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Preface 

The primary goal of this book is to teach the IA-32 assembly language programming under 
the Linux operating system. A secondary objective is to provide a gende introduction to the 
Fedora Linux operating system. Linux has evolved substantially since its first appearance in 
1991. Over the years, its popularity has grown as well. According to an estimate posted on 
h t t p : / / c o u n t e r . l i . o r g / , there are about 18 million Linux users worldwide. Hopefully, 
this book encourages even more people to switch to Linux. 

The book is self-contained and provides all the necessary background information. Since 
assembly language is very closely linked to the underlying processor architecture, a part of the 
book is dedicated to giving computer organization details. In addition, the basics of Linux are 
introduced in a separate chapter. These details are sufficient to work with the Linux operation 
system. 

The reader is assumed to have had some experience in a structured, high-level language such 
as C. However, the book does not assume extensive knowledge of any high-level language—only 
the basics are needed. 

Approach and Level of Presentation 
The book is targeted for software professionals who would like to move to Linux and get a com­
prehensive introduction to the IA-32 assembly language. It provides detailed, step-by-step instruc­
tions to install Linux as the second operating system. 

No previous knowledge of Linux is required. The reader is introduced to Linux and its com­
mands. Four chapters are dedicated to Linux and NASM assembler (installation and usage). The 
accompanying DVD-ROMs provide the necessary software to install the Linux operating system 
and learn assembly language programming. 

The assembly language is presented from the professional viewpoint. Since most professionals 
are full-time employees, the book takes their time constraints into consideration in presenting the 
material. 
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Summary of Special Features 
Here is a summary of the special features that sets this book apart: 

• The book includes the Red Hat Fedora Core 3 Linux distribution (a total of two DVD-ROMs 
are included with the book). Detailed step-by-step instructions are given to install Linux on 
a Windows machine. A complete chapter is used for this purpose, with several screenshots 
to help the reader during the installation process. 

• Free NASM assembler is provided so that the readers can get hands-on assembly language 
programming experience. 

• Special I/O software is provided to simplify assembly language programming. A set of input 
and output routines is provided so that the reader can focus on writing assembly language 
programs rather than spending time in understanding how the input and output are done 
using the basic I/O functions provided by the operating system. 

• Three chapters are included on computer organization. These chapters provide the necessary 
background to program in the assembly language. 

• Presentation of material is suitable for self-study. To facilitate this, extensive programming 
examples and figures are used to help the reader grasp the concepts. Each chapter contains 
a simple programming example in "Our First Program" section to gently introduce the con­
cepts discussed in the chapter. This section is typically followed by "Illustrative Examples" 
section, which gives more programming examples. 

• This book does not use fragments of code in examples. All examples are complete in 
the sense that they can be assembled and run, giving a better feeling as to how these pro­
grams work. These programs are on the accompanying DVD-ROM (DVD 2). In addition, 
you can also download these programs from the book's Web site at the following URL: 
http://www.scs.carleton.ca/~sivarama/linux_book. 

• Each chapter begins with an overview and ends with a summary. 

Overview of the Book 
The book is divided into seven parts. Part I provides introduction to the assembly language and 
gives reasons for programming in the assembly language. Assembly language is a low-level lan­
guage. To program in the assembly language, you should have some basic knowledge about the 
underlying processor and system organization. Part II provides this background on computer orga­
nization. Chapter 2 introduces the digital logic circuits. The next chapter gives details on memory 
organization. Chapter 4 describes the Intel IA-32 architecture. 

Part III covers the topics related to Linux installation and usage. Chapter 5 gives detailed 
information on how you can install the Fedora Core Linux provided on the accompanying DVD-
ROMs. It also explains how you can make your system dual bootable so that you can select the 
operating system (Windows or Linux) at boot time. Chapter 6 gives a brief introduction to the 
Linux operating system. It gives enough details so that you feel comfortable using the Linux 
operating system. If you are familiar with Linux, you can skip this chapter. 

Part IV also consists of two chapters. It deals with assembling and debugging assembly lan­
guage programs. Chapter 7 gives details on the NASM assembler. It also describes the I/O routines 
developed by the author to facilitate assembly language programming. The next chapter looks at 
the debugging aspect of program development. We describe the GNU debugger (gdb), which 
is a command-line debugger. This chapter also gives details on Data Display Debugger (DDD), 
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which is a nice graphical front-end for gdb. Both debuggers are included on the accompanying 
DVD-ROMs. 

After covering the setup and usage details of Linux and NASM, we look at the assembly lan­
guage in Part V. This part introduces the basic instructions of the assembly language. To facilitate 
modular program development, we introduce procedures in the third chapter of this part. The re­
maining chapters describe the addressing modes and other instructions that are commonly used in 
assembly language programs. 

Part VI deals with advanced assembly language topics. It deals with topics such as string 
processing, recursion, floating-point operations, and interrupt processing. In addition. Chapter 21 
explains how you can interface with high-level languages. By using C, we explain how you can call 
assembly language procedures from C and vice versa. This chapter also discusses how assembly 
language statements can be embedded into high-level language code. This process is called inline 
assembly. Again, by using C, this chapter shows how inline assembly is done under Linux. 

The last part consists of five appendices. These appendices give information on number sys­
tems and character representation. In addition, Appendix D gives a summary of the IA-32 instruc­
tion set. A comprehensive glossary is given in Appendix E. 
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PARTI 

Overview 



1 
Assembly Language 

The main objective of this chapter is to give you a brief introduction to the assembly language. To 
achieve this goal, we compare and contrast the assembly language with high-level languages you 
are familiar with. This comparison enables us to take a look at the pros and cons of the assembly 
language vis-a-vis high-level languages. 

Introduction 
A user's view of a computer system depends on the degree of abstraction provided by the under­
lying software. Figure 1.1 shows a hierarchy of levels at which one can interact with a computer 
system. Moving to the top of the hierarchy shields the user from the lower-level details. At the 
highest level, the user interaction is limited to the interface provided by application software such 
as spreadsheet, word processor, and so on. The user is expected to have only a rudimentary knowl­
edge of how the system operates. Problem solving at this level, for example, involves composing 
a letter using the word processor software. 

At the next level, problem solving is done in one of the high-level languages such as C and 
Java. A user interacting with the system at this level should have detailed knowledge of software 
development. Typically, these users are application programmers. Level 4 users are knowledgeable 
about the application and the high-level language that they would use to write the application 
software. They may not, however, know internal details of the system unless they also happen to 
be involved in developing system software such as device drivers, assemblers, linkers, and so on. 

Both levels 4 and 5 are system independent, that is, independent of a particular processor used 
in the system. For example, an application program written in C can be executed on a system with 
an Intel processor or a PowerPC processor without modifying the source code. All we have to 
do is recompile the program with a C compiler native to the target system. In contrast, software 
development done at all levels below level 4 is system dependent. 

Assembly language programming is referred to as low-level programming because each as­
sembly language instruction performs a much lower-level task compared to an instruction in a 
high-level language. As a consequence, to perform the same task, assembly language code tends 
to be much larger than the equivalent high-level language code. 

Assembly language instructions are native to the processor used in the system. For example, 
a program written in the Intel assembly language cannot be executed on the PowerPC processor. 
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Figure 1.1 A user's view of a computer system. 

Programming in the assembly language also requires knowledge about system internal details such 
as the processor architecture, memory organization, and so on. 

Machine language is a close relative of the assembly language. Typically, there is a one-to-one 
correspondence between the assembly language and machine language instructions. The processor 
understands only the machine language, whose instructions consist of strings of Is and Os. We say 
more on these two languages in the next section. 
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Even though assembly language is considered a low-level language, programming in assembly 
language will not expose you to all the nuts and bolts of the system. Our operating system hides 
several of the low-level details so that the assembly language programmer can breathe easy. For 
example, if we want to read input from the keyboard, we can rely on the services provided by the 
operating system. 

Well, ultimately there has to be something to execute the machine language instructions. This 
is the system hardware, which consists of digital logic circuits and the associated support elec­
tronics. A detailed discussion of this topic is beyond the scope of this book. Books on computer 
organization discuss this topic in detail. 

What Is Assembly Language? 
Assembly language is directly influenced by the instruction set and architecture of the processor. 
In this book, we focus on the assembly language for the Intel 32-bit processors like the Pentium. 
The assembly language code must be processed by a program in order to generate the machine 
language code. Assembler is the program that translates the assembly language code into the 
machine language. 

NASM (Netwide Assembler), MASM (Microsoft Assembler), and TASM (Borland Turbo As­
sembler) are some of the popular assemblers for the Intel processors. In this book, we use the 
NASM assembler. There are two main reasons for this selection: (i) It is a free assembler; and 
(ii) NASM supports a variety of formats including the formats used by Microsoft Windows, Linux 
and a host of others. 

Are you curious as to how the assembly language instructions look like? Here are some exam­
ples: 

inc result 
mov class_size,45 
and maskl,12 8 
add marks,10 

The first instruction increments the variable r e s u l t . This assembly language instruction is equiv­
alent to 

resul t++; 

in C. The second instruction initializes c l a s s _ s i z e to 45. The equivalent statement in C is 

c lass_s ize = 45; 

The third instruction performs the bitwise and operation on ma s k i and can be expressed in C as 

maskl = maskl & 128/ 

The last instruction updates marks by adding 10. In C, this is equivalent to 

marks = marks + 10/ 

These examples illustrate several points: 
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1. Assembly language instructions are cryptic. 
2. Assembly language operations are expressed by using mnemonics (like and and inc). 
3. Assembly language instructions are low level. For example, we cannot write the following 

in the assembly language: 

add marks,value 

This instruction is invalid because two variables, marks and va lue , are not allowed in a 
single instruction. 

We appreciate the readability of the assembly language instructions by looking at the equiva­
lent machine language instructions. Here are some machine language examples: 

Assembly language Operation Machine language (in hex) 

nop No operation 9 0 
inc r e su l t Increment FF060A00 
mov c l a s s _ s i z e , 4 5 Copy C7060C002D00 

and mask, 128 Logical and 80260E0080 

add marks, 10 Integer addition 83060F000A 

In the above table, machine language instructions are written in the hexadecimal number sys­
tem. If you are not familiar with this number system, see Appendix A for a quick review of number 
systems. 

It is obvious from these examples that understanding the code of a program in the machine 
language is almost impossible. Since there is a one-to-one correspondence between the instruc­
tions of the assembly language and the machine language, it is fairly straightforward to translate 
instructions from the assembly language to the machine language. As a result, only a masochist 
would consider programming in a machine language. However, life was not so easy for some of 
the early progranmiers. When microprocessors were first introduced, some programming was in 
fact done in machine language! 

Advantages of High-Level Languages 
High-level languages are preferred to program applications, as they provide a convenient abstrac­
tion of the underlying system suitable for problem solving. Here are some advantages of program­
ming in a high-level language: 

1. Program development is faster. 
Many high-level languages provide structures (sequential, selection, iterative) that facilitate 
program development. Programs written in a high-level language are relatively small com­
pared to the equivalent programs written in an assembly language. These programs are also 
easier to code and debug. 

2. Programs are easier to maintain. 
Programming a new application can take from several weeks to several months and the 
lifecycle of such an application software can be several years. Therefore, it is critical that 
software development be done with a view of software maintainability, which involves ac­
tivities ranging from fixing bugs to generating the next version of the software. Programs 
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written in a high-level language are easier to understand and, when good programming prac­
tices are followed, easier to maintain. Assembly language programs tend to be lengthy and 
take more time to code and debug. As a result, they are also difficult to maintain. 

3. Prog rams a re portable, 
High-level language programs contain very few processor-specific details. As a result, they 
can be used with little or no modification on different computer systems. In contrast, assem­
bly language programs are processor-specific. 

Why Program in Assembly Language? 
The previous section gives enough reasons to discourage you from programming in the assem­
bly language. However, there are two main reasons why programming is still done in assembly 
language: (i) efficiency, and (ii) accessibility to system hardware. 

Efficiency refers to how "good" a program is in achieving a given objective. Here we consider 
two objectives based on space (space-efficiency) and time (time-efficiency). 

Space-efficiency refers to the memory requirements of a program, that is, the size of the ex­
ecutable code. Program A is said to be more space-efficient if it takes less memory space than 
program B to perform the same task. Very often, programs written in the assembly language tend 
to be more compact than those written in a high-level language. 

Time-efficiency refers to the time taken to execute a program. Obviously a program that runs 
faster is said to be better from the time-efficiency point of view. If we craft assembly language 
programs carefully, they tend to run faster than their high-level language counterparts. 

As an aside, we can also define a third objective: how fast a program can be developed (i.e., 
write code and debug). This objective is related to the programmer productivity, and assembly 
language loses the battle to high-level languages as discussed in the last section. 

The superiority of assembly language in generating compact code is becoming increasingly 
less important for several reasons. First, the savings in space pertain only to the program code 
and not to its data space. Thus, depending on the application, the savings in space obtained by 
converting an application program from some high-level language to the assembly language may 
not be substantial. Second, the cost of memory has been decreasing and memory capacity has 
been increasing. Thus, the size of a program is not a major hurdle anymore. Finally, compil­
ers are becoming "smarter" in generating code that is both space- and time-efficient. However, 
there are systems such as embedded controllers and handheld devices in which space-efficiency is 
important. 

One of the main reasons for writing programs in an assembly language is to generate code 
that is time-efficient. The superiority of assembly language programs in producing efficient code 
is a direct manifestation of specificity. That is, assembly language programs contain only the 
code that is necessary to perform the given task. Even here, a "smart" compiler can optimize the 
code that can compete well with its equivalent written in the assembly language. Although the 
gap is narrowing with improvements in compiler technology, assembly language still retains its 
advantage for now. 

The other main reason for writing assembly language programs is to have direct control over 
system hardware. High-level languages, on purpose, provide a restricted (abstract) view of the 
underlying hardware. Because of this, it is almost impossible to perform certain tasks that require 
access to the system hardware. For example, writing a device driver for a new scanner on the 
market almost certainly requires programming in assembly language. Since assembly language 
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does not impose any restrictions, you can have direct control over the system hardware. If you are 
developing system software, you cannot avoid writing assembly language programs. 

Typical Applications 

We have identified three main advantages to programming in an assembly language. 

1. Time-efficiency 
2. Accessibility to hardware 
3. Space-efficiency 

Time-efficiency: Applications for which the execution speed is important fall under two categories: 

1. Time convenience (to improve performance) 
2. Time critical (to satisfy functionality) 

Applications in the first category benefit from time-efficient programs because it is convenient or 
desirable. However, time-efficiency is not absolutely necessary for their operation. For example, 
a graphics package that scales an object instantaneously is more pleasant to use than the one that 
takes noticeable time. 

In time-critical applications, tasks have to be completed within a specified time period. These 
applications, also called real-time applications, include aircraft navigation systems, process con­
trol systems, robot control software, communications software, and target acquisition (e.g., missile 
tracking) software. 

Accessibility to hardware: System software often requires direct control over the system hardware. 
Examples include operating systems, assemblers, compilers, linkers, loaders, device drivers, and 
network interfaces. Some applications also require hardware control. Video games are an obvious 
example. 

Space-efficiency: As mentioned before, for most systems, compactness of application code is not 
a major concern. However, in portable and handheld devices, code compactness is an important 
factor. Space-efficiency is also important in spacecraft control systems. 

Summary 

We introduced assembly language and discussed where it fits in the hierarchy of computer lan­
guages. Our discussion focused on the usefulness of high-level languages vis-a-vis the assembly 
language. We noted that high-level languages are preferred, as their use aids in faster program 
development, program maintenance, and portability. Assembly language, however, provides two 
chief benefits: faster program execution, and access to system hardware. We give more details on 
the assembly language in Parts V and VI. 
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Computer Organization 



2 
Digital Logic Circuits 

Viewing computer systems at the digital logic level exposes us to the nuts and bolts of the basic 
hardware. The goal of this chapter is to cover the necessary digital logic background. Our dis­
cussion can be divided into three parts. In the first part, we focus on the basics of digital logic 
circuits. We start off with a look at the basic gates such as AND, OR, and NOT gates. We intro­
duce Boolean algebra to manipulate logical expressions. We also explain how logical expressions 
are simplified in order to get an efficient digital circuit implementation. 

The second part introduces combinational circuits, which provide a higher level of abstraction 
than the basic circuits discussed in the first part. We review several commonly used combinational 
circuits including multiplexers, decoders, comparators, adders, and ALUs. 

In the last part, we review sequential circuits. In sequential circuits, the output depends both 
on the current inputs as well as the past history. This feature brings the notion of time into digital 
logic circuits. We introduce system clock to provide this timing information. We discuss two types 
of circuits: latches and flip-flops. These devices can be used to store a single bit of data. Thus, 
they provide the basic capability to design memories. These devices can be used to build larger 
memories, a topic covered in detail in the next chapter 

Introduction 
A computer system has three main components: a central processing unit (CPU) or processor, 
a memory unit, and input/output (I/O) devices. These three components are interconnected by 
a system bus. The term bus is used to represent a group of electrical signals or the wires that 
carry these signals. Figure 2.1 shows details of how they are interconnected and what actually 
constitutes the system bus. As shown in this figure, the three major components of the system bus 
are the address bus, data bus, and control bus. 

The width of address bus determines the memory addressing capacity of the processor. The 
width of data bus indicates the size of the data transferred between the processor and memory or 
I/O device. For example, the 8086 processor had a 20-bit address bus and a 16-bit data bus. The 
amount of physical memory that this processor can address is 2^^ bytes, or 1 MB, and each data 
transfer involves 16 bits. The Pentium processor, for example, has 32 address lines and 64 data 
lines. Thus, it can address up to 2^^ bytes, or a 4 GB memory. Furthermore, each data transfer can 
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Figure 2.1 Simplified block diagram of a computer system, 

move 64 bits. In comparison, the Intel 64-bit processor Itanium uses 64 address lines and 128 data 
lines. 

The control bus consists of a set of control signals. Typical control signals include memory 
read, memory write, I/O read, I/O write, interrupt, interrupt acknowledge, bus request, and bus 
grant. These control signals indicate the type of action taking place on the system bus. For ex­
ample, when the processor is writing data into the memory, the memory write signal is asserted. 
Similarly, when the processor is reading from an I/O device, the I/O read signal is asserted. 

The system memory, also called main memory or primary memory, is used to store both pro­
gram instructions and data. I/O devices such as the keyboard and display are used to provide user 
interface. I/O devices are also used to interface with secondary storage devices such as disks. 

The system bus is the communication medium for data transfers. Such data transfers are called 
bus transactions. Some examples of bus transactions are memory read, memory write, I/O read, 
I/O write, and interrupt. Depending on the processor and the type of bus used, there may be other 
types of transactions. For example, the Pentium processor supports a burst mode of data transfer 
in which up to four 64 bits of data can be transferred in a burst cycle. 

Every bus transaction involves a master and a slave. The master is the initiator of the transac­
tion and the slave is the target of the transaction. For example, when the processor wants to read 
data from the memory, it initiates a bus transaction, also called a bus cycle, in which the processor 
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is the bus master and memory is the slave. The processor usually acts as the master of the system 
bus, while components like memory are usually slaves. Some components may act as slaves for 
some transactions and as masters for other transactions. 

When there is more than one master device, which is typically the case, the device requesting 
the use of the bus sends a bus request signal to the bus arbiter using the bus request control line. 
If the bus arbiter grants the request, it notifies the requesting device by sending a signal on the 
bus grant control line. The granted device, which acts as the master, can then use the bus for data 
transfer. The bus-request-grant procedure is called bus protocol. Different buses use different bus 
protocols. In some protocols, permission to use the bus is granted for only one bus cycle; in others, 
permission is granted until the bus master relinquishes the bus. 

The hardware that is responsible for executing machine language instructions can be built 
using a few basic building blocks. These building blocks are called logic gates. These logic gates 
implement the familiar logical operations such as AND, OR, NOT, and so on, in hardware. The 
purpose of this chapter is to provide the basics of the digital hardware. The next two chapters 
introduce memory organization and architecture of the Intel IA-32 processors. 

Our discussion of digital logic circuits is divided into three parts. The first part deals with the 
basics of digital logic gates. Then we look at two higher levels of abstractions—combinational and 
sequential circuits. In combinational circuits, the output of the circuit depends solely on the current 
inputs applied to the circuit. The adder is an example of a combinational circuit. The output of 
an adder depends only on the current inputs. On the other hand, the output of a sequential circuit 
depends not only on the current inputs but also on the past inputs. That is, output depends both on 
the current inputs as well as on how it got to the current state. For example, in a binary counter, the 
output depends on the current value. The next value is obtained by incrementing the current value 
(in a way, the current state represents a snapshot of the past inputs). That is, we cannot say what 
the output of a counter will be unless we know its current state. Thus, the counter is a sequential 
circuit. We review both combinational and sequential circuits in this chapter. 

Simple Logic Gates 

You are familiar with the three basic logical operators: AND, OR, and NOT. Digital circuits to 
implement these and other logical functions are called gates. Figure 2.2a shows the symbol no­
tation used to represent the AND, OR, and NOT gates. The NOT gate is often referred to as the 
inverter. We have also included the truth table for each gate. A truth table is a list of all possible 
input combinations and their corresponding output. For example, if you treat a logical zero as 
representing false and a logical 1 truth, you can see that the truth table for the AND gate represents 
the logical AND operation. 

Even though the three gates shown in Figure 2.2a are sufficient to implement any logical func­
tion, it is convenient to implement certain other gates. Figure 2.2b shows three popularly used 
gates. The NAND gate is equivalent to an AND gate followed by a NOT gate. Similarly, the NOR 
gates are a combination of the OR and NOT gates. The exclusive-OR (XOR) gate generates a 1 
output whenever the two inputs differ. This property makes it useful in certain applications such 
as parity generation. 

Logic gates are in turn built using transistors. One transistor is enough to implement a NOT 
gate. But we need three transistors to implement the AND and OR gates. It is interesting to note 
that, contrary to our intuition, implementing the NAND and NOR gates requires only two transis­
tors. In this sense, transistors are the basic electronic components of digital hardware circuits. For 
example, the Pentium processor introduced in 1993 consists of about 3 million transistors. It is 
now possible to design chips with more than 100 million transistors. 
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Figure 2,2 Simple logic gates: Logic symbols and truth tables. 

There is SL propagation delay associated with each gate. This delay represents the time required 
for the output to react to an input. The propagation delay depends on the complexity of the circuit 
and the technology used. Typical values for the TTL gates are in the range of a few nanoseconds 
(about 5 to 10 ns). A nanosecond (ns) is 10~^ second. 

In addition to propagation delay, other parameters should be taken into consideration in de­
signing and building logic circuits. Two such parameters are fanin and fanout. Fanin specifies 
the maximum number of inputs a logic gate can have. Fanout refers to the driving capacity of an 
output. Fanout specifies the maximum number of gates that the output of a gate can drive. 

A small set of independent logic gates (such as AND, NOT, NAND, etc.) are packaged into 
an integrated circuit (IC) chip, or "chip" for short. These ICs are called small-scale integrated 
(SSI) circuits and typically consist of about 1 to 10 gates. Medium-scale integrated (MSI) circuits 
represent the next level of integration (typically between 10 and 100 gates). Both SSI and MSI 
were introduced in the late 1960s. LSI (large-scale integration), introduced in early 1970s, can 
integrate between 100 and 10,000 gates on a single chip. The final degree of integration, VLSI 
(very large scale integration), was introduced in the late 1970s and is used for complex chips such 
as microprocessors that require more than 10,000 gates. 
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Table 2.1 Truth tables for the majority and even-parity functions 

Majority function Even-parity function 

A 

0 

0 

0 

0 

1 

1 

1 

1 

B 

0 

0 

1 

1 

0 

0 

1 

1 

c 
0 

1 

0 

1 

0 

1 

0 

1 

Fi 

0 

0 

0 

1 

0 

1 

1 

1 

A 

0 

0 

0 

0 

1 

1 

1 

1 

B 

0 

0 

1 

1 

0 

0 

1 

1 

c 
0 

1 

0 

1 

0 

1 

0 

1 

F2 

0 

1 

1 

0 

1 

0 

0 

1 

Logic Functions 

Logic functions can be specified in a variety of ways. In a sense their expression is similar to 
problem specification in software development. A logical function can be specified verbally. For 
example, a majority function can be specified as: Output should be 1 whenever the majority of 
the inputs is 1. Similarly, an even-parity function can be specified as: Output (parity bit) is 1 
whenever there is an odd number of Is in the input. The major problem with verbal specification 
is the imprecision and the scope for ambiguity. 

We can make this specification precise by using a truth table. In the truth table method, for 
each possible input combination, we specify the output value. The truth table method makes sense 
for logical functions as the alphabet consists of only 0 and 1. The truth tables for the 3-input 
majority and even-parity functions are shown in Table 2.1. 

The advantage of the truth table method is that it is precise. This is important if you are 
interfacing with a client who does not understand other more concise forms of logic function 
expression. The main problem with the truth table method is that it is cumbersome as the number 
of rows grows exponentially with the number of logical variables. Imagine writing a truth table 
for a 10-variable function—it requires 2 ^̂  — 1024 rows! 

We can also use logical expressions to specify a logical function. Logical expressions use the 
dot, -h, and overbar to represent the AND, OR, and NOT operations, respectively. For example, 
the output of the AND gate in Figure 2.2 is written as F = A • B. Assuming that single letters are 
used for logical variables, we often omit the dot and write the previous AND function as F = A B. 
Similarly, the OR function is written as F = A + B. The output of the NOT gate is expressed as 
F = A. Some authors use a prime to represent the NOT operation as in F = A' mainly because of 
problems with typesetting the overbar. 
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Figure 2.3 Logical circuit to implement the 3-input majority function. 

The logical expressions for our 3-input majority and even-parity functions are shown below: 

• 3-input majority function = AB + BC + AC, 
• 3-input even-parity function = A B C + A B C + A B C + A B C . 

An advantage of this form of specification is that it is compact while it retains the precision of 
the truth table method. Another major advantage is that logical expressions can be manipulated to 
come up with an efficient design. We say more on this topic later. 

The final form of specification uses a graphical notation. Figure 2.3 shows the logical circuit 
to implement the 3-input majority function. As with the last two methods, it is also precise but is 
more useful for hardware engineers to implement logical functions. 

A logic circuit designer may use all the three forms during the design of a logic circuit. A 
simple circuit design involves the following steps: 

• First we have to obtain the truth table from the input specifications. 
• Then we derive a logical expression from the truth table. 
• We do not want to implement the logical expression derived in the last step as it often 

contains some redundancy, leading to an inefficient design. For this reason, we simplify the 
logical expression. 

• In the final step, we implement the simplified logical expression. To express the implemen­
tation, we use the graphical notation. 

The following sections give more details on these steps. 
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Figure 2.4 Logic circuit for tine 3-input majority function using the bubble notation. 

Bubble Notation 

In large circuits, drawing inverters can be avoided by following what is known as the "bubble" 
notation. The use of the bubble notation simplifies the circuit diagrams. To appreciate the reduced 
complexity, compare the bubble notation circuit for the 3-input majority function in Figure 2.4 
with that in Figure 2.3. 

Deriving Logical Expressions 

We can write a logical expression from a truth table in one of two forms: sum-of-products (SOP) 
and product-of-sums (POS) forms. In sum-of-products form, we specify the combination of inputs 
for which the output should be 1. In product-of-sums form, we specify the combinations of inputs 
for which the output should be 0. 

Sum-of-Products Form 

In this form, each input combination for which the output is 1 is expressed as an and term. This 
is the product term as we use • to represent the AND operation. These product terms are ORed 
together. That is why it is called sum-of-products as we use + for the OR operation to get the 
final logical expression. In deriving the product terms, we write the variable if its value is 1 or its 
complement if 0. 

Let us look at the 3-input majority function. The truth table is given in Table 2.1. There are 
four 1 outputs in this function. So, our logical expression will have four product terms. The first 
product term we write is for row 4 with a 1 output. Since A has a value of 0, we use its complement 
in the product term while using B and C as they have 1 as theirvalue in this row. Thus, the product 
term forjhis row is A B C. The product term for row 6 is A B C. Product terms for rows 7 and 8 
are A B C and ABC, respectively. ORing these four product terms gives the logical expression as 
A B C + A B C + A B C - H A B C . 
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Product-of-Sums Form 

This is the dual form of the sum-of-products form. We essentially complement what we have done 
to obtain the sum-of-products expression. Here we look for rows that have a 0 output. Each such 
row input variable combination is expressed as an OR term. In this OR term, we use the variable 
if its value in the row being considered is 0 or its complement if 1. We AND these sum terms to 
get the final product-of-sums logical expression. The product-of-sums expression for the 3-input 
majority function is (A + B + C) (A + B + C) (A-h B + C) (A + B + C). 

This logical expression and the sum-of-products expressions derived before represent the same 
truth table. Thus, despite their appearance, these two logical expressions are logically equivalent. 
We can prove this logical equivalence by using the algebraic manipulation method described in 
the next section. 

Simplifying Logical Expressions 
The sum-of-products and product-of-sums logical expressions can be used to come up with a 
crude implementation that uses only the AND, OR, and NOT gates. The implementation process 
is straightforward. We illustrate the process for sum-of-products expressions. Figure 2.3 shows the 
brute force implementation of the sum-of-products expression we derived for the 3-input majority 
function. If we simplify the logical expression, we can get a more efficient implementation (see 
Figure 2.5). 

Let us now focus on how we can simplify the logical expressions obtained from truth tables. 
Our focus is on sum-of-products expressions. There are three basic techniques: the algebraic ma­
nipulation, Karnaugh map, and Quine-McCluskey methods. Algebraic manipulation uses Boolean 
laws to derive a simplified logical expression. The Karnaugh map method uses a graphical form 
and is suitable for simplifying logical expressions with a small number of variables. The last 
method is a tabular method and is particularly suitable for simplifying logical expressions with a 
large number of variables. In addition, the Quine-McCluskey method can be used to automate 
the simplification process. In this section, we discuss the first two methods (for details on the last 
method, see Fundamentals of Computer Organization and Design by Dandamudi). 

Algebraic Manipulation 

In this method, we use the Boolean algebra to manipulate logical expressions. We need Boolean 
identities to facilitate this manipulation. These are discussed next. Following this discussion, we 
show how the identities developed can be used to simplify logical expressions. 

Table 2.2 presents some basic Boolean laws. For most laws, there are two versions: an and 
version and an or version. If there is only one version, we list it under the and version. We can 
transform a law from the and version to the or version by replacing each 1 with a 0, 0 with a 1, + 
with a •, and • with a +. This relationship is called duality. 

We can use the Boolean laws to simplify the logical expressions. We illustrate this method by 
looking at the sum-of-products expression for the majority function. A straightforward simplifica­
tion leads us to the following expression: 

Majority function-ABC + ABC + ABC 4- ABC 
AB 

- A B C -f- ABC + AB. 
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Table 2.2 Boolean laws 

Name 

Identity 

Complement 

Commutative 

Distribution 

Idempotent 

Null 

Involution 

Absorption 

Associative 

de Morgan 

and version 

X ' 1 = X 

X 'X = 0 

X -y = y 'X 

X'{y + z) = {x 

X ' X — X 

x - 0 = 0 

X = X 

X ' {x -\- y) == X 

X' {y- z) = {x-

x ^ = X -\- y 

-y) 

y)' 

-}-{X' Z) 

z 

or version 

X -\-0 — X 

X -{-X = 1 

x-i-y == y -\-x 

x + iy ' z) = {x^y)' {x-\- z) 

X -\- X — X 

x + 1 = 1 

— 

X -\- {x • y) = X 

X-]- {y-{- z) == (x + y) + z 

x-\-y = X -y 

Do you know if this is the final simplified form? This is the hard part in applying algebraic 
manipulation (in addition to the inherent problem of which rule should be applied). This method 
definitely requires good intuition, which often implies that one needs experience to know if the 
final form has been derived. In our example, the expression can be further simplified. We start by 
rewriting the original logical expression by repeating the term A B C twice and then simplifying 
the expression as shown below. 

Majority function-= A B C + ABC + ABC + ABC + ABC + ABC 

Added extra 

-ABC -f ABC + ABC + ABC + ABC + ABC 
BC 

-BC + AC-i-AB. 
AC AB 

This is the final simplified expression. In the next section, we show a simpler method to derive 
this expression. Figure 2.5 shows an implementation of this logical expression. 

We can see the benefits of implementing the simplified logical expressions by comparing this 
implementation with the one shown in Figure 2.3. The simplified version reduces not only the gate 
count but also the gate complexity. 

Karnaugh Map Method 

This is a graphical method and is suitable for simplifying logical expressions with a small number 
of Boolean variables (typically six or less). It provides a straightforward method to derive min­
imal sum-of-products expressions. This method is preferred to the algebraic method as it takes 
the guesswork out of the simplification process. For example, in the previous majority function 
example, it was not straightforward to guess that we have to duplicate the term ABC twice in 
order to get the final logical expression. 
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Figure 2.5 An implementation of the simplified 3-input majority function. 
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Figure 2.6 Maps used for simplifying 2-, 3-, and 4-variable logical expressions using the Karnaugh 
map method. 

The Karnaugh map method uses maps to represent the logical function output. Figure 2.6 
shows the maps used for 2-, 3-, and 4-variable logical expressions. Each cell in these maps rep­
resents a particular input combination. Each cell is filled with the output value of the function 
corresponding to the input combination represented by the cell. For example, the bottom left-hand 
cell represents the input combination A = 1 and B = 0 for the two-variable map (Figure 2.6a), 
A = 1, B = 0, and C = 0 for the three-variable map (Figure 2.6b), and A = 1, B = 0, C = 0, and 
D = 0 for the four-variable map (Figure 2.6c). 

The basic idea behind this method is to label cells such that the neighboring cells differ in only 
one input bit position. This is the reason why the cells are labeled 00,01, 11, 10 (notice the change 
in the order of the last two labels from the normal binary number order). What we are doing is 
labeling with a Hamming distance of 1. Hamming distance is the number of bit positions in which 
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Figure 2.7 Three-variable logical expression simplification using the Karnaugh map method: (a) 
majority function; (b) even-parity function. 

two binary numbers differ. This labeling is also called gray code. Why are we so interested in this 
gray code labeling? Simply because we can then eliminate a variable as the following holds: 

ABCD + ABCD - ABD. 

Figure 2.7 shows how the maps are used to obtain minimal sum-of-products expressions for 
three-variable logical expressions. Notice that each cell is filled with the output value of the 
function corresponding to the input combination for that cell. After the map of a logical function 
is obtained, we can derive a simplified logical expression by grouping neighboring cells with 1 into 
areas. Let us first concentrate on the majority function map shown in Figure 2.7a. The two cells 
in the third column are combined into one area. These two cells represent inputs ABC (top cell) 
and ABC (bottom cell). We can, therefore, combine these two cells to yield a product term B C. 
Similarly, we can combine the three Is in the bottom row into two areas of two cells each. The 
corresponding product terms for these two areas are A C and A B as shown in Figure 2.7a. Now we 
can write the minimal expression asBC + AC + AB, which is what we got in the last section using 
the algebraic simplification process. Notice that the cell for AB C (third cell in the bottom row) 
participates in all three areas. This is fine. What this means is that we need to duplicate this term 
two times to simplify the expression. This is exactly what we did in our algebraic simplification 
procedure. 

We now have the necessary intuition to develop the required rules for simplification. These 
simple rules govern the simplification process: 

1. Form regular areas that contain 2* cells, where i > 0. What we mean by a regular area is 
that they can be either rectangles or squares. For example, we cannot use an "L" shaped 
area. 

2. Use a minimum number of areas to cover all cells with 1. This implies that we should form 
as large an area as possible and redundant areas should be eliminated. 

Once minimal areas have been formed, we write a logical expression for each area. These rep­
resent terms in the sum-of-products expressions. We can write the final expression by connecting 
the terms with OR. 
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Figure 2.8 An example Karnaugh map that uses the fact that the first and last columns are adjacent. 

In Figure 2.7a, we cannot form a regular area with four cells. Next we have to see if we can 
form areas of two cells. The answer is yes. Let us assume that we first formed a vertical area 
(labeled B C). That leaves two Is uncovered by an area. So, we form two more areas to cover 
these two Is. We also make sure that we indeed need these three areas to cover all Is. Our next 
step is to write the logical expression for these areas. 

When writing an expression for an area, look at the values of a variable that is 0 as well as 1. 
For example, for the areajdentified by B C, the variable A has 0 and 1. That is, the two cells we 
are combining represent ABC and ABC. Thus, we can eliminate variable A. The variables B and 
C have the same value for the whole area. Since they both have the value 1, we write B C as the 
expression for this area. It is straightforward to see that the other two areas are represented by A C 
andAB. 

If we look at the Karnaugh map for the even-parity function (Figure 2.7b), we find that we 
cannot form areas bigger than one cell. This tells us that no further simplification is possible for 
this function. 

Note that, in the three-variable maps, the first and last columns are adjacent. We did not need 
this fact in our previous two examples. You can visualize the Karnaugh map as a tube, cut open to 
draw in two dimensions. This fact is important because we can combine^these two columns into a 
square area as shown in Figure 2.8. This square area is represented by C. 

You might have noticed that we can eliminate log2n variables from the product term, where n 
is the number of cells in the area. For example, the four-cell square in Figure 2.8 eliminates two 
variables from the product term that represents this area. 

Figure 2.9 shows an example of a four-variable logical expression simplification using the 
Karnaugh map method. It is important to remember the fact that first and last columns as well 
as first and last rows are adjacent. Then it is not difficult to see why the four comer cells form 
a regular area and are represented by the expression B D. In writing an expression for an area, 
look at the input variables and ignore those that assume both 0 and 1. For example, for this weird 
square area, looking at the first and last rows, we notice that variable A has 0 for the first row and 
1 for the last row. Thus, we eliminate A. Since B has^value of 0, we use B. Similarly, by looking 
at the first and last columns, we eliminate C. We use D as D has a value of 0. Thus, the expression 
for this area is B D. Following our simplification procedure to cover all cells with 1, we get the 
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Figure 2.9 Different minimal expressions will result depending on the groupings. 

following minimal expression for Figure 2.9a: 

BD -f ACD + ABD. 

We also note from Figure 2.9 that a different grouping leads to a different minimal expression. 
The logical expression for Figure 2.9b is 

BD + ABC + ABD. 

Even though this expression is slightly different from the logical expression obtained from Fig­
ure 2.9a, both expressions are minimal and logically equivalent. 

The best way to understand the Karnaugh map method is to practice until you develop your 
intuition. After that, it is unlikely you will ever forget how this method works even if you have not 
used it in years. 

Combinational Circuits 
So far, we have focused on implementations using only the basic gates. One key characteristic of 
the circuits that we have designed so far is that the output of the circuit is a function of the inputs. 
Such devices are called combinational circuits as the output can be expressed as a combination of 
the inputs. We continue our discussion of combinational circuits in this section. 

Although gate-level abstraction is better than working at the transistor level, a higher level of 
abstraction is needed in designing and building complex digital systems. We now discuss some 
combinational circuits that provide this higher level of abstraction. 

Higher-level abstraction helps the digital circuit design and implementation process in several 
ways. The most important ones are the following: 

1. Higher-level abstraction helps us in the logical design process as we can use functional 
building blocks that typically require several gates to implement. This, therefore, reduces 
the complexity. 
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Figure 2.10 A 4-data input multiplexer block diagram and truth table, 

2. The other equally important point is that the use of these higher-level functional devices 
reduces the chip count to implement a complex logical function. 

The second point is important from the practical viewpoint. If you look at a typical motherboard, 
these low-level gates take a lot of area on the printed circuit board (PCB). Even though the low-
level gate chips were introduced in the 1970s, you still find them sprinkled on your PCB along 
with your Pentium processor. In fact, they seem to take more space. Thus, reducing the chip count 
is important to make your circuit compact. The combinational circuits provide one mechanism to 
incorporate a higher level of integration. 

The reduced chip count also helps in reducing the production cost (fewer ICs to insert and sol­
der) and improving the reliability. Several combinational circuits are available for implementation. 
Here we look at a sampler of these circuits. 

Multiplexers 

A multiplexer (MUX) is characterized by 2^ data inputs, n selection inputs, and a single output. 
The block diagram representation of a 4-input multiplexer (4-to-l multiplexer) is shown in Fig­
ure 2.10. The multiplexer connects one of 2 ̂  inputs, selected by the selection inputs, to the output. 
Treating the selection input as a binary number, data input Ii is connected to the output when the 
selection input is i as shown in Figure 2.10. 

Figure 2.11 shows an implementation of a 4-to-1 multiplexer. If you look closely, it somewhat 
resembles our logic circuit used by the brute force method for implementing sum-of-products 
expressions (compare this figure with Figure 2.3 on page 16). This visual observation is useful in 
developing our intuition about one important property of the multiplexers: we can implement any 
logical function using only multiplexers. The best thing about using multiplexers in implementing 
a logical function is that you don't have to simplify the logical expression. We can proceed directly 
from the truth table to implementation, using the multiplexer as the building block. 

How do we implement a truth table using the multiplexer? Simple. Connect the logical vari­
ables in the logical expression as the selection inputs and the function outputs as constants to the 
data inputs. To follow this straightforward implementation, we need a 2 ^ data input multiplexer 
with b selection inputs to implement a b variable logical expression. The process is best illustrated 
by means of an example. 

Figure 2.12 shows how an 8-to-l multiplexer can be used to implement our two running ex­
amples: the 3-input majority and 3-input even-parity functions. From these examples, you can see 
that the data input is simply a copy of the output column in the corresponding truth table. You just 
need to take care how you connect the logical variables: connect the most significant variable in 
the truth table to the most significant selection input of the multiplexer as shown in Figure 2.12. 
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Figure 2.12 Two example implementations using an 8-to-1 multiplexer. 

Demultiplexers 
The demultiplexer (DeMUX) performs the complementary operation of a multiplexer. As in the 
multiplexer, a demultiplexer has n selection inputs. However, the roles of data input and output are 
reversed. In a demultiplexer with n selection inputs, there are 2 '^ data outputs and one data input. 
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Figure 2.13 Demultiplexer block diagram and its implementation. 

Depending on the value of the selection input, the data input is connected to the corresponding 
data output. The block diagram and the implementation of a 4-data out demultiplexer is shown in 
Figure 2.13. 

Decoders 
The decoder is another basic building block that is useful in selecting one-out-of-A^ lines. The 
input to a decoder is an I-bit binary (i.e., encoded) number and the output is 2 ̂  bits of decoded 
data. Figure 2.14 shows a 2-to-4 decoder and its logical implementation. Among the 2 ̂  outputs 
of a decoder, only one output line is 1 at any time as shown in the truth table (Figure 2.14). In the 
next chapter we show how decoders are useful in designing system memory. 

Comparators 
Comparators are useful for implementing relational operations such as =, <, >, and so on. For 
example, we can use XOR gates to test whether two numbers are equal. Figure 2.15 shows a 4-
bit comparator that outputs 1 if the two 4-bit input numbers A = A 3A2A1 AQ and B = B3B2B1B0 
match. However, implementing < and > is more involved than testing for equality. While equality 
can be established by comparing bit by bit, positional weights must be taken into consideration 
when comparing two numbers for < and >. We leave it as an exercise to design such a circuit. 

Adders 
We now look at adder circuits that provide the basic capability to perform arithmetic operations. 
The simplest of the adders is called a half-adder, which adds two bits and produces a sum and 
carry output as shown in Figure 2.16a. From the truth table it is straightforward to see that the 
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Figure 2.14 Decoder block diagram and its implementation. 

A = B 

Figure 2.15 A 4-bit comparator implementation using XOR gates. 

carry output Cout can be generated by a single AND gate and the sum output by a single XOR 
gate. 

The problem with the half-adder is that we cannot use it to build adders that can add more than 
two 1-bit numbers. If we want to use the 1-bit adder as a building block to construct larger adders 
that can add two A'̂ -bit numbers, we need an adder that takes the two input bits and a potential 
carry generated by the previous bit position. This is what the full-adder does. A full adder takes 
three bits and produces two outputs as shown in Figure 2.16b. An implementation of the full-adder 
is shown in Figure 2.16. 

Using full adders, it is straightforward to build an adder that can add two A -̂bit numbers. An 
example 16-bit adder is shown in Figure 2.17. Such adders are called ripple-carry adders as the 
carry ripples through bit positions 1 through 15. Let us assume that this ripple-carry adder is using 
the full adder shown in Figure 2.16b. If we assume a gate delay of 5 ns, each full adder takes three 
gate delays (=15 ns) to generate Cout- Thus, the 16-bit ripple-carry adder shown in Figure 2.17 
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(b) Full-adder truth table and implementation 

Figure 2.16 Full- and half-adder truth tables and implementations. 

takes 16 X 15 = 240 ns. If we were to use this type of adder circuit in a system, it cannot run more 
than 1/240 ns = 4 MHz with each addition taking about a clock cycle. 

How can we speed up multibit adders? If we analyze the reasons for the "slowness" of the 
ripple-carry adders, we see that carry propagation is causing the delay in producing the final iV-bit 
output. If we want to improve the performance, we have to remove this dependency and determine 
the required carry-in for each bit position independently. Such adders are called carry lookahead 
adders. The main problem with these adders is that they are complex to implement for long words. 
To see why this is so and also to give you an idea of how each full adder can generate its own carry-
in bit, let us look at the logical expression that should be implemented to generate the carry-in. 
Carry-out from the rightmost bit position Co is obtained as 

Co = Ao Bo . 

Ci is given by 
C i=Co(Ai + Bi) + A i B i . 

By substituting Ao Bo for Co, we get 

Ci = Ao Bo Ai + Ao Bo Bi 4- Ai Bi . 
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Figure 2.17 A 16-bit ripple-carry adder using the full adder building blocks. 

Similarly, we get C2 as 

C2 = Ci (A2 4- B2) -f A2 B2 

- A2 Ao Bo Ai + A2 Ao Bo Bi + A2 Ai Bi 

-f B2 Ao Bo Ai + B2 Ao Bo Bi + B2 Ai Bi A2B2 

Using this procedure, we can generate the necessary carry-in inputs independently. The logical 
expression for Ĉ  is a sum-of-products expression involving only A^ and B/j, i < k < 0. Thus, 
independent of the length of the word, only two gate delays are involved, assuming a single gate 
can implement each product term. The complexity of implementing such a circuit makes it im­
practical for more than 8-bit words. Typically, carry lookahead is implemented at the 4- or 8-bit 
level. We can apply our ripple-carry method of building higher word length adders by using these 
4- or 8-bit carry lookahead adders. 

Programmable Logic Devices 
We have seen several ways of implementing sum-of-products expressions. Programmable logic 
devices provide yet another way to implement these expressions. There are two types of these 
devices that are very similar to each other. The next two subsections describe these devices. 

Programmable Logic Arrays (PLAs) 

PL A is a field programmable device to implement sum-of-product expressions. It consists of an 
AND array and an OR array as shown in Figure 2.18. A PL A takes Â  inputs and produces M 
outputs. Each input is a logical variable. Each output of a PLA represents a logical function output. 
Internally, each input is complemented, and a total of 2N inputs is connected to each AND gate 
in the AND array through a fuse. The example PLA, shown in Figure 2.18, is a^ x 2 PLA with 
two inputs and two outputs. Each AND gate receives four inputs: lo, lo, Ii, and Ii. The fuses are 
shown as small white rectangles. Each AND gate can be used to implement a product term in the 
sum-of-products expression. 
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OR array 

Figure 2.18 An example PLA with two inputs and two outputs. 

The OR array is organized similarly except that the inputs to the OR gates are the outputs of 
the AND array. Thus, the number of inputs to each OR gate is equal to the number of AND gates 
in the AND array. The output of each OR gate represents a function output. 

When the chip is shipped from the factory, all fuses are intact. We program the PLA by 
selectively blowing some fuses (generally by passing a high current through them). The chip 
design guarantees that an input with a blown fuse acts as 1 for the AND gates and as 0 for the OR 
gates. 

Figure 2.19 shows an example implementation of functions FQ and Fi. The rightmost AND 
gate in the AND array produces the product term A B. To produce this output, the inputs of this 
gate are programmed by blowing the second and fourth fuses that connect inputs A and B, respec­
tively. Programming a PLA to implement a sum-of-products function involves implementing each 
product term by an AND gate. Then a single OR gate in the OR array is used to obtain the final 
function. In Figure 2.19, we are using two product terms generated by the middle two AND gates 
(Pi and P2) as inputs to both OR gates as these two terms appear in both FQ and Fi. 

To simplify specification of the connections, the notation shown in Figure 2.20 is used. Each 
AND and OR gate input is represented by a single line. A x is placed if the corresponding input 
is connected to the AND or OR gates as shown in this figure. 

Programmable Array Logic Devices (PALs) 

PL As are very flexible in implementing sum-of-products expressions. However, the cost of pro­
viding a large number of fuses is high. For example, a 12 x 12 PLA with a 50-gate AND array 
and 12-gate OR array requires 24 x 50 == 1200 fuses for the AND array and 50 x 12 = 600 fuses 
for the OR array for a total of 1800 fuses. We can reduce this complexity by noting that we can 
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Figure 2.20 A simplified notation to show Implementation details of a PLA. 

retain most of the flexibility by cutting down the set of fuses in the OR array. This is the rationale 
for PALs. Due to their cost advantage, most manufacturers produce only PALs. 

PALs are very similar to PLAs except that there is no programmable OR array. Instead, the 
OR connections are fixed. Figure 2.21 shows a PAL with the bottom OR gate connected to the 
leftmost two product terms and the other OR gate connected to the other two product terms. As a 
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Figure 2.21 Programmable array logic device with fixed OR gate connections. We have used the 
simplified notation to indicate the connections in the AND array. 

result of these connections, we cannot implement the two functions shown in Figure 2.20. This is 
the loss of flexibility that sometimes may cause problems but in practice is not such a big problem. 
But the advantage of PAL devices is that we can cut down all the OR array fuses that are present in 
a PLA. In the last example, we reduce the number of fuses by a third—from 1800 fuses to 1200. 

Arithmetic and Logic Units 
We are now ready to design our own arithmetic and logic unit. The ALU forms the computational 
core of a processor, performing basic arithmetic and logical operations such as integer addition, 
subtraction, and logical AND and OR functions. Figure 2.22 shows an example ALU that can per­
form two arithmetic functions (addition and subtraction) and two logical functions (AND and OR). 
We use a multiplexer to select one of the four functions. The implementation is straightforward 
except that we implement the subtractor using a full adder by negating the B input. 

To see why this is so, you need to understand the 2's complement representation for nega­
tive numbers. A detailed discussion of this number representation is given in Appendix A (see 
page 468). Here we give a brief explanation. The operation {x — y) is treated as adding —y to x. 
That is, {x - y) is implemented as x + (—y) so that we can use an adder to perform subtraction. 
For example, 12 - 5 is implemented by adding - 5 to 12. In the 2's complement notation, - 5 is 
represented as 101 IB, which is obtained by complementing the bits of number 5 and adding 1. 
This operation produces the correct result as shown below: 
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Figure 2.22 A simple 1-bit ALU tiiat can perform addition, subtraction, AND, and OR operations. 
The carry output of the circuit is incomplete in this figure as a better and more efficient circuit is 
shown in the next figure. Note: V and"-" represent arithmetic addition and subtraction operations, 
respectively. 
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To implement the subtract operation, we first convert B to — B in 2's complement representa­
tion. We get the 2's complement representation by complementing the bits and adding 1. We need 
an inverter to complement. The required 1 is added via C in. 

Since the difference between the adder and subtracter is really the negation of the one input, 
we can get a better circuit by using a programmable inverter. Figure 2.23 shows the final design 
with the XOR gate acting as a programmable inverter. Remember that, when one of the inputs 
is one, the XOR gate acts as an inverter for the other input. We can use these 1-bit ALUs to get 
word-length ALUs. Figure 2.24 shows an implementation of a 16-bit ALU using the 1-bit ALU 
of Figure 2.23. 

To illustrate how the circuit in Figure 2.24 subtracts two 16-bit numbers, let us consider an 
example with A = 1001_1110 1101 1110 and B = 0110 1011 0110 1101. Since B is internally 
complemented, we get B = 1001 0100 1001 0010. Now we add A and B with the carry-in to the 
rightmost bit set to 1 (through the FQ bit): 
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Figure 2.23 A better 1-bit ALU that uses a single full adder for both addition and subtraction oper­
ations. 
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Figure 2.24 A 16-bit ALU built with the 1-bit ALU: The Fo function bit sets Cin to 1 for the subtract 
operation. Logical operations ignore the carry bits. 

1 -^ carry-in from Fo 
A = 1001 1110 1101 1110 
B = 1001 0100 1001 0010 

A - B = 0011 0011 0111 0001 

which is the correct value. If B is larger than A, we get a negative number. In this case, the result 
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Figure 2.25 Main components of a sequential circuit. 

will be in the 2's complement form. Also note that, in the 2's complement representation, we 
ignore any carry generated out of the most significant bit. 

Sequential Circuits 
The output of a combinational circuit depends only on the current inputs. In contrast, the output 
of a sequential circuit depends both on the current input values as well as the past inputs. This 
dependence on past inputs gives the property of "memory" for sequential circuits. 

In general, the sequence of past inputs is encoded into a set of state variables. There is a feed­
back path that feeds these variables to the input of a combinational circuit as shown in Figure 2.25. 
Sometimes, this feedback consists of a simple interconnection of some outputs of the combina­
tional circuit to its inputs. For the most part, however, the feedback circuit consists of elements 
such as flip-flops that we discuss later. These elements themselves are sequential circuits that can 
remember or store the state information. Next we introduce system clock to incorporate time into 
digital circuits. 

System Clock 

Digital circuits can operate in asynchronous or synchronous mode. Circuits that operate in asyn­
chronous mode are independent of each other. That is, the time at which a change occurs in one 
circuit has no relation to the time a change occurs in another circuit. Asynchronous mode of oper­
ation causes serious problems in a typical digital system in which the output of one circuit goes as 
input to several others. Similarly, a single circuit may receive outputs of several circuits as inputs. 
Asynchronous mode of operation implies that all required inputs to a circuit may not be valid at 
the same time. 

To avoid these problems, circuits are operated in synchronous mode. In this mode, all circuits 
in the system change their state at some precisely defined instants. The clock signal provides such 
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Figure 2.26 Three types of clock signals with the same clock period. 

a global definition of time instants at which changes can take place. Implicit in this definition is 
the fact that the clock signal also specifies the speed at which a circuit can operate. 

A clock is a sequence of Is and Os as shown in Figure 2.26, We refer to the period during 
which the clock is 1 as the ON period and the period with 0 as the OFF period. Even though we 
normally use symmetric clock signals with equal ON and OFF periods as in Figure 2.26a, clock 
signals can take asymmetric forms as shown in Figures 2.26b and c. 

The clock signal edge going from 0 to 1 is referred to as the rising edge (also called the positive 
or leading edge). Analogously, we can define di falling edge as shown in Figure 2.26a. The falling 
edge is also referred to as a negative or trailing edge. 

A clock cycle is defined as the time between two successive rising edges as shown in Fig­
ure 2.26. You can also treat the period between successive falling edges as a clock cycle. 

Clock rate or frequency is measured in number of cycles per second. This number is referred 
to as Hertz (Hz). The clock period is defined as the time represented by one clock cycle. All three 
clock signals in Figure 2.26 have the same clock period. 

Clock period = 1 
Clock frequency 

For example, a clock frequency of 1 GHz yields a clock period of 

1 
1 X 109 = 1 ns. 

Note that one nanosecond (ns) is equal to 10"^ second. 
The clock signal serves two distinct purposes in a digital circuit. It provides the global syn­

chronization signal for the entire system. Each clock cycle provides three distinct epochs: start of 
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Figure 2.27 A NOR gate implementation of the SR latch. 
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a clock cycle, end of a clock cycle, and an intermediate point at which the clock signal changes 
levels. This intermediate point is in the middle of a clock cycle for symmetric clock signals. The 
other equally important purpose is to provide timing information in the form of a clock period. 

Latches 
It is time to look at some simple sequential circuits that can remember a single bit value. We 
discuss latches in this section. Latches are level-sensitive devices in that the device responds to the 
input signal levels (high or low). In contrast, flip-flops are edge-triggered. That is, output changes 
only at either the rising or falling edge. We look at flip-flops in the next section. 

SR Latch 
The SR latch is the simplest of the sequential circuits that we consider. It requires just two NOR 
gates. The feedback in this latch is a simple connection from the output of one NOR gate to the 
input of the other NOR gate as shown in Figure 2.27a. The logic symbol for the SR latch is shown 
in Figure 2.27b. 

A simplified truth table forjhe SR latch is shown in Figure 2.27c. The outputs of the two 
NOR gates are labeled Q and Q because these two outputs should be complementary in normal 
operating mode. We use the notation Qn to represent the current value (i.e., current state) and 
Q„_ î to represent the next value (i.e., next state). 

Let us analyze the truth table. First consider the two straightforward cases. When S = 0 and 
R = 1, we can see that independent of the current state, output Q is forced to be 0 as R is 1. Thus, 
the two inputs to the upper NOR gate are 0. This leads Q to be 1. This is a stable state. That is, Q 
and Q can stay at 0 and 1, respectively. You can verify that when S = 1 and R = 0, another stable 
state Q = 1 and Q = 0 results. 

When both S and R are^ero, the next output depends on the current output. Assume that the 
current output is Q = 1 and Q = 0. Thus, when you change inputs from S = 1 and R = OtoS=R = 0, 
the next state^n+i remains the same as the current state Qn. Now assume that the current state 
is Q = 0 and Q = L It is straightforward to verify that changing inputs from S = 0 and R = 1 to 
S = R = 0, leaves the output unchanged. We have summarized this behavior by placing Q n as the 
output for S = R = 0 in the first row of Figure 2.27c. 

What happens when both S and R are 1? As long as these two inputs are held high, both 
outputs are forced to take 0. We struck this state from the truth table to indicate that this input 
combination is undesirable. To see why this is the case, consider what happens when S and R 
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Figure 2.28 Clocked SR latch. 

(b) Logic symbol 

inputs are changed from S = R = 1 to S = R = 0. It is only in theory that we can assume that both 
inputs change simultaneously. In practice, there is always some finite time difference between the 
two signal changes. If the S input goes low earlier than the R signal, the sequence of input changes 
iŝ  SR = 11 — 0̂1 -^00. Because of the intermediate state SR = 01, the output will be Q = 0 and 
Q = l . 

If, on the other hand, the R signal goes low before the S signal does, the sequence of input 
changes is SR = 11 —» 10 —̂  00. Because the transition goes through the SR = 10 intermediate 
state, the output will be Q = 1 and Q = 0. Thus, when the input changes from 11 to 00, the output 
is indeterminate. This is the reason we want to avoid this state. 

The inputs S and R stand for "Set" and "Reset," respectively. When the set input is high (and 
reset is low), Q is set (i.e., Q = 1). On the other hand, if set is 0 and reset is 1, Q is reset or cleared 
(i.e.,Q = 0). 

From this discussion, it is clear that this latch is level sensitive. The outputs respond to changes 
in input levels. This is true for all the latches. 

We notice that this simple latch has the capability to store a bit. To write 1 into this latch, 
set SR as 10; to write 0, use SR = 01. To retain a stored bit, keep both S and R inputs at 0. In 
summary, we have the capacity to write 0 or 1 and retain it as long as there is power to the circuit. 
This is the basic 1-bit cell that static RAMs use. Once we have the design to store a single bit, we 
can replicate this circuit to store wider data as well as multiple words. We look at memory design 
issues in the next chapter. 

Clocked SR Latch 

A basic problem with the SR latch is that the output follows the changes in the input. If we want 
to make the output respond to changes in the input at specific instants in order to synchronize with 
the rest of the system, we have to modify the circuit as shown in Figure 2.28a. The main change is 
that a clock input is used to gate the S and R inputs. These inputs are passed onto the original SR 
latch only when the clock signal is high. The inputs have no effect on the output when the clock 
signal is low. When the clock signal is high, the circuit implements the truth table of the SR latch 
given in Figure 2.27c. This latch is level sensitive as well. As long as the clock signal is high, the 
output responds to the SR inputs. 
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Figure 2.29 D latch uses an inverter to avoid the SR = 11 input combination. 
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Figure 2.30 Logic symbol notation for latches and flip-flops: (a) high level-sensitive latch; (b) low 
level-sensitive latch; (c) positive edge-triggered flip-flop; (d) negative edge-triggered flip-flop. 

D Latch 

A problem with both versions of SR latches is that we have to avoid the SR = 11 input combination. 
This problem is solved by the D latch shown in Figure 2.29a. We use a single inverter to provide 
only complementary inputs at S and R inputs of the clocked SR latch. To retain the value, we 
maintain the clock input at 0. The logic symbol and the truth table for the D latch clearly show 
that it can store a single bit. 

Storing a bit in the D-latch is straightforward. All we have to do is feed the data bit to the D 
input and apply a clock pulse to store the bit. Once stored, the latch retains the bit as long as the 
clock input is zero. This simple circuit is our first 1-bit memory. In the next chapter, we show how 
we can use this basic building block to design larger memories. 

Flip-Flops 

We have noted that flip-flops are edge-triggered devices whereas latches are level sensitive. In the 
logic symbol, we use an arrowhead on the clock input to indicate a positive edge-triggered flip-flop 
as shown in Figure 2.30c. The absence of this arrowhead indicates a high level-sensitive latch (see 
Figure 2.30a). We add a bubble in front of the clock input to indicate a negative edge-triggered 
flip-flop (Figure 2,30d) or a low level-sensitive latch (Figure 2.30b). 

As is obvious from the bubble notation, we can convert a high level-sensitive latch to a low 
level-sensitive one by feeding the clock signal through an inverter. Recall that the bubble represents 
an inverter (see page 17). Similarly, we can invert the clock signal to change a negative edge-
triggered flip-flop to a positive edge-triggered one. 
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Figure 2.31 Truth table and logic symbol of the JK flip-flop. The logic symbol is for a negative edge 
triggered flip-flop. For a negative flip-flop, delete the bubble on the clock input. 

Parallel out 

Figure 2.32 A 4-bit shift register using JK flip-flops. 

In this section, we look at JK flip-flops. The truth table and logic symbol of this flip-flop is 
shown in Figure 2.31. Unlike the SR latch, the JK flip-flop allows all four input combinations. 
When JK = 11, the output toggles. This characteristic is used to build counters. Next we show 
couple of example sequential circuits that use the JK flip-flops. 

Shift Registers 

Shift registers, as the name suggests, shift data left or right with each clock pulse. Designing a 
shift register is relatively straightforward as shown in Figure 2.32. This shift register, built with 
positive edge-triggered JK flip-flops, shifts data to the right. For the first JK flip-flop, we need an 
inverter so that the K input is the complement of the data coming in ("Serial in" input). The data 
out, taken from the Q output of the rightmost JK flip-flop, is a copy of the input serial signal except 
that this signal is delayed by four clock periods. This is one of the uses of the shift registers. 
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Figure 2.33 A binary ripple counter implementation using negative edge-triggered JK flip-flops. 

We can also use a shift register for serial-to-parallel conversion. For example, a serial signal, 
given as input to the shift register in Figure 2.32, produces a parallel 4-bit output (taken from the 
four Q outputs of the JK flip-flops) as shown in Figure 2.32. Even though we have not shown it 
here, we can design a shift register that accepts input in parallel (i.e., parallel load) as well as serial 
form. Shift registers are also useful in implementing logical bit shift operations in the ALU of a 
processor. 

Counters 
A counter is another example of a sequential circuit that is often used in digital circuits. To see 
how we can build a counter, let us consider the simplest of all counters: the binary counter. A 
binary counter with B bits can count from 0 to 2^ - 1. For example, a 3-bit binary counter can 
count from 0 to 7. After counting eight (with a count value of 7), the count value wraps around to 
zero. Such a counter is called a modulo-8 counter. 

We know that a modulo-8 counter requires 3 bits to represent the count value. In general, a 
modulo-2^ counter requires B bits (i.e., log22^ bits). To develop our intuition, it is helpful to 
look at the values 0 through 7, written in the binary form in that sequence. If you look at the 
rightmost bit, you will notice that it changes with every count. The middle bit changes whenever 
the rightmost bit changes from 1 to 0. The leftmost bit changes whenever the middle bit changes 
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Clock 

Figure 2.34 A synchronous nnodulo-8 counter. 

from 1 to 0. These observations can be generalized to counters that use more bits. There is a simple 
rule that governs the counter behavior: a bit changes (flips) its value whenever its immediately 
preceding right bit goes from 1 to 0. This observation gives the necessary clue to design our 
counter. Suppose we have a negative edge-triggered JK flip-flop. We know that this flip-flop 
changes its output with every negative edge on the clock input, provided we hold both J and K 
inputs high. Well, that is the final design of our 3-bit counter as shown in Figure 2.33. 

We operate the JK flip-flops in the "toggle" mode with JK = 11. The Q output of one flip-flop 
is connected as the clock input of the next flip-flop. The input clock, which drives our counter, 
is applied to FFO. When we write the counter output as Q2QiQo» the count value represents 
the number of negative edges in the clock signal. For example, the dotted line in Figure 2.33b 
represents Q2Q1Q0 = 011. This value matches the number of falling edges to the left of the dotted 
line in the input clock. 

Counters are also useful in generating clocks with different frequencies by dividing the input 
clock. For example, the frequency of the clock signal at Q 0 output is half of the input clock. 
Similarly, frequencies of the signals at Qi and Q2 are one-fourth and one-eighth of the counter 
input clock frequency. 

The counter design shown in Figure 2.33 is called a ripple counter as the count bits ripple from 
the rightmost to the leftmost bit (i.e., in our example, from FFO to FF2). A major problem with 
ripple counters is that they take a long time to propagate the count value. We have had a similar 
discussion about ripple carry adders on page 28. 

How can we speed up the operation of the ripple binary counters? We apply the same trick 
that we used to derive the carry lookahead adder on page 28. We can design a counter in which 
all output bits change more or less at the same time. These are called synchronous counters. We 
can obtain a synchronous counter by manipulating the clock input to each flip-flop. We observe 
from the timing diagram in Figure 2.33b that a clock input should be applied to a flip-flop if all the 
previous bits are 1. For example, a clock input should be applied to FFl whenever the output of 
FFO is 1. Similarly, a clock input for FF2 should be applied when the outputs of FFO and FFl are 
both 1. A synchronous counter based on this observation is shown in Figure 2.34. 

Sequential circuit design is relatively more complex than designing a combinational circuit. 
A detailed discussion of this topic is outside the scope of this book. If you are interested in this 
topic, you can refer to Fundamentals of Computer Organization and Design by Dandamudi for 
more details. 
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Summary 

A computer system consists of three main components: processor, memory, and I/O. These three 
components are glued together by a system bus. The system bus consists of three buses: data 
bus, address bus, and control bus. The address bus is used to carry the address information. The 
width of this bus determines the memory address space of the processor. The data bus is used 
for transferring data between these components (e.g., from memory to processor). The data bus 
width determines the size of the data moved in one transfer cycle. The control bus provides 
several control signals to facilitate a variety of activities on the system bus. These activities include 
memory read, I/O write, and so on. 

The remainder of the chapter looked at the digital logic circuits in detail. We introduced 
several simple logic gates such as AND, OR, NOT gates as well as NAND, NOR, and XOR gates. 
Although the first three gates are considered as the basic gates, we often find that the other three 
gates are useful in practice. 

We described three ways of representing logical functions: truth table, logical expression, and 
graphical form. The truth table method is cumbersome for logical expressions with more than 
a few variables. Logical expression representation is useful to derive simplified expressions by 
applying Boolean identities. The graphical form is useful to implement logical circuits. 

Logical expressions can be written in one of two basic forms: sum-of-products or product-
of-sums. From either of these expressions, it is straightforward to obtain logic circuit implemen­
tations. However, such circuits are not the best designs as simplifying logical expressions can 
minimize the component count. Several methods are available to simplify logical expressions. We 
have discussed two of them: the algebraic and Karnaugh map methods. 

Combinational circuits provide a higher level of abstraction than the basic logic gates. Higher-
level logical functionality provided by these circuits helps in the design of complex digital circuits. 
We have discussed several commonly used combinational circuits including multiplexers, demul­
tiplexers, decoders, comparators, adders, and ALUs. 

We also presented details about two types of programmable logic devices: PL As and PALs. 
These devices can also be used to implement any logical function. Both these devices use inter­
nal fuses that can be selectively blown to implement a given logical function. PALs reduce the 
complexity of the device by using fewer fuses than PLAs. As a result, most commercial imple­
mentations of programmable logic devices are PALs. 

Our discussion of ALU design suggests that complex digital circuit design can be simplified 
by using the higher level of abstraction provided by the combinational circuits. 

In combinational circuits, the output depends only on the current inputs. In contrast, output of 
a sequential circuit depends both on the current inputs as well as the past history. In other words, 
sequential circuits are state-dependent whereas the combinational circuits are stateless. 

Design of a sequential circuit is relatively more complex than designing a combinational cir­
cuit. In sequential circuits, we need a notion of time. We introduced the clock signal to provide this 
timing information. Clocks also facilitate synchronization of actions in a large, complex digital 
system that has both combinational and sequential circuits. 

We discussed two basic types of circuits: latches and flip-flops. The key difference between 
these two devices is that latches are level sensitive whereas flip-flops are edge-triggered. These 
devices can be used to store a single bit of data. Thus, they provide the basic capability to design 
memories. We discuss memory design in the next chapter. 
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We presented some example sequential circuits—shift registers and counters—that are com­
monly used in digital circuits. There are several other sequential circuit building blocks that are 
commercially available. 



3 
Memory Organization 

In the last chapter, we have seen how flip-flops and latches can be used to store a bit. This chapter 
builds on this foundation and explains how we can use these basic devices and build larger memory 
blocks and modules. We start off with an overview of memory operations and the types of memory. 
The following section discusses how larger memories can be built using memory chips. The design 
process is fairly intuitive. The basic technique involves using a two-dimensional array of memory 
chips. A characteristic of these designs is the use of chip select. Chip select input can be used to 
select or deselect a chip or a memory module. Chip select allows us to connect multiple devices 
to the system bus. Appropriate chip select signal generation facilitates communication among the 
entities connected to the system bus. 

Chip select logic is also useful in mapping memory modules to memory address space. We 
present details about two ways of mapping a memory module to the address space. Before ending 
the chapter, we describe how multibyte data are stored in memory and explain the reasons why 
data alignment leads to improved application performance. We end the chapter with a summary. 

Introduction 
The memory of a computer system consists of tiny electronic switches, with each switch set in 
one of two states: open or closed. It is, however, more convenient to think of these states as 0 
and 1 rather than open and closed. A single such switch can be used to represent two (i.e., binary) 
numbers: a zero and a one. Thus, each switch can represent a binary digit or bit, as it is known. 
The memory unit consists of millions of such bits. In order to make memory more manageable, 
bits are organized into groups of eight bits called bytes. Memory can then be viewed as consisting 
of an ordered sequence of bytes. Each byte in this memory can be identified by its sequence 
number starting with 0, as shown in Figure 3.1. This is referred to as the memory address of the 
byte. Such memory is called byte addressable memory. 

The amount of memory that a processor can address depends on the address bus width. Typ­
ically, 32-bit processors support 32-bit addresses. Thus, these processors can address up to 4 GB 
(2^^ bytes) of main memory as shown in Figure 3.1. This number is referred to as the memory ad­
dress space. The actual memory in a system, however, is always less than or equal to the memory 
address space. The amount of memory in a system is determined by how much of this memory 
address space is populated with memory chips. 
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Figure 3.1 Logical view of the system memory. 

This chapter gives details about memory organization. In the next section we give details about 
the two basic memory operations—read and write. Memory can be broadly divided into read-only 
and read/write types. Details about the types of memory are given next. After giving these details, 
we look at the memory design issues. Towards the end of the chapter, we describe two ways of 
storing multibyte data and the reasons why data alignment results in improved performance. 

Basic Memory Operations 

The memory unit supports two fundamental operations: read and write. The read operation reads 
a previously stored data and the write operation stores a value in memory. Both of these operations 
require an address in memory from which to read a value or to which to write a value. In addition, 
the write operation requires specification of the data to be written. The block diagram of the 
memory unit is shown in Figure 3.2. The address and data of the memory unit are connected to 
the address and data buses of the system bus, respectively. The read and write signals come from 
the control bus. 

Two metrics are used to characterize memory. Access time refers to the amount of time required 
by the memory to retrieve the data at the addressed location. The other metric is the memory cycle 
time, which refers to the minimum time between successive memory operations. Memory transfer 
rates can be measured by the bandwidth metric, which specifies the number of bytes transferred 
per second. 

The read operation is nondestructive in the sense that one can read a location of the memory 
as many times as one wishes without destroying the contents of that location. The write operation, 
on the other hand, is destructive, as writing a value into a location destroys the old contents of that 
memory location. 
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Address 

Data 

Figure 3.2 Block diagram of the system memory. 

Steps in a typical read cycle 

1. Place the address of the location to be read on the address bus; 

2. Activate the memory read control signal on the control bus; 

3. Wait for the memory to retrieve the data from the addressed memory location and place it 
on the data bus; 

4. Read the data from the data bus; 

5. Drop the memory read control signal to terminate the read cycle. 

For example, a simple Pentium read cycle takes three clock cycles. During the first clock 
cycle, steps 1 and 2 are performed. The processor waits until the end of the second clock and 
reads the data and drops the read control signal. If the memory is slower (and therefore cannot 
supply data within the specified time), the memory unit indicates its inability to the processor and 
the processor waits longer for the memory to supply data by inserting wait cycles. Note that each 
wait cycle introduces a waiting period equal to one system clock period and thus slows down the 
system operation. 

Steps in a typical write cycle 

1. Place the address of the location to be written on the address bus; 

2. Place the data to be written on the data bus; 

3. Activate the memory write control signal on the control bus; 

4. Wait for the memory to store the data at the addressed location; 

5. Drop the memory write signal to terminate the write cycle. 

As with the read cycle, Pentium requires three clock cycles to perform a simple write operation. 
During the first clock cycle, steps 1 and 3 are done. Step 2 is performed during the second clock 
cycle. The processor gives memory time until the end of the second clock and drops the memory 
write signal. If the memory cannot write data at the maximum processor rate, wait cycles can be 
introduced to extend the write cycle. 
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Types of Memory 

The memory unit can be implemented using a variety of memory chips—different speeds, different 
manufacturing technologies, and different sizes. The two basic types of memory are the read-only 
memory and read/write memory. 

A basic property of memory systems is, they are random access memories in that accessing 
any memory location (for reading or writing) takes the same time. Contrast this with data stored 
on a magnetic tape. Access time on the tape depends on the location of the data. 

Volatility is another important property of a memory system. A volatile memory requires 
power to retain its contents. A nonvolatile memory can retain its values even in the absence of 
power. 

Read-Only IVIemories Read-only memory (ROM) allows only read operations to be performed. 
As the name suggests, we cannot write into this memory. The main advantage of ROM is that it is 
nonvolatile. Most ROM is factory programmed and cannot be altered. The term programming in 
this context refers to writing values into a ROM. This type of ROM is cheaper to manufacture in 
large quantities than other types of ROM. The program that controls the standard input and output 
functions (called BIOS), for instance, is kept in ROM. Current systems use the flash memory rather 
than a ROM (see our discussion later). 

Other types include programmable ROM (PROM) and erasable PROM (EPROM). PROM is 
useful in situations where the contents of ROM are not yet fixed. For instance, when the program 
is still in the development stage, it is convenient for the designer to be able to program the ROM 
locally rather than at the time of manufacture. 

In PROM, a fuse is associated with each bit cell. If the fuse is on, the bit cell supplies a 1 
when read. The fuse has to be burned to read a 0 from that bit cell. When PROM is manufactured, 
its contents are all set to 1. To program a PROM, selective fuses are burned (to introduce Os) by 
sending high current. This is the writing process and is not reversible (i.e., a burned fuse cannot be 
restored). EPROM offers further flexibility during system prototyping. Contents of EPROM can 
be erased by exposing them to ultraviolet light for a few minutes. Once erased, EPROM can be 
reprogrammed again. 

Electrically erasable PROMs (EEPROMs) allow further flexibility. By exposing to ultraviolet 
light, we erase all the contents of an EPROM. EEPROMs, on the other hand, allow the user to 
selectively erase contents. Furthermore, erasing can be done in place; there is no need to place it 
in a special ultraviolet chamber. 

Flash memory is a special kind of EEPROM. One main difference between the EEPROM and 
flash memory lies in how the memory contents are erased. The EEPROM is byte-erasable whereas 
the flash memory is block-erasable. Thus, writing in the flash memory involves erasing a block 
and rewriting it. 

Current systems use the flash memory for BIOS so that changing BIOS versions is fairly 
straightforward (You just have to "flash" the new version). Flash memory is also becoming very 
popular as a removable media. The SmartMedia, CompactFlash, Sony's Memory Stick are all 
examples of various forms of removable flash media. 

Flash memory, however, is slower than the RAMs we discuss next. For example, flash memory 
cycle time is about 80 ns whereas the corresponding value for RAMs is about 10 ns. Nevertheless, 
since flash memories are nonvolatile, they are used in applications where this property is important. 
Apart from BIOS, we see them in devices like digital cameras and video game systems. 
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Read/Write Memory Read/write memory is commonly referred to as random access memory 
(RAM), even though ROM is also a random access memory. This terminology is so entrenched in 
the literature that we follow it here with a cautionary note that RAM actually refers to RWM. 

Read/write memory can be divided into static and dynamic categories. Static random access 
memory (SRAM) retains the data, once written, without further manipulation so long as the source 
of power holds its value. SRAM is typically used for implementing the processor registers and 
cache memories. 

The bulk of main memory in a typical computer system, however, consists of dynamic random 
access memory (DRAM). DRAM is a complex memory device that uses a tiny capacitor to store a 
bit. A charged capacitor represents 1 bit. Since capacitors slowly lose their charge due to leakage, 
they must be periodically refreshed to replace the charges representing 1 bit. A typical refresh 
period is about 64 ms. Reading from DRAM involves testing to see if the corresponding bit cells 
are charged. Unfortunately, this test destroys the charges on the bit cells. Thus, DRAM is a 
destructive read memory. 

For proper operation, a read cycle is followed by a restore cycle. As a result, the DRAM cycle 
time, the actual time necessary between accesses, is typically about twice the read access time, 
which is the time necessary to retrieve a datum from the memory. 

Several types of DRAM chips are available. We briefly describe some of most popular types 
DRAMs next. 

FPM DRAMs Fast page mode (FPM) DRAMs are an improvement over the previous generation 
DRAMs. FPM DRAMs exploit the fact that we access memory sequentially, most of the time. To 
know how this access pattern characteristic is exploited, we have to look at how the memory is 
organized. Internally, the memory is organized as a matrix of bits. For example, a 32 Mb memory 
could be organized as 8 K rows (i.e., 8192 since K = 1024) and 4 K columns. To access a bit, 
we have to supply a row address and a column address. In the FPM DRAM, a page represents 
part of the memory with the same row address. To access a page, we specify the row address only 
once; we can read the bits in the specified page by changing the column addresses. Since the row 
address is not changing, we save on the memory cycle time. 

EDO DRAMs Extended Data Output (EDO) DRAM is another type of FPM DRAM. It also ex­
ploits the fact that we access memory sequentially. However, it uses pipelining to speed up memory 
access. That is, it initiates the next request before the previous memory access is completed. A 
characteristic of pipelining inherited by EDO DRAMs is that single memory reference requests 
are not speeded up. However, by overlapping multiple memory access requests, it improves the 
memory bandwidth. 

SDRAMs Both FPM DRAMs and EDO DRAMs are asynchronous in the sense that their data 
output is not synchronized to a clock. The synchronous DRAM (SDRAM) uses an external clock 
to synchronize the data output. This synchronization reduces delays and thereby improves the 
memory performance. The SDRAM memories are used in systems that require memory satisfying 
the PC100/PC133 specification. SDRAMs are dominant in low-end PC market and are cheap. 

DDR SDRAMs The SDRAM memories are also called single data rate (SDR) SDRAMs as they 
supply data once per memory cycle. However, with increasing processor speeds, the processor 
bus (also called front-side bus or FSB) frequency is also going up. For example, PCs now have a 
533 MHz FSB that supports a transfer rate of about 4.2 GB/s. To satisfy this transfer rate, SDRAMs 
have been improved to provide data at both rising and falling edges of the clock. This effectively 
doubles the memory bandwidth and satisfies the high data transfer rates of faster processors. 
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Figure 3.3 Tristate buffer: (a) logic symbol; (b) it acts as an open circuit when the enable input is 
inactive (E = 0); (c) it acts as a closed circuit when the enable input is active (E = 1); (d) truth table 
(X = don't care input, and Z = high innpedance state). 

RDRAMs Rambus DRAM (RDRAM) takes a completely different approach to increase the 
memory bandwidth. A technology developed and licensed by Rambus, it is a memory subsystem 
that consists of the RAM, RAM controller, and a high-speed bus called the Rambus channel. Like 
the DDR DRAM, it also performs two transfers per cycle. In contrast to the 8-byte wide data bus 
of DRAMs, Rambus channel is a 2-byte data bus. However, by using multiple channels, we can 
increase the bandwidth of RDRAMs. For example, a dual-channel RDRAM operating at 533 MHz 
provides a bandwidth of 533 * 2 * 4 = 4.2 GB/s, sufficient for the 533 MHz FSB systems. 

From this brief discussion it should be clear that DDR SDRAMs and RDRAMs compete with 
each other in the high-end market. The race between these two DRAM technologies continues as 
Intel boosts its FSB to 800 MHz. 

Building a [\/lemory Block 

In the last chapter, we discussed several basic building blocks such as flip-flops, multiplexers, and 
decoders. For example, flip-flops provide the basic capability to store a bit of data. These devices 
can be replicated to build larger memory units. For example, we can place 16 flip-flops together 
in a row to store a 16-bit word. All the 16 flip-flops would have their clock inputs tied together to 
form a single common clock to write a 16-bit word. We can place several such rows in a memory 
chip to store multiple words of data. In this organization, each row supplies a word. To build even 
larger memories, we can use multiple chips such that all their data lines are connected to the data 
bus. This implies that we need to find a way to connect these outputs together. Tristate buffers are 
used for this purpose. 

Tristate Buffers 

The logic circuits we have discussed in the last chapter have two possible states: 0 or 1. The 
devices we discuss here are called tristate buffers as they can be in three states: 0, 1, or Z state. A 
tristate buffer output can be in state 0 or 1 just as with a normal logic gate. In addition, the output 
can also be in a high impedance (Z) state, in which the output floats. Thus, even though the output 
is physically connected to the bus, it behaves as though it is electrically and logically disconnected 
from the bus. 

Tristate buffers use a separate control signal to float the output independent of the data input 
(see Figure 3.3a). This particular feature makes them suitable for bus connections. Figure 3.3a 



Chapters • Memory Organization 51 

shows the logic symbol for a tristate buffer. When the enable input (E) is low, the buffer acts as an 
open circuit (i.e., output is in the high impedance state Z) as shown in Figure 3.3b; otherwise, it 
acts as a short circuit (Figure 3.3c). The enable input must be high in order to pass the input data 
to output, as shown in the truth table (see Figure 3.3d). 

Memory Design with D Flip-Flops 
We begin our discussion with how one can build memories using the D flip-flops. Recall that we 
use flip-flops for edge-triggered devices and latches for level-sensitive devices. The principle of 
constructing memory out of D flip-flops is simple. We use a two-dimensional array of D flip-flops, 
with each row storing a word. The number of rows is equal to the number of words the memory 
should store. Thus, this organization uses "horizontal" expansion to increase the word width and 
"vertical" expansion to increase the number of words. 

In general, the number of columns and the number of rows is a power of two. We use the 
notation M x N memory to represent a memory that can store M words, where each word is 
N-bits long. 

Figure 3.4 shows a 4 x 3 memory built with 12 D flip-flops organized as a 4 x 3 array. Since all 
flip-flops in a row store a word of data, each row of flip-flops has their clock signals tied together 
to form a single clock signal for each row. All flip-flops in a column receive input from the same 
input data line. For example, the rightmost column D inputs are connected to the input data DO. 

This memory requires two address lines to select one of the four words. The two address lines 
are decoded to select a specific row by using a 2-to-4 decoder. The low-active write signal (WR) 
is gated through an AND gate as shown in Figure 3.4. Depending on the address, only one of the 
four decoder output lines will be high, permitting the WR signal to clock the selected row to write 
the 3-bit data present on DO to D2 lines. Note that the decoder along with the four AND gates 
forms a demultiplexer that routes the WR signal to the row selected by the address lines Al and 
AO. 

The design we have done so far allows us to write a 3-bit datum into the selected row. To 
complete the design, we have to find a way to read data from this memory. As each bit of data is 
supplied by one of the four D flip-flops in a column, we have to find a way to connect these four 
outputs to a single data out line. A natural choice for the job is a 4-to-l multiplexer. The MUX 
selection inputs are connected to the address lines to allow appropriate data on the output lines DO 
through D2. The final design is shown in Figure 3.4. 

We need to pass the outputs of the multiplexers through tristate buffers as shown in Figure 3.4. 
The enable input signal for these output tristate buffers is generated by ANDing the chip select 
and read signals. Two inverters are used to provide low-active chip select (CS) and memory read 
(RD) inputs to the memory block. 

With the use of the tristate buffers, we can tie the corresponding data in and out signal lines to­
gether to satisfy the data bus connection requirements. Furthermore, we can completely disconnect 
the outputs of this memory block by making CS high. 

We can represent our design using the logic symbol shown in Figure 3.5. Our design uses 
separate read and write signals. These two signals are part of the control bus (see Figure 2,1). It 
is also possible to have a single line to serve as a read and write line. For example, a 0 on this 
line can be interpreted as write and a 1 as read. Such signals are represented as the WR/RD line, 
indicating low-active write and high-active read. 
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D2 Dl 

Figure 3.4 A 4 x 3 memory design using D flip-flops. 

Building Larger iVIemories 

Now that we know how to build memory blocks using devices that can store a single bit, we move 
on to building larger memory units using these memory blocks. We explain the design process 
by using an example. Before discussing the design procedure, we briefly present details about 
commercially available memory chips. 
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Figure 3.5 Block diagram representation of a 4 x 3 memory. 

Memory Chips 

Several commercial memory chips are available to build larger memories. Here we look at two 
example chips—a SRAM and a DRAM—from Micron Technology. 

The SRAM we discuss is an 8-Mb chip that comes in three configurations: 512 K x 18, 
256 K X 32, or 256 K x 36. Note that, in the first and last configurations, word length is not a 
multiple of 8. These additional bits are useful for error detection/correction. These chips have an 
access time of 3.5 ns. The 512 K x 18 chip requires 19 address lines, whereas the 256 K x 32/36 
versions require 18 address lines. 

An example DRAM (it is a synchronous DRAM) is the 256-Mb capacity chip that comes in 
word lengths of 4, 8, or 16 bits. That is, this memory chip comes in three configurations: 64 M x 4, 
32 M x 8, or 16 M X 16. The cycle time for this chip is about 7 ns. 

In the days when the data bus widths were small (8 or 16), DRAM chips were available in 1-bit 
widths. Current chips use a word width of more than 1 as it becomes impractical to string 64 1-bit 
chips to get 64-bit word memories for processors such as the Pentium. 

From the details of these two example memory chips, we see that the bit capacity of a memory 
chip can be organized into several configurations. If we focus on the DRAM chip, for example, 
what are the pros and cons of the various configurations? The advantage of wider memory chips 
(i.e., chips with larger word size) is that we require fewer of them to build a larger memory. As 
an example, consider building memory for your Pentium-based PC. Even though the Pentium is 
a 32-bit processor, it uses a 64-bit wide data bus. Suppose that you want to build a 16 M x 64 
memory. We can build this memory by using four 16 M x 16 chips, all in a single row. How do 
we build such a memory using, for example, the 32 M x 8 version of the chip? Because our word 
size is 64, we have to use 8 such chips in order to provide 64-bit wide data. That means we get 
32 M X 64 memory as the minimum instead of the required 16 M x 64. The problem becomes 
even more serious if we were to use the 64 M x 4 version chip. We have to use 16 such chips, and 
we end up with a 64 M x 64 memory. This example illustrates the tradeoff between using "wider" 
memories versus "deeper" memories. 

Larger Memory Design 

Before proceeding with the design of a memory unit, we need to know if the memory address space 
(MAS) supported by the processor is byte addressable or not. In a byte-addressable space, each 
address identifies a byte. All popular processors—the Pentium, PowerPC, SPARC, and MIPS— 



54 Assembly Language Programming in Linux 

support byte-addressable space. Therefore, in our design examples, we assume byte-addressable 
space. 

We now discuss how one can use memory chips, such as the ones discussed before, to build 
system memory. The procedure is similar to the intuitive steps followed in the previous design 
example. 

First we have to decide on the configuration of the memory chip, assuming that we are using the 
DRAM chip described before. As described in the last section, independent of the configuration, 
the total bit capacity of a chip remains the same. That means the number of chips required remains 
the same. For example, if we want to build a 64 M x 32 memory, we need eight chips. We can 
use eight 64 M x 4 in a single row, eight 32 M x 8 in 2 x 4 array, o r l 6 M x 16 in 4 x 2 array. 
Although we have several alternatives for this example, there may be situations where the choice 
is limited. For example, if we are designing a 16 M x 32 memory, we have no choice but to use 
the 16 M X 16 chips. 

Once we have decided on the memory chip configuration, it is straightforward to determine the 
number of chips and the organization of the memory unit. Let us assume that we are using D x W 
chips to build an M x N memory. Of course, we want to make sure that D < M and W < N. 

Number of chips required = 

Number of rows 

M X N 
D X W ' 

M 

N 
Number of columns = — . 

W 

The read and write lines of all memory chips should be connected to form a single read and write 
signal. These signals are connected to the control bus memory read and write lines. For simplicity, 
we omit these connections in our design diagrams. 

Data bus connections are straightforward. Each chip in a row supplies a subset of data bits. In 
our design, the right chip supplies DO to D15, and the left chip supplies the remaining 16 data bits 
(see Figure 3.6). 

For each row, connect all chip select inputs as shown in Figure 3.6. Generating appropriate 
chip select signals is the crucial part of the design process. To complete the design, partition the 
address lines into three groups as shown in Figure 3.7. 

The least significant Z address bits, where Z = log2(N/8), are not connected to the memory 
unit. This is because each address going into the memory unit will select an N-bit value. Since 
we are using byte-addressable memory address space, we can leave the Z least significant bits that 
identify a byte out of N/8 bytes. In our example, N = 32, which gives us Z = 2. Therefore, the 
address lines AO and Al are not connected to the memory unit. 

The next Y address bits, where Y = log2D, are connected to the address inputs of all the chips. 
Since we are using 16 M chips, Y = 24. Thus, address lines A2 to A25 are connected to all the 
chips as shown in Figure 3.6. 

The remaining most significant address bits X are used to generate the chip select signals. This 
group of address bits plays an important role in mapping the memory to a part of the memory ad­
dress space. We discuss this mapping in detail in the next section. The design shown in Figure 3.6 
uses address lines A26 and A27 to generate four chip select signals, one for each row of chips. We 
are using a low-active 2-to-4 decoder to generate the CS signals. 
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Figure 3.6 Design of a 64 M x 32 memory using 16 M x 16 memory chips. 

The top row of chips in Figure 3.6 is mapped to the first 64-MB address space (i.e., from 
addresses 0 to 2^^ - 1). The second row is mapped to the next 64-MB address space, and so on. 
After reading the next section, you will realize that this is a partial mapping. 
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Mapping Memory 

Memory mapping refers to the placement of a memory unit in the memory address space (MAS). 
For example, the IA-32 architecture supports 4 GB of address space (i.e., it uses 32 bits for ad­
dressing a byte in memory). If your system has 128 MB of memory, it can be mapped to one of 
several address subspaces. This section describes how this mapping is done. 

Full Mapping 
Full mapping refers to a one-to-one mapping function between the memory address and the address 
in MAS. This means, for each address value in MAS that has a memory location mapped, there is 
one and only one memory location responding to the address. 

Full mapping is done by completely decoding the higher-order X bits of memory (see Fig­
ure 3.7) to generate the chip select signals. Two example mappings of 16 M x 32 memory mod­
ules are shown in Figure 3.8. Both these mappings are full mappings as all higher-order X bits 
participate in generating the CS signal. 

Logically we can divide the 32 address lines into two groups. One group, consisting of address 
lines Y and Z, locates a byte in the selected 16 M x 32 memory module. The remaining higher-
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Figure 3.9 Partial address mapping. 

order bits (i.e., the X group) are used to generate the CS signal. Given this delineation, it is simple 
to find the mapping. 

We illustrate the technique by using the two examples shown in Figure 3.8. ^ince the memory 
modules have a low-active chip select input, a given module is selected if its CS input is 0. For 
Module A, the NAND gate output is low when A26 and A29 are low and the remaining four ad­
dress lines are high. Thus, this memory module responds to memory read/write activity whenever 
the higher-order six address bits are 110110. From this, we can get the address locations mapped 
to this module as D8000000H to DBFFFFFFH. For convenience, we have expressed the addresses 
in the hexadecimal system (as indicated by the suffix letter H). The address D8000000H is mapped 
to the first location and the address DBFFFFFFH to the last location of Module A. For addresses 
that are outside this range, the CS input to Module A is high and, therefore, it is deselected. 

For Module B, the same inputs are used except that the NAND gate is replaced by an OR gate. 
Thus, the output of this OR gate is low when the higher-order six address bits are 001001. From 
this, we can see that mapping for Module B is 24000000H to 27FFFFFFH. As these two ranges 
are mutually exclusive, we can keep both mappings without causing conflict problems. 

Partial Mapping 

Full mapping is useful in mapping a memory module; however, often the complexity associated 
with generating the CS signal is not necessary. For example, we needed a 6-input NAND or OR 
gate to map the two memory modules in Figure 3.8. Partial mapping reduces this complexity by 
mapping each memory location to more than one address in MAS. We can obtain simplified CS 
logic if the number of addresses a location is mapped to is a power of 2. 

Let us look at the mapping of Module A in Figure 3.9 to clarify some of these points. The 
CS logic is the same except that we are not connecting the A26 address line to the NAND gate. 
Because A26 is not participating in generating the signal, it becomes a don't care input. In this 
mapping, Module A is selected when the higher-order six address bits are 110110 or 110111. 
Thus, Module A is mapped to the address space D8000000H to DBFFFFFFH and DCOOOOOOH 
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Figure 3.10 Two byte ordering schemes. 

to DFFFFFFFH. That is, the first location in Module A responds to addresses D8000000H and 
DCOOOOOOH. Since we have left out one address bit A26, two (i.e., 2 )̂ addresses are mapped to 
a memory location. In general, if we leave out k address bits from the chip select logic, we map 
2^ addresses to each memory location. For example, in our memory design of Figure 3.6, four 
address lines (A28 to A31) are not used. Thus, 2^ = 16 addresses are mapped to each memory 
location. 

