactImpl.java
	Example A.37 DataCreator.java
	Example A.38 DataRetriever.java
	Example A.39 RunPattern.java
	Example A.40 Command.java
	Example A.41 UndoableCommand.java
	Example A.42 Appointment.java
	Example A.43 ChangeLocationCommand.java
	Example A.44 CommandGui.java
	Example A.45 LocationEditor.java
	Example A.46 Contact.java
	Example A.47 ContactImpl.java
	Example A.48 Location.java
	Example A.49 LocationImpl.java
	Example A.50 RunPattern.java
	Table?A-1. Purpose of the Expression interface and its implementers
	Example A.51 Expression.java
	Example A.52 ConstantExpression.java
	Example A.53 VariableExpression.java
	Example A.54 CompoundExpression.java
	Example A.55 AndExpression.java
	Example A.56 OrExpression.java
	Example A.57 ComparisonExpression.java
	Example A.58 EqualsExpression.java
	Example A.59 ContainsExpression.java
	Example A.60 Context.java
	Example A.61 ContactList.java
	Example A.62 Contact.java
	Example A.63 ContactImpl.java
	Example A.64 RunPattern.java
	Example A.65 Iterating.java
	Example A.66 ToDoList.java
	Example A.67 ToDoListCollection.java
	Example A.68 ToDoListCollectionImpl.java
	Example A.69 ToDoListImpl.java
	Example A.70 ListPrinter.java
	Example A.71 DataCreator.java
	Example A.72 DataRetriever.java
	Example A.73 RunPattern.java
	Example A.74 MediatorGui.java
	Example A.75 ContactDisplayPanel.java
	Example A.76 ContactSelectorPanel.java
	Example A.77 ContactEditorPanel.java
	Example A.78 ContactMediator.java
	Example A.79 ContactMediatorImpl.java
	Example A.80 Contact.java
	Example A.81 ContactImpl.java
	Example A.82 RunPattern.java
	Example A.83 AddressBook.java
	Example A.84 Address.java
	Example A.85 AddressImpl.java
	Example A.86 Contact.java
	Example A.87 ContactImpl.java
	Example A.88 RunPattern.java
	Example A.89 TaskChangeObservable.java
	Example A.90 TaskChangeObserver.java
	Example A.91 ObserverGui.java
	Example A.92 TaskEditorPanel.java
	Example A.93 TaskHistoryPanel.java
	Example A.94 TaskSelectorPanel.java
	Example A.95 Task.java
	Example A.96 RunPattern.java
	Figure A.1. State transition diagram for a file
	Example A.97 State.java
	Example A.98 CalendarEditor.java
	Example A.99 StateGui.java
	Example A.100 Appointment.java
	Example A.101 Contact.java
	Example A.102 ContactImpl.java
	Example A.103 Location.java
	Example A.104 LocationImpl.java
	Example A.105 DataCreator.java
	Example A.106 FileLoader.java
	Example A.107 RunPattern.java
	Example A.108 ContactList.java
	Example A.109 SummarizingStrategy.java
	Example A.110 NameSummarizer.java
	Example A.111 OrganizationSummarizer.java
	Example A.112 Contact.java
	Example A.113 ContactImpl.java
	Example A.114 DataCreator.java
	Example A.115 DataRetriever.java
	Example A.116 RunPattern.java
	Example A.117 ProjectItem.java
	Example A.118 Deliverable.java
	Example A.119 DependentTask.java
	Example A.120 Project.java
	Example A.121 Task.java
	Example A.122 ProjectVisitor.java
	Example A.123 ProjectCostVisitor.java
	Example A.124 Contact.java
	Example A.125 ContactImpl.java
	Example A.126 DataCreator.java
	Example A.127 DataRetriever.java
	Example A.128 RunPattern.java
	Example A.129 ProjectItem.java
	Example A.130 Deliverable.java
	Example A.131 Task.java
	Example A.132 RunPattern.java