We leave it as an exercise to verify that each location in Module B is mapped to eight addresses 
as there are three address lines that are not used to generate the CS signal. 

Storing Multibyte Data 
Storing data often requires more than a byte. For example, we need four bytes of memory to store 
an integer variable that can take a value between 0 and 2 ̂ ^ — 1. Let us assume that the value to be 
stored is the one shown in Figure 3.10a. 

Suppose that we want to store these 4-byte data in memory at locations 100 through 103. How 
do we store them? Figure 3.10 shows two possibilities: least significant byte (Figure 3.10b) or 
most significant byte (Figure 3.10c) is stored at location 100. These two byte ordering schemes 
are referred to as the little endian and big endian. In either case, we always refer to such multibyte 
data by specifying the lowest memory address (100 in this example). 

Is one byte ordering scheme better than the other? Not really! It is largely a matter of choice 
for the designers. For example, the IA-32 processors use the little-endian byte ordering. However, 
most processors leave it up to the system designer to configure the processor. For example, the 
MIPS and PowerPC processors use the big-endian byte ordering by default, but these processors 
can be configured to use the little-endian scheme. 
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Figure 3.11 Byte-addressable memory interface to the 32-bit data bus. 

The particular byte-ordering scheme used does not pose any problems as long as you are 
working with machines that use the same byte-ordering scheme. However, difficulties arise when 
you want to transfer data between two machines that use different schemes. In this case, conversion 
from one scheme to the other is required. For example, the IA-32 instruction set provides two 
instructions to facilitate such conversion: one to perform 16-bit data conversions and the other for 
32-bit data. Later chapters give details on these instructions. 

Alignment of Data 

We can use our memory example to understand why data alignment improves the performance of 
applications. Suppose we want to read 32-bit data from the memory shown in Figure 3.6. If the 
address of these 32-bit data is a multiple of four (i.e., address lines AO and Al are 0), the 32-bit 
data are stored in a single row of memory. Thus the processor can get the 32-bit data in one read 
cycle. If this condition is not satisfied, then the 32-bit data item is spread over two rows. Thus the 
processor needs to read two 32-bits of data and extract the required 32-bit data. This scenario is 
clearly demonstrated in Figure 3.11. 

In Figure 3.11, the 32-bit data item stored at address 8 (shown by hashed lines) is aligned. Due 
to this alignment, the processor can read this data item in one read cycle. On the other hand, the 
data item stored at address 17 (shown shaded) is unaligned. Reading this data item requires two 
read cycles: one to read the 32 bits at address 16 and the other to read the 32 bits at address 20. 
The processor can internally assemble the required 32-bit data item from the 64-bit data read from 
the memory. 

You can easily extend this discussion to the Pentium's 64-bit data bus. It should be clear to 
you that aligned data improve system performance. 
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• 2-Byte Data: A 16-bit data item is aligned if it is stored at an even address (i.e., addresses 
that are multiples of two). This means that the least significant bit of the address must be 0. 

• 4-Byte Data: A 32-bit data item is aligned if it is stored at an address that is a multiple of 
four. This implies that the least significant two bits of the address must be 0 as discussed in 
the last example. 

• 8-Byte Data: A 64-bit data item is aligned if it is stored at an address that is a multiple 
of eight. This means that the least significant three bits of the address must be 0. This 
alignment is important for Pentium processors, as they have a 64-bit wide data bus. On 
80486 processors, since their data bus is 32-bits wide, a 64-bit data item is read in two bus 
cycles and alignment at 4-byte boundaries is sufficient. 

The IA-32 processors allow both aligned and unaligned data items. Of course, unaligned data 
cause performance degradation. Alignment constraints of this type are referred to as soft alignment 
constraints. Because of the performance penalty associated with unaligned data, some processors 
do not allow unaligned data. This alignment constraint is referred to as the hard alignment con­
straint. 

Summary 

We have discussed the basic memory design issues. We have shown how flip-flops can be used 
to build memory blocks. Interfacing a memory unit to the system bus typically requires tristate 
buffers. We have described by means of an example how tristate buffers are useful in connecting 
the memory outputs to the data bus. 

Building larger memories requires both horizontal and vertical expansion. Horizontal expan­
sion is used to expand the word size, and vertical expansion provides an increased number of 
words. We have shown how one can design memory modules using standard memory chips. In all 
these designs, chip select plays an important role in allowing multiple entities to be attached to the 
system bus. 

Chip select logic also plays an important role in mapping memory modules into the address 
space. Two basic mapping functions are used: full mapping and partial mapping. Full mapping 
provides a one-to-one mapping between memory locations and addresses. In partial mapping, each 
memory location is mapped to a number of addresses equal to a power of 2. The main advantage 
of partial mapping is that it simplifies the chip select logic. 

We have described the big-endian or little-endian formats to store multibyte data. We have also 
discussed the importance of data alignment. Unaligned data can lead to performance degradation. 
We have discussed the reasons for improvement in performance due to alignment of data. 



4 
The IA-32 Architecture 

When you are programming in a high-level language like C, you don't have to know anything 
about the underlying processor and the system. However, when programming in an assembly 
language, you should have some understanding of how the processor is organized and the system 
is put together This chapter provides these details for the Intel IA-32 architecture. The Pentium 
processor is an implementation of this architecture. Of course, several other processors such as 
Celeron, Pentium 4, and Xeon also belong to this architecture. We present details of its registers 
and memory architecture. It supports two memory architectures: protected-mode and real-mode. 
Protected-mode architecture is the native mode and the real-mode is provided to mimic the 16-bit 
8086 memory architecture. Both modes support segmented memory architecture. It is important 
for the assembly language programmer to understand the segmented memory organization. Other 
details of this architecture are given in later chapters. 

Introduction 
Intel introduced microprocessors way back in 1969. Their first 4-bit microprocessor was the 4004. 
This was followed by the 8080 and 8085 processors. The work on these early microprocessors led 
to the development of the Intel architecture (lA). The first processor in the lA family was the 8086 
processor, introduced in 1979. It has a 20-bit address bus and a 16-bit data bus. 

The 8088 is a less expensive version of the 8086 processor. The cost reduction is obtained by 
using an 8-bit data bus. Except for this difference, the 8088 is identical to the 8086 processor. Intel 
introduced segmentation with these processors. These processors can address up to four segments 
of 64 KB each. This lA segmentation is referred to as the real-mode segmentation and is discussed 
later in this chapter. 

The 80186 is a faster version of the 8086. It also has a 20-bit address bus and 16-bit data bus, 
but has an improved instruction set. The 80186 was never widely used in computer systems. The 
real successor to the 8086 is the 80286, which was introduced in 1982. It has a 24-bit address 
bus, which implies 16 MB of memory address space. The data bus is still 16 bits wide, but the 
80286 has some memory protection capabilities. It introduced the protection mode into the IA 
architecture. Segmentation in this new mode is different from the real-mode segmentation. We 
present details on this new segmentation later. The 80286 is backward compatible in that it can 
run the 8086-based software. 
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Intel introduced its first 32-bit processor—the 80386—in 1985. It has a 32-bit data bus and 
32-bit address bus. It follows their 32-bit architecture known as IA-32. The memory address space 
has grown substantially (from 16 MB address space to 4 GB). This processor introduced paging 
into the IA architecture. It also allowed definition of segments as large as 4 GB. This effectively 
allowed for a "flat" model (i.e., effectively turning off segmentation). Later sections present details 
on this aspect. Like the 80286, it can run all the programs written for 8086 and 8088 processors. 

The Intel 80486 processor was introduced in 1989. This is an improved version of the 80386. 
While maintaining the same address and data buses, it combined the coprocessor functions for 
performing floating-point arithmetic. The 80486 processor has added more parallel execution 
capability to instruction decode and execution units to achieve a scalar execution rate of one in­
struction per clock. It has an 8 KB onchip LI cache. Furthermore, support for the L2 cache and 
multiprocessing has been added. Later versions of the 80486 processors incorporated features such 
as energy saving mode for notebooks. 

The latest in the family is the Pentium series. It is not named 80586 because Intel found 
belatedly that numbers couldn't be trademarked! The first Pentium was introduced in 1993. The 
Pentium is similar to the 80486 but uses a 64-bit wide data bus. Internally, it has 128- and 256-bit 
wide datapaths to speed up internal data transfers. However, the Pentium instruction set supports 
32-bit operands like the 80486 processor. It has added a second execution pipeline to achieve 
superscalar performance by having the capability to execute two instructions per clock. It has also 
doubled the onchip LI cache, with 8 KB for data and another 8 KB for the instructions. Branch 
prediction has also been added. 

The Pentium Pro processor has a three-way superscalar architecture. That is, it can execute 
three instructions per clock cycle. The address bus has been expanded to 36 bits, which gives it an 
address space of 64 GB. It also provides dynamic execution including out-of-order and speculative 
execution. In addition to the LI caches provided by the Pentium, the Pentium Pro has a 256 KB 
L2 cache in the same package as the CPU. 

The Pentium II processor has added multimedia (MMX) instructions to the Pentium Pro archi­
tecture. It has expanded the LI data and instruction caches to 16 KB each. It has also added more 
comprehensive power management features including Sleep and Deep Sleep modes to conserve 
power during idle times. 

The Pentium III processor introduced streaming SIMD extensions (SSE), cache prefetch in­
structions, and memory fences, and the single-instruction multiple-data (SIMD) architecture for 
concurrent execution of multiple floating-point operations. Pentium 4 enhanced these features 
further. 

Intel's 64-bit Itanium processor is targeted for server applications. For these applications, the 
32-bit memory address space is not adequate. The Itanium uses a 64-bit address bus to provide 
substantially larger address space. Its data bus is 128 bits wide. In a major departure, Intel has 
moved from the CISC designs used in their 32-bit processors to RISC orientation for their 64-
bit Itanium processors. The Itanium also incorporates several advanced architectural features to 
provide improved performance for the high-end server market. 

In the rest of the chapter, we look at the basic architectural details of the IA-32 architecture. 
Our focus is on the internal registers and memory architecture. Other details are covered in later 
chapters. 
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Figure 4.1 Execution cycle of a typical computer system. 

Processor Execution Cycle 
The processor acts as the controller of all actions or services provided by the system. It can be 
thought of as executing the following cycle forever: 

1. Fetch an instruction from the memory; 

2. Decode the instruction (i.e., identify the instruction); 

3. Execute the instruction (i.e., perform the action specified by the instruction). 

This process is often referred to as ihcfetch-decode-execute cycle, or simply the execution cycle. 
The execution cycle of a processor is shown in Figure 4.1. As discussed in the last chapter, 

Fetching an instruction from the main memory involves placing the appropriate address on the 
address bus and activating the memory read signal on the control bus to indicate to the memory 
unit that an instruction should be read from that location. The memory unit requires time to read 
the instruction at the addressed location. The memory then places the instruction on the data bus. 
The processor, after instructing the memory unit to read, waits until the instruction is available on 
the data bus and then reads the instruction. 

Decoding involves identifying the instruction that has been fetched from the memory. To facil­
itate the decoding process, machine language instructions follow a particular instruction-encoding 
scheme. 

To execute an instruction, the processor contains hardware consisting of control circuitry and 
an arithmetic and logic unit (ALU). The control circuitry is needed to provide timing controls as 
well as to instruct the internal hardware components to perform a specific operation. As described 
in Chapter 2, the ALU is mainly responsible for performing arithmetic operations (such as add 
and d i v i d e ) and logical operations (such as and, or) on data. 

In practice, instructions and data are not fetched, most of the time, from the main memory. 
There is a high-speed cache memory that provides faster access to instructions and data than the 
main memory. For example, the Pentium processor provides a 16 KB on-chip cache. This is 
divided equally into data cache and instruction cache. The presence of on-chip cache is transparent 
to application programs—it helps improve application performance. 

Processor Registers 
The IA-32 architecture provides ten 32-bit and six 16-bit registers. These registers are grouped 
into general, control, and segment registers. The general registers are further divided into data, 
pointer, and index registers as shown in Figures 4.2 and 4.3. 
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Figure 4.3 Index and pointer registers. 

Data Registers 

There are four 32-bit data registers that can be used for arithmetic, logical, and other operations 
(see Figure 4.2). These four registers are unique in that they can be used as follows: 

• Four 32-bit registers (EAX, EBX, ECX, EDX); or 
• Four 16-bit registers (AX, BX, CX, DX); or 
• Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL). 

As shown in Figure 4.2, it is possible to use a 32-bit register and access its lower half of the data by 
the corresponding 16-bit register name. For example, the lower 16 bits of EAX can be accessed by 
using AX. Similarly, the lower two bytes can be individually accessed by using the 8-bit register 
names. For example, the lower byte of AX can be accessed as AL and the upper byte as AH. 

The data registers can be used without constraint in most arithmetic and logical instructions. 
However, some registers in this group have special functions when executing specific instructions. 
For example, when performing a multiplication operation, one of the two operands should be in 
the EAX, AX, or AL register depending on the operand size. Similarly, the ECX or CX register is 
assumed to contain the loop count value for iterative instructions. 
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Figure 4.4 Flags and instruction pointer registers. 

Pointer and Index Registers 

Figure 4.3 shows the four 32-bit registers in this group. These registers can be used either as 16-
or 32-bit registers. The two index registers play a special role in the string processing instructions 
(these instructions are discussed in Chapter 17). In addition, they can be used as general-purpose 
data registers. 

The pointer registers are mainly used to maintain the stack. Even though they can be used as 
general-purpose data registers, they are almost exclusively used for maintaining the stack. The 
stack implementation is discussed in Chapter 11. 

Control Registers 

This group of registers consists of two 32-bit registers: the instruction pointer register and the flags 
register (see Figure 4.4). The processor uses the instruction pointer register to keep track of the 
location of the next instruction to be executed. Instruction pointer register is sometimes called the 
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Figure 4.5 The six segment registers support the segmented memory architecture. 

program counter register. The instruction pointer can be used either as a 16-bit register (IP), or as 
a 32-bit register (EIP). The IP register is used for 16-bit addresses and the EIP register for 32-bit 
addresses. 

When an instruction is fetched from memory, the instruction pointer is updated to point to the 
next instruction. This register is also modified during the execution of an instruction that transfers 
control to another location in the program (such as a jump, procedure call, or interrupt). 

The flags register can be considered as either a 16-bit FLAGS register, or a 32-bit EFLAGS 
register. The FLAGS register is useful in executing 8086 processor code. The EFLAGS register 
consists of 6 status flags, 1 control flag, and 10 system flags, as shown in Figure 4.4. Bits of this 
register can be set (1) or cleared (0). The IA-32 instruction set has instructions to set and clear 
some of the flags. For example, the c l c instruction clears the carry flag, and the s t c instruction 
sets it. 

The six status flags record certain information about the most recent arithmetic or logical 
operation. For example, if a subtract operation produces a zero result, the zero flag (ZF) would be 
set (i.e., ZF = 1). Chapter 14 discusses the status flags in detail. 

The control flag is useful in string operations. This flag determines whether a string operation 
should scan the string in the forward or backward direction. The function of the direction flag is 
described in Chapter 17, which discusses the string instructions. 

The 10 system flags control the operation of the processor. A detailed discussion of all 10 
system flags is beyond the scope of this book. Here we briefly discuss a few flags in this group. 
The two interrupt enable flags—the trap enable flag (TF) and the interrupt enable flag (IF)— 
are useful in interrupt-related activities. For example, setting the trap flag causes the processor 
to single-step through a program, which is useful in debugging programs. These two flags are 
covered in Chapter 20, which discusses the interrupt processing mechanism. 

The ability to set and clear the identification (ID) flag indicates that the processor supports the 
CPUID instruction. The CPUID instruction provides information to software about the vendor 
(Intel chips use a "Genuinelntel" string), processor family, model, and so on. The virtual-8086 
mode (VM) flag, when set, emulates the programming environment of the 8086 processor. 

The last flag that we discuss is the alignment check (AC) flag. When this flag is set, the 
processor operates in alignment check mode and generates exceptions when a reference is made 
to an unaligned memory address. We discussed data alignment in the last chapter. 
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Figure 4.6 Logical to physical address translation process in the protected nnode. 

Segment Registers 

The six 16-bit segment registers are shown in Figure 4.5. These registers support the segmented 
memory organization. In this organization, memory is partitioned into segments, where each seg­
ment is a small part of the memory. The processor, at any point in time, can only access up to 
six segments of the main memory. The six segment registers point to where these segments are 
located in the memory. 

A program is logically divided into two parts: a code part that contains only the instructions, 
and a data part that keeps only the data. The code segment (CS) register points to where the 
program's instructions are stored in the main memory, and the data segment (DS) register points 
to the data part of the program. The stack segment (SS) register points to the program's stack 
segment (further discussed in Chapter 11). 

The last three segment registers—ES, FS, and GS—are additional segment registers that can 
be used in a similar way as the other segment registers. For example, if a program's data could 
not fit into a single data segment, we could use two segment registers to point to the two data 
segments. We will say more about these registers later. 

Protected Mode Memory Architecture 

The IA-32 architecture supports a sophisticated memory architecture under real and protected 
modes. The real mode, which uses 16-bit addresses, is provided to run programs written for the 
8086 processor. In this mode, it supports the segmented memory architecture of the 8086 proces­
sor. The protected mode uses 32-bit addresses and is the native mode of the IA-32 architecture. In 
the protected mode, both segmentation and paging are supported. Paging is useful in implement­
ing virtual memory; it is transparent to the application program, but segmentation is not. We do 
not look at the paging features here. We discuss the real-mode memory architecture in the next 
section, and devote the rest of this section to describing the protected-mode segmented memory 
architecture. 

In the protected mode, a sophisticated segmentation mechanism is supported. In this mode, 
the segment unit translates a logical address into a 32-bit linear address. The paging unit translates 
the linear address into a 32-bit physical address, as shown in Figure 4.6. If no paging mechanism 
is used, the linear address is treated as the physical address. In the remainder of this section, we 
focus on the segment translation process only. 

Protected mode segment translation process is shown in Figure 4.7. In this mode, contents of 
the segment register are taken as an index into a segment descriptor table to get a descriptor. Seg­
ment descriptors provide the 32-bit segment base address, its size, and access rights. To translate 
a logical address to the corresponding linear address, the offset is added to the 32-bit base address. 
The offset value can be either a 16-bit or 32-bit number. 
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Segment Registers 

Every segment register has a "visible" part and an "invisible" part, as shown in Figure 4.8. When 
we talk about segment registers, we are referring to the 16-bit visible part. The visible part is 
referred to as the segment selector. There are direct instructions to load the segment selector. 
These instructions include mov, pop , I d s , l e s , I s s , I g s , and I f s. Some of these instructions 
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Figure 4.9 A segment descriptor. 

are discussed in later chapters and in Appendix D. The invisible part of the segment registers is 
automatically loaded by the processor from a descriptor table (described next). 

As shown in Figure 4.7, the segment selector provides three pieces of information: 

• Index: The index selects a segment descriptor from one of two descriptor tables: a local 
descriptor table or a global descriptor table. Since the index is a 13-bit value, it can select 
one of 2^^ = 8192 descriptors from the selected descriptor table. Since each descriptor, 
shown in Figure 4.9, is 8 bytes long, the processor multiplies the index by 8 and adds the 
result to the base address of the selected descriptor table. 

• Table Indicator (TI): This bit indicates whether the local or global descriptor table should 
be used. 

0 = Global descriptor table, 
1 = Local descriptor table. 

• Requester Privilege Level (RPL): This field identifies the privilege level to provide protected 
access to data: the smaller the RPL value, the higher the privilege level. Operating systems 
don't have to use all four levels. For example, Linux uses level 0 for the kernel and level 3 
for the user programs. It does not use levels 1 and 2. 

Segment Descriptors 

A segment descriptor provides the attributes of a segment. These attributes include its 32-bit base 
address, 20-bit segment size, as well as control and status information, as shown in Figure 4.9. 
Here we provide a brief description of some of the fields shown in this figure. 

• Base Address: This 32-bit address specifies the starting address of a segment in the 4 GB 
physical address space. This 32-bit value is added to the offset value to get the linear address 
(see Figure 4.7). 

• Granularity (G): This bit indicates whether the segment size value, described next, should be 
interpreted in units of bytes or 4 KB. If the granularity bit is zero, segment size is interpreted 
in bytes; otherwise, in units of 4 KB. 

• Segment Limit: This is a 20-bit number that specifies the size of the segment. Depending on 
the granularity bit, two interpretations are possible: 
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1. If the granularity bit is zero, segment size can range from 1 byte to 1 MB (i.e., 2^^ 
bytes), in increments of 1 byte. 

2. If the granularity bit is 1, segment size can range from 4 KB to 4 GB, in increments of 
4KB. 

• D/B Bit: In a code segment, this bit is called the D bit and specifies the default size for 
operands and offsets. If the D bit is 0, default operands and offsets are assumed to be 16 
bits; for 32-bit operands and offsets, the D bit must be 1. 
In a data segment, this bit is called the B bit and controls the size of the stack and stack 
pointer. If the B bit is 0, stack operations use the SP register and the upper bound for the 
stack is FFFFH. If the B bit is 1, the ESP register is used for the stack operations with 
a stack upper bound of FFFFFFFFH. Recall that numbers expressed in the hexadecimal 
number system are indicated by suffix H (see Appendix A). 
Typically, this bit is cleared for the real-mode operation and set for the protected-mode 
operation. Later we describe how 16- and 32-bit operands and addresses can be mixed in a 
given mode of operation. 

• S Bit: This bit identifies whether the segment is a system segment or an application segment. 
If the bit is 0, the segment is identified as a system segment; otherwise, as an application 
(code or data) segment. 

• Descriptor Privilege Level (DPL): This field defines the privilege level of the segment. It is 
useful in controlling access to the segment using the protection mechanisms of the processor. 

• Type: This field identifies the type of segment. The actual interpretation of this field depends 
on whether the segment is a system or application segment. For application segments, the 
type depends on whether the segment is a code or data segment. For a data segment, type 
can identify it as a read-only, read-write, and so on. For a code segment, type identifies it as 
an execute-only, execute/read-only, and so on. 

• P bit: This bit indicates whether the segment is present. If this bit is 0, the processor 
generates a segment-not-present exception when a selector for the descriptor is loaded into 
a segment register. 

Segment Descriptor Tables 
A segment descriptor table is an array of segment descriptors shown in Figure 4.9. There are three 
types of descriptor tables: 

• The global descriptor table (GDT); 
• Local descriptor tables (LDT); 
• The interrupt descriptor table (IDT). 

All three descriptor tables are variable in size from 8 bytes to 64 KB. The interrupt descriptor table 
is used in interrupt processing and is discussed in Chapter 20. Both LDT and GDT can contain up 
to 2^^ = 8192 8-bit descriptors. As shown in Figure 4.7, the upper 13 bits of a segment selector 
are used as an index into the selected descriptor table. Each table has an associated register that 
holds the 32-bit linear base address and a 16-bit size of the table. The LDTR and GDTR registers 
are used for this purpose. These registers can be loaded using the l l d t and I g d t instructions. 
Similarly, the values of the LDTR and GDTR registers can be stored by the s l d t and sgd t 
instructions. These instructions are typically used by the operating system. 
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Figure 4.10 Segments in a multisegment model. 

The global descriptor table contains descriptors that are available to all tasks within the system. 
There is only one GDT in the system. Typically, the GDT contains code and data used by the 
operating system. The local descriptor table contains descriptors for a given program. There 
can be several LDTs, each of which may contain descriptors for code, data, stack, and so on. A 
program cannot access a segment unless there is a descriptor for the segment in either the current 
LDT or GDT. 

Segmentation Models 

The segments can span the entire memory address space. As a result, we can effectively make the 
segmentation invisible by mapping all segment base addresses to zero and setting the size to 4 GB. 
Such a model is called Sijiat model and is used in programming environments such as UNIX and 
Linux. 

Another model that uses the capabilities of segmentation to the full extent is the multisegment 
model. Figure 4.10 shows an example mapping of six segments. A program, in fact, can have 
more than just six segments. In this case, the segment descriptor table associated with the program 
will have the descriptors loaded for all the segments defined by the program. However, at any 
time, only six of these segments can be active. Active segments are those that have their segment 
selectors loaded into the six segment registers. A segment that is not active can be made active 
by loading its selector into one of the segment registers, and the processor automatically loads the 
associated descriptor (i.e., the "invisible part" shown in Figure 4.8). The processor generates a 
general-protection exception if an attempt is made to access memory beyond the segment limit. 
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Real Mode Memory Architecture 

In the real mode, an IA-32 processor such as the Pentium behaves like a faster 8086. The memory 
address space of the 8086 processor is 1 MB. To address a memory location, we have to use a 
20-bit address. The address of the first location is OOOOOH; the last addressable memory location 
is at FFFFFH. 

Since all registers in the 8086 are 16 bits wide, the address space is limited to 2^^, or 65,536 
(64 K) locations. As a consequence, the memory is organized as a set of segments. Each segment 
of memory is a linear contiguous sequence of up to 64 K bytes. In this segmented memory organi­
zation, we have to specify two components to identify a memory location: a segment base and an 
offset. This two-component specification is referred to as the logical address. The segment base 
specifies the start address of a segment in memory and the offset specifies the address relative to 
the segment base. The offset is also referred to as the effective address. The relationship between 
the logical and physical addresses is shown in Figure 4.11. 

It can be seen from Figure 4.11 that the segment base address is 20 bits long (1 lOOOH). So 
how can we use a 16-bit register to store the 20-bit segment base address? The trick is to store the 
most significant 16 bits of the segment base address and assume that the least significant four bits 
are all 0. In the example shown in Figure 4.11, we would store 1 lOOH as the segment base. The 
implied four least significant zero bits are not stored. This trick works but imposes a restriction on 
where a segment can begin. Segments can begin only at those memory locations whose address 
has the least significant four bits as 0. Thus, segments can begin at OOOOOH, 0001 OH, 00020H,..., 
FFFEOH, FFFFOH. Segments, for example, cannot begin at OOOOIH or FFFEEH. 
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Figure 4.12 Physical address generation in the real mode. 

In the segmented memory organization, a memory location can be identified by its logical ad­
dress. We use the notation segment'.ojfset to specify the logical address. For example, 1100:450H 
identifies the memory location 11450H, as shown in Figure 4.11. The latter value to identify a 
memory location is referred to as the physical memory address. 

Programmers have to be concerned with the logical addresses only. However, when the pro­
cessor accesses the memory, it has to supply the 20-bit physical memory address. The conversion 
of logical address to physical address is straightforward. This translation process, shown in Fig­
ure 4.12, involves adding four least significant zero bits to the segment base value and then adding 
the offset value. When using the hexadecimal number system, simply add a zero to the segment 
base address at the right and add the offset value. As an example, consider the logical address 
1100:450H. The physical address is computed as follows. 

110 0 0 (add 0 to the 16-bit segment base value) 
+ 450 (offset value) 

114 50 (physical address). 

For each logical memory address, there is a unique physical memory address. The converse, 
however, is not true. More than one logical address can refer to the same physical memory address. 
This is illustrated in Figure 4.13, where logical addresses 1000:20A9H and 1200:A9H refer to the 
same physical address 120A9H. In this example, the physical memory address 120A9H is mapped 
to two segments. 
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Figure 4.13 Two logical addresses map to the same physical address (all numbers are in hex). 

In our discussion of segments, we never said anything about the actual size of a segment. The 
main factor limiting the size of a segment is the 16-bit offset value, which restricts the segments 
to at most 64 KB in size. In the real mode, the processor sets the size of each segment to exactly 
64 KB. At any instance, a program can access up to six segments. The 8086 actually supported 
only four segments: segment registers FS and GS were not present in the 8086 processor. 

Assembly language programs typically use at least two segments: code and stack segments. If 
the program has data (which almost all programs do), a third segment is also needed to store data. 
Those programs that require additional memory can use the other segments. 

The six segment registers point to the six active segments, as shown in Figure 4.14. As de­
scribed earlier, segments must begin on 16-byte memory boundaries. Except for this restriction, 
segments can be placed anywhere in memory. The segment registers are independent and segments 
can be contiguous, disjoint, partially overlapped, or fully overlapped. 

Mixed-Mode Operation 

Our previous discussion of protected and real modes of operation suggests that we can use either 
16-bit or 32-bit operands and addresses. The D/B bit indicates the default size. The question is: 
Is it possible to mix these two? For instance, can we use 32-bit registers in the 16-bit mode of 
operation? The answer is yes! 

The instruction set provides two size override prefixes—one for the operands and the other for 
the addresses—to facilitate such mixed mode programming. Details on these prefixes are provided 
in Chapter 13. 
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Which Segment Register to Use 

This discussion applies to both real and protected modes of operation. In generating a physical 
memory address, the processor uses different segment registers depending on the purpose of the 
memory reference. Similarly, the offset part of the logical address comes from a variety of sources. 

Instruction Fetch: When the memory access is to read an instruction, the CS register provides 
the segment base address. The offset part is supplied either by the IP or EIP register, depending 
on whether we are using 16-bit or 32-bit addresses. Thus, CS:(E)IP points to the next instruction 
to be fetched from the code segment. 

Stack Operations: Whenever the processor is accessing the memory to perform a stack operation 
such as push or pop, the SS register is used for the segment base address, and the offset value 
comes from either the SP register (for 16-bit addresses) or the ESP register (for 32-bit addresses). 
For other operations on the stack, the BP or EBP register supplies the offset value. A lot more is 
said about the stack in Chapter 11. 

Accessing Data: If the purpose of accessing memory is to read or write data, the DS register is 
the default choice for providing the data segment base address. The offset value comes from a 
variety of sources depending on the addressing mode used. Addressing modes are discussed in 
Chapter 13. 
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Input/Output 

Input/Output (I/O) devices provide the means by which a computer system can interact with the 
outside world. An I/O device can be a purely input device (e.g., keyboard, mouse), a purely output 
device (e.g., printer, display screen), or both an input and output device (e.g., disk). Here we 
present a brief overview of the I/O device interface. Chapter 20 provides more details on I/O 
interfaces. 

Computers use I/O devices (also called peripheral devices) for two major purposes—to com­
municate with the outside world, and to store data. I/O devices such as printers, keyboards, and 
modems are used for communication purposes and devices like disk drives are used for data stor­
age. Regardless of the intended purpose of an I/O device, all communications with these devices 
must involve the system bus. However, I/O devices are not directly connected to the system bus. 
Instead, there is usually an I/O controller that acts as an interface between the system and the I/O 
device. 

There are two main reasons for using an I/O controller. First, different I/O devices exhibit 
different characteristics and, if these devices were connected directly, the processor would have to 
understand and respond appropriately to each I/O device. This would cause the processor to spend 
a lot of time interacting with I/O devices and spend less time executing user programs. If we use 
an I/O controller, this controller could provide the necessary low-level commands and data for 
proper operation of the associated I/O device. Often, for complex I/O devices such as disk drives, 
there are special I/O controller chips available. 

The second reason for using an I/O controller is that the amount of electrical power used to 
send signals on the system bus is very low. This means that the cable connecting the I/O device 
has to be very short (a few centimeters at most). I/O controllers typically contain driver hardware 
to send current over long cables that connect the I/O devices. 

I/O controllers typically have three types of internal registers—a data register, a command 
register, and a status register—as shown in Figure 4.15. When the processor wants to interact with 
an I/O device, it communicates only with the associated I/O controller. 

To focus our discussion, let us consider printing a character on the printer. Before the processor 
sends a character to be printed, it has to first check the status register of the associated I/O controller 
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to see whether the printer is online/offline, busy or idle, out of paper, and so on. In the status 
register, three bits can be used to provide this information. For example, bit 4 can be used to 
indicate whether the printer is online (1) or offline (0), bit 7 can be used for busy (1) or not busy 
(0) status indication, and bit 5 can be used for out of paper (1) or not (0). 

The data register holds the character to be printed and the command register tells the controller 
the operation requested by the processor (for example, send the character in the data register to the 
printer). The following summarizes the sequence of actions involved in sending a character to the 
printer: 

• Wait for the controller to finish the last command; 
• Place a character to be printed in the data register; 
• Set the command register to initiate the transfer. 

The processor accesses the internal registers of an I/O controller through what are known as I/O 
ports. An I/O port is simply the address of a register associated with an I/O controller. 

There are two ways of mapping I/O ports. Some processors such as the MIPS map I/O ports 
to memory addresses. This is called memory-mapped I/O. In these systems, writing to an I/O port 
is similar to writing to a memory address. Other processors like the Pentium have an I/O address 
space that is separate from the memory address space. This technique is called isolated I/O, In 
these systems, to access the I/O address space, special I/O instructions are needed. The IA-32 
instruction set provides two instructions—in and out—to access I/O ports. The i n instruction 
can be used to read from an I/O port and the out for writing to an I/O port. Chapter 20 gives more 
details on these instructions. 

The IA-32 architecture provides 64 KB of I/O address space. This address space can be used 
for 8-bit, 16-bit, and 32-bit I/O ports. However, the combination cannot be more than the I/O 
address space. For example, we can have 64 K 8-bit ports, 32 K 16-bit ports, 16 K 32-bit ports, or 
a combination of these that fits the 64 K address space. 

Systems designed with processors supporting the isolated I/O have the flexibility of using 
either the memory-mapped I/O or the isolated I/O. Typically, both strategies are used. For instance, 
devices like printer or keyboard could be mapped to the I/O address using the isolated I/O strategy; 
the display screen could be mapped to a set of memory addresses using the memory-mapped I/O. 

Accessing I/O Devices As a programmer, you can have direct control on any of the I/O devices 
(through their associated I/O controllers) when you program in the assembly language. However, 
it is often a difficult task to access an I/O device without any help. Furthermore, it is a waste of 
time and effort if everyone has to develop their own routines to access I/O devices (called device 
drivers). In addition, system resources could be abused, either unintentionally or maliciously. For 
instance, an improper disk driver could erase the contents of a disk due to a bug in the driver 
routine. 

To avoid these problems and to provide a standard way of accessing I/O devices, operating 
systems provide routines to conveniently access I/O devices. Linux provides a set of system calls 
to access system I/O devices. In Windows, access to I/O devices can be obtained from two layers 
of system software: the basic I/O system (BIOS), and the operating system. BIOS is ROM resident 
and is a collection of routines that control the basic I/O devices. Both provide access to routines 
that control the I/O devices though a mechanism called interrupts. Interrupts are discussed in 
detail in Chapter 20. 



78 Assembly Language Programming in Linux 

Summary 

We described the Intel IA-32 architecture in detail. Implementations of this architecture include 
processors such as Pentium, Celeron, Pentium 4, and Xeon. These processors can address up to 
4 GB of memory. This architecture provides protected- and real-mode memory architectures. The 
protected mode is the native mode of this architecture. In this mode, it supports both paging and 
segmentation. Paging is useful in implementing virtual memory and is not discussed here. 

In the real mode, 16-bit addresses and the memory architecture of the 8086 processor are sup­
ported. We discussed the segmented memory architecture in detail, as these details are necessary 
to program in the assembly language. 
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Installing Linux 

This chapter gives detailed information on instaUing Fedora Linux on your system. If your system 
already has another operating system such as Windows XP, you can install Fedora Linux as the 
second operating system. At the boot time, you can select one of the operating systems to hoot. 
Such systems are called dual-boot systems. If you want to install it as the only operating system, 
you can skip some of the steps described in this chapter 

The default software packages installed do not include the compilers and assemblers that we 
need for the assembly language programming. We show how software packages can be installed 
and removed by using the package management tool provided by Fedora Linux. 

We also discuss how files can be shared between the Windows and Linux operating systems. To 
share files between these two operating systems, you need to mount a Windows partition so that it 
is accessible under Linux. We provide detailed instructions to mount Windows partitions. Toward 
the end of the chapter, we give information on how you can get help if you run into installation 
problems. 

Introduction 
This chapter describes the Fedora Core 3 Linux operating system installation process. The book 
comes with two DVD-ROMs. The first DVD-ROM (DVD 1) contains the complete Fedora 3 distri­
bution. It is a copy of the distribution available at the Red Hat's Fedora Web site (www. fedora . 
r e d h a t . com). The second DVD-ROM (DVD 2) contains the source code and CD-ROM images. 
If you have a DVD-ROM drive, you can install Fedora Core 3 using DVD 1. 

If your system does not have a DVD-ROM drive, you can make installation CD-ROMs from the 
image files on DVD 2. This DVD-ROM contains three CD-ROM ISO image files: FC3 - i 3 86 -
d i s c i . i so , FC3- i386-d i sc2 . iso,and FC3- i386-d i sc3 . i s o . You can use these files 
to bum three CDs. Note that you should not copy these ISO files onto the CDs as if they are data 
files. Instead, you have to let the CD writer software know that these are ISO image files. If you 
do not have a CD writer application that allows you burning of CD image files, several utilities 
are available in the public domain. For example, the BurnCDCC utility from Terabyte Unlimited 
( h t t p : //www. t e r a b y t e u n l i m i t e d . c o m / u t i l i t i e s .html) is a freeware that allows 
you to bum an ISO file to a CD or DVD. In the rest of the chapter, we assume that you are* using 
DVD 1 to install the Fedora Linux. 
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To install the Linux operating system from the accompanying DVD-ROM, you need to have 
a DVD-ROM drive supported by Linux. Linux supports a variety of DVD-ROM drives. In all 
probability, your drive is supported. In this chapter, we describe installation of Personal Desktop, 
which is a compact system that is targeted for new users. Unfortunately, it does not install all 
the software we need. For example, development tools like compilers, assemblers, and debuggers 
are not installed. It is, however, simple to add additional software packages using the package 
management tool provided by the Fedora 3 distribution. We give detailed instructions on how the 
missing packages can be installed. 

The installation can be done in several different ways depending on the state of your current 
system. If you want to install Linux as the only operating system, it is relatively straightforward. 
In fact, you will perform only some of the steps described here. 

A most likely scenario is that you want to keep your current Windows operating system such 
as XR This is what we assume in the remainder of this chapter. The steps we describe here will 
add Linux as the second operating system. At boot time you can select the operating system you 
want to start. 

The installation process involves two steps: (i) create enough disk space for the Linux operat­
ing system, and (ii) install the Linux system. Between these two steps, the first step is a critical 
one. Several scenarios are possible here. You may want to isolate your Windows system from 
Linux by using a second hard drive. In this case, creating space for Linux is not a problem. Often, 
you find that there is a lot of disk space in your existing hard drive. This is typically the case if 
you have a recent system with a large disk drive. In this case, you may want to partition your hard 
drive to make room for Linux. This is the scenario we describe here. If your situation is different 
from what is described here, you may want to get on the Internet for the information that applies 
to your system configuration. You can refer to the "Getting Help" section at the end of the chapter 
for details on where you can get help. This chapter gives detailed instructions on how you can 
partition your hard disk, install the Fedora distribution, and add additional software packages we 
need. 

When you have more than one operating system, it is often convenient to share files between 
the operating systems. One way to share the files is to explicitly copy using a removable medium 
such as a memory stick or floppy disk. However, it would be better if we can share the files without 
such explicit copying. Before closing the chapter, we describe the procedure involved in mounting 
a Windows partition under the Linux operating system to facilitate file sharing. 

Partitioning Your Hard Disk 

If you decide to partition your existing hard disk for Linux, you can use a commercial product 
such as P a r t i t i o n M a g i c . It allows you to create new partitions or resize an existing partition. 
If your file system is FAT32 (not NTFS), you can also use the p a r t e d utility provided on the 
accompanying DVD-ROM. If you decide to follow this path, make sure to read the p a r t e d 
documentation. 

Important 

Irrespective of how you plan to partition your hard disk, make sure to backup all your files in 
case you run into problems. Before you proceed, ensure that the backup is readable. If you 
want some degree of added safety, you may want to make two backup copies. 
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Fedora 
C O R E 

- To instAll or upgrade In gfrnphlcol node, press the <EHT£II> key. 

- To instal l or upgrade in text node, tj^pe: Unix text <EHTBt>. 

- Use the function keys l isted belcN for nore Infomatlon. 

o t : _ 

Figure 5.1 Fedora Core 3 initial screenshot. Type l i n u x rescue to access the par ted utility to 
partition your hard disk. 

In this section, we describe three ways of partitioning your hard disk. The first one uses the 
p a r t e d utiHty that comes with the Fedora Core Linux distribution. Next we describe how you 
can use the QTparted utiUty on DVD 2. Lastly, we describe P a r t i t i o n Magic to partition 
your hard disk. You can use p a r t e d to partition FAT32 partitions. If your file system uses NTFS, 
you can use either QTparted or P a r t i t i o n M a g i c . 

Using PARTED 

To use p a r t e d , insert DVD 1 into your DVD-ROM drive and reboot your system. For this to 
work, your system should be bootable from the DVD-ROM drive. If not, get into your system's 
BIOS to change the boot sequence to include DVD-ROM first or after the floppy drive A (see the 
boxed note on page 93 for details on making your system bootable from the DVD-ROM drive). 

To access p a r t e d , you need to boot in the rescue mode. After booting off the DVD, you will 
see a boot prompt screen shown in Figure 5.1. To enter the rescue mode, type l i n u x r e scue . 
After this, you will be prompted for some hardware choices (keyboard, mouse, and so on). Finally 
when you get the prompt, type p a r t e d . You get (pa r ted) prompt after displaying the GNU 
copyright information as shown here: 

[root®veda root]# parted 
GNU Parted 1,6.3 
Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software 
Foundation, Inc. 
This program is free software, covered by the GNU General 
Public License, 

This program is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
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GNU General Public License for more details. 

Using /dev/hda 

Information: The operating system thinks the geometry on 

/dev/hda is 784/255/63. 

(parted) 

At the p a r t e d prompt, type p or p r i n t to see the current partition information. In our 

example system, we got the following: 

(parted) p 

Disk geometry for /dev/hda: 

Disk label type: msdos 

0 . 0 0 0 - 6 1 4 9 . 8 8 2 m e g a b y t e s 

Minor 

1 

2 

5 

6 

7 

8 

Start 

0.031 

2000.281 

2000.312 

4000.592 

4102.567 

5828.300 

End 

2000.280 

6142.038 

4000.561 

4102.536 

5828.269 

6142.038 

Type 

primary 

extended 

logical 

logical 

logical 

logical 

Filesystem 

fat32 

fat32 

ext3 

ext3 

linux-swap 

Flags 

boot 

(pa r t ed ) 

The partition information consists of a minor number, start and end along with the type of 

partition and the file system. In our example, Windows XP is on the primary partition (minor 1). 

The file system on this partition is FAT32 (this is our drive C:). The other FAT32 partition (drive 

D:) is about 2 GB. Let's assume that this is the partition that we want to resize to make room for 

Linux. We can use the r e s i z e command for this purpose. You can type h e l p to get a command 

list: 

(parted) help 
check MINOR do a simple check on the filesystem 
cp [FROM-DEVICE] FROM-MINOR TO-MINOR copy filesystem to another partition 
help [COMMAND] prints general help, or help on COMMAND 
mklabel LABEL-TYPE create a new disklabel (partition table) 
mkfs MINOR FS-TYPE make a filesystem FS-TYPE on partititon MINOR 
mkpart PART-TYPE [FS-TYPE] START END make a partition 
mkpartfs PART-TYPE FS-TYPE START END make a partition with a filesystem 
move MINOR START END 
name MINOR NAME 
print [MINOR] 
quit 
rescue START END 
resize MINOR START END 
rm MINOR 
select DEVICE 
set MINOR FLAG STATE 

(parted) 

move partition MINOR 
name partition MINOR NAME 
display the partition table, or a partition 
exit program 
rescue a lost partition near START and END 
resize filesystem on partition MINOR 
delete partition MINOR 
choose the device to edit 
change a flag on partition MINOR 

You can also get information on a specific command. For example, if you want to know the 
format of r e s i z e , you can type h e l p r e s i z e as shown here. 

(parted) help resize 
resize MINOR START END resize filesystem on partition MINOR 

(parted) 

MINOR is the partition number used by Linux. On msdos disk labels, the 
primary partitions number from 1-4, and logical partitions are 5 
onwards. 
START and END are in megabytes 
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Eile operations Disks Device Qptions Help 

The following drives have been detected: 

¥? 

Device | 

Disks' 

^ / d e v / h d a 

: Drive Info . 

Device: , ^ ^ 

Mode!: W--

Capacity (Mb): 

Length sectors: 

Status: 

/dev/hdb 

ST380011A 

76319.1 

156301488 

available. 

QTParted :) by Zanac (c) 2002-2003 

Number ] Partition JType j Status jSize j Used space j Start |End I Label 

01 /dev/hdb-1 free Hidden 7.81MB 

02 /dev/hdbl extended Active 74.52GB 

i - a 0 3 /dev/hdbS fat32 9.77GB 

^ ia04 /dev/hdb6 ntfs 64.75GB 

N/A 0.03MB 7.84MB 

N/A 7.84MB 74.53GB 

32.16MB 7.88MB 9.77GB SHARE 

N/A 9.77GB 74.53GB 

Figure 5.2 QTparted provides a nice, user-friendly interface similar to the PartitionMagic tool. 

To create space for Linux, we resize the minor 5 partition from 2 GB to about 1 GB. This is 
done by the following resize command. 

(pa r t ed ) r e s i z e 5 2000.312 3000 

Notice that we specify 5 as the minor identifying the partition, and its start and end points. To 
verify that the partition size has been reduced, we use the print command: 

(parted) p 
Disk geometry for /dev/hda: 
Disk label type: msdos 

0.000-6149.882 megabytes 

Minor 
1 
2 
5 
6 
7 
8 
(parted 

Start 
0.031 

2000.281 
2000.312 
4000.592 
4102 .567 
5828.300 

End 
2000.280 
6142.038 
2996.499 
4102.536 
5828.269 
6142.038 

Type 
primary 
extended 
logical 
logical 
logical 
logical 

Filesystem 
fat32 

fat32 
ext3 
ext3 
linux-swap 

Flags 
boot 

Clearly, the partition has been reduced in size to about 1 GB. Now we can use the freed space for 
installing another operating system. Of course, in our example system, Linux is already installed. 
But you get the idea of what is involved in resizing a partition to create free space. 

Using QTparted 

The QTparted partitioning tool provides a nice user interface to p a r t e d and other partition 
programs (see Figure 5.2). The best way to get QTparted is to get the SystemRescueCD 
ISO image. For your convenience, this ISO image is on DVD 2. It is distributed under the GNU 
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f@0 Resize partition 1 

: _. 1̂ 1 
Minimum Size: 2MB 

Free Space 

New Size: 

before: ; 1 ^ r 

gtBftMKil 1^ MB y 

Free Space After 10.00 i | | MB V 

It Is recommended to backup your data before do this (iteration! 

-
. .: 

QK Cancel 

3] 

Figure 5.3 When the resize operation is selected, this pop-up window allows us specify the new 
partition size. 

General Public License given on page 539. If you want to download the latest version of this 
image, which is about 100 MB, you can do so from www. s y s r e s c c d . org. Irrespective of how 
you got the ISO file, you need to create a CD by burning this image. 

You can use this CD to boot into a variety of tools, including QTparted. After the booting 
is completed, enter r u n _ q t p a r t e d to launch QTparted. It displays the drives found in your 
system. Once you select a drive, it gets the partition information. In our example system there 
are two hard disks, / d e v / h d a and /dev /hdb , as shown in Figure 5.2. By selecting the second 
hard disk hdb, we get its partition information shown in this figure. As shown in this screenshot, 
the window is divided into three parts: the left side gives a list of disk drives and information on 
the selected disk drive (in our example, on /dev/hdb) . The partition information is displayed in 
the main window. 

The operations pull-down menu can be used to select an operation. Some of the common 
operations are also shown on the toolbar. To illustrate the working of QTparted, we split the 
NTFS partition /dev /hdb6 to create about 30 GB of free space. To do this task, we select the 
/dev /hdb6 partition and apply the Res ize operation from the O p e r a t i o n s menu. You could 
also apply the resize operation from the toolbar by selecting the icon <->. This pops up the Resize 
partition window shown in Figure 5.3. This window shows the free space before as well after the 
partition. In our example, there is no free space on either end. We can specify the new size of 
the partition by changing the value or by sliding the size window at the top. In our example, we 
reduce the partition to about 35 GB, leaving about 30 GB of free space as shown in Figure 5.4. 

Once you click OK, the main window shows the new partition information. However, actual 
partitioning is not done. The necessary operations are queued for execution. If you want to proceed 
with the resizing operation, you have to commit the changes by selecting Commit from the F i l e 
pull-down menu. You can undo the changes by selecting the Undo command from this menu. In 
our case, we proceed to commit the resize operation. After this, we get one last chance to change 
our mind. Before proceeding to resize the partition, QTparted gives us the warning message 
shown in Figure 5.5. If we click "Yes" the operations are executed to resize the partition. The 
screenshot in Figure 5.6 clearly shows the free space created by this operation. 
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^^^^^^^^^^^^^^^^^^^^^^^^ 

ll 1 
Minimum Size: 2 MB 

Free Space Before: | 

New Size: 36036.58 

Free Space After 130270.73 

Jj-'̂ -r 
"l|MBJr 

— 
; ^ B U 

It is recommended to backup your data before do this operation! 

QK Cancel 

el 

Figure 5.4 The resize partition window shows that we want to reduce the NTFS partition to about 
36036 MB, or about 35 GB. 

V -^ 1 You're commiting all changes. Warning, you can lost data! 
Make sure also that you're not commiting a busy device.., 
In other word PLEASE UMOUNT ALL PARTITIONS before commiting changes! 

Yes No 

Figure 5.5 When we want to proceed with the partition operations, this warning is given before 
committing the changes. 

Eile Operations Disks Device Options Help 

The following drives have been detected: 

•E3®@1 

»t? 

Disks 

•-^/dev/hda 

Device 

Device: 

Model: 

Capacity (Mb): 

Length sectors: 

Status: 

/dev/hdb 

ST380011A 

76319.1 

156301488 

available. 

QTParted :) by Zanac (c) 2002-2003 

:32.16MBi 

Number j Partition iType 1 StatusJ Size T4^55i.,^P^ ̂  1 ̂ ^'^^ JEnd [Label 

01 /dev/hdb-1 free 7.81MB 

02 /dev/hdbl extended Active 74.52GB 

- a 0 3 /dev/hdbS fat32 9.77GB 

- a 0 4 /dev/hdb6 ntfs 35.19GB 

N/A 

N/A 

32.16MB 

N/A 

0.03MB 7.84MB 

7.84MB 74.53GB 

7.88MB 9.77GB SHARE 

9.77GB 44.97GB 

05 /dev/Tidb-l free Hidden 29.56GB N/A 44.97GB 74.53GB 

:i3 

Figure 5.6 This screenshot clearly shows the reduced NTFS partition. 
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general ^ew [^k £artHon Tools Tasks tielp 

J ^\^ J^-'^]'^ ^ d^l^'W^ '^Q 

^ Deate a new pattftkjn 

^ Deate a backup paction 

^ InstaB another opeiating system 

^ Resize a partition 

^ Redistribute free space 

© Mcfge partHiorw 

f^ Copy a paitilion 

PafUtion Opetationt 

^ Cre^* paititioii 

j ^ Deietepailifiori 

^ Re.iize/'Move p r̂titiciri 

> i Convat partittcn 

^ 5pfit pattilton 

•fS5> IJndisiefeP.5ftjrioti 

^ p Fiopsitist 

*?" Disk 1 G149 MB 

C: 
2,000.2 MB NTFS 1 Local Disk 

149.6 MB NTFS 

Partition 
D isk i 

• Type Size MB ! Used MB : UrHJScdMS.StohttJ: Pri/Log.^ 

Local̂ DBkICJ__ I NTFS 

Local Disk (D:) 
„lJ5s>saM.. 

2.000.2 ) 277.0 

I NTFS 
IJIMl„ZiMGj 

JPiirn3rii__ 
_ ^ n a r i i _ _ 

4.126.2 None Logical 

Figure 5.7 A screenshot of P a r t i t i o n M a g i c showing the tasks that it can perform. 

Using PartitionMagic 

The P a r t i t i o n M a g i c tool provides a convenient and friendly interface for partitioning your 
hard disk. The QTparted interface is designed to be a clone of P a r t i t i o n M a g i c . We can 
use P a r t i t i o n M a g i c to create a new partition, resize, delete or move a partition, and so on. In 
this section, we describe how an NTFS partition is divided to create free space to install the Linux 
operating system. 

The initial screenshot of P a r t i t i o n M a g i c is shown in Figure 5.7. The left part of the 
screen is divided into three panes that can be used to select the tasks, partition operations, and 
pending operations. The first pane allows you to pick a task such as resizing a partition. As we 
shall see shortly, depending on the task you picked, a wizard will guide you through the process. 
We will show this process for the resizing task. 

The second pane gives the available partition operations. The third pane shows the pending 
operations. P a r t i t i o n M a g i c collects all the necessary information before actually implement­
ing the operation. The pending operation window shows the operations that are pending to be 
executed. If you change your mind, you can undo these operations easily. If you want to go ahead 
with the pending operations, click Apply to implement them. 

In our example, we use a 6 GB disk that contains two NTFS partitions as shown in Figure 5.7. 
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^ ^ I ^ ^ P ^ ^ I Resize Partitions 

^ ^ • ^ a j ^ ^ ^ ^ ^ H This wizard resizes a partlion and lets you specify how tlie resize 1 
^ R | ^ ^ ^ ^ ^ ^ 1 wll affed oHwr partKions on the sarne di5)(. 

^ ^ ^ ^ ^ ^ B C > ^ If resizing a partillon larger, the wiiard can take free space 1 
^ ^ ^ ^ ^ ^ ^ B C ^ automatically from other partitions on thi«t d$k. 1 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ • j ^ ^ : If resizing a parti kn smaler. the wizard can give free space 1 
^ ^ ^ ^ ^ ^ ^ ^ ^ | B | automaticaly to other partitions on that dR)(. 

^ * » ^ 1 I ^ H B P I | H CickTipsatanythioforhetifJInformatton. 1 

Dps- 1 O - 1 l _ , „ ^ x t > i! Cancel | 

1 , 1, .,...,..,,..... - . . j ^ J 

Figure 5.8 The Resize wizard helps you with the resizing task. 

Resize Partitions 

Select partition 
Choose the partition io be resized 

Indicate which partition you want to resize. You can elicit on a partition either in the 
diagram or in the list beneath. 

Figure 5.9 The Resize wizard allows you to select the partition. 

In the remainder of this section, let us focus on dividing the second partition (Local Disk D) to 
make free space. To do this, we select the Res ize task in "Pick a Task . . . " pane. This 
selection invokes the Res ize wizard shown in Figure 5.8. 

The wizard lets you select the partition that is to be resized. In our example, we select the D: 
partition (see Figure 5.9). Any time you need help, you can select Tips . . . for information and 
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Resize Partitions 

Specify new partition size 

Indicate what the size of the new partition should be. 
M t 

Enter the new size for partition: D: Local Disk 

Current size: 
Mnlmum size: 
Maxffnutn size: 

New size tor partition: 

[2000 - f j Mt 

4149.6 MB 
54^ MB 

4604.6 MB 

l i p s -

Figure 5.10 The wizard gives the partition information, including the minimunn and maximum sizes 
of the partition. 

Give space to whici i partitions? 

space obtained from the resized partition can be given to other partitions 
on the hard disk. 

Decreasing this partition's size will free up space on the disk. In the ist below, ched< the partitions 
that the space can be given to. 

lips.. <gacl( Next> Cancel 

Figure 5.11 The space obtained from resizing a partition can be given to other partitions. 

help. The wizard then asks for the size of the new partition. To help you with the selection, it 
specifies the minimum and maximum sizes possible for the given partition along with the current 
partition size. In our example, the current partition size is about 4 GB. We can resize this partition 
to a size that is between the minimum and maximum sizes given in Figure 5.10. We selected a 
partition size of about 2 GB for the current partition (i.e., we are reducing it from about 4 GB to 
2 GB). 
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Confirm partition resize 
Please review the changes you have selected to be made on your disk. 

IC: 
I2JD0.2MB NTFS; 

After 

|2,Q00.2MB NTFSj 

J D: Local Dixie 
4,149.6 MB ^̂  NTFS ^ ^ 

^likiikiiiliiilliilillHHiW^ 
HD: Local Disk iMiii^li 

• " • • • " ' • " " ' " ^ ^ ^ ' - • ' 

BS^B 

nii 

The partitions on your dsk wl l be resized as shown above. Click Finish to confirm partition resize. 

lips... <gack 

Figure 5.12 Final confirmation window shows the partition information. 
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^ Create a new patition 

^ Create a backup partition 

(£5 InstaBanotlier operating system 
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^ Redistribute ires space 

^ Merge partitions 

y^ Copy a paftition 

Paitilion Opeialions 

^ Sfowcec-artitioii 

^ Create paihtitHi 

^ Delete partition 

^ Resize/Move partitioi 

'^ Convert partition 

^ i-plit partiUcr, 

>SZJ Undelete Parlilrcn 

lEESsmam 
2,000.2 MB NTFS 

Partition 
Disk1 

Local Disk (C:) 
("I 

D: Local Disk 
2,000.2 MB NTFS 

Tvpe 

• NTFS 
G Extended 

Size MB) UsedMBi Unused MB i Statu*: Pri/Log 

2,00a2 U77 .0 
4,149.6 2.Q0Q.3 

2.149.3 

723.2 
2J49.3 

Active Primary 
None Printary 

0.0 None Logcd 

^ ; F A T B F A T S Z H N T F S • Linux Ext2/3 HLinuKSwap a Extended MUnakcated «Unformatted r Othei I r Used r Unused 

Figure 5.13 Main window with a pending operation to resize the partition. 



92 Assembly Language Programming in Linux 

Apply Changes 

, ' '"^\ 1 operations are currently pending. 

Apply changes now? 

Yes I No [[Teialk 

Figure 5.14 Confirmation window before applying the changes. 

We can give the free space obtained by the resizing operation to other partitions. The next 
window lets us specify this information. In our example, there is only one other partition (partition 
C:), which appears in the window (see Figure 5.11). In our case, we do not want to give the free 
space to any other partition, as we want to keep the free space for Linux. Therefore, we deselect 
the checkbox next to the C: partition. The final confirmation window shows the "Before" and 
"After" picture of the partition (see Figure 5.12). As shown in this figure, we have more than 2 GB 
of free space. 

Note that the wizard did not really do anything but collect the necessary information in prepa­
ration for resizing the partition. As can be seen from Figure 5.13 the resize operation is pending. 
If we change our mind, we can undo this operation. On the other hand, if we want to go ahead 
with applying these changes, we can apply these changes by clicking Apply button. Before these 
changes are permanently applied, we get one last chance to confirm (see Figure 5.14). The main 
window in Figure 5.15 shows the creation of a free partition to install Linux. It is clear from this 
description that QTparted clones the P a r t i t i o n M a g i c tool. 

We have looked at one particular task that P a r t i t i o n M a g i c can perform. As mentioned 
before, it provides many more services to manage partitions. For complete details, you should 
consult the P a r t i t i o n M a g i c user's manual. 

Installing Fedora Core Linux 

Before the installation, you need to collect certain details on your system hardware. Information 
on the following devices is useful during the installation process: 

• Keyboard type 
• Mouse type 
• Video card 
• Monitor 
• Sound card 
• Network card 

If you have Windows on your system, you can get most of this information from the Control 
Panel. In the Control Panel, select System and then the Hardware tab. On this window click 
Device Manager. Don't worry if you don't have all the information mentioned above. Most of the 
time you don't need this information. The Fedora installer will do its best to detect your hardware 
but sometimes it fails to recognize your hardware. In that case, it helps if you have this information 
handy. 
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Figure 5.15 This window clearly shows the unallocated partition to install Linux. 

Booting 

You begin the installation process by inserting DVD 1 into the DVD-ROM drive and starting your 
computer. Note that you should to be able to boot off the DVD-ROM drive for the installation 
process to proceed. If successful, you will see the boot screen shown in Figure 5.1. 

No Boot Screen? 

If you don't see the boot screen, it is likely that you are not able to boot off the DVD-ROM 
drive. In this case, if you have Windows on your system, it proceeds with booting the Win­
dows operating system. To make the DVD-ROM drive bootable, restart your computer. As it 
starts, check for a message that tells you how to get into BIOS setup (e.g., pressing Del, Fl, 
or F2 key). Once you are into the BIOS setup, look for "Boot Options", or something similar. 
It tells you the order in which the devices are used for booting. It probably has "A" first and 
then "C". That is, it first tries to boot from the floppy drive. If no floppy disk is present, it 
boots from the hard disk (drive C). What you need to do is make the DVD-ROM as either the 
first in the list, or after the floppy drive. This should make your system DVD-ROM bootable. 
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— — I CD Found | — 

To begin testing the CD media before 
installation press OK. 

Choose Skip to skip the nftcdia test 
and start the installation. 

Figure 5.16 Media check option screen. 

At the boot prompt shown in Figure 5.1, press En te r key to start the installation in the graph­
ical mode. The boot screen also gives some of the options available to you. If you are having 
problems with the graphical mode (e.g., garbled screen), you may want to start in the text mode 
by typing l i n u x t e x t at the boot prompt. Note that the graphical mode requires a minimum 
of 192 MB of memory (but 256 MB is recommended) while the text mode requires a minimum of 
64 MB only. In the following description, we assume the graphical mode. 

Installation Problems? 

Sometimes the installation process hangs up, particularly if you have an LCD monitor, or 
installing on a laptop. If this happens, try using l i n u x nof b to turn off the frame buffer. 
For more details, see the release notes at www. f e d o r a . r e d h a t . com/docs / r e l e a s e -
n o t e s / f c 3 / x 8 6 / . 

Once the mode is selected, you will see a flurry of messages and the boot up process stays in 
the text mode for a while. During this time, it performs some simple checks and determines your 
basic hardware (keyboard, mouse type, video card). It then launches the graphical mode to begin 
the media check process. 

Media Check 

Before proceeding with the installation process, you are given an option to check the media (see 
Figure 5.16). If you are using the media for the first time, you should click OK to allow media 
check. It may take several minutes to complete the check. At the end of the test, it will let you know 
the media test result (PASS or FAIL). If the media check failed, you need to get a replacement. If 
you know that the media is not defective, you can skip this check. 

Once the media has passed the test (or if you skipped), you can press c o n t i n u e to proceed 
with the installation. Next you will see the installation welcome screen shown in Figure 5.17. If 
your hardware (mouse, monitor, and video card) is not properly recognized, the Fedora installer 
will use defaults that should work, though these default settings may not give the best performance. 
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Figure 5.17 Welcome screen. 
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Figure 5.18 Language selection screen. 

Select the Installation Language 

The language selection screen, shown in Figure 5.18, allows you to select a language that you 
would like to use during the installation. As you can see from this screenshot, Fedora supports 
several languages to facilitate installation. If needed, other languages can be added later. After 
your selection, click next to proceed with the keyboard selection. 
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Figure 5.19 Keyboard selection screen. 

Select the Keyboard 

The installer presents you with the screen shown in Figure 5.19 to allow you select the keyboard 
layout of your choice. The selection in this screenshot is the default generic 101-key U.S. English 
layout. After selecting the keyboard layout for your system, click next to proceed. 

Select the Type of Installation 

Having selected the basic devices, your next step is to select the type of installation you want. At 
this point, the installer looks for an existing version. If there is one (e.g.. Fedora Core 1), you are 
given the option of either upgrading the previous version or installing a new version. If you have a 
previous version, select the upgrade option, as it would preserve your current data in the system. If 
you select the new install option, you lose all your existing data. Whatever you want to do, make 
your selection and press next to proceed. Here we assume that you did not have a previous version 
of Fedora and proceed with the new install option. 

Next you have to decide on the type of installation you want. The installer supports the fol­
lowing four types (see Figure 5.20): 

• Personal Desktop: This type of installation is suitable for a home PC or laptop. It requires 
2.3 GB of disk space and installs the GNOME desktop and other tools appropriate for a 
home PC. This is the installation type we would use. However, it does not install system 
development tools such as compilers, assemblers, and debuggers. We need these tools for 
the assembly language programming. We will install these packages later. 

• Workstation: This install type is similar to the personal desktop installation except that it 
installs software development and system administration tools. It requires about 3 GB of 
disk space. 

• Server: This type installs packages that are needed to run the machine as a server (such 
as a file server, print server, and Web server). By default, it does not install the graphical 
environment. It needs about 1.1 GB of disk space. 
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Figure 5.20 Installation type selection screen. 

• Custom System: This option lets you decide what you want to install on the system. This 
option is typically meant for advanced users. One can elect to install everything, a minimum 
set of packages, or a combination between these two extremes. A minimal install requires 
only 620 MB of disk space. A full install has the advantage of having everything available 
after the install but requires about 6.9 GB of disk space. On the down side, it takes quite a 
bit of disk space and longer installation time. If you don't use most of the packages or plan 
to use Linux only occasionally, you don't want to install everything. 

As mentioned earlier, select the Personal Desktop install type and click next. 

Disk Partitioning 

This is a major step in the installation process. Fortunately you have done most of the work before 
starting the installation process. You created a free partition for the Fedora Linux. The installer 
gives you two options: automatic or manual (see Figure 5.21). Assuming that you have a free 
partition on your disk, select the A u t o m a t i c a l l y p a r t i t i o n option and press next. This 
option takes the free space and automatically partitions the disk. 

On the next screen, shown in Figure 5.22, you will be given further options on how the instal­
lation program should use the disk space. The three options are as follows. 

The first option removes all the existing Linux partitions. This option is good if you want to 
remove an existing Linux installation while keeping the Windows installation. 

The second option removes all the partitions. You don't want to select this if you have other 
partitions. For example, you may have several NTFS partitions for the Windows operating 
system that you want to keep. 

The last option will not touch any of the existing partitions. It uses only the free space on 
your disk. Of course, you have to make free space available to use this option. This option is 
appropriate, for example, if you want to keep the existing Windows and Linux installations. 
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Figure 5.21 Disk partition strategy selection screen. 
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Figure 5.22 Disl< partitioning screen. 

If you have only Windows on your system, the first or the last option is okay. Before clicking 
Next, select the Review. . . checkbox if you want to review the partitions created by the au­
tomatic partitioning tool. The installer cautions you that you are removing some of the partitions 
(Figure 5.23). If you checked the Review. . . checkbox, you will see a screen with the partition 
details (see Figure 5.24). 
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Figure 5.24 Disk partition details. 

The automatic partitioning provides you with three partitions: a small boot partition of about 
100 MB and a root partition (/) that is large enough for the selected installation as well as your 
files. In addition, it provides a swap partition that is about twice the size of the main memory on 
your system. For example, if the system has 256 MB, the swap partition should be about 512 MB. 

You can change the size of any of these partitions by selecting the manual partition option 
and then using the Disk Druid tool. If this is the first time you are installing Linux and you are 
not comfortable with creating your own partitions, accept the partitions created by the automatic 
partition tool. Click next to go to the next step. 

Boot Loader Configuration 
This screen allows you to configure the boot loader, which is required when you have multiple 
operating systems as in our case. When you start your system, the boot loader gives you a list 
of the available operating systems. You can select the operating system you want to boot. The 
default boot loader is set to GRUB (GRand Unified Boot loader). If you want to change to the 



100 Assembly Language Programming in Linux 

Fedora 

Boot Loader 
Configuration 

By default, the GRUB boot 

toader Is installed on rhe 

lystem. If you do noi wani io 

ini,Xa\t C R U B at, yuui Ixiol 

I loAd(>r, t<>l#« Change boot 

loader 

I You can also choose whicli OS 

i (if you hav<» more itian on») 

I should honi hy dehulL Select 

I Default hf^sirle the pinferred 

, boot parniton to choose your 

• defAultbooMhteOS. You 

I ciinnot move ioiward in the 

; InsMlUtion un l9 t \ v^u chtwu* 

\ a default boot Imaqie. 

i You may sdd, edit «nd det«ie 

1 the bout lu«(lcr enttiei by 

Thft CRU ft b«« lr«.Vr wilt (i* in^.-JiMj an /(Iftv/hili. jChany harttftaJMJ 

y<w can <onfi9U« tlw bo« to*Jei to boot rthw opn^ttng 
lystems. It will allow vou to sdeci on «p«nting sysMm to 
boot l(oni tiM kst. To add «Jdit)«Hul openring %ysi«n)$, 
wHch are not auiomaiicalty deteoed, diet 'AtW,' To 
chuftje ihe operwirK) system booted by dctautr, sckci 
t>«lauM' by the desired operwng system. 

[DrtiHdl JLdltvt JUrvHR f 

S F«lofa Core /dtv/VotCroiwOaio^VolOO 

: G Othtr /(fer/hda) 

" Add " 

Edit 

DHirtp 

A boot loader pajwwtf pwvcrws users from changing 
(iplKitr- |M!.MNJ id 1ht̂  lu^ind. fw yrt'.Utn vyilom 
'•nurity, il >'• nrcnmtneiKlnd Ihti vou ^H •! p.isswnil. 

! 1 U « a b « x loader(WMWord. [Ct-ar-^i; :^:^is-vf ( | 

DCimtitjHUT wlv;irn'i;i) bnrt kkiiirr jyptn*', 

Ji 
|B3HiilgH<-<p| JLJfHclwMrMmiivj N B«k ! • NP»I 

Figure 5.25 Boot loader configuration screen. 

other boot loader (LILO), click the Change boot l o a d e r button. In your installation, leave 
the boot loader to the default one. 

This screen also shows the operating systems on your system and lets you select the default 
operating system. In our example, we selected Fedora to be our default OS. If you want to set up 
a password for the boot loader, you can do so by checking the box on this screen. Setting up a 
password provides extra security and is a good practice if more than one person uses your system. 
On the other hand, if you are the only one using the system (for example, your home machine) 
you can leave it unchecked. 

Network Configuration 

This step allows you to configure your local area network. If your computer does not have an 
Ethernet interface, or if you are using a dialup connection, you can skip this step. The installer 
automatically detects the available network interfaces as shown in Figure 5.26. In our example 
system, we have two network interfaces: ethO and e t h l . You can click the check box next to a 
network interface if you want that network to be active when the system boots. The E d i t button 
can be used to change the parameters for the selected network interface. 

If your ISP or access point supports DHCP (most do), you can let the system get the network 
parameters from the server. In this case, keep the default DHCP selection. On the other hand, if 
you are using a static IP address, you can enter these values by deselecting the DHCP option. 

You can setup the hostname via the DHCP or manually. If you want the hostname to be setup 
via DHCP, select the "automatically via DHCP" option. 

Firewall Setup 

If your system is connected to the Internet, it is important that you enable the firewall option (see 
Figure 5.27). A firewall can significantly reduce the chances of an intruder attacking your system. 
The installer gives you two options for configuring a firewall during installation: 
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Figure 5.26 Network configuration screen. 
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Figure 5.27 Firewall setup screen. 

Enable firewall: If you are connected to the Internet or to a public network, you should 
select this option. This option does not allow any incoming network traffic. If you want to 
allow a specific service, you have to explicitly list it. However, if the system does not allow 
any incoming connections, it cannot establish service connections on the Internet. Thus, to 
allow basic network setup and Web browsing, it allows DHCP and DNS replies. 
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Figure 5.28 Additional language selection screen. 

No firewall: This option is appropriate, for example, if your computer is not connected to 
the Internet. 

Additional Language Selection 

In addition to the installation language selected before, you can install support for additional lan­
guages by clicking the check boxes of the languages. By clicking the S e l e c t A l l button, you 
install all supported languages on your system (see Figure 5.28). 

Time Zone Selection 

This screen allows you to select the time zone of your location. You can specify the location in one 
of two ways. You can click a yellow dot on the interactive map to identify your city. (These dots 
appear as white dots in Figure 5.29) A red X would appear to indicate your selection. Alternatively, 
you can scroll through the location list to select your location. 

Root Password Selection 

This screen can be used to select a password for the root account (see Figure 5.30). The root 
account is special in that it can be used for system administration. It is always a good idea to 
keep another account for your day-to-day activities and reserve the root account for administration 
purposes only. 

Package Selection 

The next step in the installation process involves the selection of the packages you want to install. 
The installer selects a default set of packages depending on the installation type. The default 
package selection for the Personal Desktop type installation is shown in Figure 5.31. 
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Figure 5.29 Time zone selection screen. 
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Figure 5.30 Root password selection screen. 

If you want to select a different set of packages, or if you want to add some extra packages, 
you can choose the "Customize software package to be installed" option. For example, the default 
selection does not install NASM or DDD that we need. However, in our installation, we stick with 
the default selection as we can easily add the missing packages later. 
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Figure 5.31 Default package selection screen 
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Figure 5.32 About to install screen. 

Installation Process Continues 

If you are using the CD-ROMs for the installation, the installer informs you that three Fedora Core 
CDs are required for the installation to proceed. It gives an option of either continuing with the 
installation or to reboot as shown in Figure 5.33. 
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Figure 5.34 Installation process begins by formatting file systems. 

The installer has collected the necessary information and is ready to start the installation. This 
is your last chance to safely abort the installation process. Click "Next" to proceed with the 
installation. After this, the installation proceeds automatically. If you are using the CDs, the 
installer prompts you to change the CD a couple of times. 

The installation begins by formatting the file system (Figure 5.34). Once the installation is 
done, you are prompted to reboot (Figure 5.35). Make sure to remove the media (DVD or CD) 
before clicking the reboot button. 

Post-Install Configuration 

After rebooting the system, you are presented with the screen shown in Figure 5.36. There are a 
few more steps to go through before the system is ready for use. These steps are: 
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Figure 5.36 Post-install configuration is the last step involved in completing the installation process. 

Accepting licensing agreement; 
Setting/confirming the time and date information; 
Setting the display properties including the resolution; 
Creating a system user: You should not use the r o o t account created during the instal­
lation as your regular account. This account should be reserved for system maintenance 
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Figure 5.37 You can create a system user account as part of the post-install operations. 

activities only. It is strongly recommended that you create an account for your routine use 
(see Figure 5.37). Alternatively, you can do this later by using a system tool. 

• If you want to load additional packages, you can do here. But we prefer to do this later by 
using the package management tool provided by Fedora. 

Congratulations! Your long wait is over. When you start Fedora the next time, it boots up normally 
and presents you with a login screen. This requests you to enter your user name and password. 
After you have successfully logged into your account, the system will display the GNOME desktop 
(for a quick peek at this desktop, see Figure 6.1 on page 116). 

Installing and Removing Software Packages 

The default software packages installed for the "Personal Desktop" do not include the "Develop­
ment Tools" group that includes compilers such as gcc, nasm assembler, and ddd debugger. In 
this section we show how software packages can be installed and removed. Since we need these 
development tools to program in the assembly language, we install them to illustrate package 
management. 

You can add or remove packages by the package management tool that comes with the Fedora 
Linux system. It can be invoked from the A p p l i c a t i o n s pull-down menu. From this menu, 
select System S e t t i n g s and then Add/Re move A p p l i c a t i o n s as shown in Figure 5.38. 
If you are not logged in as the root user, which is recommended, it will first ask you for the root 
password. The package management tool then scans the packages for their status and displays this 
information as shown in Figure 5.39. For example, we have installed the X Window System and 
the GNOME Desktop but not the KDE and XFCE desktops. 

Scroll down this list until you find the Development Tools package group and check the 
box to select this group of tools for installation (see Figure 5.40). A package group consists of 
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Figure 5.38 Invoking the package management tool from the GNOME desktop. 

several standard packages and some extra packages. The standard packages are always selected 
by default. These packages, which include the gcc C compiler and the gdb debugger, are always 
available when the group is installed. In addition, several extra packages are also selected by de­
fault. However, nasm and ddd are not part of the default extra packages selected for installation. 
To see the package details for the selected group, click d e t a i l s . This opens a Package De­
tails window that gives details on the standard packages selected and the extra packages available 
along with their default selection. We scroll down this list to select nasm and ddd as shown in 
Figure 5.41. 

To install these packages, close the package details window and click Update in the Package 
Management window. The tool collects the necessary information and prepares to install the 
packages. During this stage, it checks for package dependencies and collects a list of packages. 
This list includes the actual packages you have selected and any other packages that are required 
by the selected packages. Once this analysis is done and a package list has been prepared, you will 
see the prompt shown in Figure 5.42. It gives you information on the number of packages selected 
and the amount of disk space required. If for some reason you want to abort the installation, this 
is a good time. If you want to see the packages selected, click the Show D e t a i l s button. 
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Figure 5.40 Tools available under the Development category. 
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Figure 5.42 Once the packages are ready to install, you can view the details by clicking show 
D e t a i l s button. 

Once you click Continue, the installation process begins. During the installation of the 
selected packages, the tool will prompt you for the appropriate Fedora CD. Since we are using 
DVD-ROM, ignore this message. That's it! 

To remove packages that have been installed, you follow the same procedure. Of course, you 
have to uncheck the packages/groups that you want to remove from the system. 

Mounting Windows File System 

When you have two operating systems, you would like to share files between the two systems. 
Of course, you can always use a removable medium such as a floppy disk or a memory stick to 
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Figure 5.43 You can use the hardware browser to get inforination on the partitions. 

transfer files between the two systems. There is a better solution that eliminates the need for file 
copying. In this section we show how you can mount a Windows partition so that Linux can access 
this partition. 

There is one restriction—Linux is not able to read NTFS partitions, at least not yet. So the 
partition that you want to share between the Windows and Linux operating systems has to be 
a FAT32 partition. Even if you are using FAT32 for your Windows, you do not want to make 
it sharable for security reasons. For example, a single command in Linux can wipe out all the 
Windows files. Your Windows operating system, on purpose, hides some system files that you 
should not normally access. One such example is the b o o t . i n i file to manage the boot process. 
In Linux, you see all the Windows files and you may accidentally modify the contents or delete a 
file. This is particularly so during the initial learning stages. Therefore, it is a good idea to create 
a separate partition that you want to use for sharing. In our example system, we created a 10 GB 
partition to facilitate this sharing. We would like to mount this partition under Linux so that we 
could access the files from the Windows system. 

As a first step we have to find out the device number assigned to the shared partition. We can 
use the Hardware Browser to get this information. The Hardware Browser can be invoked from 
the A p p l i c a t i o n s menu by selecting System Tools and then Hardware Browser. We 
can use this browser to get information on the system hardware such as CD-ROM drives, floppy 
disks, hard drives, keyboard, and so on. 

In order to run this browser, you need administrative privileges. That means, if you are not 
running it as the root, you will be asked for the root password. To get the partition information 
that we are interested here, we select Hard Drives as shown in Figure 5.43. From this information 
we notice that the 10 GB FAT32 shared partition is assigned \dev \hdb5 . To share this partition, 
we need to mount this partition. 
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Mounting a partition involves creating a mount point, which is a directory. In our example, 
we create a mount point called s h a r e in the \mnt directory. Since we have not yet discussed 
the Linux commands, you can type the following command in the command terminal window ' to 
create this directory: 

mkdir /mnt/share 

After creating this directory we can mount the partition using the following command: 

mount -t vfat /dev/hdb5 /mnt/share 

Of course, you have to replace /dev /hdb5 with your partition number. It is most likely going 
to be /dev/hdaX where X is a number. To verify that the partition has been mounted, you can 
issue the I s command (similar to d i r in Windows). 

Is /mnt/share 

This command displays the files and directories in this partition. 
The mount command mounts the partition for this session. It is not available when you login 

the next time. Of course, you can issue the mount command every time you login. We can avoid 
this scenario by modifying the f s t a b file. This file is in the / e t c directory. You need to append 
the following line to this file: 

/dev/hdb5 /mnt/share vfat auto,umask=0 0 0 

Once this step is done, the partition is mounted automatically as the system reads this file every 
time you log into the system. 

To edit the / e t c / f s t a b file, use the text editor available under A p p l i c a t i o n s pull-down 
menu by following Ac c e s s e r ies=> Text E d i t o r . This is a simple text editor that resembles 
the Windows Wordpad editor. We discuss this editor in the next chapter. 

To open the f s t a b file you need administrative privileges, which means you must be root to 
open this file in read-write mode. All other users can open this file in read-only mode. So be sure 
to login as the root to modify this file. 

You can use the Open icon to open a file for editing (see Figure 5.44). This pops up the 
Open F i l e . . . window to select the file (see Figure 5.45). You can start by double-clicking the 
F i l e system, then e t c directory, and finally the f s t a b file to open it for editing. The contents 
of the f s t a b file in our example system are shown in Figure 5.44. 

There are several other editors available in Linux. Some of the popular ones are the v i and 
emacs editors. We describe the v i editor in the next chapter. 

Summary 
We have provided a detailed step-by-step description of the Fedora Core 3 installation process. The 
installation is a two-step process: creating sufficient disk space for the Fedora system and installing 
the operating system. The first step is not required if Linux is the only operating system you want 
to install. However, if you want to keep the existing Windows operating system and install Linux 
as the second operating system, the first step is necessary. It often involves partitioning the disk to 
make room for Linux. 

We have introduced three partitioning tools for this purpose: 

^The command terminal can be invoked from the A p p l i c a t i o n s menu under System Tools submenu. More 
details on the command terminal are on page 132. 
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Figure 5.44 Contents of the / e t c / f stab file after adding the last line to mount the shared partition. 

• The p a r t e d tool that comes with Fedora is a text-based partitioning tool. It can be used on 
FAT32 and other types of partitions but not on NTFS partitions. For NTFS partitions, you 
can use one of the other two tools. 

• The second tool, QTparted, works on NTFS partitions as well as others. It provides a nice 
user-friendly graphical interface and uses a variety of partitioning tools including p a r t e d . 
Its user interface closely resembles that of the Pa r t t i onMag ic tool. 

• The last tool we presented in this chapter, P a r t i t ionMagic , is a commercial partitioning 
tool. This tool works with different file systems including NTFS partitions. 

The Fedora Core 3 Linux can be installed from the DVD-ROM accompanying this book. If 
your system does not have a DVD-ROM drive, you can bum CDs from the CD image files provided 
in the second DVD. We have given detailed instructions to install Personal Desktop system that is 
suitable for new users. 

The default software packages selected for this installation type do not include all the software 
we need. Specifically, the Personal Desktop installation excludes the development tools group. 
This group includes the C compilers, assemblers, and debuggers that we need for our assem­
bly language programming. However, using the Fedora's package management tool, it is rather 
straightforward to install these developmental tools. We have given detailed instructions on how 
you can do this. 

Finally, we presented details on sharing files between the Windows and Linux operating sys­
tems. The Linux operating system can see the FAT32 partitions but not the NTFS partitions. For 
this reason, we suggested a small partition for sharing the files between the two operating systems. 
In our example, we set this partition to 10 GB, but you can set it to whatever size is appropriate in 
your case. We have given step-by-step instructions to mount such shared partitions. 
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Figure 5.45 Selection of the / e t c / f stab file using the open f i l e window. 

Getting Help 

The Fedora Linux has been installed on five different systems (desktops and laptops) using the 
procedure described in this chapter. In all these systems, the installation proceeded smoothly. 
Even though we have given detailed instructions to install the Fedora Linux operating system, it is 
still possible that you encounter installation problems. There are several places you can turn to for 
help. 

A good starting point is the extensive and detailed bug report database maintained by Red Hat 
at h t t p : / / b u g z i l l a . r e d h a t . com. Here you can enter the bug number (if you know it) or 
keywords to search for information on your problem. 

Several online sources are also available to help resolve installation problems. For exam­
ple, L inuxQues t ions .o rg maintains several forums for Linux-related issues including in­
stallation problems at h t t p : //www. l i n u x q u e s t i o n s . o r g / q u e s t i o n s . Another good 
source is the mailing list maintained by Red Hat at h t t p : //www. r e d h a t . com/mailman/ 
l i s t i n f o / f e d o r a - l i s t . 

You can also use a good search engine such as Google ( h t t p : //www. google . com) to 
search the Internet on how others solved your installation problem. 



6 
Using Linux 

Now that you have installed the Fedora Linux on your system, it is time to learn the basics of the 
Linux operating system. This chapter assumes that you are familiar with another operating system 
such as Windows XR Our focus is on the Fedora 3 Linux. We look at both the graphical user 
interface (GUI) and the command line interface (CLI) provided by the system. For new users, the 
GUI provides an easy-to-use, point-and-click type of interface. However, as you get familiar with 
the system, the command line interface tends to be more efficient. We discuss the basics of the 
command line interface and several simple but useful commands. The overview presented here is 
sufficient to proceed with our goal of learning the assembly language programming. 

Introduction 
Assuming that you are new to the Linux operating system, this chapter gives more details on using 
the Fedora 3 Linux. You have to login to an account in order to use the Linux system. To log into 
the system, the login screen first prompts you for your login usemame. Then you will be asked 
to enter your password for the account. This brings up the GNOME desktop shown in Figure 6.1. 
This is the default desktop in Fedora 3. The panel at the top contains two pull-down menus: 
A p p l i c a t i o n s and Ac t ions . The A p p l i c a t i o n s menu provides various applications and 
systems tools. It provides several useful GUI applications including games, graphics, system tools, 
and system settings (see Figure 6.2a). The Act i ons menu can be used to run applications, search 
for files, lock the screen, and logout as shown in Figure 6.2b. 

The icons next to the Ac t i ons menu can be used to launch applications quickly. You can click 
these launch panel icons to launch a Web browser, email reader, word processor, presentations 
creator, or a spreadsheet. You can customize the launch panel by adding applications of your 
choice. For example, we have added the command terminal to the launch panel shown in Figure 6.1 
(see the icon next to A c t i o n s menu). 

The workspace, appears as black in Figure 6.1, displays four shortcuts: Computer, your 
home directory, trash, and a USB hard drive labeled PORTABLE. By clicking the Computer, 
you will see the various drives (floppy drive, CD-ROM drives, and hard disks), your file system, 
and networks. It is a good idea to get familiar with the desktop by playing with the various menus 
and icons. Later we describe some of the applications available to perform commonly required 
tasks. 
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Figure 6.1 Initial Fedora screen with a USB hard drive (PORTABLE). 

To logout of your account, you can use the Ac t i ons menu as shown in Figure 6.2b. When 
you select Logout from the Ac t i ons menu, a popup window appears with three options: logout 
of the account, shutdown the system, or restart the system. If you opt for logout, it will bring the 
login screen. The other options can be selected to either shutdown or restart the system. 

Which Account to Use? 

During the installation, you created two accounts for yourself: a root account and a system 
user account. Always use your system user account for non-administrative activities and 
reserve the root account for special administrative tasks. Note that most administrative tasks 
can also be done from your system user account. If a task requires administrative privileges, 
the system will ask you for the root password. On tlie other hand, if you login as the root, the 
system gives you permission to do whatever you want. This can lead to mishaps that you did 
not anticipate. 
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Figure 6.2 The A p p l i c a t i o n s and A c t i o n s pull-down menus of the GNOME desktop. 

You can run your programs either by using the desktop or from the command line interface. 
The first part of the chapter describes several applications to manage the system. Later part con­
centrates on the command line interface. 

Setting User Preferences 

When you installed the Fedora Linux, you have already configured several of your system devices 
such as the display and keyboard. It is also straightforward to configure these devices after the 
installation. This configuration can be done from the Appl i c a t i o n s pull-down menu under the 
P r e f e r e n c e s menu as shown in Figure 6.3. Next we look at some of these tools. 

Keyboard Configuration Tool 
Figure 6.4 shows the keyboard configuration tool window. It provides four functional areas: Key­
board, Layouts, Layout Options, and Typing Break. In the Keyboard area, you can set two main 
options: 

• You can decide if you want the repeat-key functionality when a key pressed and held down. 
To enable this functionality, select the first checkbox as shown in Figure 6.4. If this option 
is enabled, you can select the initial delay and the rate of repetition by using the two sliders. 



118 Assembly Language Programming in Linux 

@ Accessibility > 

j ( ^ More Preferences > 

W\ Desktop Background 

1 ^ Font 

< ^ Keyboard 

< ^ Keyboard Shortcuts I 

^ 1 Menus & Toolbars i 

^ Mouse 

^ Network Proxy 

^ Password 

^^^ Remote Desktop 

(5) Removable Storage 

1 ^ Screen Resolution 

^ Screensaver ; 

(39 Sound 1 

@ Theme 

^ Windows j 

Figure 6.3 The P r e f e r e n c e s menu. 

• The second checkbox allows you to enable the cursor to blink in the fields and text boxes. 
You can use the slider to select the cursor blink frequency. You can test the setting by typing 
a sample text in the test area. 

The Layouts tabbed window can be used to select your keyboard model. The default is the 
generic 105-key PC keyboard. This window also allows you to add or remove keyboard layouts. 
By default, the U. S. English layout is selected. 

The Layout s Opt i ons window allows you to select several options for the behavior of the 
various keys such as A l t and CapsLock. 

The Typing Break tabbed window can be used to set typing break preferences. You can 
set how long you want to work and how long the breaks should be. For example, you can select 
to work 30 minutes and take a break for 3 minutes. The system will lock the screen to force you 
to take the 3-minute break after 30 minutes of typing. There is also a checkbox that allows you to 
postpone the breaks. 
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Figure 6.4 The keyboard configuration window. 

Mouse Configuration Tool 

The mouse configuration tool window is shown in Figure 6.5. It has three functional areas to set 
the preferences. The Bu t tons window can be used to set the mouse orientation (left-handed or 
right-handed) as well as the double-click timeout period. 

Use the Cursors tabbed window to select the cursor size (small, medium, or large). The 
changes you make will take effect when you login the next time. You can also select the option 
that highlights the cursor when you press the C t r l key. This option is helpful to locate the cursor. 

The Motion window can be used to set the motion preferences. It provides two sliders to set 
the speed of the mouse pointer and the sensitivity of the mouse pointer to the movement of the 
mouse. It also has a third slider to specify the distance you must move an item in order to interpret 
the move as the drag-and-drop action. 

Screen Resolution Configuration 

You can use the screen resolution tool to set the resolution of your screen. It allows you to select 
the resolution from the drop-down list (see Figure 6.6). You can also set the refresh rate for your 
screen. Once the selection is made, you can click the Apply button. The screen will reflect your 
selection and prompts you if you want to keep the new resolution or revert back to the previous 
resolution. In general, the installer does a good job in selecting the resolution and refresh rates 
appropriate for your screen during the installation. 
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Figure 6.5 The mouse configuration window. 
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Figure 6.6 The screen resolution window. 

Changing Password 

You can use the password tool to change the user password. If you want to change your root ac­
count pass word, you should use the root password change tool available in the System S e t t i n g 
menu. The tool first requests your current password (see Figure 6.7). It then prompts you to enter 
the new password as shown in Figure 6.8. You are asked to reenter the new password to make sure 
that you did not make a mistake in entering your new password (Figure 6.9). The new password 
will be effective for your next login. 
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Figure 6.7 Changing the user password—screen 1. 
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Figure 6.8 Changing the user password—screen 2. 

Screensaver 

The Screensaver tool can be used to control the behavior of the Screensaver, display power manage­
ment, and so on. The functionality is divided into two groups: D i s p l a y Modes and Advanced 
as shown in Figure 6.10. The Di sp l ay Modes tabbed window is used to enable and control the 
behavior of the screensaver. The Screensaver is activated either when the system is idle (when 
there is no mouse or keyboard activity) for a specified period of time, or when the screen is locked. 
Note that you can lock your screen by using the A c t i o n s menu (see Figure 6.2b on page 117). 

The Mode drop-down menu gives you four options: 

• Disable Screen Saver: Select this option if you don't want the screensaver. 

P:^H 
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PPHpHHHR 
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^ • • • • • m i 1 xj] 

i 1 
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Figure 6.9 Changing the user password—screen 3. 
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Figure 6.10 The Display Modes tabbed window can be used to enable and control the screen-
saver behavior. 

• Blank Screen Only: This option not only enables the Screensaver but also selects blank 
screen as your screensaver. This option is shown in Figure 6.10. 

• Only One Screen Saver: This option allows you to select a single screensaver from the scroll-
down display list. The selected screensaver is displayed in the test area. The S e t t i n g s 
button allows you to customize the parameters of the selected screensaver. You can preview 
the selected screensaver by clicking the Preview button. You can exit the preview mode 
by pressing any key or clicking a mouse button. 

• Random Screen Saver: You can select this option if you want more than one screensaver 
display, selected from the scroll-down display list. The Cycle A f t e r field allows you 
to select the time interval that each screensaver should be used before switching to another 
screensaver. 

When the screensaver display is enabled (i.e., if you select any of the last three options), you can 
specify the idle time period before the screensaver is activated. You can set this period in minutes 
in the Blank A f t e r field. 
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Figure 6.11 The Advanced tabbed window can be used to select the display power management 
options. 

If you want to lock your screen after the screensaver is activated, select the Lock Screen 
A f t e r checkbox and enter the delay between screensaver activation and locking of the screen. 

The Advanced tabbed window can be used to specify the display power management options 
as well as others shown in Figure 6.11. If you enable the power management, you can specify the 
standby, suspend, and off periods. In the standby mode, the screen is blank. In the suspend mode, 
the display enters the power-saving mode. The off period indicate the waiting time before the 
display is turned off. 

System Settings 
The system settings menu provides several services to control the system behavior. Since most of 
the tools in this menu control the behavior at the system level, these tools require root privileges. 
If you are logged into the system using your system user account, you will be prompted for the 
root account password before proceeding with the changes. 
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Figure 6.12 The System Set t ings menu. 

The tools provided by the System S e t t i n g s menu are shown in Figure 6.12. In the pre­
vious chapter, you have seen how the Add/Remove A p p l i c a t i o n s tool can be used to load 
new software packages. This tool makes managing packages easy by checking the package de­
pendencies and automatically loading all the necessary packages. Using the system settings menu, 
you can also change the root password, specify the security level, manage user accounts, and so 
on. In this section we show how the date and time as well as display properties can be set. We let 
you play with the other services available in this menu. 

Setting Date and Time 

You can set the date and time by using the Date & Time properties tool. It provides a very nice 
calendar interface to set these properties (see Figure 6.13). You have seen this type of interface 
during the post-installation setup. As shown in this figure, there are three tabbed windows. The 
first window can be used to set the time and date. The date can be specified by using the left and 
right arrows on the month and year. The time can be set by entering the three components: hour, 
minutes, and seconds. 

The second tabbed window allows you to specify the network time protocol that should be used 
to synchronize your computer clock. This synchronization is useful as your computer clock drifts 
away from the actual time. The amount of drift depends on various factors including the tempera­
ture. The drift is measured in PPM (parts per million), which corresponds to 0.0001 %. Since a day 
has 86,400 seconds, a drift of approximately 11.57 PPM means a difference of 1 second per day. 
The Network Time Protocol (NTP) is designed to synchronize computer clocks, which is impor­
tant when communicating with other computers. NTP uses UTC (Universal Time Coordinated) 
as the reference time. UTC is an official standard that evolved from the GMT (Greenwich Mean 
Time). You can use this tabbed window to specify several options including whether you want to 
use NTP and so on. 
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Figure 6.13 Setting the date and time. 

The third tabbed window can be used to specify the time zone. You have set the time zone 
during the installation (see Figure 5.29 on page 103). This window provides the same screen as 
that in Figure 5.29. 

Setting Display 

As in the Date and Time tool, setting the display properties requires root privileges. It has three 
tabbed windows: S e t t i n g s , Hardware, and Dual head as shown in Figure 6.14. The set­
tings window lets you specify the screen resolution and color depth. You have seen a similar screen 
during the post-installation setup. You have also set the display resolution at the user-level before 
(see Figure 6.6). 

The Hardware tabbed window allows you to configure the monitor type and the video card. 
The Conf i g u r e . . . button displays a large list of monitors and video cards supported by Fedora 
3. If your display and video card are not supported, use a generic type that closely matches your 
hardware. In general, though, the installer does a pretty good job in detecting your monitor type 
and video card or selecting an appropriate generic settings. 

The third tabbed window can be used to enable and configure two displays. This window 
lets you configure the second video card and set the second screen resolution and color depth. 
In addition, you can select a desktop layout for the two screens—either individual desktops or 
spanned desktop. In the spanned desktop, your desktop is split between the two screens. 
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Figure 6.14 The display configuration window. 

Working with the GNOI\/IE Desktop 

Fedora 3 supports two types of desktops: GNOME and KDE. The GNOME desktop is the default 
desktop and this is the one you have installed. Let's get familiar with this desktop before looking 
at the command line interface details. 

If you have used My Computer in Windows XP, you have an equivalent one here (see the 
Computer icon in Figure 6.1). You can launch the Nautilus graphical tool by double-clicking 
the Computer icon. This tool provides an intuitive interface to manage the file system and other 
resources in your computer. In our example system, this tool shows four icons as we have a USB 
hard disk drive (PORTABLE) attached to the system (see Figure 6.15). 

Browsing the File System 
You invoke the Nautilus file manager by selecting F i l e Browser from the A p p l i c a t i o n s 
main menu (see Figure 6.2a). The file manager is useful to navigate and manage the file system; 
you can also use it to browse Web pages and play multimedia content. 

This interface looks somewhat similar to the Windows Explorer you are familiar with (see 
Figure 6.16). The F i l e menu allows you to create a new folder or a document, open or browse 
a folder, and so on. The E d i t menu supports the standard editing actions such as cut, copy, 
paste, rename, and so on. In addition, you can use P r e f e r e n c e s to set the file management 
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Figure 6.15 The Nautilus file manager can be used to manage resources in your computer system. 

preferences. For example, it is possible to select single-click or double-click to activate an item. 
Similarly, you can specify to run executable files when they are clicked. 

You can customize the window by using the view menu. This menu lets you specify how 
the contents of the window should be viewed (as a list, icons, or catalog). In addition, it allows 
you to specify whether you want the Loca t ion bar above the main area, Sidepane on the 
lefthand side, and S t a t u s bar at the bottom of the window. The Go menu provides services 
to visit different locations in your file system, various Web sites, create CDs, and so on. The 
Bookmarks menu can be used to add and edit bookmarks. 

You can use the Loca t ion bar to specify the location you want to go. You could enter here 
the URL of a Web site or a location in your file system. For example, in Figure 6.16, the location 
bar shows /home/s ivarama and the main window shows the contents of this location. 

The icons in the toolbar let you move around the directories and Web sites you visited. The Up 
arrow can be used to move up in the directory structure. The Back and Forward buttons work 
as in a typical Web browser. The Reload button is for refreshing the content. The Home button 
takes you to your home directory (in our example, /home/s ivarama is the home directory). 
The Computer button displays the content shown in Figure 6.15. 

Editing with GEDIT 

The g e d i t is a simple text editor that provides functionality somewhat similar to the Wordpad in 
Windows. It can be invoked from the Ac c e s s o r i e s submenu available from the App l i c a t i o n s 
main menu as shown in Figure 6.17. 

The g e d i t window, shown in Figure 6.18, consists of the following components. 

The Menubar at the top of the window contains several pull-down menus that provide com­
mands to open and edit text files. The F i l e menu has commands to manipulate files (open, 
create, save, or save as), print files, page setup, print preview, and quit. The E d i t menu has 
the standard edit commands such as undo, redo, cut, paste, copy, and delete. In addition, 
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Figure 6.17 The A c c e s s o r i e s pull-down menu. 

you can also set the editor preferences. The View menu can be used to customize the tool­
bars. The Search menu provides commands to search and replace text. The spelling check 
functionality is in the Tools menu. The Documents menu has save and close commands 
that affect all the open documents. 

• The Toolbar provides several icons for some of the common tasks such as creating a 
new file, opening an existing file, saving a modified file, printing a file, and several editing 
commands such as undo, redo, cut and so on. 

• The Di s p l a y a r e a is for the contents of the file that is being edited. 
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Figure 6.18 The ged i t window. 

• The S t a t u s b a r at the bottom of the window gives information on the current activity. 
It also provides contextual information on the menu commands. In addition, it displays the 
cursor position (line number and column number) and the edit mode. The edit mode can be 
either overwrite (OVR) or insert (INS). In our example, it is in the insert mode. You can 
switch the edit mode by pressing the I n s e r t key. 

In Figure 6.18 we didn't show another component—the output window. This window, which 
appears above the status bar, captures the output of the shell command plugin. 

Running Applications 
The Run. . . equivalent of Windows is available as the Run A p p l i c a t i o n . . . command 
in the Ac t i ons menu (see Figure 6.2b). The run application window, shown in Figure 6.19, 
allows you to enter the command to execute in the command field. If you want to run a previously 
executed command, use the arrow button next to the command field to select the command. You 
can also pick an application from the list displayed by selecting the Show l i s t . . . option. 

Select the Run i n t e r m i n a l checkbox if you want to run the command in a terminal 
window. You can use the Run wi th f i l e . . . button if you want to include a file to the 
command. For example, if you want to open sample . t x t file using the g e d i t , type g e d i t 
in the command field and click the Run wi th f i l e . . . button. This pops up a window to 
browse and select the file to be edited. 

Office Tools 
The Fedora 3 Linux has several office applications that mimic the Microsoft office suite. These 
applications are available from the Off ice menu as shown in Figure 6.20. The OpenOffice Writer 
is a word processor application that can read and modify the Microsoft Word documents. It can 
also save files in several formats including the Word format. A nice feature of this application is 
that you can password protect the file. This feature, however, is not available for all formats. This 
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Figure 6.20 The office applications software suite. 

application allows you to open and process Word documents conveniently without going back to 
your Windows system. 

The OpenOffice Calc is a spreadsheet application that can import and modify Microsoft Excel 
spreadsheets. As with the OpenOffice Writer, Calc can also save a spreadsheet in the Excel format. 
When stored in the native format, you can password protect the file. 
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Figure 6.21 The Mozilla Fire Fox Web browser. 

Are you wondering if there is a Microsoft PowerPoint equivalent? The answer is the OpenOf-
fice Impress, which lets you create presentations. It can read the PowerPoint files and you can 
save your presentation in the PowerPoint format as well. As with the last two applications, you 
can password protect the files stored in the native format. 

As shown in Figure 6.20, there are also other applications such as Draw for drawings. Math for 
equations, Dia for flowcharts, and Project Planner For example, the Dia application is convenient 
to draw technical diagrams such as UML diagrams, flowcharts, and so on. 

Connecting to the Internet 

The applications to connect to the Internet are available under the I n t e r n e t submenu of the 
A p p l i c a t i o n s menu (see Figure 6.2a on page 117). Here we briefly mention two common 
applications that are often used: a Web browser and an email client. The system installs the 
default Web browser Mozilla Firefox, which can be invoked either from the Panel or from the 
Internet submenu. To invoke from the Panel, click the globe-and-mouse icon at the top of the 
desktop. This Web browser is a derivative of the Netscape Web browser (see Figure 6.21). Because 
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Figure 6.22 The Evolution email client. 

of this relationship, you see a lot of similarities between the Mozilla and Netscape browsers. 
You can also run Firefox on your Windows system by downloading the Windows version from 
h t t p : / / w w w . m o z i l l a . o r g . 

The other application we mention here is the Evolution email client to access your email 
(see Figure 6.22 for its screenshot). Again, you will see similarities between this client and the 
Netscape's email client. If you are interested, Mozilla has its own version of the email client called 
Thunderbird. You can download Thunderbird from the Mozilla site mentioned before. 

Command Terminal 
Once you are familiar with the Linux operating system you are likely to spend more time with the 
terminal emulator shown in Figure 6.23. This is the equivalent of the Command Prompt in the 
Windows system. The terminal window can be invoked from the A p p l i c a t i o n s menu under 
System Tool s submenu. Since this interface is preferred as you get experience with the system 
and its commands, you may want to add it to the panel for single-click invocation as in Figure 6.1. 
Note that you can add an application to the panel by right-clicking on it and selecting Add t h i s 
l a u n c h e r t o pane l option. 
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Figure 6.23 The terminal emulator window. 

The terminal emulator is much more flexible than the Windows Command Prompt. Each 
terminal can be defined to have its own profile. A default profile is used to open the initial terminal. 
A profile defines the various characteristics of the terminal window including the colors, font, 
scrollbar type, and so on. The F i l e menu can be used to open a new terminal, define a new 
profile, and close a window. 

The terminal emulator supports a tabbed window feature that allows multiple terminals to share 
a single window. For example. Figure 6.23 has three terminals sharing the same window: L i s t is 
used to display a program's source code, Run is used to execute the program and check its output, 
and Man is used to look at help information ("man" pages are discussed in the next section). You 
can easily switch from one terminal to another by selecting the window tab. You can use the F i l e 
menu to close each individual terminal as well as open a tabbed terminal. 

The E d i t menu can be used to edit the current profile, copy and paste, as well as to manage 
profiles and keyboard shortcuts. The View menu is useful to specify the font size (zoom in, zoom 
out, normal size), whether you want the menubar to appear, or if you want a full screen terminal. 

You can use the t e r m i n a l menu to change the profile and title (for example, we used L i s t 
as our title for a terminal in Figure 6.23). In addition, you can use this menu to specify character 
encoding and reset the state of the terminal if you are having problems with terminals. The Tabs 
menu lists all the tabbed terminals and allows you to navigate through the tabbed terminals. 

The terminal window is useful to enter commands to invoke both GUI and non-GUI applica­
tions. For example, you can invoke g e d i t to edit sample . t x t file by entering the following 
command in the terminal window: 

gedit sample.txt 

Here is another example. The command 

gnome-terminal 

launches another terminal window. Since the terminal emulator requires commands to specify the 
work to be done, this interface is often called command-line interface (CLI). Thus, we have two 
main interfaces to interact with the system: GUI and CLI. 

What are the pros and cons of these interfaces? For beginners, GUI is easier to use than 
CLI because of the point-and-click strategy. The main problem with CLI is the learning curve 
associated with it—you need to remember various commands and their syntax. In contrast, GUI 
makes the available options visible to the user. However, it is time consuming as the selection 
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Table 6.1 Sections of the LINUX manual 

Section 

1 
2 
3 
4 
5 
6 
7 
8 

Description 

User commands 
System calls 
Library calls 
Devices 
File formats 
Games 
Miscellaneous 
System administration tools 

of these options often requires traversing a hierarchy of menus. In particular, if you know which 
command to use and its syntax, it is faster to type the command than using menus. This is typically 
the case with experienced users. As we shall see in the rest of the chapter, it is fairly straightforward 
to develop simple scripts that combine several commands to accomplish a complex task. For 
example, you can feed the output of one command as input to another command. In general, 
experienced users tend to prefer CLI whereas new users prefer GUI for its ease of use. 

In the remainder of the chapter, we focus on the command line interface and look at various 
commands you can use in the terminal window. 

Getting Help 

Help on the Linux commands is particularly needed with the command line interface. The Linux 
manual pages ("man pages") provide information on the various commands. These man pages 
are divided into several sections as shown in Table 6.1. Most of the commands executed by the 
users are placed in Section 1. The next section gives information on the system calls provided 
by the kernel. Section 3 describes the language library functions in C, FORTRAN, and so on. 
Special files in the / dev directory are described in Section 4. Section 5 describes the file formats 
and protocols. The next section gives information on the games available. Section 7 describes 
conventions, character set standards, file system layout, and other miscellaneous items. The system 
administrative commands, described in Section 8, can only be used by the root or superuser. 

The man command can be used to access the man pages. Its syntax is simple—just type man 
and the command name. For example, to get information on g e d i t , you can enter the man 
command as 

man g e d i t 

Of course, you can use 

man man 

to get information on how to use the man command itself. This command displays the information 
shown in Figure 6.24. You can use the Spacebar key to scroll forward through the document 
and the b key to scroll backwards (up and down arrow keys also work). You can use the En te r 
key to scroll line by line. If you want to quit the document, press q key. 
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NAME 
man - format and display the on-line manual pages 

manpath - determine user's search path for man pages 

SYNOPSIS 
nan [-acdfThkKtwW] [—path] [-n system] [-p string] [-C config_filG] 
[-M pathlist] [-P pager 1 [-S section_list1 rsection] name j_;_^ 

DESCRIPnON 
nan formats and displays the on-line manual pages. If you specify sec-
tion, nan only looks in that section of the manual, name is normally 

j the name of the manual page, which is typically the name of a command, 
1 function, or file. However, if name contains a slash (/) then aan 
1 interprets it as a file specification, so that you can do nan ./foo.5 
1 or even nan /cd/foo/bar.l.gz. 

J See below for a description of where nan looks for the manual page 
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-C config_file 
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Figure 6.24 Manual page entry for the man command. 

Some commands appear in more than one section. For example, the passwd command can 
be used by the user to change his/her account password. Thus, information on this command is 
included in Section 1. There is also another entry for passwd in Section 5. This entry describes 
the / e t c / p a s s w d file maintained by the system. To clarify this ambiguity, you can include the 
section number in the man command. For example, to get information on the passwd file in 
Section 5, we enter the man command as 

man 5 passwd 

All man pages follow a very simple format. Often, the description given is very cryptic. As a 
new user, you may not find the man pages all that helpful. But as you get used to the various 
commands, you will find man pages useful as a reference document that gives concise information 
on the command syntax and the various options available. 

Some General-Purpose Commands 
In this section, we introduce some of the common commands that are useful for a beginner. Our 
description of these commands is rather brief. Of course, you can use the man command to get 
more information on these commands. 

Before we proceed further, we need to introduce the shell. For our purposes, the shell can be 
thought of as the user's interface to the operating system. It acts as the command line interpreter. 
Several popular shells including the Bourne shell (sh), C-shell (csh), Kom shell (ksh), and 
Bourne Again shell (bash) are available. Since bash is the preferred shell in the Linux systems, 
we assume that you are using this shell. Furthermore, bash is the default shell in Fedora 3. 
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When you type a command, you don't have to specify the location of its executable program. 
The shell searches for the program associated with the command among the locations specified by 
a special environment variable PATH. This variable essentially defines your search path. Later we 
show how you can look at the contents of your PATH variable. 

Entering and Editing Commands 

Command Line Completion The bash shell provides a command line completion feature that 
helps us gready. Using this feature you don't need to type the complete command—just enough 
for the shell to uniquely identify the command. The shell will complete the command if you press 
the t a b key. For example, when we type 

ged<TAB> 

the shell completes the command name as g e d i t . Suppose we have a file sample . t x t in our 
directory. If there is no other file that starts with s, we can save a few key strokes by typing 

ged<TAB> s<TAB> 

to enter the command 

gedit sample.txt 

Recalling a Command The shell maintains a record of all your commands in a history file. Ev­
ery time you enter a command, the complete command is stored in this file. This list is maintained 
in the reverse chronological order (i.e., with the most recent command at the head of the list). 
You can take a peek into this list by using the h i s t o r y command. When this command is used 
without any options, it gives the full list of commands from the history file. However, if you want 
to see the most recent n commands, enter h i s t o r y n. For example, the command 

h i s t o r y 4 

display the last four commands including the current h i s t o r y command: 

93 man man 
94 man 5 passwd 
95 gedit sample.txt 
96 history 4 

Each command is displayed with a line number in the history file. You can use these line numbers 
to execute the corresponding command. For example, to run the man 5 pa s swd command, you 
type ! 94 at the prompt. You can run the last command by typing I !. To run a command that 
contains a string, just type ? s t r i n g ? where ? is a wildcard (that is, it matches zero or more 
characters). For example, given the previous history, the command 

! d i t 

results in the following error: 

b a s h : ! d i t : event no t found 

However, by modifying the command to 
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! ? d i t 

the shell successfully executes the command 

g e d i t s a m p l e . t x t 

You can also access the commands from the history list with the keys. Here are some examples: 

• Use the up (j) and down (|) arrow keys to navigate the history list. Alternatively, use 
C t r l -p to go to the previous command and C t r l -n to go to the next command. 

• You can use C t r l - r to incrementally reverse search the command history. Once you press 
c t r l - r , you are prompted for a search string. As you enter the search string, a matching 
command appears. This is the reason for calling it "incremental search" as it does not wait 
for the complete string to be typed. 

Sometimes you don't want to execute the command as is. You may want to modify it before 
running it again. To do this, you need to edit the command. This is what we are going to discuss 
next. 

Editing Commands The shell provides several shortcuts for editing a command line. Use the 
left (<—) and right (-^) arrow keys to move cursor on your command line. You can also use 
C t r l -b to move cursor back by one character and C t r l - f to move it forward by one character. 
When you enter text, it is inserted at the current cursor position. The backspace key erases the 
character before the cursor. For example, suppose you typed the following command: 

gedit samples.txt 

Then you notice that you entered the wrong file name (samples instead of sample). To delete 
the s, use the left arrow key to move the cursor to the period and press the backspace key. Then 
you can simply press E n t e r to execute the command. Table 6.2 gives a list of keystrokes that 
allow you to navigate and edit command lines. 

Changing Password 
You have seen how your password can be changed by using the A p p l i c a t i o n s main menu 
from the GNOME desktop. You can also change your password from the command line interface. 
To change your current account password, just type the command passwd. It first asks for your 
current password and then prompts you to enter the new password twice. If you are the root, you 
can specify the user name. Thus, as the root, you can change the password of any account in the 
system. 

Locating a Program 
Two commands are available to find the location of a program. The which command finds the 
location of a file within the directories listed in your PATH variable. The where i s command 
can find the files that are located in the standard directories. It is not restricted searching only the 
directories listed in your PATH variable. 

Miscellaneous Commands 
If you want to find out the users logged into your system, use the who command. The uname 
command gives the operating system running on your system. The echo command displays a 
line of text. For example, the command 
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Table 6.2 Some of the keystrokes for navigating and editing connnnand lines 

Keystroke 

C t r l - b 

C t r l - f 

A l t - b 

A l t - f 

C t r l - a 

C t r l - e 

C t r l - 1 

C t r l - d 

Backspace 

C t r l - t 

Action 

Move cursor back by one character 

Move cursor forward by one character 

Move cursor back by one word 

Move cursor forward by one word 

Move cursor to the beginning of the command hne 

Move cursor to the end of the command Hne 

Clear the screen and leave the command line at the top of the screen 

Delete the character at the cursor position 

Delete the character before the cursor position 

Transpose the current and previous characters 

echo $PATH 

can be used to see the directories listed in your PATH variable. 
The ps command can be used to see the processes running on the system. By default, it gives 

information about all processes with the same user id as the current user. It displays the process id 
(PID), the terminal associated with the process (TTY), the cumulative CPU time (TIME), and the 
command name (CMD). You can also specify several options to get more detailed information. 

The last command we discuss here allows you to become super user (i.e., root) without explic­
itly logging in as the root. Often, when you are in your system user account, you may need to do 
a small administrative chore that requires root privileges. Instead of logging out of your current 
account and logging in as the root, the su command allows you to assume the root identity. For 
example, you can use the su command as shown below: 

$ su -
Password: ••****** 
# 

The su command asks for the root password. If you give the correct password, it changes the 
prompt from $ to # to indicate that you are now the root. Then, for example, you can edit the 
f s t a b file. Recall from Chapter 5 that only the root can modify this file. To edit the file, you can 
use the following command: 

gedit /etc/fstab 

To leave the super user shell and return to your previous shell, use either e x i t or c t r l - d . 
usual, you can get more details on this command by using the man command. 

As 



Chapters • Using Linux 139 

bin/ media/ etc/ sbin/ mnt/ home/ 

sobha/ 

Desktop/ bookl/ sample,txt 

Figure 6.25 The file system is a hierarchy of directories. The root directory is represented by a 
slash (/). 

File System 

The Fedora 3 file system provides the necessary structure to store information. While the file 
system supports several types of files, here we focus on ordinary files and directories. The file 
system is organized as a hierarchy of directories (similar to that in Windows). Since you are 
familiar with hierarchical file systems, we briefly present details of the Fedora file system, 

The root directory of the file system is represented by a slash / as shown in Figure 6.25. At 
the next level, you see a set of common directories such as b i n / , e t c / , home/, and so on. The 
/home directory contains the user directories. In the example, we show three user directories: 
s iva rama/ , veda / , and sobha/ . Each of these directories may have other directories or files. 
Figure 6.25 shows the subdirectories under the s ivarama directory. 

Path Names 

You can uniquely specify the files and directories in the file system by its path. A path is simply 
the list of directories from the root directory (/). For example, the path of sample . t x t in 
Figure 6.25 is 

/ h o m e / s i v a r a m a / s a m p l e . t x t 

This is called the absolute path because it specifies where the sample . t x t file is within the 
file system. Absolute path always begins with the root directory (/). In contrast, a relative path 
specifies the path relative to your current directory. We discuss later how you can specify a relative 
path, 

You can always find your home directory by displaying the value of HOME environment vari­
able as in the following command: 

$ echo $HOME 
/home/sivarama 
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In the command line, tilde (~) represents your home directory. For example, you can specify the 
path of sample . t x t as 

^ / s a m p l e . t x t 

Next we look at a few directory commands. 

Directory Commands 
To know your current directory, use the pwd command. For example, you will see 

$ pwd 
/home/sivarama 

if you are currently in the s ivarama directory. Use the cd command to change the current 
directory. The current directory is represented by a dot (.) and the parent of the current directory 
by two dots (. . )• For example cd . . makes the parent directory as your current directory. Here 
is another example. If your current directory is b i n / , you can refer to the sample . t x t file as 

../home/sivarama/sample.txt 

This is a relative path as opposed to the absolute path we had given before. 
Next we look at some commands to navigate and access the directories and files. The I s 

command lists the contents of a directory. If you don't specify a directory, the current directory is 
the default. 

To create a new directory, you can use the mkdir (make directory) command. Here is an 
example. 

mkdir c o u r s e s 

creates the c o u r s e s directory in your current directory. If you want to remove an empty direc­
tory, you can do so with the rmdir (remove directory) command. For example, the command 

rmdir courses 

deletes the directory we just created. If the directory specified is not empty, rmdi r will not delete 
the directory. To delete a non-empty directory, you can first empty the directory by deleting its 
contents (files and other sub-directories) and then delete the directory. There is also a convenient 
way of deleting a non-empty directory by using the rm command, which is discussed in the next 
section. 

File Commands 
Several conmiands are available to view the contents of files. The c a t (concatenate) command 
displays the contents of the specified files. You can specify more than one file. For example, the 
command 

cat sample.txt test 

displays the contents of the files (sample . t x t ) and t e s t . 
If the file is large, you may want to control how its contents are displayed. There are several 

commands that allow you controlled view of the contents. The more command displays the 
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contents of a file one screen at a time. To scroll the screen by a single line, press the En t e r key. 
To scroll to the next screen, use the Spacebar key. 

A problem with more is that it allows only forward movement—you cannot go back. This is 
remedied by the l e s s command. This command allows both forward and backward movement. 
In addition, the l e s s command doesn't wait to read the whole file before displaying the contents. 
Thus, it is faster if the file is very large. For large files, you can also use head to view the first part 
of the file and t a i l to view the last part. You can use the man command to find out more details 
on these commands. 

The cp (copy) command copies files and has the following format: 

cp from t o 

A path can be specified for from and t o . If no path is given, the current directory is the default. 
Here is an example that copies sample . t x t to t e s t . 

cp sample.txt test 

Instead of copying a file, sometimes you may want to move a file. The mv (move) command 
performs this job. For example, the command 

mv t e s t t e s t l 

moves the file t e s t to t e s t l . This operation is effectively renaming the file. Thus, you can use 
mv to move and rename files. To delete a file, use rm (remove) as in the following example: 

rm t e s t 

This command deletes the t e s t file. To specify a group of files, you can use wildcards: * to 
match zero or more characters, and ? to match a single character. The command 

deletes all the files in the current directory. It does not delete the directories. For that, you need to 
use the - r option mentioned below. 

This last command (rm *) can be quite dangerous—it silently deletes all the files. If you 
want the delete process to be interactive, use the - i (interactive) option. With this option, the rm 
command asks whether to delete a file; depending on what you say (y or n), the process proceeds. 

The mv command works on directories as well as files. However, cp and rm cannot be used on 
a directory without options. To work on the directories, you have to use the - r (recursive) option. 
As an example, if you want to remove a non-empty directory (say, courses) , you can use 

rm - r c o u r s e s 

Similarly, if you want copy a directory, the cp command with - r would do the job. 

Access Permissions 
Linux provides a sophisticated security mechanism to control access to individual files and direc­
tories. Each file and directory has certain access permissions that indicate who can access and 
in what mode (read-only, read/write, and so on). With these permissions the system can protect, 
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Figure 6.26 Details of the access permissions. 

for example, users from accessing other user's files. However, sometimes, we do need to share 
files. For example, a group of software developers working on a project may need to share each 
other's files. If we strictly do not allow any sharing of files, the group members would have to 
share passwords so that one can login as another user to access the files, or use explicit copying of 
files between the user accounts. 

To avoid these problems, each Linux user belongs to a group of users as determined by the 
system administrator when the account was created. You can verify this information on your sys­
tem by going to the Applications—>Systern Settings—>Users and Groups menu. 
If you are not logged in as root, it will ask you for the root password and then opens a tabbed 
window. The Users tabbed window gives information on the user accounts in the system. If 
you click the Groups window, it gives the group information: group name to identify the group, 
group id, and the group members. In the toolbar of this window, you see icons to add groups and 
to modify group membership. The group id is an integer. Fedora reserves group ids less than 500 
for system groups. Thus, for user groups, group id starts at 500. 

Typically, a user belongs to a single group. However, a user may belong to multiple groups. 
From the access permission point of view, there are three types of users: owner, group, and others. 
The last group represents everyone else. 

Linux, like the UNIX systems, associates three types of access permissions to files and di­
rectories in the file system: read (r), write (w), and execute (x). As the names indicate, the read 
permission allows read access and the write permission allows writing into the file or directory. 
The execute permission is required to execute a file and, for obvious reasons, should be used with 
binary and script files that contain executable code or commands. 

The Linux system uses nine bits to keep the access permissions as there are three types of 
users, each of which can have three types of permissions. The I s command with -1 (long) option 
gives the access permission information, as in the following example. 

$ Is -1 
drwxr-xr-x 2 sivarama projectl 4096 Dec 24 13:56 Desktop 
-rw-rw-r-- 1 sivarama projectl 5610 Dec 30 12:53 sample.txt 
-rw-r--r-- 1 sivarama projectl 5610 Dec 30 12:53 test 

Each line in this list contains the following information (from left to right): 

• The first column displays the permissions for each file/directory. Figure 6.26 shows details 
of this column. The first letter before the nine permission letters identifies the file type. In 
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our example, the first line with d identifies that Desktop is a directory. A dash (-) is used 
for a regular file as in lines 2 and 3. The next nine letters are divided into three fields. 

- The first three letters give information on the permissions for the user (that is, the 
owner). 

- The second set of three letters indicates the permissions for the user group. 

- The last three letters represent the permissions for everyone else. 

If a permission is off, it is indicated by a dash (-); otherwise, the corresponding letter is 
used. 

• The integer in the second column gives the number of links. For example, if you give 
permission to share your file to another user in your group, a link to this file will be placed 
for the other user. For most files, the link count is 1. 

• The next column (s ivarama in our example) gives the owner of the file. This is usually 
the person who created the file. 

• The next entry (pro j ec11 here) is the group that has the group access to the file/directory. 
• The next number gives the size of the file in bytes (characters). In our example, the size of 

sample . t x t file is 5610 characters long. 
• The date and time stamp of the file (when it was created or last modified) are given next. 
• The last column gives the name of the file/directory. 

In our example, the first line indicates that the owner can read, write, and execute the Desktop 
directory. The group and others have read and execute permissions but not the write permission. 

Note that the read permission on a directory allows you to read its contents. The write per­
mission for a directory means you can write into the directory (e.g., create a subdirectory in it). 
What does execute permission on a directory mean? The execute permission for a directory is 
redefined from its file definition. If a directory has the execute permission, it allows you to use the 
cd command to make it your current directory and/or look at the files in that directory. However, 
it will not allow you to read from or write into the directory. For example, the 1 s command will 
not list the files in the directory if you don't have the execute permission. However, if you know 
the name of a file, you can get details about it or look at its contents. 

In the second line, the dash in the file type suggests that sample . t x t is a regular file. Of 
course, we know that it is a text file. Therefore, it does not make sense to use execute permissions. 
On this file, the owner and the group have read and write permissions whereas others have only 
the read permission. From the third line in this example, we can gather that t e s t is a regular file. 
In addition, only the owner has the read/write access. All the others can only read this file. 

Setting Access Permissions 
The chmod (change mode) command changes the access permissions. The owner of a file can 
determine who can access the file. There are two ways of specifying the access permissions: in 
octal or symbolic mode. 

In the octal mode, you convert the three permission bits for each user type into an octal number. 
In this method, the 9-bit permissions can range from 0 0 0 to 7 7 7. The permissions are represented 
in the octal notation by writing a 1 for the permission bit that is on and 0 for the off bit. Following 
this procedure, the Desktop directory permissions from our previous example (rwx r - x r - x) 
are represented in the octal notation as 111 101 101, which is 755 in octal. Similarly, the 
permissions for the sample . t x t file rw- rw- r - - can be expressed in octal as 664. The octal 
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Table 6.3 Values for the symbolic mode fields 

Field 

Who 

Operator 

Permission 

Value 

u 
g 
0 

a 

+ 
-
= 

r 
w 
X 

u 
g 
0 

Description 

User 
Owner's group 
All others not in the group 
All users 

Add the permission 
Remove the permission 
Set the permission 

Set the read permission 
Set the write permission 
Set the execute permission 
Set to the file owner's current permissions 
Set to the file group's current permissions 
Set to the file other's current permissions 

string 644 expresses the permissions (rw- r - - r - -) for the t e s t files in our example. Since you 
specify the actual permissions, this mode is also called the absolute mode. 

In the symbolic mode, mode control words are used to express the access privileges, mostly rel­
ative to the current privileges. For example, you may add the write privilege to your group. Mode 
control words consist of three fields and take the form <who><operator><permission>. 
These fields can take the values shown in Table 6.3. 

The format of chmod is 

chmod access-mode file-list 

The access-mode can be expressed in the octal or symbolic mode. Here are some examples. 
The command 

chmod 660 t e s t 

changes the permissions to the t e s t file as rw- rw- . This means that only the owner and 
his/her group can read or write t e s t ; all others cannot access the file. If you use the * wildcard, 
permissions for all the files and directories are changed. You can also use other metacharacters 
Uke ? to specify f i l e - l i s t . If you want to allow others to read the t e s t file, you can do so 
by the following command: 

chmod o+r test 

To change the permissions of all the files in a directory and in all of its subdirectories, use the -R 
(recursive) option. For example, if temp is a directory, the command 

chmod -R 764 temp 

recursively changes the permissions for all the files and directories in temp and its subdirectories. 
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Redirection 
In Linux, three standard files are automatically opened for you. These default files are used by 
your command to read its input and to send its output and error messages. The s t d i n (standard 
input) file supplies the data needed by the command. This file is mapped to your keyboard. The 
s t d o u t (standard output) file receives the program's output. The error messages are directed to 
s t d e r r (standard error) file. These last two standard files are mapped to the terminal running the 
command. This default association with files can be changed using redirection operators. 

To redirect output of a command to a file, use the > (greater-than) symbol as shown here: 

command > out-file 

As an example, consider the following command: 

I s -1 > l i s t 

This command sends the output to the l i s t file. Here is a simple way to create a text file without 
using a text editor. 

cat > simple.txt 

Since we did not specify the file in the c a t command, it expects the input to come from the default 
input file ( s td in ) . The output of this command is redirected to the s imple . t x t file. You can 
terminate the input by typing C t r l - d. 

The redirect the input of a command, you can use the < (less-than) symbol as shown below: 

command < in-file 

Before giving an example of the input redirection, let's first look at a new command. The word 
count (wc) command can be used to print the line, word, and byte counts of a file. In fact, you 
can specify more than one file on the command line. If no file is specified on the command line, it 
reads from the standard input file s t d i n . For example, the following command 

$ wc < simple.txt 
22 191 1327 

uses input redirection to print the three counts for the s imple . t x t file. The three numbers give 
the line count (22), word count (191), and byte count (1327). 

Both input and output redirections can be used in a single command. For example, if you want 
to store the output of the previous command in a file (say, count), the following command will 
do the job. 

$ wc < simple.txt > count 

When we use the output redirection, if the output file already exists, the contents are erased and the 
command's output is placed in the file. Instead, if you want the command output to be appended 
to the file contents, use the append output symbol (>>). The command sequence 

$ cat < samplel.txt > test 
$ cat < sample2.txt >> test 
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copies the contents of the files sample 1. t x t and sample 2 . t x t into the t e s t file. 
Before closing this section, we note that the output redirect command (>) overwrites the file 

with the command output. This has the unfortunate side effect of overwriting files by accident 
(for example, if a wrong file name is given). You can set the noc lobbe r variable to avoid this 
problem. You can set this variable by using the s e t command as shown below: 

set -o noclobber 

When the noc lobbe r variable is set, you can force overwriting a file by using a pipe symbol 
(discussed next) after the redirection (> |) or append symbol ((>> |). To unset the noc lobbe r 
variable, you can use the following command: 

set +o noclobber 

This command allows overwriting of files as before. 

Pipes 

As we have seen, the Linux system provides several commands. These commands can be treated 
as the basic building blocks. While a simple task can be done by using a single command, we may 
need several commands to accomplish a complicated task. We may have to feed the output of one 
command as input to another to accomplish the task. Of course, we can store the output of the first 
command in a temporary file and use this file as the input to the next command. The shell provides 
the pipe operator ( |) to achieve this without any temporary files. The syntax is 

commandl | command2 

The output of the first command (commandl) is fed as input to the second command (command2). 
The output of command2 is the final output. Of course, we can connect several commands using 
the pipes: 

commandl | command2 | commands | command4 | commands 

Here is an example that uses a pipe to sort the output of the 1 s command. 

I s I s o r t 

As another example, let's look at a different way to get the three counts (line, word, and byte) for 
the s i m p l e . t x t file. We can use the c a t and wc commands connected by a pipe as shown 
below: 

cat simple.txt | wc 

grep is another useful command that allows you to find a string in one or more files. For example, 
the command 

Is -1 I grep simple 

displays the lines in the output of 1 s -1 command that contain the string s imple. 
We have briefly introduced several basic commands. However, this is only a small sample 

of the commands that are available. If you are intrigued by this introduction, you can get more 
information from several online resources. You can also visit your favorite bookstore for books 
dedicated to the Linux operating system. 
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Editing Files with Vim 

Two text editors, v i and emacs, are commonly used in the Linux system. The Fedora system 
you installed has an improved version of v i called vim (vi improved). In this section we briefly 
describe the vim text editor. 

You can invoke vim to edit a file (say, s imple . t x t ) by typing vim s imple . t x t . The 
vim editor works in two modes: 

• Command Mode: In this mode, the input is interpreted as a command to the editor. Some 
examples of these commands are: save the file, exit vim, move the cursor, delete and search 
for text. 

• Input Mode: This mode allows you to input text. When you start vim, it is in the com­
mand mode. You can switch to the input mode by several commands. For example, the i 
command switches it to the input mode. 

If the editor is in the insert mode, the bottom line indicates this (see Figure 6.27). The empty lines 
are indicated with the tilde characters (~). You can exit vim in one of several ways as shown here: 

ZZ — Save the buffer and quit 
X — Save the buffer and quit (same as ZZ) 
wq — Save the buffer and quit (same as ZZ) 
q — Quit (works only if you don't have any unsaved changes) 
q! — Quit without saving the changes in the buffer 

The first three commands perform the same action—write the changes in the buffer and quit. The 
vim editor has the following commands to write the buffer. 

: w — Save the buffer to the current file 
:w f i l ename — Save the buffer to f i lename; 

it does not overwrite if the file exists 
:w! f i l ename — Save the buffer to f i lename; 

it overwrites if the file exists 

The first command saves the buffer to the current file that vim is editing. The second and the third 
commands allow you to write the buffer to a new file. 

You can move the cursor using the four arrow keys. You can also use the h, j , k, and 1 keys 
to move the cursor left, down, up, and right, respectively. In addition, the following commands are 
available to move the cursor: 

G — Move cursor to the first line of the file 
IG — Move cursor to the last line of the file 
0 (zero) — Move cursor to the first character of the current line 
$ — Move cursor to the last character of the current line 
w — Move cursor forward by one word 
b — Move cursor backward by one word 

Note that you have to be in the command mode to issue commands to vim. Also in the command 
mode, you can do simple text editing using the following commands: 
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@i^HHHi^lHIHSBSMSaSBHHHi^^^^^BEJiil@ 
Rle Edit Yjew lerminal Tabs Help 

This text is entered using the VIM editor. 
This editor operates intwo modes: 
command mode and insert mode.| 

— INSERT — 3 , 3 0 A l l 

Figure 6.27 The VIM editor in the input mode. 

X — Delete the character at the cursor 
X — Delete the character before the cursor 
dd — Delete the line at the cursor 
u — Undo the most recent change 
r — Replace the character at the cursor by the character typed next 

The replace command places vim in the Input mode and the character you type after the r com­
mand replaces the current character. After that the editor returns to the Command mode. 

In addition to the replace command, you can put vim in the Input mode by any of the following 
commands: insert (i), append (a), or open (o). When you are done entering the text, press the 
Esc (Escape) key to return to the command mode. The insert command places vim in the Input 
mode and the text entered will go before the cursor. The append command is similar to the i 
command except that it places the text after the cursor. The open command opens a blank line and 
places the cursor at the beginning of the blank line. 

To search forward, you can use the / command. For example, / t e x t looks for the string 
t e x t in the forward direction (that is, from the current cursor position to the end of the file). To 
do the reverse search, use ? in place of the slash. For example, ? t e x t searches backward from 
the current cursor position to the beginning of the file. 

The last command we discuss here is the substitute (s) command. It lets you replace text 
conveniently. The format of this command is 
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: [range] s / o l d _ s t r i n g / n e w _ s t r i n g / o p t i o n 

The o l d _ s t r i n g is substituted by n e w _ s t r i n g in the range of lines specified by the optional 
range. The range is specified in the format "from, to" . If no range is given in the command, 
the current line is the default. The o p t i o n is a modifier to the command. Usually, g is used 
for global substitutions. The following examples give an idea of how this command works. The 
command 

:s/test/text 

replaces the first occurrence of t e s t in the current line by t e x t . If you want to replace all 
occurrences in the current line, use the g option as in the following conmiand: 

: s / t e s t / t e x t / g 

The command 

:1,lOs/test/text 

replaces the first occurrence of t e s t in each of the ten lines specified (i.e., lines 1 through 10) by 
t e x t . To change all occurrences in these ten lines, add the g option to the previous command. 

We have covered only the basic commands available in the vim editor. It has several very 
powerful and sophisticated commands. If you decide to use vim you can look at these advanced 
commands after you gain some degree of familiarity with the editor. 

Summary 

This chapter introduced the basics of the Linux system. If you are new to Linux, the material 
presented here should get you started with the Fedora 3 system you have installed. We started the 
chapter with a discussion of the graphical user interface provided by the system. Specifically, we 
focused on the GNOME desktop. For new users, GUI provides an easy, point-and-click interface. 
However, as you get familiar with the system, the command line interface tends to be more ef­
ficient. We have provided the basics of the command line interface and discussed several basic 
commands that are useful. The material presented in this chapter is sufficient to proceed with our 
main goal of learning assembly language programming using the Linux tools. 
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Installing and Using 
NASM 

In this chapter, we introduce the necessary mechanisms to write and execute assembly language 
programs. We begin by taking a look at the structure of assembly language programs we use in 
this book. To make the task of writing assembly language programs easier, we provide a simple 
template to structure the stand-alone assembly language programs used in this book. 

Unlike the high-level languages, assembly language does not provide a convenient mechanism 
to do input and output. To overcome this deficiency, we have developed a set of I/O routines 
to facilitate character, string, and numeric input and output. These routines are described after 
introducing the assembly language template. 

Once we have written an assembly language program, we have to transform it into its exe­
cutable form. Typically, this takes two steps: we use an assembler to translate the source program 
into what is called an object program and then use a linker to transform the object program into an 
executable version. We give details of these steps in the ''Assembling and Linking" section. How­
ever, this section uses an assembly language program example. Since we have not yet discussed 
the assembly language, you may want to skip this section on the first reading and come back to it 
after you have read Chapters 9 and 10, which provide an overview of the assembly language. 

Introduction 
Writing an assembly language program is a complicated task, particularly for a beginner. We make 
this daunting task simple by hiding those details that are irrelevant. A typical assembly language 
program consists of three parts. The code part of the program defines the program's functionality 
by a sequence of assembly language instructions. The code part of the program, after translating 
it to the machine language code, is placed in the code segment. The data part reserves memory 
space for the program's data. The data part of the program is mapped to the data segment. Finally, 
we also need the stack data structure, which is mapped to the stack segment. The stack serves 
two main purposes: it provides temporary storage, and acts as the medium to pass parameters in 
procedure calls. We introduce a template for writing stand-alone assembly language programs, 
which are written completely in the assembly language. 
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We rarely write programs that do not input and/or output data. High-level languages provide 
facilities to input and output data. For example, C provides the scanf and p r i n t f functions to 
input and output data, respectively. Typically, high-level languages can read numeric data (inte­
gers, floating-point numbers), characters, and strings. 

Assembly language, however, does not provide a convenient mechanism to input and output 
data. The operating system provides some basic services to read and write data, but these are fairly 
limited. For example, there is no function to read an integer from the user. 

In order to facilitate I/O in assembly language programs, we have developed a set of I/O 
routines to read and display characters, strings, and signed integers. Each I/O routine call looks 
like an assembly language instruction. This similarity is achieved by using macros. Each macro 
call typically expands to several assembly language statements and includes a call to an appropriate 
procedure. These macros are all defined in the i o . mac file and the assembled procedures are in 
the i o . obj file. We use an example program to illustrate the use of these I/O routines as well as 
the assembly language template. 

Installing NASM 

NASM, which stands for netwide assembler, is a portable, public-domain, IA-32 assembler that 
can generate a variety of object file formats. In this chapter, we restrict our discussion to a Linux 
system running on an Intel PC. 

The accompanying CD-ROM has a copy of NASM. If you followed the Linux installation 
directions given in Chapter 5, it is already installed. However, if you did not install NASM as part 
of the Linux installation, or if you want the latest version, this section explains how you can install 
it. 

The latest version of NASM can be downloaded from several sources (see the book's Web 
page for details). The NASM manual has clear instructions on how to install NASM under Linux. 
(To get the NASM manual, see the "Web Resources" section at the end of this chapter.) Here is a 
summary extracted from this manual: 

1. Download the Linux source archive nasm-X.XX. t a r .gz, where X.XX is the NASM 
version number in the archive. 

2. Unpack the archive into a directory, which creates a subdirectory nasm-X. XX. 
3. cd to nasm-X. XX and type . / c o n f i g u r e . This shell script will find the best C compiler 

to use and set up Makefiles accordingly. 
4. Type make to build the nasm and ndisasm binaries. 
5. Type make i n s t a l l to install nasm and ndisasm i n / u s r / l o c a l / b i n and to install 

the man pages. 

This should install NASM on your system. Alternatively, you can use an RPM distribution for the 
Fedora Linux. This version is simpler to install—just double-click the RPM file. 

Generating the Executable File 

The NASM assembler supports several object file formats including ELF (execute and link format) 
used by Linux. The assembling and linking process is simple. For example, to assemble the 
sample .asm program, we use 
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brief title of program file name 

Objectives: 
Inputs: 

Outputs: 

%include "io.mac" 

.DATA 
(initialized data go here) 

.UDATA 
(uninitialized data go here) 

.CODE 
.STARTUP ; setup 

(code goes here) 

.EXIT ; returns control 

Figure 7.1 Template for the assembly language programs used in the book. 

nasm -f e l f sample.asm 

This generates the sample . o object file. To generate the executable file sample, we have to 
link this file with our I/O routines. This is done by 

Id - s -o sample sample .o i o . o 

Note that nasm requires the i o . mac file and Id needs the i o . o file. Make sure that you have 
these two files in your current directory. We give details about the assembly process towards the 
end of the chapter. 

Assembly Language Template 

To simplify writing assembly language programs, we use the template shown in Figure 7.1. We 
include the i o .mac file by using the % i n c l u d e directive. This directive allows us to include 
the contents of i o . mac in the assembly language program. If you had used other assemblers like 
TASM or MASM, it is important to note that NASM is case-sensitive. 

The data part is split into two: the . DATA macro is used for initialized data and the . UDATA 
for uninitialized data. The code part is identified by the . CODE macro. The . STARTUP macro 
handles the code for setup. The .EXIT macro returns control to the operating system. 

Now let us dissect the statements in this template. This template consists of two types of 
statements: executable instructions and assembler directives. Executable instructions generate 
machine code for the processor to execute when the program is run. Assembler directives, on 
the other hand, are meant only for the assembler. They provide information to the assembler on 
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the various aspects of the assembly process. In this book, all assembler directives are shown in 
uppercase letters, while the instructions are shown in lowercase. 

The % i n c l u d e directive causes the assembler to include the source code from another file 
( i o . mac in our case). This file contains macros for the I/O routines we will discuss in the next 
section. 

The data section is used to define the program's variables. It is divided into two parts: initial­
ized and uninitialized. The . DATA macro is used to define initialized variables while the . UDATA 
macro is used to define uninitialized variables of the assembly language program. Chapter 9 dis­
cusses various assembler directives to define and initialize variables used in assembly language 
programs. 

The . CODE macro terminates the data segment and starts the code section. The . STARTUP 
macro sets up the starting point. If you want, you can use the following code in its place. 

global _start 
_start: 

To return control from the assembly program, we use the .EXIT macro, which places the code to 
call the i n t 21H function 4CH to return control. In place of the . EXIT macro, you can write 
your own code to call i n t 2IH, as shown below. 

mov AX,4C0 0H 
int 21H 

Control is returned to the operating system by the interrupt 2IH service 4CH. The service required 
under interrupt 2IH is indicated by moving 4CH into the AH register. This service also returns an 
error code that is given in the AL register. It is a good practice to set AL to 0 to indicate normal 
termination of the program. We discuss interrupts in Chapter 20. 

Input/Output Routines 

This section describes the I/O routines we developed to input and output characters, strings, and 
signed integers. A summary of these routines is given in Table 7.1. 

Character I/O 
Two macros are defined to input and output characters: PutCh and GetCh. The format of PutCh 
is 

PutCh source 

where source can be any general-purpose, 8-bit register, or a byte in memory, or a character 
value. Some examples follow. 

displays character A 
displays the character in AL 
displays the character located in 
memory (labeled response) 

PutCh 
PutCh 
PutCh 

'A' 
AL 
response 

The format of Ge tCh is 

GetCh destination 
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name 

Pu tCh 

GetCh 

n w l n 

P u t S t r 
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Table 7.1 Summary of I/O routines defined 

operand(s) 

s o u r c e 

d e s t 

none 

s o u r c e 

operand 
location 

value 
register 
memory 

register 
memory 

— 

memory 

size 

8 bits 

8 bits 

— 

variable 
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in the io .mac file 

what it does 

Displays the character located at 
s o u r c e 

Reads a character into d e s t 

Displays a newline 

Displays the NULL-terminated 
string at s o u r c e 

G e t S t r d e s t [ ,buf_s ize] memory variable Reads a carriage-retum-termin-
ated string into d e s t and 
stores it as a NULL-terminated 
string. Maximum string length 
is buf size—1. 

P u t i n t 

G e t i n t 

P u t L I n t 

G e t L I n t 

s o u r c e 

d e s t 

s o u r c e 

d e s t 

register 
memory 

register 
memory 

register 
memory 

register 
memory 

16 bits 

16 bits 

32 bits 

32 bits 

Displays the signed 16-bit num­
ber located at s o u r c e 

Reads a signed 16-bit number 
into d e s t 

Displays the signed 32-bit num­
ber located at s o u r c e 

Reads a signed 32-bit number 
into d e s t 

where des t i n a t ion can be either an 8-bit, general-purpose register or a byte in memory. Some 
examples are given here. 

GetCh 
GetCh 

DH 
response 

In addition, a nwln macro is defined to display a newline. It takes no operands. 

String I/O 
The P u t S t r and G e t S t r macros are defined to display and read strings, respectively. The strings 
are assumed to be in the NULL-terminated format. That is, the last character of the string is the 
NULL character, which signals the end of the string. Strings are discussed in Chapter 17. 

The format of P u t S t r is 

PutStr source 

where source is the name of the buffer containing the string to be displayed. For example, 

PutStr message 
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displays the string stored in the buffer message. Strings are limited to 80 characters. If the buffer 
does not contain a NULL-terminated string, a maximum of 80 characters are displayed. 

The format of G e t s t r is 

GetStr destination [, buffer_size] 

where d e s t i n a t i o n is the buffer name into which the string from the keyboard is read. The 
input string can be terminated by a carriage-return. You can also specify an optional value for 
buf f e r _ s i z e . If it is not specified, a buffer size of 81 is assumed. Thus, in the default case, 
a maximum of 80 characters are read into the string. If a value is specified, buf f e r _ s i z e - l 
characters are read. The string is stored as a NULL-terminated string. While entering a string, you 
can backspace to correct the input. Here are some examples. 

GetStr in_string ; reads at most 80 characters 
GetStr TR_title,41 ; reads at most 40 characters 

Numeric I/O 

There are four macros for performing integer I/O: two are used for 16-bit integers and the other 
two for 32-bit integers. First we look at the 16-bit integer I/O routines—Putint and Get In t . 
The formats are 

PutInt source 
Getint destination 

where source and d e s t i n a t i o n can be a 16-bit, general-purpose register or the label of a 
memory word. 

The P u t i n t macro displays the signed number at source . It suppresses all leading Os. The 
G e t i n t macro reads a 16-bit signed number into destination. You can backspace while entering 
a number. The valid range of input numbers is —32,768 to +32,767. If an invalid input (such as 
typing a nondigit character) or out-of-range number is given, an error message is displayed and 
the user is asked to type a valid number. Some examples are given below. 

PutInt AX 
Putint sum 
Getint CX 
Getint count 

Long integer I/O is similar except that the source and destination must be a 32-bit register 
or a label of a memory doubleword (i.e., 32 bits). For example, if t o t a l is a 32-bit number in 
memory, we can display it by 

PutLInt t o t a l 

and read a long integer from the keyboard into t o t a l by 

GetLInt t o t a l 

Some examples that use registers are: 

PutLInt EAX 
GetLInt EDX 
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An Example Program 

Program 7.1 gives a simple example to demonstrate how some of these I/O routines can be used 
to facilitate input and output. The program requests the user for a name and a repeat count. After 
confirming the repeat count, it displays a welcome message repeat count times. 

The program uses the db (define byte) assembly language directive to declare several strings 
(lines 11-15). All these strings are terminated by a 0, which is the ASCII value for the NULL 
character. Similarly, in the uninitialized data area, we use the r e s b directive to allocate 16 bytes 
for a buffer to store the user name and another byte to store the user response to the repeat count 
confirmation message (lines 18 and 19). These assembler directives are discussed in Chapter 9. 

We use Puts t r on line 23 to prompt the user for her or his name. The name is read as a string 
using G e t S t r into the user_name buffer (line 24). Since we allocated only 16 bytes for the 
buffer, the name cannot be more than 15 characters. We enforce this by specifying the optional 
buffer size parameter in the G e t S t r macro. The P u t S t r on line 26 requests a repeat count, 
which is read by G e t i n t on line 27. 

Program 7.1 An example assembly program (for now, you can safely ignore the assembly language 
statements on lines 32, 33, and 38) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

An example assembly language program 

Objective 

SAMPLE.ASM 

%include 

Inputs: 
Outputs: 

"io.mac" 

To demonstrate the use of some I/O 
routines and to show the structure 
of assembly language programs. 
As prompted. 
As per input. 

.DATA 
name_msg 
query_msg 
confirm_msgl 
confirm_msg2 
welcome_msg 

.UDATA 
user_name 
response 

db 'Please enter your name: ',0 
db 'How many times to repeat welcome message? ',0 
db 'Repeat welcome message ',0 
db ' times? (y/n) ',0 
db 'Welcome to Assembly Language Programming ',0 

resb 16 
resb 1 

.CODE 
.STARTUP 
PutStr name_msg 
GetStr 

ask_count: 
PutStr 
Getint 
PutStr 
Putint 
PutStr 

user_name,16 

query_msg 
CX 
confirm_msgl 
CX 
confirm_msg2 

buffer for user name 

prompt user for his/her name 
read name (max. 15 characters) 

prompt for repeat count 
read repeat count 
confirm repeat count 
by displaying its value 



31 
32 
33 
34 
35 
36 
37 
38 
39 

GetCh 
cmp 
jne 

display_msg 
PutStr 
PutStr 
nwln 
loop 
.EXIT 

[response] 
byte [response] 
asJc count 

welcome_msg 
user name 

display_msg 

'Y 
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read user response 
if 'y', display welcome message 
otlierwise, request repeat count 

display welcome message 
display tlie user name 

repeat count times 

The confirmation message is displayed by lines 28-30. The response of the user y or n is read 
by GetCli on line 31. If the response is y, the loop (lines 34-38) displays the welcome message 
repeat count times. A sample interaction with the program is shown below. 

Please enter your name: Veda 
How many times to repeat welcome message? 5 
Repeat welcome message 5 times? (y/n) y 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 

Assembling and Linking 

Figure 7.2 shows the steps involved in converting an assembly language program into an exe­
cutable code. It uses the sample . asm file as an example. The source assembly language file 
sample . asm is given as input to the assembler. The assembler translates the assembly language 
program into an object program sample . o. The linker takes one or more object programs (in 
our example the sample .o and i o . o files) and combines them into an executable program 
sample. The following subsections describe each of these steps in detail. 

The Assembly Process 
The general format to assemble a program is 

nasm -f <format> <source-file> [-o <object-file>] [-1 <list-file>] 

where the specification of fields in [ ] is optional. If we specify only the source file, NASM 
produces only the object file. Thus to assemble our example source file sample . asm, we can 
use the command 

nasm -f e l f sample.asm 

After successfully assembling the source program, NASM generates an object file with the same 
file name as the source file but with . o extension. Thus, in our example, it generates the sample . o 
file. You can also specify a file name for the object file using the - o option. 

If you want the assembler to generate the listing file, you can use 

nasm -f e l f sample.asm -1 s a m p l e . 1 s t 

This command produces two files: sample . o and sample . 1 s t . The list file contains detailed 
information as we shall see next. 
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Editor EDIT 
Creates an assembly 
language program 
sample.asm 

sample.asm 

Assembler ASSEMBLE 

sample .o 

Other object files 

Linker LINK 

sample 

Assembles the source program 
sample.asm 
to generate the object program 
sample .o 

" " " v 

sample .1 s t 

Links all object programs including 
sample .o 
to generate the executable program 
sample 

Figure 7.2 Assembling and linking assembly language programs (optional inputs and outputs are 
shown by dashed lines). 

The List File Program 7.2 gives a simple program that reads two signed integers from the user 
and displays their sum if there is no overflow; otherwise, it displays an error message. The input 
numbers should be in the range -2,147,483,648 to +2,147,483,647, which is the range of a 32-bit 
signed number. The program uses P u r S t r and Get L i n t to prompt and read the input numbers 
(see lines 22, 23 and 26, 27). The sum of the input numbers is computed on lines 30-32. 

If the resulting sum is outside the range of a signed 32-bit integer, the overflow flag is set by 
the add instruction. In this case, the program displays the overflow message (line 36). If there is 
no overflow, the sum is displayed (lines 42 and 43). 

The list file for the source program sumprog. asm is shown in Program 7.3. In addition to 
the original source code lines, it contains a lot of useful information about the results of the as­
sembly. This additional information includes the actual machine code generated for the executable 
statements and the offset of each statement. 
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Program 7.2 An assembly language program to add two integers sumprog. asm 

1: 
2: 
3: 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

;Asser nbly language program to find sum SUMPROG.i 

Objective: To add two integers. 
Inputs: Two integers. 
Output: Sum of input numbers. 

%include "io.mac" 

.DATA 
promptl_msg db 'Enter first number: ',0 
prompt2_msg db 'Enter second number: ',0 
sum_msg db 'Sum is: ',0 
error_ _msg db 'Overflow has occurred!',0 

.UDATA 
numberl resd 1 / stores first number 
number2 resd 1 ; stores first number 
sum 

.CODE 

resd 1 ; stores sum 

.STARTUP 
; prompt user for first number 
PutStr promptl_msg 
GetLInt [numberl] 

; prompt user for second number 
PutStr prompt2_msg 
GetLInt [number2] 

; find sum of two 32-bit numbers 
mov EAX,[numberl] 
add EAX,[number2] 
mov [sum],EAX 

; cJieclc for overflow 
jno no_overflow 
PutStr error_msg 
nwln 
j mp done 

; display sum 
no_overflow: 

done: 

PutStr sum_msg 
PutLInt [sum] 
nwln 

.EXIT 
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List File Contents The format of the Hst file fines is 

line# offset machine-code nesting-level source-line 

l i n e # : is the fisting file line number. These numbers are different from the line numbers in the 
source file. This can be due to include files, macros, and so on, as shown in Program 7.3. 

o f f s e t : is an 8-digit hexadecimal offset value of the machine code for the source statement. 
For example, the offset of the first instruction (line 187) is OOOOOOOOH, and that of the add 
instruction on line 219 is 0000003 5H. Source lines such as comments do not generate any offset. 

machine-code: is the hexadecimal representafion of the machine code for the assembly lan­
guage instruction. For example, the machine language encoding of 

mov EAX,[number1] 

is Al [00000000] (line 218) and requires five bytes. The value zero in [ ] is the offset of 
number 1 in the data segment (see line 173). 

Similarly, the machine language encoding of 

j mp done 

isE91D000000 (line 231), requiring five bytes. 

n e s t i n g - l e v e l : is the level of nesting of "include files" and macros. 

s o u r c e - l i n e : is a copy of the original source code line. As you can see from Program 7.3, the 
number of bytes required for the machine code depends on the source instruction. When operands 
are in memory (e.g., number 1), their relative address is used in the instruction encoding. The 
actual value is fixed up by the linker after all the object files are combined (for example, i o . o in 
our example). Also note that the macro definitions are expanded. For example, the P u t S t r on 
line 186 is expanded on lines 187 through 190. 

Program 7.3 The list file for the example assembly program sumprog. asm 

/Assembly language program to find sum. . . 

Objective: To add two integers. 
Inputs: Two integers. 
Output: Sum of input numbers. 

6 %include "io.mac" 
7 <1> extern proc_nwln, proc_PutCh, proc_PutStr 
8 <1> extern proc_GetStr, proc_GetCh 
9 <1> extern proc_PutInt, proc_GetInt 

10 <1> extern proc_PutLInt, proc_GetLInt 
11 <1> 
12 <1> ;/ 
13 <1> %macro .STARTUP 0 
14 <1> /group dgroup .data .bss 
15 <1> global _start 
16 <1> _start: 
17 <1> %endmacro 
18 <1> ;; 
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19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 

00000000 
00000009 
00000012 
00000015 
OOOOOOIE 
00000027 
0000002B 
00000034 
0000003D 
00000046 

00000000 
00000004 
00000008 

00000000 
00000001 
00000006 
OOOOOOOB 

OOOOOOOC 

4 56E74 65 722 0666 972-
73 742 06E756D626572-
3A2000 
456E74657220736563-
6F6E64206E756D6265-
723A2000 
53756D2069733A2000 
4F766572 666C6F7 72 0-
686173206F63637572-
7265642100 

<res 00000004> 
<res 00000004> 
<res 00000004> 

51 
B9 [00000000] 
E8 (00000000) 
59 

50 

<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 
<1> 

<1> 

<1> 

<1> 
<1> 
<1> 

<1> 
<1> 
<1> 

<1> 
<1> 
<1> 
<1> 

<1> 
<1> 

%macro .EXIT 0 
mov EAX,1 
xor EBX,EBX 
int 0x80 

%endmacro 

%macro .DATA 0 
segment .data 

%endmacro 

" 

%macro .UDATA 0 
segment .bss 

%endmacro 

' ' 
.DATA 
segment .data 

promptl_msg db 'Enter 

prompt2_msg db 'Enter 

sum_msg db 'Sum i s 
error_msg db 'Overfl 

.UDATA 
segment .bss 

numberl resd 1 ; 
number2 resd 1 ; 
sum resd 1 ; 

.CODE 
segment .data 
segment .bss 
segment .text 

.STARTUP 

global _start 
_start: 

/ prompt user for 

first number: ',0 

second number: ',0 

;: ' ,0 
.ow lias occurred!',0 

stores first number 
stores first number 
stores sum 

first number 
PutStr promptl_msg 

push ECX 
mov ECX,%1 
call proc_PutStr 
pop ECX 

GetLInt [numberl] 
%ifnidni %1,EAX 
pusli EAX 
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194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 

OOOOOOOD E8(00000000) 
00000012 A3[00000000] 
00000017 58 

00000018 51 
0 0 0 0 0 0 1 9 B9 [ 1 5 0 0 0 0 0 0 ] 
OOOOOOIE E 8 ( 0 0 0 0 0 0 0 0 ) 
0 0 0 0 0 0 2 3 59 

00000024 50 
00000025 E8(00000000) 
0000002A A3 [04000000] 
0000002F 58 

00000030 Al[00000000] 
00000035 0305 [04000000] 
0000003B A3 [08000000] 

00000040 7116 

00000042 51 
00000043 B9 [34000000] 
00000048 E8 (00000000) 
0000004D 59 

0000004E E8(00000000) 
00000053 E91D000000 

00000058 51 
0 0 0 0 0 0 5 9 B9 [2B000000] 
0 0 0 0 0 0 5 E E8 ( 0 0 0 0 0 0 0 0 ) 
00000063 59 

00000064 50 
00000065 Al[08000000] 
0000006A E8 (00000000) 
0000006F 58 

00000070 E8(00000000) 

00000075 B801000000 
0000007A 31DB 
0000007C CD80 

<1> call proc_GetLInt 
<1> mov %1,EAX 
<1> pop EAX 
<1> %else 
<1> call proc_GetLInt 
<1> %endif 

; prompt user for second number 
PutStr prompt2_msg 

<1> pusli ECX 
<1> mov ECX,%1 
<1> call proc_PutStr 
<1> pop ECX 

GetLInt [number2] 
<1> %ifnidni %1,EAX 
<1> pusli EAX 
<1> call proc_GetLInt 
<1> mov %1,EAX 
<1> pop EAX 
<1> %else 
<1> call proc_GetLInt 
<1> %endif 

/ find sum of two 32-bit numbers 
mov EAX,[numberl] 
add 
mov 

EAX,[number2] 
[sum],EAX 

<1> 
<1> 
<1> 
<1> 

<1> 

; cliec]^ fo r overf low 
j n o no_overf low 
P u t S t r e r ror_msg 

pusli ECX 
mov ECX,%1 
call proc_PutStr 
pop ECX 

nwln 
call proc_nwln 

j mp done 

<1> 
<1> 
<1> 
<1> 

<1> 
<1> 
<1> 
<1> 

<1> 

<1> 
<1> 
<1> 

/ display sum 

no overflow: 
PutStr sum msg 

pusli ECX 
mov ECX,%1 
call proc_PutStr 
pop ECX 

PutLInt [sum] 
push EAX 
mov EAX,%1 
call proc_PutLInt 
pop EAX 

nwln 
call proc nwln 

done: 
• EXIT 

mov EAX,1 
xor EBX,EBX 
int 0x80 
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Linking Object Files 

Linker is a program that takes one or more object programs as its input and produces executable 
code. In our example, since I/O routines are defined separately, we need two object files— 
sample . o and i o . o—to generate the executable file sample (see Figure 7.2). To do this, 
we use the command 

Id -s -o sample sample.o io.o 

If you intend to debug your program using gdb, you should use the s t a b s option during the 
assembly in order to export the necessary symbolic information. We discuss this option in the next 
chapter, which deals with debugging. 

Summary 

We presented details about the NASM assembler. We also presented the template used to write 
stand-alone assembly language programs. Since the assembly language does not provide a conve­
nient mechanism to do input and output, we defined a set of I/O routines to help us in performing 
simple character, string, and numeric input and output. We used simple examples to illustrate the 
use of these I/O routines in a typical stand-alone assembly language program. 

To execute an assembly language program, we have to first translate it into an object program 
by using an assembler. Then we have to pass this object program, along with any other object 
programs needed by the program, to a linker to produce the executable code. We used NASM to 
assemble the programs. Note that NASM produces additional files that provide information on the 
assembly process. The list file is the one we often use to see the machine code and other details. 

Web Resources 
Documentation (including the NASM manual) and download information on NASM are available 
f romht tp : / / s o u r c e f orge . n e t / p r o j e c t s / n a s m . 



8 
Debugging Assembly 
Language Programs 

Debugging assembly language programs is more difficult and time-consuming than debugging 
high-level language programs. However, the fundamental strategies that work for high-level lan­
guages also work for assembly language programs. We start this chapter with a discussion of these 
strategies. Since you are familiar with debugging programs written in a high-level language, this 
discussion is rather brief 

The following section discusses the GNU debugger (GDB). This is a command-line debugger 
A nice visual interface to GDB is provided by Dynamic Data Display (DDD), which is described 
toward the end of the chapter We use a simple example to explain some of the commands of GDB 
and DDD. The chapter concludes with a summary. 

As we have not yet covered the assembly language programming, you may want to read this 
chapter in two passes. In the first pass, your goal is to get an overview of the two debuggers and 
some hands-on experience in invoking and using them. In this pass, you can skip the material that 
specifically deals with assembly language program statements. In the second pass, you can look 
at the skipped material. Ideally, you can come back to this chapter after you are familiar with the 
material presented in Chapters 9 through 11. 

Strategies to Debug Assembly Language Programs 
Programming is a complicated task. Loosely speaking, a program can be thought of as mapping a 
set of input values to a set of output values. The mapping performed by a program is given as the 
specification for the programming task. It goes without saying that when the program is written, 
it should be verified to meet the specifications. In programming parlance, this activity is referred 
to as testing and validating the program. 

Testing a program itself is a complicated task. Typically, test cases, selected to validate the 
program, should test each possible path in the program, boundary cases, and so on. During this 
process, errors ("bugs") are discovered. Once a bug is found, it is necessary to find the source code 
causing the error and fix it. This process is known by its colorful name, debugging. 
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Debugging is not an exact science. We have to rely on our intuition and experience. However, 
there are tools that can help us in this process. Several debuggers are available to help us in the 
debugging process. We will look at two such tools in this chapter—GDB and DDD. Note that our 
goal here is to introduce the basics of the debugging process, as the best way to get familiar with 
debugging is to use a debugger. 

Finding bugs in a program is very much dependent on the individual program. Once an error 
is detected, there are some general ways of locating the source code lines causing the error. The 
basic principle that helps you in writing the source program in the first place—the divide and con­
quer technique—is also useful in the debugging process. Structured programming methodology 
facilitates debugging gready. 

A program typically consists of several modules, where each module may have several proce­
dures. When developing a program, it is best to do incremental development. In this methodology, 
a few procedures are added to the program to add some specific functionality. The program must 
be tested before adding other functions to the program. In general, it is a bad idea to write the 
whole program and then testing it, unless the program is small. The best strategy is to write code 
that has as few bugs as possible. This can be achieved by using pseudocode and verifying the logic 
of the pseudocode even before you attempt to translate it into the assembly language program. 
This is a good way of catching many of the logical errors and saves a lot of debugging time. Never 
write an assembly language code with the pseudo-code in your head! Furthermore, don't be in a 
hurry to write assembly language code that appears to work. This is short sighted, as we end up 
spending more time in the debugging phase. 

To isolate a bug, program execution should be observed in slow motion. Most debuggers 
provide a command to execute a program in single-step mode. In this mode, a program executes 
a single statement and pauses. Then we can examine contents of registers, data in memory, stack 
contents, and so on. In the single-step mode, a procedure call is treated as a single statement 
and the entire procedure is executed before pausing the program. This is useful if you know that 
the called procedure works correctly. Debuggers also provide another command to trace even the 
statements of a procedure call, which is useful in testing procedures. 

Often we know that some parts of the program work correcdy. In this case, it is a sheer waste of 
time to single step or trace the code. What we would like is to execute this part of the program and 
then stop for more careful debugging (perhaps by single stepping). Debuggers provide commands 
to set up breakpoints. The program execution stops at breakpoints, giving us a chance to look at 
the state of the program. 

Another helpful feature that most debuggers provide is the watch facility. By using watches, 
it is possible to monitor the state (i.e., values) of the variables in the program as the execution 
progresses. 

In the rest of the chapter, we discuss two debuggers and show how they are useful in debug­
ging assembly language programs. Our debugging sessions use the following program, which is 
discussed in Chapter 11. 

Program 8.1 An example program used to explain debugging 

Parameter passing via registers PROCEXl.ASM 

Objective: To show parameter passing via registers. 
Input: Requests two integers from the user. 
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5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

; Output: Outputs the sum of the input integers. 
%include "io 
.DATA 
prompt_msgl 
prompt_msg2 
sum_msg 

.CODE 

. mac" 

DB "Please input the first number: ",0 
DB "Please input the second number: ",0 
DB "The sum is ",0 

.STARTUP 
PutStr 
Getint 

PutStr 
Getint 

call 
PutStr 
Putint 
nwln 

done: 
.EXIT 

prompt_msgl ; request first number 
CX ; CX = first number 

prompt_msg2 ; request second number 
DX ; DX = second number 

sum ; returns sum in AX 
sum_msg ; display sum 
AX 

/Procedure sum receives two integers in CX and DX. 
;The sum of \ 

sum: 
mov 
add 
ret 

the two integers is returned in AX. 

AX,CX ; sum = first number 
AX,DX ; sum = sum + second number 

Preparing Your Program 

The assembly process described in the last chapter works fine if we just want to assemble and run 
our program. However, we need to prepare our program slightly differently to debug the program. 
More specifically, we would like to pass the source code and symbol table information so that 
we can debug using the source-level statements. This source-level debugging is much better than 
debugging using disassembled code. 

To facilitate such symbolic debugging, we need to export symbolic information to the GNU 
debugger. This debugger expects the symbolic information in the s t a b s format. More details on 
this format are available in the GDB manual available online (see "Web Resources" section at the 
end of the chapter). 

We can assemble and load a program (say, p r o c e x l . asm) for debugging as follows: 

nasm -f elf -g -F stabs procexl.asm 
Id -o procexl procexl.o io.o 

The executable program p r o c e x l would have the necessary symbolic information to help us in 
the debugging process. Note that we need to include the I/O file i o . o because our programs use 
the I/O routines described in the last chapter. 
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GNU Debugger 

This section describes the GNU debugger gdb. It is typically invoked by 

gdb file_name 

For example, to debug the p r o c e x l program, we can use 

gdb procexl 

We can also invoke gdb without giving the filename. We can specify the file to be debugged by 
using the f i l e command inside the gdb. Details on the f i l e command are available in the 
GDB manual. You know that gdb is running the show when you see the (gdb) prompt. At this 
prompt, it can accept one of several commands. Tables 8.1 and 8.2 show some of the commands 
useful in debugging programs. 

Display Group 

Displaying Source Code When debugging, it is handy to keep a printed copy of the source code 
with line numbers. However, gdb has list commands that allow us to look at the source code. A 
simple list command takes no arguments. The command 

l i s t 

displays the default number of lines. The default is 10 lines. If we issue this command again, it 
displays the next 10 lines. We can use l i s t - to print lines before the last printed lines. We can 
abbreviate this command to 1. 

We can specify a line number as an argument. In this case, it displays 10 lines centered on the 
specified line number. For example, the command 

1 20 

displays lines 15 through 24, as shown in Program 8.2 on page 178. The list command can also 
take other arguments. For example, 

1 f i r s t , l a s t 

displays the lines from f i r s t to l a s t . 

The default number of lines displayed can be changed to n with the following command: 

set listsize n 

The command show l i s t s i z e gives the current default value. 

Displaying Register Contents When debugging an assembly language program, we often need 
to look at the contents of the registers. The i n f o can be used for this purpose. The 

info registers 

displays the contents of the integer registers. To display all registers including the floating-point 
registers, use 
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Table 8.1 Some of the GDB display commands 

Display Commands 

Source code display commands 

l i s t Lists default number of source code lines from the last displayed 
lines (default is 10 lines). It can be abbreviated as 1. 

l i s t - Lists default number of source code lines preceding the last dis­
played lines (default is 10 lines) 

l i s t linenum Lists default number of lines centered around the specified line 

number l inenum 

l i s t f i r s t , l a s t Lists the source code lines from f i r s t to l a s t 

Register display commands 

info r e g i s t e r s Displays the contents of registers except floating-point registers 
info a l l - r e g i s t e r s Displays the contents of registers 

info r e g i s t e r . . . Displays contents of the specified registers 

Memory display commands 

X address Displays the contents of memory at address (uses defaults) 
x/nf u adddress Displays the contents of memory at address 
Stack frame display commands 
backtrace Displays backtrace of the entire stack (one line for each stack 

frame). It can be abbreviated as b t . 
backtrace n Displays backtrace of the innermost n stack frames 
backtrace -n Displays backtrace of the outermost n stack frames 
frame n Select frame n (frame zero is the innermost frame i.e., currently 

executing frame). It can be abbreviated as f. 
info frame Displays a description of the selected stack frame (details include 

the frame address, program counter saved in it, addresses of local 
variable and arguments, addresses of the next and previous frames, 
and so on) 

info all-registers 

Often we are interested in a select few registers. To avoid cluttering the display, gdb allows 
specification of the registers in the command. For example, we can use 

info eax ecx edx 

to check the contents of the eax, ecx, and edx registers. 

Displaying Memory Contents We can examine memory contents by using the x command (x 
stands for examine). It has the following syntax: 
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Table 8.2 Some of the GDB commands (continued on the next page) 

Execution Commands 

Breakpoint commands 

break linenum 

break function 

break *address 

info breakpoints 

delete 

tbreak arg 

disable range 

enable range 

enable once range 

Sets a breakpoint at the specified line number in the current source file. 

Sets a breakpoint at entry to the specified function in the current source 
file. 

Sets a breakpoint at the specified address. This command is useful if 
the debugging information or the source files are not available. 

Gives information on the breakpoints set. The information includes 
the breakpoint number, where the breakpoint is set in the source code, 
address, status (enabled or disabled), and so on. 

Deletes all breakpoints. By default, gdb runs this in query mode ask­
ing for confirmation for each breakpoint to be deleted. We can also 
specify a range as arguments ( d e l e t e range). This command can 
be abbreviated as d. 

Sets a breakpoint as in break. The a r g can be a line number, function 
name, or address as in the b reak command. However, the breakpoint 
is deleted after the first hit. 

Disables the specified breakpoints. If no range is given, all breakpoints 
are disabled. 

Enables the specified breakpoints. If no range is given, all breakpoints 
are enabled. 

Enables the specified breakpoints once i.e., when the breakpoint is hit, 
it is disabled. If no range is given, all breakpoints are enabled once. 

Program execution commands 

run Executes the program under gdb. To be useful, you should set up 
appropriate breakpoints before issuing this command. It can be abbre­
viated as r. 

continue Continues execution from where the program has last stopped (e.g., 
due to a breakpoint). It can be abbreviated as c. 

x/nfu address 

where n, f, and u are optional parameters that specify the amount of memory to be displayed 
starting at a d d r e s s and its format. If the optional parameters are not given, the x command can 
be written as 

X address 
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Table 8.2 (continued) 

Single stepping commands 

s t e p Single-steps execution of the program (i.e., one source line at a time). 
In case of a procedure call, it single-steps into the procedure code. It 
can be abbreviated as s. 

s t e p count Single-Steps program execution count times. If it encounters a break­
point before reaching the count, it stops execution. 

nex t Single-steps as the s t e p command does; however, procedure call is 
treated as a single statement (does not jump into the procedure code). 
As in the s t e p command, we can specify a count value. It can be 
abbreviated as n. 

nex t count Single-steps program execution count times. If it encounters a break­
point before reaching the count, it stops execution. 

s t e p i Executes one machine instruction. Like the s t e p command, it single-
steps into the procedure body. For assembly language programs, both 
s t e p and s t e p i tend to behave the same. As in the s t e p command, 
we can specify a count value. It can be abbreviated as s i . 

n e x t i Executes one machine instruction. Like the nex t command, it treats a 
procedure call as a single machine instruction and executes the whole 
procdure. As in the nex t command, we can specify a count value. It 
can be abbreviated as n i . 

Miscellaneous Commands 
s e t l i s t s i z e n Sets the default list size to n lines 
show l i s t s i z e Shows the default list size 
q Quits gdb 

In this case the default values are used for the three optional parameters. Details about these 
parameters are given in Table 8.3. 

Next we look at some examples of the x command. When gdb is invoked with Program 8.1, 
we can examine the contents of the memory at p r o m p t _ m s g l by using the following x com­
mand: 

(gdb) x/lsb &:prompt_msgl 
0x80493e4 <prompt_msgl>: "Please input the first number: 

This command specifies the three optional parameters as n = 1, f = s, and u = b. We get the 
following output when we change the n value to 3: 

(gdb) x/3sb &prompt_msgl 
0x80493e4 <prompt_msgl>: 
0x8 04 94 04 <prompt_msg2>: 
0x8049425 <sum_msg>: 

"Please input the first number: ' 
"Please input the second number: 
"The sum is " 
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Table 8.3 Details about the optional parameters 

n Repeat count (decimal integer) 
Specifies the number of units (in u) of memory to be displayed. 
Default value is 1. 

f Display format 
X displays in hexadecimal 
d displays in decimal 
u displays in unsigned decimal 
o displays in octal 
t displays in binary (t for two) 
a displays address both in hexadecimal and as an offset 

from the nearest preceding symbol 
c displays as a character 
s displays as a null-terminated string 
t displays as a floating-point number 
i displays as a machine instruction 
Initial default is x. The default changes each time x is used. 

u Unit size 
b bytes 
h halfwords (2 bytes) 
w words (4 bytes) 
g giant words (8 bytes) 
Initial default is w. The default changes when a unit is specified 
with an x command. 

As you can see from the program listing, it matches the three strings we declared in p r o c e x l . 
asm program. 

Displaying Stack Frame Contents This group of display commands helps us trace the history 
of procedure invocations. The b a c k t r a c e command gives a list of procedure invocations at that 
point. This list consists of one line for each stack frame of the stack. As an example, consider a 
program that calls a procedure sum that calls another procedure compute, which in turn calls a 
third procedure g e t _ v a l u e s . If we stop the program in the g e t _ v a l u e s procedure and issue 
a b a c k t r a c e command, we see the following output: 

(gdb) b t 
#0 get_values () at testex.asm:50 
#1 0x080480bc in compute () at testex.asm:41 
#2 0x080480a6 in sum () at testex.asm:27 

This output clearly shows the invocation sequence of procedure calls with one line per invocation. 
The innermost stack frame is labelled #0, the next stack frame as #1, and so on. Each line gives 
the source code line that invoked the procedure. For example, the c a l l instruction on line 27 
(in the source file t e s t e x . asm) invoked the compute procedure. The program counter value 
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0x08 04 8 0a6 gives the return address. As we shall discuss in Chapter 11, this is the address of 
the instruction following the 

call compute 

instruction in the sum procedure. Similarly, the c a l l instruction on line 41 in the compute pro­
cedure invoked the g e t _ v a l u e s procedure. The return address for the g e t _ v a l u e s procedure 
is 0 x 0 8 0 4 8 0 b c . 

We can also restrict the number of stack frames displayed in the b a c k t r a c e command by 
giving an optional argument. Details on this optional argument are given in Table 8.1. For example, 
b t 2 gives the innermost two stack frames as shown below: 

(gdb) b t 2 
#0 get_values () at testex.asm:50 
#1 0x080480bc in compute () at testex.asm:41 
(More stack frames follow...) 

To display the outermost two stack frames, we can issue b t -2 . This command produces the 
following output for our example program: 

(gdb) b t -2 
#1 0x080480bc i n compute () a t t e s t e x . a s m : 4 1 
#2 0x080480a6 i n sum () a t t e s t e x . a s m : 2 7 

The frame and i n f o frame commands allow us to examine the contents of a frame. We 
can select a frame by using the frame command. For our test program, frame 1 gives the 
following output: 

(gdb) frame 1 
#1 0x080480bc in compute () at testex.asm:41 
41 call get_values 

Once a frame is selected, we can issue the i n f o frame command to look at the contents of this 
stack frame. Note that if no frame is selected using the frame command, it defaults to frame 0. 
The output produced for our example is shown below: 

(gdb) i n f o f 
Stack level 1, frame at OxbffffaOO: 
eip = 0x80480bc in compute (testex.asm:41)/ saved eip 0x80480a6 
called by frame at OxbffffaOS, caller of frame at 0xbffff9f8 
source language unknown. 
Arglist at OxbffffaOO, args: 
Locals at OxbffffaOO, Previous frame's sp is 0x0 
Saved registers: 
ebp at OxbffffaOO, eip at 0xbffffa04 

(gdb) 

In our example, each stack frame consists of the return address (4 bytes) and the EBP value stored 
by e n t e r 0, 0 instruction on entering a procedure. The details given here indicate that the 
current stack frame is at OxbffffaOO and previous and next frames are at Oxbf f f f a08 and 
0xbf f f f9 f8 , respectively. It also shows where the arguments and locals are located as well as 
the registers saved on the stack. In our example, only the return address (EIP) and stack pointer 
(EBP) are stored on the stack for a total of 8 bytes. 
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Execution Group 

Brealcpoint Commands Breakpoints can be inserted using the b reak commands. As indicated 
in Table 8.2, breakpoints can be specified using the source code line number, function name, or 
the address. For example, the following commands insert breakpoint at line 20 and function sum 
on line 32 in the p r o c e x l . asm program: 

(gdb) b 20 
Breakpoint 1 at 0x80480b0: file procexl.asm, line 20. 
(gdb) b sum 
Breakpoint 2 at 0x80480db: file procexl.asm, line 32. 
(gdb) 

Note that each breakpoint is assigned a sequence number in the order we establish them. 
We can use i n f o b r e a k p o i n t s (or simply i n f o b) to get a summary of the breakpoints 

and their status. For example, after establishing the above two breakpoints, if we issue the i n f o 
command, we get the following output: 

(gdb) i n f o b 
Num Type Disp Enb Address What 
1 b r e a k p o i n t keep y 0x080480b0 p r o c e x l . a s m : 2 0 
2 b r e a k p o i n t keep y 0x080480db p r o c e x l . a s m : 3 2 
(gdb) 

The Disp (Disposition) column indicates the action needed to be taken (keep, disable, or delete) 
when hit. By default, all breakpoints are of 'keep' type as in our example here. The enb column 
indicates whether the breakpoint is enabled or disabled. A 'y' in this column indicated that the 
breakpoint is enabled. 

We can use t b r e a k command to set a breakpoint with 'delete' disposition as shown below: 

(gdb) tbreak 22 
Breakpoint 3 at 0x80480cl: file procexl.asm, line 22. 
(gdb) info b 
Num Type Disp Enb Address What 
1 breakpoint keep y 0x080480b0 procexl.asm:20 
2 breakpoint keep y 0x080480db procexl.asm:32 
3 breakpoint del y 0x080480cl procexl.asm:22 
(gdb) 

We can use the enab le and d i s a b l e commands to enable or disable the breakpoints. The 
following example disables breakpoint 2: 

(gdb) disable 2 
(gdb) info b 
Num Type Disp Enb Address What 
1 breakpoint keep y 0x080480b0 procexl.asm:20 
2 breakpoint keep n 0x080480db procexl.asm:32 
3 breakpoint del y 0x080480cl procexl.asm:22 

(gdb) 

If we want to enable this breakpoint, we do so by the following command: 

(gdb) enab l e 2 
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We use the enab l e once command to set a breakpoint with 'disable' disposition as shown 
below: 

(gdb) enable once 2 
(gdb) info b 
Num Type Disp Enb Address What 
1 breakpoint keep y 0x080480b0 procexl.asm:20 
2 breakpoint dis y 0x080480db procexl.asm:32 
3 breakpoint del y 0x080480cl procexl.asm:22 
(gdb) 

Program Execution Commands Program execution conmiand run is used to start the execu­
tion of a program. To be able to debug the program, breakpoints must be established before issuing 
the run command. 

The c o n t i n u e command resumes program execution from the last stop point (typically due 
to a breakpoint). 

Single-Stepping Commands 

The gdb debugger provides two basic single-stepping commands: s t e p and next . The s t e p 
command executes one source line at a time. In case of a procedure call, it traces procedure exe­
cution in the single-step mode. The nex t command is similar to the s t e p command except that 
it does not single-step through the procedure body. Instead, it executes the entire procedure. Both 
s t e p and nex t conmiands can take a count argument as shown in Table 8.2 on page 173. This 
table also gives details on the machine instruction version of these s t e p and nex t commands 
(see the s t e p i and n e x t i commands). 

l\/liscellaneous Group 

The commands in Table 8.2 are useful to manipulate the list size and exit gdb. 

An Example 

A sample gdb session on p r o c e x l . asm is shown in Program 8.2. The 1 2 0 command on 
line 9 displays the source code centered on the source code line 20. Before issuing the r com­
mand on line 22, we insert a breakpoint at source code line 20 using the b reak command on 
line 20. The run command executes the program until it hits line 20. Then it stops and prints 
breakpoint information. Note that we entered two input numbers (1234 and 5678) before hitting 
the breakpoint. 

To check that these two input numbers are read into ECX and EDX registers, we issue the 
i n f o r e g i s t e r s command specifying these two registers (see line 28). The output of this 
command shows that these registers have indeed received the two input numbers. 

We run the sum procedure in single-step mode (see commands on lines 31, 33, and 35). To 
see if the result in EAX is the sum of the two input values, we display the contents of the three 
registers (lines 38-40) using the info registers command on line 37. After verifying, we let the 
program continue its execution using the continue command on line 41. Finally, on line 46, we 
used the quit command to exit gdb. 
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Program 8.2 A sample gdb session 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
3E 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 

GNU gdb Red Hat Linux (5.2.1-4) 
Copyright 2002 Free Software Foundation, Inc. 
GDB is free software, covered by the GNU General Public License, and 
you are welcome to change it and/or distribute copies of it under 
certain conditions. Type "show copying" to see the conditions. 
There is absolutely no warranty for GDB. 
Type "show warranty" for details. 
This GDB was configured as "i386-redhat-linux"... 
(gdb) 1 20 

Getint CX CX first number 

PutStr 
Getint 

call 
PutStr 
Putint 
nwln 

prompt_msg2 
DX 

sum 
sum_msg 
AX 

request second number 
DX = second number 

returns sum in AX 
display sum 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 done: 
(gdb) break 2 0 
Breakpoint 1 at 0x80480b0: file procexl.asm, line 20. 
(gdb) r 
Starting program: /mnt/hgfs/winXP_D/temp/gdb_test/procexl 
Please input the first number: 1234 
Please input the second number: 5678 
Breakpoint 1, _start () at procexl.asm:20 

call sum 
info registers ecx edx 

0x4d2 1234 
0xl62e 5678 

add 

AX,CX 

AX,DX 

SI 

20 
(gdb) 
ecx 
edx 
(gdb) 
32 
(gdb) 
33 
(gdb) 
34 
(gdb) 
eax 
ecx 
edx 
(gdb) c 
Continuing. 
The sum is 6 912 

Program exited normally. 
(gdb) q 

returns sum in AX 

sum = first number 

sum = sum + second number 

ret 
info registers eax ecx edx 

OxlbOO 6912 
0x4d2 1234 
0xl62e 5678 
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Menu bar 

Source 
window" 

Status 
line" 

^mmmmmx^mmmi^mm^i^^ 
-Hie §dFt yiew program Commands Status §ource Data 

Q: tnai n ; © e^' <^^ GO' t ' «;>t" I I A ' 
Lookup F»K!» ereak Match PriiiT Wspl̂ -" Plot 

Par^ieter passing via registers PftC<EX1.ASM 

Objective: To show parameter passing via registers 
Input: Requests two integers frcitn the user. 

Output: Outputs the sum of the input integers. 
^include 'io.mac'I 
.DATA 
pronipt_msg1 DB "Please input the f i r s t number: ",0 
promptjiftsg2 DB "Please input the second number: ".0 
suirunsg DB "The smn is "^0 

.CODE 
.STARTUP 
PLitStr promptjttsg'l 
Getlnt CX 

PutStr prompt^nsg2 
Oetint DX 

cal l sum 
PutStr swiuiisg 
Putint AX 
nwl n 

request fi rst number 
CX = first number 

request second number 
DX - second number 

returns sum in AX 
display sum 

Procedure sum receives two integers in CX and DX. 
The sum of the two integers is returned in AX. 

[Help I 

GNU DDD 3.3.1 Ci6Ei6-pc-linux-qnu), by Dorothea L(gdb) I 

ifelcame lo DDD 3.3:1 "Blue Gnu" (1686-pc-linux^gnu) 

set 

• DDD r. 

Rui'i - i 

Interrupt I 

Step] Stepi I 

JjlextJ Nexti | 

UntHJ HnishJ 

Gor.l { KiB j 

Up j Do\wnj 

"t 

— Tool bar 

Command 
• tool 

Debugger 
• console 

Figure 8.1 DDD window at the start of procexi program. 

Data Display Debugger 
The Data Display Debugger (DDD) acts as a front-end to a command-line debugger. DDD sup­
ports several command line debuggers including GDB, DBX, JDB, and so on. Our interest here is 
in using DDD as a front-end for the GDB debugger discussed in the last section. 

If you installed your Linux following the directions given in Chapter 5, DDD is already in­
stalled. However, if you did not install it as part of the Linux installation, or if you want the latest 
version, you can install it using the Linux package manager. Also the DDD Web page has details 
on the installation process (see the Web Resources section at the end of the chapter for details). 

Because DDD is a front-end to GDB, we prepare our program exactly as we do for the GDB 
(see "Preparing Your Program" section on page 169). We can invoke DDD on the p r o c e x i 
executable by 

ddd procexi 

Figure 8.1 shows the initial screen that appears after invoking DDD. The screen consists of the 
Source Window that displays the source program, Debugger Console, Status Line, Command Tool 
window. Menu Bar, and Tool Bar. The debugger console acts as the program's input/output console 
to display messages, to receive input, and so on. 
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ODD: /mnVhgfs/winXP_DAem p/gd b Jest/P rocexl .asm 

Rle Eciit View Program C^ommands Status Source Diata 

, on pr'ocexl .asm: 13̂  Lookup -ii^: Ere&K 

13 
14 
15 
16 
17 
19 

21 
22 
23 
24 
25 
2B 
27 
28 
29 
30 
31 
32 
33 
34 

done: 

.STARTUP 
PutStr prornpt_msg1 
Getint CX 

PutStr promptjnsg2 

Cetint UX 

call sum 
PutStr surrunsg 
Putint M 
nwl 11 

request fi rst number 
CX •= first number 

request second number 
DK - second nurnber 

returns sum in AX 

display sum 

.EXIT 

;Procedure sum receives two integers in CX and DX. 
; The sum of the two integers is returned in A;<. 

mov 
add 
ret 

AX.CX 
AX,DX 

sum = fi rst number 

sum = sum + second number 

Si© IOxS048QbQ <_start+48>: 
0x80480b5 <_start+53>: 
Ox80480bG <_start+54>: 
Ox30480bb <_start+59>: 

cal l OxSCWSOdb <sum> 
push *ecx 
mov $0x8049425,^ecx 
cal l 0x8048127 <proc_PutStr> 

I Please input the f i r s t number: 1234 
i j Please input the second number: 5878 

Breakpoint 1. 
Cgdb) 1 

_start 0 at procexl.asm:20 

I^Disassembling location 0x8048db0...done. 

Figure 8.2 DDD window at the breakpoint on line 20. This screenshot also shows the machine 
code window and the source code line numbers. 

We can insert a breakpoint using the Tool Bar. For example, to insert a breakpoint on line 20, 
place the cursor to the left of line 20 and click the breakpoint (red stop sign) on the Tool Bar. This 
inserts a breakpoint on line 20, which is indicated by the red stop sign on line 20 as shown in 
Figure 8.2. This figure also shows source code line numbers and the Machine Code window. Both 
of these can be selected from the Source pull down menu in the Menu Bar. 

Once this breakpoint is inserted, we can run the program by clicking Run in the Command 
Tool. The big arrow next to the stop sign (on line 20) indicates that the program execution stopped 
at that line. While executing the program before reaching the breakpoint on line 20, the program 
takes two input numbers as shown in the Debugger Console (see Figure 8.2). We can get infor­
mation on the breakpoints set in the program by selecting B r e a k p o i n t s . . . in the Source 
pull-down menu. For our example program, it gives details on the single breakpoint we set on line 
20 (see Figure 8.3). The details provided in this window are the same as those discussed in the last 
section. The breakpoint information also includes the number hits as shown in Figure 8.3. 

All the execution commands of gcib, discussed in the last section, are available in the 
Program pull-down menu (see Figure 8.4). Figure 8.5 shows the screen after single stepping 
through the sum procedure. The program is stopped at the r e t instruction on line 34. To verify 
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^tmmmmmvmmwimm 
^ ® .(® GO 
Propz... Lookup Br<««k... uuc)'>... 

nbrsakpoint already M M tiiiw 

Help 

Figure 8.3 Breakpoints window. 

'>^iamsimi^^m 
•Run... 