	Structural Pattern Code Examples
	
	Example A.133 Chovnatlh.java
	Example A.134 ChovnatlhImpl.java
	Example A.135 Contact.java
	Example A.136 ContactAdapter.java
	Example A.137 Contact.java
	Example A.138 ListImpl.java
	Example A.139 OrderedListImpl.java
	Example A.140 BaseList.java
	Example A.141 NumberedList.java
	Example A.142 OrnamentedList.java
	Example A.143 RunPattern.java
	Example A.144 ProjectItem.java
	Example A.145 Deliverable.java
	Example A.146 Project.java
	Example A.147 Project.java
	Example A.148 Task.java
	Example A.149 Contact.java
	Example A.150 ContactImpl.java
	Example A.151 DataCreator.java
	Example A.152 DataRetriever.java
	Example A.153 RunPattern.java
	Example A.154 ProjectItem.java
	Example A.155 Deliverable.java
	Example A.156 Task.java
	Example A.157 ProjectDecorator.java
	Example A.158 DependentProjectItem.java
	Example A.159 SupportedProjectItem.java
	Example A.160 Contact.java
	Example A.161 ContactImpl.java
	Example A.162 RunPattern.java
	Example A.163 InternationalizationWizard.java
	Example A.164 Currency.java
	Example A.165 InternationalizedText.java
	Example A.166 PhoneNumber.java
	Example A.167 Nation.java
	Example A.168 FacadeGui.java
	Example A.169 DataCreator.java
	Example A.170 RunPattern.java
	Example A.171 State.java
	Example A.172 CleanState.java
	Example A.173 DirtyState.java
	Example A.174 StateFactory.java
	Example A.175 ManagedList.java
	Example A.176 Address.java
	Example A.177 AddressImpl.java
	Example A.178 Contact.java
	Example A.179 ContactImpl.java
	Example A.180 RunPattern.java
	Example A.181 Calendar.java
	Example A.182 CalendarImpl.java
	Example A.183 CalendarHOPP.java
	Example A.184 Appointment.java
	Example A.185 Contact.java
	Example A.186 ContactImpl.java
	Example A.187 Location.java
	Example A.188 LocationImpl.java
	Example A.189 FileLoader.java
	Example A.190 RunPattern.java
	Example A.191 AddressBook.java
	Example A.192 AddressBookProxy.java
	Example A.193 AddressBookImpl.java
	Example A.194 FileLoader.java
	Example A.195 Address.java
	Example A.196 AddressImpl.java
	Example A.197 DataCreator.java
	Example A.198 RunPattern.java

	System Pattern Code Examples
	
	Example A.199 ContactModel.java
	Example A.200 ContactView.java
	Example A.201 ContactDisplayView.java
	Example A.202 ContactEditView.java
	Example A.203 ContactEditController.java
	Example A.204 RunPattern.java
	Example A.205 SessionClient.java
	Example A.206 SessionServer.java
	Example A.207 SessionServerImpl.java
	Example A.208 SessionServerDelegate.java
	Example A.209 SessionException.java
	Example A.210 Address.java
	Example A.211 AddressImpl.java
	Example A.212 Contact.java
	Example A.213 ContactImpl.java
	Example A.214 RunPattern.java
	Example A.215 Queue.java
	Example A.216 RunnableTask.java
	Example A.217 ConcreteQueue.java
	Example A.218 AddressRetriever.java
	Example A.219 ContractRetriever.java
	Example A.220 ServerDataStore.java
	Example A.221 ServerDataStoreImpl.java
	Example A.222 Address.java
	Example A.223 AddressImpl.java
	Example A.224 Contact.java
	Example A.225 ContactImpl.java
	Example A.226 RunPattern.java
	Example A.227 CallbackServer.java
	Example A.228 CallbackServerImpl.java
	Example A.229 CallbackServerDelegate.java
	Example A.230 CallbackClient.java
	Example A.231 CallbackClientImpl.java
	Example A.232 Project.java
	Example A.233 ProjectItem.java
	Example A.234 Task.java
	Example A.235 RunPattern.java
	Example A.236 PullClient.java
	Example A.237 ClientPullRequester.java
	Example A.238 ClientPullServer.java
	Example A.239 ClientPullServerImpl.java
	Example A.240 UpdateServerDelegate.java
	Example A.241 Task.java
	Example A.242 TaskImpl.java
	Example A.243 UpdateException.java
	Example A.244 RunPattern.java
	Example A.245 Message.java
	Example A.246 InputChannel.java
	Example A.247 OutputChannel.java
	Example A.248 Router.java
	Example A.249 InputKey.java
	Example A.250 RouterClient.java
	Example A.251 Receiver.java
	Example A.252 RouterGui.java
	Example A.253 RunPattern.java
	Example A.254 AppointmentTransactionParticipant.java
	Example A.255 AppointmentBook.java
	Example A.256 TransactionException.java
	Example A.257 Appointment.java
	Example A.258 AppointmentImpl.java
	Example A.259 Contact.java
	Example A.260 ContactImpl.java
	Example A.261 Location.java
	Example A.262 LocationImpl.java
	Example A.263 RunPattern.java

	Appendix B.
	Pattern Origins
	Creational Patterns
	Behavioral Patterns
	Structural Patterns
	System Patterns
	[CJ2EEP]
	[Bloch01]
	[Coplien]
	[DPCS]
	[Fowler00]
	[GoF]
	[Lea00]
	[JLS]
	[JBS]
	[J2EE00]
	[Jini01]