Run A ĝain 

Run [n Execution Window 

Step 

Step [nstruction 

Next 

Next Instruction 

Until 

Rnish 

£ontinue 

Continue Without Signal 

Kill 

lntetTU(5̂ t 

\§iSfS — 

^ ^ x l 
F2' :1 | 
Fd , 1 

F5 ] ! 
stiin+FS : 

F6 h 
3tiitt+F6 

F7 

F8 ! 

F9 ~ j 

: Shitt+F9 j 

F4 

Esc 

-fliilJ 
Figure 8.4 Details of tine Program pull-down menu. 

the functionality of the procedure, we can display the contents of the registers. This is done by se­
lecting R e g i s t e r s . . . in the S t a t u s pull-down menu. The contents of the registers, shown in 
Figure 8.6, clearly indicate that the sum of the two input numbers (in the ECX and EDX registers) 
is in the EAX register. 

The examination commands of gdb are available under Data pull-down menu. A sample 
memory examination window is shown in Figure 8.7. This window allows us to specify the mem­
ory location, format to be used to display the contents, size of the data, and the number of data 
items to be examined. In the window of Figure 8.7, we specified &:prompt_msgl as the location 
and s t r i n g as the output format. The size is given as b y t e s and the number of strings to be 
examined is set to 1. 

By clicking Display , the contents are displayed in the Data Window that appears above the 
Source Window as shown in Figure 8.8. We can pick the windows we want to see by selecting them 
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imo:fmnUnQtslwinXPJjjt&mpfQdhjiestmt€icexl.asm 

f\\e £dit y l̂ew £rogra;n £ommands Status Source D̂ ata jHelp 

;0; procex1.asm:l3' 
Lookup r.f[^!- BceaK i •: 

13 
H 
15 
ie 
17 
18 
13 

21 
22 
23 
24 
25 
26 
27 
26 
23 
30 
31 
32 

Jf 34 

,STARTUP 
PutStr promptjnsgl 
Cetiint CX 

PutStr prompt J]fisg2 
Cetint DK 

call sum 
PutStr sununsg 
Putint AX 
nwln 

request first number 
CX = first number 

request second number 
OX = second number 

returns sum in AX 
display sum 

;Procedure surn receives two integers in CX and DX. 
; The sum of the two integers is returned in AX. 

Run 1 

; Interrupt \ 

•Slepj 

'Next] 

UntilJ 

Cont| 

*̂J 

i'**.P'J 
Nextj 1 

FlnishJ 

Ki 1 

DoM/nj 

Undo] Redcl 

^ mfij 

w 

mov 
add 
ret 

AX,CX 
AX,OK 

sum = f i rst number 
sum « sum + second number 

0:<80480db <sum>: mov a;cx,*ax 
OxSO-ISOde <suiH-3>: add sedx.^ax 
i0x80480el <sutiH-6>: ret 
0x80480e2 <sunrH-7>: nop 

Breakpoint 1 , 
(gdb) stepi 
(gdb) stepi 
Cgdb) stepi 
(gdb) 1 

_start 0 at procexl.asm:20 

^ Updating di$plays.,.done. 

Figure 8.5 DDD window after single stepping from the breakpoint on line 20. 

'vit̂ KTSt̂ isn? 
P«giitftrf 

eax 
BCX 

edx 
8bx 
B^p 
ebp 
esi 
ed\ 
e ip 
&n39«; 
cc 
S£ 

; . j _ _ _ -

-<•' im«ger re 

Close 1 

L . — -

imiem^m^^^mmmm^' 

0>:1bOO 6912 B j 
D«-ld2 1234 J l ' j 
0X162e 5678 1 •;( 
0x0 0 \\'] 
oxbffffsec oxbffffssc y . 
0x0 0x0 m ] 
0x0 0 p . ] 
0X0 0 h;-
0x80480*1 0X3W8001 p 
0x31S 790 1^. 1 
0x23 35 m-'^l 
0x2b '13 p : } 

— - — . J-;. ' .- 1 

jf\i\.9fi v̂  At) reCfiUdlS ! 

t 

Help 1 1 

._._J 
Figure 8.6 Register window after the single stepping shown in Figure 8.5. 
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ODD: Examine MeniAry 

Figure 8.7 Memory examination window to display three strings. 
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\ ^ •' 
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f'.-' ODD 

Help j 

i 
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i: 

YT ' ! 

- îhii 
Figure 8.8 IVlemory examination window. 

from the View pull-down menu. The View menu gives control to select any of the four windows: 
Debuger Console Window, Machine Code Window, Source Window, and Data Window. 

We can also select to display the contents in the Debugger Console Window using the P r i n t 
command. Figure 8.9 shows how we can display the three strings in our program in the Console 
window. This Examine Memory window is similar to that shown in Figure 8.7 except that we set 
the number of strings to be displayed as 3. The result of executing this x command is shown in 
Figure 8.10, which shows the three strings in our program. 

Both gdb and DDD provide several other features that are useful in debugging programs. Our 
intent here is to introduce some of the basic features of these debuggers. More details on these 
debuggers are available from their web sites. We provide pointers to these Web sites at the end of 
this chapter. 

OOOi: Exatnlne Memory 

Print I 

ilJir^q .^ Uyies , j from! ^^'nroriipt„ms9i; 

Display Hei}> 

Figure 8.9 Memory examination window. 
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Uxyu^yuui <_start+l>: 
0x80-18088 <_start+G>: cal l 0>f8048127 <proc_PutSti-> 

Cgdb) X /3sb Spronipt_msgl 
0x80^9364 <prompt_msg1>: 
0x80=1940-4 <proirotjnsg2>: 
0x8049425 <sum_msg>: 

' Cgdb) I 

"Please input the f i r s t number: " 
"Please input the second riumb8r: " 

'The sum i s " 

U 0x80493e4 <prompt_msg1 >; "Please Inpul Ihe ftrst number:" -f; 
Figure 8.10 CPU window after executing Goto. . . command. 

Summary 

We started this chapter with a brief discussion of the basic debugging techniques. Since assembly 
language is a low-level programming language, debugging tends to be even more tedious than 
debugging a high-level language program. It is, therefore, imperative to follow good programming 
practices in order to simplify debugging of assembly language programs. 

There are several tools available for debugging programs. We discussed two debuggers—gdb 
and DDD—in this chapter. While gdb is a command line-oriented debugger, the DDD provides a 
nice front-end to it. The best way to learn to use these debuggers is by hands-on experience. 

Web Resources 
Details on gdb are available from h t t p : //www. gnu. o r g / s o f tware /gdb . The GDB User 
Manual is available from h t t p : //www. g n u . o r g / s o f t w a r e / g d b / d o c u m e n t a t i o n . 

Details on DDD are available from h t t p : / / w w w . g n u . o r g / s o f t w a r e / d d d . The DDD 
Manual is available from h t t p : //www. gnu. o rg /manua l /ddd / . 
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9 
A First Look at 
Assembly Language 

The objective of this chapter is to introduce the basics of the assembly language. Assembly lan­
guage statements can either instruct the processor to perform a task, or direct the assembler during 
the assembly process. The latter statements are called assembler directives. We start this chap­
ter with a discussion of the format and types of assembly language statements. A third type of 
assembly language statements called macros is covered in the next chapter 

Assemblers provide several directives to reserve storage space for variables. These directives 
are discussed in detail. The instructions of the processor consist of an operation code to indicate 
the type of operation to be performed, and the specification of the data required (also called the 
addressing mode) by the operation. Here we describe a few basic addressing modes. A thorough 
discussion of this topic is in Chapter 13. 

The IA-32 instruction set can be divided into several groups of instructions. This chapter 
provides an overview of some of the instructions while the next chapter gives details on some 
more instructions. Later chapters discuss these instructions in more detail. The chapter concludes 
with a summary. 

Introduction 
Assembly language programs are created out of three different classes of statements. Statements in 
the first class tell the processor what to do. These statements are called executable instructions, or 
instructions for short. Each executable instruction consists of an operation code {opcode for short). 
Executable instructions cause the assembler to generate machine language instructions. As stated 
in Chapter 1, each executable statement typically generates one machine language instruction. 

The second class of statements provides information to the assembler on various aspects of the 
assembly process. These instructions are called assembler directives or pseudo-ops. Assembler 
directives are nonexecutable and do not generate any machine language instructions. 

The last class of statements, called macros, provide a sophisticated text substitution mecha­
nism. Macros are discussed in detail in the next chapter. 
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Assembly language statements are entered one per line in the source file. All three classes of 
the assembly language statements use the same format: 

[label] mnemonic [operands] [/comment] 

The fields in the square brackets are optional in some statements. As a result of this format, it 
is a common practice to align the fields to aid readability of assembly language programs. The 
assembler does not care about spaces between the fields. 

Now let us look at some sample assembly language statements. 

repeat: inc result /increment result by 1 

The label r e p e a t can be used to refer to this particular statement. The mnemonic i nc indicates 
increment operation to be done on the data stored in memory at a location identified by r e s u l t . 
Certain reserved words that have special meaning to the assembler are not allowed as labels. These 
include mnemonics such as inc . 

The fields in a statement must be separated by at least one space or tab character. More spaces 
and tabs can be used at the programmer's discretion, but the assembler ignores them. 

It is a good programming practice to use blank lines and spaces to improve the readability of 
assembly language programs. As a result, you rarely see in this book a statement containing all 
four fields in a single line. In particular, we almost always write labels on a separate line unless 
doing so destroys the program structure. Thus, our first example assembly language statement is 
written on two lines as 

repeat: 
inc result /increment result by 1 

The NASM assembler provides several directives to reserve space for variables. These direc­
tives are discussed in the next section. Assembly language instructions typically require one or 
more operands. These operands can be at different locations. There are several different ways we 
can specify the location of the operands. These are referred to as the addressing modes. We intro­
duce four simple addressing modes in this chapter. These addressing modes are sufficient to write 
simple but meaningful assembly language programs. Chapter 13 gives complete details on the 
addressing modes available in 16- and 32-bit modes. Following our discussion of the addressing 
modes, we give an overview of some of the instructions available in the IA-32 instruction set. 

Starting with this chapter, we give several programming examples in each chapter. We give 
a simple example in the "Our First Example" section. A later "Illustrative Examples" section 
gives more examples. To understand the structure of these programs, you need to understand the 
information presented in Chapter 7. That chapter gives details about the structure of the assembly 
language programs presented in this book, the I/O routines we use, and how you can assemble and 
link them to create an executable file. If you have skipped that chapter, it is a good time to go back 
and review the material presented there. 

Data Allocation 
In high-level languages, allocation of storage space for variables is done indirectly by specifying 
the data types of each variable used in the program. For example, in C, the following declarations 
allocate different amounts of storage space for each variable. 
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char 
i n t 
f l o a t 
double 

r e s p o n s e ; 
v a l u e ; 
t o t a l ; 
temp; 

/* allocates 1 byte */ 
/* allocates 4 bytes */ 
/* allocates 4 bytes */ 
/* allocates 8 bytes */ 

These variable declarations not only specify the amount of storage required, but also indicate how 
the stored bit pattern should be interpreted. As an example, consider the following two statements 
inC: 

unsigned value_l; 
int value_2; 

Both variables use four bytes of storage. However, the bit pattern stored in them would be inter­
preted differently. For instance, the bit pattern (8FF08DB9H) 

1000 1111 1111 0000 1000 1101 1011 1001 

stored in the four bytes allocated for v a l u e _ l is interpreted as representing +2 .4149 x 10 ,̂ while 
the same bit pattern stored in v a l u e _ 2 would be interpreted as - 1 . 8 8 0 0 6 x 10^. 

In the assembly language, allocation of storage space is done by the define assembler directive. 
The define directive can be used to reserve and initialize one or more bytes. However, no interpre­
tation (as in a C variable declaration) is attached to the contents of these bytes. It is entirely up to 
the program to interpret the bit pattern stored in the space reserved for data. 

The general format of the storage allocation statement for initialized data is 

[variable-name] define-directive initial-value [,initial-value],•• • 

The square brackets indicate optional items. The v a r i a b l e - n a m e is used to identify the 
storage space allocated. The assembler associates an offset value for each variable name defined 
in the data segment. Note that no colon (:) follows the variable name (unlike a label identifying an 
executable statement). 

The define directive takes one of the five basic forms: 

DB Define Byte ; allocates 1 byte 
DW Define Word ; allocates 2 bytes 
DD Define Doubleword ; allocates 4 bytes 
DQ Define Quadword ; allocates 8 bytes 
DT Define Ten Bytes ; allocates 10 bytes 

Let us look at some examples now. 

sorted DB ' y ' 

This statement allocates a single byte of storage and initializes it to character y . Our assembly 
language program can refer to this character location by its name s o r t e d . We can also use 
numbers to initialize. For example, 

sorted DB 79H 

or 

sorted DB IIIIOOIB 
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is equivalent to 

sorted DB ' y ' 

Note that the ASCII value for y is 79H. The following data definition statement allocates two 
bytes of contiguous storage and initializes it to 25159. 

value DW 2 515 9 

The decimal value 25159 is automatically converted to its 16-bit binary equivalent (6247H). Since 
the processor uses the little-endian byte ordering (see Chapter 3), this 16-bit number is stored in 
memory as 

address: x x+1 
contents: 47 62 

You can also use negative values, as in the following example: 

balance DW -29255 

Since the 2's complement representation is used to store negative values, -29,255 is converted to 
8DB9H and is stored as 

address: x x+1 
contents: B9 8D 

The statement 

total DD 542803535 

would allocate four contiguous bytes of memory and initialize it to 542803535 (205A864FH), as 
shown below: 

address: x x+1 x+2 x+3 
contents: 4F 86 5A 20 

Short and long floating-point numbers are represented using 32 or 64 bits, respectively (see Ap­
pendix A for details). We can use DD and DQ directives to assign real numbers, as shown in the 
following examples: 

floatl DD 1.234 
real2 DQ 123.456 

Uninitialized Data 

To reserve space for uninitialized data, we use RESB, RESW, and so on. Each reserve directive 
takes a single operand that specifies the number of units of space (bytes, words,...) to be reserved. 
There is a reserve directive for each define directive. 

RESB Reserve a Byte 
RESW Reserve a Word 
RESD Reserve a Doubleword 
RESQ Reserve a Quadword 
REST Reserve Ten Bytes 
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Here are some examples: 

response RESB 1 
buffer RESW 100 
total RESD 1 

The first statement reserves a byte while the second reserves space for an array of 100 words. The 
last statement reserves space for a doubleword. 

Multiple Definitions 

Assembly language programs typically contain several data definition statements. For example, 
look at the following assembly language program fragment: 

sort DB 'Y' ; ASCII of y = 79H 
value DW 25159 ; 25159D = 6247H 
total DD 542803535 ; 542803535D = 205A864FH 

When several data definition statements are used as above, the assembler allocates contiguous 
memory for these variables. The memory layout for these three variables is 

address: x x + 1 x+2 x+3 x+4 x+5 x+6 
contents: 79 47 62 4F 86 5A 20 

Multiple data definitions can be abbreviated. For example, the following sequence of eight DB 
directives 

message DB 
DB 
DB 
DB 
DB 
DB 
DB 
DB 

can be abbreviated as 

message DB 

or even more compactly as 

message DB 

' W 
' E ' 
' L ' 
' C 
' 0 ' 
'M' 
' E ' 
' ! ' 

' W 

'WE 

' W , ' E ' ,'l^' ,' C , '0' , 'M' , ' E ' , ' ! ' 

'WELCOME!' 

Here is another example showing how abbreviated forms simplify data definitions. The defini­

tion 

s sage DB 
DB 
DB 
DB 
DB 

' B ' 
'Y' 
' e' 
ODH 
OAH 
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can be written as 

message DB 'Bye',ODH,OAH 

Similar abbreviated forms can be used with the other define directives. For instance, a marks 
array of size 8 can be defined and initialized to zero by 

marks DW 
DW 
DW 
DW 
DW 
DW 
DW 
DW 

0 
0 
0 
0 
0 
0 
0 
0 

which can be abbreviated as 

marks DW 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

The initialization values of define directives can also be expressions as shown in the following 
example. 

max_marks DW 7*2 5 

This statement is equivalent to 

max_marks DW 175 

The assembler evaluates such expressions at assembly time and assigns the resulting value. 
Use of expressions to specify initial values is not preferred, because it affects the readability of 
programs. However, there are certain situations where using an expression actually helps clarify 
the code. In our example, if max_marks represents the sum of seven assignment marks where 
each assignment is marked out of 25 marks, it is preferable to use the expression 7 *25 rather than 
175. 

Multiple Initializations 
In the previous example, if the class size is 90, it is inconvenient to define the array as described. 
The TIMES directive allows multiple initializations to the same value. Using TIMES, the marks 
array can be defined as 

marks TIMES 8 DW 0 

The TIMES directive is useful in defining arrays and tables. 

Symbol Table 
When we allocate storage space using a data definition directive, we usually associate a symbolic 
name to refer to it. The assembler, during the assembly process, assigns an offset value for each 
symbolic name. For example, consider the following data definition statements: 
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.DATA 
value DW 0 
sum DD 0 
marks TIMES 10 DW 0 
message DB 'The grade is:',0 
charl DB ? 

As noted before, the assembler assigns contiguous memory space for the variables. The as­
sembler also uses the same ordering of variables that is present in the source code. Then, finding 
the offset value of a variable is a simple matter of counting the number of bytes allocated to all the 
variables preceding it. For example, the offset value of marks is 6 because v a l u e and sum are 
allocated 2 and 4 bytes, respectively. The symbol table for the data segment is shown below: 

Name 
value 
sum 
marks 
message 
charl 

Offset 
0 
2 
6 
26 
40 

Where Are the Operands 
Most assembly language instructions require operands. There are several ways to specify the 
location of the operands. These are called the addressing modes. This section is a brief overview of 
some of the addressing modes required to do basic assembly language programming. A complete 
discussion is given in Chapter 13. 

An operand required by an instruction may be in any one of the following locations: 

• in a register internal to the processor; 
• in the instruction itself; 
• in main memory (usually in the data segment); 
• at an I/O port (discussed in Chapter 20). 

Specification of an operand that is in a register is called register addressing mode, while im­
mediate addressing mode refers to specifying an operand that is part of the instruction. Several 
addressing modes are available to specify the location of an operand residing in memory. The mo­
tivation for providing these addressing modes comes from the perceived need to efficiently support 
high-level language constructs (see Chapter 13 for details). 

Register Addressing IVIode 
In this addressing mode, processor's internal registers contain the data to be manipulated by the 
instruction. For example, the instruction 

mov EAX,EBX 

requires two operands and both are in the processor registers. The syntax of the mov instruction is 

mov destination,source 
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The mov instruction copies contents of source to d e s t i n a t i o n . The contents of source 
are not destroyed. Thus, 

mov EAX,EBX 

copies the contents of the EBX register into the EAX register. Note that the original contents of 
EAX are lost. In this example, the mov instruction is operating on 32-bit data. However, it can 
also work on 16- and 8-bit data, as shown below: 

mov BX,CX 
mov AL,CL 

Register-addressing mode is the most efficient way of specifying operands because they are within 
the processor and, therefore, no memory access is required. 

Immediate Addressing Mode 

In this addressing mode, data is specified as part of the instruction itself. As a result, even though 
the data is in memory, it is located in the code segment, not in the data segment. This addressing 
mode is typically used in instructions that require at least two data items to manipulate. In this 
case, this mode can only specify the source operand and immediate data is always a constant, 
either given directly or via the EQU directive (discussed in the next chapter). Thus, instructions 
typically use another addressing mode to specify the destination operand. 

In the following example, 

mov AL,7 5 

the source operand 75 is specified in the immediate addressing mode and the destination operand 
is specified in the register addressing mode. Such instructions are said to use mixed-mode address­
ing. 

The remainder of the addressing modes we discuss here deal with operands that are located in 
the data segment. These are called the memory addressing modes. We discuss two memory ad­
dressing modes here: direct and indirect. The remaining memory addressing modes are discussed 
in Chapter 13. 

Direct Addressing Mode 

Operands specified in a memory-addressing mode require access to the main memory, usually to 
the data segment. As a result, they tend to be slower than either of the two previous addressing 
modes. 

Recall that to locate a data item in the data segment, we need two components: the segment 
start address and an offset value within the segment. The start address of the segment is typically 
found in the DS register. Thus, various memory-addressing modes differ in the way the offset 
value of the data is specified. The offset value is often called the effective address. 

In the direct addressing mode, the offset value is specified direcdy as part of the instruction. 
In an assembly language program, this value is usually indicated by the variable name of the 
data item. The assembler translates this name into its associated offset value during the assembly 
process. To facilitate this translation, assembler maintains a symbol table. As discussed before, 
symbol table stores the offset values of all variables in the assembly language program. 
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This addressing mode is the simplest of all the memory addressing modes. A restriction asso­
ciated with the memory addressing modes is that these can be used to specify only one operand. 
The examples that follow assume the following data definition statements in the program. 

response DB ' Y' ; allocates a byte, initializes to Y 
t a b l e l TIMES 20 DW 0 ; allocates 40 bytes, initializes to 0 
namel DB ' J i m Ray ' ; 7 bytes are initialized to Jim Ray 

Here are some examples of the mov instruction: 

mov AL,[response] 
mov [response],'N' 
mov [namel],'K' 
mov [tablel],56 

copies Y into AL register 
N is written into response 
write K as the first character of name l 
56 is written in the first element 

This last statement is equivalent to t a b 1 e 1 [ 0 ] = 5 6 in the C language. 

Indirect Addressing l\/lode 

The direct addressing mode can be used in a straightforward way but is limited to accessing simple 
variables. For example, it is not useful in accessing the second element of t a b l e l as in the 
following C statement: 

t a b l e l [1] = 99 

The indirect addressing mode remedies this deficiency. In this addressing mode, the offset or 
effective address of the data is in one of the general registers. For this reason, this addressing 
mode is sometimes referred to as the register indirect addressing mode. 

The indirect addressing mode is not required for variables having only a single element (e.g., 
response) . But for variables like t a b l e l containing several elements, the starting address of 
the data structure can be loaded into, say, the EBX register and then EBX acts as a pointer to an 
element in t a b l e l . By manipulating the contents of the EBX register, we can access different 
elements of t ab 1 e 1. 

The following code assigns 100 to the first element and 99 to the second element of t a b l e l . 
Note that EBX is incremented by 2 because each element of t a b l e l requires two bytes. 

mov 
mov 
add 
mov 

EBX, tab le l 
[EBX] ,100 

EBX, 2 
[EBX] ,99 

copy address of tablel to EBX 
tablel[0]=100 
EBX = EBX + 2 
tablel[l] = 99 

Chapter 13 discusses other memory addressing modes that can perform this task more effi­
ciently. 

The effective address can also be loaded into a register by the l e a (load effective address) 
instruction. The syntax of this instruction is 

lea register,source 

Thus, 

lea EBX, [tablel] 
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can be used in place of the 

mov EBX,tablel 

instruction. The difference is that l e a computes the offset values at run time, whereas the mov 
version resolves the offset value at assembly time. For this reason, we will try to use the latter 
whenever possible. However, l e a offers more flexibility as to the types of source operands. 
For example, we can write 

l e a EBX,[array+ESI] 

to load EBX with the address of an element of a r r a y whose index is in the ESI register. However, 
we cannot write 

mov EBX, [array+ESI] ; illegal 

as the contents of ESI are known at assembly time. 

Overview of Assembly Language Instructions 
This section briefly reviews some of the remaining assembly language instructions. The discussion 
presented here would provide sufficient exposure to the assembly language so that you can write 
meaningful assembly language programs. 

The MOV Instruction 

We have already introduced the mov instruction, which requires two operands and has the syntax 

mov destination,source 

The data is copied from source to d e s t i n a t i o n and the source operand remains un­
changed. Both operands should be of the same size. The mov instruction can take one of the 
following five forms: 

mov register,register 
mov register,immediate 
mov memory,immediate 
mov register,memory 
mov memory,register 

There is no move instruction to transfer data from memory to memory. However, as we will 
see in Chapter 17, memory-to-memory data transfer is possible using the string instructions. 

Here are some example mov statements: 

mov AL,[response] 
mov DX, [tablel] 
mov [response],'N' 
mov [namel+4],'K' 
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Ambiguous IVIoves Moving immediate value into memory sometimes causes ambiguity as to the 
type of operand. For example, in the statements 

mov EBX,[tablel] 
mov ESI,[namel] 
mov [EBX],100 
mov [ESI],100 

it is not clear, for example, whether a word (2 bytes) or a byte equivalent of 100 is to be written 
in the memory. We can clarify this ambiguity by using a type specifier. For example, we can use 
WORD type specifier to identify a word operation and BYTE for a byte operation. Using the type 
specifiers, we can write 

mov WORD [EBX],100 
mov BYTE [ESI],100 

We can also write these statements as 

mov [EBX],WORD 100 
mov [ESI],BYTE 100 

Some of the type specifiers available are given below: 

Type specifier 

BYTE 
WORD 
DWORD 
QWORD 
TBYTE 

Bytes addressed 

1 
2 
4 
8 
10 

Simple Arithmetic Instructions 

The instructin set provides several instructions to perform simple arithmetic operations. In this 
section, we describe a few instructions to perform addition and subtraction. We defer a full dis­
cussion until Chapter 14. 

The INC and DEC Instructions These instructions can be used to either increment or decre­
ment the operands by one. The i n c (INCrement) instruction adds one to its operand and the 
d e c (DECrement) instruction subtracts one from its operand. Both instructions require a single 
operand. The operand can be either in a register or in memory. It does not make sense to use an 
immediate operand such as i n c 5 5 o r d e c 109 . 

The general format of these instructions is 

inc destination 
dec destination 

where d e s t i n a t i o n may be an 8-, 16- or 32-bit operand. 

inc EBX ; increment 32-bit register 
dec DL ; decrement 8-bit register 
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Let us assume that EBX and DL have 1057H and 5 AH, respectively. After executing the above 
two instructions, EBX and DL would have 1058H and 59H, respectively. If the initial values of 
EBX and DL are FFFFH and OOH, after executing the two statements the contents of EBX and DL 
are changed to OOOOH and FFH, respectively. 

Now consider the following program: 

.DATA 
c o u n t DW 
v a l u e DB 

0 
25 

.CODE 

m c 
d e c 
move 
i n c 
mov 
d e c 

[ c o u n t ] 
[ v a l u e ] 

E B X , c o u n t 
[EBX] 

E S I , v a l u e 
[ESI] 

In the above example, 

m c 
dec 

[count] 
[value] 

/unambiguous 
/unambiguous 

/ambiguous 

/ambiguous 

are unambiguous because the assembler knows from the definition of count and v a l u e that they 
are WORD and BYTE operands. However, 

m c 
d e c 

[EBX] 
[ESI] 

are ambiguous because EBX and ESI merely point to an object in memory but the actual object 
type (whether a WORD, BYTE, etc.) is not clear. We have to use a type specifier to clarify, as 
shown below: 

m c 
d e c 

WORD [EBX] 
BYTE [ESI] 

The ADD Instruction The add instruction can be used to add two 8-, 16- or 32-bit operands. 
The syntax is 

add destination,source 

As with the mov instruction, add can also take the five basic forms depending on how the two 
operands are specified. The semantics of the add instruction are 

d e s t i n a t i o n = d e s t i n a t i o n + sou rce 

Some examples of add instruction are givn in Table 9.1. In general, 

i n c EAX 

is preferred to 

a d d EAX,1 

as the i n c version improves readability and requires less memory space to store the instruction. 
However, both instructions execute at the same speed. 
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Table 9.1 Some examples of the add instruction 

Instruction 

a d d AX,DX 

a d d BL,CH 

a d d v a l u e , l O H 

a d d D X , c o u n t 

Before add 

source 

DX = AB62H 

BL = 76H 

c o u n t = 3 74 6H 

destination 

AX = 1052H 

CH = 27H 

v a l u e = FOH 

DX = C8B9H 

After add 

destination 

AX = BBB4H 

BL = 9DH 

v a l u e = OOH 

DX = FFFFH 

Table 9.2 Some examples of the sub instruction 

instruction 

s u b AX,DX 

s u b BL,CH 

s u b v a l u e , l O H 

s u b D X , c o u n t 

Before sub 

source 

DX = AB62H 

CH = 27H 

c o u n t = 3746H 

destination 

AX = 1052H 

BL = 76H 

v a l u e = FOH 

DX = C8B9H 

After sub 

destination 

AX = 64F0H 

BL = 4FH 

v a l u e = EOH 

DX = 9173H 

The SUB and CMP Instructions The sub (SUBtract) instruction can be used to subtract two 8-
16- or 32-bit numbers. The syntax is 

sub destination,source 

The source operand is subtracted from the d e s t i n a t i o n operand and the result is placed in 
the d e s t i n a t i o n . 

des t ina t ion = des t ina t ion — source 

Table 9.2 gives examples of the sub instruction. 
The cmp (CoMPare) instruction is used to compare two operands (equal, not equal, and so on). 

The cmp instruction performs the same operation as the sub except that the result of subtraction 
is not saved. Thus, cmp does not disturb the source and destination operands. The cmp instruction 
is typically used in conjunction with a conditional jump instruction for decision making. This is 
the topic of the next section. 

Conditional Execution 

The instruction set has several branching and looping instructions to construct programs that re­
quire conditional execution. In this section, we discuss a subset of these instructions. A detailed 
discussion is in Chapter 15. 
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Unconditional Jump The unconditional jump instruction j mp, as its name implies, tells the 
processor that the next instruction to be executed is located at the label that is given as part of the 
instruction. This jump instruction has the form 

jmp l a b e l 

where l a b e l identifies the next instruction to be executed. The following example 

mvj V 

inc_again: 
i nc 
jmp 
mov 

XZji-i .^, J. 

EAX 

inc_again 
EBX,EAX 

results in an infinite loop incrementing EAX repeatedly. The instruction 

mov EBX,EAX 

and all the instructions following it are never executed! 
From this example, the j mp instruction appears to be useless. Later, we show some examples 

that illustrate the use of this instruction. 

Conditional Jump In conditional jump instructions, program execution is transferred to the tar­
get instruction only when the specified condition is satisfied. The general format is 

j<cond> l a b e l 

where <cond> identifies the condition under which the target instruction at l a b e l should be 
executed. Usually, the condition being tested is the result of the last arithmetic or logic operation. 
For example, the following code 

read_char: 
mov DL,0 

(code for reading a character into AL) 

cmp AL,ODH /compare the character to CR 
je CR_received ;if equal, jump to CR_received 
inc CL /Otherwise, increment CL and 
jmp read_char ;go back to read another 

/character from keyboard 
CR_received: 

mov DL,AL 

reads characters from the keyboard until the carriage return (CR) key is pressed. The character 
count is maintained in the CL register. The two instructions 

cmp AL,ODH /ODH is ASCII for carriage return 
je CR_received /je stands for jump on equal 
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perform the required conditional execution. How does the processor remember the result of the 
previous cmp operation when it is executing the j e instruction? One of the purposes of the flags 
register is to provide such short-term memory between instructions. Let us look at the actions 
taken by the processor in executing these two instructions. 

Remember that the cmp instruction subtracts ODH from the contents of the AL register. While 
the result is not saved anywhere, the operation sets the zero flag (ZF = 1) if the two operands are 
the same. If not, ZF = 0. The zero flag retains this value until another instruction that affects ZF is 
executed. Note that not all instructions affect all the flags. In particular, the mov instruction does 
not affect any of the flags. 

Thus, at the time of the j e instruction execution, the processor checks ZF and program execu­
tion jumps to the labeled instruction if and only if ZF = 1. To cause the jump, the processor loads 
the EIP register with the target instruction address. Recall that the EIP register always points to 
the next instruction to be executed. Therefore, when the input character is CR, instead of fetching 
the instruction 

inc CL 

it will fetch the 

mov DL,AL 

instruction. Here are some of the conditions tested by the conditional jump instructions: 

j e 

j g 
j l 
j g e 
j l e 
j n e 

jump if equal 
jump if greater 
jump if less 
jump if greater or equal 
jump if less than or equal 
jump if not equal 

Conditional jumps can also test the values of flags. Some examples are 

j z jump if zero (i.e., if ZF = 1) 
j nz jump if not zero (i.e., if ZF = 0) 
j c jump if carry (i.e., if CF = 1) 
j nc jump if not carry (i.e., if CF = 0) 

Example 9,1 Conditional jump examples. 
Consider the following code. 

go_back: 
inc AL 

cmp AL,BL 
statement_l 
mov BL,77H 

Table 9.3 shows the actions taken depending on s t a t e m e n t _ l . • 
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Table 9.3 Some conditional jump examples 

s t a t e m e n t _ l 

j e 

j g 

j g 
j l 

j l e 
j g e 

j n e 
j g 
j g e 

g o _ b a c k 

g o _ b a c k 

g o _ b a c k 
g o _ b a c k 

g o _ b a c k 
g o _ b a c k 

g o _ b a c k 
g o _ b a c k 
g o _ b a c k 

AL 

56H 

56H 

56H 

56H 

27H 

BL 

56H 

55H 

56H 

56H 

26H 

Action taken 

Program control is transferred to 
i n c AL 

Program control is transferred to 
i n c AL 

No jump; executes 
mov BL,77H 

Program control is transferred to 
i n c AL 

Program control is transferred to 
i n c AL 

These conditional jump instructions assume that the operands compared were treated as signed 
numbers. There is another set of conditional jump instructions for operands that are unsigned 
numbers. But until these instructions are discussed in Chapter 15, these six conditional jump 
instructions are sufficient for writing simple assembly language programs. 

When you use these conditional jump instructions, your assembler sometimes complains that 
the destination of the jump is "out of range". If you find yourself in this situation, you can use the 
trick described on page 326. 

Iteration Instruction 

Iteration can be implemented with jump instructions. For example, the following code can be used 
to execute <loop body> 50 times. 

mov CL,5 0 
repeatl: 

<loop body> 
dec CL 
jnz repeatl ;jumps back to repeatl if CL is not 0 

The instruction set, however, includes a group of loop instructions to support iteration. Here we 
describe the basic loop instruction. The syntax of this instruction is 

loop t a rge t 
where t a r g e t is a label that identifies the target instruction as in the jump instructions. 

This instruction assumes that the ECX register contains the loop count. As part of executing 
the loop instruction, it decrements the ECX register and jumps to the t a r g e t instruction if 
ECX 7̂  0. Using this instruction, we can write the previous example as 
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mov ECX,5 0 
repeatl: 

<loop body> 
loop repeatl 

Logical Instructions 

The instruction set provides several logical instructions including and, or, xor and not . The 
syntax of these instructions is 

and destination,source 
or destination,source 
xor destination,source 
not destination 

The first three are binary operators and perform bitwise and, o r and xor logical operations, 
respectively. The not is a unary operator that performs bitwise complement operation. Truth 
tables for the logical operations and, o r and xor are shown in Table 9.4. Some examples that 
explain the operation of these logical instructions are shown in Table 9.5. In this table, all numbers 
are expressed in binary. 

Logical instructions set some of the flags and therefore can be used in conditional jump in­
structions to implement high-level language decision structures in the assembly language. Until 
we fully discuss the flags in Chapter 14, the following usage should be sufficient to write and 
understand the assembly language programs. 

In the following example, we test the least significant bit of the data in the AL register, and the 
program control is transferred to the appropriate code depending on the value of this bit. 

and AL,01H 
je bit_is_zero 
<code to be executed 
when the bit is one> 
jmp skipl 

bit_is_zero: 
<code to be executed 
when the bit is zero 

skipl: 
<rest of the code> 

To understand how the jump is effective in this example, let us assume that AL = 1010111 OB. The 
instruction 

and AL,01H 

would make the result OOH and is stored in the AL register. At the same time, the logical operation 
sets the zero flag (i.e., ZF = 1) because the result is zero. Recall that j e tests the ZF and jumps to 
the target location if ZF = 1. In this example, it is more appropriate to use j z (jump if zero). Thus, 

jz b i t_ i s_zero 

can replace the 
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Table 9.4 Truth tables for the logical operations 

and operation 

Input bits 

source hi 

0 
0 
1 
1 

destination bi 

0 
1 
0 
1 

Output bit 

destination bi 

0 
0 
0 
1 

o r operation 

Input bits 

source bi 

0 
0 
1 
1 

destination bi 

0 
1 
0 
1 

Output bit 

destination bi 

0 
1 
1 
1 

xor operation 

Input bits 

source bi 

0 
0 
1 
1 

destination bi 

0 
1 
0 
1 

Output bit 

destination bi 

0 
1 
1 
0 

De b i t i s zero 

instruction. In fact, the conditional jump j e is an alias for j z. 
A problem with using the and instruction for testing, as used in the previous example, is that 

it modifies the destination operand. For instance, in the last example, 

and AL,01H 

changes the contents of AL to either 0 or 1 depending on whether the least significant bit is 0 or 1, 
respectively. To avoid this problem, a t e s t instruction is provided. The syntax is 
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Table 9.5 Some logical instruction examples 

AL 

10101110 

01100011 

11000110 

11110000 

BL 

11110000 

10011100 

00000011 

00001111 

and AL,BL 

AL 

10100000 

00000000 

00000010 

00000000 

or AL,BL 

AL 

11111110 

11111111 

11000111 

11111111 

xor AL,BL 

AL 

01011110 

11111111 

11000101 

11111111 

not AL 

AL 

01010001 

10011100 

00111001 

00001111 

test destination,source 

The t e s t instruction performs logical bitwise and operation like the and instruction except that 
the source and destination operands are not modified. However, t e s t sets the flags just like the 
and instruction. Therefore, we can use 

t e s t AL,01H 

instead of 

and AL,01H 

in the last example. 

Our First Program 

This is a simple program that adds up to 10 integers and outputs the sum. The program shown 
below follows the assembly language template given in Chapter 7 (see page 155). The program 
reads up to 10 integers from the user using GetLInt on line 20. Each input integer is read as a 
long integer into the EDX register. The maximum number of input values is enforced by the loop 
instruction on line 28. The loop iteration count is initialized to 10 in ECX on line 16. The user can 
terminate the input earlier by entering a zero. Each input value is compared with zero (line 21) and 
if it is equal to zero, the conditional branch instruction (j e) on line 22 terminates the read loop. 
When the read loop terminates, the sum in EAX is output using Pu tLIn t on line 32. 

Program 9.1 An example program to find the sum of a set of integers 

Adds a set of integers ADDITION.ASM 

Objective: To find the sum of a set of integers. 
Input: Requests integers from the user. 

Output: Outputs the sum of the input numbers. 
include "io.mac" 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

.DATA 
input_prompt 
end_msg 
sum_msg 

db "Please enter at most 10 numbers: ",0 
db "No more numbers? Enter 0 to end: ",0 
db "The sum is: ",0 

.CODE 
.STARTUP 
PutStr input_prompt 
mov ECX,10 
sub EAX,EAX 

read_loop: 
GetLInt EDX 
cmp 
je 
add 
cmp 
je 
PutStr 

skip_msg: 
loop 

EDX, 0 
reading_done 
EAX,EDX 
ECX,1 
skip_msg 
end_msg 

read_loop 

reading_done: 
PutStr sum_msg 
PutLInt EAX 
nwln 
.EXIT 

prompt for input numbers 
loop count = 10 
sum = 0 

read the input number 
is it zero? 
if yes, stop reading input 

if 10 numbers are input 
skip displaying end_msg 

write the sum 

Note that after reading each input value, the program displays "No more numbers? Enter 0 to 
end:" message to inform the user of the other termination condition. However, if 10 numbers have 
been read, this message is skipped. This skipping is implemented by the code on lines 24 and 25. 

Another point to note is that we used the loop count directly to initialize the ECX register on 
line 16. However, from the program maintenance point of view, it is better if we define this as a 
constant using the EQU directive, which is discussed in the next chapter. 

Illustrative Examples 

This section presents several examples that illustrate the use of the assembly language instructions 
discussed in this chapter. In order to follow these examples, you should be able to understand the 
difference between binary values and character representations. For example, when using a byte 
to store a number, number 5 is stored as 

OOOOOIOIB 

On the other hand, character 5 is stored as 

OOIIOIOIB 

Character manipulation is easier if you understand this difference and the key characteristics of 
ASCII, as discussed in Appendix A. 
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Example 9,2 Conversion of lowercase letters to uppercase. 
This program demonstrates how indirect addressing can be used to access elements of an array. It 
also illustrates how character manipulation can be used to convert lowercase letters to uppercase. 
The program receives a character string from the user and converts all lowercase letters to upper­
case and displays the string. Characters other than the lowercase letters are not changed in any 
way. The pseudocode of Program 9.2 is as follows: 

main() 
display prompt message 
read input s t r i n g 
index := 0 
cha r := s t r i n g [ i n d e x ] 
while (char 7̂  NULL) 

if ((char > 'a') AND (char < 'z')) 
then 

char := char + 'A' — 'a' 
end if 
display char 
index := index + 1 
char := s t r i n g [index] 

end while 
end main 

You can see from Program 9.2 that the compound if condition requires two cmp instructions 
(lines 27 and 29). Also the program uses the EBX register in indirect addressing mode and always 
holds the pointer value of the character to be processed. In Chapter 13 we will see a better way of 
accessing the elements of an array. The end of the string is detected by 

cmp AL,0 / check if AL is NULL 
j e done 

and is used to terminate the while loop (lines 25 and 26). 

Program 9.2 Conversion to uppercase by character manipulation 

Uppercase conversion of characters TOUPPER.ASM 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Objective: To convert lowercase letters to 
corresponding uppercase letters. 

Input: Requests a char, string from the user. 
Output: Prints the input string in uppercase. 

%include "io.mac" 

.DATA 
name__prompt db "Please type your name: ",0 
out_msg db "Your name in capitals is: ",0 

.UDATA 
in name resb 31 
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15: 
16: 
17: 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

.CODE 
.STARTUP 
PutStr 
GetStr 

PutStr 
mov 

process_char 
mov 
cmp 
je 
cmp 
jl 
cmp 
jg 

lower case: 
add 

name_prompt 
in_name,31 

out_msg 
EBX,in_name 

AL, [EBX] 
AL,0 
done 
AL,'a' 
not_lower_case 
Ah,'z' 
not_lower_case 

AL,'A'-'a' 
not_lower_case: 

PutCh 
inc 
jmp 

done: 
nwln 
.EXIT 

AL 
EBX 
process_char 

request character string 
read input character string 

EBX = pointer to in_name 

move the char. to AL 
if it is the NULL character 
conversion done 
if (char < 'a') 
not a lowercase letter 
if (char > 'z') 
not a lowercase letter 

convert to uppercase 

write the character 
EBX points to the next char. 
go back to process next char. 

Example 9.3 Sum of the individual digits of a number. 
This last example shows how decimal digits can be converted from their character representations 
to the equivalent binary. The program receives a number (maximum 10 digits) and displays the 
sum of the individual digits of the input number. For example, if the input number is 45213, the 
program displays 15. Since ASCII assigns a special set of contiguous values to the digit characters, 
it is straightforward to get their numerical value (as discussed in Appendix A). All we have to do 
is to mask off the upper half of the byte, as is done in Program 9.3 (line 28) by 

a n d AL,OFH 

Alternatively, we can also subtract the character code for 0 

s u b A L , ' 0 ' 

instead of masking the upper half byte. For the sake of brevity, we leave writing the pseudocode 
of Program 9.3 as an exercise. 

Program 9.3 Sum of individual digits of a number 

Add individual digits of a number ADDIGITS.ASM 

Objective: To find the sum of individual digits of 
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4: 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

a given number. Shows character to binary 
conversion of digits. 

Input: Requests a number from the user. 
/ Output: Prints the sum of the individual digits. 
%include "io.mac" 

.DATA 
number_prompt db "Please type a number (<11 digits): ",0 
out_msg 

.UDATA 
number 

.CODE 

db "The sum 

resb 11 

.STARTUP 
PutStr 
GetStr 

mov 
sub 

repeat_add: 
mov 
cmp 
je 
and 
add 
inc 
jmp 

done: 
PutStr 
Putint 
nwln 
.EXIT 

numb e r_p r omp t 
number,11 

EBX,number 
DX,DX 

AL,[EBX] 
AL,0 
done 
AL,0FH 
DL,AL 
EBX 
repeat_add 

out_msg 
DX 

of individual digits is: ",0 

request an input number 
read input number as a string 

EBX = address of number 
DX = 0 -- DL keeps the sum 

move the digit to AL 
if it is the NULL character 
sum is done 

mask off the upper 4 bits 
add the digit to sum 
update EBX to point to next digit 

write sum 

Summary 

The structure of the stand-alone assembly language program is described in Chapter 7. In this 
chapter, we presented basics of the assembly language programming. We discussed two types of 
assembly language statements: (a) Executable statements that instruct the CPU as to what to do; 
(b) Assembler directives that facilitate the assembly process. 

We have discussed the assembler directives to reserve space for variables. For initialized vari­
ables, we can use a define directive (DB, DW, and so on). To reserve space for uninitialized data, 
we use RESB, RESW, and so on. The TIMES directive can be used for multiple initializations. 

We introduced some simple addressing modes to specify the location of the operands. The 
register addressing mode specifies the operands located in a processor register. The immediate ad­
dressing mode is used to specify constants. The remaining addressing modes specify the operands 
located in the memory. We discussed two memory addressing modes—direct and indirect. The 
remaining addressing modes are discussed in Chapter 13. 
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The instruction set consists of several groups of instructions—arithmetic, logical, shift, and 
so on. We presented a few instructions in each group so that we can write meaningful assembly 
language programs. We will introduce some more instructions in the next chapter. 



10 
More on Assembly 
Language 

This chapter continues the assembly language overview from the last chapter After the introduc­
tion, we discuss the data exchange and translate instructions. Then we describe the assembler 
directives to define constants—numeric as well as string constants. Next we discuss macros sup­
ported by NASM. Macros provide a sophisticated text substitution mechanism and are useful in 
program maintenance. NASM allows definition of macros with parameters. We use several ex­
amples to illustrate the application of the instructions discussed here. The performance advantage 
of the translation instruction is demonstrated in the last section. The chapter concludes with a 
summary. 

Introduction 
As mentioned in the last chapter, three types of statements are used in assembly language pro­
grams: instructions, assembler directives, and macros. We have discussed several instructions and 
directives in the last chapter. For example, we used assembler directives to allocate storage space 
for variables. This chapter continues our discussion from the last chapter and covers a few more 
processor instructions, some assembler directives to define constants, and macros. 

We present some more instructions of the IA-32 instruction set. We describe two instructions 
for data exchange and translation: xchg and x l a t . The xchg instruction exchanges two data 
values. These values can be 8, 16, or 32 bit values. This instruction is particularly useful in sort 
applications. The x l a t instruction translates a byte value. We also discuss the shift and rotate 
family of instructions. We illustrate the use of these instructions by means of several examples. 

Next we discuss the NASM directives to define constants. If you have used the C language, 
you already know the utility of %def i ne in program maintenance. We describe three NASM 
directives: EQU, %assign and %def ine . The EQU can be used to define numeric constants. 
This directive does not allow redefinition. For example, the following assembler directive defines 
a constant CR. The ASCII carriage-return value is assigned to it by the EQU directive. 

CR EQU ODH ;carriage-return character 
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As mentioned, we cannot redefine CR to a different value later in the program. The %assign can 
also be used to define numeric constants. However, it allows redefinition. The %def ine directive 
can be used to define both string and numeric constants. 

The last topic introduces the macros supported by the NASM assembler. Macros are used as a 
shorthand notation for a group of statements. Macros permit the assembly language programmer 
to name a group of statements and refer to the group by the macro name. During the assembly 
process, each macro is replaced by the group of statements that it represents and assembled in 
place. This process is referred to as macro expansion. We use macros to provide the basic input 
and output capabilities to our stand-alone assembly language programs. 

Data Exchange and Translate Instructions 
This section describes the data exchange (xchg) and translation (x l a t ) instructions. Other data 
transfer instructions such as movsx and movzx are discussed in Chapter 14. 

The XCHG Instruction 

The xchg instruction exchanges 8-, 16-, or 32-bit source and destination operands. The syntax is 
similar to that of the mov instruction. Some examples are 

xchg EAX,EDX 
xchg [response],CL 
xchg [total],DX 

As in the mov instruction, both operands cannot be located in memory. Note that this restriction is 
applicable to most instructions. Thus, 

xchg [ r e s p o n s e ] , [namel] ; illegal 

is invalid. The xchg instruction is convenient because we do not need a third register to hold a 
temporary value in order to swap two values. For example, we need three mov instructions 

mov ECX,EAX 
mov EAX,EDX 
mov EDX,ECX 

to perform xchg EAX, EDX. This instruction is especially useful in sorting applications. It is 
also useful to swap the two bytes of 16-bit data to perform conversions between little-endian and 
big-endian forms, as in the following example: 

x c h g AL,AH 

Another instruction, bswap, can be used to perform such conversions on 32-bit data. The 
format is 

bswap register 

This instruction works only on the data located in a 32-bit register. 



Chapter 10 • More on Assembly Language 213 

The XLAT Instruction 

The x l a t (translate) instruction can be used to perform character translation. The format of this 
instruction is shown below: 

x la tb 

To use this instruction, the EBX register must to be loaded with the starting address of the 
translation table and AL must contain an index value into the table. The x l a t instruction adds 
contents of AL to EBX and reads the byte at the resulting address. This byte replaces the index 
value in the AL register. Since the 8-bit AL register provides the index into the translation table, the 
number of entries in the table is limited to 256. An application of x l a t is given in Example 10.6. 

Shift and Rotate Instructions 
This section describes some of the shift and rotate instructions supported by the instruction set. 
The remaining instructions in this family are discussed in Chapter 16. 

Shift Instructions 

The instruction set provides several shift instructions. We discuss the following two instructions 
here: s h l (SHift Left) and sh r (SHift Right). The s h l instruction can be used to left shift a 
destination operand. Each shift to the left by one bit position causes the leftmost bit to move to the 
carry flag (CF). The vacated rightmost bit is filled with a zero. The bit that was in CF is lost as a 
result of this operation. 

SHL CF 

Bit Position: 7 6 5 4 3 2 1 0 

The s h r instruction works similarly but shifts bits to the right as shown below: 

SHR 

Bit Position: 

CF 

The general formats of these instructions are 

shl destination,count 
shl destination,CL 

shr destination,count 
shr destination,CL 

The destination can be an 8-, 16- or 32-bit operand stored either in a register or in memory. 
The second operand specifies the number of bit positions to be shifted. The first format specifies 
the shift count directly. The shift count can range from 0 to 31. The second format can be used 
to indirectly specify the shift count, which is assumed to be in the CL register. The CL register 
contents are not changed by either the s h l or sh r instructions. In general, the first format is 
faster! 

Even though the shift count can be between 0 and 31, it does not make sense to use count 
values of zero or greater than 7 (for an 8-bit operand), or 15 (for a 16-bit operand), or 31 (for a 
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Table 10,1 Some examples of the shift instructions 

Instruction 

s h l AL,1 

s h r AL,1 

mov CL,3 
s h l AL,CL 

mov CL,5 
s h r AX,CL 

Before shift 

ALorAX 

1010 1110 

1010 1110 

0110 1101 

1011 11010101 1001 

After shift 

ALorAX 

0101 1100 

01010111 

0110 1000 

0000 0101 1110 1010 

CF 

1 

0 

1 

1 

32-bit operand). As indicated, shift count cannot be greater than 31. If a greater value is specified, 
only the least significant 5 bits of the number are taken as the shift count. Table 10.1 shows some 
examples of the s h l and sh r instructions. 

The following code shows another way of testing the least significant bit of the data in the AL 
register. 

shr AL,1 
jnc bit_is_zero 
<code to be executed 
when the bit is one> 
jmp skipl 

bit_is_zero: 
<code to be executed 
when the bit is zero 

skipl: 
<rest of the code> 

If the value in the AL register has a 1 in the least significant bit position, this bit will be in 
the carry flag after the sh r instruction has been executed. Then we can use a conditional jump 
instruction that tests the carry flag. Recall that the j c (jump if carry) would cause the jump if 
CF = 1 and j nc G^mp if no carry) causes jump only if CF = 0. 

Rotate Instructions 

A drawback with the shift instructions is that the bits shifted out are lost. There may be situations 
where we want to keep these bits. The rotate family of instructions provides this facility. These 
instructions can be divided into two types: rotate without involving the carry flag, or through the 
carry flag. We will briefly discuss these two types of instructions next. 
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Table 10.2 Some examples of the rotate instructions 

Inst 

r o l 

r o r 

mov 
r o l 

mov 
r o r 

ruction 

A L , 1 

A L , 1 

CL,3 

AL,CL 

CL,5 

AX,CL 

Before execution 

ALorAX 

1010 1110 

10101110 

0110 1101 

1011 11010101 1001 

After execution 

AL or AX 

0101 1101 

01010111 

0110 1011 

1100 1101 1110 1010 

CF 

1 

0 

1 

1 

Rotate Without Carry There are two instructions in this group: 

r o l (Rotate Left) 
r o r (Rotate Right) 

The format of these instructions is similar to the shift instructions and is given below: 

rol destination,count ror 
rol destination,CL ror 

destination,count 
destination,CL 

The r o l instruction performs left rotation with the bits falling off on the left placed on the 
right side, as shown below: 

ROL CF 

Bit Position: 7 6 5 4 3 2 1 

The r o r instruction performs right rotation as shown below: 

Bit Position: 7 6 5 

^ 

4 3 2 1 0 

CF 

For both of these instructions, the CF will catch the last bit rotated out of the destination. The 
examples in Table 10.2 illustrate the rotate operation. 

Rotate Through Carry The instructions 

r c l (Rotate through Carry Left) 
r c r (Rotate through Carry Right) 
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Table 10.3 Some rotate through carry examples 

Inst 

r c l 

r c r 

mov 
r c l 

mov 
r c r 

ruction 

AL, 1 

A L , 1 

C L , 3 

A L , C L 

C L , 5 

AX,CL 

Before execution 

ALorAX 

1010 1110 

1010 1110 

0110 1101 

1011 11010101 1001 

CF 

0 

1 

1 

0 

After execution 

ALorAX 

0101 1100 

11010111 

0110 1101 

10010101 1110 1010 

CF 

1 

0 

1 

1 

include the carry flag in the rotation process. That is, the bit that is rotated out at one end goes into 
the carry flag and the bit that was in the carry flag is moved into the vacated bit, as shown below: 

RCL 

Bit Position: 

c r 

RCR 

Bit Position: 

n , 
1 

CF 

Some examples of the r c l and r c r instructions are given in Table 10.3. 
The r c l and r c r instructions provide flexibility in bit rearranging. Furthermore, these are 

the only two instructions that take the carry flag bit as an input. This feature is useful in multiword 
shifts. As an example, suppose that we want to right shift the 64-bit number stored in EDX:EAX 
(the lower 32 bits are in EAX) by one bit position. This can be done by 

shr EDX,1 
rcr EAX,1 

The sh r instruction moves the least significant bit of EDX into the carry flag. The r c r instruc­
tion copies this carry flag value into the most significant bit of EAX. Chapter 16 introduces two 
doubleshift instructions to facilitate shifting of 64-bit numbers. 
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Defining Constants 

NASM provides several directives to define constants. In this section, we discuss three directives— 
EQU, % a s s i g n and %def i n e . 

The EQU Directive 

The syntax of the EQU directive is 

name EQU expression 

which assigns the result of the e x p r e s s i o n to name. For example, we can use 

NUM_OF_STUDENTS EQU 90 

to assign 90 to NUM_OF_STUDENTS. It is customary to use capital letters for these names in order 
to distinguish them from variable names. Then, we can write 

mov ECX,NUM_0F_STUDENTS 

cmp EAX,NUM_OF_STUDENTS 

to move 90 into the ECX register and to compare EAX with 90. Defining constants this way has 
two advantages: 

1. Such definitions increase program readability. This can be seen by comparing the statement 

mov ECX,NUM_OF_STUDENTS 

with 

mov ECX,90 

The first statement clearly indicates that we are moving the class size into the ECX register. 
2. Multiple occurrences of a constant can be changed from a single place. For example, if the 

class size changes from 90 to 100, we just need to change the value in the EQU statement. 
If we didn't use the EQU directive, we have to scan the source code and make appropriate 
changes—a risky and error-prone process! 

The operand of an EQU statement can be an expression that evaluates at assembly time. We 
can, for example, write 

NUM OF ROWS 
NUM OF COLS 
ARRAY SIZE 

EQU 
EQU 
EQU 

50 
10 
NUM OF ROWS * NUM OF COLS 

to define ARRAY_SIZE to be 500. 
The symbols that have been assigned a value cannot be reassigned another value in a given 

source module. If such redefinitions are required, you should use % a s s i g n directive, which is 
discussed next. 
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The %assign Directive 

This directive can be used to define numeric constants like the EQU directive. However, %as s ign 
allows redefinition. For example, we define 

%assign i j+1 

and later in the code we can redefine it as 

%assign i j+2 

Like the EQU directive, it is evaluated once when % as s i g n is processed. 
The % as s i g n is case sensitive. That is, i and I are treated as different. We can use 

%iass ign for case insensitive definition. 
Both EQU and % a s s ign directives can be used to define numeric constants. The next directive 

removes this restriction. 

The %def ine Directive 

This directive is similar to the #def i ne in C. It can be used to define numeric as well as string 
constants. For example 

%define XI [EBP+4] 

replaces XI by [EBP+4]. Like the last directive, it allows redefinition. For example, we can 
redefine XI as 

%define XI [EBP+20] 

The %def i n e directive is case sensitive. If you want the case insensitive version, you should use 
the %idef i n e directive. 

Macros 
Macros provide a means by which a block of text (code, data, etc.) can be represented by a name 
(called the macro name). When the assembler encounters that name later in the program, the 
block of text associated with the macro name is substituted. This process is referred to as macro 
expansion. In simple terms, macros provide a sophisticated text substitution mechanism. 

In NASM, macros can be defined with %macro and %endmacro directives. The macro text 
begins with the %macro directive and ends with the %endmacro directive. The macro definition 
syntax is 

%macro macro_name para_count 
<macro body> 

%endmacro 

The pa ra_coun t specifies the number parameters used in the macro. The macro_name is the 
name of the macro that, when used later in the program, causes macro expansion. To invoke or 
call a macro, use the macro_name and supply the necessary parameter values. 
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Example 10.1 A parameterless macro, 
Here is our first macro example that does not require any parameters. Since using left-shift to 
multiply by a power of two is more efficient than using multiplication, let us write a macro to do 
this. 

%macro multEAX_by_16 
sal EAX,4 

%endmacro 

The macro code consists of a single s a l instruction, which will be substituted whenever the macro 
is called. Now we can invoke this macro by using the macro name multEAX_by_16, as in the 
following example: 

mov EAX,2 7 
multEAX_by_16 

When the assembler encounters the macro name multEAX_by_16, it is replaced (i.e., text sub­
stituted) by the macro body. Thus, after the macro expansion, the assembler finds the code 

mov EAX,2 7 
s a l EAX,4 

D 

Macros with Parameters Just as with procedures, using parameters with macros aids in writing 
more flexible and useful macros. The previous macro always multiplies EAX by 16. By using 
parameters, we can generalize this macro to operate on a byte, word, or doubleword located either 
in a general-purpose register or memory. The modified macro is 

%macro mult_by_16 1 
sal %1,4 

%endmacro 

This macro takes one parameter, which can be any operand that is valid in the s a l instruction. 
Within the macro body, we refer to the parameters by their number as in % 1. To multiply a byte in 
the DL register 

mult_by_16 DL 

can be used. This causes the following macro expansion: 

s a l DL,4 

Similarly, a memory variable count, whether it is a byte, word, or doubleword, can be multi­
plied by 16 using 

mult_by_16 count 

Such a macro call will be expanded as 
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s a l c o u n t , 4 

Now, at least superficially, mult_by_16 looks like any other assembly language instruction, 
except that it is defined by us. These are referred to as macro-instructions. 

Example 10.2 Memory-to-memory data transfer macro. 
We know that memory-to-memory data transfers are not allowed. We have to use an intermediate 
register to facilitate such a data transfer. We can write a macro to perform memory-to-memory data 
transfers using the basic instructions of the processor. Let us call this macro, which exchanges the 
values of two memory variables, mxchg to exchange doublewords of data in memory. 

%macro mxchg 2 
xchg EAX,%1 
xchg EAX,%2 
xchg EAX,%1 

%endmacro 

For example, when this macro is invoked as 

mxchg valuel,value2 

it exchanges the memory words v a l u e 1 and va lue2 while leaving EAX unaltered. • 

To end this section, we give couple of examples from the i o . mac file. 

Example 10.3 Put I n t macro definition from i o . mac file. 
This macro is used to display a 16-bit integer, which is given as the argument to the macro, by 
calling p r o c _ P u t I n t procedure. The macro definition is shown below: 

%macro Putint 1 
push 
mov 
call 
pop 

%endmacro 

AX 
AX,%1 
proc_PutInt 
AX 

The P u t i n t procedure expects the integer to be in AX. Thus, in the macro body, we moves 
the input integer to AX before calling the procedure. Note that by using the push and pop, we 
preserve the AX register. • 

Example 10.4 G e t S t r macro definition from i o . mac file. 
This macro takes one or two parameters: a pointer to a buffer and an optional buffer length. The 
input string is read into the buffer. If the buffer length is given, it will read a string that is one less 
than the buffer length (one byte is reserved for the NULL character). If the buffer length is not 
specified, a default value of 81 is assumed. This macro calls p r o c _ G e t S t r procedure to read 
the string. This procedure expects the buffer pointer in EDI and buffer length in ESI register. The 
macro definition is given below: 
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%macro GetStr 
push 
push 
mov 
mov 
call 
pop 
pop 

%endmacro 

1-2 81 
ESI 
EDI 
EDI,%1 
ESI,%2 
proc_GetStr 
EDI 
ESI 

This macro is different from the previous one in that the number of parameters can be between 1 
and 2. This condition is indicated by specifying the range of parameters (1-2 in our example). A 
further complication is that, if the second parameter is not specified, we have to use the default 
value (81 in our example). As shown in our example, we include this default value in the macro 
definition. Note that this default value is used only if the buffer length is not specified. • 

Our coverage of macros is a small sample of what is available in NASM. You should refer to 
the latest version of the NASM manual for complete details on macros. 

Our First Program 

This program reads a key from the input and displays its ASCII code in binary. It then queries the 
user as to whether he/she wants to quit. Depending on the response, the program either requests 
another character input from the user, or terminates. 

To display the binary value of the ASCII code of the input key, we test each bit starting with 
the most significant bit (i.e., leftmost bit). The mask is initialized to 80H (=10000000B), which 
tests only the most significant bit of the ASCII value. If this bit is 0, the instruction on line 28 

t e s t AL,mask 

sets the zero flag (assuming that the ASCII value is in the AL register). In this case, a 0 is displayed 
by directing the program flow using the j z instruction (line 29). Otherwise, a 1 is displayed. The 
mask is then divided by 2, which is equivalent to right shifting mask by one bit position. Thus, 
we are ready for testing the second most significant bit. The process is repeated for each bit of the 
ASCII value. The pseudocode of the program is given below: 

main() 
read_char: 

display prompt message 
read input character into cha r 
display output message text 
mask := BOH {AH is used to store mask} 
count := 8 {CX is used to store count} 
repeat 

if ((char AND mask) = 0) 
then 

write 0 
else 

write 1 
end if 
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mask := mask/2 {can be done by shr} 
count := count — 1 

until (count = 0) 
display query message 
read response 
if (response = 'Y') 
then 

goto done 
else 

goto r ead_cha r 
end if 

done: 
return 

end main 

The assembly language program, shown in Program 10.1, follows the pseudocode in a straight­
forward way. Note that the instruction set provides an instruction to perform integer division. 
However, to divide a number by 2, sh r is much faster than the divide instruction. More details 
about the division instructions are given in Chapter 14. 

Program 10.1 Conversion of ASCII to binary representation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Binary equivalent of characters BINCHAR.ASM 

Objective: To print the binary equivalent of 
ASCII character code. 

Input: Requests a character from the user. 
Output: Prints the ASCII code of the 

input character in binary. 
%include "io.mac" 

.DATA 
char_prompt 
out_msgl 
out_msg2 
query_msg 

db "Please input a character: ",0 
db "The ASCII code of '",0 
db "' in binary is ",0 
db "Do you want to quit (Y/N): ",0 

.CODE 
.STARTUP 

read_char: 
PutStr char_prompt 
GetCh AL 

PutStr 
PutCh 
PutStr 
mov 
mov 

print_bit: 

out_msgl 
AL 
out_msg2 
AH,80H 
CX,8 

request a char, input 
read input character 

mask byte = 8 0H 
loop count to print 8 bits 
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28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

test 
jz 
PutCh 
jmp 

print_0: 
PutCh 

skipl: 

done 

shr 

loop 
nwln 
PutStr 
GetCh 
cmp 
jne 

.EXIT 

AL,AH 
print_0 ; 
'1' 
skipl 

'0' 

AH,1 
/ 

print_bit 

query_msg ; 
AL 
AL,'Y' 
read char ; 

test does not modify AL 
if tested bit is 0, print it 
otherwise, print 1 

print 0 

right shift mask bit to test 
next bit of the ASCII code 

query user whether to terminate 
read response 
if response is not 'Y' 
read another character 
otherwise, terminate program 

Illustrative Examples 
This section presents two examples that perform ASCII to hex conversion. One example uses 
character manipulation for the conversion while the other uses the x l a t instruction. 

Example 10.5 ASCII to hexadecimal conversion using character manipulation. 
The objective of this example is to show how numbers can be converted to characters by using 
character manipulation. In order to get the least significant hex digit, we have to mask off the 
upper half of the byte and then perform integer to hex digit conversion. The example shown below 
assumes that the input character is L, whose ASCII value is 4CH. 

mask off convert 

L ^-5^" 01001 lOOB ̂ PP^^^^^ 00001 lOOB ' ^ " C 

Similarly, to get the most significant hex digit we have to isolate the upper half of the byte and 
move these four bits to the lower half, as shown below: 

mask off shift right convert 

L Ai5Ji 01001 lOOB ' ° " ^ " " OlOOOOOOB ' " ^ " " ^ OOOOOIOOB ' ^ ^ 4 

Notice that shifting right by four bit positions is equivalent to performing integer division by 16. 
The pseudocode of the program shown in Program 10.2 is as follows: 

main() 
read_char: 

display prompt message 
read input character into char 
display output message text 
temp := cha r 
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cha r := cha r AND FOH {mask off lower half} 
cha r := char/16 {shift right by 4 positions} 

{The last two steps can be done by shr} 
convert cha r to hex equivalent and display 
cha r := temp {restore cha r } 
cha r := cha r AND OFH {mask off upper half} 
convert cha r to hex equivalent and display 
display query message 
read response 
if (response = 'Y') 
then 

goto done 
else 

goto r ead_cha r 
end if 

done : 
return 

end main 

To convert a number between 0 and 15 to its equivalent in hex, we have to divide the process 
into two parts depending on whether the number is below 10 or not. The conversion using character 
manipulation can be summarized as follows: 

if (number < 9) 
then 

write (number + '0') 
then 

write (number + 'A - 10) 
end if 

If the number is between 0 and 9, we add the ASCII value for character 0 to convert the number 
to its character equivalent. For instance, if the number is 5 (00000lOlB), it should be converted 
to character 5, whose ASCII value is 35H (001 lOlOlB). Therefore, we have to add 30H, which is 
the ASCII value of character 0. This is done in Program 10.2 by 

a d d A L , ' 0 ' 

on line 31. If the number is between 10 and 15, we have to convert it to a hex digit between A and 
F. You can verify that the required translation is achieved by 

number - 10 + ASCII value for character A 

In Program 10.2, this is done by 

a d d A L , ' A ' - 1 0 

on line 34. 
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Program 10.2 ConversJon to hexadecimal by character manipulation 

Hex equivalent of characters HEXICHAR.ASM 

Objective: To print the hex equivalent of 
ASCII character code. 

Input: Requests a character from the user. 
Output: Prints the ASCII code of the 

input character in hex. 
%include "io.mac" 

.DATA 
char_prompt 
out_msgl 
out_msg2 
query_msg 

db "Please input a character: ",0 
db "The ASCII code of '",0 
db "' in hex is ",0 
db "Do you want to quit (Y/N): ",0 

.CODE 
.STARTUP 

read_char: 
PutStr char_prompt 
GetCh AL 

PutStr out_msgl 
PutCh AL 
PutStr out_msg2 
mov AH,AL 
shr 
mov 

print_digit: 
cmp 
jg 
add 
jmp 

A_to_F: 
add 

AL,4 
CX,2 

AL, 9 
A_to_F 
AL,'0' 
skip 

AL,'A'-10 

skip: 
PutCh 
mov 
and 
loop 
nwln 
PutStr query_msg 
GetCh AL 

AL 
AL,AH 
AL,OFH 
print_digit 

done: 

cmp 
jne 

.EXIT 

AL,'Y' 
read char 

request a char, input 
read input character 

save input character in AH 
move upper 4 bits to lower half 
loop count - 2 hex digits to print 

if greater than 9 
convert to A through F digits 
otherwise, convert to 0 through 9 

subtract 10 and add 'A' 
to convert to A through F 

write the first hex digit 
restore input character in AL 
mask off the upper half byte 

query user whether to terminate 
read response 

if response is not 'Y' 
read another character 
otherwise, terminate program 
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Example 10.6 ASCII to hexadecimal conversion using the xlat instruction, 
The objective of this example is to show how the use of x l a t simplifies the solution of the last 
example. In this example, we use the x l a t instruction to convert a number between 0 and 15 to 
its equivalent hex digit. The program is shown in Program 10.3. To use x l a t we have to construct 
a translation table, which is done by the following statement (line 17): 

hex table db '0123456789ABCDEF' 

We can then use the number as an index into the table. For example, 10 points to A, which is the 
equivalent hex digit. In order to use the x l a t instruction, EBX should point to the base of the 
h e x _ t a b l e and AL should have the number. The instructin on line 29 loads the h e x _ t a b l e 
address into EBX. The rest of the program is straightforward to follow. 

Program 10.3 Conversion to hexadecimal by using tine x l a t instruction 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Hex equivalent of characters HEX2CHAR.ASM 

Objective: 

Input: 
Output: 

%include "io.mac" 

To print the hex equivalent of 
ASCII character code. Demonstrates 
the use of xlat instruction. 
Requests a character from the user. 
Prints the ASCII code of the 
input character in hex. 

.DATA 
char_prompt 
out_msgl 
out_msg2 
query_msg 

db "Please input a character: ' 
db "The ASCII code of '",0 
db "' in hex is ",0 
db "Do you want to quit (Y/N): '/O 

translation table: 4-bit binary to hex 
hex table db "0123456789ABCDEF" 

.CODE 
.STARTUP 

read_char: 
PutStr charjprompt 
GetCh AL 

PutStr 
PutCh 
PutStr 
mov 
mov 
shr 
xlatb 
PutCh 
mov 
and 
xlatb 

out_msgl 
AL 
out_msg2 
AH,AL 
EBX,hex_table 
AL,4 

AL 
AL,AH 
AL,OFH 

request a char, input 
read input character 

save input character in AH 
EBX = translation table 
move upper 4 bits to lower half 
replace AL with hex digit 
write the first hex digit 
restore input character to AL 
mask off upper 4 bits 
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36 
37 
38 
39 
40 
41 
42 
43 
44 

done 

PutCh 
nwln 
PutStr 
GetCh 

cmp 
jne 

.EXIT 

AL 

query_msg 
AL 

AL,'Y' 
read char 

; write the second hex digit 

/ query user whether to terminate 
; read response 

; if response is not 'Y' 
; read another character 
; otherwise, terminate program 

When to Use the XLAT Instruction 
The x l a t instruction is convenient to perform character conversions. Proper use of x l a t would 
produce an efficient assembly language program. In this section, we demonstrate by means of two 
examples when x l a t is beneficial from the performance point of view. 

In general, x l a t is not really useful if, for example, there is a straightforward method or a 
"formula" for the required conversion. This is true for conversions that exhibit a regular structure. 
An example of this type of conversion is the case conversion between uppercase and lowercase 
letters in ASCII. As you know, the ASCII encoding makes this conversion rather simple. Experi­
ment 1 takes a look at this type of example. 

The use of the x l a t instruction, however, produces efficient code if the conversion does not 
have a regular structure. Conversion from EBCDIC to ASCII is one example that can benefit from 
using the x l a t instruction. Conversion to hex is another example, as shown in Examples 10.5 and 
10.6. This example is used in Experiment 2 to show the performance benefit that can be obtained 
from using the x l a t instruction for the conversion. 

Experiment 1 

In this experiment, we show how using the x l a t instruction for case conversion of letters deteri­
orates the performance. We have transformed the code of Example 9.2 to a procedure that can be 
called from a C main program. This program keeps track of the execution time. All interaction 
with the display is suppressed for these experiments. This case-conversion procedure is called 
several times to convert a string of lowercase letters. The string length is fixed at 1000 characters. 

We used two versions of the case conversion procedure. The first version does not use the 
x l a t instruction for case conversion. Instead, it uses the statement 

a d d A L , ' A ' - ' a ' 

as shown in Program 9.2. 
The other version uses the x l a t instruction for case conversion. In order to do so, we have to 

set up the following conversion table in the data section: 

upper_table db 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

Furthermore, after initializing EBX to u p p e r _ t a b l e , the following code 

sub A L , ' a ' 
x l a t b 
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Figure 10.1 Performance of the case conversion program. 

replaces the code 

a d d A L , ' A ' - ' a ' 

You can clearly see the disadvantage of the x l a t version of the code. First of all, it requires 
additional space to store the translation table u p p e r _ t a b l e . More important than this is the fact 
that the x l a t version requires additional time. Note that the add and sub instructions take the 
same amount of time to execute. Therefore, the x l a t version requires additional time to execute 
x l a t , which generates a memory read to get the byte from u p p e r _ t a b l e located in the data 
segment. 

The performance superiority of the first version (i.e., the version that does not use the x l a t 
instruction) is clearly shown in Figure 10.1. These results were obtained on a 2.4-GHz Pentium 4 
system. In this plot, the x-axis gives the number of times the case conversion procedure is called 
to convert a lowercase string of 1,000 characters. The data show that using the x l a t instruction 
deteriorates the performance by about 35 percent! For the reasons discussed before, this is clearly 
a bad example to use the x l a t instruction. 

Experiment 2 

In this experiment, we use the hex conversion examples presented in the last section to show the 
benefits of the x l a t instruction. As shown in Example 10.5, without using the x l a t , we have 
to test the input number to see if it falls in the range of 0-9 or 10-15. However, such testing and 
hence the associated overhead can be avoided by using a translation table along with x l a t . 

The two programs of Examples 10.5 and 10.6 have been converted to C callable procedures as 
in the last experiment. Each procedure receives a string and converts the characters in the input 
string to their hex equivalents. However, the hex code is not displayed. The input test string in this 
experiment consists of lowercase and uppercase letters, digits, and special symbols for a total of 
100 characters. 
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Figure 10.2 Performance of the hex conversion program. 

The results, obtained on a 2.4-GHz Pentium 4 system, are shown in Figure 10.2. The data 
presented in this figure clearly demonstrate the benefit of using the x l a t in this example. The 
procedure that does not use the x l a t instruction is about 45% slower! 

The moral of the story is that judicious use of assembly language instructions is necessary in 
order to reap the benefits of the assembly language. 

Summary 

We presented two instructions for data exchange and translation: xchg and x l a t . The first 
instruction, which exchanges two data values, is useful in sort applications. The x l a t instruction 
translates a byte value. We also discussed the shift and rotate family of instructions. 

We presented the NASM directives to define constants—both numeric and string. We de­
scribed three NASM directives: EQU, %assign and %def ine . The EQU directive can be used 
to define numeric constants. This directive does not allow redefinition. The %assign can also be 
used to define numeric constants. However, it allows redefinition. The % d e f i n e directive can be 
used to define both string and numeric constants. 

We introduced the macros supported by the NASM assembler. Macros permit the assembly 
language programmer to name a group of statements and refer to the group by the macro name. 
The NASM assembler supports macros with parameters to allow additional flexibility. We used 
several examples to illustrate how macros are defined in the assembly language programs. 

We also demonstrated the performance advantage of the x l a t instruction under certain condi­
tions. The results show that judicious use of the x l a t instruction provides significant performance 
advantages. 



11 
Writing Procedures 

The last two chapters introduced the basics of the assembly language. Here we discuss how proce­
dures are written in the assembly language. Procedure is an important programming construct that 
facilitates modular programming. In the IA-32 architecture, the stack plays an important role in 
procedure invocation and execution. We start this chapter by giving details on the stack, its uses, 
and how it is implemented. We also describe the assembly language instructions to manipulate the 
stack. 

After this introduction to the stack, we look at the assembly language instructions for procedure 
invocation and return. Unlike high-level languages, there is not much support in the assembly 
language. For example, we cannot include the arguments in the procedure call. Thus parameter 
passing is more involved than in high-level languages. There are two parameter passing methods— 
one uses the registers and the other the stack. We discuss these two parameter passing methods in 
detail. The last section provides a summary of the chapter 

Introduction 
A procedure is a logically self-contained unit of code designed to perform a particular task. These 
are sometimes referred to as subprograms and play an important role in modular program devel­
opment. In high-level languages, there are two types of subprograms: procedures SLud functions. 
A function receives a list of arguments and performs a computation based on the arguments passed 
onto it and returns a single value. In this sense, these functions are very similar to the mathematical 
functions. 

Procedures also receive a list of arguments just as the functions do. However, procedures, after 
performing their computation, may return zero or more results back to the calling procedure. In 
the C language, both these subprogram types are combined into a single function construct. 

In the C function 

int sum (int x, int y) 

{ 
return (x + y); 

} 

the parameters x and y are called formal parameters or simply parameters and the function body 
is defined based on these parameters. When this function is called (or invoked) by a statement like 
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total = sum(numberl, number2); 

the actual parameters or arguments—number 1 and number2—are used in the computation of 
the sum function. 

There are two types of parameter passing mechanisms: call-by-value and call-by-reference. 
In the call-by-value mechanism, the called function (sum in our example) is provided only the 
current values of the arguments for its use. Thus, in this case, the values of these arguments are 
not changed in the called function; these values can only be used as in a mathematical function. 
In our example, the sum function is invoked by using the call-by-value mechanism, as we simply 
pass the values of number 1 and number2 to the called sum function. 

In the call-by-reference mechanism, the called function actually receives the addresses (i.e., 
pointers) of the parameters from the calling function. The function can change the contents of these 
parameters—and these changes will be seen by the calling function—by directly manipulating the 
argument storage space. For instance, the following swap function 

void swap (int *a, int *b) 

{ 
int temp; 
temp = *a; 
*a = *b; 
*b = temp; 

assumes that it receives the addresses of the two parameters from the calling function. Thus, we 
are using the call-by-reference mechanism for parameter passing. Such a function can be invoked 
by 

swap (Scdatal, &data2) ; 

Often both types of parameter passing mechanisms are used in the same function. As an 
example, consider finding the roots of the quadratic equation 

ax'^ -{-bx + c=^ 0 . 

The two roots are defined as 

rootl = 
- 6 4 - V P ^ 

2a 

-b-y/W~-

- 4ac 

- 4ac 
root2 = 

2a 
The roots are real if 6̂  > 4ac, and imaginary otherwise. 

Suppose that we want to write a function that receives a, 6, and c and returns the values of 
the two roots (if real) and indicates whether the roots are real or imaginary (see Figure 11.1). The 
r o o t s function receives parameters a, b, and c using the call-by-value mechanism, and r o o t l 
and r o o t 2 parameters are passed using the call-by-reference mechanism. A typical invocation of 
r o o t s is 

r o o t _ t y p e = r o o t s (a, b , c , SCTootl, &roo t2) ; 
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i n t roots (double a, double b, double c, 
double * roo t l , double *root2) 

{ 
int root_type = 1; 
if (4 * a * c <= b * b){ /* roots are real */ 

*rootl = (-b + sqrt(b*b - 4*a*c))/(2*a); 
*root2 = (-b - sqrt(b*b - 4*a*c))/(2*a); 

} 
else /* roots are imaginary */ 

root_type = 0 ; 
return (root_type); 

Figure 11.1 C function for the quadratic equation 

In summary, procedures receive a list of arguments, which may be passed either by the call-by-
value or by the call-by-reference mechanism. If more than one result is to be returned by a called 
procedure, the call-by-reference mechanism should be used. 

In the assembly language we do not get as much help as we do in high-level languages. The 
instruction set provides only the basic support to invoke a procedure. However, there is no support 
to pass arguments in the procedure call. If we want to pass arguments to the called procedure, we 
have to use some shared space between the callee and caller. Typically, we use either registers or 
the stack for this purpose. This leads to the two basic parameter passing mechanisms: register-
based or stack-based. Later we give more details on these mechanisms along with some examples. 

Our goal in this chapter is to introduce assembly language procedures. We continue our discus­
sion of procedures in the next chapter, which discusses passing a variable number of arguments, 
local variables, and multimodule programs. 

What Is a Stack? 
Conceptually, a stack is a last-in-first-out (LIFO) data structure. The operation of a stack is anal­
ogous to the stack of trays you find in cafeterias. The first tray removed from the stack of trays 
would be the last tray that had been placed on the stack. There are two operations associated with 
a stack: insertion and deletion. If we view the stack as a linear array of elements, stack insertion 
and deletion operations are restricted to one end of the array. Thus, the only element that is di­
rectly accessible is the element at the top-of-stack (TOS). In stack terminology, insert and delete 
operations are referred to as push and pop operations, respectively. 

There is another related data structure, the queue. A queue can be considered as a linear array 
with insertions done at one end of the array and deletions at the other end. Thus, a queue is a 
first-in-first-out (FIFO) data structure. 

As an example of a stack, let us assume that we are inserting numbers 1000 through 1003 into 
a stack in ascending order. The state of the stack can be visualized as shown in Figure 11.2. The 
arrow points to the top-of-stack. When the numbers are deleted from the stack, the numbers will 
come out in the reverse order of insertion. That is, 1003 is removed first, then 1002, and so on. 
After the deletion of the last number, the stack is said to be in the empty state (see Figure 11.3). 
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Figure 11.2 An example showing stack growth: Numbers 1000 through 1003 are inserted in as­
cending order. The arrow points to the top-of-stack. 
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Figure 11.3 Deletion of data items from the stack: The arrow points to the top-of-stack. 

In contrast, a queue maintains the order. Suppose that the numbers 1000 through 1003 are 
inserted into a queue as in the stack example. When removing the numbers from the queue, the 
first number to enter the queue would be the one to come out first. Thus, the numbers deleted from 
the queue would maintain their insertion order. 

Implementation of the Stack 

The memory space reserved in the stack segment is used to implement the stack. The registers SS 
and ESP are used to implement the stack. The top-of-stack, which points to the last item inserted 
into the stack, is indicated by SS:ESP, with the SS register pointing to the beginning of the stack 
segment, and the ESP register giving the offset value of the last item inserted. 

The key stack implementation characteristics are as follows: 

• Only words (i.e., 16-bit data) or doublewords (i.e., 32-bit data) are saved on the stack, never 
a single byte. 

• The stack grows toward lower memory addresses. Since we graphically represent memory 
with addresses increasing from the bottom of a page to the top, we say that the stack grows 
downward, 
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Figure 11.4 Stack implementation in tine IA-32 architecture: SS:ESP points to tine top-of-stack. 

• Top-of-stack (TOS) always points to the last data item placed on the stack. The TOS always 
points to the lower byte of the last word pushed onto the stack. For example, when we push 
21ABH onto the stack, the TOS points to ABH byte as shown in Figure 11.4. 

Figure II Aa shows an empty stack with 256 bytes of memory for stack operations. When the 
stack is initialized, TOS points to a byte just outside the reserved stack area. It is an error to read 
from an empty stack as this causes a stack underflow. 

When a word is pushed onto the stack, ESP is first decremented by two, and then the word is 
stored at SS.ESP. Since the IA-32 processors use the little-endian byte order, the higher-order byte 
is stored in the higher memory address. For instance, when we push 21 ABH, the stack expands by 
two bytes, and ESP is decremented by two to point to the last data item, as shown in Figure 11 Ab. 
The stack shown in Figure 11 Ac results when we expand the stack further by four more bytes by 
pushing the doubleword 7FBD329AH onto the stack. 

The stack full condition is indicated by the zero offset value (i.e., ESP = 0). If we try to 
insert a data item into a full stack, stack overflow occurs. Both stack underflow and overflow are 
programming errors and should be handled with care. 

Retrieving a 32-bit data item from the stack causes the offset value to increase by four to 
point to the next data item on the stack. For example, if we retrieve a doubleword from the stack 
shown in Figure 11.5«, we get 7FBD329AH from the stack and ESP is updated, as shown in 
Figure II.5b. Notice that the four memory locations retain their values. However, since TOS is 
updated, these four locations will be used to store the next data value pushed onto the stack, as 
shown in Figure 11.5c. 
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Figure 11.5 An example showing stack insert and delete operations. 

Stack Operations 
Basic Instructions 

The stack data structure allows two basic operations: insertion of a data item into the stack (called 
the push operation) and deletion of a data item from the stack (called the pop operation). These 
two operations are allowed on word or doubleword data items. The syntax is 

push source 
pop destination 

The operand of these two instructions can be a 16- or 32-bit general-purpose register, segment 
register, or a word or doubleword in memory. In addition, source for the push instruction can be 
an immediate operand of size 8, 16, or 32 bits. Table 11.1 summarizes the two stack operations. 

On an empty stack shown in Figure 11 Aa the statements 

push 
push 

21ABH 
7FBD3 2 9AH 

would result in the stack shown in Figure l\.5a. Executing the statement 

pop EBX 

on this stack would result in the stack shown in Figure 11.5/? with the register EBX receiving 
7FBD329AH. 
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Table 11.1 Stack operations on 16- and 32-bit data 

push sourcel6 

push source32 

pop destie 

pop dest32 

ESP = ESP - 2 
SS:ESP = sourcel6 

ESP = ESP - 4 
SS:ESP = source32 

destl6 = SS:ESP 
ESP = ESP + 2 

dest32 = SS:ESP 
ESP = ESP + 4 

ESP is first decremented by 2 to modify TOS. 
Then the 16-bit data from sourceie is copied 
onto the stack at the new TOS. The stack ex­
pands by 2 bytes. 

ESP is first decremented by 4 to modify TOS. 
Then the 32-bit data from sources 2 is copied 
onto the stack at the new TOS. The stack ex­
pands by 4 bytes. 

The data item located at TOS is copied to 
des t i6 . Then ESP is incremented by 2 to up­
date TOS. The stack shrinks by 2 bytes. 

The data item located at TOS is copied to 
dest32. Then ESP is incremented by 4 to up­
date TOS. The stack shrinks by 4 bytes. 

Additional Instructions 

The instruction set supports two special instructions for stack manipulation. These instructions 
can be used to save or restore the flags and general-purpose registers. 

Stack Operations on Flags The push and pop operations cannot be used to save or restore the 
flags register. For this, two special versions of these instructions are provided: 

pushfd 
popfd 

(push 32-bit flags) 
(pop 32-bit flags) 

These instructions do not need any operands. For operating on the 16-bit flags register (FLAGS), 
we can use pushf w and popf w instructions. If we use pushf the default operand size selects 
either pushf d or pushf w. In our programs, since our default is 32-bit operands, pushf is used 
as an alias for pushf d. However, we use pushf d to make the operand size explicit. Similarly, 
popf can be used as an alias for either popfd or popf w. 

Stack Operations on All General-Purpose Registers The instruction set also has special pusha 
and popa instructions to save and restore the eight general-purpose registers. The pushad saves 
the 32-bit general-purpose registers EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI. These reg­
isters are pushed in the order specified. The last register pushed is the EDI register. The popad 
restores these registers except that it will not copy the ESP value (i.e., the ESP value is not loaded 
into the ESP register as part of the popad instruction). The corresponding instructions for the 
16-bit registers are pushaw and popaw. These instructions are useful in procedure calls, as we 
will show later. Like the pushf and popf instructions, we can use pusha and popa as aliases. 
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Uses of the Stack 
The stack is used for three main purposes: as a scratchpad to temporarily store data, for transfer of 
program control, and for passing parameters during a procedure call. 

Temporary Storage of Data 
The stack can be used as a scratchpad to store data on a temporary basis. For example, consider 
exchanging the contents of two 32-bit variables that are in the memory: v a l u e 1 and va lue2 . 
We cannot use 

xchg valuel,value2 ; illegal 

because both operands of xchg are in the memory. The code 

mov EAX,valuel 
mov EBX,value2 
mov valuel,EBX 
mov value2,EAX 

works, but it uses two 32-bit registers. This code requires four memory operations. However, 
due to the limited number of general-purpose registers, finding spare registers that can be used for 
temporary storage is nearly impossible in almost all programs. 

What if we need to preserve the contents of the EAX and EBX registers? In this case, we need 
to save these registers before using them and restore them later as shown below: 

;save EAX 
push 
push 
;EAX 
mov 
mov 
mov 
mov 

and EBX 
EAX 
EBX 

and EBX 
EAX,va 
EBX,va 
valuel 
value2 

registers 

registers 
luel 
,lue2 
,EBX 
,EAX 

on the stack 

can now 

/restore EAX and EBX registers 
pop 
pop 

EBX 
EAX 

from 

be use 

the St 

id 

:a< 

This code requires eight memory accesses. Because the stack is a LIFO data structure, the se­
quence of pop instructions is a mirror image of the push instruction sequence. 

An elegant way of exchanging the two values is 

push 
push 
pop 
pop 

valuel 
value2 
valuel 
value2 

Notice that the above code does not use any general-purpose registers and requires eight mem­
ory operations as in the other example. Another point to note is that push and pop instructions 
allow movement of data from memory to memory (i.e., between data and stack segments). This 
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is a special case because mov instructions do not allow memory-to-memory data transfer. Stack 
operations are an exception. String instructions, discussed in Chapter 17, also allow memory-to-
memory data transfer. 

Stack is frequently used as a scratchpad to save and restore registers. The necessity often arises 
when we need to free up a set of registers so they can be used by the current code. This is often 
the case with procedures as we will show later. 

It should be clear from these examples that the stack grows and shrinks during the course of a 
program execution. It is important to allocate enough storage space for the stack, as stack overflow 
and underflow could cause unpredictable results, often causing system errors. 

Transfer of Control 
The previous discussion concentrated on how we, as programmers, can use the stack to store data 
temporarily. The stack is also used by some instructions to store data temporarily. In particular, 
when a procedure is called, the return address of the instruction is stored on the stack so that the 
control can be transferred back to the calling program. A detailed discussion of this topic is in the 
next section. 

Parameter Passing 
Another important use of the stack is to act as a medium to pass parameters to the called procedure. 
The stack is extensively used by high-level languages to pass parameters. A discussion on the use 
of the stack for parameter passing is deferred to a later section. 

Procedure Instructions 
The instruction set provides c a l l and r e t (return) instructions to write procedures in the as­
sembly language. The c a l l instruction can be used to invoke a procedure, and has the format 

call proc-name 

where proc-name is the name of the procedure to be called. The assembler replaces proc-name 
by the offset value of the first instruction of the called procedure. 

How Is Program Control Transferred? 
The offset value provided in the c a l 1 instruction is not the absolute value (i.e., offset is not relative 
to the start of the code segment pointed to by the CS register), but a relative displacement in bytes 
from the instruction following the c a l l instruction. Let us look at the example in Figure 11.6. 

After the c a l l instruction of main has been fetched, the EIP register points to the next 
instruction to be executed (i.e., EIP = 00000007H). This is the instruction that should be executed 
after completing the execution of sum procedure. The processor makes a note of this by pushing 
the contents of the EIP register onto the stack. 

Now, to transfer control to the first instruction of the sum procedure, the EIP register would 
have to be loaded with the offset value of the 

push EBP 

instruction in sum. To do this, the processor adds the 32-bit relative displacement found in the 
c a l l instruction to the contents of the EIP register. Proceeding with our example, the machine 
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offset machine code 
(in hex) (in hex) 

main: 

00000002 E816000000 call sum 
00000007 89C3 mov EBX,EAX 

; end of main procedure 

sum: 
OOOOOOID 55 push EBP 

; end of sum procedure 
. • • * • • • • • • • • * • • • • • • • • • • • • * • * • • • • • • • • * • • • • • • • • • * • • • • • • • • • 

avg: 

00000028 E8F0FFFFFF call sum 
0000002D 89D8 mov EAX,EBX 

; end of avg procedure 
. • • • • • • • • • • • • * • • • • • • • • • • • * * * • • • * * * • • • • • • * * * * • • • * • * • • * • * * • • 

Figure 11.6 An example to illustrate the transfer of program control. 

language encoding of the c a l l instruction, which requires five bytes, is E816000000H. The first 
byte E8H is the opcode for the c a l l and the next four bytes give the (signed) relative displace­
ment in bytes. In this example, it is the difference between 000000IDH (offset of the push EBP 
instruction in sum) and 00000007H (offset of the instruction mov EBX, EAX in main). There­
fore, the displacement should be 000000IDH - 00000007H = 00000016H. This is the displace­
ment value encoded in the c a l l instruction. Note that this displacement value in this instruction 
is shown in the little-endian order, which is equal to 00000016H. Adding this difference to the 
contents of the EIP register leaves the EIP register pointing to the first instruction of sum. 

Note that the procedure call in main is a forward call, and therefore the relative displacement 
is a positive number. As an example of a backward procedure call, let us look at the sum procedure 
call in the avg procedure. In this case, the program control has to be transferred back. That is, the 
displacement is a negative value. Following the explanation given in the last paragraph, we can 
calculate the displacement as OOOOOOIDH - 0000002DH = FFFFFFFOH. Since negative numbers 
are expressed in 2's complement notation, FFFFFFFOH corresponds to - 1 OH (i.e., — 16D), which 
is the displacement value in bytes. 

The following is a summary of the actions taken during a procedure call: 

ESP = ESP — 2 ; push return address onto the stack 
SS:ESP = EIP 
EIP = EIP + relative displacement ; update EIP to point to the procedure 

The relative displacement is a signed 32-bit number to accommodate both forward and backward 
procedure calls. 
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The ret Instruction 

The r e t (return) instruction is used to transfer control from the called procedure to the calling 
procedure. Return transfers control to the instruction following the c a l l (the mov EBX, EAX 
instruction in our example). How will the processor know where this instruction is located? Re­
member that the processor made a note of this when the c a l l instruction was executed. When 
the r e t instruction is executed, the return address from the stack is recovered. The actions taken 
during the execution of the r e t instruction are 

EIP = SS:ESP ; pop return address at TOS into IP 
ESP = ESP + 4 ; update TOS by adding 4 to ESP 

An optional integer may be included in the r e t instruction, as in 

r e t 8 

The details on this optional number are covered later. 

Our First Program 

In our first procedure example, two parameter values are passed onto the called procedure via the 
general-purpose registers. The procedure sum receives two integers in the CX and DX registers 
and returns the sum of these two integers via AX. No check is done to detect the overflow condi­
tion. The main program, shown in Program 11.1, requests two integers from the user and displays 
the sum on the screen. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Program 11.1 Parameter passing by call-by-value using registers 

Parameter passing via registers PROCEXl.ASM 

Objective: To show parameter passing via registers. 
Input: Requests two integers from the user. 

Output: Outputs the sum of the input integers. 
%include "io.mac" 
.DATA 
prompt_msgl DB "Please input the first number: ",0 
prompt_msg2 DB "Please input the second number: ",0 
sum_msg DB "The sum is ",0 

.CODE 
.STARTUP 
PutStr prompt_msgl 
Getint CX 

PutStr prompt_msg2 
Getint DX 

call sum 
PutStr sum_msg 
Putint AX 
nwln 

request first number 
CX = first number 

request second number 
DX = second number 

returns sum in AX 
display sum 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

done: 
.EXIT 

/Procedure sum receives two integers in CX and DX. 
;The sum of the two integers is returned in AX. 

mov 
add 
ret 

AX,CX 
AX,DX 

sum 
sum 

first number 
sum + second number 

Parameter Passing 

Parameter passing in assembly language is different and more complicated than that used in high-
level languages. In the assembly language, the calling procedure first places all the parameters 
needed by the called procedure in a mutually accessible storage area (usually registers or memory). 
Only then can the procedure be invoked. There are two common methods depending on the type 
of storage area used to pass parameters: register method or stack method. As their names imply, 
the register method uses general-purpose registers to pass parameters, and the stack is used in the 
other method. 

Register Method 
In the register method, the calling procedure places the necessary parameters in the general-
purpose registers before invoking the procedure, as we did in the last example. Next, let us look at 
the advantages and disadvantages of passing parameters using the register method. 

Pros and Cons of the Register Method 
tages. These are summarized here. 

Advantages 

The register method has its advantages and disadvan-

1. The register method is convenient and easier for passing a small number of arguments. 

2. This method is also faster because all the arguments are available in registers. 

Disadvantages 

1. The main disadvantage is that only a few arguments can be passed by using registers, as 
there are a limited number of general-purpose registers available in the CPU. 

2. Another problem is that the general-purpose registers are often used by the calling procedure 
for some other purpose. Thus, it is necessary to temporarily save the contents of these 
registers on the stack to free them for use in parameter passing before calling a procedure, 
and restore them after returning from the called procedure. In this case, it is difficult to 
realize the second advantage listed above, as the stack operations involve memory access. 
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numberl 
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Figure 11.7 Stack state after the sum procedure call: Return address is the EIP value pushed onto 
the stack as part of executing the call instruction. 

Stack Method 

In this method of parameter passing, all arguments required by a procedure are pushed onto the 
stack before the procedure is called. As an example, let us consider passing the two parameters 
required by the sum procedure shown in Program 11.1. This can be done by 

push numberl 
push number2 
call sum 

After executing the call instruction, which automatically pushes the EIP contents onto the stack, 
the stack state is shown in Figure 11.7. 

Reading the two arguments—numberl and number2—is tricky. Since the parameter values 
are buried inside the stack, first we have to pop the EIP value to read the two arguments. This, for 
example, can be done by 

pop EAX 
pop EBX 
pop ECX 

in the sum procedure. Since we have removed the return address (EIP) from the stack, we will 
have to restore it by 

push EAX 

SO that TOS is pointing to the return address. 
The main problem with this code is that we need to set aside general-purpose registers to copy 

parameter values. This means that the calling procedure cannot use these registers for any other 
purpose. Worse still, what if you want to pass 10 parameters? One way to free up registers is to 
copy the parameters from the stack to local data variables, but this is impractical and inefficient. 

The best way to get parameter values is to leave them on the stack and read them from the stack 
as needed. Since the stack is a sequence of memory locations, ESP + 4 points to number2, and 
ESP + 6 to numberl. Note that both numberl and number2 are 16-bit values. For instance, 

EBX, [ESP+4] 
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Figure 11.8 Changes in stack state during a procedure execution. 

can be used to access number2, but this causes a problem. The stack pointer register is updated 
by the push and pop instructions. As a result, the relative offset changes with the stack operations 
performed in the called procedure. This is not a desirable situation. 

There is a better alternative: we can use the EBP register instead of ESP to specify an offset 
into the stack segment. For example, we can copy the value of number 2 into the EAX register by 

mov 
mov 

EBP,ESP 
EAX,[EBP+4] 

This is the usual way of pointing to the parameters on the stack. Since every procedure uses 
the EBP register to access parameters, the EBP register should be preserved. Therefore, we should 
save the contents of the EBP register before executing the 

mov EBP,ESP 

Statement. We, of course, use the stack for this. Note that 

p u s h 
mov 

EBP 
EBP,ESP 

causes the parameter displacement to increase by four bytes, as shown in Figure 11.8a. 
The information stored in the stack—parameters, return address, and the old EBP value—is 

collectively called the stack frame. As we show on page 256, the stack frame also consists of local 



Chapter 11 • Writing Procedures 245 

variables if the procedure uses them. The EBP value is referred to as the frame pointer (FP). Once 
the EBP value is known, we can access all items in the stack frame. 

Before returning from the procedure, we should use 

pop EBP 

to restore the original value of EBP. The resulting stack state is shown in Figure 11.86. 
The r e t statement causes the return address to be placed in the EIP register, and the stack 

state after r e t is shown in Figure 11.8c. 
Now the problem is that the four bytes of the stack occupied by the two arguments are no longer 

useful. One way to free these four bytes is to increment ESP by four after the call statement, as 
shown below: 

push number1 
push number2 
call sum 
add ESP,4 

For example, C compilers use this method to clear parameters from the stack. The above 
assembly language code segment corresponds to the 

sum(number2, number1); 

function call in C. 
Rather than adjusting the stack by the calling procedure, the called procedure can also clear 

the stack. Note that we cannot write 

add ESP, 4 
r e t 

because when r e t is executed, ESP should point to the return address on the stack. The solution 
lies in the optional operand that can be specified in the r e t statement. The format is 

ret optional-value 

which results in the following sequence of actions: 

EIP= SSiESP 
ESP= ESP +4 + o p t i o n a l - v a l u e 

The o p t i o n a l - v a l u e should be a number (i.e., 16-bit immediate value). Since the purpose of 
the optional value is to discard the parameters pushed onto the stack, this operand takes a positive 
value. 

Who Should Clean Up the Stack? 

We have discussed the following ways of discarding the unwanted parameters on the stack: 

1. clean-up is done by the calling procedure, or 
2. clean-up is done by the called procedure. 

If procedures require a fixed number of parameters, the second method is preferred. In this 
case, we write the clean-up code only once in the called procedure independent of the number 
of times this procedure is called. We follow this convention in our assembly language programs. 
However, if a procedure receives a variable number of parameters, we have to use the first method. 
We discuss this topic in detail in a later section. 
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Preserving Calling Procedure State 
It is important to preserve the contents of the registers across a procedure call. The necessity for 
this is illustrated by the following code: 

mov ECX,count 
repeat: 

call compute 

loop repeat 

The code invokes the compute procedure count times. The ECX register maintains the number 
of remaining iterations. Recall that, as part of the loop instruction execution, the ECX register is 
decremented by 1 and, if not 0, starts another iteration. 

Suppose, now, that the compute procedure uses the ECX register during its computation. 
Then, when compute returns control to the calling program, ECX would have changed, and the 
program logic would be incorrect. 

Since there are a limited number of registers and registers should be used for writing efficient 
code, registers should be preserved. The stack is used to save registers temporarily. 

Which Registers Should Be Saved? 
The answer to this question is simple: Save those registers that are used by the calling procedure 
but changed by the called procedure. This leads to the following question: Which procedure, the 
calling or the called, should save the registers? 

Usually, one or two registers are used to return a value by the called procedure. Therefore, 
such register(s) do not have to be saved. For example, the EAX register is often used to return 
integer values. 

In order to avoid the selection of the registers to be saved, we could save, blindly, all regis­
ters each time a procedure is invoked. For instance, we could use the pushad instruction (see 
page 237). But such an action results in unnecessary overhead. 

If the calling procedure were to save the necessary registers, it needs to know the registers used 
by the called procedure. This causes two serious difficulties: 

1. Program maintenance would be difficult because, if the called procedure were modified later 
on and a different set of registers used, every procedure that calls this procedure would have 
to be modified. 

2. Programs tend to be longer because if a procedure is called several times, we have to include 
the instructions to save and restore the registers each time the procedure is called. 

For these reasons, we assume that the called procedure saves the registers that it uses and restores 
them before returning to the calling procedure. This also conforms to the modular program design 
principles. 

When to Use pusha 
The pusha instruction is useful in certain instances, but not all. We identify some instances where 
pusha is not useful. First, what if some of the registers saved by pusha are used for returning 
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EBP, ESP 

?? 

numberl 

number2 

Return address 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

EBP 

EBP 

EBP 

EBP 

EBP 

EBP 

EBP 

EBP 

EBP 

EBP 

+ 40 

+ 36 

+ 32 

+ 28 

+ 24 

+ 20 

+ 16 

+ 12 

+ 8 

+ 4 

Figure 11.9 Stack state after pusha. 

results? For instance, EAX register is often used to return integer results. In this case pusha is 
not really useful, as popa destroys the result to be returned to the calling procedure. Second, since 
pusha introduces more overhead, it may be worthwhile to use the push instruction if we want 
to save only one or two registers. Of course, the other side of the coin is that pusha improves 
readability of code and reduces memory required for the instructions. 

When pusha is used to save registers, it modifies the offset of the parameters. Note that 

pusha 
mov EBP,ESP 

causes the stack state, shown in Figure 11.9, to be different from that shown in Figure 11.8a on 
page 244. You can see that the offset of numberl and number 2 increases. 

ENTER and LEAVE Instructions 

The instruction set has two instructions to facilitate stack frame allocation and release on proce­
dure entry and exit. The e n t e r instruction can be used to allocate a stack frame on entering a 
procedure. The format is 

enter bytes,level 

The first operand b y t e s specifies the number of bytes of local variable storage we want on the 
new stack frame. We discuss local variables in the next chapter. Until then, we set the first operand 
to zero. The second operand l e v e l gives the nesting level of the procedure. If we specify a 
nonzero level, it copies l e v e l stack frame pointers into the new frame from the preceding stack 
frame. In all our examples, we set the second operand to zero. Thus the statement 

enter XX, 0 
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is equivalent to 

push 
mov 
sub 

EBP 
EBP,ESP 
ESP,XX 

The l e a v e instruction releases the stack frame allocated by the e n t e r instruction. It does 
not take any operands. The l e a v e instruction effectively performs the following: 

mov ESP,EBP 
p o p EBP 

We use the l e ave instruction before the r e t instruction as shown in the following template for 
procedures: 

proc-name: 
enter XX,0 

procedure body 

leave 
ret YY 

As we show in the next chapter (page 259), the XX value is nonzero only if our procedure needs 
some local variable space on the stack frame. The value YY is used to clear the arguments passed 
on to the procedure. 

Illustrative Examples 

In this section, we use several examples to illustrate register-based and stack-based parameter 
passing. 

Example 11.1 Parameter passing by call-by-reference using registers. 
This example shows how parameters can be passed by call-by-reference using the register method. 
The program requests a character string from the user and displays the number of characters in the 
string (i.e., string length). The string length is computed by the s t r _ l e n function. This function 
scans the input string for the NULL character while keeping track of the number of characters in 
the string. The pseudocode is shown below: 

s t r _ l en (string) 
index := 0 
length := 0 
while (string[index] ^/^ NULL) 

index := index + 1 
length := length + 1 { AX is used for string length} 

end while 
return (length) 

end s t r _ l e n 

The s t r _ l e n function receives a pointer to the string in EBX and returns the string length in 
the EAX register. The program listing is given in Program 11.2. The main procedure executes 
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mov EBX,s t r ing 

to place the address of s t r i n g in EBX (line 22) before invoking the procedure on line 23. Note 
that even though the procedure modifies the EBX register during its execution, it restores the 
original value of EBX by saving its value initially on the stack (line 35) and restoring it (line 44) 
before returning to the main procedure. 
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Program 11.2 Parameter passing by call-by-reference using registers 

Parameter passing via registers PR0CEX2.ASM 

Objective: To show parameter passing via registers 
Input: Requests a character string from the user. 

Output: Outputs the length of the input string. 

%include "io.mac" 
BUF LEN EQU 41 ; string buffer length 

.DATA 
prompt_msg db "Please input a string: ",0 
length_msg db "The string length is ",0 

.UDATA 
string 

.CODE 

resb BUF_LEN ;input string < BUF_LEN chars. 

.STARTUP 
PutStr prompt_msg ; request string input 
GetStr string,BUF_LEN ; read string from keyboard 

done: 

mov EBX,string 
call str_len 
PutStr length_msg 
Putint AX 
nwln 

.EXIT 

/ EBX = string address 
; returns string length in AX 
/ display string length 

Procedure str_len receives a pointer to a string in BX. 
String length is returned in AX. 

str_len: 
push 
sub 

repeat: 
cmp 
je 
inc 
inc 

EBX 
AX, AX 

byte [EBX],0 
str_len_done 
AX 
EBX 

/ string length = 0 

compare with NULL char. 
if NULL we are done 
else, increment string length 
point BX to the next char. 
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42 
43 
44 
45 

jmp 
str len done: 

pop 
ret 

repeat 

EBX 

and repeat the process 

Example 11.2 Parameter passing by call-by-value using the stack, 
This is the stack counterpart of Program 11.1, which passes two integers to the procedure sum. 
The procedure returns the sum of these two integers in the AX register. The program listing is 
given in Program 11.3. 

The program requests two integers from the user. It reads the two numbers into the CX and 
DX registers using G e t i n t (lines 16 and 19). Since the stack is used to pass the two numbers, 
we have to place them on the stack before calling the sum procedure (see lines 21 and 22). The 
state of the stack after the control is transferred to sum is shown in Figure 11.7 on page 243. 

As discussed before, the EBP register is used to access the two parameters from the stack. 
Therefore, we have to save EBP itself on the stack. We do this by using the e n t e r instruction 
(line 35), which changes the stack state to that in Figure 11.8a on page 244. 

The original value of EBP is restored at the end of the procedure using the l e a v e instruction 
(line 38). Accessing the two numbers follows the explanation given in Section 11. Note that the 
first number is at EBP +10, and the second one at EBP + 8. As in our first example on page 241, 
no overflow check is done by sum. Control is returned to main by 

r e t 4 

because sum has received two parameters requiring a total space of four bytes on the stack. This 
r e t statement clears numberl and number2 from the stack. 
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Program 11.3 Parameter passing by call-by-value using the stack 

Parameter passing via the stack PR0CEX3.ASM 

Objective: To show parameter passing via the stack. 
Input: Requests two integers from the user. 

Output: Outputs the sum of the input integers. 
%include "io.mac" 

.DATA 
prompt_msgl db 
prompt_msg2 db 
sum_msg db 

"Please input the first number: ",0 
"Please input the second number: ",0 
"The sum is ",0 

.CODE 
.STARTUP 
PutStr prompt_msgl 
Getint CX 

PutStr prompt_msg2 
Getint DX 

; request first number 
; CX = first number 

; request second number 
; DX = second number 
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push 
push 
call 
PutStr 
Putint 
nwln 

CX 
DX 
sum 
sum_msg 
AX 

place first number on stack 
place second number on stack 
returns sum in AX 
display sum 

done: 
.EXIT 

Procedure sum receives two integers via the stack. 
The sum of the two integers is returned in AX. 

enter 
mov 
add 
leave 
ret 

0,0 
AX, [EBP+10] 
AX, [EBP+8] 

4 

save EBP 
sum = first number 
sum = sum + second number 
restore EBP 
return and clear parameters 

Example 11.3 Parameter passing by call-by-reference using the stack, 
This example shows how the stack can be used for parameter passing using the call-by-reference 
mechanism. The procedure swap receives two pointers to two characters and interchanges them. 
The program, shown in Program 11.4, requests a string from the user and displays the input string 
with the first two characters interchanged. 
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Program 11.4 Parameter passing by call-by-reference using the stack 

Parameter passing via the stack PROCSWAP.ASM 

Objective: To show parameter passing via the stack. 
Input: Requests a character string from the user. 

Output: Outputs the input string with the first 
two characters swapped. 

BUF_LEN EQU 41 
%include "io.mac" 

; string buffer length 

.DATA 
prompt_msg db 
output_msg db 

"Please input a string: ",0 
"The swapped string is: ",0 

.UDATA 
string 

.CODE 

resb BUF LEN ;input string < BUF_LEN chars. 



252 Assembly Language Programming in Linux 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

done: 

.STARTUP 
PutStr prompt_msg ; request string input 
GetStr string,BUF_LEN ; read string from the user 

mov EAX,string ; EAX = string [0] pointer 
push EAX 
inc EAX ; EAX = string [1] pointer 
push EAX 
call swap ; swaps the first two characters 
PutStr output_msg ; display the swapped string 
PutStr string 
nwln 

.EXIT 

Procedure swap receives two pointers (via the stack) to 
characters of a string. It exchanges these two characters. 

.CODE 
swap: 

enter 0,0 
push EBX ; save EBX - procedure uses EBX 
/ swap begins here. Because of xchg, AL is preserved. 
mov EBX, [EBP+12] ; EBX = first character pointer 

; EBX = second character pointer 

; EBX = first character pointer 

/ restore registers 

; return and clear parameters 

xchg 
mov 
xchg 
mov 
xchg 
; swap 
pop 
leave 
ret 

AL, [EBX] 
EBX,[EBP+8] 
AL,[EBX] 
EBX,[EBP+12] 
AL,[EBX] 
ends here 
EBX 

8 

In preparation for calling swap, the main procedure places the addresses of the first two 
characters of the input string on the stack (lines 23 to 26). The swap procedure, after saving the 
EBP register as in the last example, can access the pointers of the two characters at EBP + 8 and 
EBP + 12. Since the procedure uses the EBX register, we save it on the stack as well. Note that, 
once the EBP is pushed onto the stack and the ESP value is copied to EBP, the two parameters (i.e., 
the two character pointers in this example) are available at EBP + 8 and EBP + 12, irrespective of 
the other stack push operations in the procedure. This is important from the program maintenance 
point of view. 

Summary 

The stack is a last-in-first-out data structure that plays an important role in procedure invocation 
and execution. It supports two operations: push and pop. Only the element at the top-of-stack is 
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directly accessible through these operations. The stack segment is used to implement the stack. 
The top-of-stack is represented by SS:ESP. In the implementation, the stack grows toward lower 
memory addresses (i.e., grows downward). 

The stack serves three main purposes: temporary storage of data, transfer of control during a 
procedure call and return, and parameter passing. 

When writing procedures in the assembly language, parameter passing has to be explicitly 
handled. Parameter passing can be done via registers or the stack. Although the register method is 
efficient, the stack-based method is more general. We have used several examples to illustrate the 
register-based and stack-based parameter passing. 



12 
More on Procedures 

We introduced the basics of the assembly language procedures in the last chapter We have dis­
cussed the two parameter passing mechanisms used in invoking procedures. However, we did not 
discuss how local variables, declared in a procedure, are handled in the assembly language. We 
start this chapter with a discussion of this topic. 

Although short assembly language programs can be stored in a single file, real application 
programs are likely to be broken into several files, called modules. The issues involved in writing 
and assembling multiple source program modules are discussed in detail. 

Most high-level languages use procedures that receive a fixed number of arguments. However, 
languages like C support variable number of arguments. By means of an example, we look at how 
we can pass a variable number of arguments to a procedure. It turns out that passing a variable 
number of arguments is straightforward using the stack. The last section provides a summary of 
the chapter 

Introduction 
This chapter builds on the material presented in the last chapter. Specifically, we focus on three 
issues: handling local variables, splitting a program into multiple modules, and passing a variable 
number of arguments, 

In the last chapter, we did not consider how local variables can be used in a procedure. To 
focus our discussion, let us look at the following C code: 

int compute(int a, int b) 
{ 

int temp, N; 

} 

The variables temp and N are local variables whose scope is limited to the compute procedure. 
These variable come into existence when the compute procedure is invoked and disappear when 
the procedure terminates. Like the parameter passing mechanism, we can use either registers or 
the stack to store the local variables. We discuss these two methods and their pros and cons in the 
next section. 
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In the assembly language programs we have seen so far, the entire assembly language program 
is in a single file. This is fine for short example programs. Real application programs, however, 
tend to be large, consisting of hundreds of procedures. Rather than keeping such a massive source 
program in a single file, it is advantageous to break it up into several small pieces, where each piece 
of the source code is stored in a separate file or module. There are three advantages associated with 
multimodule programs: 

• The chief advantage is that, after modifying a source module, it is only necessary to re­
assemble that module. On the other hand, if you keep only a single file, the whole file has 
to be reassembled. 

• Making modifications to the source code is easier with several small files. 
• It is safer to edit a short file; any unintended modifications to the source file are limited to a 

single small file. 

After discussing the local variable issues, we describe in detail the mechanism involved in creating 
programs with multiple modules. 

Most of the procedures we write receive a fixed number of arguments. These procedures 
always receive the same number of arguments. However, procedures in C can be defined with a 
variable number of parameters. In these procedures, the number of arguments passed can vary 
from call to call. For example, a procedure may receive only two arguments in one call but may 
receive five arguments in another. The input and output functions, scanf and p r i n t f , are the 
two common procedures that take a variable number of arguments. In this type of procedures, 
the called procedure does not know the number of arguments passed onto it. Usually, the first 
argument specifies this number. Using an example, we show how we can write assembly language 
procedures that can receive a variable number of arguments. 

Local Variables 
In the compute procedure, the local variables temp and N are dynamic. How do we store them 
in our assembly language programs? One alternative is to use the processor registers. Even though 
this method is efficient, it is not suitable for all procedures. The register method can be used for 
the leaf procedures ̂  Even here, the limited number of registers may cause problems. 

To avoid these problems, we could reserve space for the local variables in our data segment. 
However, such a space allocation is not desirable for two main reasons: 

1. Space allocation done in the data segment is static and remains active even when the proce­
dure is not. However, these local variables are supposed to disappear when the procedure is 
terminated. 

2. More importantly, it does not work with nonleaf and recursive procedures. Note that the 
recursive procedures call themselves either directly or indirecdy. We discuss recursive pro­
cedures in Chapter 19. 

For these reasons, space for local variables is reserved on the stack. For the C compute 
function, Figure 12.1 shows the contents of the stack frame. In high-level languages, it is also 
referred to as the activation record because each procedure activation requires all this information. 
The EBP value, also called the/ram^ pointer, allows us to access the contents of the stack frame. 

^ A leaf procedure is a procedure that does not call another procedure while a nonleaf procedure does. 
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EBP+ 12 

EBP+ 8 

EBP+ 4 

EBP 

EBP - 4 

E B P - 8 

Return address 

old EBP 

temp 

Parameters 

Local variables 
ESP 

Figure 12.1 Activation record for the compute function. 

For example, parameters a and b can be accessed at EBP +12 and EBP + 8, respectively. Local 
variables temp and N can be accessed at EBP — 4 and EBP - 8, respectively. 

To aid program readability, we can use the %def ine directive to name the stack locations. 
Then we can write 

mov 
mov 

instead of 

mov 
mov 

EBX,a 
temp,EAX 

EBX,[EBP+12] 
[EBP-4] ,EAX 

after establishing temp and a labels by using 1 

%def 
%def 

i n e a dword [EBP+12] 
i n e t emp dword [EBP-4] 

Next we look at an example that computes the Fibonacci numbers. 

Our First Program 

In this example, we write a procedure to compute the largest Fibonacci number that is less than or 
equal to a given input number. The Fibonacci sequence of numbers is defined as 

fib(l)=l, 
fib(2)=l, 
fib(n) = fib(n - 1) + fib(n - 2) for n > 2. 

In other words, the first two numbers in the Fibonacci sequence are 1. The subsequent numbers 
are obtained by adding the previous two numbers in the sequence. Thus, 

1, 1,2,3,5,8,13,21,34,..., 

is the Fibonacci sequence of numbers. 
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The listing for this example is given in Program 12.1. The main procedure requests the input 
number and passes it on to the f i b o n a c c i procedure. The f i b o n a c c i procedure keeps the 
last two Fibonacci numbers in local variables. We use the stack for storing these two Fibonacci 
numbers. The variable FIB_LO corresponds to fib(n - 1) and FIB_HI to fib(n). 

The f i b_ loop on lines 43-50 successively computes the Fibonacci number until it is greater 
than or equal to the input number. Then the Fibonacci number in EAX is returned to the main 
procedure. 

Program 12.1 Fibonacci number computation witii local variables mapped to the stack 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Fibonacci numbers 

Objective: 

Input: 
Output: 

%include "io.mac" 

PROCFIB.ASM 

To compute Fibonacci number using the stack 
for local variables. 
Requests a positive integer from the user. 
Outputs the largest Fibonacci number that 
is less than or equal to the input number. 

.DATA 
prompt_msg 
output_msgl 

output_msg2 

db "Please input a positive number (>1): ",0 
db "The largest Fibonacci number less than " 
db "or equal to ",0 
db " is ",0 

.CODE 

done: 

.STARTUP 
PutStr 
GetLInt 
call 
PutStr 
PutLInt 
PutStr 
PutLInt 
nwln 

.EXIT 

prompt_msg 
EDX 
fibonacci 
output_msgl 
EDX 
output_msg2 
EAX 

/ request input number 
/ EDX = input number 

; print Fibonacci number 

Procedure fibonacci receives an integer in EDX and computes 
the largest Fibonacci number that is less than the input 
number. The Fibonacci number is returned in EAX. 

%define FIB_LO dword [EBP-4] 
%define FIB_HI dword [EBP-8] 
fibonacci: 

enter 8,0 
push EBX 
; FIB_LO maintains the smaller of the last two Fibonacci 
; numbers computed; FIB_HI maintains the larger one. 

space for two local variables 



Chapter 12 • More on Procedures 259 
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54 

mov 
mov 

fib_loop: 
mov 
mov 
add 
mov 
mov 
cmp 
jle 

FIB_L0,1 
FIB_HI,1 

EAX,FIB_HI 
EBX,FIB_LO 
EBX,EAX 
FIB_LO,EAX 
FIB_HI,EBX 
EBX,EDX 
fib_loop 

initialize FIB_LO and FIB_HI to 
first two Fibonacci numbers 

compute next Fibonacci number 

; compare with input number in EDX 
; if not greater, find next number 

EAX contains the required Fibonacci number 

pop 
leave 
ret 

EBX 
clears local variable space 

The code 

push 
mov 
sub 

EBP 
EBP,ESP 
ESP, 8 

saves the EBP value and copies the ESP value into the EBP as usual. It also decrements the ESP 
by 8, thus creating 8 bytes of storage space for the two local variables FIB_LO and FIB_HI. This 
three-instruction sequence can be replaced by the 

e n t e r 8,0 

instruction (line 37). As mentioned before, the first operand specifies the number of bytes reserved 
for local variables. At this point, the stack allocation is 

EBP+ 8 

EBP+ 4 

EBP 

EBP - 4 

EBP - 8 

? ? 

Return address 

EBP 

FIB_LO 

FIB HI 
Local variables 

ESP 

The two local variables can be accessed at EBP — 4 and EBP — 8. The two %def i n e state­
ments, on lines 34 and 35, conveniently establish labels for these two locations. We can clear the 
local variable space and restore the EBP value by 

mov 
pop 

ESP,EBP 
EBP 
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instructions. The l e a v e instruction performs exactly the same. Thus, the l e a v e instruction on 
Une 53 automatically clears the local variable space. The rest of the code is straightforward to 
follow. 

Multiple Source Program Modules 
We discussed the advantages of multimodule programs at the beginning of this chapter. If we want 
to write multimodule assembly language programs, we have to precisely specify the intermodule 
interface. For example, if a procedure is called in the current module but is defined in another 
module, we have to state this fact so that the assembler does not flag such procedure calls as errors. 
Assemblers provide two directives—global and extern—to facilitate separate assembly of 
source modules. These two directives are discussed next. 

GLOBAL Directive The g l o b a l directive makes the associated label(s) available to other mod­
ules of the program. The format is 

global labell, label2, 

Almost any label can be made public. This includes procedure names, memory variables, and 
equated labels, as shown in the following example: 

global error_msg, total, sample 

.DATA 
error_msg 
total 

.CODE 

sample: 

db 
dw 

'Out of range!',0 

ret 

Microsoft and Borland assemblers use PUBLIC directive for this purpose. 

EXTERN Directive The e x t e r n directive can be used to tell the assembler that certain labels 
are not defined in the current source file (i.e., module), but can be found in other modules. Thus, 
the assembler leaves "holes" in the corresponding object file that the linker will fill in later. The 
format is 

extern labell, label2, ... 

where l a b e l 1 and l a b e l 2 are labels that are made public by a g l o b a l directive in some other 
module. 
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Illustrative Examples 
We present two examples to show how the g l o b a l and e x t e r n directives are used to create 
multimodule programs in the assembly language. 

Example 12.1 A two-module example to find string length. 
We now present a simple example that reads a string from the user and displays the string length 
(i.e., number of characters in the string). The source code consists of two procedures: main and 
s t r i n g _ l e n g t h . The main procedure is responsible for requesting and displaying the string 
length information. It uses GetSt r , Pu tS t r , and P u t i n t I/O routines. The s t r i n g _ l e n g t h 
procedure computes the string length. 

The source program is split into two modules: the main procedure is in the module l . asm 
file, and the s t r i n g _ l e n g t h procedure is in the module2 . asm file. Program 12.2 gives a 
listing of modu le l . asm. Notice that on line 18, we declare s t r i n g _ l e n g t h as an externally 
defined procedure by using the e x t e r n directive. 

Program 12.2 The main procedure defined in modulel .asm calls the sum procedure defined in 
module2.asm 
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Multimodule program for string length MODULEl.ASM 

Objective: To show parameter passing via registers. 
Input: Requests two integers from keyboard. 

Output: Outputs the sum of the input integers. 

BUF_SIZE EQU 41 
%include "io.mac" 

string buffer size 

.DATA 
prompt_msg 
length_msg 

.UDATA 
stringl 

db "Please input a string: ",0 
db "String length is: ",0 

resb BUF SIZE 

.CODE 
extern string_length 

.STARTUP 
PutStr prompt_msg ; request a string 
GetStr stringl,BUF_SIZE ; read string input 

done: 

mov EBX,stringl 
call string_length 
PutStr length_msg 
PutInt AX 
nwln 

.EXIT 

EBX := string pointer 
returns string length in AX 
display string length 
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Program 12.3 gives the module2 .asm program listing. This module consists of a single 
procedure. By using the g l o b a l directive, we make this procedure global (line 10) so that other 
modules can access it. The s t r i n g _ l e n g t h procedure receives a pointer to a NULL-terminated 
string in EBX and returns the length of the string in EAX. The procedure preserves all registers 
except for EAX. 

Program 12.3 This module defines the sum procedure called by main 

string length procedure M0DULE2.ASM 

Function: To write a procedure to compute string 
length of a NULL-terminated string. 

Receives: String pointer in the EBX register. 
Returns: Returns string length in AX. 

%include "io.mac" 
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.CODE 
global string_ 
string length 

; all 
push 
mov 

repeat: 
cmp 
je 
inc 
jmp 

done: 
sub 
mov 
pop 
ret 

_length 

registers except AX are preserved 
ESI 
ESI,EBX 

byte [ESI],0 
done , 
ESI 
repeat , 

ESI,EBX 
AX, SI 
ESI 

save ESI 
ESI = string pointer 

is it NULL? 
if so, done 
else, move to next character 

and repeat 

compute string length 
return string length in AX 
restore ESI 

We can assemble each source code module separately producing the corresponding object file. 
We can then link the object files together to produce a single executable file. For example, using 
the NASM assembler, the following sequence of commands 

nasm -f elf modulel.asm 
nasm -f elf module2.asm 
Id -s -o module modulel.o module2.o io.o 

• Produces modulel. o 
Produces module2 . o 

• Produces module 

produces the executable file module. Note that the above sequence assumes that you have the 
i o . o file in your current directory. 

Example 12.2 Bubble sort procedure. 
There are several algorithms to sort an array of numbers. The algorithm we use here is called the 
bubble sort algorithm. We assume that the array is to be sorted in ascending order. The bubble 
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Initial state: 4 3 5 1 2 
After 1st comparison: 3 4 5 1 2 (4 and 3 swapped) 
After 2nd comparison: 3 4 5 1 2 (no swap) 
After 3rd comparison: 3 4 1 5 2 (5 and 1 swapped) 

End of first pass: 3 4 1 2 5 (5 and 2 swapped) 

Figure 12.2 Actions taken during tine first pass of the bubble sort algorithm. 

Initial state: 4 3 5 1 2 
After 1st pass: 3 4 1 2 5 (5 in its final position) 
After 2nd pass: 3 1 2 4 5 (4 in its final position) 
After 3rd pass: 1 2 3 4 5 (array in sorted order) 

After the final pass: 1 2 3 4 5 (final pass to check) 

Figure 12.3 Behavior of the bubble sort algorithm. 

sort algorithm consists of several passes through the array. Each pass scans the array, performing 
the following actions: 

• Compare adjacent pairs of data elements; 
• If they are out of order, swap them. 

The algorithm terminates if, during a pass, no data elements are swapped. Even if a single swap is 
done during a pass, it will initiate another pass to scan the array. 

Figure 12.2 shows the behavior of the algorithm during the first pass. The algorithm starts 
by comparing the first and second data elements (4 and 3). Since they are out of order, 4 and 
3 are interchanged. Next, the second data element 4 is compared with the third data element 5, 
and no swapping takes place as they are in order. During the next step, 5 and 1 are compared 
and swapped and finally 5 and 2 are swapped. This terminates the first pass. The algorithm has 
performed N - 1 comparisons, where Â  is the number of data elements in the array. At the end 
of the first pass, the largest data element 5 is moved to its final position in the array. 

Figure 12.3 shows the state of the array after each pass. Notice that after the first pass, the 
largest number (5) is in its final position. Similarly, after the second pass, the second largest 
number (4) moves to its final position, and so on. This is why this algorithm is called the bubble 
sort: during the first pass, the largest element bubbles to the top, the second largest bubbles to the 
top during the second pass, and so on. Even though the array is in sorted order after the third pass, 
one more pass is required by the algorithm to detect this. 

The number of passes required to sort an array depends on how unsorted the initial array is. 
If the array is in sorted order, only a single pass is required. At the other extreme, if the array is 
completely unsorted (i.e., elements are initially in the descending order), the algorithm requires 
the maximum number of passes equal to one less than the number of elements in the array. The 
pseudocode for the bubble sort algorithm is shown in Figure 12.4. 

The bubble sort program requests a set of up to 20 nonzero integers from the user and displays 
them in sorted order. The input can be terminated earlier by typing a zero. 

We divide the bubble sort program into four modules, surely an overkill but it gives us an 
opportunity to practice multimodule programming. The main program calls three procedures to 
perform the bubble sort: 
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b u b b l e _ s o r t (array Pointer, array Size) 
status := UNSORTED 
#comparisons := array Size 
while (status = UNSORTED) 

#comparisons := #comparisons - 1 
status := SORTED 
for (i = 0 to #comparisons) 

if (array[i] > array[i+l]) 
swap ith and (i + l)th elements of the array 
status := UNSORTED 

end if 
end for 

end while 
end bubble_sort 

Figure 12.4 Pseudocode for the bubble sort algorithm. 

• a r r a y _ r e a d procedure: This procedure reads the input numbers into the array to be 
sorted, 

• a r r a y _ o u t p u t procedure: This procedure outputs the sorted array. 

• b u b b l e _ s o r t procedure: This procedure sorts the array in ascending order using the 
bubble sort algorithm. 

The main program listing is shown in Program 12.4. It first calls the r e a d _ a r r a y procedure 
to fill the array with nonzero integers. The r e a d _ a r r a y procedure returns the actual number 
of values read into the array in the EAX register. If this value is zero, implying that no input 
was given, the program terminates after displaying an appropriate message. Otherwise, the array 
pointer and its size are passed onto the bubble sort procedure. After returning from this procedure, 
the a r r a y _ o u t p u t procedure is called to display the sorted array. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Program 12.4 Main program of the bubble sort program 

Bubble sort procedure BBLMAIN.ASM 
Objective: To implement the bubble sort algorithm. 

Input: A set of nonzero integers to be sorted. 
Input is terminated by entering zero. 

Output: Outputs the numbers in ascending order. 

%define CRLF ODH,OAH 
MAX_SIZE EQU 2 0 
%include "io.mac" 
.DATA 
prompt_msg db "Enter nonzero integers to be sorted.",CRLF 

db "Enter zero to terminate the input.",0 
output_msg db "Input numbers in ascending order:",0 
error_msg db "No input entered.",0 
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16' 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

.UDATA 
array 

.CODE 

resd MAX_SIZE 

extern bubble_sort 
extern read_ _array 
extern output_array 

input_ 

done: 

.STARTUP 
PutStr 
nwln 
mov 
mov 

call 

prompt_msg 

EBX,array 
ECX,MAX_SIZE 

read_array 
/ returns the number 

cmp 
ja 
PutStr 
nwln 
jmp 
_0K: 
push 
push 
call 

PutStr 
nwln 
mov 
mov 
call 

.EXIT 

EAX,0 
input_OK 
error_msg 

short done 

EAX 
array 
bubble_sort 

output_msg 

EBX,array 
ECX,EAX 
output_array 

; input array for integers 

; request input numbers 

; EBX = array pointer 
; ECX = array size 

; reads input into the array 
of values read in EAX 

; if no input is given 
/ display error message 

; push array size onto stack 
; place array pointer on stack 

; display sorted input numbers 

/ EAX has the number count 

The r e a d _ a r r a y procedure, shown in Program 15.1, receives the array pointer in EBX and 
the maximum array size in the ECX register. It reads at most maximum array size values. The 
loop instruction on line 24 takes care of this condition. The input can also be terminated earlier by 
entering a zero. The zero input condition is detected and the loop is terminated by the statements 
on lines 19 and 20. The EDX register is used to keep track of the number of input values received 
from the user. This value is returned to the main program via the EAX register (line 26). 

1 
2 
3 
4 
5 ; 

Program 12.5 Read array procedure 

A r r a y r e a d p r o c e d u r e BBLREAD.ASM 
F u n c t i o n : To r e a d a s e t o f n o n z e r o i n t e g e r s v a l u e s 

i n t o a n a r r a y . 
Input is terminated by entering zero. 

Receives: EBX = array pointer 
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6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

; 
; 

ECX = c 
Returns: EAX = i 

%include "io.i 

.CODE 
global read 

read_ 

read_ 

: read_ 

array: 
push 
push 
sub 

_loop: 
GetLInt 
cmp 
je 
mov 
add 
inc 
loop 

_done: 
mov 
pop 
pop 
ret 

Tiac" 

_array 

EDX 
EBX 
EDX,EDX 

EAX 
EAX,0 
read_done 
[EBX],EAX 
EBX, 4 
EDX 
read_loop 

EAX,EDX 
EBX 
EDX 

array size 
number of values read. 

number count = 0 

read input number 
if the number is zero 
no more numbers to read 
copy the number into array 
EBX points to the next element 
increment number count 
reads a max. of MAX_SIZE numbers 

returns the # of values read 

The a r r a y _ o u t p u t procedure (Program 12.6) receives the array pointer in the EBX register 
and the array size in the ECX register. It uses the loop on lines 14-18 to display the sorted array. 

Program 12.6 Output array procedure 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Array output procedure BBLOUTPUT.ASM 
Function: To output the values of an array. 
Receives: EBX = array pointer 

ECX = array size 
Returns: None. 

%include "io.mac" 

.CODE 
global output_array 

output_array: 
push 
push 

print_loop: 
PutLInt 
nwln 
add 
loop 
pop 

EBX 
ECX 

[EBX] 

EBX, 4 
print_loop 
ECX 
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2 0 : 
2 1 : 

pop 
r e t 

EBX 

The b u b b l e _ s o r t procedure receives the array size and a pointer to the array. In the 
b u b b l e _ s o r t procedure, the ECX register is used to keep track of the number of comparisons 
while EDX maintains the status information. The ESI register points to the ith element of the input 
array. 

Program 12.7 Bubble sort procedure to sort integers in ascending order 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

This procedure receives a pointer to an array of integers 
and the size of the array via the stack. It sorts the 
array in ascending order using the bubble sort algorithm. 

%include "io.mac" 

SORTED EQU 0 
UNSORTED EQU 1 
.CODE 
global bubble_sort 
bubble_sort: 

pushad 
mov EBP,ESP 

ECX serves the same purpose as the end_index variable 
in the C procedure. ECX keeps the number of comparisons 
to be done in each pass. Note that ECX is decremented 
by 1 after each pass. 

mov ECX, [EBP+40] ; load array size into ECX 

nextjass : 
dec 

mov 

ECX 
sort_done 
EDI,ECX 

if # of comparisons is zero 
then we are done 
else start another pass 

pass: 

;DL is used to keep SORTED/UNSORTED status 
mov DL,SORTED / set status to SORTED 

mov ESI, [EBP+36] ; load array address into ESI 
; ESI points to element i and ESI+4 to the next element 

This loop represents one pass of the algorithm. 
Each iteration compares elements at [ESI] and [ESI+4] 
and swaps them if ( [ESI]) < ( [ESI+4]) . 

mov 
mov 
cmp 

EAX, 
EBX, 
EAX, 

[ESI] 
[ESI+4] 
EBX 
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40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

jg 

increment: 

swap 

/ Increment ESI by 4 
add 
dec 
jnz 

cmp 
je 
jmp 

swap: 
; swap 
mov 
mov 
mov 
jmp 

: sort_done: 
: popad 

ret 

ESI,4 
EDI 
pass 

EDX,SORTED 
sort_done 
next_pass 

elements at [] 
[ESI+4],EAX 
[ESI],EBX 
EDX,UNSORTED 
increment 

8 

if status remains SORTED 
then sorting is done 
else initiate another pass 

copy [ESI] in EAX to [ESI+4] 
copy [ESI+4] in EBX to [ESI] 
set status to UNSORTED 

The whi le loop condition is tested by lines 48 to 50. The fo r loop body corresponds to lines 
37 to 46 and 54 to 57. The rest of the code follows the pseudocode. Note that the array pointer is 
available in the stack at EBP + 36 and its size at EBP + 40, as we use pushad to save all registers. 

Procedures with Variable Number of Parameters 
In assembly language procedures, a variable number of parameters can be easily handled by the 
stack method of parameter passing. Only the stack size imposes a limit on the number of arguments 
that can be passed. The next example illustrates the use of the stack to pass a variable number of 
arguments in assembly language programs. 

Example 12.3 Passing a variable number of arguments via the stack, 
In this example, the va r i ab l e_sum procedure receives a variable number of integers via the 
stack. The actual number of integers passed is the last argument pushed onto the stack before 
calling the procedure. The procedure finds the sum of the integers and returns this value in the 
EAX register. 

The main procedure in Program 12.8 requests input from the user. Only nonzero values are 
accepted as valid input (entering a zero terminates the input). The read_number loop (lines 24 
to 30) reads input numbers using GetLInt and pushes them onto the stack. The ECX register 
keeps a count of the number of input values, which is passed as the last parameter (line 32) before 
calling the v a r i a b l e _ s u m procedure. The state of the stack at line 53, after executing the 
e n t e r instruction, is shown in Figure 12.5. 

The va r i ab l e_sum procedure first reads the number of parameters passed onto it from the 
stack at EBP + 8 into the ECX register. The add_loop (lines 60 to 63) successively reads each 



Chapter 12 » More on Procedures 269 

EBP+ 16 

EBP+ 12 

EBP+ 8 

EBP+ 4 

LL5r, t o r --* 

parameter N 

parameter N — 1 

parameter 2 

parameter 1 

N 

Return address 

EBP 

/ N parameters 

Number of parameters 

Figure 12.5 State of the stack after executing the enter statement. 

integer from the stack and computes their sum in the EAX. Note that on Hne 61 we use a segment 
override prefix. If we write 

a d d EAX,[EBX] 

the contents of the EBX are treated as the offset value into the data segment. However, our param­
eters are located in the stack segment. Therefore, it is necessary to indicate that the offset in EBX 
is relative to SS (and not DS) by using the SS: segment override prefix (line 61). The segment 
override prefixes—CS:, DS:, ES:, FS:, GS:, and SS:—can be placed in front of a memory operand 
to indicate a segment other than the default segment. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Program 12.8 A program to illustrate passing a variable number of parameters 

Variable number of parameters passed via stack VARPARA.ASM 

Objective: To show how variable number of parameters 
can be passed via the stack. 

Input: Requests variable number of nonzero integers. 
A zero terminates the input. 

Output: Outputs the sum of input numbers. 

%define CRLF ODH,OAH 

%include "io.mac" 

carriage return and line feed 

.DATA 
prompt_msg db "Please input a set of nonzero integers.",CRLF 

db "You must enter at least one integer.",CRLF 
db "Enter zero to terminate the input.",0 

sum_msg db "The sum of the input numbers is: ",0 
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19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
ee: 
67: 
68: 

.CODE 
.STARTUP 
PutStr prompt_msg 
nwln 
sub 

read_number: 
GetLInt EAX 
cmp 
je 
push 
inc 
jmp 

stop_reading 
push 
call 

ECX,ECX 

EAX,0 
stop_reading 
EAX 
ECX 
read number 

done: 

ECX ; 
variable_sum ; 

; clear parameter space 
inc ECX ; 
add ECX,ECX ; 
add ECX,ECX 
add ESP,ECX ; 

PutStr sum_msg ; 
PutLInt EAX 
nwln 

.EXIT 

request input numbers 

ECX keeps number count 

read input number 
if the number is zero 
no more nuumbers to read 
place the number on stack 
increment number count 

place number count on stack 
returns sum in EAX 
on the stack 
increment ECX to include count 
ECX = ECX * 4 (space in bytes) 

update ESP to clear parameter 
space on the stack 
display the sum 

This procedure receives variable number of integers via the 
stack. The last parameter pushed on the stack should be 
the number of integers to be added. Sum is returned in EAX. 

variable_sum: 
enter 0,0 
push EBX 
push ECX 

mov 
mov 
add 
sub 

add_loop: 
add 
add 
loop 

ECX, [EBP+8] 
EBX,EBP 
EBX,12 
EAX,EAX 

EAX,[SS:EBX] 
EBX, 4 
add_loop 

pop ECX 
pop EBX 
leave 
ret 

save EBX and ECX 

; ECX = # of integers to be added 

; EBX = pointer to first number 
/ sum = 0 

; sum = sum + next number 
; EBX points to the next integer 
; repeat count in ECX 

; restore registers 

; parameter space cleared by main 
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OxCOOOOOOO 

ESP ^ 

0x40000000 

0x08048000 

0 

Kernel virtual memory 
(code, data, heap, stack) 

User stack 

t 
Shared libraries 

f^ 
Run time heap 

Read/write segment 
(.data, .bss) 

Read-only segment 
(.text) 

Loaded from 
executable file 

Figure 12.6 Memory layout of a Linux process. 

A Few Notes 

1. If you are running this program on a Linux system, you don't need the segment override 
prefix. The reason is that Linux and UNIX systems do not use the physical segmentation 
provided by the IA-32 architecture. Instead, these systems treat the memory as a single 
physical segment, which is partitioned into various logical segments. Figure 12.6 shows the 
memory layout for Linux. The bottom two segments are used for the code and data. For 
example, the code segment (. t e x t ) is placed in the bottom segment, which is a read-only 
segment. The next segment stores the data part (. d a t a and . bss) . The stack segment is 
placed below the kernel space. 

2. In this example, we deliberately used the EBX to illustrate the use of segment override 
prefixes. We could have used the EBP itself to access the parameters. For example, the code 

a d d 
s u b 

a d d l o o p : 
a d d 
a d d 
l o o p 

EBP,12 
EAX,EAX 

EAX,[EBP] 
EBP, 4 
a d d l o o p 

can replace the code at lines 58 to 63. A disadvantage of this modified code is that, since 
we have modified the EBP, we no longer can access, for example, the parameter count value 
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in the stack. For this example, however, this method works fine. A better way is to use an 
index register to represent the offset relative to the EBP. We defer this discussion to the next 
chapter, which discusses the addressing modes. 

3. Another interesting feature is that the parameter space on the stack is cleared by main. 
Since we pass a variable number of parameters, we cannot use r e t to clear the parameter 
space. This is done in main by lines 35 to 38. The ECX is first incremented to include the 
count parameter (line 35). The byte count of the parameter space is computed on lines 36 
and 37. These lines effectively multiply ECX by four. This value is added to the ESP register 
to clear the parameter space (line 38). 

Summary 

We started this chapter with a discussion of local variables. Such variables are dynamic as these 
variables come into existence when the procedure is invoked and disappear when the procedure 
terminates. As with parameter passing, local variables of a procedure can be stored either in 
registers or on the stack. Due to the limited number of registers available, only a few local variables 
can be mapped to registers. The stack avoids this limitation, but it is slow. Furthermore, we cannot 
use the registers for local variable storage in nonleaf and recursive procedures. 

Real application programs are unlikely to be short enough to keep in a single file. It is advan­
tageous to break large source programs into more manageable chunks. Then we can keep each 
chunk in a separate file (i.e., modules). We have discussed how such multimodule programs are 
written and assembled into a single executable file. 

We have also discussed how a variable number of arguments can be passed onto procedures in 
the assembly language. When the stack is used for parameter passing, passing a variable number 
of arguments is straightforward. We have demonstrated this by means of an example. 



13 
Addressing Modes 

In assembly language, specification of data required by instructions can be done in a variety of 
ways. In Chapter 9 we discussed four different addressing modes: register, immediate, direct, and 
indirect. The last two addressing modes specify operands in memory. However, such memory 
operands can be specified by several other addressing modes. Here we give a detailed description 
of these memory addressing modes. 

Arrays are important for organizing a collection of related data. Although one-dimensional 
arrays are straightforward to implement, multidimensional arrays are more involved. This chapter 
discusses these issues in detail. Several examples are given to illustrate the use of the addressing 
modes in processing one- and two-dimensional arrays. 

Introduction 
Addressing mode refers how we specify the location of an operand that is required by an instruc­
tion. An operand can be at any of the following locations: in a register, in the instruction itself, in 
the memory, or at an I/O port. Chapter 20 discusses how operands located at an I/O port can be 
specified. Here we concentrate on how we can specify operands located in the first three locations. 
The three addressing modes are: 

• Register Addressing Mode: In this addressing mode, as discussed in Chapter 9, processor 
registers provide the input operands and results are stored back in registers. Since the IA-32 
architecture uses a two-address format, one operand specification acts as both source and 
destination. This addressing mode is the best way of specifying operands, as the delay in 
accessing the operands is minimal. 

• Immediate Addressing Mode: This addressing mode can be used to specify at most one 
source operand. The operand value is encoded as part of the instruction. Thus, the operand 
is available as soon as the instruction is read. 

• Memory Addressing Modes: When an operand is in memory, a variety of addressing modes 
is provided to specify it. Recall that we have to specify the logical address in order to 
specify the location of a memory operand. The logical address consists of two components: 
segment base and offset. Note that the offset is also referred to as the effective address. 
Memory addressing modes differ in how they specify the effective address. 
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Memory 

Register Indirect 
[BX] [BP] [SI] [Dl] 

Based 
[BX + disp] 
[BP + disp] 

[SI + disp] 
[Dl + disp] 

Based-Indexed 
with no displacement 
[BX + SI] [BP + SI] 
[BX + Dl] [BP + Dl] 

Based-Indexed 
with displacement 
[BX + SI -f disp] 
[BX + Dl + disp] 
[BP + SI + disp] 
[BP + Dl + disp] 

Figure 13.1 Memory addressing modes for 16-bit addresses. 

Addressing Modes 

Register Immediate Memory 

Register Indirect 
[Base] 

Based 
[Base + disp] 

Indexed 
[(Index * scale) + disp] 

Based-Indexed Based-Indexed 
with no scale factor with scale factor 

[Base -•- index + disp] [Base + (Index * scale) + disp] 

Figure 13.2 Addressing modes of the Pentium for 32-bit addresses. 

We have already discussed the direct and register indirect addressing modes in Chapter 9. The di­
rect addressing mode gives the effective address directly in the instruction. In the indirect address­
ing mode, the effective address is in one of the general-purpose registers. This chapter discusses 
the remaining memory addressing modes. 

Memory Addressing Modes 
The primary motivation for providing different addressing modes is to efficiently support high-
level language constructs and data structures. The actual memory addressing modes available 
depend on the address size used (16 bits or 32 bits). The memory addressing modes available 
for 16-bit addresses are the same as those supported by the 8086. Figure 13.1 shows the default 
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Table 13.1 Differences between 16-bit and 32-bit addressing 

Base register 

Index register 

Scale factor 

Displacement 

16-bit addressing 

BX 
BP 

SI 
DI 

None 

0,8, 16 bits 

32-bit addressing 

EAX, EBX, ECX, EDX 
ESI, EDI, EBP, ESP 

EAX, EBX, ECX, EDX 
ESI, EDI, EBP 

1,2,4,8 

0, 8, 32 bits 

memory addressing modes available for 16-bit addresses. A more flexible set of addressing modes 
is supported for 32-bit addresses. These addressing modes are shown in Figure 13.2 and are 
summarized below: 

Segment + Base + (Index * Scale) + displacement 

cs 
ss 
DS 
ES 
FS 
GS 

EAX 
HEX 
ECX 
EDX 
ESI 
EDI 
EBP 
ESP 

EAX 
EBX 
ECX 
EDX 
ESI 
EDI 
EBP 

1 
2 
4 
8 

No displacement 
8-bit displacement 
32-bit displacement 

The differences between 16-bit and 32-bit addressing are summarized in Table 13.1. How does 
the processor know whether to use 16- or 32-bit addressing? As discussed in Chapter 4, it uses the 
D bit in the CS segment descriptor to determine if the address is 16 or 32 bits long (see page 70). 
It is, however, possible to override these defaults by using the size override prefixes: 

66H Operand size override prefix 
67H Address size override prefix 

By using these prefixes, we can mix 16- and 32-bit data and addresses. Remember that our as­
sembly language programs use 32-bit data and addresses. This, however, does not restrict us from 
using 16-bit data and addresses. For example, when we write 

mov EAX,12 3 

the assembler generates the following machine language code: 

B8 0000007B 

However, when we use a 16-bit operand as in 

mov AX,123 
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the following code is generated by the assembler: 

66 I B8 007B 

The assembler automatically inserts the operand size override prefix (66H). Similarly, we can use 
16-bit addresses. For instance, consider the following example: 

mov EAX,[BX] 

The assembler automatically inserts the address size override prefix (67H) as shown below: 

67 I 8B 07 

It is also possible to mix both override prefixes as demonstrated by the following example. The 
assembly language statement 

mov AX,[BX] 

causes the assembler to insert both operand and address size override prefixes: 

66 I 67 I 8B 07 

Based Addressing 

In the based addressing mode, one of the registers acts as the base register in computing the 
effective address of an operand. The effective address is computed by adding the contents of the 
specified base register with a signed displacement value given as part of the instruction. For 16-bit 
addresses, the signed displacement is either an 8- or a 16-bit number. For 32-bit addresses, it is 
either an 8- or a 32-bit number. 

Based addressing provides a convenient way to access individual elements of a structure. Typ­
ically, a base register can be set up to point to the base of the structure and the displacement can 
be used to access an element within the structure. For example, consider the following record of a 
course schedule: 

Course number 
Course title 
Term offered 
Room number 
Enrollment limit 
Number registered 
Total storage per record 

Integer 
Character string 
Single character 
Character string 
Integer 
Integer 

2 bytes 
38 bytes 
1 byte 
5 bytes 
2 bytes 
2 bytes 
50 bytes 

In this example, suppose we want to find the number of available spaces in a particular course. 
We can let the EBX register point to the base address of the corresponding course record and use 
displacement to read the number of students registered and the enrollment limit for the course to 
compute the desired answer. This is illustrated in Figure 13.3. 

This addressing mode is also useful in accessing arrays whose element size is not 2, 4, or 8 
bytes. In this case, the displacement can be set equal to the offset to the beginning of the array, 
and the base register holds the offset of a specific element relative to the beginning of the array. 
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SSA + 100 

SSA + 50 

displacement 
46 bytes 

SSA 
Structure Starting Address 

Enrollment 

# registered 

Room # 

Term 

Title 

Course # 

Enrollment 

# registered 

Room # 

Term 

Title 

Course # 

2 

2 

5 

1 

38 

2 

2 

2 

5 

1 

38 

2 

\ Second course record 
(50 bytes) 

First course record 
(50 bytes) 

Figure 13.3 Course record layout in memory. 

Indexed Addressing 

In this addressing mode, the effective address is computed as 

(Index * scale factor) + signed displacement. 

For 16-bit addresses, no scaling factor is allowed (see Table 13.1 on page 275). For 32-bit ad­
dresses, a scale factor of 2, 4, or 8 can be specified. Of course, we can use a scale factor in the 
16-bit addressing mode by using an address size override prefix. 

The indexed addressing mode is often used to access elements of an array. The beginning of 
the array is given by the displacement, and the value of the index register selects an element within 
the array. The scale factor is particularly useful to access arrays whose element size is 2, 4, or 8 
bytes. 

The following are valid instructions using the indexed addressing mode to specify one of the 
operands. 

add EAX,[EDI+20] 
mov EAX,[marks_table+ESI*4] 
add EAX,[tablel+ESI] 

In the second instruction, the assembler would supply a constant displacement that represents the 
offset of mark s_t a b l e in the data segment. Assume that each element of mark s_t a b l e takes 
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four bytes. Since we are using a scale factor of four, ESI should have the index value. For example, 
if we want to access the tenth element, ESI should have nine as the index value starts with zero. 

If no scale factor is used as in the last instruction, ESI should hold the offset of the element 
in bytes relative to the beginning of the array. For example, if t a b l e 1 is an array of four-byte 
elements, ESI register should have 36 to refer to the tenth element. By using the scale factor, we 
avoid such byte counting. 

Based-Indexed Addressing 

Based-Indexed with No Scale Factor In this addressing mode, the effective address is computed 
as 

Base + Index + signed displacement. 

The displacement can be a signed 8- or 16-bit number for 16-bit addresses; it can be a signed 8- or 
32-bit number for 32-bit addresses. 

This addressing mode is useful in accessing two-dimensional arrays with the displacement 
representing the offset to the beginning of the array. This mode can also be used to access arrays 
of records where the displacement represents the offset to a field in a record. In addition, this 
addressing mode is used to access arrays passed on to a procedure. In this case, the base register 
could point to the beginning of the array, and an index register can hold the offset to a specific 
element. 

Assuming that EBX points to t a b l e 1, which consists of four-byte elements, we can use the 
code 

mov EAX,[EBX+ESI] 
cmp EAX,[EBX+ESI+4] 

to compare two successive elements of t a b l e 1. This type of code is particularly useful if the 
t a b l e 1 pointer is passed as a parameter. 

Based-Indexed with Scale Factor In this addressing mode, the effective address is computed as 

Base -I- (Index * scale factor) + signed displacement. 

This addressing mode provides an efficient indexing mechanism into a two-dimensional array 
when the element size is 2, 4, or 8 bytes. 

Arrays 

Arrays are useful in organizing a collection of related data items, such as test marks of a class, 
salaries of employees, and so on. We have used arrays of characters to represent strings. Such 
arrays are one-dimensional: only a single subscript is necessary to access a character in the ar­
ray. High-level languages support multidimensional arrays. In this section, we discuss both one-
dimensional and multidimensional arrays. 

One-Dimensional Arrays 

A one-dimensional array of test marks can be declared in C as 

in t t e s t marks [10]; 
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In C, the subscript always starts at zero. Thus, t e s t _ m a r k s [0] gives the first student's mark 
and t e s t _ m a r k s [9] gives the last student's mark. 

Array declaration in high-level languages specifies the following five attributes: 

• Nameof the array ( tes t_marks) , 
• Number of the elements (10), 
• Element size (4 bytes), 
• Type of element (integer), and 
• Index range (0 to 9). 

From this information, the amount of storage space required for the array can be easily calculated. 
Storage space in bytes is given by 

Storage space = number of elements * element size in bytes. 

In our example, it is equal to 10 * 4 = 40 bytes. In the assembly language, arrays are implemented 
by allocating the required amount of storage space. For example, the t e s t _ m a r k s array can be 
declared as 

test_marks resd 10 

An array name can be assigned to this storage space. But that is all the support you get in assembly 
language! It is up to you as a programmer to "properly" access the array taking the element size 
and the range of subscripts into account. 

You need to know how the array is stored in memory in order to access elements of the array. 
For one-dimensional arrays, representation of the array in memory is rather direct: array elements 
are stored linearly in the same order as shown in Figure 13.4. In the remainder of this section, we 
use the convention used for arrays in C (i.e., subscripts are assumed to begin with 0). 

To access an element we need to know its displacement value in bytes relative to the beginning 
of the array. Since we know the element size in bytes, it is rather straightforward to compute the 
displacement from the subscript value: 

displacement = subscript * element size in bytes. 

For example, to access the sixth student's mark (i.e., subscript is 5), you have to use 5 * 4 = 20 as 
the displacement value into the t e s t _ m a r k s array. Later we present an example that computes 
the sum of a one-dimensional integer array. If the array element size is 2,4, or 8 bytes, we can use 
the scale factor to avoid computing displacement in bytes. 

Multidimensional Arrays 

Programs often require arrays of more than one dimension. For example, we need a two-dimensional 
array of size 50 x 3 to store test marks of a class of 50 students taking three tests during a semester. 
For most programs, arrays of up to three dimensions are adequate. In this section, we discuss how 
two-dimensional arrays are represented and manipulated in the assembly language. Our discussion 
can be generalized to higher-dimensional arrays. 

For example, a 5 x 3 array to store test marks can be declared in C as 

in t c lass marks [5] [3] ; /* 5 rows and 3 columns */ 



280 Assembly Language Programming in Linux 

High memory 
test_marks[9] 

test_marks[8] 

test_marks[7] 

test_marks[6] 

test_marks[5] 

test_marks[4] 

test_marks[3] 

test_marks[2] 

test_marks[1] 

test_marks[0] test_marks Low memory 

Figure 13.4 One-dimensional array storage representation. 

Storage representation of such arrays is not as direct as that for one-dimensional arrays. Since the 
memory is one-dimensional (i.e., linear array of bytes), we need to transform the two-dimensional 
structure to a one-dimensional structure. This transformation can be done in one of two common 
ways: 

• Order the array elements row-by-row, starting with the first row, or 

• Order the array elements column-by-column, starting with the first column. 

The first method, called the row-major ordering, is shown in Figure 13.5a. Row-major order­
ing is used in most high-level languages including C. The other method, called the column-major 
ordering, is shown in Figure 13.5̂ ?. Column-major ordering is used in FORTRAN. In the remain­
der of this section, we focus on the row-major ordering scheme. 

Why do we need to know the underlying storage representation? When we are using a high-
level language, we really do not have to bother about the storage representation. Access to arrays 
is provided by subscripts: one subscript for each dimension of the array. However, when us­
ing assembly language, we need to know the storage representation in order to access individual 
elements of the array for reasons discussed next. 

In the assembly language, we can allocate storage space for the c l a s s_marks array as 

class marks resd 5*3 

This statement simply allocates the 60 bytes required to store the array. Now we need a formula to 
translate row and column subscripts to the corresponding displacement. In the C language, which 
uses row-major ordering and subscripts start with zero, we can express displacement of an element 
at row / and column y as 

displacement = (/ * COLUMNS 4-y) * ELEMENT_SIZE, 
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class marks 

High memory 

class_marks[4,2] 

class_marks[4,1] 

class_marks[4,0] 

class_marks[3,2] 

class_marks[3,1] 

class_marks[3,0] 

class_marks[2,2] 

class_marks[2,1] 

class_marks[2,0] 

class_marks[1,2] 

class_marks[1,1] 

class_marks[1,0] 

class_marks[0,2] 

class_marks[0,1] 

class_marks[0,0] 

Low memory 

(a) Row-major order 

class marks 

High memory 

class_marks[4,2] 

class_marks[3,2] 

class_marks[2,2] 

class_marks[1,2] 

class_marks[0,2] 

class_marks[4,1] 

class_marks[3,1] 

class_marks[2,1] 

class_marks[1,1] 

class_marks[0,1] 

class_marks[4,0] 

class_marks[3,0] 

class_marks[2,0] 

class_marks[1,0] 

class_marks[0,0] 

Low memory 

(b) Column-major order 

Figure 13.5 Two-dimensional array storage representation. 

where COLUMNS is the number of columns in the array and ELEMENT_SIZE is the number 
of bytes required to store an element. For example, displacement of c l a s s_marks [3,1] is 
(3 * 3 + 1) * 4 = 40. Later we give an example to illustrate how two-dimensional arrays are 
manipulated. 

Our First Program 

This example demonstrates how one-dimensional arrays can be manipulated. Program 13.1 finds 
the sum of the t e s t _ m a r k s array and displays the result. 

Program 13.1 Computing the sum of a one-dimensional array 

Sum of a long integer array ARRAY_SUM.ASM 

Objective: To find sum of all elements of an array. 
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9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

/ Input: None. 
; Output: Displays the sum. 
%include "io.mac" 

.DATA 
test_marks DD 90,50,70,94,81,40,67,55,60,73 
NO_STUDENTS EQU ($-test_marks)/4 ; number of students 
sum_msg DB 'The sum of test marks is: ',0 

.CODE 
.STARTUP 
mov CX,NO_STUDENTS ; loop iteration count 
sub EAX,EAX ; sum := 0 
sub ESI,ESI ; array index := 0 

add_loop: 
mov EBX,[test_marks+ESI*4] 
PutLInt EBX 
nwln 
add EAX,[test_marks+ESI*4] 
inc ESI 
loop add_loop 

PutStr sum_msg 
PutLInt EAX 
nwln 
.EXIT 

Each element of the t e s t _ m a r k s array, declared on line 9, requires four bytes. The array 
size NO_STUDENTS is computed on line 10 using the predefined location counter symbol $. The 
predefined symbol $ is always set to the current offset in the segment. Thus, on line 10, $ points to 
the byte after the array storage space. Therefore, ($ - t e s t_marks ) gives the storage space in 
bytes and dividing this by four gives the number of elements in the array. We are using the indexed 
addressing mode with a scale factor of four on lines 19 and 22. Remember that the scale factor is 
only allowed in the 32-bit mode. 

Illustrative Examples 
We now present several examples to illustrate the usefulness of the various addressing modes. The 
first example sorts an array of integers using the insertion sort algorithm, and the second example 
implements a binary search to locate a value in a sorted array. Our last example demonstrates how 
2-dimensional array are manipulated in the assembly language. 

Example 13.1 Sorting an integer array using the insertion sort. 
This example requests a set of integers from the user and displays these numbers in sorted order. 
The main procedure reads a maximum of MAX_SIZE integers (lines 20 to 28). It accepts only 
nonnegative numbers. Entering a negative number terminates the input (lines 24 and 25). 
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The main procedure passes the array pointer and its size (lines 30 to 34) to the insertion sort 
procedure. The remainder of the main procedure displays the sorted array returned by the sort 
procedure. Note that the main procedure uses the indirect addressing mode on lines 26 and 41. 

The basic principle behind the insertion sort is simple: insert a new number into the sorted 
array in its proper place. To apply this algorithm, we start with an empty array. Then insert 
the first number. Now the array is in sorted order with just one element. Next insert the second 
number in its proper place. This results in a sorted array of size two. Repeat this process until all 
the numbers are inserted. The pseudocode for this algorithm, shown below, assumes that the array 
index starts with 0: 

i n s e r t i o n _ s o r t (array, size) 
for (/ = 1 to size—1) 

temp := array [/] 

while ((temp < array[/]) AND (j > 0)) 
array[y+l] := array [/] 
J :=7 - 1 

end while 
array [y+l] :=temp 

end for 
end i n s e r t i o n _ s o r t 

Here, index / points to the number to be inserted. The array to the left of / is in sorted order. 
The numbers to be inserted are the ones located at or to the right of index /. The next number to 
be inserted is at /. The implementation of the insertion sort procedure, shown in Program 13.2, 
follows the pseudocode. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Program 13.2 Insertion sort 

Sorting an array by insertion sort INS_SORT.ASM 

Objective: To sort an integer array using insertion sort. 
Input: Requests numbers to fill array. 

Output: Displays sorted array. 
%include "io.mac" 

.DATA 
MAX_SIZE EQU 100 
input_prompt db "Please enter input array: " 

db "(negative number terminates input)",0 
out_msg db "The sorted array is:",0 

.UDATA 
array resd MAX_SIZE 

.CODE 
.STARTUP 
PutStr input_prompt ; request input array 
mov EBX,array 
mov ECX,MAX SIZE 
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22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 

array_loop: 
GetLInt 
cmp 
jl 
mov 
add 
loop 

exit_loop: 
mov 
sub 
shr 
push 
push 
call 
PutStr 
nwln 
mov 
mov 

display_loop: 
PutLInt 
nwln 
add 
loop 

done: 
.EXIT 

EAX 
EAX, 0 
exit_loop 
[EBX],EAX 
EBX,4 
array_loop 

EDX,EBX 
EDX,array 
EDX,2 
EDX 
array 
insertion_sort 
out_msg ; 

ECX,EDX 
E B X , a r r a y 

[EBX] 

EBX, 4 
display_loop 

read an array number 
negative number? 
if so, stop reading numbers 
otherwise, copy into array 
increment array address 
iterates a maximum of MAX_SIZE 

EDX keeps the actual array size 
EDX = array size in bytes 
divide by 4 to get array size 
push array size & array pointer 

display sorted array 

This procedure receives a pointer to an array of integers 
and the array size via the stack. The array is sorted by 
using insertion sort. All registers are preserved. 

%define SORT_ARRAY 
insertion_sort: 

pushad 

EBX 

save registers 
EBP,ESP 
EBX, [EBP+36] 
ECX, [EBP+40] 
ESI,4 

mov 
mov 
mov 
mov 

for_loop: 
; variables of the algorithm are mapped as follows. 
; EDX = temp, ESI = i, and EDI = j 

copy array pointer 
copy array size 
array left of ESI is sorted 

mov 
mov 
sub 

while_loop: 
cmp 
jge 

EDX,[SORT_ARRAY+ESI] ; 
EDI,ESI ; j = i-
EDI,4 

temp = array [i] 

EDX, [SORT_ARRAY+EDI] 
exi t_whi1e_loop 

; array[j+1] = array[j] 
mov EAX,[SORT_ARRAY+EDI] 
mov [S0RT_ARRAY+EDI+4],EAX 
sub EDI,4 ; j = j-1 

temp < array[j] 
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73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

cmp EDI,0 ; j >= 0 
jge while_loop 

exi t_whi1e_loop: 
; array [j+1] = temp 
mov [S0RT_ARRAY+EDI+4],EDX 
add ESI,4 / i = i+1 
dec ECX 
cmp ECX,1 ; if ECX = 1, we are done 
jne for_loop 

sort_done: 
popad ; restore registers 
ret 8 

Since the sort procedure does not return any value to the main program in registers, we can use 
pushad (line 55) and popad (line 83) to save and restore registers. As pushad saves all eight 
registers on the stack, the offset is appropriately adjusted to access the array size and array pointer 
parameters (lines 57 and 58). 

The whi le loop is implemented by lines 66 to 74, and the f o r loop is implemented by lines 
60 to 81. Note that the array pointer is copied to the EBX (line 57), and line 53 assigns a convenient 
label to this. We have used the based-indexed addressing mode on lines 63, 67, and 70 without 
any displacement and on lines 71 and 77 with displacement. Based addressing is used on lines 57 
and 58 to access parameters from the stack. 

Example 13.2 Binary search procedure, 
Binary search is an efficient algorithm to locate a value in a sorted array. The search process starts 
with the whole array. The value at the middle of the array is compared with the number we are 
looking for: if there is a match, its index is returned. Otherwise, the search process is repeated 
either on the lower half (if the number is less than the value at the middle), or on the upper half 
(if the number is greater than the value at the middle). The pseudocode of the algorithm is given 
below: 

b i n a r y _ s e a r c h (array, size, number) 
lower := 0 
upper := size — 1 
while (lower < upper) 

middle := (lower -f upper)/2 
if (number = array[middle]) 
then 

return (middle) 
else 

if (number < array [middle]) 
then 

upper := middle — 1 
else 

lower := middle + 1 
end if 

end if 
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end while 
return (0) {number not found} 
end b i n a r y _ s e a r c h 

The listing of the binary search program is given in Program 13.3. The main procedure is similar 
to that in the last example. In the binary search procedure, the lower and upper index variables are 
mapped to the AX and CX registers, respectively. The number to be searched is stored in the DX 
and the array pointer is in the EBX. Register SI keeps the middle index value. 

Program 13.3 Binary search 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

/Binary search of a sorted integer array BIN_SRCH.ASM 

; Objective: To implement binary search of a sorted 
integer array. 

/ Input: Requests numbers to fill array and a 
number to be searched for from user. 

; Output: Displays the position of the number in 
the array 
message. 

%include "io.mac" 

.DATA 
MAX_SIZE 
input_prompt 

qu e ry_numb e r 
out_msg 
not_found_msg 
query_msg 

.UDATA 
array 

.CODE 

EQU 100 

if found; otherwise, not found 

db "Please enter input array (in sorted order): 
db "(negative 
db "Enter the 

number terminates input)",0 
number to be searched: ",0 

db "The number is at position ",0 
db "Number not in the arrayl",0 
db "Do you want to quit (Y/N): ",0 

resw MAX_SIZE 

.STARTUP 
PutStr 
nwln 
sub 
mov 

array_loop: 
Getint 

: cmp 
jl 

: mov 
: inc 
: loop 
: exit_loop: 
: read_input: 
: PutStr 

input__prompt 

ESI,ESI 
CX,MAX_SIZE 

AX 

AX,0 
exit_loop 
[array+ESI*2] 
ESI 
array_loop 

query_number 

; request input array 

• set index to zero 

; read an array number 

; negative number? 
; if so, stop reading numbers 

,AX ; otherwise, copy into array 
; increment array index 
; iterates a maximum of MAX_SIZE 

; request number to be searched for 
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41: 
42: 
43: 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

Getint 
push 
push 
push 
call 

AX 
AX 
SI 
array 

; read the number 
; push number, size & array pointer 

binary_search 
; binary_search returns in AX the position of the number 
; in the array; if 
cmp 
je 
PutStr 
Putint 
jmp 

not_found: 

user_ 

done: 

PutStr 
query: 

nwln 
PutStr 
GetCh 
cmp 
jne 

.EXIT 

AX, 0 
not_found 
out_msg 
AX 
user_query 

not found, it returns 0. 
number found? 
if not, display number not found 

• else, display number position 

not_found_msg 

query_msg 
AL 
AL,'Y' 
read_input 

• query user whether to terminate 
• read response 
' if response is not 'Y' 
• repeat the loop 
' otherwise, terminate program 

; This procedure receives a pointer to an array of integers, 
/ the 
; It 
; if 
; All 

array size, and a number to be searched via the stack. 
returns in AX the posi .tion of the number in the array 
found; otherwise, returns 0. 
registers, except AX, 

binary_search: 

while 

enter 
push 
push 
push 
push 
mov 
mov 
mov 
xor 
dec 

_loop: 
cmp 
ja 
sub 
mov 
add 
shr 
cmp 
je 
jg 

0,0 
EBX 
ESI 
CX 
DX 
EBX, [EBP+8] 
CX,[EBP+12] 
DX,[EBP+14] 
AX, AX 
CX 

AX,CX 
end_while 
ESI,ESI 
SI, AX 
SI,CX 
SI,1 
DX, [EBX+ESI^ 
search_done 
upper_half 

are preserved. 

; copy array pointer 
; copy array size 
; copy number to be searched 
; lower = 0 
; upper = size-1 

;lower > upper? 

; middle = (lower + upper)/2 

'2] ; number = array[middle]? 
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92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 

lower_half: 
dec 
mov 
jmp 

upper_half: 
inc 
mov 
jmp 

end_while: 
sub 
jmp 

search_done: 
inc 
mov 

skipl: 
pop 
pop 
pop 
pop 
leave 
ret 

SI 
CX,SI 
while_ 

SI 
AX, SI 
while_ 

AX, AX 
skipl 

SI 
AX, SI 

DX 
CX 
ESI 
EBX 

8 

loop 

loop 

; middle = middle-1 
; upper = middle-1 

; middle = middle+1 
/ lower = middle+1 

; number not found (clear AX) 

; position = index+1 
; return position 

; restore registers 

Since the binary search procedure returns a value in the AX register, we cannot use the pusha 
instruction as in the last example. On line 89, we use a scale factor of two to convert the index value 
in SI to byte count. Also, a single comparison (line 89) is sufficient to test multiple conditions (i.e., 
equal to, greater than, or less than). If the number is found in the array, the index value in SI is 
returned via AX (line 105). 

Example 13.3 Finding the sum of a column in a two-dimensional array. 
This example illustrates how two-dimensional arrays are manipuilated in the assembly language. 
This example also demonstrates the use of advanced addressing modes in accessing multidimen­
sional arrays. 

Consider the c l a s s_marks array representing the test scores of a class. For simplicity, 
assume that there are only five students in the class. Also, assume that the class is given three 
tests. As we have discussed before, we can use a 5 x 3 array to store the marks. Each row 
represents the three test marks of a student in the class. The first column represents the marks of 
the first test; the second column represents the marks of the second test, and so on. The objective 
of this example is to find the sum of the last test marks for the class. The program listing is given 
below. 

Program 13.4 Finding the sum of a column in a two-dimensional array 

Sum of a column in a 2-dimensional array TEST_SUM.ASM 

Objective: To demonstrate array index manipulation 
in a two-dimensional array of integers. 

Input: None. 
Output: Displays the sum. 
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%include " io .mac" 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

.DATA 
NO_ROWS 
NO_COLUMNS 
NO_ROW_BYTES 
class_marks 

sum_msg 

.CODE 

EQU 
EQU 
EQU 
dw 
dw 
dw 
dw 
dw 

db 

.STARTUP 
mov 
sub 
; ESI 
sub 
mov 

sum_loop: 
add 
add 
loop 

PutStr 
Putint 
nwln 

done: 
.EXIT 

CX,] 

5 
3 
NO_COLUMNS * 2 ; number of bytes per row 
90,89,99 
79,66,70 
70,60,77 
60,55,68 
51,59,57 

"The sum of the last test marks is: ",0 

MO_ROWS / loop iteration count 
AX,AX ; sum = 0 

= index of class_marks[0,2] 
EBX 
ESI 

AX, 
EBX 
sum_ 

sum_ 
AX 

, EBX 
,N0_C0LUMNS-1 

[class_marks+EBX+ESI*2] 
,NO_ROW_BYTES 
_loop 

_msg 

To access individual test marks, we use based-indexed addressing with a displacement on 
line 29. Note that even though we have used 

[class_marks+EBX+ESI*2] 

it is translated by the assembler as 

[EBX+(ESI*2)+constant] 

where c o n s t a n t is the offset of c l a s s_marks . For this to work, the EBX should store the 
offset of the row in which we are interested. For this reason, after initializing the EBX to zero 
to point to the first row (line 29), NO_ROW_BYTES is added in the loop body (line 30). The ESI 
register is used as the column index. This works for row-major ordering. 

Summary 

The addressing mode refers to the specification of operands required by an assembly language 
instruction. We discussed several memory addressing modes supported by the IA-32 architecture. 



290 Assembly Language Programming in Linux 

We showed by means of examples how these addressing modes are useful in supporting features 
of high-level languages. 

Arrays are useful for representing a collection of related data. In high-level languages, pro­
grammers do not have to worry about the underlying storage representation used to store arrays in 
the memory. However, when manipulating arrays in the assembly language, we need to know this 
information. This is so because accessing individual elements of an array involves computing the 
corresponding displacement value. Although there are two common ways of storing a multidimen­
sional array—row-major or column-major order—most high-level languages, including C, use the 
row-major order. We presented examples to illustrate how one- and two-dimensional arrays are 
manipulated in the assembly language. 



14 
Arithmetic Instructions 

We start this chapter with a detailed discussion of the six status flags—zero, carry, overflow, sign, 
parity, and auxiliary flags. We have already used these flags in our assembly language programs. 
The discussion here helps us understand how the processor executes some of the conditional jump 
instructions. The next section deals with multiplication and division instructions. The IA-32 
instruction set includes multiplication and division instructions for both signed and unsigned in­
tegers. We then present several examples to illustrate the use of the instructions discussed in this 
chapter The chapter concludes with a summary. 

Introduction 
We have discussed the flags register in Chapter 4. Six flags in this register are used to monitor 
the outcome of the arithmetic, logical, and related operations. By now you are familiar with the 
purpose of some of these flags. The six flags are the zero flag (ZF), carry flag (CF), overflow flag 
(OF), sign flag (SF), auxiliary flag (AF), and parity flag (PF). For obvious reasons, these six flags 
are called the status flags. 

When an arithmetic operation is performed, some of the flags are updated (set or cleared) to 
indicate certain properties of the result of that operation. For example, if the result of an arithmetic 
operation is zero, the zero flag is set (i.e., ZF = 1). Once the flags are updated, we can use the con­
ditional branch instructions to alter flow control. We have discussed several types of conditional 
jump instructions, including jump on less than or equal, greater than, and so on. However, we have 
not described how the jumps test for the condition. We discuss these details in this chapter. 

The IA-32 instruction set provides several arithmetic instructions. We have already used some 
of these instructions (e.g., add and sub). The instruction set supports the four basic operations: 
addition, subtraction, multiplication, and division. The addition and subtraction operations do not 
require separate instructions for signed and unsigned numbers. In fact, we do not need even the 
subtract instructions as the subtract operation can be treated as adding a negative value. 

Multiplication and division operations, however, need separate instructions. In addition, the 
format of these instructions is slighdy different in the sense they typically specify only a single 
operand. The other operand is assumed to be in a designated register. Since we have covered the 
addition and subtraction instructions in Chapter 9, we will focus on the multiplication and division 
instructions in this chapter. 
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Status Flags 
The six status flags are affected by most of the arithmetic instructions we discuss in this chapter. 
You should note that once a flag is set or cleared, it remains in that state until another instruction 
changes its value. Also note that not all assembly language instructions affect all the flags. Some 
instructions affect all six status flags, whereas other instructions affect none of the flags. And 
there are other instructions that affect only a subset of these flags. For example, the arithmetic 
instructions add and sub affect all six flags, but i nc and dec instructions affect all but the carry 
flag. The mov, push, and pop instructions, on the other hand, do not affect any of the flags. 

Here is an example illustrating how the zero flag changes with instruction execution. 

;initially, 
mov 
sub 

push 
mov 
pop 
mov 
inc 

EAX, 
EAX, 

EBX 
EBX, 
EDX 
ECX, 
ECX 

assume that ZF is 0 
55H ; 
55H ; 

/ 
EAX ; 

/ 
0 

/ 

ZF is still 0 
result is zero 
Thus, ZF is set (ZF 
ZF remains 1 
ZF remains 1 
ZF remains 1 
ZF remains 1 
result is 1 
Thus, ZF is cleared 

= 1 

(ZF = 0) 

As we show later, these flags can be tested either individually or in combination to affect the flow 
control of a program. 

In understanding the workings of these status flags, you should know how signed and un­
signed integers are represented. At this point, it is a good idea to review the material presented in 
Appendix A. 

The Zero Flag 

The purpose of the zero flag is to indicate whether the execution of the last instruction that affects 
the zero flag has produced a zero result. If the result was zero, ZF = 1; otherwise, ZF = 0. This is 
slightly confusing! You may want to take a moment to see through the confusion. 

Although it is fairly intuitive to understand how the sub instruction affects the zero flag, it is 
not so obvious with other instructions. The following examples show some typical cases. 

The code 

mov AL,OFH 
add AL,0F1H 

sets the zero flag (i.e., ZF = 1). This is because, after executing the add instruction, the AL would 
contain zero (all eight bits zero). In a similar fashion, the code 

mov AX,OFFFFH 
inc AX 

also sets the zero flag. The same is true for the following code: 

mov EAX,1 
d e c EAX 
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Related Instructions The following two conditional jump instructions test this flag: 

j z jump if zero (jump is taken if ZF = 1) 
j nz jump if not zero Qump is taken if ZF = 0) 

Usage There are two main uses for the zero flag: testing for equality, and counting to a preset 
value. 

Testing for Equality: The cmp instruction is often used to do this. Recall that cmp performs 
subtraction. The main difference between cmp and sub is that cmp does not store the result of 
the subtract operation. The cmp instruction performs the subtract operation only to set the status 
flags. Here are some examples: 

cmp c h a r , ' $ ' ; ZF = 1 i f c h a r i s $ 

Similarly, two registers can be compared to see if they both have the same value. 
cmp EAX,EBX 

Counting to a Preset Value: Another important use of the zero flag is shown below. Consider the 
following code: 

sum = 0 
for (i = 1 to M) 

for (j = 1 to N) 
sum = sum + I 

end for 
end for 

The equivalent code in the assembly language is written as follows (assume that both M and 
Â  are > 1): 

EAX = 0 (EAX s t o r e s sum) sub 
mov 

outer_loop: 
mov 

inner_loop: 
inc 
loop 
dec 
jnz 

exit_loops: 
mov 

EAX,EAX 
EDX,M 

ECX,N 

EAX 
inner_loop 
EDX 
outer_loop 

sum,EAX 

In the above example, the inner loop count is placed in the ECX register so that we can use the 
loop instruction to iterate. Incidentally, the loop instruction does not affect any of the flags. 

Since we have two nested loops to handle, we are forced to use another register to keep the 
outer loop count. We use the dec instruction and the zero flag to see if the outer loop has executed 
M times. This code is more efficient than initializing the EDX register to one and using the code 

inc EDX 
cmp EDX,M 
jle outer_loop 

in place of the dec/j nz instruction combination. 
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The Carry Flag 

The carry flag records the fact that the result of an arithmetic operation on unsigned numbers is 
out of range (too big or too small) to fit the destination register or memory location. Consider the 
example 

mov AL,OFH 
add AL,0F1H 

The addition of OFH and FIH would produce a result of lOOH that requires 9 bits to store, as 
shown below. 

OOOOllllB (OFH= 15D) 
IIIIOOOIB (F1H = 241D) 

1 OOOOOOOOB (100H = 256D) 

Since the destination register AL is only 8 bits long, the carry flag would be set to indicate that the 
result is too big to be held in AL. 

To understand when the carry flag would be set, it is helpful to remember the range of unsigned 
numbers that can be represented. The range is given below for easy reference. 

Size (bits) 

8 
16 
32 

Range 

0 to 255 
0 to 65,535 

0 to 4,294,967,295 

Any operation that produces a result that is outside this range sets the carry flag to indicate an 
underflow or overflow condition. It is obvious that any negative result is out of range, as illustrated 
by the following example: 

mov EAX,12AEH ;EAX = 4782D 
sub EAX,12AFH ;EAX = 4782D - 4783D 

Executing the above code will set the carry flag because 12AFH - 12AFH produces a negative 
result (i.e., the subtract operation generates a borrow), which is too small to be represented using 
unsigned numbers. Thus, the carry flag is set to indicate this underflow condition. 

Executing the code 

mov 
inc 

or the code 

mov 
dec 

AL,OFFH 
AL 

EAX,0 
EAX 

does not set the carry flag as we might expect because inc and dec instructions do not affect the 
carry flag. 

Related Instructions The following two conditional jump instructions test this flag: 

j c jump if carry (jump is taken if CF = 1) 
j nc jump if not carry (jump is taken if CF = 0) 
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Usage The carry flag is useful in several situations: 

• To propagate carry or borrow in multiword addition or subtraction operations. 

• To detect overflow/underflow conditions. 

• To test a bit using the shift/rotate family of instructions. 

To Propagate Carry/Borrow: The assembly language arithmetic instructions can operate on 8-, 
16-, or 32-bit data. If two operands, each more than 32 bits, are to be added, the addition has to 
proceed in steps by adding two 32-bit numbers at a time. The following example illustrates how 
we can add two 64-bit unsigned numbers. For convenience, we use the hex representation. 

1 ^r- carry from lower 32 bits 
X = 3710 26A8 1257 9AE7H 
y = 489B A321 FE60 4213H 

7FAB C9CA 10B7 DCFAH 

To accomplish this, we need two addition operations. The first operation adds the least sig­
nificant (lower half) 32 bits of the two operands. This produces the lower half of the result. This 
addition operation could produce a carry that should be added to the upper 32 bits of the input. 
The other add operation performs the addition of the most significant (upper half) 32 bits and any 
carry generated by the first addition. This operation produces the upper half of the 64-bit result. 

As an example consider adding two 64-bit numbers in the registers EBX:EAX and EDX:ECX 
with EAX and ECX holding the lower 32-bit values of the two numbers. Then we can use the 
following code to add these two values: 

add EAX,ECX 
adc EBX,EDX 

It leaves the 64-bit result in the EBX:EAX register pair. Notice that we use adc to do the second 
addition as we want to add any carry generated by the first addition. An overflow occurs if there is 
a carry out of the second addition, which sets the carry flag. 

We can extend this process to larger numbers. For example, adding two 128-bit numbers 
involves a four-step process, where each step adds two 32-bit words. The first addition can be done 
using add but the remaining three additions must be done with the adc instruction. Similarly, the 
sub and other operations also require multiple steps when the numbers require more than 32 bits. 

To Detect Overflow/Underflow Conditions: In the previous example, if the second addition 
produces a carry, the result is too big to be held by 64 bits. In this case, the carry flag would be set 
to indicate the overflow condition. It is up to the programmer to handle such error conditions. 

Testing a Bit: When using shift and rotate instructions (introduced in Chapter 9), the bit that has 
been shifted or rotated out is captured in the carry flag. This bit can be either the most significant 
bit (in the case of a left-shift or rotate), or the least significant bit (in the case of a right-shift 
or rotate). Once the bit is in the carry flag, conditional execution of the code is possible using 
conditional jump instructions that test the carry flag: j c (jump on carry) and j nc (jump if no 
carry). 
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Why inc and dec Do Not Affect the Carry Flag We have stated that the i nc and dec instruc­
tions do not affect the carry flag. The rationale for this is twofold: 

1. The instructions i nc and dec are typically used to maintain iteration or loop count. Using 
32 bits, the number of iterations can be as high as 4,294,967,295. This number is sufficiently 
large for most applications. What if we need a count that is greater than this? Do we have 
to use add instead of inc? This leads to the second, and the main, reason. 

2. The condition detected by the carry flag can also be detected by the zero flag. Why? Because 
i nc and dec change the number only by 1. For example, suppose that the ECX register 
has reached its maximum value 4,294,967,295 (FFFFFFFFH). If we then execute 

i n c ECX 

we would normally expect the carry flag to be set to 1. However, we can detect this condition 
by noting that ECX = 0, which sets the zero flag. Thus, setting the carry flag is really 
redundant for these instructions. 

The Overflow Flag 
The overflow flag, in some respects, is the carry flag counterpart for the signed number arithmetic. 
The main purpose of the overflow flag is to indicate whether an operation on signed numbers has 
produced a result that is out of range. It is helpful to recall the range of signed numbers that can 
be represented using 8, 16, and 32 bits. For your convenience, this range is given below: 

Size (bits) 

8 
16 
32 

Lecuting the code 

mov AL,72H ; 72H = 
a d d AL,OEH / OEH = 

Range 

-128 to+127 
-32,768 to +32,767 

-2,147,483,648 to +2,147,483,647 

114D 
14D 

will set the overflow flag to indicate that the result 80H (128D) is too big to be represented as an 
8-bit signed number. The AL register will contain 80H, the correct result if the two 8-bit operands 
are treated as unsigned numbers. But AL contains an incorrect answer for 8-bit signed numbers 
(80H represents —128 in signed representation, not +128 as required). 

Here is another example that uses the sub instruction. The AX register is initialized to —5, 
which is FFFBH in 2's complement representation using 16 bits. 

mov AX,OFFFBH ; AX = -5 

sub AX,7FFDH ; subtract 32,765 from AX 

Execution of the above code will set the overflow flag as the result 

(-5)-(32,765)=-32,770 
which is too small to be represented as a 16-bit signed number. 

Note that the result will not be out of range (and hence the overflow flag will not be set) when 
we are adding two signed numbers of opposite sign or subtracting two numbers of the same sign. 
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Signed or Unsigned: How Does tlie System Know? The values of the carry and overflow flags 
depend on whether the operands are unsigned or signed numbers. Given that a bit pattern can be 
treated both as representing a signed and an unsigned number, a question that naturally arises is: 
How does the system know how your program is interpreting a given bit pattern? The answer is 
that the processor does not have a clue. It is up to our program logic to interpret a given bit pattern 
correctly. The processor, however, assumes both interpretations and sets the carry and overflow 
flags. For example, when executing 

mov AL,72H 
add AL,OEH 

the processor treats 72H and OEH as unsigned numbers. And since the result BOH (128) is within 
the range of 8-bit unsigned numbers (0 to 255), the carry flag is cleared (i.e., CF = 0). At the same 
time, 72H and OEH are also treated as representing signed numbers. Since the result 80H (128) is 
outside the range of 8-bit signed numbers (-128 to +127), the overflow flag is set. 

Thus, after executing the above two lines of code, CF = 0 and OF = 1. It is up to our program 
logic to take whichever flag is appropriate. If you are indeed representing unsigned numbers, 
disregard the overflow flag. Since the carry flag indicates a valid result, no exception handling is 
needed. 

mov AL,72H 
add AL,OEH 
jc overflow 

no_overflow: 
(no overflow code here) 

overflow: 
(overflow code here) 

If, on the other hand, 72H and OEH are representing 8-bit signed numbers, we can disregard 
the carry flag value. Since the overflow flag is 1, our program will have to handle the overflow 
condition. 

mov AL,72H 
add AL,OEH 
jo overflow 

no_overflow: 
(no overflow code here) 

overflow: 
(overflow code here) 

Related Instructions The following two conditional jump instructions test this flag: 

j o jump on overflow (jump is taken if OF = 1) 
j no jump on no overflow (jump is taken if OF = 0) 

In addition, a special software interrupt instruction 

in to interrupt on overflow 

is provided to test the overflow flag. Interrupts are discussed in Chapter 20. 



298 Assembly Language Programming in Linux 

Usage The main purpose of the overflow flag is to indicate whether an arithmetic operation on 
signed numbers has produced an out-of-range result. The overflow flag is also affected by shift, 
multiply, and divide operations. More details on some of these instructions can be found in later 
sections of this chapter. 

The Sign Flag 

As the name implies, the sign flag indicates the sign of the result of an operation. Therefore, it 
is useful only when dealing with signed numbers. Recall that the most significant bit is used to 
represent the sign of a number: 0 for positive numbers and 1 for negative numbers. The sign 
flag gets a copy of the sign bit of the result produced by arithmetic and related operations. The 
following sequence of instructions 

mov EAX,15 
add EAX,97 

will clear the sign flag (i.e., SF = 0) because the result produced by the add instruction is a positive 
number: 112D (which is 01110000 in binary). 

The result produced by 

mov EAX,15 
sub EAX,97 

is a negative number and sets the sign flag to indicate this fact. Remember that negative numbers 
are represented in 2s complement notation (see Appendix A). As discussed in Appendix A, the 
subtract operation can be treated as the addition of the corresponding negative number. Thus, 
15 — 97 is treated as 15 + (-97), where, as usual, -97 is expressed in 2s complement form. 
Therefore, after executing the above two instructions, the EAX register contains AEH, as shown 
below: 

0000111 IB (8-bit signed form of 15) 
+ l O O l l l l l B (8-bit signed number for -97) 

lOlOll lOB 

Since the sign bit of the result is 1, the result is negative and is in 2s complement form. You 
can easily verify that AEH is the 8-bit signed form of -82, which is the correct answer. 

Related Instructions The following two conditional jump instructions test this flag: 

j s jump on sign (jump is taken if SF = 1) 
j ns jump on no sign (jump is taken if SF = 0) 

The j s instruction causes the jump if the last instruction that updated the sign flag produced a 
negative result. The j ns instruction causes the jump if the result was nonnegative. 

Usage The main use of the sign flag is to test the sign of the result produced by arithmetic and 
related instructions. Another use for the sign flag is in implementing counting loops that should 
iterate until (and including) the control variable is zero. For example, consider the following code: 

for (i = M downto 0) 
< loop body > 

end for 
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This loop can be implemented without using a cmp instruction as follows: 

mov ECX,M 
for_loop: 

<loop body> 

dec ECX 
jns for_loop 

If we do not use the j ns instruction, we have to use 

cmp ECX,0 
j l f o r _ l o o p 

in its place. 
From the user point of view, the sign bit of a number can be easily tested by using a logical or 

shift instruction. Compared to the other three flags we have discussed so far, the sign flag is used 
relatively infrequently in user programs. However, the processor uses the sign flag when executing 
conditional jump instructions on signed numbers (details are in Chapter 15 on page 322). 

The Auxiliary Flag 

The auxiliary flag indicates whether an operation has produced a result that has generated a carry 
out of or a borrow into the low-order four bits of 8-, 16-, or 32-bit operands. In computer jargon, 
four bits are referred to as a nibble. The auxiliary flag is set if there is such a carry or borrow; 
otherwise it is cleared. 

In the example 

mov AL,4 3 
a d d AL,94 

the auxiliary flag is set because there is a carry out of bit 3, as shown below: 

1 <— carry generated from lower to upper nibble 
43D = 0 0 1 0 1 0 1 1 B 
94D = 0 1 0 1 1 1 1 0 B 

137D = 1 0 0 0 1 0 0 1 B 

You can verify that executing the following code clears the auxiliary flag: 

mov AL,4 3 
a d d AL,84 

Since the following instruction sequence 

mov AL,4 3 
s u b AL,92 

generates a borrow into the low-order 4 bits, the auxiliary flag is set. On the other hand, the 
instruction sequence 

mov AL,4 3 
s u b AL,8 7 

clears the auxiliary flag. 
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Related Instructions and Usage There are no conditional jump instructions that test the auxil­
iary flag. However, arithmetic operations on numbers expressed in decimal form or binary coded 
decimal (BCD) form use the auxiliary flag. Some related instructions are as follows: 

aaa ASCII adjust for addition 
aas ASCII adjust for subtraction 
aam ASCII adjust for multiplication 
aad ASCII adjust for division 
daa Decimal adjust for addition 
das Decimal adjust for subtraction 

For details on these instructions and BCD numbers, see Chapter 18. 

The Parity Flag 

This flag indicates the parity of the 8-bit result produced by an operation; if this result is 16 or 32 
bits long, only the lower-order 8 bits are considered to set or clear the parity flag. The parity flag is 
set if the byte contains an even number of 1 bits; if there are an odd number of 1 bits, it is cleared. 
In other words, the parity flag indicates an even parity condition of the byte. 

Thus, executing the code 

mov AL,53 
add AL,89 

will set the parity flag because the result contains an even number of Is (four 1 bits), as shown 
below: 

53D = OOIIOIOIB 
89D =01011001B 

142D =lOOOlllOB 

The instruction sequence 

mov AX,23994 
sub AX,9182 

on the other hand, clears the parity flag, as the low-order 8 bits contain an odd number of 1 s (five 
1 bits), as shown below: 

23994D =01011101 lOlllOlOB 
+ -9182D =11011100 OOIOOOIOB 

14813D =00111001 l lOll lOOB 

Related Instructions The following two conditional jump instructions test this flag: 

j p jump on parity Ĝ mp is taken if PF = 1) 
j np jump on no parity (jump is taken if PF = 0) 

The j p instruction causes the jump if the last instruction that updated the parity flag produced an 
even parity byte; the j np instruction causes the jump for an odd parity byte. 
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Usage This flag is useful for writing data encoding programs. As a simple example, consider 
transmission of data via modems using the 7-bit ASCII code. To detect simple errors during data 
transmission, a single parity bit is added to the 7-bit data. Assume that we are using even parity 
encoding. That is, every 8-bit character code transmitted will contain an even number of 1 bits. 
Then, the receiver can count the number of Is in each received byte and flag transmission error if 
the byte contains an odd number of 1 bits. Such a simple encoding scheme can detect single bit 
errors (in fact, it can detect an odd number of single bit errors). 

To encode, the parity bit is set or cleared depending on whether the remaining 7 bits contain 
an odd or even number of 1 s, respectively. For example, if we are transmitting character A, whose 
7-bit ASCII representation is 41H, we set the parity bit to 0 so that there is an even number of Is. 
In the following examples, the parity bit is the leftmost bit: 

A = 0 1 0 0 0 0 0 1 

For character C, the parity bit is set because its 7-bit ASCII code is 43H. 

C = 1 1 0 0 0 0 1 1 

Here is a procedure that encodes the 7-bit ASCII character code present in the AL register. The 
most significant bit (i.e., leftmost bit) is assumed to be zero. 

parity_encode PROC 
shl AL 
jp parity_zero 
stc ; CF = 1 
jmp move_parity_bit 

parity_zero: 
clc ; CF = 0 

move_parity_bit: 
rcr AL 

parity_encode ENDP 

Flag Examples 
Here we present two examples to illustrate how the status flags are affected by the arithmetic 
instructions. You can verify the answers by using a debugger (see Chapter 8 for information on 
debuggers). 

Example 14.1 Add/subtract example. 
Table 14.1 gives some examples of add and sub instructions and how they affect the flags. Up­
dating of ZF, SF, and PF is easy to understand. The ZF is set whenever the result is zero; SF is 
simply a copy of the most significant bit of the result; and PF is set whenever there are an even 
number of Is in the result. In the rest of this example, we focus on the carry and overflow flags. 

Example 1 performs -5—123. Note that —5 is represented internally as FBH, which is treated 
as 251 in unsigned representation. Subtracting 123 (=7BH) leaves 80H (=128) in AL. Since the 
result is within the range of unsigned 8-bit numbers, CF is cleared. For the overflow flag, the 
operands are interpreted as signed numbers. Since the result is -128, OF is also cleared. 

Example 2 subtracts 124 from - 5 . For reasons discussed in the previous example, the CF is 
cleared. The OF, however, is set because the result is —129, which is outside the range of signed 
8-bit numbers. 
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Table 14,1 Examples illustrating the effect on flags 

Example 1 

Example 2 

Example 3 

Example 4 

Example 5 

mov 
sub 

mov 
sub 

mov 
add 
add 

sub 

mov 
add 

Code 

AL, - 5 
AL,123 

AL, - 5 
AL,124 

AL, - 5 
AL,132 
AL, 1 

AL,AL 

AL,127 
AL,129 

AL 

80H 

7FH 

7FH 
80H 

OOH 

OOH 

CF 

0 

0 

1 
0 

0 

1 

ZF 

0 

0 

0 
0 

1 

1 

SF 

1 

0 

0 
1 

0 

0 

OF 

0 

1 

1 
1 

0 

0 

PF 

0 

0 

0 
0 

1 

1 

In Example 3, the first add statement adds 132 to - 5 . However, when treating them as un­
signed numbers, 132 is actually added to 251, which results in a number that is greater than 255D. 
Therefore, CF is set. When treating them as signed numbers, 132 is internally represented as 84H 
(=-124). Therefore, the result -129 is smaller than -128. Therefore, the OF is also set. After 
executing the first add instruction, AL will have 7FH. The second add instruction increments 
7FH. This sets the OF, but not CF. 

Example 4 causes the result to be zero irrespective of the contents of the AL register. This sets 
the zero flag. Also, since the number of Is is even, PF is also set in this example. 

The last example adds 127D to 129D. Treating them as unsigned numbers, the result 256D 
is just outside the range, and sets CF. However, if we treat them as representing signed numbers, 
129D is stored internally as 81H (=—127). The result, therefore, is zero and the OF is cleared. 

Example 14.2 A compare example, 
This example shows how the status flags are affected by the compare instruction discussed in 

Chapter 9 on page 199. Table 14.2 gives some examples of executing the 

cmp AL,DL 

instruction. We leave it as an exercise to verify (without using a debugger) the flag values. 

Arithmetic Instructions 
For the sake of completeness, we list the arithmetic instructions supported by the IA-32 instruction 
set: 

Addition: add, adc , i nc 
Subtraction: sub, sbb , dec , neg, cmp 
Multiplication: mul, imul 
Division: d i v , i d i v 
Related instructions: cbw, cwd, cdq, cwde, movsx, movzx 



Chapter 14 • Arithmetic Instructions 303 

Table 14.2 Some 
AL 

56 
200 
101 
200 

-105 
-125 
-124 

DL 

57 
101 
200 
200 

-105 
-124 
-125 

CF 

1 
0 
1 
0 
0 
1 
0 

exam 
ZF 

0 
0 
0 
1 
1 
0 
0 

pies of 
SF 

1 
0 
1 
0 
0 
1 
0 

cmp AL 

OF 

0 
1 
1 
0 
0 
0 
0 

,DL 

PF 

1 
1 
0 
1 
1 
1 
0 

AF 

1 
0 
1 
0 
0 
1 
0 

We have already looked at the addition and subtraction instructions in Chapter 9. Here we discuss 
the remaining instructions. There are a few other arithmetic instructions that operate on decimal 
and BCD numbers. Details of these instructions can be found in Chapter 18. 

Multiplication Instructions 

Multiplication is more complicated than the addition and subtraction operations for two reasons: 

1. First, multiplication produces double-length results. That is, multiplying two n-bit values 
produces a 2n-bit result. To see that this is indeed the case, consider multiplying two 8-bit 
numbers. Assuming unsigned representation, FFH (255D) is the maximum number that the 
source operands can take. Thus, the multiplication produces the maximum result, as shown 
below: 

11111111 X 11111111 
(255D) (255D) 

1111111011111111. 
(65025D) 

Similarly, multiplication of two 16-bit numbers requires 32 bits to store the result, and two 
32-bit numbers require 64 bits for the result. 

2. Second, unlike the addition and subtraction operations, multiplication of signed numbers 
should be treated differently from that of unsigned numbers. This is because the resulting 
bit pattern depends on the type of input, as illustrated by the following example: 

We have just seen that treating FFH as the unsigned number results in multiplying 255D x 
255D. 

11111111 X 11111111= 1111111011111111. 

Now, what if FFH is representing a signed number? In this case, FFH is representing - ID 
and the result should be 1, as shown below: 

11111111 X 11111111 = 00000000 00000001. 



304 Assembly Language Programming in Linux 

As you can see, the resulting bit patterns are different for the two cases. 

Thus, the instruction set provides two multiplication instructions: one for unsigned numbers 
and the other for signed numbers. We first discuss the unsigned multiplication instruction, which 
has the format 

mul source 

The source operand can be in a general-purpose register or in memory. Immediate operand 
specification is not allowed. Thus, 

mul 10 inval id 

is an invalid instruction. The mul instruction works on 8-, 16-, and 32-bit unsigned numbers. But, 
where is the second operand? The instruction assumes that it is in the accumulator. If the source 
operand is a byte, it is multiplied by the contents of the AL register. The 16-bit result is placed in 
the AX register, as shown below: 

High-order 8 bits Low-order 8 bits 

AL X 
8-bit 

source 
AH AL 

If the source operand is a word, it is multiplied by the contents of the AX register and the 
doubleword result is placed in DX:AX, with the AX register holding the lower-order 16 bits, as 
shown below: 

High-order 16 bits Low-order 16 bits 

AX X 16-bit 
source 

DX AX 

If the source operand is a doubleword, it is multiplied by the contents of the EAX register and 
the 64-bit result is placed in EDX:EAX, with the EAX register holding the lower-order 32 bits, as 
shown below: 

High-order 32 bits Low-order 32 bits 

EAX X 32-bit 
source 

EDX EAX 

The mul instruction affects all six status flags. However, it updates only the carry and overflow 
flags. The remaining four flags are undefined. The carry and overflow flags are set if the upper 
half of the result is nonzero; otherwise, they are both cleared. 

Setting of the carry and overflow flags does not indicate an error condition. Instead, this 
condition implies that AH, DX, or EDX contains significant digits of the result. 

For example, the code 

mov 
mov 
mul 

AL, 
DL, 
DL 

10 
25 

clears both the carry and overflow flags, as the result of the mul instruction is 250, which can be 
stored in the AL register (and the AH register contains 0 0 0 0 0 0 0 0). On the other hand, executing 
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mov 
mov 
mul 

AL, 
DL, 
DL 

10 
26 

sets the carry and overflow flags indicating that the result is more than 255. 
For signed numbers, we have to use the imul (integer multiplication) instruction, which has 

the same format̂  as the mul instruction 

imul source 

The behavior of the imul instruction is similar to that of the mul instruction. The only difference 
to note is that the carry and overflow flags are set if the upper half of the result is not the sign ex­
tension of the lower half. To understand sign extension in signed numbers, consider the following 
example. We know that -66 is represented using 8 bits as 

10111110. 

Now, suppose that we can use 16 bits to represent the same number. Using 16 bits, -66 is repre­
sented as 

1111111110111110. 

The upper 8 bits are simply sign-extended (i.e., the sign bit is copied into these bits), and doing so 
does not change the magnitude. 

Following the same logic, the positive number 66, represented using 8 bits as 

01000010 

can be sign-extended to 16 bits by adding eight leading zeros as shown below: 

0000000001000010. 

As with the mul instruction, setting of the carry and overflow flags does not indicate an error 
condition; it simply indicates that the result requires double length. 

Here are some examples of the imul instruction. Execution of the following code 

mov DL,OFFH ; DL = -1 
mov AL,42H ; AL = 66 
imul DL 

causes the result 

1111111110111110 

to be placed in the AX register. The carry and overflow flags are cleared, as AH contains the sign 
extension of the AL value. This is also the case for the following code: 

mov 
mov 
imul 

DL,OFFH 
AL,OBEH 
DL 

; DL = 
/ AL = 

-1 
-66 

^The imul instruction supports several other formats, including specification of an immediate value. We do not discuss 
these details; see Intel's IA-32 Architecture Software Developer's Manual. 
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which produces the result 

0000000001000010 (+66) 

in the AX register. Again, both the carry and overflow flags are cleared. 
In contrast, both flags are set for the following code: 

mov DL,2 5 ; DL = 2 5 
mov AL,0F6H ; AL = -10 
imul DL 

which produces the result 

1111111100000110 (-250). 

A Note on Multiplication The multiplication instruction is an expensive one in the sense it takes 
more time than the other arithmetic instructions like add and sub. (Of course, the division in­
structions take even more time.) Thus, for some multiplications, we get better performance by not 
using the multiplication instructions. For example, to multiply the value in EAX by 2, we do better 
by using 

a d d EAX,EAX 

The add instruction takes only one clock cycle whereas the multiplication instruction takes 10+ 
clock cycles. 

As another example, consider multiplication by 10, which is often needed in number conver­
sion routines. We can do this multiplication by using a sequence of additions more efficiently than 
the multiplication instruction. For example, if we want to multiply y (in EAX) by 10, we can use 
the following code: 

add 
mov 
add 
add 
add 

EAX, 
EBX, 
EAX, 
EAX, 
EAX, 

, EAX 
, EAX 
, EAX 
, EAX 
, EBX 

; EAX = 
; EBX = 
/ EAX = 
; EAX = 
; EAX = 

= 2y 
= 2y 
= 4y 
= 8y 
= lOy 

Since the mov and add instructions take only one clock cycle, this sequence takes only 5 clocks 
compared to 10+ clocks for the multiplication instruction. We can do even better by using a mix 
of shift and add instructions. If we want to multiply a number by a power of 2, it is better to use 
the shift instructions (see our discussion in Chapter 16 on page 351). 

Division Instructions 

The division operation is even more complicated than multiplication for two reasons: 

1. Division generates two result components: a quotient and a remainder. 
2. In multiplication, by using double-length registers, overflow never occurs. In division, di­

vide overflow is a real possibility. The processor generates a special software interrupt when 
a divide overflow occurs. 

As with the multiplication instruction, two versions of the divide instruction are provided to work 
on unsigned and signed numbers. 
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div source (unsigned) 
id iv source (signed) 

The source operand specified in the instruction is used as the divisor. As with the multiplication 
instruction, both division instructions can work on 8-, 16-, or 32-bit numbers. All six status flags 
are affected and are undefined. None of the flags are updated. We first consider the unsigned 
version. 

If the source operand is a byte, the dividend is assumed to be in the AX register and 16 bits 
long. After the division, the quotient is returned in the AL register and the remainder in the AH 
register, as shown below: 

16-bit dividend 

AX Quotient Remainder 

8-bit 
source 

AL and AH 

Divisor 

For word operands, the dividend is assumed to be 32 bits long and in DX:AX (upper 16 bits 
in DX). After the division, the 16-bit quotient will be in AX and the 16-bit remainder in DX, as 
shown below: 

32-bit dividend 

DX AX Quotient Remainder 

16-bit 
source 

AX and DX 

Divisor 

For 32-bit operands, the dividend is assumed to be 64 bits long and in EDX:EAX. After the 
division, the 32-bit quotient will be in the EAX and the 32-bit remainder in the EDX, as shown 
below: 

64-bit dividend 

EDX EAX Quotient Remainder 

32-bit 
source 

Divisor 

EAX and EDX 
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Example 14.3 8-bit division. 
Consider dividing 251 by 12 (i.e., 251/12), which produces 20 as the quotient and 11 as the re­
mainder. The code 

mov AX,2 51 
mov CL,12 
div CL 

leaves 20 (14H) in the AL register and 11 (OBH) in the AH register. D 

Example 14.4 16-bit division. 
Consider the 16-bit division: 5147/300. Executing the code 

xor 
mov 
mov 
div 

DX, 
AX, 
CX, 
CX 

DX 
141BH 
012CH 

clear DX 
AX = 5147D 
CX = 300D 

leaves 17 (12H) in the AX and 47 (2FH) in the DX. D 
Now let us turn our attention to the signed division operation. The i d i v instruction has the 

same format and behavior as the unsigned d i v instruction including the registers used for the 
dividend, quotient, and remainder. 

The i d i v instruction introduces a slight complication when the dividend is a negative number. 
For example, assume that we want to perform the 16-bit division: —251/12. Since —251 = FF14H, 
the AX register is set to FF14H. However, the DX register has to be initialized to FFFFH by sign-
extending the AX register. If the DX is set to OOOOH as we did in the unsigned d i v operation, 
the dividend 0000FF14H is treated as a positive number 65300D. The 32-bit equivalent of -251 
is FFFFFF14H. If the dividend is positive, DX should have OOOOH. 

To aid sign extension in instructions such as i d i v , the instruction set provides several instruc­
tions: 

cbw (convert byte to word) 
cwd (convert word to doubleword) 
cdq (convert doubleword to quadword) 

These instructions take no operands. The first instruction can be used to sign-extend the AL 
register into the AH register and is useful with the 8-bit i d i v instruction. The cwd instruction 
sign extends the AX into the DX register and is useful with the 16-bit i d i v instruction. The cdq 
instruction sign extends the EAX into the EDX. In fact, both cwd and cdq use the same opcode 
99H, and the operand size determines whether to sign-extend the AX or EAX register. 

For completeness, we mention three other related instructions. The cwde instruction sign 
extends the AX into EAX much as the cbw instruction. Just like the cwd and cdq, the same 
opcode 98H is used for both cbw and cwde instructions. The operand size determines which 
one should be applied. Note that cwde is different from cwd in that the cwd instruction uses the 
DX:AX register pair, whereas cwde uses the EAX register as the destination. 

The instruction set also provides the following two move instructions: 

movsx d e s t , s r c (move sign-extended s r c to d e s t ) 
movzx d e s t , s r c (move zero-extended s r c to d e s t ) 
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In both these instructions, d e s t has to be a register, whereas the s r c operand can be in a register 
or memory. If the source is an 8-bit operand, the destination has to be either a 16- or 32-bit register. 
If the source is a 16-bit operand, the destination must be a 32-bit register. 

Here are some examples of the i d i v instruction. 

Example 14.5 Signed 8-bit division. 
The following sequence of instructions perform the signed 8-bit division —95/12: 

mov AL,-95 
Cbw ; AH = FFH 
mov CL,12 
idiv CL 

The i d i v instruction leaves - 7 (F9H) in the AL register and — 11 (F5H) in the AH register. • 

Example 14.6 Signed 16-bit division. 
Suppose that we want to divide -5147 by 300. The instruction sequence 

mov AX,-5147 
cwd ; DX = FFFFH 
mov CX,3 0 0 
idiv CX 

performs this division and leaves —17 (FFEFH) in the AX register and -47 (FFDIH) in the DX 
register as the remainder. • 

Our First Program 

In the previous chapters, we looked at how the add and subtract instructions are used in assembly 
language programs. Since we introduced the multiplication instructions in this chapter, we look 
at how they are used in assembly language programs. Program 14.1 is a simple to program to 
multiply two 32-bit integers and display the result. 

Program 14.1 Multiplication program to multiply two 32-bit signed integers 

Multiplies two 32-bit signed integerts MULT.ASM 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Objective: To use the multiply instruction. 
Input; Requests two integers N and M. 

Output: Outputs N*M if no overflow. 
%include "io.mac" 

.DATA 
prompt_msg db "Enter two integers: ",0 
output_msg db "The product = ",0 
oflow_msg db "Sorry! Result out of range.",0 
query_msg db "Do you want to quit (Y/N): ",0 

.CODE 
.STARTUP 
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16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

read_input: 
PutStr 
GetLInt 
GetLInt 
imul 
jc 
PutStr 
PutLInt 
nwln 
jmp 

overflow: 
PutStr 
nwln 

user_query: 
; query 

: PutStr 
: GetCh 
: cmp 
: jne 
: done: 
: .EXIT 

prompt_msg 
EAX 
EBX 
EBX ; signed multiply 
overflow 
output_msg ; no overflow 
EAX ; display result 

short user_query 

oflow_msg 

user whether to terminate 
query_msg 
AL 
AL,'Y' ; if response is not 'Y 
read_input ; repeat the loop 

An example interaction with the program is shown below: 

Enter two integers: 65535 
32768 
The product = 2147450880 
Do you want to quit (Y/N): n 
Enter two integers: 65535 
32769 
Sorry! Result out of range. 
Do you want to quit (Y/N): Y 

If there is no overflow, the result is displayed; otherwise, an error message is displayed. In both 
cases, the user is queried if the program is to be continued. 

The two input numbers are read into the EAX and EBX registers using GetLInt on lines 18 
and 19. Since the two values are signed integers, we use imul to multiply these two integers. 
Recall that the multiply instructions set the carry flag if the result requires more than 32 bits. 
While this condition is technically not an error, for practical purposes we treat this as an overflow. 
We use the conditional jump instruction on line 21 to detect this overflow condition. If there is 
no overflow, we display the 32-bit result (line 23). The rest of the program is straightforward to 
follow. 

Illustrative Examples 
To demonstrate the application of the arithmetic instructions and flags, we write two procedures 
to input and output signed 8-bit integers in the range of —128 to +127. These procedures are as 
follows: 
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Put I n t 8 Displays a signed 8-bit integer that is in the AL register; 
Ge t I n t 8 Reads a signed 8-bit integer from the keyboard into the AL register. 

The following two subsections describe these procedures in detail. 

Example 14.7 PutlntS procedure. 
Our objective here is to write a procedure that displays the signed 8-bit integer that is in the AL 
register. In order to do this, we have to separate individual digits of the number to be displayed 
and convert them to their ASCII representation. The steps involved are illustrated by the following 
example, which assumes that AL has 108. 

separate 1 —̂  convert to ASCII (31H) -^ display 
separate 0 —> convert to ASCII (30H) —> display 
separate 8 -^ convert to ASCII (38H) -> display 

Separating individual digits is the heart of the procedure. This step is surprisingly simple! All 
we have to do is repeatedly divide the number by 10, as shown below (for a related discussion, see 
Appendix A): 

Quotient Remainder 
108/10 = 1 0 8 
10/10 = 1 0 
1/10 = 0 1 

The only problem with this step is that the digits come out in the reverse order. Therefore, 
we need to buffer them before displaying. The pseudocode for the Put I n t 8 procedure is shown 
below: 

Put I n t 8 (number) 
if (number is negative) 
then 

display' —' sign 
number = —number {reverse sign} 

end if 
index = 0 
repeat 

quotient = number/10 {integer division} 
remainder = number % 10 {% is the modulo operator} 
buffer[index] = remainder + 30H 
{save the ASCII character equivalent of remainder} 
index = index + 1 
number = quotient 

until (number = 0) 
repeat 

index = index — 1 
display digit at buffer[index] 

until (index = 0) 
endPut ln tS 
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Program 14.2 The Put in ts procedure to display an 8-bit signed number (in getput . asm file) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Putlnt8 procedure displays a signed 8-bit integer that is 
in the AL register. All registers are preserved. 

Putlnt8: 
enter 
push 
push 
push 
test 
jz 

negative: 
PutCh 
neg 

positive: 
mov 
sub 

repeatl: 
sub 
div 
; AX/BL 
add 
mov 
inc 
cmp 
jne 

display_digit 
dec 
mov 
PutCh 
jnz 

display_done: 
pop 
pop 
pop 
leave 
ret 

3,0 
AX 
BX 
ESI 
AL,80H 
positive 

AL 

BL,10 
ESI,ESI 

reserves 3 bytes of buffer space 

negative number? 

sign for negative numbers 
convert to magnitude 

divisor = 10 
ESI = 0 (ESI points to buffer) 

AH = 0 (AX is the dividend) AH, AH 
BL 
leaves AL = quotient & AH = remainder 
AH,'0' / convert remainder to ASCII 
[EBP+ESI-3],AH ; copy into the buffer 
ESI 
AL,0 ; quotient = zero? 
repeatl ; if so, display the number 

ESI 
AL, [EBP+ESI-3] / d i s p l a y d i g i t p o i n t e d by ESI 
AL 
display_digit ; if ESI<0, done displaying 

ESI 
BX 
AX 

; r e s t o r e r e g i s t e r s 

; c l e a r s l o c a l b u f f e r space 

The P u t i n t s procedure shown in Program 14.2 follows the logic of the pseudocode. Some 
points to note are the following: 

• The buffer is considered as a local variable. Thus, we reserve three bytes on the stack using 
the e n t e r instruction (see line 6). 

• The code 

t e s t 
j z 

AL,80H 
positive 
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tests whether the number is negative or positive. Remember that the sign bit (the leftmost 
bit) is 1 for a negative number. 

• Reversal of sign is done by the 

n e g AL 

instruction on line 14. 
• Note that we have to initialize AH with 0 (line 19), as the d i v instruction assumes a 16-bit 

dividend in the AX register when the divisor is an 8-bit number. 
• Conversion to ASCII character representation is done on line 22 using 

a d d AH ' 0 ' 

• The ESI register is used as the index into the buffer, which starts at [BP 
[BP + ESI - 3] points to the current byte in the buffer (line 29). 

• The repeat- while condition (index = 0) is tested by 

3]. Thus, 

on line 31. 

d i s p l a y _ d i g i t 

Example 14.8 GetlntS procedure. 
The G e t l n t S procedure reads a signed integer and returns the number in the AL register. Since 
only 8 bits are used to represent the number, the range is limited to -128 to +127 (both inclusive). 
The key part of the procedure converts a sequence of input digits received in the character form 
to its binary equivalent. The conversion process, which involves repeated multiplication by 10, is 
illustrated for the number 158: 

Input digit 

Initial value 
'l'(31H) 
'5' (35H) 
'8' (38H) 

Numeric value 

— 
1 
5 
8 

Number = number * 10 + numeric value 

0 
0* 10+1 = 1 
1 * 10 + 5 = 15 
15 * 10 + 8 = 158 

The pseudocode of the G e t l n t S procedure is as follows: 

G e t l n t S 0 
read input character into char 
if ((char = ' - ' ) OR (char = '+')) 
then 

sign = char 
read the next character into char 

end if 
number = char - '0' {convert to numeric value} 
count = 2 {number of remaining digits to read} 

repeat 
read the next character into char 
if (char ^ carriage return) 
then 
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number = number * 10 + (char — '0') 
else 

goto conver t_done 
end if 
count = count — 1 

until (count — 0) 
conve r t_done : 

{check for out-of-range error} 
if ((number > 128) OR ((number = 128) AND (sign y^ ' - ' ) ) ) 
then 

out of range error 
set carry flag 

else {number is OK} 
clear carry flag 

end if 
if(sign = ' - ' ) 
then 

number = —number {reverse sign} 
end if 

endGe t in t s 

Program 14.3 The Getints procedure to read a signed 8-bit integer (in getput . asm file) 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Getints procedure reads an integer from the keyboard and 
stores its equivalent binary in AL register. If the number 
is within -12S and +127 (both inclusive), CF is cleared; 
otherwise, CF is set to indicate out-of-range error. 
No error check is done to see if the input consists of 
digits only. All registers are preserved except for AX. 

Getints: 
push 
push 
push 
push 
sub 
sub 
GetStr 
mov 

get_next_char 
mov 
cmp 
je 
cmp 
jne 

BX 
CX 
DX 
ESI 
DX,DX 
BX,BX 
number,5 
ESI,number 

DL, [ESI] 
DL,'-' 
sign 
DL,'+' 
digit 

sign: 
mov 
inc 

BH,DL 
ESI 

save registers 

DX = 0 
BX = 0 
get input number 

read input from buffer 
is it negative sign? 
if so, save the sign 
is it positive sign? 
if not, process the digit 

BH keeps sign of input number 
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27: 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

jmp 
digit: 

sub 
mov 
sub 
mov 
mov 

convert_loop: 
inc 
mov 
cmp 

je 
sub 
mul 
add 
loop 

convert_done: 
cmp 

ja 
jb 
cmp 
jne 

number_OK: 
cmp 
jne 
neg 

number_done: 
clc 
jmp 

out_of_range: 
stc 

done: 
pop 
pop 
pop 
pop 
ret 

get_next_cha 

AX, AX 
BL,10 
DL,'0' 
AL,DL 
CX,2 

ESI 
DL, [ESI] 
DL,0 
c onve r t_done 
DL,'0' 
BL 
AX,DX 
convert_loop 

AX,128 
out_of_range 
number_OK 
BH,'-' 
out_of_range 

BH,'-' 
number_done 
AL 

done 

ESI 
DX 
CX 
BX 

AX = 0 
BL holds the multiplier 
convert ASCII to numeric 

maximum two more digits to read 

NULL? 
if so, done reading the number 
else, convert ASCII to numeric 
multiply total (in AL) by 10 
and add the current digit 

if AX > 128, number out of range 
if AX < 128, number is valid 
if AX = 12 8, must be a negative; 
otherwise, an invalid number 

number negative? 
if not, we are done 
else, convert to 2's complement 

CF = 0 (no error) 

; CF = 1 (range error) 

; restore registers 

The assembly language code for the Ge t l n tS procedure is given in Program 14.3. The 
procedure uses G e t S t r to read the input digits into a buffer number. This buffer is 5 bytes long 
so that it can hold the sign, 3 digits, and a null character. Thus, we specify 5 in G e t S t r on line 16. 

• The character input digits are converted to their numeric equivalent by subtracting '0' on 
lines 31 and 39. 

• The multiplication is done on line 40, which produces a 16-bit result in AX. Note that the 
numeric value of the current digit (in DX) is added (line 41) to detect the overflow condition 
rather than the 8-bit value in DL. 

• When the conversion is done, AX will have the absolute value of the input number. Lines 44 
to 48 perform the out-of-range error check. To do this check, the following conditions are 
tested: 
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AX > 128 => out of range 
AX =128 => input must be a negative number to be a valid 

number; otherwise, out of range 

The j a (jump if above) and j b (jump if below) on lines 45 and 46 are conditional jumps 
for unsigned numbers. 

• If the input is a negative number, the value in AL is converted to the 2's complement repre­
sentation by using the neg instruction (line 52). 

• The c l c (clear CF) and s t c (set CF) instructions are used to indicate the error condition 
(lines 54 and 57). 

Summary 
The status flags register the outcome of arithmetic and logical operations. Of the six status flags, 
zero flag, carry flag, overflow flag, and sign flag are the most important. The zero flag records 
whether the result of an operation is zero or not. The sign flag monitors the sign of the result. The 
carry and overflow flags record the overflow conditions of the arithmetic operations. The carry 
flag is set if the result on unsigned numbers is out of range; the overflow flag is used to indicate 
the out-of-range condition on the signed numbers. 

The IA-32 instruction set includes instructions for addition, subtraction, multiplication, and 
division. While the add and subtract instructions work on both unsigned and signed data, sepa­
rate instructions are required for signed and unsigned numbers for performing multiplication and 
division operations. 

The arithmetic instructions can operate on 8-, 16-, or 32-bit operands. If numbers are repre­
sented using more than 32 bits, we need to devise methods for performing the arithmetic opera­
tions on multiword operands. We gave an example to illustrate how multiword addition could be 
implemented. 

We demonstrated that multiplication by special values (for example, multiplication by 10) can 
be done more efficiently by using addition. Chapter 16 discusses how the shift operations can be 
used to implement multiplication by a power of 2. 



15 
Conditional Execution 

Assembly language provides several instructions to facilitate conditional execution. We have dis­
cussed some of these instructions like j mp and loop in Chapter 9. Our discussion here comple­
ments that discussion. In this chapter, we give more details on these instructions including how the 
target address is specified, how the flags register is used to implement conditional jumps, and so 
on. The jump instructions we have used so far specify the target address directly. It is also possible 
to specify the target of jump indirectly We describe how the target can be specified indirectly and 
illustrate its use of such indirect jumps by means of an example. 

Introduction 
Modem high-level languages provide a variety of decision structures. These structures include 
selection structures such as i f - t h e n - e l s e and iterative structures such as whi le and fo r 
loops. Assembly language, being a low-level language, does not provide these structures directly. 
However, assembly language provides several basic instructions that could be used to construct 
these high-level language selection and iteration structures. These assembly language instructions 
include the unconditional jump, compare, conditional jump, and loop. We briefly introduced some 
of these instructions in Chapter 9. In this chapter, we give more details on these instructions. 

As we have seen in the previous chapters, we can specify the target address directly. In assem­
bly language programs, we do this by specifying a label associated with the target instruction. The 
assembler replaces the label with the address. In general, this address can be a relative address 
or an absolute address. If the address is relative, the offset of the target is specified relative to 
the current instruction. In the absolute address case, target address is given. We start this with a 
discussion of these details. 

We can also specify the target address indirectly, just like the address given in the indirect 
addressing mode. In these indirect jumps, the address is specified via a register or memory. We 
describe the indirect jump mechanism toward the end of the chapter. We also illustrate how the 
indirect jump instructions are useful in implementing multiway switch or case statements. 

The IA-32 instruction set provides three types of conditional jump instructions. These include 
the jump instructions that test the individual flag values, jumps based on signed comparisons, and 
jumps based on unsigned comparisons. Our discussion of these conditional jump instructions on 
page 322 throws light on how the processor uses the flags to test for the various conditions. 
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Unconditional Jump 

We introduced the unconditional jump instruction in Chapter 9. It unconditionally transfers control 
to the instruction located at the target address. The general format, as we have seen before, is 

jmp t a r g e t 

There are several versions of the j mp instruction depending on how the target address is specified 
and where the target instruction is located. 

Specification of Target 
There are two distinct ways by which the target address of the j mp instruction can be specified: 
direct and indirect. The vast majority of jumps are of the direct type. We have used these types 
of unconditional jumps in the previous chapters. Therefore, we focus our attention on the direct 
jump instructions and discuss the indirect jumps toward the end of the chapter. 

Direct Jumps In the direct jump instruction, the target address is specified direcdy as part of the 
instruction. In the following code fragment 

init CX 

CX init 

repeatl; 

mov 
J"^P 

20: 
mov 
done: 
mov 

dec 

jmp 

CX,10 
CX init done 

CX,20 

AX,CX 

CX 

repeatl 

both the j mp instructions directly specify the target. As an assembly language programmer, you 
only specify the target address by using a label; the assembler figures out the exact value by using 
its symbol table. 

The instruction 

jmp CX_init_done 

transfers control to an instruction that follows it. This is called tht forward jump. On the other 
hand, the instruction 

jmp r e p e a t l 

is a backward jump, as the control is transferred to an instruction that precedes the jump instruction. 

Relative Address The address specified in a jump instruction is not the absolute address of the 
target. Rather, it specifies the relative displacement in bytes between the target instruction and the 
instruction following the jump instruction (and not from the jump instruction itself!). 
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In order to see why this is so, we have to understand how jumps are executed. Recall that the 
EIP register always points to the next instruction to be executed (see Chapter 4). Thus, after fetch­
ing the j mp instruction, the EIP is automatically advanced to point to the instruction following the 
j mp instruction. Execution of j mp involves changing the EIP from where it is currently point­
ing to the target instruction location. This is achieved by adding the difference (i.e., the relative 
displacement) to the EIP contents. This works fine because the relative displacement is a signed 
number—a positive displacement implies a forward jump and a negative displacement indicates a 
backward jump. 

The specification of relative address as opposed to absolute address of the target instruction is 
appropriate for dynamically relocatable code (i.e., for position-independent code). 

Where Is the Target? If the target of a jump instruction is located in the same segment as the 
jump itself, it is called an intrasegment jump; if the target is located in another segment, it is called 
an intersegment jump. 

Our previous discussion has assumed an intrasegment jump. In this case, the j mp simply 
performs the following action: 

EIP = EIP + relative-displacement 

In the case of an intersegment jump, called far jump, the CS is also changed to point to the 
target segment, as shown below: 

CS = target-segment 
EIP = target-offset 

Both target-segment and target-offset are specified direcdy in the instruction. Thus, for 32-bit 
segments, the instruction encoding for the intersegment jump takes seven bytes: one byte for the 
specification of the opcode, two bytes for the target-segment, and four bytes for the target-offset 
specification. 

The majority of jumps are of the intrasegment type. Therefore, more flexibility is provided to 
specify the target in intrasegment jump instructions. These instructions can have short and near 
format, depending on the distance of the target location from the instruction following the jump 
instruction—that is, depending on the value of the relative displacement. 

If the relative displacement, which is a signed number, can fit in a byte, a jump instruction is 
encoded using just two bytes: one byte for the opcode and the other for the relative displacement. 
This means that the relative displacement should be within —128 to +127 (the range of a signed 
8-bit number). This form is called the short jump, 

If the target is outside this range, 2 or 4 bytes are used to specify the relative displacement. A 
two-byte displacement is used for 16-bit segments, and 4-byte displacement for 32-bit segments. 
As a result, the jump instruction requires either 3 or 5 bytes to encode in the machine language. 
This form is called the near jump. 

If you want to use the short jump form, you can inform the assembler of your intention by 
using the operator SHORT, as shown below: 

jmp SHORT CX_init_done 

The question that naturally arises at this point is: What if the target is not within -128 or +127 
bytes? The assembler will inform you with an error message that the target can't be reached with 
a short jump. 

In fact, specification of SHORT in a statement like 
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8 0005 EB OC jmp SHORT CX_init_done 
9 0007 B9 OOOA mov CX,10 
lOOOOA EB0790 jmp CX_init_done 
11 init_CX_2 0: 
12 OOOD B9 0014 mov CX,20 
13 0010 E9 OODO jmp near_jump 
14 CX_init_done: 
15 0013 8B CI mov AX,CX 
16 repeatl: 
17 0015 49 dec CX 
18 0016 EB FD jmp repeatl 

84 OODB EB 03 jmp SHORT short_jump 
85 OODD B9 FFOO mov CX, OFFOOH 
86 short_jump: 
87 OOEO BA 0020 mov DX, 20H 
88 near_jump: 
89 00E3 E9 FF27 jmp init_CX_20 

Figure 15.1 Example encoding of jump instructions. 

jmp SHORT repeatl 

in the example code on page 318 is redundant, as the assembler can automatically select the 
SHORT jump, if appropriate, for all backward jumps. However, for forward jumps, the assem­
bler needs your help. This is because the assembler does not know the relative displacement of 
the target when it must decide whether to use the short form. Therefore, use the SHORT operator 
only for forward jumps if appropriate. 

Example 15.1 Example encodings of short and near jumps. 
Figure 15.1 shows some example encodings for short and near jump instructions. The forward 
short jump on line 8 is encoded in the machine language as EB OC, where EB represents the 
opcode for the short jump. The relative offset to target CX_init_done is OCH. From the code, 
it can be seen that this is the difference between the address of the target (address 0013H) and 
the instruction following the jump instruction on line 9 (address 0007H). Another example of a 
forward short jump is given on line 84. 

The backward jump instruction on line 18 also uses the short jump form. In this case, the 
assembler can decide whether the short or near jump is appropriate. The relative offset is given by 
FDH, which is - 3 in decimal. This is the offset from the instruction following the jump instruction 
at address 18H to r e p e a t l at 15H. 

For near jumps, the opcode is E9H, and the relative offset is a 16-bit signed integer. The 
relative offset of the forward near jump on line 13 is OODOH, which is equal to 00E3H - 0013H. 
The relative offset of the backward near jump on line 89 is given by OOODH - 00E6H = FF27H, 
which is equal to -217 in decimal. 
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Table 15.1 Some examples of cmp AL, DL 

AL 

56 

200 

101 

200 

-105 

-125 

-124 

DL 

57 

101 

200 

200 

-105 

-124 

-125 

CF 

1 

0 

1 

0 

0 

1 

0 

ZF 

0 

0 

0 

1 

1 

0 

0 

SF 

1 

0 

1 

0 

0 

1 

0 

OF 

0 

1 

1 

0 

0 

0 

0 

PF 

1 

1 

0 

1 

1 

1 

0 

AF 

1 

0 

1 

0 

0 

1 

0 

The jump instruction encoding on line 10 requires some explanation. Since this is a forward 
jump and we have not specified that it could be a short jump, assembler reserves 3 bytes for a near 
jump (the worst case scenario). At the time of actual encoding, the assembler knows the target 
location and therefore uses the short jump version. Thus, EB 0 7 represents the encoding, and the 
third byte is not used and contains a nop (no operation). • 

Compare Instruction 
Implementation of high-level language decision structures like i f - t h e n - e l se in assembly lan­
guage is a two step process: 

1. An arithmetic or comparison instruction updates one or more arithmetic flags; 
2. A conditional jump instruction causes selective execution of the appropriate code fragment 

based on the values of the flags. 

We discussed the compare (cmp) instruction on page 199. The main purpose of the cmp 
instruction is to update the flags so that a subsequent conditional jump instruction can test these 
flags. 

Example 15.2 Some examples of the compare instruction. 
The four flags that are useful in establishing a relationship (<, <, >, and so on) between two 
integers are CF, ZF, SF, and OF. Table 15.1 gives some examples of executing the 

cmp AL,DL 

instruction. Recall that CF is set if the result is out of range when treating the operands as unsigned 
numbers. Since the operands are 8 bits in our example, this range is 0 to 255D. Similarly, the OF 
is set if the result is out of range for signed numbers (for our example, this range is -128D to 
+127D). 

In general, the value of ZF and SF can be obtained in a straightforward way. Therefore, let us 
focus on the carry and overflow flags. In the first example, since 56-57 = - 1 , CF is set but not OF. 
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The second example is not so simple. Treating the operands in AL and DL as unsigned numbers, 
200—101 = 99, which is within the range of unsigned numbers. Therefore, CF = 0. However, when 
treating 200D (= C8H) as a signed number, it represents —56D. Therefore, compare performs 
—56—101 = —157, which is out of range for signed numbers resulting in setting OF. We will leave 
verification of the rest of the examples as an exercise. • 

Conditional Jumps 

Conditional jump instructions can be divided into three groups: 

1. Jumps based on the value of a single arithmetic flag; 
2. Jumps based on unsigned comparisons; 
3. Jumps based on signed comparisons. 

Jumps Based on Single Flags 
The IA-32 instruction set provides two conditional jump instructions—one for jumps if the flag 
tested is set, and the other for jumps when the flag is cleared—for each arithmetic flag except the 
auxiliary flag. These instructions are summarized in Table 15.2. 

As shown in Table 15.2, the jump instructions that test the zero and parity flags have aliases 
(e.g., j e is an alias for j z). These aliases are provided to improve program readability. For 
example, 

if (count =100) 
then 

< statement 1> 
end if 

can be written in the assembly language as 

cmp count,100 
jz SI 

SI: 
<statementl code here> 

But our use of j z does not convey that we are testing for equality. This meaning is better conveyed 
by 

cmp count,100 
je SI 

SI: 
<statementl code here> 

The assembler, however, treats both j z and j e as synonymous instructions. 
The only surprising instruction in Table 15.2 is the j ecxz instruction. This instruction does 

not test any flag but tests the contents of the ECX register for zero. It is often used in conjunction 
with the loop instruction. Therefore, we defer a discussion of this instruction to a later section 
that deals with the loop instruction. 



Chapter 15 • Conditional Execution 323 

Table 15.2 Jumps based on single flag value 

Mnemonic 

Testing for zero: 

Testing for carry: 

Testing for overflow: 

Testing for sign: 

Testing for parity: 

jz 
je 

jnz 
jne 

jecxz 

jc 
jnc 

jo 
jno 

js 
jns 

JP 
JPe 

jnp 
jpo 

Meaning 

jump if zero 
jump if equal 

jump if not zero 
jump if not equal 

jumpifECX = 0 

jump if carry 
jump if no carry 

jump if overflow 
jump if no overflow 

jump if (negative) sign 
jump if no (negative) sign 

jump if parity 
jump if parity is even 

jump if not parity 
jump if parity is odd 

Jumps if 

ZF=1 

ZF = 0 

ECX = 0 
(no flags tested) 

CF=1 
CF = 0 

0 F = 1 
OF = 0 

SF=1 
SF = 0 

PF=1 

PF = 0 

Jumps Based on Unsigned Comparisons 
When comparing two numbers 

cmp numl,num2 

it is necessary to know whether these numbers numl and num2 represent singed or unsigned num­
bers in order to establish a relationship between them. As an example, assume that AL = 1011011 IB 
and DL = 011011 lOB. Then the statement 

cmp AL,DL 

should appropriately update flags to yield that AL > DL if we treat their contents as representing 
unsigned numbers. This is because, in unsigned representation, AL = 183D and DL = 1 lOD. How­
ever, if the contents of AL and DL registers are treated as representing signed numbers, AL < DL 
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Table 15.3 Jumps based on unsigned comparison 

Mnemonic 

jz 

jne 
jnz 

jnbe 

jae 
jnb 

jb 
jnae 

jbe 
jna 

Meaning 

jump if equal 
jump if zero 

jump if not equal 
jump if not zero 

jump if above 
jump if not below or equal 

jump if above or equal 
jump if not below 

jump if below 
jump if not above or equal 

jump if below or equal 
jump if not above 

condition tested 

ZF=1 

ZF = 0 

CF = 0 and ZF = 0 

CF = 0 

CF=1 

C F = l o r Z F = l 

as the AL register has a negative number (-73D) while the DL register has a positive number 
(+110D). 

Note that when using a cmp statement like 

cmp numl,num2 

we compare numl to num2 (e.g., numl < num2, numl > num2, and so on). There are six possible 
relationships between two numbers: 

numl = num2 
numl 7̂  num2 
numl > num2 
numl > num2 
numl < num2 
numl < num2 

For the unsigned numbers, the carry and the zero flags record the necessary information in order 
to establish one of the above six relationships. 

The six conditional jump instructions (along with six aliases) and the flag conditions tested 
are shown in Table 15.3. Note that "above" and "below" are used for > and < relationships for 
the unsigned comparisons, reserving "greater" and "less" for signed comparisons, as we shall see 
next. 
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Jumps Based on Signed Comparisons 

The = and ̂  comparisons work with either signed or unsigned numbers, as we essentially compare 
the bit pattern for a match. For this reason, j e and j n e also appear in Table 15.4 for signed 
comparisons. 

For signed comparisons, three flags record the necessary information: the sign flag (SF), the 
overflow flag (OF), and the zero flag (ZF). Testing for = and ^ simply involves testing whether 
the ZF is set or cleared, respectively. With the singed numbers, establishing < and > relationships 
is somewhat tricky. Let us assume that we are executing the cmp instruction 

cmp Snuml,Snum2 

Conditions for Snuml > Snum2 
> Snum2 holds. 

The following table shows several examples in which Snuml 

Snuml 

56 
56 
-55 
55 

Snum2 

55 
-55 
-56 
-75 

ZF 

0 
0 
0 
0 

OF 

0 
0 
0 
1 

SF 

0 
0 
0 
1 

It appears from these examples that Snuml > Snum2 if 

ZF OF SF 

0 0 0 

or 
0 1 1 

That is, ZF = 0 and OF = SF. We cannot use just OF = SF because if two numbers are equal, 
ZF = 1 and OF = SF = 0. In fact, these conditions do imply the "greater than" relationship between 
Snuml and Snum2. As shown in Table 15.4, these are the conditions tested for the j g conditional 
jump. 

Conditions for Snuml < Snum2 Again, as in the previous case, we develop our intuition by 
means of a few examples. The following table shows several examples in which the Snuml < 
Snum2 holds. 

Snuml 

55 
-55 
-56 
-75 

Snum2 

56 
56 
-55 
55 

ZF 

0 
0 
0 
0 

OF 

0 
0 
0 
1 

SF 

1 
1 
1 
0 
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Table 15.4 Jumps based on signed comparison 

Mnemonic 

je 
jz 

jne 
jnz 

jg 
jnle 

jge 
jnl 

jl 
jnge 

jle 
jng 

Meaning 

jump if equal 
jump if zero 

jump if not equal 
jump if not zero 

jump if greater 
jump if not less or equal 

jump if greater or equal 
jump if not less 

jump if less 
jump if not greater or equal 

jump if less or equal 
jump if not greater 

condition tested 

ZF=1 

ZF = 0 

ZF = 0 and SF = OF 

SF = OF 

SF^^OF 

ZF = 1 or SF 7̂  OF 

It appears from these examples that Snuml < Snum2 holds if the following conditions are 
true: 

ZF OF SF 

0 0 

or 
0 1 0 

That is, ZF = 0 and OF ^ SF. In this case, ZF = 0 is redundant and the condition reduces to 
OF 7̂  SF. As indicated in Table 15.4, this is the condition tested by the j 1 conditional jump 
instruction. 

A Note on Conditional Jumps 

All conditional jump instructions are encoded into the machine language using only 2 bytes (like 
the short jump instruction). As a consequence, all jumps should be short jumps. That is, the 
target instruction of a conditional jump must be 128 bytes before or 127 bytes after the instruction 
following the conditional jump instruction. 

What if the target is outside this range? If the target is not reachable by using a short jump, 
you can use the following trick to overcome this limitation of the conditional jump instructions. 
For example, in the instruction sequence 
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t a r g e t : 

cmp EAX,EBX 
j e t a r g e t ; t a r g e t i s n o t a s h o r t jump 
mov ECX,10 

if t a r g e t is not reachable by a short jump, it should be replaced by 

t a r g e t : 

cmp 
j n e 
jmp 

EAX,EBX 
s k i p l , 
t a r g e t 

s k i p l i s a s h o r t jump 

s k i p l : 
ECX,10 

What we have done here is negated the test condition (j e becomes j ne) and used an unconditional 
jump to transfer control to target. Recall that j mp instruction has both short and near versions. 

Looping Instructions 

Instructions in this group use the CX or ECX register to maintain repetition count. The CX register 
is used if the operand size is 16 bits; ECX is used for 32-bit operands. In the following discussion, 
we assume that the operand size is 32 bits. The three loop instructions decrement the ECX register 
before testing it for zero. Decrementing ECX does not affect any of the flags. The format of these 
instructions along with the action taken is shown below. 

Mnemonic 

l o o p 

l o o p e 

l o o p z 

l o o p n e 

l o o p n z 

t a r g e t 

t a r g e t 

t a r g e t 

t a r g e t 

t a r g e t 

Meaning 

loop 

loop while equal 

loop while zero 

loop while not equal 

loop while not zero 

Action 

ECX = ECX - 1 

ifCXf^O 
jump to target 

ECX = ECX - 1 

i f ( E C X 7 ^ 0 a n d Z F = l ) 
jump to target 

ECX = ECX - 1 

i f (ECX7^0andZF=0) 
jump to target 

The destination specified in these instructions should be reachable by a short jump. This is 
a consequence of using the two-byte encoding with a single byte indicating the relative displace­
ment, which should be within —128 to -Hi27. 
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We have seen how the loop instruction is useful in constructing loops. The other two loop 
instructions are useful in writing loops that require two termination conditions. The following 
example illustrates this point. 

Our First Program 

Let us say that we want to write a loop that reads a series of nonzero integers into an array. The 
input can be terminated either when the array is full, or when the user types a zero, whichever 
occurs first. The program is given below. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Program 15.1 A program to read long integers into an array 

Reading long integers into an array READ_ARRAY.ASM 

Objective: To read long integers into an array; 
demonstrates the use of loopne. 

Input: Requests nonzero values to fill the array; 
a zero input terminated input. 

Output: Displays the array contents. 

%include "io.mac" 

MAX_SIZE 

.DATA 
input_prompt 

out_msg 
empty_msg 
query_msg 

.UDATA 
array 

EQU 2 0 

db "Enter at most 20 nonzero values " 
db "(entering zero terminates input):",0 
db "The array contents are: ",0 
db "The array is empty. ",0 
db "Do you want to quit (Y/N): ",0 

resd MAX SIZE 

.CODE 
.STARTUP 

read_input: 
PutStr input_jprompt ; request input array 
xor ESI,ESI ; ESI = 0 (ESI is used as an index) 
mov ECX,MAX_SIZE 

read_loop: 
GetLInt EAX 
mov [array+ESI*4],EAX 
inc ESI ; increment array index 
cmp EAX,0 ; number = zero? 
loopne read_loop ; iterates a maximum of MAX_SIZE 

exit_loop: 
; if the input is terminated by a zero, 
; decrement ESI to keep the array size 
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38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

dec 
skip: 

mov 
jecxz 
xor 
PutStr 

write_loop: 
PutLInt 
nwln 
inc 
loop 
jmp 

empty_array: 
PutStr 
nwln 

user_query: 
PutStr 
GetCh 
cmp 
jne 

done: 
.EXIT 

skip 
ESI 

ECX,ESI 
empty_array 
ESI,ESI 
out_msg 

[array+ESI*4] 

ESI 
write_loop 
short user_query 

ESI has the actual array size 
if ecx = 0, empty array 
initalize index to zero 

empty_msg ; output empty array message 

query_msg ; query user whether to terminate 
AL 
AL,'Y' ; if response is not 'Y' 
read_input ; repeat the loop 

The program has two loops: a read loop and a write loop. The read loop consists of lines 29-
34. The loop termination conditions are implemented by the loopne instruction on line 34. 
To facilitate termination of the loop after reading a maximum of MAX_S IZE integers, the ECX 
register is initialized to MAX_S I ZE on line 28. The other termination condition is tested on line 33. 

The write loop consists of the code on lines 45-49. It uses the loop instruction (line 49) to 
iterate the loop where the loop count in ECX is the number of valid integers given by the user. 
However, we have a problem with the loop instruction: if the user did not enter any nonzero 
integers, the count in ECX is zero. In this case, the write loop iterates the maximum number of 
times (not zero times) because it decrements ECX before testing for zero. This is not what we 
want! 

The instruction j ecxz provides a remedy for this situation by testing the ECX register. The 
syntax of this instruction is 

3 ecxz t a rge t 

which tests the ECX register and if it is zero, control is transferred to the target instruction. Thus, 
it is equivalent to 

cmp 
jz 

ECX,0 
target 

except that j ecxz does not affect any of the flags, while the cmp/j z combination affects the 
status flags. If the operand size is 16 bits, we can use the j cxz instruction instead of j ecxz. 
Both instructions, however, use the same opcode E3H. The operand size determines the register— 
CX or ECX—used. We use this instruction on line 42 to test for an empty array. The rest of the 
code is straightforward to follow. 
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Notes on Execution Times of loop and j ecxz Instructions 

1. The functionality of the loop instruction can be replaced by 

dec ECX 
jnz target 

Surprisingly, the loop instruction is slower than the corresponding d e c / j n z instruction 
pair. 

2. Similarly, the j ecxz instruction is slower than the code shown below: 

cmp ECX,0 
jz target 

Thus, for code optimization, these complex instructions should be avoided. However, for 
illustrative purposes, we use these instructions in the following examples. 

Illustrative Examples 

In this section, we present two examples to show the use of the selection and iteration instructions 
discussed in this chapter. The first example uses linear search for locating a number in an unsorted 
array, and the second example sorts an array of integers using the selection sort algorithm. 

Example 15.3 Linear search of an integer array, 
In this example, the user is asked to input an array of non-negative integers and then query whether 
a given number is in the array or not. The program, shown below, uses a procedure that implements 
the linear search to locate a number in an unsorted array. 

The main procedure initializes the input array by reading a maximum of MAX_SIZE number 
of non-negative integers into the array. The user, however, can terminate the input by entering a 
negative number. The loop instruction (line 36), with ECX initialized to MAX_SIZE (line 29), 
is used to iterate a maximum of MAX_SIZE times. The other loop termination condition (i.e., 
entering a negative number) is tested on lines 32 and 33. The rest of the main program queries 
the user for a number and calls the linear search procedure to locate the number. This process is 
repeated as long as the user appropriately answers the query. 

Program 15.2 Linear search of an integer array 

Linear search of integer array LIN_SRCH.ASM 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Objective: To implement linear search on an integer 
array. 

Input: Requests numbers to fill array and a 
number to be searched for from user. 

Output: Displays the position of the number in 
the array if found; otherwise, not found 
message. 

%include "io.mac" 

MAX SIZE EQU 2 0 
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13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

.DATA 
input_prompt 

query_number 
out_msg 
not_found_msg 
query_msg 

.UDATA 
array 

db "Please enter input values " 
db "(a negative value terminates input):",0 
db "Enter the number to be searched: ",0 
db "The number is at position ",0 
db "Number not in the array!",0 
db "Do you want to quit (Y/N): ",0 

resw MAX SIZE 

.CODE 
.STARTUP 
PutStr input_prompt 
xor ESI,ESI 
mov ECX,MAX_SIZE 

array_loop: 
Getint AX 
cmp AX,0 
j1 read_input 

index 

negative number? 
if so, stop reading numbers 

[array+ESI*2],AX 
increment array index 
iterates a maximum of MAX_SIZE 

request a number to be searched 

push number, size & array pointer 

mov 
inc ESI 
loop array_loop 

read_input: 
PutStr query_number 
Getint AX 
push AX 
push ESI 
push array 
call linear_search 
; linear_search returns in AX the position of the number 
; in the array; if not found, it returns 0. 
cmp AX,0 ; number found? 
je not_found ; if not, display number not found 
PutStr out_msg ; else, display number position 
Putint AX 
jmp SHORT user_query 

not_found: 
PutStr not_found_msg 

user_query: 

done: 

nwln 
PutStr query_msg 
GetCh AL 
cmp AL,'Y' 
jne read_input 

.EXIT 

; query user whether to terminate 

; if response is not 'Y' 
; repeat the loop 

This procedure receives a pointer to an array of integers, 
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64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

; the array size, and a number to be searched via the stack. 
; If found, it 
/ the 
; All 

returns in AX the position of the number in 
array; otherwise, returns 0. 
registers, except EAX, 

linear_search: 
enter 
push 
push 
mov 
mov 
mov 
sub 

search_loop: 
add 
cmp 
loopne 
mov 
jne 
mov 
sub 

0,0 
EBX 
ECX 
EBX, [EBP+8] 
ECX, [EBP+12] 
AX, [EBP+16] 
EBX, 2 

EBX, 2 
AX,[EBX] 
search_loop 
AX,0 

are preserved. 

; save registers 

; copy array pointer 
; copy array size 
; copy number to be searched 
; adjust pointer to enter loop 

; update array pointer 
; compare the numbers 

/ set return value to zero 
number_not_found 
EAX, [EBP+12] 
EAX,ECX 

number_not_found: 
pop 
pop 
leave 
ret 

ECX 
EBX 

10 

; copy array size 
; compute array index of number 

; restore registers 

The linear search procedure receives a pointer to an array, its size, and the number to be 
searched via the stack. The search process starts at the first element of the array and proceeds 
until either the element is located or the array is exhausted. We use the loopne instruction on 
line 80 to test these two conditions for the termination of the search loop. The ECX is initialized 
(line 74) to the size of the array. In addition, a compare (line 79) tests if there is a match between 
the two numbers. If so, the zero flag is set and loopne terminates the search loop. If the number 
is found, the index of the number is computed (lines 83 and 84) and returned in the EAX register. 

Example 15.4 Sorting of an integer array using the selection sort algorithm. 
The main program is very similar to that in the last example, except for the portion that displays 
the sorted array. The sort procedure receives a pointer to the array to be sorted and its size via the 
stack. It uses the selection sort algorithm to sort the array in ascending order. The basic idea is as 
follows: 

1. Search the array for the smallest element; 
2. Move the smallest element to the first position by exchanging values of the first and smallest 

element positions; 
3. Search the array for the smallest element from the second position of the array; 
4. Move this element to position 2 by exchanging values as in Step 2; 
5. Continue this process until the array is sorted. 

The selection sort procedure implements the following pseudocode: 
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s e l e c t i o n _ s o r t (array, size) 
for (position = 0 to size—2) 

min.value := array[position] 
min.position := position 
for (j = positions 1 to size— 1) 

if (array [j] < min .value) 
then 

min_value := array[j] 
min_position := j 

end if 
end for 
if (position ^ min .position) 
then 

array [min .position] := array [position] 
array [position] := min .value 

end if 
end for 

end s e l e c t i o n _ s o r t 

The selection sort procedure, shown in Program 15.3, implements this pseudocode with the 
following mapping of variables: p o s i t i o n is maintained in ESI, and EDI is used for the index 
variable j . The min_value variable is maintained in DX and m i n _ p o s i t i o n in AX. The 
number of elements to be searched for finding the minimum value is kept in ECX. 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Program 15.3 Sorting of an integer array using tiie selection sort algorithm 

Sorting an array by selection sort SEL_SORT.ASM 

Objective: To sort an integer array using 
selection sort. 

Input: Requests numbers to fill array. 
Output: Displays sorted array. 

%include "io.mac" 

MAX_SIZE 

.DATA 
input__prompt 

EQU 100 

db 
db 

out_msg db 
empty_array_msg db 

"Please enter input array (a negative " 
"number terminates the input):",0 
"The sorted array is:",0 
"Empty array I",0 

.UDATA 
array 

.CODE 

resw MAX SIZE 

.STARTUP 
PutStr input_prompt ; request input array 
xor ESI,ESI ; array index = 0 
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24: 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

mov 
array_loop: 

Getint 
cmp 
jl 
mov 
inc 
loop 

exit_loop: 
push 
push 
call 
mov 
jecxz 
PutStr 
nwln 
mov 
xor 

display_loop: 
Putint 
nwln 
inc 
loop 
jmp 

empty_array: 
PutStr 
nwln 

done: 
.EXIT 

ECX,MAX_SIZE 

AX 
AX,0 
exit_loop ; 
[array+ESI*2], 
ESI 
array_loop ; 

ESI 
array 
selection_sort 
ECX,ESI 
empty_array ; 
out_msg ; 

EBX,array 
ESI,ESI 

[array+ESI*2] 

ESI 
display_loop 
short done 

emp t y_a r r ay_m s 

negative number? 
if so, stop reading numbers 

AX 
increment array index 
iterates a maximum of MAX_SIZE 

push array size & array pointer 

ECX = array size 
check for empty array 
display sorted array 

g 

/ This procedure receives a pointer to an array of integers 
; and the array size via the s tack. The array is sorted by 
; using the selection sort. All registers are preserved. 

%define SORT_ARRAY EBX 
: selection_sort 
: pushad 
: mov 
: mov 
: mov 
: cmp 

jle 
: sub 

; 
EBP,ESP 
EBX, [EBP+36] 
ECX, [EBP+40] 
ECX, 1 
sel_sort_done 
ESI,ESI 

: sort_outer_loop: 
: mov 
: ; DX is 

EDI,ESI 

save registers 

copy array pointer 
copy array size 

array left of ESI is sorted 

used to maintain the minimum value and AX 
: ; stores the pointer to 
: mov 
: mov 
: push 

DX,[SORT_ARRAY+ 
EAX,ESI 
ECX 

the minimum value 
ESI*2] / min. value is in DX 
EAX = pointer to min. value 
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75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 

dec ECX ; size of array left of ESI 
sort_inner_loop: 

skipl 

skip2 

inc 
cmp 
jle 
mov 
mov 

loop 
pop 
cmp 

je 
mov 
mov 
xchg 
mov 

inc 
dec 
cmp 
jne 

sel_sort_done: 
popad 
ret 

EDI ; move to next element 
DX, [S0RT_ARRAY+EDI*2] / less than m.in. value? 
skipl / if not, no change to min. value 
DX,[S0RT_ARRAY+EDI*2]/ else, update min. value (DX) 
EAX,EDI / & its pointer (EAX) 

sort_inner_loop 
ECX 
EAX,ESI ; EAX = ESI? 
skip2 ; if so, element at ESI is in its place 
EDI,EAX ; otherwise, exchange 
AX,[S0RT_ARRAY+ESI*2] ; exchange min. value 
AX,[S0RT_ARRAY+EDI*2] ; & element at ESI 
[S0RT_ARRAY+ESI*2],AX 

ESI ; move ESI to next element 
ECX 
ECX,1 / if ECX = 1, we are done 
sort_outer_loop 

; restore registers 
8 

Indirect Jumps 

So far, we have used only the direct jump instruction. In direct jump, the target address (i.e., its 
relative offset value) is encoded into the jump instruction itself (see Figure 15.1 on page 320). We 
now look at indirect jumps. We limit our discussion to jumps within a segment. 

In an indirect jump, the target address is specified indirectly either through memory or a 
general-purpose register. Thus, we can write 

3mp [ECX] 

if the ECX register contains the offset of the target. In indirect jumps, the target offset is the 
absolute value (unlike the direct jumps, which use a relative offset value). The next example 
shows how indirect jumps can be used with a jump table stored in memory. 

Example 15.5 An example with an indirect jump. 
The objective here is to show how we can use the indirect jump instruction. To this end, we show a 
simple program that reads a digit from the user and prints the corresponding choice represented by 
the input. The listing is shown in Program 15.4. An input between 0 and 9 is valid. If the input is 
0, 1, or 2, it displays a simple message to indicate the class selection. Other digit inputs terminate 
the program. If a nondigit input is given to the program, it displays an error message and requests 
a valid digit input. 
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1: 
2: 
3 : 
4: 
5: 
6: 
7: 
8: 
9: 

1 0 : 
1 1 : 
1 2 : 
1 3 : 
1 4 : 
1 5 : 
16 : 
17: 
l e 
1 9 : 
2 0 : 
2 1 : 
2 2 : 
2 3 : 
2 4 : 
2 5 : 
2 6 : 
2 7 : 
2 8 : 
2 9 : 
3 0 : 
3 1 : 
3 2 : 
3 3 : 
3 4 : 
3 5 : 
3 6 : 
3 7 : 
3 8 : 
3 9 : 
4 0 : 
4 1 : 
4 2 : 
4 3 : 
4 4 : 
4 5 : 
4 6 : 
4 7 : 
4 8 : 
4 9 : 
5 0 : 

Program 15.4 An example demonstrating the use of the indirect jump 

Sample indirect jump example IJUMP.ASM 

Objective: To demonstrate the use of indirect jump. 
Input: Requests a digit character from the user. 

Output: Appropriate class selection message. 
%include "io.mac" 

.DATA 
jump_table dd 

dd 
dd 
dd 
dd 
dd 
dd 
dd 
dd 
dd 

prompt_msg db 
msg_0 db 
msg_l db 
msg_2 db 
msg_default db 
msg_nodigit db 

indirect jump pointer table 

default code for digits 3-9 

code_for_0 
code_for_l 
code_for_2 
default_code 
default_code 
default_code 
default_code 
default_code 
default_code 
default code 

"Type a digit: ",0 
"Economy class selected.",0 
"Business class selected.",0 
"First class selected.",0 
"Not a valid code!",0 
"Not a digit! Try again.",0 

.CODE 
.STARTUP 

read_again: 
PutStr 
sub 
GetCh 
cmp 
jb 
cmp 
ja 

prompt_msg 
EAX,EAX 
AL 
AL,'0' 
not_digit 
AL,'9' 
not_digit 

; if digit, proceed 
sub AL,'0' 
mov ESI,EAX 
jmp [jump_table+ESI*4] 

test_termination: 
cmp AL,2 
j a done 
jmp read_again 

code_for_0: 
PutStr 

request a digit 
EAX = 0 
read input digit and 
check to see if it is a digit 

; convert to numeric equivalent 
; ESI is index into jump table 

indirect jump based on ESI 

nwln 
jmp 

code_for_l: 
PutStr msg_l 

msg_0 

test termination 
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51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

nwln 
jmp 

code_for_2: 
PutStr 
nwln 
jmp 

default_code: 
PutStr 
nwln 
jmp 

not_digit: 
PutStr 
nwln 
jmp 

done: 
.EXIT 

test_termination 

msg_2 

test_termination 

msg_default 

test_termination 

msg_nodigit 

read_again 

In order to use the indirect jump, we have to build a Jump table of pointers (see lines 9-18). 
The input is tested for its validity on lines 33 to 36. If the input is a digit, it is converted to act as 
an index into the jump table and stored in ESI. This value is used in the indirect jump instruction 
(line 40). The rest of the program is straightforward to follow. 

Multiway Conditional Statements 

In high-level languages, a two- or three-way conditional execution can be controlled easily by 
using i f statements. For large multiway conditional execution, writing the code with nested i f 
statements is tedious and error prone. High-level languages like C provide a special construct for 
multiway conditional execution. In this section we look at the C swi t ch construct for multiway 
conditional execution. 

Example 15.6 Multiway conditional execution in C. 
As an example of the sw i t ch statement, consider the following code: 

switch (ch) 
{ 

case ' a ' : 
count[0]++/ /* increment count [0] */ 
break; 

case 'b': 
count[1]++; 
break; 

case 'c': 
count[2]++; 
break; 

case 'd': 
count[3]++; 
break; 

case 'e': 
count[4]++; 
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break; 
default: 

count [5]++; 

The semantics of the switch statement are as follows: If character ch is a, it executes the 
count [0] ++ statement. The b reak statement is necessary to escape out of the swi t ch state­
ment. Similarly, if ch is b, count [1] is incremented, and so on. The d e f a u l t case statement 
is executed if ch is not one of the values specified in the other case statements. 

The assembly language code generated by gcc (with — s option) is shown below. Note that 
gcc uses AT&T syntax, which is different from the syntax we have been using here. The assem­
bly code is embellished for easy reading. We will discuss the AT&T syntax in Chapter 21 (see 
page 434). 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

main: 

mov 
sub 
cmp 

ja 
jmp 

EAX 
EAX 
EAX 

ch 
97 ; 97 = ASCII 
4 

default 
[jump_table+EAX*4] 

section 
.align 4 

jump_table: 
dd 
dd 
dd 
dd 
dd 

.text 
case_a: 

inc 
end_switch: 

case_b: 

: case_c: 

: case_d: 

: case_e: 

leave 
ret 

inc 
jmp 

inc 
jmp 

inc 
jmp 

inc 
jmp 

rodata 

case_a 
case_b 
case_c 
case_d 
case_e 

dword ptr[EBP-

dword ptr[EBP-
end_switch 

dword ptr[EBP-
end_switch 

dword ptr [EBP-
end_switch 

dword ptr[EBP-
end_switch 

-56] 

-52] 

-48] 

-44] 

-40] 

'a ' 
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38 
39 
40 
41 
42 

default: 
inc 
jmp 

WORD PTR [EBP-2 0] 
end switch 

The character to be tested is moved to the EAX register. The subtract and compare instructions 
on lines 5 and 6 check if the character is within the range of the case values (i.e., between a and 
e). If not, the conditional jump instruction on line 7 transfers control to the d e f a u l t case. If it 
is one of the five lowercase letters, the indirect jump instruction on line 8 transfers control to the 
appropriate case using the jump table on lines 12-17. Since each entry in this jump table is four 
bytes long, we use a scale factor of 4 in this jump instruction. • 

Summary 
We discussed unconditional and conditional jump instructions as well as compare and loop in­
structions in detail. These assembly language instructions are useful in implementing high-level 
language selection and iteration constructs such as i f - t h e n - e l s e and wh i l e loops. Through 
detailed examples, we have shown how these instructions are used in the assembly language. 

In the previous chapters, we extensively used direct jump instructions. In this chapter, we 
introduced the indirect jump instruction. In this jump instruction, the target of the jump is specified 
indirectly. Indirect jumps are useful to implement multiway conditional statements such as the 
sw i t ch statement in C. By means of an example, we have shown how such multiway statements 
of high-level languages are implemented in the assembly language. 



16 
Logical and Bit 
Operations 

Bit manipulation is an important aspect of many high-level languages. This chapter discusses the 
logical and bit manipulation instructions supported by the assembly language. Assembly language 
provides several logical instructions to implement logical expressions. These instructions are also 
useful in implementing bitwise logical operations. In addition, several shift and rotate instruc­
tions are provided to facilitate bit manipulation. A few instructions are also provided to test and 
modify bits. These four types of instructions are discussed in this chapter After describing these 
instructions, we give several examples to illustrate their application. The chapter concludes with a 
summary. 

Introduction 
Modem high-level languages provide several conditional and loop constructs. These constructs 
require Boolean or logical expressions for specifying conditions. Assembly language provides 
several logical instructions to express these conditions. These instructions manipulate logical data 
just like the arithmetic instructions manipulate arithmetic data (e.g., integers) with operations such 
as addition and subtraction. The logical data can take one of two possible values: t r u e or f a l s e . 

As the logical data can assume only one of two values, a single bit is sufficient to represent 
these values. Thus, all logical instructions that we discuss here operate on a bit-by-bit basis. By 
convention, if the value of the bit is 0 it represents f a l s e , and a value of 1 represents t r u e . 

We have discussed the assembly language logical instructions in Chapter 9, we devote part of 
this chapter to look at the typical uses for these logical instructions. The assembly language also 
provides several shift and rotate instructions. The shift instructions are very efficient in performing 
multiplication and division of signed and unsigned integers by a power of 2. We use examples to 
illustrate how this can be done using the shift instructions. Several bit manipulation instructions 
are also provided by the assembly language. These instructions can be used to test a specific bit, 
to scan for a bit, and so on. A detailed discussion of these instructions is provided in the later part 
of this chapter. 
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Logical Instructions 

Assembly language provides a total of five logical instructions: and, or, not , xor, and t e s t . 
Except for the no t operator, all of the logical operators are binary operators (i.e., they require two 
operands). These instructions operate on 8-, 16-, or 32-bit operands. 

All of these logical instructions affect the status flags. Since operands of these instructions 
are treated as a sequence of independent bits, these instructions do not generate carry or overflow. 
Therefore, the carry (CF) and overflow (OF) flags are cleared, and the status of the auxiliary flag 
(AF) is undefined. 

Only the remaining three arithmetic flags—the zero flag (ZF), the sign flag (SF), and the parity 
flag (PF)—record useful information about the results of these logical instructions. Since we 
discussed these instructions in Chapter 9, we look at their typical use in this chapter. 

The logical instructions are useful in implementing logical expressions of high-level languages. 
For example, C provides the following two logical operators: 

C operator 

ScSc 

II 

Meaning 

AND 

OR 

These logical operators can be implemented using the corresponding assembly language logical 
instructions. 

Some high-level languages provide bitwise logical operators. For example, C provides bitwise 
and (Sc), o r (I), xor ("), and no t (~) operators. These can be implemented by using the logical 
instructions provided in the assembly language. 

Table 16.1 shows how the logical instructions are used to implement the bitwise logical oper­
ators of the C language. The variable mask is assumed to be in the ESI register. 

Table 16.1 Examples of C bitwise logical operators 

C statement 

mask = ~mask 
(complement mask) 

mask = mask & 85 
(bitwise and) 

mask = mask | 85 
(bitwise o r ) 

mask = mask " 85 
(bitwise x o r ) 

Assembly language instruction 

n o t 

a n d 

o r 

x o r 

ESI 

E S I , 8 5 

E S I , 8 5 

E S I , 8 5 

The and Instruction 

The and instruction is useful mainly in three situations: 
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1. To support compound logical expressions and bitwise and operations of high-level lan­
guages; 

2. To clear one or more bits; 
3. To isolate one or more bits. 

As we have already discussed the first use, here we concentrate on how and can be used to clear 
and isolate selected bits of an operand, 

Clearing Bits If you look at the truth table of the and operation (see page 204), you will notice 
that the source bi acts as a masking bit: if the masking bit is 0, the output is 0 no matter what the 
other input bit is; if the masking bit is 1, the other input bit is passed to the output. 
Consider the following example: 

AL =11010110 <r— operand to be manipulated 
BL =11111100 <-mask byte 

and AL,BL =11010100 

Here, AL contains the operand to be modified by bit manipulation and BL contains a set of masking 
bits. Let us say that we want to force the least significant two bits to 0 without altering any of the 
remaining 6 bits. We select our mask in BL such that it contains O's in those two bit positions and 
1 's in the remainder of the masking byte. As you can see from this example, the and instruction 
produces the desired result. 

Here is another example that utilizes the bit clearing capability of the and instruction. 

Example 16.1 Even-parity generation (partial code). 
Let us consider generation of even parity. Assume that the most significant bit of a byte represents 
the parity bit; the rest of the byte stores the data bits. The parity bit can be set or cleared so as to 
make the number of 1 's in the whole byte even. 

If the number of I's in the least significant 7 bits is even, the parity bit should be 0. Assuming 
that the byte to be parity-encoded is in the AL register, the following statement 

and AL,7FH 

clears the parity bit without altering the remaining 7 bits. Notice that the mask 7FH has a 0 only 
in the parity bit position. • 

Isolating Bits Another typical use of the and instruction is to isolate selected bit(s) for testing. 
This is done by masking out all the other bits, as shown in the next example. 

Example 16.2 Finding an odd or even number 
In this example, we want to find out if the unsigned 8-bit number in the AL register is an odd or an 
even number. A simple test to determine this is to check the least significant bit of the number: if 
this bit is 1, it is an odd number; otherwise, an even number. Here is the code to perform this test 
using the and instruction. 

and AL,1 ; mask = OOOOOOOIB 
j z even_number 

odd number: 
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<code for processing odd number> 

even_number: 

<code for processing even number> 

If AL has an even number, the least significant bit of AL is 0. Therefore, 

and AL,1 

would produce a zero result in AL and sets the zero flag. The j z instruction is then used to test 
the status of the zero flag and to selectively execute the appropriate code fragment. This example 
shows the use of and to isolate a bit—the least significant bit in this case. • 

The or Instruction 
Like the and instruction, the o r instruction is useful in two applications: 

1. To support compound logical expressions and bitwise or operations of high-level languages; 
2. To set one or more bits. 

The use of the o r instruction to express compound logical expressions and to implement bitwise 
or operations has been discussed before. We now discuss how the o r instruction can be used to 
set a given set of bits. 

As you can see from the truth table for the o r operation (see page 204), when the source b i is 
0, the other input is passed on to the output; when the source 6 ̂  is 1, the output is forced to take 
a value of 1 irrespective of the other input. This property is used to set bits in the output. This is 
illustrated in the following example. 

AL =11010110B <— operand to be manipulated 
BL =0000001 IB <—mask byte 

o r AL,BL =I IOIOI I IB 

The mask value in the BL register causes the least significant two bits to change to 1. Here is 
another example. 

Example 16.3 Even-parity encoding (partial code). 
Consider the even-parity encoding discussed in Example 16.1. If the number of I's in the least 
significant 7 bits is odd, we have to make the parity bit 1 so that the total number of I's is even. 
This is done by 

or AL,80H 

assuming that the byte to be parity-encoded is in the AL register. This o r operation forces the 
parity bit to 1 while leaving the remainder of the byte unchanged. • 

Cutting and Pasting Bits The and and or instructions can be used together to "cut and paste" 
bits from two or more operands. We have already seen that and can be used to isolate selected 
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bits—analogous to the "cut" operation. The o r instruction can be used to "paste" the bits. For 
example, the following code creates a new byte in AL by combining odd bits from AL and even 
bits from BL registers. 

and AL,55H ; cut odd bits 
and BL,OAAH ; cut even bits 
or AL,BL ; paste them together 

The first and instruction selects only the odd bits from the AL register by forcing all even bits 
to 0 by using the mask 55H (0101010IB). The second and instruction selects the even bits by 
using the mask AAH (lOlOlOlOB). The o r insstruction simply pastes these two bytes together to 
produce the desired byte in the AL register. 

The xor Instruction 

The xor instruction is useful mainly in three different situations: 

1. To support compound logical expressions of high-level languages; 
2. To toggle one or more bits; 
3. To initialize registers to zero. 

The use of the xor instruction to express compound logical expression has been discussed 
before. Here we focus on the use of xor to toggle bits and to initialize registers to zero. 

Toggling Bits Using the xor instruction, we can toggle a specific set of bits. To do this, the 
mask should have 1 in the bit positions that are to be flipped. The following example illustrates 
this application of the xor instruction. 

Example 16,4 Parity conversion. 
Suppose we want to change the parity encoding of incoming data—if even parity, change to odd 
parity and vice versa. To accomplish this change, all we have to do is flip the parity bit, which can 
be done by 

xor AL,8 0H 

Thus, an even-parity encoded ASCII character A—0100000IB—is transformed into its odd-parity 
encoding, as shown below: 

OIOOOOOIB ^ even-parity encoded ASCII character A 
xor lOOOOOOOB <r- mask byte 

IIOOOOOIB ^ odd-parity encoded ASCII character A 

Notice that if we perform the same xor operation on odd-parity encoding of A, we get back 
the even-parity encoding! This is an interesting property of the xor operation: xoring twice gives 
back the original value. This is not hard to understand, as xor behaves like the no t operation by 
selectively flipping bits. This property is used in the following example to encrypt a byte. • 
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Example 16.5 Encryption of data. 
Data encryption is useful in applications that deal with sensitive data. We can write a simple 
encryption program by using the xor instruction. The idea is that we will use the encryption key 
as the mask byte of the xor instruction as shown below. Assume that the byte to be encrypted is 
in the AL register and the encryption key is A6H. 

; read a data byte into AL 
xor AL,0A6H 
; write the data byte back from AL 

Suppose we have received character B, whose ASCII code is 0100001 OB. After encryption, 
the character becomes d in ASCII, as shown below. 

OIOOOOIOB <-ASCII character B 
OOlOOllOB ^ encryption key (mask) 
OllOOlOOB ^ ASCII character d 

An encrypted data file can be transformed back into normal form by running the encrypted data 
through the same encryption process again. To continue with our example, if the above encrypted 
character code 64H (representing d) is passed through the encryption procedure, we get 42H, 
which is the ASCII code for character B. • 

Initialization of Registers Another use of the xor instruction is to initialize registers to 0. We 
can, of course, do this by 

mov EAX,0 

but the same result can be achieved by 

x o r EAX,EAX 

This works no matter what the contents of the EAX register are. To see why this is so, look at the 
truth table for the xor operation given on page 204. Since we are using the same operand as both 
inputs, the input can be either both 0 or 1. In both cases, the result bit is 0—see the first and last 
rows of the xor truth table. 

These two instructions, however, are not exactly equivalent. The xor instruction affects flags, 
whereas the mov instruction does not. Of course, we can also use the sub instruction to do the 
same. All three instructions take one clock cycle to execute, even though the mov instruction 
requires more bytes to encode the instruction. 

The not Instruction 

The no t instruction is used for complementing bits. Its main use is in supporting logical expres­
sions of high-level languages and bitwise-NOT operations. 

Another possible use for the no t instruction is to compute I's complement. Recall that I's 
complement of a number is simply the complement of the number. Since most systems use the 2's 
complement number representation system, generating 2's complement of an 8-bit signed number 
using not involves 

not AL 
inc AL 

However, the IA-32 instruction set also provides the neg instruction to reverse the sign of a 
number. Thus, the no t instruction is not useful for this purpose. 
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The t e s t Instruction 

The t e s t instruction is the logical equivalent of the compare (cmp) instruction. It performs the 
logical and operation but, unlike the and instruction, t e s t does not alter the destination operand. 
That is, t e s t is a nondestructive and instruction. 

This instruction is used only to update the flags, and a conditional jump instruction normally 
follows it. For instance, in Example 16.2 on page 343, the instruction 

a n d A L , 1 

destroys the contents of the AL register. If our purpose is to test whether the unsigned number 
in the AL register is an odd number, we can do this using t e s t without destroying the original 
number. For convenience, the example is reproduced below with the t e s t instruction. 

test 
jz 

odd_number: 

even number: 

AL,1 ; mask = 
even number 

= OOOOOOOIB 

Shift Instructions 
The instruction set provides two types of shift instructions: one for logical shifts, and the other for 
arithmetic shifts. The logical shift instructions are: 

shl(SHiftLeft) 
shr(SHift Right) 

and the arithmetic shift instructions are 

s a l (Shift Arithmetic Left) 
s a r (Shift Arithmetic Right) 

Another way of looking at these two types of shift instructions is that the logical type instruc­
tions work on unsigned binary numbers, and the arithmetic type work on signed binary numbers. 
We will get back to this discussion later in this section. 

Effect on Flags As in the logical instructions, the auxiliary flag is undefined following a shift 
instruction. The carry flag (CF), zero flag (ZF), and parity flag (PF) are updated to reflect the 
result of a shift instruction. The CF always contains the bit last shifted out of the operand. The 
OF is undefined following a multibit shift. In a single-bit shift, OF is set if the sign bit has been 
changed as a result of the shift operation; OF is cleared otherwise. The OF is rarely tested in a 
shift operation; we often test the CF and ZF flags. 

Logical Shift Instructions 

Since we discussed the logical shift instructions in Chapter 9, we discuss their usage here. These 
instructions are useful mainly in two situations: 

1. To implement the shift operations of high-level languages; 
2. To manipulate bits; 
3. To multiply and divide unsigned numbers by a power of 2. 
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Table 16.2 Examples of bitwise logical operators 

C statement 

mask = mask>>2 
(right-shift mask by two bit positions) 

mask = mask<<4 
(left-shift mask by four bit positions) 

Assembly language instruction 

sh r S I , 2 

s h l S I , 4 

Shift Operations Some high level languages provide left- and right-shift operations. For ex­
ample, the C language provides two shift operators: left shift (<<) and right shift (>>). These 
operators can be implemented with the assembly language shift instructions. 

Table 16.2 shows how the shift instructions are used to implement the shift operators of the C 
language. The variable mask is assumed to be in the SI register. 

Bit Manipulation The shift operations provide flexibility to manipulate bits as illustrated by the 
following example. 

Example 16.6 Another encryption example. 
Consider the encryption example discussed on page 346. In this example, we use the following 
encryption algorithm: encrypting a byte involves exchanging the upper and lower nibbles (i.e., 
4 bits). This algorithm also allows the recovery of the original data by applying the encryption 
twice, as in the xor example on page 346. 

Assuming that the byte to be encrypted is in the AL register, the following code implements 
this algorithm: 

; AL contains the byte to be encrypted 
mov AH,AL 
shl AL,4 ; move lower nibble to upper 
shr AH,4 ; move upper nibble to lower 
or AL,AH ; paste them together 
; AL has the encrypted byte 

To understand this code, let us trace the execution by assuming that AL has the ASCII character 
A. Therefore, 

AH = AL = OIOOOOOIB 

The idea is to move the upper nibble to lower in the AH register, and the other way around in 
the AL register. To do this, we use s h l and sh r instructions. The s h l instruction replaces the 
shifted bits by O's and after the s h l 

AL = OOOIOOOOB 

Similarly, sh r introduces O's in the vacated bits on the left. Thus, after the sh r instruction 

AH = OOOOOIOOB 
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Table 16.3 Doubling and halving of unsigned numbers 

Binary number 

00011100 

00111000 

01110000 

11100000 

10101000 

01010100 

00101010 

00010101 

Decimal value 

28 
56 
112 
224 

168 
84 
42 
21 

The or instruction pastes these two bytes together, as shown below: 

or 

AL 
AH 

AL,AH 

OOOIOOOOB 

OOOOOIOOB 

OOOIOIOOB 

We show later that this encryption can be done better by using a rotate instruction (see Exam­
ple 16.7 on page 353). • 

Multiplication and Division Shift operations are very effective in performing doubling or halving 
of unsigned binary numbers. More generally, they can be used to multiply or divide unsigned 
binary numbers by a power of 2. 

In the decimal number system, we can easily perform multiplication and division by a power 
of 10. For example, if we want to multiply 254 by 10, we will simply append a 0 at the right 
(analogous to shifting left by a digit with the vacated digit receiving a 0). Similarly, division of 
750 by 10 can be accomplished by throwing away the 0 on the right (analogous to right shift by a 
digit). 

Since computers use the binary number system, they can perform multiplication and division 
by a power of 2. This point is further clarified in Table 16.3. The first half of this table shows how 
shifting a binary number to the left by one bit position results in multiplying it by 2. Note that the 
vacated bits are replaced by O's. This is exactly what the s h l instruction does. Therefore, if we 
want to multiply a number by 8 (i.e., 2^), we can do so by shifting the number left by three bit 
positions. 

Similarly, as shown in the second half of the table, shifting the number right by one bit position 
is equivalent to dividing it by 2. Thus, we can use the sh r instruction to perform division by a 
power of 2. For example, to divide a number by 32 (i.e., 2 ^), we right shift the number by five 
bit positions. Remember that this division process corresponds to integer division, which discards 
any fractional part of the result. 
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Table 16.4 Doubling of signed numbers 

Signed binary number 

00001011 

00010110 

00101100 

01011000 

11110101 

11101010 

11010100 

10101000 

Decimal value 

+ 11 

+22 

+44 

+88 

-11 

-22 

-44 

-88 

Arithmetic Shift Instructions 

This set of shift instructions 

s a l (Shift Arithmetic Left) 
s a r (Shift Arithmetic Right) 

can be used to shift signed numbers left or right, as shown below. 

SAL CF 

Bit Position: 

SAR 

Bit Position: 

1 
CF 

As with the logical shift instructions, the CL register can be used to specify the count value. The 
general format is 

sal destination,count sar 
sal destination,CL sar 

destination,count 
destination,CL 

Doubling Signed Numbers Doubling a signed number by shifting it left by one bit position may 
appear to cause problems because the leftmost bit is used to represent the sign of the number. It 
turns out that this is not a problem at all. See the examples presented in Table 16.4 to develop your 
intuition. The first group presents the doubling effect on positive numbers and the second group 
on negative numbers. In both cases, a 0 replaces the vacated bit. Why isn't shifting the sign bit 
out causing problems? The reason is that signed numbers are sign-extended to fit a larger-than-
required number of bits. For example, if we want to represent numbers in the range of +3 and 
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Table 16,5 Division of signed numbers by 2 

Signed binary number 

01011000 

00101100 

00010110 

00001011 

10101000 

11010100 

11101010 

11110101 

Decimal value 

+88 

+44 

+22 

+ 11 

-88 

-44 

-22 

-11 

- 4 , 3 bits are sufficient to represent this range. If we use a byte to represent the same range, the 
number is sign-extended by copying the sign bit into the higher order five bits, as shown below. 

sign bit 
copied 

+3= OOOOOOllB 

sign bit 
copied 

- 3 - 11111 lOlB 

Clearly, doubling a signed number is no different than doubling an unsigned number. Thus, no 
special shift left instruction is needed for the signed numbers. In fact, s a l and s h l are one and 
the same instruction—sal is an alias for sh l . 

Halving Signed Numbers Can we also forget about treating the signed numbers differently in 
halving a number? Unfortunately, we cannot! When we right shift a signed number, the vacated 
left bit should be replaced by a copy of the sign bit. This rules out the use of sh r for signed 
numbers. See the examples presented in Table 16.5. The s a r instruction precisely does this—it 
copies the sign bit into the vacated bit on the left. 

Remember that the shift right operation performs integer division. For example, right shifting 
0000101 IB (+1 ID) by a bit results in OOOOOIOIB (+5D). 

Why Use Shifts for Multiplication and Division? 

Shifts are more efficient than the corresponding multiplication and division instructions. As an 
example, consider dividing an unsigned 16-bit number in the AX register by a power of 2 that is 
BX. Using the d i v instruction, we can write 

; dividend is assumed to be in DX:AX 
div BX 
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o o 

10 20 30 40 

Number of calls (in millions) 

50 60 

Figure 16.1 Execution time comparison of implementing division by a power of 2 using tine siiift 
and divide instructions. 

Now let us look at how we can perform this multiplication with the sh r instruction. If we place the 
bit shift count in the CL register, we can use this shift instruction to perform the division operation. 
In the following code 

bsr 
shr 

CX,BX 
AX,CL 

the b s r instruction places this shift count in the CX register. We give details of this instruction on 
page 355. 

Figure 16.1 shows the execution of these two versions on a 2.8 GHz Pentium 4 machine run­
ning the Red Hat Linux. The x-axis gives the number times (in millions) the division operation is 
performed. The y-axis gives the execution time in seconds. The "Shift" line is the execution time 
of the version that uses s h r to perform the division 40000/1024. The corresponding execution 
time for the d i v version is shown by the "Divide" line. Clearly, the shift version is much more 
efficient than the divide version. 

Doubleshift Instructions 

The IA-32 instruction set also provides two doubleshift instructions for 32-bit and 64-bit shifts. 
These two instructions operate on either word or doubleword operands and produce a word or 
doubleword result, respectively. The doubleshift instructions require three operands, as shown 
below: 

shld dest,src,count ; left shift 
shrd dest,src,count ; right shift 

d e s t and s r c can be either a word or a doubleword. While the d e s t operand can be in a register 
or memory, the s r c operand must be in a register. The shift count can be specified as in the shift 
instructions—either as an immediate value or in the CL register. 
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A significant difference between the shift and doubleshift instructions is that the s r c operand 
supplies the bits in doubleshift instructions, as shown below: 

15/31 0 15/31 0 

shld CF dest (register or memory) -<— src (register) 

shrd 

/31 

src (register) 

0 15/31 0 

—^- dest (register or memory) CF 

Note that the bits shifted out of the s r c operand go into the d e s t operand. However, the s r c 
operand itself is not modified by the doubleshift instructions. Only the d e s t operand is updated 
appropriately. As in the shift instructions, the last bit shifted out is stored in the carry flag. Later 
we present an example that demonstrates the use of the doubleshift instructions (see Example 16.8 
on page 354). 

Rotate Instructions 
A drawback with the shift instructions is that the bits shifted out are lost. There are situations where 
we want to keep these bits. While the doubleshift instructions provide this capability on word 
and doubleword operands, the rotate instructions remedy this drawback for a variety of operands. 
These instructions can be divided into two types: rotate without involving the carry flag (CF), or 
rotate through the carry flag. Since we presented these two types of rotate instructions in Chapter 9, 
we discuss their typical usage next. 

Rotate Without Carry 

The rotate instructions are useful in rearranging bits of a byte, word, or doubleword. This is 
illustrated below by revisiting the data encryption example given on page 348. 

Example 16.7 Encryption example revisited, 
In Example 16.6, we encrypted a byte by interchanging the upper and lower nibbles. This can be 
done easily either by 

mov 
r o r 

mov 
r o l 

CL, 
AL, 

CL, 
AL 

4 
CL 

4 
CL 

or by 

This is a much simpler solution than the one using shifts. D 

Rotate Through Carry 

The r c l and r c r instructions provide flexibility in bit rearranging. Furthermore, these are the 
only two instructions that take the carry flag bit as an input. This feature is useful in multiword 
shifts, as illustrated by the following example. 
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Example 16.8 Shifting 64-bit numbers. 
We have seen that multiplication and division by a power of 2 is faster if we use shift operations 
rather than multiplication or division instructions. Shift instructions operate on operands of size 
up to 32 bits. What if the operand to be manipulated is bigger? 

Since the shift instructions do not involve the carry flag as input, we have two alternatives: 
either use r c l or r c r instructions, or use the double shift instructions for such multiword shifts. 
As an example, assume that we want to multiply a 64-bit unsigned number by 16. The 64-bit 
number is assumed to be in the EDXiEAX register pair with EAX holding the least significant 32 
bits. 

Rotate version: 

mov CX,4 ; 4 bit shift 
shift_left: 

shl EAX,1 ; moves leftmost bit of AX to CF 
rcl EDX,1 / CF goes to rightmost bit of DX 
loop shift_left 

Doubleshift version: 

shld EDX,EAX,4 / EAX is unaffected by shld 
shl EAX,4 

Similarly, if we want to divide the same number by 16, we can use the following code: 

Rotate version: 

mov CX,4 ; 4 bit shift 
shift_right: 

shr EDX,1 ; moves rightmost bit of DX to CF 
rcr EAX,1 ; CF goes to leftmost bit of AX 
loop shift_right 

Doubleshift version: 

shrd EAX,EDX,4 ; EDX is unaffected by shld 
shr EDX,4 

Clearly, the doubleshift instruction avoids the need for a loop. • 

Bit Instructions 
The IA-32 instruction set includes several bit test and modification instructions as well as bit scan 
instructions. This section discusses these two groups of instructions. The programming examples 
given later illustrate the use of these instructions. 

Bit Test and Modify Instructions 

There are four bit test instructions. Each instruction takes the position of the bit to be tested. The 
least significant bit is considered as bit position zero. A summary of the four instructions is given 
below: 
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Instruction Effect on Selected Bit 

bt (Bit Test) No effect 
bts (Bit Test and Set) Selected bit^ 1 
btr (Bit Test and Reset) Selected bi t^ 0 
btc (Bit Test and Complement) Selected bit^ NOT(Selected bit) 

All four instructions copy the selected bit into the carry flag. The format of all four instructions 
is the same. We use the b t instruction to illustrate the format of these instructions. 

bt operand,bit_pos 

where operand can be a word or doubleword located either in a register or in memory. The 
b i t _ p o s specifies the bit position to be tested. It can be specified as an immediate value or in 
a 16- or 32-bit register. Instructions in this group affect only the carry flag. The other five status 
flags are undefined following a bit test instruction. 

Bit Scan Instructions 
Bit scan instructions scan the operand for a 1 bit and return its bit position in a register. There are 
two instructions—one to scan forward and the other to scan backward. The format is 

bsf dest_reg,operand ;bit scan forward 
bsr dest_reg,operand ;bit scan reverse 

where operand can be a word or doubleword located either in a register or in memory. The 
d e s t _ r e g receives the bit position. It must be a 16- or 32-bit register. The zero flag is set if all 
bits of operand are 0; otherwise, the ZF is cleared and the d e s t _ r e g is loaded with the bit 
position of the first 1 bit while scanning forward (for bsf), or reverse (for bsr) . Like the bit test 
and modify instructions, these two instructions affect only the zero flag; the other five status flags 
are undefined. 

Our First Program 

As our first program, we look at how we can use the s a r instruction to perform signed integer 
division. In this program, we divide a signed 32-bit integer by a power of 2. The program listing 
is given in Program 16.1. It requests two numbers from the user. The numerator can be a signed 
32-bit integer. This is read using GetLin t on line 20. The user is then prompted to enter the 
denominator. After validating the denominator, the program outputs the result of the division 
operation. After displaying the result, it queries whether the user wants to quit. Based on the 
response received, the program either terminates or repeats the process. 
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1: 
2 : 
3 : 
4 : 
5: 
6: 
7: 
8: 
9: 

1 0 : 
1 1 : 
1 2 : 
1 3 : 
1 4 : 
1 5 : 
1 6 : 
1 7 : 
1£ 
1 9 : 
2 0 : 
2 1 : 
2 2 : 
23 : 
2 4 : 
2 5 : 
2 6 : 
2 7 : 
2 8 : 
2 9 : 
3 0 : 
3 1 : 
3 2 : 
3 3 : 
3 4 : 
3 5 : 
3 6 : 
37 : 
3 8 : 
3 9 : 
4 0 : 
4 1 : 

Program 16.1 Integer division using the shift instruction 

Division using shifts SAR_DIVIDE.ASM 

Objective: To divide a 32-bit signed number 
by a power of 2 using SAR. 

Input: Requests two numbers from the user. 
Output: Prints the division result. 

%include "io.mac" 
.DATA 

db 'Please input numerator: ',0 
db 'Please input denominator: ',0 
db 'The integer division result is: 
db 'Do you want to quit (Y/N): ',0 
db 'Denominator is zero. ', 
db 'Enter a nonzero value: ',0 

prompt1 
prompt2 
out_msgl 
query_msg 
error_msg 

rO 

.CODE 
.STARTUP 

read_input: 
PutStr promptl 
GetLInt EAX 
PutStr prompt2 

read_denom: 
GetLInt EBX 
bsr ECX^EBX 

request numerator 

request denominator 

; ECX receives the position of 
/ the leftmost 1 bit in EBX 

; bsr clears ZF if there is at least 1 bit 
; in denominator; ZF = 0 if all the bits are zero 
jnz nonZero 
PutStr error_msg 
jmp read_denom 

nonZero: 
sar EAX,CL 
PutStr out_msgl 
PutLInt EAX 
nwln 
PutStr query_msg 
GetCh AL 
cmp AL,'Y' 
jne read_input 

done: 
.EXIT 

if denominator is zero, 
read again 

output the result 

query whether to terminate 

if response is not 'Y' 
repeat the loop 
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The division is done by the s a r instruction. To do this, we need to find out the number bit 
positions the numerator needs to be shifted right. If we assume that the denominator is a power of 
2, it will have a single 1 bit. We use b s r to find the position of this 1 bit. The instruction 

b s r ECX,EBX 

scans the denominator in EBX from the most significant bit (i.e., it scans the value in EBX from 
left to right). The first 1 bit position is returned in the ECX register. If the denominator is zero, 
the b s r instruction sets the zero flag (ZF = 1). Otherwise, it is cleared. We use this condition to 
detect if the denominator is zero (line 28). If it is zero, an error message is displayed and the user 
is prompted for a nonzero value. If the denominator is not a power of 2, the most significant bit 
that has 1 is returned by the b s r instruction. For example, if the denominator is 10, it divides the 
numerator by 8. 

Illustrative Examples 
This section presents two examples that use the instructions introduced in this chapter. 

Example 16.9 Multiplication using only shifts and adds. 
The objective of this example is to show how multiplication can be done entirely by using the shift 
and add operations. We consider multiplication of two unsigned 8-bit numbers. In order to use the 
shift operation, we have to express the multiplier as a power of 2. For example, if the multiplier is 
64, the result can be obtained by shifting the multiplicand left by six bit positions because 2 ^ = 64. 

What if the multiplier is not a power of 2? In this case, we have to express this number as a 
sum of powers of 2. For example, if the multiplier is 10, it can be expressed as 8+2, where each 
term is a power of 2. Then the required multiplication can be done by two shifts and one addition. 

The question now is: How do we express the multiplier in this form? If we look at the binary 
representation of the multiplicand (lOD = 00001 OlOB), there is a 1 in bit positions with weights 8 
and 2. Thus, for each 1 bit in the multiplier, the multiplicand should be shifted left by a number 
of positions equal to the bit position number. In the above example, the multiplicand should be 
shifted left by 3 and 1 bit positions and then added. This procedure is formalized in the following 
algorithm: 

mult8 (numberl,number2) 
result = 0 
for (/ = 7 downto 0) 

if (bit(number2, /) = 1) 
result = result + number 1 * 2* 

end if 
end for 

end mult8 

The function b i t returns the ith bit of number2. The program listing is given in Program 16.2. 
The main program requests two numbers from the user and calls the procedure mult8 and dis­
plays the result. As in the previous program, it queries the user whether to quit and proceeds 
according to the response. 
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1: 
2 : 
3 : 
4 : 
5 : 
6: 
7: 
8: 
9: 

1 0 : 
1 1 : 
1 2 : 
1 3 : 
1 4 : 
1 5 : 
1 6 : 
1 7 : 
1£ 
1 9 : 
2 0 : 
2 1 : 
2 2 : 
2 3 : 
2 4 : 
2 5 : 
2 6 : 
2 7 : 
2 8 : 
2 9 : 
3 0 : 
3 1 : 
3 2 : 
3 3 : 
3 4 : 
3 5 : 
3 6 : 
3 7 : 
3 8 : 
3 9 : 
4 0 : 
4 1 : 
4 2 : 
4 3 : 
4 4 : 
4 5 : 
4 6 : 
4 7 : 
4 8 : 
4 9 : 
5 0 : 

Program 16.2 Multiplication of two 8-bit numbers using only shifts and adds 

8-bit multiplication using shifts SHL_MLT.ASM 

Objective: To multiply two 8-bit unsigned numbers 
using SHL rather than MUL instruction, 

Input: Requests two unsigned numbers. 
Output: Prints the multiplication result. 

%include "io.mac" 
.DATA 

db 'Please input two short numbers: ',0 
db 'The multiplication result is: ',0 
db 'Do you want to quit (Y/N): ',0 

input_prompt 
out_msgl 
query_msg 

.CODE 
.STARTUP 

read_input: 
PutStr input_prompt 
Getint AX 
Getint BX 
call mult8 
PutStr out_msgl 
Putint AX 
nwln 
PutStr query_msg 
GetCh AL 
cmp AL,'Y' 
jne read_input 

done: 
.EXIT 

request two numbers 
AX = first number 
BX = second number 
mult8 leaves result in AX 

query whether to terminate 

if the response is not 'Y' 
repeat the loop 

mult8 multiplies two 8-bit unsigned numbers passed on 
to it in AL and BL. The 16-bit result is returned in AX. 
This procedure uses the SHL instruction to do the 
multiplication. All registers, except AX, are preserved. 

mult8: 
push 
push 
push 
xor 
mov 
mov 

repeatl: 
rol 
jnc 
mov 
shl 
add 

skipl: 
dec 

CX 
DX 
SI 
DX,DX 
CX,7 
SI, AX 

BL,1 
skipl 
AX, SI 
AX,CL 
DX,AX 

CX 

save registers 

DX = 0 (keeps mult, result) 
CX = # of shifts required 
save original number in SI 

multiply loop - iterates 7 times 
test number2 bits from left 
if 0, do nothing 
else, AX = numberl*bit weight 

update running total in DX 
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51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

jnz 
rol 
jnc 
add 

skip2: 
mov 
pop 
pop 
pop 
ret 

repeatl 
BL,1 
skip2 
DX,SI 

AX,DX 
SI 
DX 
CX 

test the rightmost bit of AL 
if 0, do nothing 
else, add number1 

move final result into AX 
restore registers 

The mult8 procedure multiplies two 8-bit unsigned numbers and returns the result in AX. 
It follows the algorithm discussed on page 357. The multiply loop (lines 43-51) tests the most 
significant 7 bits of the multiplier. The least significant bit is tested on lines 52 and 53. Notice 
that the procedure uses r o l rather than s h l to test each bit (lines 44 and 52). The use of r o l 
automatically restores the BL register after 8 rotates. • 

Example 16.10 Multiplication using only shifts and adds—version 2, 
In this example, we rewrite the mul 18 procedure of the last example by using the bit test and scan 
instructions. In the previous version, we used a loop (see lines 43-50) to test each bit. Since we 
are interested only in 1 bits, we can use a bit scan instruction to do this job. The modified mul 18 
procedure is shown below. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

multS multiplies two 8-bit unsigned numbers passed on 
to it in AL and BL. The 16-bit result is returned in AX. 
This procedure uses the SHL instruction to do the 
multiplication. All registers, except AX, are preserved. 
Demonstrates the use of bit instructions BSF and ETC. 

mult8: 
push 
push 
push 
xor 
mov 

repeatl: 
bsf 
jz 
mov 
shl 
add 
btc 
jmp 

skipl: 
mov 
pop 
pop 
pop 
ret 

CX 
DX 
SI 
DX,DX 
SI, AX 

CX,BX 
skipl 
AX, SI 
AX,CL 
DX,AX 
BX,CX 
repeatl 

AX,DX 
SI 
DX 
CX 

; save registers 

; DX = 0 (keeps mult, result) 
; save original number in SI 

/ CX = first 1 bit position 
; if ZF=1, no 1 bit in B 
; else, AX = numberl*bit weight 

; update running total in DX 
; complement the bit found by BSF 

; move final result into AX 
; restore registers 
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The modified loop (lines 14-21) replaces the loop in the previous version. This code is more 
efficient because the number of times the loop iterates is equal to the number of 1 's in BX. The 
previous version, on the other hand, always iterates seven times. Also note that we can replace the 
b t c instruction on line 20 by a b t r instruction. Similarly, the bsf instruction on line 15 can be 
replaced by a b r f instruction. • 

Summary 

We discussed logical, shift, and rotate instructions available in the assembly language. Logical 
instructions are useful to implement bitwise logical operators and Boolean expressions. How­
ever, in some instances Boolean expressions can also be implemented by using conditional jump 
instructions without using the logical instructions. 

Shift and rotate instructions provide flexibility to bit manipulation operations. There are two 
types of shift instructions: one works on logical and unsigned values, and the other is meant for 
signed values. There are also two types of rotate instructions: rotate without, or rotate through 
carry. Rotate through carry is useful in shifting multiword data. 

The instruction set also provides two doubleshift instructions that work on either word or dou-
bleword operands. In addition, four instructions for testing and modifying bits and two instructions 
to scan for a bit are available. 

We discussed how the logical and shift instructions are used to implement logical expressions 
and bitwise logical operations in high-level languages. Shift instructions can be used to multiply 
or divide by a number that is a power of 2. We have demonstrated that the shift instructions for 
such arithmetic operations are much more efficient than the corresponding arithmetic instructions. 



PART VI 

Advanced Assembly Language 



17 
String Processing 

String manipulation is an important aspect of any programming task. Strings are represented in a 
variety of ways. We start the chapter with a discussion of the two representation schemes used to 
store strings. The IA-32 instruction set supports string processing by a special set of instructions. 
We describe these instructions in detail. Several examples are presented to illustrate the use of 
string instructions in developing procedures for string processing. We also describe a program to 
test the procedures developed here. A novelty of this program is that it demonstrates the use of 
indirect procedure calls. Even though these instructions are called string instructions, they can be 
used for processing other types data. We demonstrate this aspect by means of an example. The 
chapter concludes with a summary. 

String Representation 

A string can be represented either as a fixed-length string or as a variable-length string. In the 
fixed-length representation, each string occupies exactly the same number of character positions. 
That is, each string has the same length, where the length of a string refers to the number of 
characters in the string. In this representation, if a string has fewer characters, it is extended by 
padding, for example, with blank characters. On the other hand, if a string has more characters, it 
is usually truncated to fit the storage space available. 

Clearly, if we want to avoid truncation of larger strings, we need to fix the string length care­
fully so that it can acconunodate the largest string that the program will ever handle. A potential 
problem with this representation is that we should anticipate this value, which may cause difficul­
ties with program maintenance. A further disadvantage of using fixed-length representation is that 
memory space is wasted if majority of the strings are shorter than the length used. 

The variable-length representation avoids these problems. In this scheme, a string can have as 
many characters as required (usually, within some system-imposed limit). Associated with each 
string, there is a string length attribute giving the number of characters in the string. This length 
attribute is given in one of two ways: 

1. Explicidy storing string length, or 
2. Using a sentinel character. 

These two methods are discussed next. 
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Explicitly Storing String Length 

In this method, string length attribute is explicitly stored along with the string, as shown in the 
following example: 

string DB 'Error message' 
str_len DW $—string 

where $ is the location counter symbol that represents the current value of the location counter. In 
this example, $ points to the byte after the last character of s t r i n g . Therefore, 

$—string 

gives the length of the string. Of course, we could also write 

string DB 'Error message' 
str_len DW 13 

However, if we modify the contents of s t r i n g later, we have to update the string length value as 
well. On the other hand, by using $ - s t r i n g , we let the assembler do the job for us at assembly 
time. 

Using a Sentinel Character 

In this method, strings are stored with a trailing sentinel character to delimit a string. Therefore, 
there is no need to store the string length explicitly. The assumption here is that the sentinel 
character is a special character that does not appear within a string. We normally use a special, 
nonprintable character that does not appear in strings. We have been using the ASCII NULL-
character (OOH) to terminate strings. Such NULL-terminated strings are called ASCHZ strings, 
Here are some examples: 

stringl DB 'This is OK',0 
string2 DB 'Price = $9.99',0 

The C language, for example, uses this representation to store strings. In the remainder of this 
chapter, we use this representation for strings. 

String Instructions 

There are five main string-processing instructions. These can be used to copy a string, to compare 
two strings, and so on. It is important to note that these instructions are not just for the strings. 
We can use them for other types of data. For example, we could use them to copy arrays of 
doublewords, as we shall see later. The five basic instructions are shown in Table 17.1. 

Specifying Operands 

As indicated, each string instruction may require a source operand, a destination operand, or both. 
For 32-bit segments, string instructions use ESI and EDI registers to point to the source and des­
tination operands, respectively. The source operand is assumed to be at DS:ESI in memory, and 
the destination operand at ESiEDI in memory. For 16-bit segments, SI and DI registers are used 
instead of ESI and EDI registers. If both the operands are in the same data segment, we can let 
both DS and ES point to the data segment to use the string instructions. 
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Table 17.1 String Instructions 

Mnemonic 

LODS 

STOS 

MOVS 

CMPS 

SCAS 

Meaning 

LOaD String 
STOre String 
MOVe String 
CoMPare Strings 
SCAn String 

Operand(s) required 

source 
destination 
source & destination 
source & destination 
destination 

Variations 

Each string instruction can operate on 8-, 16-, or 32-bit operands. As part of execution, string 
instructions automatically update (i.e., increment or decrement) the index register(s) used by them. 
For byte operands, source and destination index registers are updated by 1. These registers are 
updated by 2 and 4 for word and doubleword operands, respectively. In this chapter, we focus 
mostly on byte operand strings. 

String instructions derive much of their power from the fact that they can accept a repetition 
prefix to repeatedly execute the operation. These prefixes are discussed next. The direction of 
string processing—forward or backward—is controlled by the direction flag (discussed later). 

Repetition Prefixes 

String instructions can be repeated by using a repetition prefix. As shown in Table 17.2, the three 
prefixes are divided into two categories: unconditional or conditional repetition. None of the flags 
is affected by these instructions. 

Table 17.2 Repetition Prefixes 
unconditional repeat 

r e p 

conditional repeat 
r e p e / r e p z 

repne/repnz 

REPeat 

REPeat while Equal 
REPeat while Zero 

REPeat while Not Equal 
REPeat while Not Zero 

rep This is an unconditional repeat prefix and causes the instruction to repeat according to the 
value in the ECX register. Note that for 16-bit addresses, CX register is used. The semantics of 
the r e p prefix are 
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while (ECX 7̂  0) 
execute the string instruction; 
ECX:=ECX-1; 

end while 

The ECX register is first checked and if it is not 0, only then is the string instruction executed. 
Thus, if ECX is 0 to start with, the string instruction is not executed at all. This is in contrast to the 
loop instruction, which first decrements and then tests if ECX is 0. Thus, with loop, ECX = 0 
results in a maximum number of iterations, and usually a j ecxz check is needed. 

repe/repz This is one of the two conditional repeat prefixes. Its operation is similar to that of 
r e p except that the repetition is also conditional on the zero flag (ZF), as shown below: 

while (ECX 7̂  0) 
execute the string instruction; 
ECX:=ECX-1; 
if(ZF = 0) 
then 

exit loop 
end if 

end while 

The maximum number of times the string instruction is executed is determined by the contents 
of ECX, as in the r ep prefix. But the actual number of times the instruction is repeated is de­
termined by the status of ZF. Conditional repeat prefixes are useful with cmps and seas string 
instructions. 

repne/repnz This prefix is similar to the r e p e / r e p z prefix except that the condition tested is 
ZF = 1 as shown below: 

while (ECX ^̂  0) 
execute the string instruction; 
ECX:=ECX-1; 
if(ZF=l) 
then 

exit loop 
end if 

end while 

Direction Flag 

The direction of string operations depends on the value of the direction flag. Recall that this is 
one of the bits of the flag's register (see Figure 4.4 on page 65). If the direction flag (DF) is clear 
(i.e., DF = 0), string operations proceed in the forward direction (from head to tail of a string); 
otherwise, string processing is done in the opposite direction. 

Two instructions are available to explicidy manipulate the direction flag: 

s t d set direction flag (DF = 1) 
e l d clear direction flag (DF = 0) 
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Both of these instructions do not require any operands. Each instruction is encoded using a single 
byte. 

Usually, it does not matter whether a string is processed in the forward or backward direction. 
For sentinel character-terminated strings, forward direction is preferred. However, there are situ­
ations where one particular direction is mandatory. For example, if we want to shift a string right 
by one position, we have to start with the tail and proceed toward the head (i.e., move backward) 
as in the following example. 

Initial string —» 

After one shift -^ 

After two shifts -

After three shifts-

Final string —> 

1 a 1 b 1 c 1 0 1 ? 1 

1 a 1 b 1 c 1 0 1 0 1 

1 a 1 b 1 c 1 c 1 0 1 

b b 

a a b c 0 

String Move Instructions 

There are three basic instructions in this group—movs, lods , and s t o s . Each instruction can 
take one of four forms. We start our discussion with the first instruction. 

IVIove a String (movs) The format of the movs instruction is: 

movs dest_string,source_string 
movsb 
movsw 
movsd 

Using the first form, we can specify the source and destination strings. This specification will be 
sufficient to determine whether it is a byte, word, or doubleword operand. However, this form is 
not used frequently. 

In the other three forms, the suffix b, w, or d is used to indicate byte, word, or doubleword 
operands. This format applies to all the string instructions of this chapter. 

The movs instruction is used to copy a value (byte, word, or doubleword) from the source 
string to the destination string. As mentioned earlier, the source string value is pointed to by 
DSiESI and the destination string location is indicated by ES:EDI in memory. After copying, 
the ESI and EDI registers are updated according to the value of the direction flag and the operand 
size. Thus, before executing the movs instruction, all four registers should be set up appropriately. 
(This is necessary even if you use the first format.) Note that our focus is on 32-bit segments. For 
16-bit segments, we use the SI and DI registers. 

movsb — move a byte string 
ES:EDI := (DS:ESI) 
if(DF = 0) 
then 

ESI:=ESI+1 
EDI:=EDI+1 

; copy a byte 
; forward direction 
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else ; backward direction 
ESI := ESI-1 
EDI := EDI-1 

end if 
Flags affected: none 

For word and doubleword operands, the index registers are updated by 2 and 4, respectively. 
This instruction, along with the r e p prefix, is useful to copy a string. More generally, we can use 
them to perform memory-to-memory block transfers. Here is an example that copies s t r i n g l to 
s t r i n g 2 . 

A 

The original string',0 
.DATA 
stringl 
strLen 
.UDATA 
string2 
.CODE 

db 
EQU 

'The ( 
$-str 

resb 80 

.STARTUP 
mov 
mov 
mov 
eld 
rep 

ECX, 
ESI, 
EDI, 

StrLen 
stringl 
string2 

movsb 

StrLen includes NULL 

forward direction 

Since the movs instruction does not change any of the flags, conditional repeat (repe or repne) 
should not be used with this instruction. 

Load a String (lods) This instruction copies the value from the source string (pointed to by 
DSiESI) in memory to AL (for byte operands—lodsb), AX (for word operands—lodsw), or 
EAX (for doubleword operands—lodsd). 

l o d s b — load a byte string 
AL := (DS:ESI) ; copy a byte 
if (DP = 0) ; forward direction 
then 

ESI := ESI+1 
else ; backward direction 

ESI := ESI-1 
end if 

Flags affected: none 

Use of the r e p prefix does not make sense, as it will leave only the last value in AL, AX, or 
EAX. This instruction, along with the s t o s instruction, is often used when processing is required 
while copying a string. This point is elaborated after we describe the s t o s instruction. 

Store a String (stos) This instruction performs the complementary operation. It copies the value 
in AL (for s tosb) , AX (for stosw), or EAX (for s tosd ) to the destination string (pointed to 
by ES:EDI) in memory. 
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copy a byte 
forward direction 

backward direction 

s t o s b — store a byte string 
ES:EDI:=AL 
if(DF = 0) 
then 

EDI:=EDI+1 
else 

EDI:=EDI-1 
end if 

Flags affected: none 

We can use the r e p prefix with the s t o s instruction if our intention is to initialize a block of 
memory with a specific character, word, or doubleword value. For example, the following code 
initializes a r r a y l with —1. 

.UDATA 
arrayl 
.CODE 

resw 100 

.STARTUP 
mov 
mov 
mov 
eld 
rep 

ECX,100 
EDI,arrayl 
AX, -1 

stosw 
forward direction 

In general, the r e p prefix is not useful with l o d s and s t o s instructions. These two instructions 
are often used in a loop to do value conversions while copying data. For example, if s t r i n g 1 
only contains letters and blanks, the following code 

mov 
mov 
mov 
eld 

loopl: 
lodsb 
or 
stosb 
loop 

done: 

ECX,strLen 
ESI,stringl 
EDI,string2 

AL,20H 

loopl 

forward direction 

can convert it to a lowercase string. 
represents blank in ASCII, and the 

or AL,20H 

Note that blank characters are not affected because 20H 

instruction does not have any effect on it. The advantage of l o d s and s t o s is that they automat­
ically increment ESI and EDI registers. 
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String Compare Instruction 
The cmps instruction can be used to compare two strings. 

cmpsb — compare two byte strings 
Compare the two bytes at DS:ESI and ES:EDI and set flags 
if (DF = 0) ; forward direction 
then 

ESI:=ESI-fl 
EDI:=EDI+1 

else ; backward direction 
ESI:=ESI-1 
EDI:=EDI-1 

end if 
Flags affected: As per cmp instruction 

The cmps instruction compares the two bytes, words, or doublewords at DS:ESI and ES:EDI 
and sets the flags just like the cmp instruction. Like the cmp instruction, cmps performs 

(DSrESI) - (ESrEDI) 

and sets the flags according to the result. The result itself is not stored. We can use conditional 
jumps like j a, j g, j c, etc, to test the relationship of the two values. As usual, the ESI and EDI 
registers are updated according to the value of the direction flag and the operand size. The cmps 
instruction is typically used with the r e p e / r e p z or r e p n e / r e p n z prefix. 

The following code 

.DATA 
Stringl 
strLen 
string2 
.CODE 

db 'abcdfghi',0 
EQU $-stringl 
db 'abcdefgh',0 

.STARTUP 
mov 
mov 
mov 
eld 
repe 

ESI pointing 

dec 
dec 

ECX,StrLen 
ESI,Stringl 
EDI,string2 

; f' 
cmpsb 

to g in stringl and ED 

ESI 
EDI 

forward direction 

leaves ESI and EDI pointing to the last character that differs. Then we can use, for example, 

ja strlAbove 

to test if s t r i n g l is greater (in the collating sequence) than s t r i n g 2 . This, of course, is true 
in this example. A more concrete example is given later (see the string comparison procedure on 
page 375). 

The r e p n e / r e p n z prefix can be used to continue comparison as long as the comparison fails 
and the loop terminates when a matching value is found. For example, 
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.DATA 
Stringl db 'abcdfghi',0 
strLen EQU $-stringl-l 
string2 db 'abcdefgh',0 
.CODE 

.STARTUP 
mov ECX,StrLen 
mov ESI,stringl + strLen - 1 
mov EDI,string2 + strLen - 1 
std ; backward direction 
repne cmpsb 
inc ESI 
inc EDI 

leaves ESI and EDI pointing to the first character that matches in the backward direction. 

Scanning a String 

The sea s (scanning a string) instruction is useful in searching for a particular value or character 
in a string. The value should be in AL (for scasb), AX (for scasw), or EAX (for scasd), and 
ES:EDI should point to the string to be searched. 

s ca sb — scan a byte string 
Compare AL to the byte at ES:EDI and set flags 
if (DF = 0) ; forward direction 
then 

EDI:=EDI+1 
else ; backward direction 

EDI:=EDI-1 
end if 

Flags affected: As per cmp instruction 

Like with the cmps instruction, the r e p e / r e p z or r e p n e / r e p n z prefix can be used. 

.DATA 
Stringl 
StrLen 
.CODE 

db 'abcdefgh',0 
EQU $ - stringl 

.STARTUP 
mov 
mov 
mov 
eld 
repne 
dec 

ECX,StrLen 
EDI,stringl 
AL, ' e' ; cha: 

/ for̂  
scasb 
EDI 

character to be searched 
forward direction 

This program leaves the EDI register pointing to e in s t r i n g l . The following example can be 
used to skip the initial blanks. 

.DATA 
Stringl db ' abc',0 
StrLen EQU $-stringl 
.CODE 
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.STARTUP 
mov 
mov 
mov 
eld 
repe 
dec 

ECX,strLen 
EDI,stringl 
AL, ' ' 

scasb 
EDI 

character to be searched 
forward direction 

This program leaves the EDI register pointing to the first nonblank character in s t r i n g l , which 
is a in our example. 

Our First Program 

The string instructions we have discussed so far are not restricted to string operations only. For ex­
ample, they can be used for general-purpose memory-to-memory copy operations. To demonstrate 
this aspect, we write a program to perform a memory-to-memory copy operation. In this program, 
we copy the contents of a doubleword array to another array. Of course, we can do this without 
the string instructions. Program 17.1 shows how this can be done using the string instructions. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Program 17.1 Memory-to-memory copy using the string instructions 

Memory-to-memory copy MEM_COPY.ASM 

Objective: To demonstrate memory-to-memory copy 
using the string instructions. 

Input: None. 
Output: Outputs the copied array. 

%include "io.mac" 

.DATA 
in_array 
ARRAY_SIZE 
out_msg 

.UDATA 
out_array 

dd 10,20,30,40,50,60,70,80,90,100 
EQU ($-in_array)/4 
db 'The copied array is: ',0 

resd ARRAY SIZE 

.CODE 
.STARTUP 
mov ECX,ARRAY_SIZE 
mov ESI,in_array 
mov EDI,out_array 
eld 
rep movsd 

PutStr out_msg 
mov ECX,ARRAY_SIZE 
mov ESI,out_array 

ECX = array size 
ESI = in array pointer 
EDI = out array pointer 
forward direction 

repeatl: 
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30 
31 
32 
33 
34 

lodsd 
PutLInt EAX 
nwln 
loop repeatl 
.EXIT 

This program's structure follows the example we have seen in Chapter 13 (see Example 13 
on page 281). The source array ( in_a r ray ) is initialized with 10 values, each is a 32-bit value. 
The array size is determined on line 12 by using the predefined location counter symbol $. For a 
discussion of how the array size is computed, see Example 13 on page 281. 

To copy the array, we store the array size in ECX (line 20) and the source and destination array 
pointers in ESI and EDI registers, respectively (lines 21 and 22). Once these registers are set up, 
we clear the direction flag using e l d on line 23. Copying of the array is done using the movsd 
instruction along with the r e p prefix on line 24. 

In operating systems that use segmentation provided by the IA-32 architecture, we have to 
make sure that the ES segment register points to the data segment. This, for example, can be done 
by the following code: 

mov AX,DS 

mov ES, AX 

We have to resort to an indirect means to copy the DS contents to ES as 

mov ES, DS 

is not a valid instruction. Since the Linux operating system does not use the segmentation and 
initializes the DS and ES registers to the same value, we don't need this code in our programs. 

To display the contents of the destination array (out_array) , we use the l odsd instruction, 
which loads the value into the EAX register. This value is displayed using the Pu tLIn t on 
line 31. We cannot use the r e p prefix with the lodsd instruction as we need to display the value. 
Instead, we use a loop to display the array values. 

Illustrative Examples 
We now give some examples to illustrate the use of the string instructions discussed in this 
chapter. These procedures along with several others are available in the s t r i n g . a s m file. 
These procedures receive the parameters via the stack. The pointer to a string is received in 
segment :of f s e t form. A string pointer is loaded into either DS and ESI or ES and EDI 
using the I d s or l e s instructions, the details of which are discussed next. 

LDS and LES Instructions The syntax of these instructions is 

Ids register,source 
les register,source 

where r e g i s t e r is a 32-bit general-purpose register, and source is a pointer to a 48-bit mem­
ory operand. The instructions perform the following actions: 
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Id s 
r e g i s t e r := (source) 

DS := (source +4) 
l e s 

r e g i s t e r := (source) 
ES := (source + 4) 

The 32-bit value at sou rce in memory is copied to r e g i s t e r and the next 16-bit value 
(i.e., at source+4) is copied to the DS or ES register. Both instructions affect none of the flags. 
By specifying ESI as the register operand, I d s can be conveniently used to set up a source string. 
Similarly, a destination string can be set up by specifying EDI with l e s . For completeness, you 
should note that I f s, Igs , and I s s instructions are available to load the other segment registers. 

Examples 

We will next present two simple string processing procedures. These functions are available in 
high-level languages such as C. All procedures use the carry flag (CF) to report input error—not a 
string. This error results if the input passed is not a string whose length is less than the STR_iyiAX 
constant defined in s t r i n g . asm. The carry flag is set (i.e., CF = 1) if there is an input error; 
otherwise, the carry flag is cleared. 

The following constants are defined in s t r i n g . a s m : 

STR MAX 
%define 
%define 

EQU 
STRINGl 
STRING2 

128 
[EBP+8] 
[EBP+16] 

Example 17.1 String length procedure to return the length o / s t r i n g l . 
String length is the number of characters in a string, excluding the NULL character. We use 
the s ca sb instruction and search for the NULL character. Since s ca sb works on the destination 
string, l e s is used to load the string pointer to the ES and EDI registers from the stack. STR_MAX, 
the maximum length of a string, is moved into ECX, and the NULL character (i.e., 0) is moved 
into the AL register. The direction flag is cleared to initiate a forward search. The string length is 
obtained by taking the difference between the end of the string (pointed to by EDI) and the start 
of the string available at [EBP+8]. The EAX register is used to return the string length value. This 
procedure is similar to the C function s t r l e n . 

string length procedure. Receives a string pointer 
(seg:offset) via the stack. If not a string, CF is set; 
otherwise, string length is returned in EAX with CF = 0. 
Preserves all registers. 

str len: 
enter 
push 
push 
push 
les 
mov 

0,0 
ECX 
EDI 
ES 
EDI, 
ECX, 

STRINGl 
STR MAX 

cld 

copy string pointer to ESiEDI 
need to terminate loop if EDI 
is not pointing to a string 
forward search 
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mov 
repne 
JCXZ 
dec 
mov 
sub 
clc 
jmp 

si no str: 
stc 

si done: 
pop 
pop 
pop 
leave 
ret 

AL,0 
scasb 
sl_no_string 
EDI 
EAX,EDI 
EAX,[EBP+8] 

SHORT si done 
Lng: 

ES 
EDI 
ECX 

8 

NULL c h a r a c t e r 

i f ECX = 0, not a s t r i n g 
back up t o p o i n t t o NULL 

s t r i n g l e n g t h i n EAX 
no e r r o r 

c a r r y s e t => no s t r i n g 

c l e a r s t a c k and r e t u r n 

Example 17.2 String compare procedure to compare two strings. 
This function uses the cmpsb instruction to compare two strings. It returns in EAX a negative 
value if s t r i n g l is lexicographically less than s t r i n g 2 , 0 if s t r i n g l is equal to s t r i n g 2 , 
and a positive value if s t r i n g l is lexicographically greater than s t r i n g 2 . 

To implement this procedure, we have to find the first occurrence of a character mismatch 
between the corresponding characters in the two strings (when scanning strings from left to right). 
The relationship between the strings is the same as that between these two differing characters. 
When we include the NULL character in this comparison, this algorithm works correctly even 
when the two strings are of different length. 

The s t r_cmp instruction finds the length of s t r i n g 2 using the s t r _ l e n procedure. It 
does not really matter whether we find the length of s t r i n g 2 or s t r i n g l . We use this value 
(plus one to include NULL) to control the number of times the cmpsb instruction is repeated. 
Conditional jump instructions are used to test the relationship between the differing characters to 
return an appropriate value in the EAX register. The corresponding function in C is s trcmp, 
which can be invoked by s t rcmp ( s t i n g l , s t r i n g 2 ) . This function also returns the same 
values (negative, 0, or positive value) depending on the comparison. 

string compare procedure. Receives two string pointers 
(seg:offset) via the stack - stringl and string2. 
If string2 is not a string, CF is set; 
otherwise, stringl and string2 are compared and returns a 
a value in EAX with CF = 

EAX = negative value 
EAX = zero 
EAX = positive value 

Preserves all registers. 

0 as shown below: 
if stringl < string2 
if stringl = string2 
if stringl > string2 

str_cmp: 
enter 
push 
push 
push 

0,0 
ECX 
EDI 
ESI 
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push DS 
push ES 
; find string length first 
les 
push 
push 
call 
jc 

mov 
inc 
Ids 
eld 
repe 
je 
ja 

below: 
mov 
clc 
jmp 

same: 
xor 
clc 
jmp 

above: 
mov 
clc 
jmp 

sm_no_str 
stc 

sm_done: 
pop 
pop 
pop 
pop 
pop 
leave 
ret 

EDI,STRING2 
ES 
EDI 
str_len 
sm_no_string 

ECX,EAX 
ECX 
ESI,STRING1 

cmpsb 
same 
above 

EAX,-1 

SHORT sm_done 

EAX,EAX 

SHORT sm_done 

EAX,1 

SHORT sm_done 
ing: 

ES 
DS 
ESI 
EDI 
ECX 

16 

string2 pointer 

stringl length in ECX 
add 1 to include NULL 
stringl pointer 
forward search 

EAX = -1 => stringl < string2 

EAX = 0 => string match 

EAX = 1 => stringl > string2 

carry set => no string 

clear and return 

In addition to these two functions, several other string processing functions such as string copy 
and string concatenate are available in the s t r i n g . asm file. 

Testing String Procedures 

Now let us turn our attention to testing the string procedures developed in the last section. A 
partial listing of this program is given in Program 17.2. The full program can be found in the 
s t r _ t e s t . asm file. 

Our main interest in this section is to show how using an indirect procedure call would sub­
stantially simplify calling the appropriate procedure according to the user request. Let us first look 
at the indirect call instruction for 32-bit segments. 
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Program 17.2 Part of string test program s t r _test. asm 

.DATA 
proc_ptr_table 

MAX_FUNCTIONS 

choice_prompt 

dd str_len_fun,str_cpy_fun,str_cat_fun 
dd str_cmp_fun,str_chr_fun,str_cnv_fun 
EQU ($ - proc_ptr_table)/4 

db 'You can test several functions.',CR,LF 
db ' To test enter',CR,LF 
db 'String length 
db 'String copy 
db 'String concatenate 
db 'String compare 
db 'Locate character 
db 'Convert string 
db 'Invalid response terminates program.',CR,LF 
db 'Please enter your choice: ',0 

1' 
2' 
3' 
4' 
5' 
6' 

,CR, 
,CR, 
,CR, 
/CR, 
,CR, 
/CR, 

, LF 
,LF 
,LF 
,LF 
,LF 
,LF 

.UDATA 
stringl 
string2 

resb 
resb 

STR_MAX 
STR MAX 

.CODE 

.STARTUP 
query_choice: 

xor 
PutStr 
GetCh 
sub 
cmp 

jb 
cmp 
jb 

EBX,EBX 
choice_prompt 
BL 
BL,'1' 
BL,0 

invalid_response 
BL,MAX_FUNCTIONS 
response_ok 

invalid_response: 
PutStr 
nwln 
jmp 

response_ok: 
shl 
call 

jmp 
done: 

.EXIT 

invalid_choice 

SHORT done 

EBX,2 
[proc_ptr_table+; 

query_choice 

display menu 
read response 

multiply EBX by 4 
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Indirect Procedure Call 

In our discussions so far, we have been using only the direct procedure calls, where the offset of 
the target procedure is provided directly. Recall that, even though we write only the procedure 
name, the assembler generates the appropriate offset value at the assembly time. 

In indirect procedure calls, this offset is given with one level of indirection. That is, the call 
instruction contains either a memory word address (through a label) or a 32-bit general-purpose 
register. The actual offset of the target procedure is obtained from the memory word or the register 
referenced in the call instruction. For example, we could use 

c a l l EBX 

if EBX contains the offset of the target procedure. As part of executing this c a l l instruction, 
the contents of the EBX register are used to load EIP to transfer control to the target procedure. 
Similarly, we can use 

c a l l [ target_proc_ptr] 

if the memory at t a r g e t _ p r o c _ p t r contains the offset of the target procedure. As we have 
seen in Chapter 15, the jmp is another instruction that can be used for indirect jumps in exactly 
the same way as the indirect c a l l . 

Back to the Example We maintain a procedure pointer table p r o c _ p t r _ t a b l e to facilitate 
calling the appropriate procedure. The user query response is used as an index into this table to get 
the target procedure offset. The EBX register is used as the index into this table. The instruction 

c a l l [proc_ptr_table+EBX] 

causes the indirect procedure call. The rest of the program is straightforward to follow. 

Summary 

We started this chapter with a brief discussion of various string representation schemes. Strings 
can be represented as either fixed-length or variable-length. Each representation has advantages 
and disadvantages. Variable-length strings can be stored either by explicitly storing the string 
length or by using a sentinel character to terminate the string. High-level programming languages 
like C use the NULL-terminated storage representation for strings. We have also used the same 
representation to store strings. 

There are five basic string instructions—movs, lods , s t o s , cmps, and seas . Each of 
these instructions can work on byte, word, or doubleword operands. These instructions do not 
require the specification of any operands. Instead, the required operands are assumed to be at 
DS:ESI and/or ES:EDI for 32-bit segments. For 16-bit segments, SI and DI registers are used 
instead of the ESI and EDI registers, respectively. In addition, the direction flag is used to control 
the direction of string processing (forward or backward). Efficient code can be generated by 
combining string instructions with the repeat prefixes. Three repeat prefixes—rep, r e p e / r e p z , 
and repne/repnz—are provided. 

We also demonstrated, by means of an example, how indirect procedure calls can be used. 
Indirect procedure calls give us a powerful mechanism by which, for example, we can pass a 
procedure to be executed as an argument using the standard parameter passing mechanisms. 



18 
ASCII and BCD 
Arithmetic 

In the previous chapters, we used the binary representation and discussed several instructions that 
operate on binary data. In this chapter, we present two alternative representations—ASCII and 
BCD—that avoid or reduce the conversion overhead. We start this chapter with a brief introduction 
to these two representations. The next two sections discuss how arithmetic operations can be done 
in these two representations. 

While the ASCII and BCD representations avoid/reduce the conversion overhead, processing 
numbers in these two representations is slower than in the binary representation. This inherent 
tradeoff between conversion overhead and processing overhead among the three representations is 
explored toward the end of the chapter The chapter ends with a summary. 

Introduction 
We normally represent the numeric data in the binary system. We have discussed several arithmetic 
instructions that operate on such data. The binary representation is used internally for manipulation 
(e.g., arithmetic and logical operations). 

When numbers are entered from the keyboard or displayed, they are in the ASCII form. Thus, 
it is necessary to convert numbers from ASCII to binary at the input end; we have to convert from 
binary to ASCII to output results as shown below: 

Input data 
(in ASCII) ASCII to 

binary 
conversion 

Process 
in binary 

Binary to 
ASCII 

conversion 

Output data 
(in ASCII) 

We used Get I n t / G e t L i n t and Put I n t / P u t L i n t to perform these two conversions, re­
spectively. These conversions represent an overhead, but we can process numbers much more 
efficiently in the binary form. 
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In some applications where processing of numbers is quite simple (for example, a single ad­
dition), the overhead associated with the two conversions might not be justified. In this case, it is 
probably more efficient to process numbers in the decimal form. 

Another reason for processing numbers in decimal form is that we can use as many digits as 
necessary, and we can control rounding-off errors. This is important when representing dollars 
and cents for financial records. 

Decimal numbers can be represented in one of two forms: ASCII or binary-coded-decimal 
(BCD). These two representations are discussed next. 

ASCII Representation 

In this representation, numbers are stored as strings of ASCII characters. For example, 1234 is 
represented as 

3132 33 34H 

where 3IH is the ASCII code for 1, 32H for 2, etc. As you can see, arithmetic on decimal numbers 
represented in the ASCII form requires special care. There are two instructions to handle these 
numbers: 

aaa — ASCII adjust after addition 
aas — ASCII adjust after subtraction 

We discuss these two instructions after introducing the BCD representation. 

BCD Representation 

There are two types of BCD representation: unpacked BCD and packed BCD. In the unpacked 
BCD representation, each digit is stored in a byte, while two digits are packed into a byte in the 
packed representation. 

Unpaclced BCD This representation is similar to the ASCII representation except that each byte 
stores the binary equivalent of a decimal digit. Note that the ASCII codes for digits 0 through 
9 are 30H through 39H. Thus, if we mask off the upper four bits, we get the unpacked BCD 
representation. For example, 1234 is stored in this representation as 

01 02 03 04H 

We deal with only positive numbers in this chapter. Thus, there is no need to represent the sign. 
But if a sign representation is needed, an additional byte can be used for the sign. The number is 
positive if this byte is OOH and negative if 80H. 

There are two instructions to handle these numbers: 

aam — ASCII adjust after multiplication 
aad — ASCII adjust before division 

Since this representation is similar to the ASCII representation, the four instructions—aaa, aas , 
aam, and aad—can be used with the ASCII and unpacked BCD representations. 
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Packed BCD In the last two representations, each digit of a decimal number is stored in a byte. 
The upper four bits of each byte contain redundant information. In packed BCD representation, 
each digit is stored using only four bits. Thus, two decimal digits can be packed into a byte. This 
reduces the memory requirement by half compared to the other two representations. For example, 
the decimal number 1234 is stored in the packed BCD representation as 

12 34H 

which requires only two bytes as opposed to four in the other two representations. There are only 
two instructions that support addition and subtraction of packed BCD numbers: 

da a — decimal adjust after addition 
das — decimal adjust after subtraction 

There is no support for multiplication or division operations. These two instructions are dis­
cussed later. 

Processing in ASCII Representation 
As mentioned before, four instructions are available to process numbers in the ASCII representa­
tion: 

aaa — ASCII adjust after addition 
aas — ASCII adjust after subtraction 
a am — ASCII adjust after multiplication 
aad — ASCII adjust before division 

These instructions do not take any operands. They assume that the required operand is in the AL 
register. 

ASCII Addition 

To understand the need for the aaa instruction, look at the next two examples. 

Example 18.1 An ASCII addition example. 
Consider adding two ASCII numbers 4 (34H) and 5 (35H). 

34H = OOllOlOOB 
35H = OOllOlOlB 

69H = OIIOIOOIB 

The sum 69H is not correct. The correct value should be 09H in unpacked BCD representation. In 
this example, we get the right answer by setting the upper four bits to 0. This scheme, however, 
does not work in cases where the result digit is greater than 9, as shown in the next example. • 

Example 18.2 Another ASCII addition example. 
In this example, consider the addition of two ASCII numbers, 6 (36H) and 7 (37H). 

36H = OOllOllOB 
37H =00110111B 

6DH =01101101B 
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Again, the sum 6DH is incorrect. We would expect the sum to be 13 (01 03H). In this case, ignore 
6 as in the last example. But we have to add 6 to D to get 13. We add 6 because that is the 
difference between the bases of hex and decimal number systems. • 

The aaa instruction performs these adjustments. This instruction is used after performing an 
addition operation by using either an add or adc instruction. The resulting sum in AL is adjusted 
to unpacked BCD representation. The aaa instruction works as follows. 

1. If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it adds 
6 to AL and 1 to AH. Both CF and AF are set. 

2. In all cases, the most significant four bits of AL are cleared (i.e., zeroed). 

Here is an example that illustrates the use of the aaa instruction. 

Example 18.3 A typical use of the aaa instruction. 
sub 
mov 
add 
aaa 
or 

AH, AH 
AL,'6' 
AL,'7' 

AL,30H 

clear AH 
AL = 3 6H 
AL = 36H+37H = 
AX = 0103H 
AL = 33H 

= 6DH 

To convert the result in AL to an ASCII result, we have to insert 3 into the upper four bits of the 
AL register. • 

To add multidigit decimal numbers, we have to use a loop that adds one digit at a time starting 
from the rightmost digit. Program 18.1 shows how the addition of two 10-digit decimal numbers 
is done in ASCII representation. 

ASCII Subtraction 

The aas instruction is used to adjust the result of a subtraction operation (sub or sbb) and works 
like aaa. The actions taken by aas are 

1. If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it 
subtracts 6 from AL and 1 from AH. Both CF and AF are set. 

2. In all cases, the most significant four bits of AL are cleared (i.e., zeroed). 

It is straightforward to see that the adjustment is needed only when the result is negative, as shown 
in the following examples. 

Example 18.4 ASCII subtraction (positive result). 

6H 

Notice that the aas instruction does not change the contents of the AL register, as the result is a 
positive number. • 

sub 
mov 
sub 
aas 
or 

AH, AH 
AL,'9' 
AL,'3' 

AL,30H 

clear AH 
AL = 3 9H 
AL = 39H-33H 
AX = 0006H 

• AL = 3 6H 
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Example 18.5 ASCII subtraction (negative result). 
sub 
mov 
sub 
aas 
or 

AH, AH 
AL,'3' 
AL,'9' 

AL,30H 

clear AH 
AL = 33H 
AL = 33H-39H = 
AX = FF04H 
AL = 34H 

= FAH 

The AL result indicates the magnitude; the aas instruction sets the carry flag to indicate that a 
borrow has been generated. • 

Is the last result, FF04H, generated by aas useful? It is when you consider multidigit subtrac­
tion. For example, if we are subtracting 29 from 53 (i.e., 53-29), the first loop iteration performs 
3—9 as in the last example. This gives us the result 4 in AL and the carry flag is set. Next we 
perform 5-2 using sbb to include the borrow generated by the previous subtraction. This leaves 
2 as the result. After ORing with 30H, we will have 32 34H, which is the correct answer (24). 

ASCII Multiplication 

The a am instruction is used to adjust the result of a mul instruction. Unlike addition and subtrac­
tion, multiplication should not be performed on ASCII numbers but on unpacked BCD numbers. 
The a am works as follows: AL is divided by 10 and the quotient is stored in AH and the remainder 
in AL. 

Example 18.6 ASCII multiplication, 
multiplier in unpacked BCD form 
multiplicand in unpacked BCD form 
result OOIBH is in AX 
AX = 0207H 
AX = 3237H 

Notice that the multiplication should be done using unpacked BCD numbers—not on ASCII num­
bers! If the digits in AL and BL are in ASCII as in the following code, we have to mask off the 
upper four bits. 

multiplier in ASCII 
multiplicand in ASCII 
multiplier in unpacked BCD form 
multiplicand in unpacked BCD form 
result OOIBH is in AX 
AX = 0207H 
AL = 3 7H 

The aam instruction works only with the mul instruction, not with the imul instruction, • 

ASCII Division 

The aad instruction adjusts the numerator in AX before dividing two unpacked decimal numbers. 
The denominator has to be a single byte unpacked decimal number. The aad instruction multiplies 
AH by 10 and adds it to AL and sets AH to zero. For example, if AX = 0207H before aad, AX 
changes to OOIBH after executing aad. As you can see from the last example, aad reverses the 
operation of aam. 

mov 
mov 
mul 
aam 
or 

AL, 
BL, 
BL 

AX, 

3 
9 

3030H 

mov 
mov 
and 
and 
mul 
aam 
or 

AL, 
BL, 
AL, 
BL, 
BL 

AL, 

'3' 
'9' 
OFH 
OFH 

3 OH 
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Example 18.7 ASCII division. 
Consider dividing 27 by 5. 

dividend in unpacked BCD form 
divisor in unpacked BCD form 
AX = OOIBH 
AX = 0205H 

The aad instruction converts the unpacked BCD number in AX to the binary form so that d i v 
can be used. The d i v instruction leaves the quotient (05H) in the AL register and the remainder 
(02H) in the AH register. • 

mov 
mov 
aad 
div 

AX, 
BL, 

BL 

0207H 
05H 

Our First Program 

As our first example of the chapter, let us see how we can perform multidigit ASCII addition. 
Addition of multidigit numbers in the ASCII representation is done one digit at a time starting 
with the rightmost digit. To illustrate the process involved, we discuss how addition of two 10-
digit numbers is done (see the program listing below). 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Program 18.1 ASCII addition of two 10-digit numbers 

Addition of two integers in ASCII form ASCIIADD.ASM 

Objective: To demonstrate addition of two integers 
in the ASCII representation. 

Input: None. 
Output: Displays the sum. 

%include "io.mac" 

.DATA 
sum_msg db 
number1 db 
number2 db 
sum db 

'The sum is: 
'1234567890' 
'1098765432' 

'/O 

',0 add NULL char, to use PutStr 

.CODE 
.STARTUP 
; ESI is used as index into numberl, number2, and sum 
mov 
mov 
clc 

add_loop: 
mov 
adc 
aaa 
pushf 
or 
popf 
mov 
dec 

ESI, 9 
ECX,10 

AL, 
AL, 

[number1+ESI] 
[number2+ESI] 

AL,30H 

[sum+ESI] ,AL 
ESI 

ESI points to rightmost digit 
iteration count (# of digits) 
clear carry (we use ADC not ADD) 

ASCII adjust 
save flags because OR 
changes CF that we need 
in the next iteration 
store the sum byte 
update ESI 
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30 
31 
32 
33 
34 

loop 
PutStr 
PutStr 
nwln 
.EXIT 

add_loop 
sum_msg 
sum 

; display sum 

The program adds two numbers numberl and number2 and displays the sum. We use ESI 
as an index into the input numbers, which are in the ASCII representation. The ESI register is 
initialized to point to the rightmost digit (line 18). The loop count 10 is set up in ECX (line 19). 
The addition loop (lines 21-30) adds one digit by taking any carry generated during the previous 
iteration into account. This is done by using the adc rather than the add instruction. Since the 
adc instruction is used, we have to make sure that the carry is clear initially. This is done on 
line 20 using the c l c (clear carry) instruction. 

Note that the aaa instruction produces the result in unpacked BCD form. To convert to the 
ASCII form, we have to o r the result with 30H (line 26). This ORing, however, destroys the carry 
generated by the adc instruction that we need in the next iteration. Therefore, it is necessary to 
save (line 25) and restore (line 27) the flags. 

The overhead in performing the addition is obvious. If the input numbers were in binary, only 
a single add instruction would have performed the required addition. This conversion-overhead 
versus processing-overhead tradeoff is discussed later. 

Processing Packed BCD Numbers 

In this representation, as indicated earlier, two decimal numbers are packed into a byte. There are 
two instructions to process packed BCD numbers: 

da a — Decimal adjust after addition 
das — Decimal adjust after subtraction 

There is no support for multiplication or division. For these operations, we will have to unpack 
the numbers, perform the operation, and repack them. 

Packed BCD Addition 

The daa instruction can be used to adjust the result of an addition operation to conform to the 
packed BCD representation. To understand the sort of adjustments required, let us look at some 
examples next. 

Example 18.8 A packed BCD addition example. 
Consider adding two packed BCD numbers 29 and 69. 

29H = OOIOIOOIB 
69H = OIIOIOOIB 

92H =10010010B 

The sum 92 is not the correct value. The result should be 98. We get the correct answer by adding 
6 to 92. We add 6 because the carry generated from bit 3 (i.e., auxiliary carry) represents an 
overflow above 16, not 10, as is required in BCD. • 
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Example 18.9 Another packed BCD addition example, 
Consider adding two packed BCD numbers 27 and 34. 

27H = OOlOOlllB 
34H =00110100B 

5BH = OlOllOllB 

Again, the result is incorrect. The sum should be 61. The result 5B requires correction, as the first 
digit is greater than 9. To correct the result add 6, which gives us 61. • 

Example 18.10 A final packed BCD addition example. 
Consider adding two packed BCD numbers 52 and 61. 

52H = OIOIOOIOB 
61H = OllOOOOlB 

B3H = lOllOOllB 

This result also requires correction. The first digit is correct, but the second digit requires a cor­
rection. The solution is the same as that used in the last example—add 6 to the second digit (i.e., 
add 60H to the result). This gives us 13 as the result with a carry (effectively equal to 113). • 

The daa instruction exactly performs adjustments like these to the result of add or adc instruc­
tions. More specifically, the following actions are taken by daa: 

• If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it adds 
6 to AL and sets AF; 

• If the most significant four bits of AL are greater than 9 or if the carry flag is set, it adds 60H 
to AL and sets CF. 

Example 18.11 Code for packed BCD addition, 
Consider adding two packed BCD numbers 71 and 43. 

mov 
add 
daa 

AL,71H 
AL,43H ; AL = B4H 

; AL = 14H and CF = = 1 

As indicated, the daa instruction restores the result in AL to the packed BCD representation. The 
result including the carry (i.e., 114H) is the correct answer in packed BCD. • 

As in the ASCII addition, multibyte BCD addition requires a loop. After discussing the packed 
BCD subtraction, we present an example to add two 10-byte packed BCD numbers. 

Packed BCD Subtraction 

The das instruction can be used to adjust the result of a subtraction (i.e., the result of sub or 
sbb). It works similar to daa and performs the following actions: 

• If the least significant four bits of AL are greater than 9 or if the auxiliary flag is set, it 
subtracts 6 from AL and sets AF; 
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• If the most significant four bits of AL are greater than 9 or if the carry flag is set, it subtracts 
60H from AL and sets CF. 

Here is an example that illustrates the use of the das instruction. 

Example 18.12 Code for packed BCD subtraction. 
Consider subtracting 43 from 71 (i.e., 71 — 43). 

mov AL,71H 
s u b AL,43H ; AL = 2EH 
d a s ; AL = 2 8H 

The das instruction restores the result in AL to the packed BCD representation. • 

Illustrative Example 

In this example, we consider multibyte packed BCD addition. As in the ASCII representation, 
when adding two multibyte packed BCD numbers, we have to use a loop that adds a pair of 
decimal digits in each iteration, starting from the rightmost pair. The program, given below, adds 
two 10-byte packed BCD numbers, number 1 and number2. 

Program 18.2 Packed BCD addition of two 10-digit numbers 

Addition of integers in packed BCD form BCDADD.ASM 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Objective: To demonstrate addition of two integers 
in the packed BCD representation. 

Input: None. 
Output: Displays the sum. 

%define SUM_LENGTH 10 

%include "io.mac" 

.DATA 

sum_msg db 'The sum is: ',0 
numberl db 12H,34H,56H,78H,90H 
number2 db lOH,98H,76H,54H,32H 
ASCIIsum db ' ',0 ; add NULL char. 

.UDATA 
BCDsum resb 5 

.CODE 
.STARTUP 
mov ESI,4 
mov ECX,5 ; loop iteration count 
clc ; clear carry (we use ADC) 

add_loop: 
mov AL,[numberl+ESI] 
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68 

nwln 

adc 
daa 
mov 
dec 
loop 
call 
PutStr 
PutStr 

.EXIT 

AL,[number2+ESI] 
; ASCII adjust 

[BCDsum+ESI],AL / store the sum byte 
ESI ; update index 
add_loop 
ASCII_convert 
sum_msg ; display sum 
ASCIIsum 

; Converts the packed decimal number (5 digits) in BCDsum 
; to 
; All 

ASCII 

ASCII represenation and stores it in ASCIIsum. 
registers are preserved. 

_convert 
pushad ; save registers 
; ESI is used as index into ASCIIsum 
mov ESI,SUM_LENGTH-1 
; EDI is used as index into BCDsum 
mov 
mov 

cnv_loop: 
mov 
mov 

EDI, 4 
ECX,5 ; loop count (# of BCD digits) 

AL,[BCDsum+EDI] ; AL = BCD digit 
AH,AL / save the BCD digit 

; convert right digit to ASCII & store in ASCIIsum 
and 
or 
mov 
dec 
mov 

AL,OFH 
AL,30H 
[ASCIIsum+ESI],AL 
ESI 
AL,AH ; restore the BCD digit 

; convert left digit to ASCII & store in ASCIIsum 
shr 
or 
mov 
dec 
dec 
loop 
popad 
ret 

AL,4 / right-shift by 4 positions 
AL,30H 
[ASCIIsum+ESI],AL 
ESI 
EDI / update EDI 
cnv_loop 

; restore registers 

The two numbers to be added are initialized on lines 14 and 15. The space for the sum 
(BCDsum) is reserved using r e s b on line 19. 

The code is similar to that given in Program 18.1. However, since we add two decimal digits 
during each loop iteration, only five iterations are needed to add the 10-digit numbers. Thus, 
processing numbers in the packed BCD representation is faster than in the ASCII representation. 
In any case, both representations are considerably slower in processing numbers than the binary 
representation. 
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Table 18.1 Tradeoffs associated with the three representations 

Representation 

Binary 
Packed BCD 
ASCII 

Storage 
overhead 

Nil 
Medium 

High 

Conversion 
overhead 

High 
Medium 

Nil 

Processing 
overhead 

Nil 
Medium 

High 

At the end of the loop, the sum is stored in BCD sum as a packed BCD number. To display 
this number, we have to convert it to the ASCII form (an overhead that is not present in the ASCII 
version). 

The procedure ASCII_convert takes BCDsum and converts it to equivalent ASCII string 
and stores it in ASCI I sum. For each byte read from BCDsum, two ASCII digits are generated. 
Note that the conversion from packed BCD to ASCII can be done by using only logical and shift 
operations. On the other hand, conversion from binary to ASCII requires a more expensive division 
operation (thus increasing the conversion overhead). 

Decimal Versus Binary Arithmetic 

Now you know three representations to perform arithmetic operations: binary, ASCII, and BCD. 
The majority of operations are done in binary. However, there are tradeoffs associated with these 
three representations. 

First we will look at the storage overhead. The binary representation is compact and the most 
efficient one. The ASCII and unpacked BCD representations incur high overhead as each decimal 
digit is stored in a byte (see Table 18.1). The packed BCD representation, which stores two decimal 
digits per byte, reduces this overhead by approximately half. For example, using two bytes, we can 
represent numbers from 0 to 65,535 in the binary representation and from 0 to 9999 in the packed 
BCD representation, but only from 0 to 99 in the ASCII and unpacked BCD representations. 

In applications where the input data is in ASCII form and the output is required to be in ASCII, 
binary arithmetic may not always be the best choice. This is because there are overheads associated 
with the conversion between ASCII and binary representations. However, processing numbers in 
binary can be done much more efficiently than in either ASCII or BCD representations. Table 18.1 
shows the tradeoffs associated with these three representations. 

When the input and output use the ASCII form and there is little processing, processing num­
bers in ASCII is better. This is so because ASCII version does not incur any conversion overhead. 
On the other hand, due to high overhead in converting numbers between ASCII and binary, the 
binary version takes more time than the ASCII version. The BCD version also takes substantially 
more time than the ASCII version but performs better than the binary version mainly because 
conversions between BCD and ASCII are simpler. 

When there is significant processing of numbers, the binary version tends to perform better than 
the ASCII and BCD versions. In this scenario, the ASCII version provides the worst performance 
as its processing overhead is high (see Table 18.1). The BCD version, while slower than the binary 
version, performs much better than the ASCII version. 

The moral of the story is that a careful analysis of the application should be done before 
deciding on the choice of representation for numbers in some applications. This is particularly 
true for business applications, where the data might come in the ASCII form. 
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Summary 

In previous chapters we converted decimal data into binary for storing internally as well as for ma­
nipulation. This chapter introduced two alternative representations for storing the decimal data— 
ASCII and BCD. The BCD representation can be either unpacked or packed. 

In the ASCII and unpacked BCD representations, one decimal digit is stored per byte, whereas 
the packed BCD representation stores two digits per byte. Thus, the storage overhead is substantial 
in ASCII and unpacked BCD. Packed BCD representation uses the storage space more efficiently 
(typically requiring half as much space). The binary representation, on the other hand, does not 
introduce any overhead. 

There are two main overheads that affect the execution time of a program: conversion overhead 
and processing overhead. When the ASCII form is used for data input and output, the data should 
be converted between ASCII and binary/BCD. This conversion overhead for the binary represen­
tation can be substantial, as multiplication and division are required. There is much less overhead 
for the BCD representations, as only logical and shift operations are needed. On the other hand, 
number processing in binary is much faster than in ASCII or BCD representations. Packed BCD 
representation is better than ASCII representation, as each byte stores two decimal digits. 



19 
Recursion 

We can use recursion as an alternative to iteration. This chapter first introduces the basics of 
recursion. After that we give some examples to illustrate how recursive procedures are written 
in the assembly language. The advantages and pitfalls associated with a recursive solution as 
opposed to an iterative solution are discussed toward the end of the chapter The last section gives 
a summary. 

Introduction 
A recursive procedure calls itself, either directly or indirectly. In direct recursion, a procedure calls 
itself directly. In indirect recursion, procedure P makes a call to procedure Q, which in turn calls 
procedure P. The sequence of calls could be longer before a call is made to procedure P. 

Recursion is a powerful tool that allows us to express our solution elegantly. Some solutions 
can be naturally expressed using recursion. Computing a factorial is a classic example. Factorial 
n, denoted n!, is the product of positive integers from 1 to n. For example, 

5! = 1 x 2 x 3 x 4 x 5 . 

The factorial can be formally defined as 

factorial(O) = 1 
factorial(n) = n * factorial(n - 1) forn > 0. 

Recursion shows up in this definition as we define factorial(n) in terms of factorial(n - 1). Every 
recursive function should have a termination condition to end the recursion. In this example, when 
n = 0, recursion stops. How do we express such recursive functions in progranmiing languages? 
Let us first look at how this function is written in C: 

int fact(int n) 

{ 
if (n == 0) 

return(1); 
return(n * fact(n-l)); 
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D 

Call 

"=H 
Return 

I factorial(3) = 6 

factorial(3) = 3 * factorial(2) 

n = 2 f factorial(2) = 2 

factorial(2) = 2 * factorial(l) 

n = l f factorial(l)= 1 

factorial(l) = 1 * factorial(O) 

n = 0 f factorial(O) = 1 

factorial(O) = 1 

Activation 
record for A 

Activation 
record for B 

Activation 
record for C 

Activation 
record for D 

Recursion termination 

(a) 

Figure 19.1 Recursive computation of factorial(3). 

(b) 

This is an example of direct recursion. How is this function implemented? At the conceptual level, 
its implementation is not any different from implementing other procedures. Once you understand 
that each procedure call instance is distinct from the others, the fact that a recursive procedure calls 
itself does not make a big difference. 

Each active procedure maintains an activation record, which is stored on the stack. The ac­
tivation record, as explained on page 256, consists of the arguments, return address, and local 
variables. The activation record comes into existence when a procedure is invoked and disappears 
after the procedure is terminated. Thus, for each procedure that is not terminated, an activation 
record that contains the state of that procedure is stored. The number of activation records, and 
hence the amount of stack space required to run the program, depends on the depth of recursion. 

Figure 19.1 shows the stack activation records for factorial(3). As you can see from this figure, 
each call to the factorial function creates an activation record. Stack is used to keep these activation 
records. 

Our First Program 

To illustrate the principles of recursion, we look at an example that computes the factorial function. 
An implementation of the factorial function is shown in Program 19.1. The main function provides 
the user interface. It requests a positive number n from the user. If a negative number is given as 
input, the user is prompted to try again (lines 20-24). The positive number, which is read into the 
BX register, is passed on to the f a c t procedure (line 27). This procedure returns factorial(n) in 
the AX register, which is output with an appropriate message (lines 29-31). 
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Program 19.1 Recursive computation of factorial(A/̂ ) 

Factorial - Recursive version FACTORIAL.ASM 

Objective: To compute factoral using recursion. 
Input: Requests an integer N from the user. 

Output: Outputs N! 

%include "io.mac" 

.DATA 
prompt_msg db "Please enter a positive integer: ",0 
output_msg db "The factorial is: ",0 
error_msg db "Not a positive number. Try again.",0 

.CODE 
.STARTUP 
PutStr prompt_msg 

try_again: 
Getint BX 
cmp BX,0 
j ge num_ok 
PutStr error_msg 
nwln 
jmp try_again 

request the number 

read number into BX 
test for a positive number 

num_ok: 
call fact 

PutStr output_msg 
Putint AX 
nwln 

output result 

done: 
.EXIT 

Procedure fact receives a positive integer N in BX. 
It returns N! in the AX register. 

fact: 
cmp 

jg 
mov 
ret 

one_up: 
dec 

BL,1 
one_up 
AX,1 

BL 

; if N > 1, recurse 

; return 1 for N < 2 
; terminate recursion 

recurse with (N-1) 
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49 
50 
51 
52 
53 

call 
inc 
mul 

ret 

fact 
BL 
BL AX AL * BL 

The f a c t procedure receives the number n in the BL register. It essentially implements the 
C code given before. One minor difference is that this procedure terminates when n < 1. This 
termination would save us one recursive call. When the value in BL is less than or equal to 1, the 
AX register is set to 1 to terminate the recursion. The activation record in this example consists 
of the return address pushed onto the stack by the c a l l instruction. Since we are using the BL 
register to pass n, it is decremented before the call (line 48) and restored after the call (line 50). 
The multiply instruction 

mul BL 

multiplies the contents of the BL and AL registers and places the 16-bit result in the AX register. 
This is the value returned by the f a c t procedure. 

Illustrative Examples 

We give two examples to further illustrate the principles of recursion. The first one computes a 
Fibonacci number and the second one implements the popular quicksort algorithm. 

Example 19.1 Computes the Nth Fibonacci number. 
The Fibonacci sequence of numbers is defined as 

fib(l)=l, 
fib(2)=l, 
fib(n) = fib(n - 1) + fib(n 2) for n > 2. 

In other words, the first two numbers in the Fibonacci sequence are 1. The subsequent numbers 
are obtained by adding the previous two numbers in the sequence. Thus, 

1,1,2,3,5,8, 13,21,34,55,..., 

is the Fibonacci sequence of numbers. From this definition, you can see the recursive nature of the 
computation. 

Program 19.1 shows the program to compute the A t̂h Fibonacci number. The value Â  is 
requested from the user as in the last program. The main program checks the validity of the input 
value. If the number is less than 1, an error message is displayed and the user is asked to enter a 
valid number (lines 20-24). If the input number is a valid one, it calls the f i b procedure, which 
returns the Ath Fibonacci number in the EAX register. This value is output using Put L i n t on 
line 30. 
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Program 19.2 A program to compute the Fibonacci numbers 

Fibonacci number - Recursive version FIB.ASM 

Objective: To compute the Fibonacci number. 
Input: Requests an integer N from the user. 

Output: Outputs fib(N). 

%include "io.mac" 

.DATA 
prompt_msg db "Please enter a number > 0: ",0 
output_msg db "fib(N) is: ",0 
error_msg db "Not a valid number. Try again.",0 

.CODE 
.STARTUP 
PutStr prompt_msg 

try_again: 
Getint BX 
cmp BX,0 
j g num_ok 
PutStr error_msg 
nwln 
jmp try_again 

request the number 

read number into BX 
test if N>0 

num_ok: 
call fib 

PutStr output_msg 
PutLInt EAX 
nwln 

output result 

done: 
.EXIT 

Procedure fib receives a positive integer N in BX. 
It returns fib(N) in the EAX register. 

fib: 
cmp 

jg 
mov 
ret 

one_up: 
push 
dec 

BX,2 
one_up 
EAX,1 

EDX 
BX 

; if N > 2, recurse 

; re turn l i f N = l o r 2 
; terminate recursion 

/ recurse with (N-1) 
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; save fib(N-l) in EDX 

; recurse with (N-2) 

; EAX = fib(N-2) + fib(N-l) 

; restore BX and EDX 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

call 
mov 
dec 
call 
add 

add 
pop 

ret 

fib 
EDX,EAX 
BX 
fib 
EAX,EDX 

BX,2 
EDX 

The f i b procedure uses recursion to compute the required Fibonacci number. The Â  value is 
received in the BX register. The recursion termination condition is implemented by lines 42-44. 
This procedure returns 1 in EAX if A/̂  is 1 or 2. 

The recursion is implemented on lines 47-57. It decrements BX by one before calling the 
f i b procedure to compute f i b (N-1) . The value returned by this call is stored in the EDX 
register (line 51). The BX value is decremented again before calling f i b on line 53 to compute 
f i b (N—2). The two f i b values are added on line 54 to compute the f i b (N) value. The 
procedure preserves both BX (line 56) and EDX (lines 48 and 57). 

Example 19.2 Implementation of the quicksort algorithm using recursion. 
Quicksort is one of the most popular sorting algorithms; it was proposed by C.A.R. Hoare in 1960. 
Once you understand the basic principle of the quicksort, you will see why recursion naturally 
expresses it. 

At its heart, quicksort uses a divide-and-conquer strategy. The original sort problem is reduced 
to two smaller sort problems. This is done by selecting a partition element x and partitioning 
the array into two subarrays: all elements less than x are placed in one subarray and all elements 
greater than x are in the other. Now, we have to sort these two subarrays, which are smaller than 
the original array. We apply the same procedure to sort these two subarrays. This is where the 
recursive nature of the algorithm shows up. The quicksort procedure to sort an TV-element array is 
summarized below: 

1. Select a partition element x. 
2. Assume that we know where this element x should be in the final sorted array. Let it be at 

a r r a y [ i ] , We give details of this step shortly. 
3. Move all elements that are less than x into positions a r r a y [0] ••• a r r a y [ i - 1 ] . 

Similarly, move those elements that are greater than x into positions a r r a y [i+1] • • • 
a r r a y [N-1]. Note that these two subarrays are not sorted. 

4. Now apply the quicksort procedure recursively to sort these two subarrays until the array is 
sorted. 

How do we know the final position of the partition element x without sorting the array? We don't 
have to sort the array; we just need to know the number of elements either before or after it. To 
clarify the working of the quicksort algorithm, let us look at an example. In this example, and 
in our quicksort implementation, we pick the last element as the partition value. Obviously, the 
selection of the partition element influences performance of the quicksort. There are several better 
ways of selecting the partition value; you can get these details in any textbook on sorting. 
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Initial state: 
After 1st pass: 

2 
2 

The second pass works ( 

9 8 
1 3 

Dnthe 

1 3 4 7 6 ^ 
4 6 7 9 8 

Partition element; 
Partition element 6 

following two subarrays. 

Istsubarray: 
2nd subarray: 

2 1 3 4; 
7 9 8. 

is in its final place. 

To move the partition element to its final place, we use two pointers i and j . Initially, i points 
to the first element and j points to the second-to-the-last element. Note that we are using the last 
element as the partition element. The index i is advanced until it points to an element that is greater 
than or equal to x. Similarly, j is moved backward until it points to an element that is less than or 
equal to x. Then we exchange the two values at i and j . We continue this process until i is greater 
than or equal to j . The quicksort pseudocode is shown below: 

q u i c k _ s o r t (array, lo, hi) 
if(hi>lo) 

X := array[hi] 
i:=lo 
j :=hi 
while (i < j) 

while (array[i] < x) 
i := i + 1 

end while 
while (array[j] > x) 

j : = j - l 
end while 
i f( i<j) 

array[i] <=^ array[j] /* exchange values */ 
end if 

end while 
array [i] <==> array [hi] /* exchange values */ 
q u i c k _ s o r t (array, lo, i-1) 
q u i c k _ s o r t (array, i-hl, hi) 

end if 
end q u i c k _ s o r t 

The quicksort program is shown in Program 19.3. The input values are read by the read 
loop (lines 25 to 31). This loop terminates if the input is zero. As written, this program can 
cause problems if the user enters more than 200 integers. You can easily remedy this problem by 
initializing the ECX with 200 and using the loop instruction on line 31. The three arguments 
are placed in the EBX (array pointer), ESI (lo), and EDI (hi) registers (lines 35 to 37). After the 
quicksort call on line 38, the program outputs the sorted array (lines 41 to 50). 
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1: 
2: 
3 : 
4: 
5: 
6: 
7: 
8: 
9: 

1 0 : 
1 1 : 
1 2 : 
1 3 : 
1 4 : 
15 : 
16 : 
17: 
16 
1 9 : 
2 0 : 
2 1 : 
2 2 : 
2 3 : 
2 4 : 
2 5 : 
2 6 : 
2 7 : 
2 8 : 
2 9 : 
3 0 : 
3 1 : 
3 2 : 
3 3 ; 
34 ; 
3 5 : 
3 6 : 
3 7 : 
3 8 : 
3 9 : 
4 0 : 
4 1 : 
4 2 : 
4 3 : 
4 4 : 
4 5 : 
4 6 : 
4 7 : 
4 8 : 
4 9 : 

Program 19.3 Sorting integers using the recursive quicksort algorithm 

Sorting integers using quicksort QSORT.ASM 

Objective: Sorts an array of integers using 
quick sort. Uses recursion. 

Input: Requests integers from the user. 
Terminated by entering zero. 

Output: Outputs the sorted arrray. 

%include "io.mac" 

.DATA 
prompt_msg db "Please enter integers. ",ODH,OAH 

db "Entering zero terminates the input.",0 
output_msg db "The sorted array is: ",0 

.UDATA 
arrayl resw 200 

request the number 

EDI keeps a count of 
input numbers 

.CODE 
.STARTUP 
PutStr prompt_msg 
nwln 
mov EBX,arrayl 
xor EDI,EDI 

read_more: 
Getint AX 
mov [EBX+EDI*2],AX ; store input # in array 
cmp AX,0 ; test if it is zero 
je exit_read 
inc EDI 
jmp read_more 

exit_read: 
; prepare arguments for procedure call 
mov EBX,arrayl 
xor ESI,ESI ; ESI = lo index 
dec EDI ; EDI = hi index 
call qsort 

PutStr output_msg ; output sorted array 
write_more: 

; since qsort preserves all registers, we will 
; have valid EBX and ESI values. 
mov AX,[EBX+ESI*2] 
cmp AX,0 
j e done 
Putint AX 
nwln 
inc ESI 
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done: 

jmp 

.EXIT 

write more 

Procedure qsort receives a pointer to the array in BX. 
LO and HI are received in ESI and EDI, respectively. 
It preserves all the registers. 

qsort: 
pushad 
cmp 
jle 

; save 
mov 
mov 

mov 

EDI,ESI 
qsort_done ; end recursion if hi <= lo 

hi and lo for later use 
ECX,ESI 
EDX,EDI 

lo_loop: 
cmp 
jge 
inc 
jmp 

lo_loop_done: 

dec 
hi_loop: 

cmp 
jle 
cmp 
jle 
dec 
jmp 

hi_loop_done: 

xchg 
xchg 
xchg 
jmp 

sep_done: 
xchg 
xchg 
xchg 

dec 
mov 

AX,[EBX+EDI*2] ; AX = xsep 

[EBX+ESI*2],AX 
1o_loop_done 
ESI 
lo_loop 

EDI 

E D I , E S I 
s e p _ d o n e 
[EBX+EDI*2],AX 

h i _ l o o p _ d o n e 
EDI 
h i _ l o o p 

AX, [EBX+ESI*2] 
AX, [EBX+EDI*2] 
AX, [EBX+ESI*2] 
l o _ l o o p 

AX,[EBX+ESI*2] 
AX, [EBX+EDX*2] 
AX, [EBX+ESI*2] 

ESI 
E D I , E S I 

LO w h i l e l o o p 

h i = h i - 1 

HI w h i l e l o o p 

x [ i ] < = > x [ j ] 

x [ i ] < = > x [ h i ] 

h i i - 1 
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; We modify the ESI value in the next statement. 
; Since the original ESI value is in EDI, we use 
; EDI to get i+1 value for the second qsort call. 
mov ESI,ECX 
call qsort 

; EDI has the i value 
inc EDI 
inc EDI 
mov ESI,EDI ; lo = i+1 
mov EDI,EDX 
call qsort 

qsort_done: 
popad 
ret 

The quicksort procedure follows the pseudocode. Since we are not returning any values, we 
use pushad to preserve all registers (line 62). The two inner while loops are implemented by 
the LO_LOOP and HI_LOOP. The exchange of elements is done by using three xchg instructions 
(lines 89 to 91 and 95 to 97). The rest of the program is straightforward to follow. 

Recursion Versus Iteration 
In theory, every recursive function has an iterative counterpart. To see this, let us write in C the 
iterative version to compute the factorial function. 

int fact_iterative(int n) 
{ 

int i, result; 

if (n == 0) 
return (1); 

result = 1; 
for(i = 1; i <= n; i++) 

result = result * i; 
return(result); 

Comparing this code with the recursive version given on page 391, it is obvious that the recursive 
version is concise and reflects the mathematical definition of the factorial function. Once you 
get through the initial learning problems with recursion, recursive code is easier to understand 
for those functions that are defined recursively. Some such examples are the factorial function, 
Fibonacci number computation, binary search, and quicksort. 

This leads us to the question of when to use recursion. To answer this question, we need to 
look at the potential problems recursion can cause. There are two main problems with recursion: 
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• Inefficiency: In most cases, recursive versions tend to be inefficient. You can see this point 
by comparing the recursive and iterative versions of the factorial function. The recursive 
version induces more overheads to invoke and return from procedure calls. To compute Â !, 
we need to call the factorial function about Â  times. In the iterative version, the loop iterates 
about Â  times. 

Recursion could also introduce duplicate computation. For example, to compute the Fi­
bonacci number f i b (5) 

f i b ( 5 ) = f i b ( 4 ) + f i b ( 3 ) 

a recursive procedure computes f i b (3) twice, f i b (2) twice, and so on. 

• Increased memory requirement: Recursion tends to demand more memory. This can be 
seen from the simple factorial example. For large A'̂ , the demand for stack memory can be 
excessive. In some cases, the limit on the available memory may make the recursive version 
unusable. 

On the positive side, however, note that recursion leads to better understanding of the code for 
those naturally recursive problems. In this case, recursion aids in program maintenance. 

Summary 

We can use recursive procedures as an alternative to iterative ones. A procedure that calls itself, 
whether directly or indirectly, is called a recursive procedure. In direct recursion, a procedure calls 
itself, as in our factorial example. In indirect recursion, a procedure may initiate a sequence of 
calls that eventually results in calling the procedure itself. 

For some applications, we can write an elegant solution because recursion is a natural fit. 
We illustrated the principles of recursion using a few examples: factorial, Fibonacci number, and 
quicksort. We presented recursive versions of these functions in the assembly language. In the last 
section we identified the tradeoffs associated with recursion as opposed to iteration. 



20 
Protected-Mode 
Interrupt Processing 

Interrupts, like procedures, can be used to alter a program's control flow to a procedure called 
an interrupt service routine. Unlike procedures, which can be invoked by a c a l l instruction, 
interrupt service routines can be invoked either in software (called software interrupts) or by hard­
ware (called hardware interrupts). After introducing the interrupts we discuss the taxonomy of the 
IA-32 interrupts. We describe the interrupt invocation mechanism in the protected mode before 
describing the exceptions. The next two sections deal with software interrupts and file I/O. We use 
the Linux system calls to illustrate how we can access I/O devices like the keyboard and display. 
Hardware interrupts along with the I/O instructions are briefly introduced toward the end of the 
chapter The last section summarizes the chapter 

Introduction 
Interrupt is a mechanism by which a program's flow control can be altered. We have seen two 
other mechanisms to do the same: procedures and jumps. While jumps provide a one-way transfer 
of control, procedures provide a mechanism to return control to the point of calling when the called 
procedure is completed. 

Interrupts provide a mechanism similar to that of a procedure call. Causing an interrupt trans­
fers control to a procedure, which is referred to as an interrupt service routine (ISR). An ISR is 
sometimes called a handler. When the ISR is completed, the interrupted program resumes exe­
cution as if it were not interrupted. This behavior is analogous to a procedure call. There are, 
however, some basic differences between procedures and interrupts that make interrupts almost 
indispensable. 

One of the main differences is that interrupts can be initiated by both software and hardware. 
In contrast, procedures are purely software-initiated. The fact that interrupts can be initiated by 
hardware is the principal factor behind much of the power of interrupts. This capability gives us an 
efficient way by which external devices (outside the processor) can get the processor's attention. 
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f Interrupts J 

Exceptions f Software Interrupts J f Hardware Interrupts J 

) ( Traps ) Q Maskable J C Nonmaskable 

Figure 20.1 A taxonomy of the IA-32 interrupts. 

Software-initiated interrupts—called simply software interrupts—are caused by executing the 
i n t instruction. Thus these interrupts, like procedure calls, are anticipated or planned events. 
For example, when you are expecting a response from the user (e.g., Y or N), you can initiate 
an interrupt to read a character from the keyboard. What if an unexpected situation arises that 
requires immediate attention of the processor? For example, you have written a program to display 
the first 90 Fibonacci numbers on the screen. While running the program, however, you realized 
that your program never terminates because of a simple programming mistake (e.g., you forgot 
to increment the index variable controlling the loop). Obviously, you want to abort the program 
and return control to the operating system. As you know, this can be done by C t r l - c in Linux 
( C t r l - b r e a k on Windows). The important point is that this is not an anticipated event—so it 
cannot be effectively programmed into the code. 

The interrupt mechanism provides an efficient way to handle such unanticipated events. Re­
ferring to the previous example, the C t r l - c could cause an interrupt to draw the attention of the 
processor away from the user program. The interrupt service routine associated with C t r l - c can 
terminate the program and return control to the operating system. 

Another difference between procedures and interrupts is that ISRs are normally memory-
resident. In contrast, procedures are loaded into memory along with application programs. Some 
other differences—such as using numbers to identify interrupts rather than names, using an in­
vocation mechanism that automatically pushes the flags register onto the stack, and so on—are 
pointed out in later sections. 

A Taxonomy of Interrupts 

We have already identified two basic categories of interrupts—software-initiated and 
hardware-initiated (see Figure 20.1). The third category is called exceptions. Exceptions handle 
instruction faults. An example of an exception is the divide error fault, which is generated when­
ever divide by 0 is attempted. This error condition occurs during the d i v or i d i v instruction 
execution if the divisor is 0. We discuss exceptions later. 

Software interrupts are written into a program by using the i n t instruction. The main use of 
software interrupts is in accessing I/O devices such as the keyboard, printer, display screen, disk 
drive, etc. Software interrupts can be further classified into system-defined and user-defined. 

Hardware interrupts are generated by hardware devices to get the attention of the processor. 
For example, when you strike a key, the keyboard hardware generates an external interrupt, causing 
the processor to suspend its present activity and execute the keyboard interrupt service routine to 
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process the key. After completing the keyboard ISR, the processor resumes what it was doing 
before the interruption. 

Hardware interrupts can be either maskable or nonmaskable. The processor always attends 
the nonmaskable interrupt (NMI) immediately. One example of NMI is the RAM parity error 
indicating memory malfunction. 

Maskable interrupts can be delayed until execution reaches a convenient point. As an example, 
let us assume that the processor is executing a main program. An interrupt occurs. As a result, the 
processor suspends main as soon as it finishes the current instruction and transfers control to the 
ISRl interrupt service routine. If ISRl has to be executed without any interruption, the processor 
can mask further interrupts until it is completed. Suppose that, while executing ISRl, another 
maskable interrupt occurs. Service to this interrupt would have to wait until ISRl is completed. 
We discuss hardware interrupts toward the end of the chapter. 

Interrupt Processing in the Protected Mo6e 
Let's now look at interrupt processing in the protected mode. Unlike procedures, where a name is 
given to identify a procedure, interrupts are identified by a type number. The IA-32 architecture 
supports 256 different interrupt types. The interrupt type ranges from 0 to 255. The interrupt type 
number, which is also called a vector, is used as an index into a table that stores the addresses of 
ISRs. This table is called the interrupt descriptor table (IDT). Like the global and local descriptor 
tables GDT and LDT (discussed in Chapter 4), each descriptor is essentially a pointer to an ISR 
and requires eight bytes. The interrupt type number is scaled by 8 to form an index into the IDT. 

The IDT may reside anywhere in physical memory. The location of the IDT is maintained in 
an IDT register IDTR. The IDTR is a 48-bit register that stores the 32-bit IDT base address and 
a 16-bit IDT limit value as shown in Figure 20.2. However, the IDT does not require more than 
2048 bytes, as there can be at most 256 descriptors. In a system, the number of descriptors could 
be much smaller than the maximum allowed. In this case, the IDT limit can be set to the required 
size. If the referenced descriptor is outside the IDT limit, the processor enters the shutdown mode. 
In this mode, instruction execution is stopped until either a nonmaskable interrupt or a reset signal 
is received. 

There are two special instructions to load ( l i d t ) and store ( s i d t ) the contents of the IDTR 
register. Both instructions take the address of a 6-byte memory as the operand. 

The IDT can have three types of descriptors: interrupt gate, trap gate, and task gate. We 
will not discuss task gates, as they are not directly related to the interrupt mechanism that we are 
interested in. The format of the other two gates is shown in Figure 20.3. Both gates store identical 
information: a 16-bit segment selector, a 32-bit offset, a descriptor privilege level (DPL), and a P 
bit to indicate whether the segment is present or not. 

When an interrupt occurs, the segment selector is used to select a segment descriptor that is in 
either the GDT or the current LDT. Recall from our discussion in Chapter 4 that the TI bit of the 
segment descriptor identifies whether the GDT or the current LDT should be used. The segment 
descriptor provides the base address of segment that contains the interrupt service routine as shown 
in Figure 20.4. The offset part comes from the interrupt gate. 

What happens when an interrupt occurs depends on whether there is a privilege change or not. 
In the remainder of the chapter, we look at the simple case of no privilege change. In this case, the 
following actions are taken on an interrupt: 
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Figure 20.4 Protected-mode interrupt invocation. 

1. Push the EFLAGS register onto the stack; 

2. Clear the interrupt and trap flags; 

3. Push CS and EIP registers onto the stack; 

4. Load CS with the 16-bit segment selector from the interrupt gate; 

5. Load EIP with the 32-bit offset values from the interrupt gate. 

On receiving an interrupt, the flags register is automatically saved on the stack. The interrupt and 
trap flags are cleared to disable further interrupts. Usually, this flag is set in ISRs unless there is 
a special reason to disable other interrupts. The interrupt flag can be set by s t i and cleared by 
c l i assembly language instructions. Both of these instructions require no operands. There are no 
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Figure 20.5 Stack state after an interrupt invocation. 

special instructions to manipulate the trap flag. We have to use popf and pushf to modify the 
trap flag. We give an example of this in the next section. 

The current CS and EIP values are pushed onto the stack. The CS and EIP registers are loaded 
with the segment selector and offset from the interrupt gate, respectively. Note that when we load 
the CS register with the 16-bit segment selector, the invisible part consisting of the base address, 
segment limit, access rights, and so on is also loaded. The stack state after an interrupt is shown in 
Figure 20.5a. 

Interrupt processing through a trap gate is similar to that through an interrupt gate except for 
the fact that trap gates do not modify the IF flag. 

While the previous discussion holds for all interrupts and traps, some types of exceptions also 
push an error code onto the stack as shown Figure 20.5b. The exception handler can use this error 
code in identifying the cause for the exception. 

Returning from an interrupt handler Similar to procedures, ISRs should end with a return state­
ment to send control back to the interrupted program. The interrupt return ( i r e t ) is used for this 
purpose. The last instruction of an ISR should be the i r e t instruction. It serves the same purpose 
as r e t for procedures. The actions taken on i r e t are 

1. Pop the 32-bit value on top of the stack into the EIP register; 
2. Pop the 16-bit value on top of the stack into the CS register; 
3. Pop the 32-bit value on top of the stack into the EFLAGS register. 

Exceptions 

The exceptions are classified into faults, traps, and aborts depending on the way they are reported 
and whether the interrupted instruction is restarted. Faults and traps are reported at instruction 
boundaries. Faults use the boundary before the instruction during which the exception was de­
tected. When a fault occurs, the system state is restored to the state before the current instruction 
so that the instruction can be restarted. The divide error, for instance, is a fault detected during 
the d i v or i d i v instruction. The processor, therefore, restores the state to correspond to the one 
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Table 20.1 The First Five Dedicated Interrupts 

Interrupt type 
0 
1 
2 
3 
4 

Purpose 
Divide error 
Single-step 
Nonmaskable interrupt (NMI) 
Breakpoint 
Overflow 

before the divide instruction that caused the fault. Furthermore, the instruction pointer is adjusted 
to point to the divide instruction so that, after returning from the exception handler, the divide 
instruction is reexecuted. 

Another example of a fault is the segment-not-present fault. This exception is caused by a 
reference to data in a segment that is not in memory. Then, the exception handler must load the 
missing segment from the disk and resume program execution starting with the instruction that 
caused the exception. In this example, it clearly makes sense to restart the instruction that caused 
the exception. 

Traps, on the other hand, are reported at the instruction boundary immediately following the 
instruction during which the exception was detected. For instance, the overflow exception (inter­
rupt 4) is a trap. Therefore, no instruction restart is done. User-defined interrupts are also examples 
of traps. 

Aborts are exceptions that report severe errors. Examples include hardware errors and incon­
sistent values in system tables. 

There are several predefined interrupts. These are called dedicated interrupts. These include 
the first five interrupts as shown in Table 20.1. The NMI is a hardware interrupt and is discussed 
in Section 20. A brief description of the remaining four interrupts is given here. 

Divide Error Interrupt The processor generates a type 0 interrupt whenever executing a divide 
instruction—either d i v (divide) or i d i v (integer divide)—results in a quotient that is larger 
than the destination specified. The default interrupt handler on Linux displays a Floating point 
exception message and terminates the program. 

Single-Step Interrupt Single-stepping is a useful debugging tool to observe the behavior of a 
program instruction by instruction. To start single-stepping, the trap flag (TF) bit in the flags 
register should be set (i.e., TF = 1). When TF is set, the CPU automatically generates a type 1 
interrupt after executing each instruction. Some exceptions do exist, but we do not worry about 
them here. 

The interrupt handler for the type 1 interrupt can be used to display relevant information about 
the state of the program. For example, the contents of all registers could be displayed. 

To end single stepping, the TF should be cleared. The instruction set, however, does not have 
instructions to directly manipulate the TF bit. Instead, we have to resort to an indirect means. You 
have to push flags register using pushf and manipulate the TF bit and use popf to store this 
value back in the flags register. Here is an example code fragment that sets the trap flag: 
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pushf ; copy the flag register 
pop AX ; into AX 
or AX,100H ; set the trap flag bit (TF = 1) 
push AX / copy the modified flag bits 
popf ; back into the flags register 

Recall that bit 8 of the flags register is the trap flag (see Figure 4,4 on page 65). We can use the 
following code to clear the trap flag: 

pushf / copy the flags register 
pop AX ; into AX 
and AX,OFEFFH / clear trap flag bit (TF = 0) 
push AX ; write back into 
popf ; the flags register 

Breakpoint Interrupt If you have used a debugger, which you should have by now, you already 
know the usefulness of inserting breakpoints while debugging a program. The type 3 interrupt is 
dedicated to the breakpoint processing. This type of interrupt can be generated by using the special 
single-byte form of i n t 3 (opcode CCH). Using the i n t 3 instruction automatically causes the 
assembler to encode the instruction into the single-byte version. Note that the standard encoding 
for the i n t instruction is two bytes long. 

Inserting a breakpoint in a program involves replacing the program code byte by CCH while 
saving the program byte for later restoration to remove the breakpoint. The standard 2-byte version 
of i n t 3 can cause problems in certain situations, as there are instructions that require only a 
single byte to encode. 

Overflow Interrupt The type 4 interrupt is dedicated to handle overflow conditions. There are 
two ways by which a type 4 interrupt can be generated: either by i n t 4 or by i n t o . Like the 
breakpoint interrupt, i n t o requires only one byte to encode, as it does not require the specification 
of the interrupt type number as part of the instruction. Unlike i n t 4, which unconditionally 
generates a type 4 interrupt, i n t o generates a type 4 interrupt only if the overflow flag is set. We 
do not normally use i n t o , as the overflow condition is usually detected and processed by using 
the conditional jump instructions j o and j no. 

Software Interrupts 
Software interrupts are initiated by executing an interrupt instruction. The format of this instruc­
tion is 

int interrupt-type 

where i n t e r r u p t - t y p e is an integer in the range 0 through 255 (both inclusive). Thus a total 
of 256 different types is possible. This is a sufficiently large number, as each interrupt type can be 
parameterized to provide several services. For example, Linux provides a large number of services 
via i n t 0x80. In fact, it provides more than 180 different system calls! All these system calls 
are invoked by i n t 0x80. The required service is identified by placing the system call number 
in the EAX register. If the number of arguments required for a system call is less than six, these are 
placed in other registers. Usually, the system call also returns values in registers. We give details 
on some of the file access services provided by i n t 0x8 0 in the next section. 
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Linux System Calls Of the 256 interrupt vectors available, Linux uses the first 32 vectors (i.e., 
from 0 to 31) for exceptions and nonmaskable interrupts. The next 16 vectors (from 32 to 47) 
are used for hardware interrupts generated through interrupt request lines (IRQs) (discussed in the 
next chapter). It uses one vector (128 or 0x80) for software interrupt to provide system services. 
Even though only one interrupt vector is used for system services, Linux provides several services 
using this interrupt. 

File I/O 
In this section we give several examples to perform file I/O operations. In Linux as in UNIX, the 
keyboard and display are treated as stream files. So reading from the keyboard is not any different 
from reading a file from the disk. If you have done some file I/O in C, it is relatively easy to 
understand the following examples. Don't worry if you are not familiar with the file I/O; we give 
enough details here. 

The system sees the input and output data as a stream of bytes. It does not make any logical 
distinction whether the byte stream is coming from a disk file or the keyboard. This makes it easy 
to interface with the I/O devices like keyboard and display. Three standard file streams are defined: 
standard input ( s td in) , standard output ( s tdout ) , and standard error ( s t d e r r ) . The default 
association for the standard input is the keyboard; for the other two, it is the display. 

File Descriptor 
For each open file, a small 16-bit integer is assigned as a file id. These magic numbers are called 
thQ file descriptors. Before accessing a file, it must first be opened or created. To open or create 
a file, we need the file name, mode in which it should be opened or created, and so on. The file 
descriptor is returned by the file open or c r e a t e system calls. Once a file is open or created, we 
use the file descriptor to access the file. 

We don't have to open the three standard files mentioned above. They are automatically opened 
for us. These files are assigned the lowest three integers: s t d i n (0), s t d o u t (1), and s t d e r r 
(2). 

File Pointer 
A file pointer is associated with each open file. The file pointer specifies an offset in bytes into the 
file relative to the beginning of the file. A file itself is viewed as a sequence of bytes or characters. 
The file pointer specifies the location in the file for the subsequent read or write operation. 

When a file is opened, the file pointer of that file is set to zero. In other words, the file pointer 
points to the first byte of the file. Sequential access to the file is provided by updating the file 
pointer to move past the data read or written. Direct access, as opposed to sequential access, to a 
file is provided by simply manipulating the file pointer. 

File System Calls 
System calls described in this section provide access to the data in disk files. As discussed previ­
ously, before accessing the data stored in a file, we have to open the file. We can only open a file 
if it already exists. Otherwise, we have to create a new file, in which case there is no data and our 
intent should be to write something into the file. Linux provides two separate functions—one to 
open an existing file (system call 5) and the other to create a new file (system call 8). 
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Once a file is opened or created, the data from that file can be read or data can be written into 
the file. We can use system call 3 to read data from a file and data can be written to a file by using 
system call 4. In addition, since disks allow direct access to the data stored, data contained in a 
disk file can be accessed directly or randomly. To provide direct access to the data stored in a file, 
the file pointer should be moved to the desired position in the file. The system call 19 facilitates 
this process. Finally, when processing of data is completed we should close the file. We use system 
call number 6 to close an open file. 

A file name (you can include the path if you wish) is needed only to open or create file. Once a 
file is opened or created, a file descriptor is returned and all subsequent accesses to the file should 
use this file descriptor. 

The remainder of this section describes some of the file system calls. 

System call 8 — Create and open a file 

Inputs: EAX = 8 
EBX = filename 
ECX = file permissions 

Returns: EAX = file descriptor 
Error: EAX = error code 

This system call can be used to create a new file. The EBX should point to the file name string, 
which can include the path. The ECX should be loaded with file permissions for owner, group 
and others as you would in the Linux (using chmod command) to set the file permissions. File 
permissions are represented by three groups of three bits as shown below: 

8 7 6 5 4 3 2 1 0 

R W X R W X R W X 

User Group Other 

For each group, you can specify read (R), write (W), and execute (X) permissions. For exam­
ple, if you want to give read, write, and execute for the owner but no access to anyone else, set the 
three owner permission bits to 1 and other bits to 0. Using the octal number system, we represent 
this number as 0700. If you want to give read, write, and execute for the owner, read permission to 
the group, and no access to others, you can set the permissions as 0740. (Note that octal numbers 
are indicated by prefixing them with a zero as in the examples here.) 

The file is opened in read/write access mode and a file descriptor (a positive integer) is returned 
in EAX if there is no error. In case of an error, the error code (a negative integer) is placed in EAX. 
For example, a create error may occur due to a nonexistent directory in the specified path, or if 
there are device access problems or the specified file already exists, and so on. As we see next, we 
can also use file open to create a file. 
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System call 5 — Open a file 

Inputs: EAX = 5 
EBX = filename 
ECX = file access mode 
EDX = file permissions 

Returns: EAX = file descriptor 
Error: EAX = error code 

This function can be used to open an existing file. It takes the file name and file mode information 
as in the file-create system call. In addition, it takes the file access mode in ECX register. This 
field gives information on how the file can be accessed. Some interesting values are read-only 
(0), write-only (1), and read-write (2). Why is access mode specification important? The simple 
answer is to provide security. A file that is used as an input file to a program can be opened 
as a read-only file. Similarly, an output file can be opened as a write-only file. This eliminates 
accidental writes or reads. This specification facilitates, for example, access to files for which you 
have read-only access permission. 

We can use this system call to create a file by specifying 0100 for file access mode. This is 
equivalent to the file-create system call we discussed before. We can erase contents of a file by 
specifying 01000 for the access mode. This leaves the file pointer at the beginning of the file. If 
we want to append to the existing contents, we can specify 02000 to leave the file pointer at the 
end. 

As with the create system call, file descriptor and error code values are returned in the EAX 
register. 

System call 3 — 

Inputs: 

Returns: 
Error: 

Read from a file 

EAX = 3 
EBX = file descriptor 
ECX = pointer to input buffer 
EDX = buffer size 

(maximum number of bytes to read) 
EAX = number of bytes read 
EAX = error code 

Before calling this function to read data from a previously opened or created file, the number of 
bytes to read should be specified in EDX and ECX should point to a data buffer into which the 
data read from the file is placed. The file is identified by giving its descriptor in EBX. 

The system attempts to read EDX bytes from the file starting from the current file pointer 
location. Thus, by manipulating the file pointer (see I s eek system call discussed later), we can 
use this function to read data from a random location in a file. 

After the read is complete, the file pointer is updated to point to the byte after the last byte 
read. Thus, successive calls would give us sequential access to the file. 

Upon completion, if there is no error, EAX contains the actual number of bytes read from the 
file. If this number is less than that specified in EDX, the only reasonable explanation is that the 
end of file has been reached. Thus, we can use this condition to detect e n d - o f - f i l e . 
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System call 4 — 

Inputs: 

Returns: 
Error: 

Write to a 1 

EAX = 
EBX = 
ECX = 
EDX = 
EAX = 
EAX = 

lie 

4 
file descriptor 
pointer to output buffer 
buffer size (number bytes to write) 
number of bytes written 
error code 

This function can be used to write to a file that is open in write or read/write access mode. Of 
course, if a file is created, it is automatically opened in read/write access mode. The input pa­
rameters have similar meaning as in the read system call. On return, if there is no error, EAX 
contains the actual number of bytes written to the file. This number should normally be equal to 
that specified in EDX. If not, there was an error—possibly due to disk full condition. 

System call 6 — Close a file 

Inputs: EAX = 6 
EBX = file descriptor 

Returns: EAX = — 
Error: EAX = error code 

This function can be used to close an open file. It is not usually necessary to check for errors after 
closing a file. The only reasonable error scenario is when EBX contains an invalid file descriptor. 

System call 19 — 

Inputs: 

Returns: 
Error: 

Iseek (Updates file pointer) 

EAX = 19 
EBX = file descriptor 
ECX = offset 
EDX = whence 
EAX = byte offset from the beginning of file 
EAX = error code 

Thus far, we processed files sequentially. The file pointer remembers the position in the file. As we 
read from or write to the file, the file pointer is advanced accordingly. If we want to have random 
access to a file rather than accessing sequentially, we need to manipulate the file pointer. 

This system call allows us to reposition the file pointer. As usual, the file descriptor is loaded 
into EBX. The offset to be added to the file pointer is given in ECX. This offset can added relative 
to the beginning of file, end of file, or current position. The whence value in EDX specifies this 
reference point: 

Reference position whence value 
Beginning of file 0 
Current position 1 
End of file 2 

These system calls allow us to write file I/O programs. Since keyboard and display are treated 
as files as well, we can write assembly language programs to access these I/O devices. 
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Our First Program 
As our first example, we look at the PutCh procedure we used to write a character to the display. 
This is done by using the write system call. We specify s t d o u t as the file to be written. The 
procedure is shown in Program 20.1. Since the character to be displayed is received in the AL 
register, we store it in temp_char before loading EAX with system call number 4. We load 
the temp_char pointer in ECX. Since we want to readjust one character, we load 1 into EDX 
(line 10). We preserve the registers by using pusha and popa on lines 5 and 12. 

Program 20.1 Procedure to write a character 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

; Put 

putch 

character procedure receives the character in AL. 

pusha 
mov 
mov 
mov 
mov 
mov 
int 
popa 

ret 

[temp_char],AL 
EAX, 4 
EBX,1 
ECX,temp_char 
EDX,1 
0x8 0 

4 = write 
• 1 = std output (display) 
• pointer to char buffer 
# bytes = 1 

Illustrative Examples 
We present two examples that use the file I/O system calls described before. As in the last example, 
the first one is taken from the I/O routines we have used (see Chapter 7 for details). 

Example 20.1 Procedure to read a string. 
In this example, we look at the string read function ge t s t r. We can read a string by using a single 
file read system call as shown in Program 20.2. Since we use the dec instruction, which modifies 
the flags register, we preserve its contents by saving and restoring the flags register using pushf 
(line 7) and popf (line 16). Since the file read system call returns the number of characters read in 
EAX, we can add this value (after decrementing) to the buffer pointer to append a NULL character 
(line 15). This returns the string in the NULL-terminated format. 

Program 20.2 Procedure to read a string 

Get string procedure receives input buffer pointer in 
EDI and the buffer size in ESI. 

getstr: 
pusha 
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pushf 
mov 
mov 
mov 
mov 
int 
dec 

done_getstr: 
mov 
popf 
popa 

ret 

EAX,3 
EBX,0 
ECX,EDI 
EDX,ESI 
0x8 0 
EAX 

byte[ED 

file read service 
0 = std input (keyboard) 
pointer to input buffer 
input buffer size 

append NULL character 

Example 20.2 A file copy program. 
This example uses file copy to show how disk files can be manipulated using the file I/O system 
calls. The program requests the input and output file names (lines 27-31). It opens the input file in 
read-only mode using the open file system call (lines 33-39). If the call is successful, it returns the 
file descriptor (a positive integer) in EAX. In case of an error, a negative value is returned in EAX. 
This error check is done on line 41. If there is an error in opening the file, the program displays the 
error message and quits. Otherwise, it creates the output file (lines 47-53). A similar error check 
is done for the output file (lines 55-59). 

File copy is done by reading a block of data from the input file and writing it to the output file. 
The block size is determined by the buffer size allocated for this purpose (see line 23). The copy 
loop on lines 61-79 consists of three parts: 

• Read a block of BUF_S IZE bytes from the input file (lines 62-67); 
• Write the block to the output file (lines 69-74); 

• Check to see if the end of file has been reached. As discussed before, this check is done by 
comparing the number of bytes read by the file-read system call (which is copied to EDX) to 
BUF_S I ZE. If the number of bytes read is less than BUF_S I ZE, we know we have reached 
the end of file (lines 76 and 77). 

After completing the copying process, we close the two open files (lines 81-85). 

9 
10 
11 

Program 20.3 File copy program using the file I/O services 

A file copy program file_copy.asm 

Objective: To copy a file using the int 0x80 services. 
Input: Requests names of the input and output files. 

Output: Creates a new output file and copies contents 
of the input file. 

%include "io.mac" 

%define BUF SIZE 256 
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28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

.DATA 
in_fn_prompt db 
out_fn_prompt db 
in_file_err_msg db 
out_file_err_msg db 

'Enter the input file name: ',0 
'Enter the output file name: ',0 
'Input file open error.',0 
'Cannot create output file.'^O 

.UDATA 
in_file_name resb 3 0 
out_file_name resb 3 0 
fd_in resd 1 
fd_out resd 1 
in buf resb BUF SIZE 

.CODE 
.STARTUP 
PutStr in_fn_prompt ; 
GetStr in_file_name,3 0 ; 

PutStr out_fn_prompt ; 
GetStr out file name,30 ; 

; open 
mov 
mov 
mov 
mov 
int 
mov 

cmp 
jge 
PutSti 
nwln 
jmp 

the input file 
EAX,5 
EBX,in_file_name / 
ECX,0 
EDX,0700 
0x80 
[fd_in],EAX 

EAX,0 
create_file 
in_file_err_msg 

done 

request input file name 
read input file name 

request output file name 
read output file name 

file open 
input file name pointer 
access bits (read only) 
file permissions 

store fd for use in 
read routine 

open error if fd < 0 

create_file: 
/create output file 
mov EAX,8 ; 
mov EBX,out_f i1e_name; 
mov ECX,0700 / 
int 0x8 0 
mov [fd_out],EAX 

cmp EAX,0 
jge repeat_read 
PutStr out_file_err_msg 
nwln 
jmp close_exit 

repeat_read: 
; read input file 

file create 
output file name pointer 
r/w/e by owner only 

store fd for use in 
write routine 

create error if fd < 0 

close input file & exit 
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76 
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87 

mov 
mov 
mov 
mov 
int 

; write 
mov 
mov 
mov 
mov 
int 

cmp 
jl 

jmp 
copy_done: 

mov 
mov 

: close_exit: 
: mov 

mov 
done: 

.EXIT 

EAX,3 
EBX, [fd_in] 
ECX,in_buf 
EDX,BUF_SIZE 
0x8 0 

to output file 
EDX,EAX 
EAX,4 
EBX,[fd_out] 
ECX,in_buf 
0x8 0 

EDX,BUF_SIZE 
copy_done 

repeat_read 

EAX,6 
EBX,[fd_out] 

EAX,6 
EBX,[fd_in] 

file read 
file descriptor 

• input buffer 
• size 

byte count 
• file write 
• file descriptor 
• input buffer 

• EDX = # bytes read 
• EDX < BUF_SIZE 
• indicates end-of-file 

• close output file 

• close input file 

Hardware Interrupts 
We have seen how interrupts can be caused by the software instruction i n t . Since these in­
structions are placed in a program, software interrupts are called synchronous events. Hardware 
interrupts, on the other hand, are of hardware origin and asynchronous in nature. These interrupts 
are used by I/O devices such as the keyboard to get the processor's attention. 

As discussed before, hardware interrupts can be further divided into either maskable or non­
maskable interrupts (see Figure 20.1). A nonmaskable interrupt (NMI) can be triggered by ap­
plying an electrical signal on the NMI pin of the processor. This interrupt is called nonmaskable 
because the CPU always responds to this signal. In other words, this interrupt cannot be disabled 
under program control. The NMI causes a type 2 interrupt. 

Most hardware interrupts are of maskable type. To cause this type of interrupt, an electrical 
signal should be applied to the INTR (INTerrupt Request) input of the processor. The processor 
recognizes the INTR interrupt only if the interrupt enable flag (IF) bit of the flags register is set to 
1. Thus, these interrupts can be masked or disabled by clearing the IF bit. Note that we can use 
s t i and c l i to set and clear this bit in the flags register, respectively. 

How Does the Processor Know the Interrupt Type? Recall that every interrupt should be iden­
tified by a vector (a number between 0 and 255), which is used as an index into the interrupt vector 
table to obtain the corresponding ISR address. This interrupt invocation procedure is common to 
all interrupts, whether caused by software or hardware. 
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In response to a hardware interrupt request on the INTR pin, the processor initiates an interrupt 
acknowledge sequence. As part of this sequence, the processor sends out an interrupt acknowledge 
(INTA) signal, and the interrupting device is expected to place the interrupt vector on the data bus. 
The processor reads this value and uses it as the interrupt vector. 

How Can More Than One Device Interrupt? From the above description, it is clear that all 
interrupt requests from external devices should be input via the INTR pin of the processor. While 
it is straightforward to connect a single device, computers typically have more than one I/O device 
requesting interrupt service. For example, the keyboard, hard disk, and floppy disk all generate 
interrupts when they require the attention of the processor. 

When more than one device interrupts, we have to have a mechanism to prioritize these in­
terrupts (if they come simultaneously) and forward only one interrupt request at a time to the 
processor while keeping the other interrupt requests pending for their turn. This mechanism can 
be implemented by using a special APIC (Advanced Programmable Interrupt Controller) chip. 

Hardware interrupts provide direct access to the I/O devices. The next section discusses some 
of the instructions available to access I/O ports. 

Direct Control of I/O Devices 
When we want to access an I/O device for which there is no such support available from the 
operating system, or when we want a nonstandard access, we have to access these devices directly. 

At this point, it is useful to review the material presented in Chapter 4. As described in that 
chapter, the IA-32 architecture uses a separate I/O address space of 64K. This address space can 
be used for 8-bit, 16-bit, or 32-bit I/O ports. However, the combination cannot be more than the 
total I/O space. For example, we can have 64K 8-bit ports, 32K 16-bit ports, 16K 32-bit ports, or 
a combination of these that fits the I/O address space. 

Devices that transfer data 8 bits at a time can use 8-bit ports. These devices are called 8-bit 
devices. An 8-bit device can be located anywhere in the I/O space without any restrictions. On 
the other hand, a 16-bit port should be aligned to an even address so that 16 bits can be simul­
taneously transferred in a single bus cycle. Similarly, 32-bit ports should be aligned at addresses 
that are multiples of four. The architecture, however, supports unaligned I/O ports, but there is a 
performance penalty (see page 59 for a related discussion). 

Accessing I/O Ports 

To facilitate access to the I/O ports, the instruction set provides two types of instructions: register 
I/O instructions and block I/O instructions. Register I/O instructions are used to transfer data 
between a register and an I/O port. Block I/O instructions are used for block transfer of data 
between memory and I/O ports. 

Register I/O Instructions There are two register I/O instructions: i n and out . The i n in­
struction is used to read data from an I/O port, and the out instruction to write data to an I/O 
port. A port address can be any value in the range 0 to FFFFH. The first 256 ports are directly 
addressable—address is given as part of the instruction. 

Both instructions can be used to operate on 8-, 16-, or 32-bit data. Each instruction can take 
one of two forms, depending on whether a port is direcdy addressable or not. The general format 
of the i n instruction is 
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i n accumula to r , p o r t s — direct addressing format 
i n accumula to r , DX — indirect addressing format 

The first form uses the direct addressing mode and can only be used to access the first 256 
ports. In this case, the I/O port address, which is in the range 0 to FFH, is given by the p o r t s 
operand. In the second form, the I/O port address is given indirectly via the DX register. The 
contents of the DX register are treated as the port address. 

In either form, the first operand accumula to r must be AL, AX, or EAX. This choice deter­
mines whether a byte, word, or doubleword is read from the specified port. 

The format for the out instruction is 

ou t p o r t s , accumula to r — direct addressing format 
out DX, accumula to r — indirect addressing format 

Notice the placement of the port address. In the i n instruction, it is the source operand and in the 
out instruction, it is the destination operand signifying the direction of data movement. 

Block I/O Instructions The instruction set has two block I/O instructions: i n s and o u t s . These 
instructions can be used to move blocks of data between I/O ports and memory. These I/O instruc­
tions are, in some sense, similar to the string instructions discussed in Chapter 17. For this reason, 
block I/O instructions are also called string I/O instructions. Like the string instructions, i n s 
and o u t s do not take any operands. Also, we can use the repeat prefix r e p as in the string 
instructions. 

For the i n s instruction, the port address should be placed in DX and the memory address 
should be pointed to by ES:(E)DI. The address size determines whether the DI or EDI register is 
used (see Chapter 4 for details). Block I/O instructions do not allow the direct addressing format. 

For the o u t s instruction, the memory address should be pointed by DS:(E)SI, and the I/O port 
should be specified in DX. You can see the similarity between the block I/O instructions and the 
string instructions. 

You can use the r e p prefix with i n s and o u t s instructions. However, you cannot use the 
other two prefixes—repe and repne—with the block I/O instructions. The semantics of r e p 
are the same as those in the string instructions. The directions flag (DF) determines whether the 
index register in the block I/O instruction is decremented (DF is 1) or incremented (DF is 0). The 
increment or decrement value depends on the size of the data unit transferred. For byte transfers, 
the index register is updated by 1. For word and doubleword transfers, the corresponding values 
are 2 and 4, respectively. The size of the data unit involved in the transfers can be specified as 
in the string instructions. Use i n s b and o u t s b for byte transfers, insw and outsw for word 
transfers, and i n s d and o u t s d for doubleword transfers. 

Summary 
Interrupts provide a mechanism to transfer control to an interrupt service routine. The mecha­
nism is similar to that of a procedure call. However, while procedures can be invoked only by a 
procedure call in software, interrupts can be invoked by both hardware and software. 

Software interrupts are generated using the i n t instruction. Hardware interrupts are generated 
by I/O devices. These interrupts are used by I/O devices to interrupt the processor to service their 
requests. 
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Software interrupts are often used to support access to the system I/O devices. Linux provides 
a high-level interface to the hardware with software interrupts. We introduced Linux system calls 
and discussed how these calls can be used to access I/O devices. The system calls are invoked 
using i n t 0x8 0. We used several examples to illustrate the utility of these calls in reading 
from the keyboard, writing to the screen, and accessing files. 

All interrupts, whether hardware-initiated or software-initiated, are identified by an interrupt 
type number that is between 0 and 255. This interrupt number is used to access the interrupt vector 
table to get the associated interrupt vector. 



21 
High-Level Language 
Interface 

Thus far, we have written standalone assembly language programs. This chapter considers mixed-
mode programming, which refers to writing parts of a program in different programming lan­
guages. We use the C and assembly languages to illustrate how such mixed-mode programs are 
written. We begin the chapter with discussion of the motivation for writing mixed-mode programs. 
Next we give an overview of mixed-mode programming, which can be done either by inline as­
sembly code or by separate assembly modules. We describe both methods with some example 
programs. The last section summarizes the chapter 

Introduction 
In this chapter we focus on mixed-mode programming that involves C and assembly languages. 
Thus, we write part of the program in C and the other part in the assembly language. We use 
the gcc compiler and NASM assembler to explain the principles involved in mixed-mode pro-
granmiing. This discussion can be easily extended to a different set of languages and compil­
ers/assemblers. 

In Chapter 1 we discussed several reasons why one would want to program in the assembly 
language. Although it is possible to write a program entirely in the assembly language, there are 
several disadvantages in doing so. These include 

• Low productivity 
• High maintenance cost 
• Lack of portability 

Low productivity is due to the fact that assembly language is a low-level language. As a result, 
a single high-level language instruction may require several assembly language instructions. It has 
been observed that programmers tend to produce the same number of lines of debugged and tested 
source code per unit time irrespective of the level of the language used. As the assembly language 
requires more lines of source code, programmer productivity tends to be low. 
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Programs written in the assembly language are difficult to maintain. This is a direct con­
sequence of it's being a low-level language. In addition, assembly language programs are not 
portable. On the other hand, the assembly language provides low-level access to system hardware. 
In addition, the assembly language may help us reduce the execution time. 

As a result of these pros and cons, some programs are written in mixed mode using both 
high-level and low-level languages. System software often requires mixed-mode programming. 
In such programs, it is possible for a high-level procedure to call a low-level procedure, and vice 
versa. The remainder of the chapter discusses how mixed-mode programming is done in C and 
assembly languages. Our goal is to illustrate only the principles involved. Once these principles 
are understood, the discussion can be generalized to any type of mixed-mode programming. 

Overview 
There are two ways of writing mixed-mode C and assembly programs: inline assembly code 
or separate assembly modules. In the inline assembly method, the C program module contains 
assembly language instructions. Most C compilers including gcc allow embedding assembly 
language instructions within a C program by prefixing them with asm to let the compiler know 
that it is an assembly language instruction. This method is useful if you have only a small amount 
of assembly code to embed. Otherwise, separate assembly modules are preferred. We discuss the 
inline assembly method later (see page 434). 

When separate modules are used for C and assembly languages, each module can be translated 
into the corresponding object file. To do this translation, we use a C compiler for the C modules 
and an assembler for the assembly modules, as shown in Figure 21.1. Then the linker can be used 
to produce the executable file from these object files. 

Suppose our mixed-mode program consists of two modules: 

• One C module, file sample 1. c, and 
• One assembly module, file sample2 .asm. 

The process involved in producing the executable file is shown in Figure 21.1. We can invoke the 
NASM assembler as 

nasm -f elf sample2.asm 

This creates the sample2 . o object file. We can compile and link the files with the following 
command: 

gcc -o samplel.out samplel.c sample2.o 

This command instructs the compiler to first compile sample 1. c to sample 1. o. The linker 
is automatically invoked to link sample l .o and sample2 .o to produce the executable file 
s a m p l e l . o u t . 

Calling Assembly Procedures from C 
Let us now discuss how we can call an assembly language procedure from a C program. The 
first thing we have to know is what communication medium is used between the C and assembly 
language procedures, as the two procedures may exchange parameters and results. You are right if 
you guessed it to be the stack. 

Given that the stack is used for communication purposes, we still need to know a few more 
details as to how the C function places the parameters on the stack, and where it expects the 
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Assembly source file 
sample2.asm 

Figure 21.1 Steps involved in connpiling mixed-nnode programs. 

assembly language procedure to return the result. In addition, we should also know which registers 
we can use freely without worrying about preserving their values. Next we discuss these issues in 
detail. 

Parai^neter Passing There are two ways in which arguments (i.e., parameter values) are pushed 
onto the stack: from left to right or from right to left. Most high-level languages push the argu­
ments from left to right. These are called left-pusher languages. C, on the other hand, pushes 
arguments from right to left. Thus, C is a right-pusher language. The stack state after executing 

sum(a,b,c,d) 

is shown in Figure 21.2. From now on, we consider only right-pushing of arguments, as we focus 
on the C language. 

To see how gcc pushes arguments onto the stack, take a look at the following C program (this 
is a partial listing of Program 21.1 on page 428): 
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Left-pusher Right-pusher 

TOS, ESP 

-^a" 

b' 

EIR EIP -ESP, TOS 

Figure 21.2 Two ways of pushing arguments onto the stack. 

int main(void) 
{ 

int x=25, y=70; 
int value; 
extern int test(int, int, int); 

value = test (x, y, 5); 

The assembly language translation of the procedure call (use the - S option to generate the assem­
bly source code) is shown below: ^ 

push 
push 
push 
call 
add 
mov 

5 
70 
25 
test 
ESP,12 
[EBP-12],EAX 

This program is compiled with -02 optimization. This optimization is the reason for pushing 
constants 70 and 25 instead of variables x and y. If you don't use this optimization, gcc produces 
the following code: 

push 
push 
push 
call 
add 
mov 

5 
[EBP-8] 
[EBP-4] 
test 
ESP,12 
[EBP-12],EAX 

It is obvious from this code fragment that the compiler assigns space for variables x, y, and v a l u e 
on the stack at EBP-4, EBP—8, and EBP-12, respectively. When the t e s t function is called, 
the arguments are pushed from right to left, starting with the constant 5. Also notice that the stack 
is cleared of the arguments by the C program after the call by the following statement: 

^Note that gcc uses AT&T syntax for the assembly language—not the Intel syntax we have been using in this book. 
To avoid any confusion, the contents are reported in our syntax. The AT&T syntax is introduced on page 434. 
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a d d E S P , 1 2 

So, when we write our assembly procedures, we should not bother clearing the arguments from the 
stack as we did in our programs in the previous chapters. This convention is used because C allows 
a variable number of arguments to be passed in a function call (see our discussion on page 268). 

Returning Values We can see from the previous assembly language code that the EAX register 
is used to return the function value. In fact, the EAX register is used to return 8-, 16-, and 32-bit 
values. To return a 64-bit value, use the EDXiEAX pair with the EDX holding the upper 32 bits. 

We have not discussed how floating-point values are returned. For example, if a C function 
returns a double value, how do we return this value? We discuss this issue in the next chapter. 

Preserving Registers In general, the called assembly language procedure can use the registers 
as needed, except that the following registers should be preserved: 

EBP, EBX, E S I , EDI 

The other registers, if needed, must be preserved by the calling function. 

Globals and Externals Mixed-mode programming involves at least two program modules: a 
C module and an assembly module. Thus, we have to declare those functions and procedures 
that are not defined in the same module as external. Similarly, those procedures that are accessed 
by another module should be declared as global, as discussed in Chapter 11. Before proceeding 
further, you may want to review the material on multimodule programs presented in Chapter 11 
(see our discussion on page 260). Here we mention only those details that are specific to the 
mixed-mode programming involving the C and assembly languages. 

In most C compilers, external labels should start with an underscore character (_). The C and 
C+-I- compilers automatically append the required underscore character to all external functions 
and variables. A consequence of this characteristic is that when we write an assembly procedure 
that is called from a C program, we have to make sure that we prefix an underscore character to 
its name. However, gcc does not follow this convention by default. Thus, we don't have to worry 
about the underscore. 

Our First Program 

To illustrate the principles involved in writing mixed-mode programs, we look at a simple example 
that passes three parameters to the t e s t l assembly language function. The C code is shown 
in Program 21.1 and the assembly code in Program 21.2. The function t e s t l is declared as 
external in the C program (line 12) and global in the assembly program (line 8). Since C clears 
the arguments from the stack, the assembly procedure uses a simple r e t to transfer control back 
to the C program. Other than these differences, the assembly procedure is similar to several others 
we have written before. 
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Program 21.1 An example illustrating assembly calls from C: C code (in file h l l ^x ic . c) 

/ * • • * • • • • • • • • • • • • • • • • • • * • * • * * • * • • • • • • • • • • • • * • • • • 

* A simple program to illustrate how mixed-mode programs 
* are written in C and assembly languages. The main C 
* program calls the assembly language procedure testl. 

#include <stdio.h> 

int main(void) 
{ 

int X = 25, y = 70; 
int value; 
extern int testl (int, int, int); 

value = testl(x, y, 5); 
printf("Result = %d\n", value); 

return 0; 

Program 21.2 An example illustrating assembly calls from C: assembly language code (in file 
h l l - t e s t .asm) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

; This procedure receives three 
; It adds the 
; third one. : 

segment .text 

global testl 

testl: 
enter 
mov 
add 
sub 
leave 
ret 

integers via the stack. 
first two arguments and subtracts the 
Et is called from 

0,0 
EAX,[EBP+8] 
EAX,[EBP+12] 
EAX, [EBP+16] 

the C program. 

; get argument1 (x) 
; add argument 2 (y) 
; subtract argument3 (5) 

Illustrative Examples 
In this section, we give two more examples to illustrate the interface between C and assembly 
language programs. 
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Example 21.1 An example to show parameter passing by call-by-value as well as call-by-
reference. 
This example shows how pointer parameters are handled. The C main function requests three 
integers and passes them to the assembly procedure. The C program is given in Program 21.3. 
The assembly procedure min_max, shown in Program 21.4, receives the three integer values and 
two pointers to variables minimum and maximum. It finds the minimum and maximum of the 
three integers and returns them to the main C function via these two pointers. The minimum value 
is kept in EAX and the maximum in EDX. The code given on lines 28 to 31 in Program 21.4 stores 
the return values by using the EBX register in the indirect addressing mode. 

Program 21.3 An example with the C program passing pointers to the assembly program: C code 
(in file h l l_minmaxc . c) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

* An example to illustrate call-by-value and * 
* call-by-reference parameter passing between C and * 
* assembly language modules. The min_max function is * 
* written in assembly language (in hll_minmaxa.asm). * 
* • * • • • • • * • • • • • • • • * • * • • • • • • • • • • • * • • • • • • • * • • • • • • * • • • • • • • 

#include <stdio.h> 
int main(void) 

{ 
int valuel, value2, value3; 
int min, max; 
extern void min_max (int, int, int, int*, int*); 

printf("Enter number 1 = " ) ; 
scanf("%d", &valuel); 
printf("Enter number 2 = " ) / 
scanf ( " %d", Scvalue2) ; 
printf("Enter number 3 = " ) ; 
scanf("%d", &value3); 

min_max(valuel, value2, value3, &min, ficmax); 
printf("Minimum = %d. Maximum = %d\n", min, max); 
return 0; 
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Program 21.4 An example with the C program passing pointers to the assembly program: assembly 
language code (in file h l l jninmaxa. asm) 

± 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

; Assembly program for the 
; the C program in the file 
; finds the 
; receives. 

global min_ 

min_max: 
enter 
/ EAX 
mov 
mov 
cmp 

jl 
xchg 

skipl: 
mov 
cmp 

jl 
cmp 

jl 
mov 

jtnp 
new_min: 

mov 

min 1 
hll_ 

minimum and maximum 

max 

0,0 

Tiax function - called from 
_minmaxc.c. This function 
of the three integers it 

keeps minimum number and EDX maximum 
EAX, [EBP+8] 
EDX, [EBP+12] 
EAX,EDX 
skipl 
EAX,EDX 

ECX, [EBP+16] 
ECX,EAX 
new_min 
ECX,EDX 
store_result 
EDX,ECX 
store_result 

EAX,ECX 
store_result: 

mov 
mov 
mov 
mov 
leave 
ret 

EBX, [EBP+20] 
[EBX],EAX 
EBX, [EBP+24] 
[EBX],EDX 

; 
/ 
; 
/ 
; 

/ 
t 

1 

; 

; 

get value 1 
get value 2 
value 1 < value 2? 
if so, do nothing 
else, exchange 

get value 3 
value 3 < min in EAX? 

value 3 < max in EDX? 

EBX = Scmin 

EBX = &max 

Example 21,2 Array sum example. 

This example illustrates how arrays, declared in C, are accessed by assembly language procedures. 
The array v a l u e is declared in the C program, as shown in Program 21.5 (line 12). The assembly 
language procedure computes the sum as shown in Program 21.6. As in the other programs in this 
chapter, the C program clears the parameters off the stack. We will redo this example using inline 
assembly on page 439. In addition, a floating-point version of this example is given in the next 
chapter. 
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Program 21.5 An array sum example: C code (in file h l l ^rraysumc. c) 

* This program reads 10 integers into an array and calls 
* an assembly language program to compute the array sum. 

* The assembly program is in "hll_arraysuma.asm" file. 

#include <stdio.h> 

#define SIZE 10 

int main(void) 
{ 

int value[SIZE], sum, i; 
extern int array_sum(int*, int); 
printf("Input %d array values:\n", SIZE); 
for (i = 0; i < SIZE; i++) 

scanf("%d",lvalue[i]); 

sum = array_sum(value,SIZE)/ 
printf("Array sum = %d\n", sum); 

return 0/ 

Program 21.6 An array sum example: assembly language code (in file h l l ^rraysuma. asm) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

/ This procedure receives an array pointer and its size 
; via the stack. It computes the array sum and returns it. 

segment .text 

global array_sum 

array_sum: 
enter 
mov 
mov 
sub 
sub 

add_loop: 
add 
inc 
cmp 
j i 
leave 
ret 

0,0 
EDX, [EBP+8] 
ECX, [EBP+12] 
EBX,EBX 
EAX,EAX 

EAX,[EDX+EBX*4] 
EBX 
EBX,ECX 
add_loop 

copy array pointer to EDX 
copy array size to ECX 
array index = 0 
sum = 0 (EAX keeps the sum) 

increment array index 
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Calling C Functions from Assembly 
So far, we have considered how a C function can call an assembler procedure. Sometimes it is 
desirable to call a C function from an assembler procedure. This scenario often arises when we 
want to avoid writing assembly language code for a complex task. Instead, a C function could 
be written for those tasks. This section illustrates how we can access C functions from assembly 
procedures. Essentially, the mechanism is the same: we use the stack as the communication 
medium, as shown in the next example. 

Example 21.3 An example to illustrate a C function call from an assembly procedure. 
In previous chapters, we used simple I/O routines to facilitate input and output in our assembly 
language programs. If we want to use the C functions like p r i n t f () and scanf () , we have to 
pass the arguments as required by the function. In this example, we show how we can use these 
two C functions to facilitate input and output of integers. This discussion can be generalized to 
other types of data. 

Here we compute the sum of an array passed onto the array_sum assembly language pro­
cedure. This example is similar to Example 21.2, except that the C program does not read the 
array values; instead, the assembly program does this by calling the p r i n t f () and scanf () 
functions as shown in Program 21.8. In this program, the prompt message is declared as a string 
on line 9 (including the newline). The assembly language version implements the equivalent of 
the following p r i n t f statement we used in Program 21.5: 

printf("Input %d array values:\n", SIZE); 

Before calling the p r i n t f function on line 21, we push the array size (which is in ECX) and the 
string onto the stack. The stack is cleared on line 22. 

The array values are read using the read loop on lines 26 to 36. It uses the scanf function, 
the equivalent of the following statement: 

scanf (nd" ,&value[ i ] ) ; 

The required arguments (array and format string pointers) are pushed onto the stack on lines 28 
and 29 before calling the scanf function on line 30. The array sum is computed using the add 
loop on lines 41 to 45 as in Program 21.6. 

Program 21.7 An example to illustrate C calls from assembly programs: C code (in file 
hll_arraysum2c.c) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

* This program calls an assembly program to read the 
* array input and compute its sum. It prints the sum. 

* The assembly program is in "hll_arraysum2a.asm" file. 

#include <stdio.h> 

#define SIZE 10 

int main(void) 
{ 
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12 
13 
14 
15 
16 
17 
18 

int value[SIZE]; 

extern int array_sum(int*, int) ; 

printfC'sum = %d\n",array_sum(value,SIZE)); 

return 0; 

Program 21.8 An example to illustrate C calls from assembly programs: assembly language code 
(in file h l l _ a r r a y s u m 2 a . asm) 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

This procedure receives an array pointer and its size 
via the stack. It first reads the array input from the 
user and then computes the array sum. 
The sum is returned to the C program. 

segment .data 
scan_format db "%d",0 
printf_format db "Input %d array values:",10,13,0 

segment .text 

global array_sum 
extern printf,scanf 

array_sum: 
enter 
mov 
push 
push 
call 
add 

mov 
mov 

read_loop: 
push 
push 
push 
call 
add 
pop 
pop 
add 
dec 
jnz 

0,0 
ECX, [EBP+12] ; copy array size to ECX 
ECX ; push array size 
dword printf_format 
printf 
ESP,8 ; clear the stack 

EDX,[EBP+8] ; copy array pointer to EDX 
ECX, [EBP+12] ; copy array size to ECX 

ECX ; save loop count 
EDX / push array pointer 
dword scan_format 
scanf 
ESP,4 ; clear stack of one argument 
EDX ; restore array pointer in EDX 
ECX ; restore loop count 
EDX,4 ; update array pointer 
ECX 
read_loop 

EDX, [EBP+8] ; copy array pointer to EDX 
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; copy array size to ECX 
; EAX = 0 (EAX keeps the sum) 

update array pointer 

39 
40 
4 1 
42 
43 
44 
45 
46 
47 

mov 
sub 

add l o o p : 
add 
add 

^ dec 
jnz 
l e a v e 
r e t 

ECX, [EBP+12] 
EAX,EAX 

EAX,[EDX] 
EDX,4 
ECX 
add_loop 

Inline Assembly 
In this section we look at writing inline assembly code. In this method, we embed assembly 
language statements within the C code. We identify assembly language statements by using the 
asm construct. (You can use asm if asm causes a conflict, e.g., for ANSI C compatibility.) 

We now have a serious problem: the gcc syntax for the assembly language statements is 
different from the syntax we have been using so far. We have been using the Intel syntax (NASM, 
TASM, and MASM use this syntax). The gcc compiler uses the AT&T syntax, which is used by 
GNU assemblers. It is different in several aspects from the Intel syntax. But don't worry! We give 
an executive summary of the differences so that you can understand the syntactical differences 
without spending too much time. 

The AT&T Syntax 

This section gives a summary of some of the key differences from the Intel syntax. 

Register Naming In the AT&T syntax, we have to prefix register names with %. For example, 
the EAX register is specified as %eax. 

Source and Destination Order The source and destination operands order is reversed in the 
AT&T syntax. In this format, source operand is on the left-hand side. For example, the instruction 

mov eax,ebx 

is written as 

movl %ebx,%eax 

Operand Size As demonstrated by the last example, the instructions specify the operand size. 
The instructions are suffixed with b, w, and 1 for byte, word, and longword operands, respectively. 
With this specification, we don't have to use by te , word, and dword to clarify the operand size 
(see our discussion on page 197). 

The operand size specification is not strictly necessary. You can let the compiler guess the size 
of the operand. However, if you specify, it takes the guesswork out and we don't have to worry 
about the compiler making an incorrect guess. Here are some examples: 

movb 
movw 
movl 

%bl,%al 
%bx,%ax 
%ebx,%eax 

; moves contents of b l to a l 
; moves contents of bx to ax 
; moves contents of ebx to eax 
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Immediate and Constant Operands In the AT&T syntax, immediate and constant operands are 
specified by prefixing with $. Here are some examples: 

movb $2 55,%al 

movl $OxFFFFFFFF,%eax 

The following statement loads the address of the C global variable t o t a l into the EAX register: 

movl $total,%eax 

This works only if t o t a l is declared as a global variable. Otherwise, we have to use the extended 
asm construct that we discuss later. 

Addressing To specify indirect addressing, the AT&T syntax uses brackets (not square brack­
ets). For example, the instruction 

mov e a x , [ e b x ] 

is written in AT&T syntax as 

movl (%ebx),%eax 

The full 32-bit protected-mode addressing format is shown below: 

i m m 3 2 ( b a s e , i n d e x , s c a l e ) 

The address is computed as 

imm32 + base + index * scale 

If we declared m a r k s as a global array of integers, we can load m a r k s [5] into EAX register 
using 

movl $5,%ebx 
movl marks(,%ebx,4),%eax 

For example, if the pointer to m a r k s is in the EAX register, we can load m a r k s [5] into the 
EAX register using 

movl $5,%ebx 
movl (%eax,%ebx,4),%eax 

We use a similar technique in the array sum example discussed later. We have covered enough 
details to work with the AT&T syntax. 

Simple Inline Statements 
At the basic level, introducing assembly statements is not difficult. Here is an example that incre­
ments the EAX register contents: 

a s m ( " i n c l %eax"); 

Multiple assembly statements like these 
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asmC'pushl %eax"); 
a s m ( " i n c l %eax"); 
a smCpop l %eax"); 

can be grouped into a single compound asm statement as shown below: 

asmC'pushl %eax; i n c l %eax; popl %eax")/ 

If you want to add structure to this compound statement, you can write the above statement as 
follows: 

asmC'pushl %eax;" 
"incl %eax/" 
"popl %eax"); 

We have one major problem in accessing the registers as we did here: How do we know if gcc is 
not keeping something useful in the register that we are using? More importantly, how do we get 
access to C variables that are not global to manipulate in our inline assembly code? The answers 
are provided by the extended asm statement. This is where we are going next. 

Extended Inline Statements 

The format of the asm statement consists of four components as shown below: 

asm(assembly code 
:outputs 
:inputs 
:clobber list); 

Each component is separated by a colon (:). The last three components are optional. These four 
components are described next. 

Assembly Code This component consists of the assembly language statements to be inserted 
into the C code. This may have a single instruction or a sequence of instructions, as discussed 
in the last subsection. If no compiler optimization should be done to this code, add the keyword 
v o l a t i l e after asm (i.e., use asm v o l a t i l e ) . The instructions typically use the operands 
specified in the next two components. 

Outputs This component specifies the output operands for the assembly code. The format for 
specifying each operand is shown below: 

"=op-constraint" (C-expression) 

The first part specifies an operand constraint, and the part in brackets is a C expression. The = 
identifies that it is an output constraint. For some strange reason we have to specify = even though 
we separate inputs and outputs with a colon. The following example 

"=r" (sum) 

specifies that the C variable sum should be mapped to a register as indicated by r in the constraint. 
Multiple operands can be specified by separating them with commas. We give some examples later. 
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Depending on the processor, several other choices are allowed including m (memory), i (im­
mediate), rm (register or memory), r i (register or immediate), or g (general). The last one is 
typically equivalent to rim. You can also specify a particular register by using a, b, and so on. 
The following table summarizes the register letters used to specify which registers that gcc may 
use: 

Letter 

a 

b 

c 

d 

S 

D 

r 

q 

A 

f 

t 

u 

Register set 

EAX register 

EBX register 

ECX register 

EDX register 

ESI register 

EDI register 

Any of the eight general registers 
(EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP) 

Any of the four data registers 
(EAX, EBX, ECX, EDX) 

A 64-bit value in EAX and EDX 

Floating-point registers 

Top floating-point register 

Second top floating-point register 

The last three letters are used to specify floating-point registers. We discuss floating-point 
operations in the next chapter. 

Inputs The inputs are also specified in the same way, except for the = sign. The operands 
specified in the output and input parts are assigned sequence numbers 0, 1, 2 , . . . starting with the 
leftmost output operand. There can be a total of 10 operands, inputs and outputs combined. Thus, 
9 is the maximum sequence number allowed. 

In the assembly code, we can refer to the output and input operands by their sequence number 
prefixed with %. In the following example 

a s m C ' m o v l %1,%0" 
: " = r " ( s u m ) 
: " r " ( n u m b e r 1 ) 

) ; 

/ * ou tpu t */ 
/ * i npu t */ 

the C variables sum and number 1 are both mapped to registers. In the assembly code statement, 
sum is identified by %0 and number 1 by %1. Thus, this statement copies the value of number 1 
to sum. 

Sometimes, an operand provides input and receives the result as well (e.g., x in x = x + y). 
In this case, the operand should be in both lists. In addition, you should use its output sequence 
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number as its input constraint specifier. The following example clarifies what we mean. 

asm( "c 

), 

addl %1,%0" 
:"=r"(sum) 
:"r"(number1) , II Q M (sum) 

/* output */ 
/* inputs */ 

In this example, we want to perform sum = sum + number 1. In this expression, the variable 
sum provides one of the inputs and also receives the result. Thus, sum is in both lists. However, 
note that the constraint specifier for it in the input list is " 0", not " r" . 

The assembly code can use specific registers prefixing the register with %. Since the AT&T 
syntax prefixes registers with %, we end up using %% as in %%eax to refer to the EAX register. 

Clobber List This last component specifies the list of registers modified by the assembly in­
structions in the asm statement. This lets gcc know that it cannot assume that the contents of 
these registers are valid after the asm statement. The compiler may use this information to reload 
their values after executing the asm statement. 

In case the assembly code modifies the memory, use the keyword "memory" to indicate this 
fact. Even though it may not be needed, you may want to specify " cc" in the clobber list if the 
flags register is modified (e.g., by an arithmetic instruction). Here is an example that includes the 
clobber list: 

asmC'movl %0,%%eax" 
: /* no output */ 
:"r"(numberl) /* inputs */ 
:"%eax" /* clobber list */ 

In this example, there is no output list; thus, the input operand (numberl) is referred by %0. 
Since we copy the value of numberl into EAX register, we specify EAX in the clobber list so 
that gcc knows that our asm statement modifies this register. 

Inline Examples 

We now give some examples to illustrate how we can write mixed-mode programs using the inline 
assembly method. 

Example 21.4 Our first inline assembly example. 
As our first example, we rewrite the code of the example given on page 428 using inline assembly. 
The inline code is given in Program 21.9. The procedure t e s t 1 is written using inline assembly 
code. We use the EAX register to compute the sum as in Program 21.2 (see lines 22-24). Since 
there are no output operands, we explicitly state this by the comment on line 25. The three input 
operands x, y, and z, specified on line 26, are referred in the assembly code as %0, %1, and 
%2, respectively. The clobbered list consists of the EAX register and the flags register ("cc") as 
the add and sub instructions modify the flags register. Since the result is available in the EAX 
register, we simply return from the function. 
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Program 21.9 Our first Inline assembly code example (in file h l i _exi jLn l ine . c) 

* A simple program to illustrate how mixed-mode programs 
* are written in C and assembly languages. This program 
* uses inline assembly code in the testl function. 
• • • * * * * • • * • • • • • • * * • * • * • • * • • • • • • • • • • • • • • • • • * • • • • • • • • • • • • • / 

#include <stdio.h> 

int main(void) 
{ 

int X = 25, y = 70; 
int value; 
extern int testl (int, int, int); 

value = testl(x, y, 5); 
printf("Result = %d\n", value); 

return 0; 

int testl(int x, int y, int z) 
{ 

asmC'movl %0, %%eax;" 
"addl %l,%%eax;" 
"subl %2,%%eax;" 
:/* no outputs */ /* outputs */ 
: "r"(x), "r"(y), "r"(z) /* inputs */ 
:"cc","%eax"); /* clobber list */ 

Example 21.5 Array sum example—inline version. 
This is the inline assembly version of the array sum example we did in Example 21.2. The program 
is given in Program 21.10. In the array_sum procedure, we replace the C statement 

sum += v a l u e [ i ] ; 

by the inline assembly code. The output operand specifies sum. The input operand list consists 
of the array va lue , array index variable i , and sum. Since sum is also in the output list, we use 
" 0" as explained before. Since we use the add instruction, we specify " cc" in the clobber list 
as in the last example. 

The assembly code consists of a single addl instruction. The source operand of this add 
instruction is given as (% 1, %2 , 4 ) . From our discussion on page 435 it is clear that this operand 
refers to v a l u e [ i ] . The rest of the code is straightforward to follow. 
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Program 21.10 Inline assembly version of the array sum example (in file h l l ^ r r a y s u m . 
i n l i n e . c ) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

* This program reads 10 integers into an array and calls 
* an assembly language program to compute the array sum. 

* It uses inline assembly code in array_sum function. 

#include <stdio.h> 

#define SIZE 10 

int main(void) 
{ 

int value[SIZE], sum, i; 
int array_sum(int*, int); 
printf("Input %d array values:\n", SIZE); 
for (i = 0; i < SIZE; i++) 

scanf("%d",lvalue[i])/ 

sum = array_sum(value,SIZE); 
printf("Array sum = %d\n", sum)/ 

return 0; 

int array_sum(int* value, int size) 

{ 
int i, sum=0; 
for (i = 0; i < size; i++) 

asm("addl (%1,%2,4),%0" 
=r"(sum) /* output */ 

;"r"(value),"r"(i),"0"(sum) /* inputs */ 
:"cc"); /* clobber list */ 

return(sum); 

Example 21.6 Array sum example—inline version 2. 
In the last example, we just replaced the statement 

sum += v a l u e [ i ] ; 

of the array_sum function by the assembly language statement. In this example, we rewrite 
the array_sum function completely in the assembly language. The rewritten function is shown 
in Program 21.11. This code illustrates some of the features we have not used in the previous 
examples. 

As you can see from line 10, we receive the two input parameters (value and s i z e ) in 
specific registers (value in EBX and s i z e in ECX). We compute the sum directly in the EAX 
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register, so there are no outputs in the asm statement (see line 9). We don't use " %0" and " %1" 
to refer to the input operands. Since these are mapped to specific registers, we can use the register 
names in our assembly language code (see lines 5 and 6). 

We use the EAX register to keep the sum. This register is initialized to zero on line 3. We use 
j ecxz to test if ECX is zero. This is the termination condition for the loop. This code also shows 
how we can use jump instructions and labels. 

Program 21.11 Another inline assembly version of the array ̂ um function (This function is in file 
hl l_arraysum_inl ine2 . c) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

int array_sum(int* value, int size) 
{ 

asm(" xorl %%eax,%%eax;" /* sum = 0 */ 
"repl: jecxz done; " 
" decl %%ecx/ " 
" addl (%%ebx,%%ecx,4),%%eax/" 
" jmp repl; " 
"done: 

/* no outputs */ 
: "b"(value),"c"(size) /* inputs */ 
keax","cc"); /* clobber list */ 

Summary 

We introduced the principles involved in mixed-mode programming. We discussed the main mo­
tivation for writing mixed-mode programs. This chapter focused on mixed-mode programming 
involving C and the assembly language. Using the gcc compiler and NASM assembler, we 
demonstrated how assembly language procedures are called from C, and vice versa. Once you 
understand the principles discussed in this chapter, you can easily handle any type of mixed-mode 
programming activity. 



22 
Floating-Point 
Operations 

In this chapter we introduce the Boating-point instructions. After giving a brief introduction to the 
floating-point numbers, we describe the registers of the floating-point unit. The floating-point unit 
supports several floating-point instructions. We describe a subset of these instructions in detail. 
We then give a few examples to illustrate the application of these floating-point instructions. We 
conclude the chapter with a summary. 

Introduction 
In the previous chapters, we represented numbers using integers. As you know, these numbers 
cannot be used to represent fractions. We use floating-point numbers to represent fractions. For 
example, in C, we use the f l o a t and double data types for the floating-point numbers. 

One key characteristic of integers is that operations on these numbers are always precise. For 
example, when we add two integers, we always get the exact result. In contrast, operations on 
floating-point numbers are subjected to rounding-off errors. This tends to make the result approx­
imate, rather than precise. However, floating-point numbers have several advantages. 

Floating-point numbers can be used to represent both very small numbers and very large num­
bers. To achieve this, these numbers use the scientific notation to represent numbers. The number 
is divided into three parts: the sign, the mantissa, and the exponent. The sign bit identifies whether 
the number is positive (0) or negative (1). The magnitude is given by 

magnitude = mantissa x 2̂ ^̂ ''"̂ "̂  

Implementation of floating-point numbers on computer systems vary from this generic 
format—usually for efficiency reasons or to conform to a standard. The Intel 32-bit processors, 
like most other processors, follow the IEEE 754 floating-point standard. Such standards are use­
ful, for example, to exchange data among several different computer systems and to write efficient 
numerical software libraries. 
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The floating-point unit (FPU) supports three formats for floating-point numbers. Two of these 
are for external use and one for internal use. The external format defines two precision types: 
the single-precision format uses 32 bits while the double-precision format uses 64 bits. In C, we 
use f l o a t for single-precision and double for double-precision floating-point numbers. The 
internal format uses 80 bits and is referred to as the extended format. As we see in the next 
section, all internal registers of the floating-point unit are 80 bits so that they can store floating­
point numbers in the extended format. More details on the floating-point numbers are given in 
Appendix A. 

The number-crunching capability of a processor can be enhanced by using a special hard­
ware to perform floating-point operations. The 80X87 numeric coprocessors were designed to 
work with the 80X86 family of processors. The 8087 coprocessor was designed for the 8086 
and 8088 processors to provide extensive high-speed numeric processing capabilities. The 8087, 
for example, provided about a hundredfold improvement in execution time compared to that of 
an equivalent software function on the 8086 processor. The 80287 and 80387 coprocessors were 
designed for use with the 80286 and 80386 processors, respectively. Starting with the 80486 pro­
cessor, the floating-point unit has been integrated into the processor itself, avoiding the need for 
external numeric processors. 

In the remainder of this chapter, we discuss the floating-point unit organization and its instruc­
tions. Toward the end of the chapter, we give a few example programs that use the floating-point 
instructions. 

Floating-Point Unit Organization 

The floating-point unit provides several registers, as shown in Figure 22.1. These registers are 
divided into three groups: data registers, control and status registers, and pointer registers. The 
last group consists of the instruction and data pointer registers, as shown in Figure 22.1. These 
pointers provide support for programmed exception handlers. Since this topic is beyond the scope 
of this book, we do not discuss details of these registers. 

Data Registers 

The FPU has eight floating-point registers to hold the floating-point operands. These registers 
supply the necessary operands to the floating-point instructions. Unlike the processor's general-
purpose registers such as the EAX and EBX registers, these registers are organized as a register 
stack. In addition, we can access these registers individually using STO, STl, and so on. 

Since these registers are organized as a register stack, these names are not statically assigned. 
That is, STO does not refer to a specific register. It refers to whichever register is acting as the 
top-of-stack (TOS) register. The next register is referred to as STl, and so on; the last register as 
ST7. There is a 3-bit top-of-stack pointer in the status register to identify the TOS register. 

Each data register can hold an extended-precision floating-point number. This format uses 80 
bits as opposed to single-precision (32 bits) or double-precision (64 bits) formats. The rationale is 
that these registers typically hold intermediate results and using the extended format improves the 
accuracy of the final result. 

The status and contents of each register is indicated by a 2-bit tag field. Since we have eight 
registers, we need a total of 16 tag bits. These 16 bits are stored in the tag register (see Figure 22.1). 
We discuss the tag register details a little later. 
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Figure 22.1 FPU registers. 

Control and Status Registers 

This group consists of three 16-bit registers: the control register, the status register, and the tag 
register, as shown in Figure 22.1. 

FPU Control Register This register is used to provide control to the programmer on several 
processing options. Details about the control word are given in Figure 22.2. The least significant 
six bits contain masks for the six floating-point exceptions. The PC and RC bits control precision 
and rounding. Each uses two bits to specify four possible controls. The options for the rounding 
control are 

• 00 — Round to nearest 
• 01 — Round down 
• 10 — Roundup 
• 11 — Truncate 

The precision control can be used to set the internal operating precision to less than the default 
precision. These bits are provided for compatibility to earlier FPUs with less precision. The 
options for precision are 
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Figure 22.2 FPU control register details (the shaded bits are not used). 

• 00 — 24 bits (single precision) 
• 01 — Not used 
• 10 — 53 bits (double precision) 
• 11 — 64 bits (extended precision) 

FPU Status Register This 16-bit register keeps the status of the FPU (see Figure 22.3). The four 
condition code bits (CO - C3) are updated to reflect the result of the floating-point arithmetic op­
erations. These bits are similar to the flags register of the processor. The correspondence between 
three of these four bits and the flag register is shown below: 

FPU flag CPU flag 

CO CF 

C2 PF 

C3 ZF 

The missing CI bit is used to indicate stack underflow/overflow (discussed below). These bits are 
used for conditional branching just like the corresponding CPU flag bits. 

To facilitate this branching, the status word should be copied into the CPU flags register. This 
copying is a two-step process. First, we use the f s t s w instruction to store the status word in the 
AX register. We can then load these values into the flags register by using the s a h f instruction. 
Once loaded, we can use conditional jump instructions. We demonstrate an application of this in 
Example 22.1. 

The status register uses three bits to maintain the top-of-stack (TOS) information. The eight 
floating-point registers are organized as a circular buffer. The TOS identifies the register that is at 
the top. Like the CPU stack, this value is updated as we push and pop from the stack. 

The least significant six bits give the status of the six exceptions shown in Figure 22.3. The 
invalid operation exception may occur due to either a stack operation or an arithmetic operation. 
The stack fault bit gives information as to the cause of the invalid operation. If this bit is 1, the 
stack fault is caused by a stack operation that resulted in a stack overflow or underflow condi­
tion; otherwise, the stack fault is due to an arithmetic instruction encountering an invalid operand. 
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Figure 22.3 FPU status register details. The busy bit Is Included for 8087 compatibility only. 

We can use the C1 bit to further distinguish between the stack underflow (CI =0) and overflow 
(CI = 1). 

The overflow and underflow exceptions occur if the number is too big or too small. These 
exceptions usually occur when we execute floating-point arithmetic instructions. 

The precision exception indicates that the result of an operation could not be represented ex­
actly. This, for example, would be the case when we want to represent a fraction like 1/3. This 
exception indicates that we lost some accuracy in representing the result. In most cases, this loss 
of accuracy is acceptable. 

The divide-by-zero exception is similar to the divide error exception generated by the processor 
(see our discussion on page 409). The denormal exception is generated when an arithmetic instruc­
tion attempts to operate on a denormal operand (denormals are explained later—see page 452). 

Tag Register This register stores information on the status and content of the data registers. The 
tag register details are shown in Figure 22.4. For each register, two bits are used to give the 
following information: 

• 00 —valid 
• 01 — zero 
• 10 — special (invalid, infinity, or denormal) 
• 11 — empty 

The least significant two bits are used for the STO register, and the next two bits for the STl 
register, and so on. This tag field identifies whether the associated register is empty or not. If not 
empty, it identifies the contents: valid number, zero, or some special value like infinity. 

Floating-Point instructions 
The FPU provides several floating-point instructions for data movement, arithmetic, comparison, 
and transcendental operations. In addition, there are instructions for loading frequently used con­
stants like TT as well as processor control words. In this section we look at some of these instruc­
tions. 
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Figure 22.4 FPU tag register details. 

Unless otherwise specified, these instructions affect the four FPU flag bits as follows: the flag 
bits CO, C2, and C3 are undefined; the CI flag is updated as described before to indicate the stack 
overflow/underflow condition. Most instructions we discuss next, except the compare instructions, 
affect the flags this way. 

Data IVIovement 

Data movement is supported by two types of instructions: load and store. We start our discussion 
with the load instructions. The general load instruction has the following format: 

f id src 

This instruction pushes s r c onto the FPU stack. That is, it decrements the TOS pointer and 
stores s r c at STO. The s r c operand can be in a register or in memory. If the source operand 
is in memory, it can be a single-precision (32-bit), double-precision (64-bit), or extended (80-bit) 
floating-point number. Since the registers hold the numbers in the extended format, a single- or 
double-precision number is converted to the extended format before storing it in STO. 

There are also instructions to push constants onto the stack. These instructions do not take any 
operands. Here is a list of these instructions: 

Instruction Description 
f Idz Push +0.0 onto the stack 
f I d l Push +1.0 onto the stack 
f 1 dp i Push IT onto the stack 
f I d l 2 1 Push log210 onto the stack 
f 1 d l 2 e Push log2e onto the stack 
f l d l g 2 Push logio2 onto the stack 
f l d l n 2 Push logg2 onto the stack 

To load an integer, we can use 

f i l d 

The s r c operand must be a 16- or 32-bit integer located in memory. The instruction converts the 
integer to the extended format and pushes onto the stack (i.e., loads in STO). 

The store instruction has the following format: 

f s t dest 

It stores the top-of-stack values at d e s t . The destination can be one of the FPU registers or 
memory. Like the load instruction, the memory operand can be single-precision, double-precision, 
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or extended floating-point number. As usual, if the destination is a single- or double-precision 
operand, the register value is converted to the destination format. It is important to note this 
instruction does not remove the value from the stack; it simply copies its value. If you want the 
value to be copied as well as pop it off the stack, use the following instruction (i.e., use the suffix 
P): 

f s tp dest 

There is an integer version of the store instruction. The instruction 

f i s t dest 

converts the value in STO to a signed integer and stores it at d e s t in memory. It uses the RC 
(rounding control) field in the conversion (see the available rounding options on page 445). 

The pop version of this instruction 

f i s t p dest 

performs similar conversion as the f i s t instruction; the difference is that it also pops the value 
from the stack. 

Addition 

The basic add instruction has the following format: 

fadd src 

It adds the floating-point number in memory (at s rc ) to that in STO and stores the result back in 
STO. The value at s r c can be a single- or double-precision number. This instruction does not pop 
the stack. 

The two-operand version of the instruction allows us to specify the destination register: 

fadd d e s t , s r c 

In this instruction, both s r c and d e s t must be FPU registers. Like the last add instruction, it 
does not pop the stack. For this, you have to use the pop version: 

faddp dest,src 

We can add integers using the following instruction: 

fiadd src 

Here s r c is a memory operand that is either a 16- or 32-bit integer. 

Subtraction 

The subtract instruction has a similar instruction format as the add instruction. The subtract in­
struction 

fsub src 

performs the following operation: 
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STO = STO-src 

As in the add instruction, we can use the two-operand version to specify two registers. The 
instruction 

fsub dest,src 

performs d e s t — d e s t — s r c . We can also have a pop version of this instruction: 

fsubp dest,src 

Since subtraction is not commutative (i.e., A - B is not the same as JB — A), there is a reverse 
subtract operation. It is reverse in the sense that operands of this instruction are reversed from the 
previous subtract instructions. The instruction 

f s u b r s r c 

performs the operation STO = s r c - S T O . Note that the f s u b performs S T O - s r c . Now you 
know why this instruction is called the reverse subtract! Like the f s u b instruction, there is a 
two-operand version as well as a pop version (for the pop version, use f s u b r p opcode). 

If you want to subtract an integer, you can use f i s u b for the standard subtraction, or f i s u b r 
for reverse subtraction. As in the f i a d d instruction, the 16- or 32-bit integer must be in memory. 

l\/lultiplication 

The multiplication instruction has several versions similar to the f a d d instruction. We start with 
the memory operand version: 

fmul s r c 

where the source ( s r c ) can be a 32- or 64-bit floating-point number in memory. It multiplies this 
value with that in STO and stores the result in STO. 

As in the add and subtract instructions, we can use the two-operand version to specify two 
registers. The instruction 

fmul d e s t , s r c 

performs d e s t = d e s t * s r c . The pop version of this instruction is also available: 

fmulp dest,src 

There is also a special pop version that does not take any operands. The operands are assumed to 
be the top two values on the stack. The instruction 

fmulp 

is similar to the last one except that it multiplies STO and STl. 

To multiply the contents of STO by an integer stored in memory, we can use 

f imul s r c 

The value at s r c can be a 32- or 64-bit integer. 
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Division 

The division instruction has several versions like the subtract instruction. The memory version of 
the divide instruction is 

fdiv src 

It divides the contents of STO by s r c and stores the result in STO: 

STO =^ STO/src 

The s r c operand can be a single- or double-precision floating-point value in memory. 
The two-operand version 

fdiv dest,src 

performs d e s t = d e s t / s r c . As in the previous instructions, both operands must be in the 
floating-point registers. The pop version uses fd ivp instead of fd iv . To divide STO by an 
integer, use the f i d i v instruction. 

Like the subtract instruction, there is a reverse variation for each of these divide instructions. 
The rationale is simple: A/B is not the same as B/A. For example, the reverse divide instruction 

f d i v r s r c 

performs 

STO = src/STO 

As shown in this instruction, we get the reverse version by suffixing r to the opcode. 

Comparison 

This instruction can be used to compare two floating-point numbers. The format is 

fcom s r c 

It compares the value in STO with s r c and sets the FPU flags. The s r c operand can be in memory 
or in a register. As mentioned before, the CI bit is used to indicate stack overflow/underflow 
condition. The other three flags—CO, C2, and C3—are used to indicate the relationship as follows: 

STO > s r c C3C2C0 = 0 00 
S T O - s r c C3C2C0=100 
STO < s r c C3C2C0 = 00 1 
Not comparable C3 C2 CO = 1 1 1 

If no operand is given in the instruction, the top two values are compared (i.e., STO is compared 
with STl). The pop version is also available (f comp). 

The compare instruction also comes in a double-pop flavor. The instruction 

fcompp 

takes no operands. It compares STO with STl and updates the FPU flags as discussed before. 
In addition, it pops the two values off the stack, effectively removing the two numbers it just 
compared. 

To compare the top of stack with an integer value in memory, we can use 
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ficom s r c 

The s r c can be a 16- or 32-bit integer. There is also the pop version of this instruction (f icomp). 
A special case of comparison that is often required is the comparison with zero. The instruction 

f t s t 

can used for this purpose. It takes no operands and compares the stack top value to 0.0 and updates 
the FPU flags as in the f cmp instruction. 

The last instruction we discuss here allows us to examine the type of number. The instruction 

fxam 

examines the number in STO and returns its sign in CI flag bit (0 for positive and 1 for negative). 
In addition, it returns the following information in the remaining three flag bits (CO, C2, and C3): 

Type 
Unsupported 
NaN 
Normal 
Infinity 
Zero 
Empty 
Denormal 

C3 
0 
0 
0 
0 
1 
1 
1 

C2 
0 
0 
1 
1 
0 
0 
1 

CO 
0 
1 
0 
1 
0 
1 
0 

The unsupported type is a format that is not part of the IEEE 754 standard. The NaN represents 
Not-a-Number, as discussed in Appendix A. The meaning of Normal, Infinity, and Zero does not 
require an explanation. A register that does not have a number is identified as Empty, 

Denormals are used for numbers that are very close to zero. Recall that normalized numbers 
have 1.XX...XX as the mantissa. In single- and double-precision numbers, the integer 1 is not 
explicitly stored (it is implied to save a bit). Thus, we store only XX...XX in mantissa. This 
integer bit is explicitly stored in the extended format. 

When the number is very close to zero, we may underflow the exponent when we try to normal­
ize it. Therefore, in this case, we leave the integer bit as zero. Thus, a denormal has the following 
two properties: 

• The exponent is zero; 
• The integer bit of the mantissa is zero as well. 

Miscellaneous 

We now give details on some of the remaining floating-point instructions. Note that there are 
several other instructions that are not covered in our discussion here. The NASM manual gives a 
complete list of the floating-point instructions implemented in NASM. 

The instruction 

f chs 

changes the sign of the number in STO. We use this instruction in our quadratic roots example to 
invert the sign. A related instruction 
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fabs 

replaces the value in STO with its absolute value. 
Two instructions are available for loading and storing the control word. The instruction 

fldcw src 

loads the 16-bit value in memory at s r c into the FPU control word register. To store the control 
word, we use 

fstcw dest 

Following this instruction, all four flag bits (CO - C3) are undefined. 
To store the status word, we can use the instruction 

fstsw dest 

It stores the status word at d e s t . Note that the d e s t can be a 16-bit memory location or the AX 
register. Combining this instruction with sahf, which copies AH into the processor flags register, 
gives us the ability to use the conditional jump instructions. We use these two instructions in the 
quadratic roots example given later. After executing this instruction, all four flag bits (CO - C3) 
are undefined. 

Our First Program 

All the examples in this chapter follow the mixed-mode programs discussed in the last chapter. 
Thus, you need to understand the material presented in the last chapter in order to follow these 
examples. 

As our introductory floating-point example, we write an assembly language program to com­
pute the sum of an array of doubles. We have done an integer version of this program in the last 
chapter (see Example 21.2 on page 430). Here we use a separate assembly language module. In 
the next section, we will redo this example using the inline assembly method. 

The C program, shown in Program 22.1, takes care of the user interface. It requests values to 
fill the array and then calls the a r r a y _ f sum assembly language procedure to compute the sum. 

The a r r a y _ f sum procedure is given in Program 22.2. It copies the array pointer to EDX 
(line 11) and the array size to ECX (line 12). We initialize STO to zero by using the f Idz instruc­
tion on line 13. The add loop consists of the code on lines 14-18. We use the j ecxz instruction 
to exit the loop if the index is zero at the start of the loop. 

We use the f add instruction to compute the sum in STO. Also note that the based-indexed 
addressing mode with a scale factor of 8 is used to read the array elements (line 17). Since C 
programs expect floating-point return values in STO, we simply return from the procedure as the 
result is already in STO. 
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1: 
2 : 
3 : 
4 : 
5 : 
6: 
7: 
8: 
9: 

1 0 : 
1 1 : 
1 2 : 
1 3 : 
1 4 : 
1 5 : 
1 6 : 
1 7 : 
1 8 : 
1 9 : 
2 0 : 
2 1 : 
2 2 : 
2 3 : 

Program 22.1 Array sum program—C program 

* This program reads SIZE values into an array and calls 
* an assembly language program to compute the array sum. 
* The assembly program is in the file "arrayfsuma.asm". 
• • • • * • • • * • • • • • • • • • • • • • • • * * * • • • • * • • • • • • * • • * • • * • • • • • • * • • * * 

#include <stdio.h> 

#define SIZE 10 

int main(void) 

{ 
double value[SIZE]; 
int i ; 
extern double array_fsum(double*, int)/ 

printf("Input %d array values:\n", SIZE); 
for (i = 0; i < SIZE; i++) 

scanf ("%lf", Scvalue [i] ) ; 

printf("Array sum = %lf\n", array_fsum(value,SIZE)); 

return 0; 

Program 22.2 Array sum program—assembly language procedure 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 

This procedure receives an array pointer and its size 
via the stack. It computes the array sum and returns 
it via STO. 

segment .text 
global array_fsum 

array_fsum: 
enter 
mov 
mov 
fldz 

add_loop: 
jecxz 
dec 
fadd 
jmp 

done: 
leave 
ret 

0,0 
EDX, [EBP+8] 
ECX, [EBP+12] 

done 
ECX 
qword[EDX+ECX*8] 
add_loop 

copy array pointer 
copy array size 
STO = 0 (sum is in STO) 

update the array index 
STO = STO + arrary_element 
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Illustrative Examples 
To further illustrate the application of the floating-point instructions, we give a couple of examples 
here. The first example uses separate assembly language modules as in the last example. The 
second example uses inline assembly code. 

Example 22,1 Quadratic equation solution. 

In this example, we find roots of the quadratic equation 

ax^ -\-bx -\- c = 0 . 

The two roots are defined as follows: 

rootl = -b+vW^ 
2a 

-h-s/W-

- 4ac 

- 4ac 
root2 = 

2a 
The roots are real if b"^ > 4ac, and imaginary otherwise. 

As in the last example, our C program takes care of the user interface (see Program 22.3). It re­
quests the user to input constants a, b, and c. It then passes these three values to the quad_root s 
assembly language procedure along with two pointers to r o o t l and r o o t 2 . This procedure re­
turns 0 if the roots are not real; otherwise it returns 1. If the roots are real, the two roots are 
returned in r o o t l and roo t2 . 

The assembly language procedure, shown in Program 22.4, receives five arguments: three 
constants and two pointers to return the two roots. These five arguments are assigned convenient 
labels on lines 7-11. The comments included in the code make it easy to follow the body of the 
procedure. On each line, we indicate the contents on the stack with the leftmost value being at the 
top of the stack. 

We use the f t St instruction to see if (6^ — 4ac) is negative (line 30). We move the FPU flag 
bits to AX and then to the processor flags register using the f s t sw and sahf instructions on 
lines 31 and 32. Once these bits are copied into the flags register, we can use the conditional jump 
instruction j b (line 33). The rest of the procedure body is straightforward to follow. 

Program 22.3 Quadratic equation solution—C program 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

/ • • • • • • * • • • • • * * • • • • • • • • • • • * • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • 

* This program reads three constants (a, b, c) and calls 
* an assembly language program to compute the roots of 
* the quadratic equation. 
* The assembly program is in the file "quada.asm". 
• • • • • • • • • • • • • • • * • • * • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • 

#include <stdio.h> 

int main(void) 
{ 

double a, b, c, rootl, root2; 
extern int quad_roots(double, double, double, 
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13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

double*, double*); 

printf("Enter quad constants a, b, c: " ) ; 
scanf("%lf %lf %lf",&a, Sch, &c) ; 

if (quad_roots (a, b, c, &:rootl, &root2)) 
printf("Rootl = %lf and root2 = %lf\n", 

rootl, root2); 
else 

printf("There are no real roots.\n"); 

return 0; 

Program 22.4 Quadratic equation solution—assembly language procedure 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17' 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

; It receives three constants a, b, c and pointers to two 
; roots via the stack. It computes the two real roots if 
; they exist 
; case, EAX = 

%def 
%def 
%def 
%def 
%def 

ine a 
ine b 
ine c 

and returns them in rootl & root2. In this 
1. If no real roots exist, EAX = 0. 

qword[EBP+8] 
qword[EBP+16] 
qword[EBP+24] 

ine rootl dword[EBP+32] 
ine root2 dword[EBP+36] 

segment .text 
global quad_ 

quad_ _roots: 
enter 
fid 
fadd 
fid 
fid 
fmulp 
fadd 
fadd 
f chs 
fid 
fid 
fmulp 
faddp 
ftst 
f stsw 
sahf 
jb 

roots 

0, 0 
a , 
STO 
a 
c 
STl 
STO 
STO 

b 
b 
STl 
STl 

AX 

a 
2a 
a,2a 

• c,a,2a 
• ac,2a 
• 2ac,2a 
• 4ac,2a 
• -4ac,2a 
• b,-4ac,2a 
• b,b,-4ac,2a 
• b*b,-4ac,2a 
• b*b-4ac,2a 
; compare (b*b-4ac) with 0 
; store status word in AX 

no real root :s 
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34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

f sqrt 
fid 
f chs 
fadd 
fdiv 
mov 
fstp 
f chs 
fid 
f subp 
fdivrp 
mov 
fstp 
mov 
jmp 

no_real_roots: 
sub 

done: 
leave 
ret 

STl 
ST2 
EAX,rootl 
qword[EAX] 

sqrt(b*b-4ac),2a 
b,sqrt(b*b-4ac),2a 
-b,sqrt(b*b-4ac),2a 
-b+sqrt(b*b-4ac),sqrt(b*b-4ac),2a 
-b+sqrt(b*b-4ac)/2a,sqrt(b*b-4ac),2c 

b 
STl 
STl 
EAX,root2 
qword[EAX] 
EAX,1 
short done 

EAX,EAX 

store rootl 
-sqrt(b*b-4ac) , 2a 
b,sqrt(b*b-4ac),2a 
-b-sqrt(b*b-4ac),2a 
-b-sqrt(b*b-4ac)/2a 

store root2 
real roots exist 

EAX 0 (no real roots) 

Example 22.2 Array sum example—inline version. 
In this example we rewrite the code for the a r r ay_ f sum procedure using the inline assembly 
method. Remember that when we use this method, we have to use AT&T syntax. In this syntax, 
the operand size is explicitly indicated by suffixing a letter to the opcode. For the floating-point 
instructions, the following suffixes are used: 

s Single-precision 
1 Double-precision 
t Extended-precision 

The inline assembly code, shown in Program 22.5, is similar to that in Program 22.2. You 
will notice that on line 10 we use =t output specifier to indicate that variable sum is mapped to a 
floating-point register (see page 437 for a discussion of these specifiers). Since we map v a l u e to 
EBX and s i z e to ECX (line 11), we use these registers in the assembly language code to access 
the array elements (see line 7). The rest of the code is straightforward to follow. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Program 22.5 Array sum example—inline version 

double array_fsum(double* value, int size) 

double sum; 
asm(" fldz; 

"add_loop: jecxz 
" decl 

faddl 
jmp 

"done: 
:"=t"(sum) 
:"b"(value),"c" 
:"cc"); 

return(sum); 

done ; 
%%ecx; 
(%%ebx,%%ecx 
add_loop; 

/* 
(size) /* 

/* 

" /* sum 
II 

II 

8) ; " 
II 

II 

output */ 
inputs */ 
clobber list 

Summary 

We presented a brief description of the floating-point unit organization. Specifically, we concen­
trated on the registers provided by the FPU. It provides eight floating-point data registers that are 
organized as a stack. The floating-point instructions include several arithmetic and nonarithmetic 
instructions. We discussed some of these instructions. Finally, we presented some examples that 
used the floating-point instructions discussed. 



APPENDICES 



A 
Number Systems 

This appendix introduces background material on various number systems and representations. 
We start the appendix with a discussion of various number systems, including the binary and 
hexadecimal systems. When we use multiple number systems, we need to convert numbers from 
system to another We present details on how such number conversions are done. We then give 
details on integer representations. We cover both unsigned and signed integer representations. We 
close the appendix with a discussion of the floating-point numbers. 

Positional Number Systems 

The number systems that we discuss here are based on positional number systems. The decimal 
number system that we are already familiar with is an example of a positional number system. In 
contrast, the Roman numeral system is not a positional number system. 

Every positional number system has a radix or base, and an alphabet. The base is a positive 
number. For example, the decimal system is a base-10 system. The number of symbols in the 
alphabet is equal to the base of the number system. The alphabet of the decimal system is 0 
through 9, a total of 10 symbols or digits. 

In this appendix, we discuss four number systems that are relevant in the context of computer 
systems and programming. These are the decimal (base-10), binary (base-2), octal (base-8), and 
hexadecimal (base-16) number systems. Our intention in including the familiar decimal system is 
to use it to explain some fundamental concepts of positional number systems. 

Computers internally use the binary system. The remaining two number systems—octal and 
hexadecimal—are used mainly for convenience to write a binary number even though they are 
number systems on their own. We would have ended up using these number systems if we had 8 
or 16 fingers instead of 10. 

In a positional number system, a sequence of digits is used to represent a number. Each digit in 
this sequence should be a symbol in the alphabet. There is a weight associated with each position. 
If we count position numbers from right to left starting with zero, the weight of position n in a base 
h number system is 6^. For example, the number 579 in the decimal system is actually interpreted 
as 

5x (10^)+ 7 X (10^)+ 9 X (10°). 
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(Of course, 10^ = 1.) In other words, 9 is in unit's place, 7 in lO's place, and 5 in lOO's place. 
More generally, a number in the base h number system is written as 

dndn-l . . . dido , 

where d o represents the least significant digit (LSD) and dn represents the most significant digit 
(MSD). This sequence represents the value 

dnb"" + dn-ib""-^ + •.. + dib^ 4- dob^ . (A.l) 

Each digit di in the string can be in the range 0 < d̂  < (6 — 1). When we use a number system 
with b < 10, we use the first b decimal digits. For example, the binary system uses 0 and 1 as 
its alphabet. For number systems with 6 > 10, the initial letters of the English alphabet are used 
to represent digits greater than 9. For example, the alphabet of the hexadecimal system, whose 
base is 16, is 0 through 9 and A through F, a total of 16 symbols representing the digits of the 
hexadecimal system. We treat lowercase and uppercase letters used in a number system such as 
the hexadecimal system as equivalent. 

The number of different values that can be represented using n digits in a base b system is 6 ̂ . 
Consequently, since we start counting from 0, the largest number that can be represented using n 
digits is {b'^ — 1). This number is written as 

( 6 - l ) ( 6 - l ) . . . ( 6 - l ) ( 6 - l ) . 
V ^ / 

total of n digits 

The minimum number of digits (i.e., the length of a number) required to represent X different 
values is given by [log^ X], where [ ] represents the ceiling function. Note that [m] represents 
the smallest integer that is greater than or equal to m. 

Notation The commonality in the alphabet of several number systems gives rise to confusion. 
For example, if we write 100 without specifying the number system in which it is expressed, 
different interpretations can lead to assigning different values, as shown below: 

jmber 

100 

100 

100 

100 

binary 

decimal 

octal 

hexadecimal 

Decimal value 

4 

100 

64 

256 

Thus, it is important to specify the number system (i.e., specify the base). One common notation is 
to append a single letter—uppercase or lowercase—to the number to specify the number system. 
For example, D is used for decimal, B for binary, Q for octal, and H for hexadecimal number 
systems. Using this notation, lOllOlllBisa binary number and 2BA9H is a hexadecimal number. 
Some assemblers use prefix Ox for hexadecimal and prefix 0 for octal. 

Decimal Number System We use the decimal number system in everyday life. This is a base-
10 system presumably because we have 10 fingers and toes to count. The alphabet consists of 10 
symbols, digits 0 through 9. 



Appendix A • Number Systems 463 

Binary Number System The binary system is a base-2 number system that is used by computers 
for internal representation. The alphabet consists of two digits, 0 and 1. Each binary digit is called 
a bit (standing for binary digit). Thus, 1021 is not a valid binary number. In the binary system, 
using n bits, we can represent numbers from 0 through (2 ^ — 1) for a total of 2 ^ different values. 

Octal Number System This is a base-8 number system with the alphabet consisting of digits 
0 through 7. Thus, 181 is not a valid octal number. The octal numbers are often used to express 
binary numbers in a compact way. For example, we need 8 bits to represent 256 different values. 
The same range of numbers can be represented in the octal system by using only 3 digits. 

For example, the number 230Q is written in the binary system as 1001 lOOOB, which is difficult 
to read and error prone. In general, we can reduce the length by a factor of 3. As we show later, 
it is straightforward to go back to the binary equivalent, which is not the case with the decimal 
system. 

Hexadecimal Number System This is a base-16 number system. The alphabet consists of digits 
0 through 9 and letters A through F. In this text, we use capital letters consistently, even though 
lowercase and uppercase letters can be used interchangeably. For example, FEED is a valid hex­
adecimal number, whereas GEFF is not. 

The main use of this number system is to conveniently represent long binary numbers. The 
length of a binary number expressed in the hexadecimal system can be reduced by a factor of 
4. Consider the previous example again. The binary number 1001 lOOOB can be represented as 
98H. Debuggers, for example, display information—addresses, data, and so on—in hexadecimal 
representation. 

Conversion to Decimal 
When we are dealing with several number systems, there is often a need to convert numbers from 
one system to another. Let us first look at how a number expressed in the base-6 system can 
be converted to the decimal system. To do this conversion, we merely perform the arithmetic 
calculations of Equation A.l given on page 462; that is, multiply each digit by its weight, and add 
the results. Here is an example. 

Example A.l Conversion from binary to decimal. 
Convert the binary number 1010011 IB into its equivalent in the decimal system. 

10100111^ - 1 . 2^ + 0 • 2^ + 1 • 2^ + 0 • 2^ 
+ 0 • 2^ + 1 . 2^ + 1 . 2̂  + 1 • 2^ 

= 167D 

Conversion from Decimal 
There is a simple method that allows conversions from the decimal to a target number system. The 
procedure is as follows: 
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Divide the decimal number by the base of the target number system and 
keep track of the quotient and remainder Repeatedly divide the successive 
quotients while keeping track of the remainders generated until the quotient 
is zero. The remainders generated during the process, written in the reverse 
order of generation from left to right, form the equivalent number in the 
target system. 

Let us look at an example now. 

Example A,2 Conversion from decimal to binary. 
Convert the decimal number 167 into its equivalent binary number. 

167/2 
83/2 
41/2 
20/2 
10/2 
5/2 
2/2 
1/2 

= 
= 
= 
= 
= 
= 
= 
= 

Quotient 

83 
41 
20 
10 
5 
2 
1 
0 

Remainder 

1 
1 
1 
0 
0 
1 
0 
1 

The desired binary number can be obtained by writing the remainders generated in the reverse 
order from left to right. For this example, the binary number is 1010011 IB. This agrees with the 
result of Example A. 1. • 

Binary/Octal/Hexadecimal Conversion 

Conversion among binary, octal, and hexadecimal number systems is relatively easier and more 
straightforward. Conversion from binary to octal involves converting three bits at a time, whereas 
binary to hexadecimal conversion requires converting four bits at a time. 

Binary/Octal Conversion To convert a binary number into its equivalent octal number, form 
3-bit groups starting from the right. Add extra Os at the left-hand side of the binary number if the 
number of bits is not a multiple of 3. Then replace each group of 3 bits by its equivalent octal 
digit. Why three bit groups? Simply because 2^ = 8. Here is an example. 

Example A.3 Conversion from binary to octal. 
The following examples illustrate this conversion process. 

1 0 5 

loooioiB - 'ooT'ooo^ m B 
- 105Q. 
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2 4 7 

loiooiiiB = 'OIO^'TOO^'TITB 

= 247Q. 

Note that we have added leftmost Os (shown in bold) so that the number of bits is 9. Adding Os on 
the left-hand side does not change the value of a number. For example, in the decimal system, 35 
and 0035 represent the same value. • 

We can use the reverse process to convert numbers from octal to binary. For each octal digit, 
write the equivalent 3 bits. You should write exactly 3 bits for each octal digit even if there are 
leading Os. For example, for octal digit 0, write the three bits 000. 

Example A.4 Conversion from octal to binary, 
The following two examples illustrate conversion from octal to binary: 

105Q= 001 000 101B, 
2 4 7 

247Q = '010''T00^tlTB. 

If you want an 8-bit binary number, throw away the leading 0 in the binary number. • 

Binary/Hexadecimal Conversion The process for conversion from binary to hexadecimal is 
similar except that we use 4-bit groups instead of 3-bit groups because 2 ^ — 16. For each group 
of 4 bits, replace it by the equivalent hexadecimal digit. If the number of bits is not a multiple of 
4, pad Os at the left. Here is an example. 

Example A.5 Binary to hexadecimal conversion. 
Convert the binary number 1101011111 into its equivalent hexadecimal number. 

3 5 F 

iioioiiiiiB = oonoioTTmB 
= 35FH. 

As in the octal to binary example, we have added two Os on the left to make the total number of 
bits a multiple of 4 (i.e., 12). D 

The process can be reversed to convert from hexadecimal to binary. Each hex digit should be 
replaced by exacdy four binary bits that represent its value. An example follows: 

Example A.6 Hex to binary conversion. 
Convert the hexadecimal number BO ID into its equivalent binary number. 

B 0 1 D 

B01DH = T m 0000 0001 nOlB. D 
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Unsigned Integers 
Now that you are familiar with different number systems, let us turn our attention to how integers 
(numbers with no fractional part) are represented internally in computers. Of course, we know that 
the binary number system is used internally. Still, there are a number of other details that need to 
be sorted out before we have a workable internal number representation scheme. 

We begin our discussion by considering how unsigned numbers are represented using a fixed 
number of bits. We then proceed to discuss the representation for signed numbers in the next 
section. 

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equivalent 
binary representation. As discussed before, a binary number with n bits can represent 2 ^ different 
values, and the range of the numbers is from 0 to (2 ^ — 1). Padding of Os on the left can be used 
to make the binary conversion of a decimal number equal exactly N bits. For example, we can 
represent 16D as lOOOOB using 5 bits. However, this can be extended to a byte (i.e., Â  == 8) as 
00010000Bortol6 bits asOOOOOOOOOOOlOOOOB. This process is called zero extension and 
is suitable for unsigned numbers. 

A problem arises if the number of bits required to represent an integer in binary is more than 
the Â  bits we have. Clearly, such numbers are outside the range of numbers that can be represented 
using N bits. Recall that using N bits, we can represent any integer X such that 0 < X < 2 ^ — 1. 

Signed Integers 

There are several ways in which signed numbers can be represented. These include 

• Signed magnitude, 

• Excess-M, 

• I's complement, and 

• 2's complement. 

Signed Magnitude Representation 

In signed magnitude representation, one bit is reserved to represent the sign of a number. The 
most significant bit is used as the sign bit. Conventionally, a sign bit value of 0 is used to represent 
a positive number and 1 for a negative number. Thus, if we have N bits to represent a number, 
(A — 1) bits are available to represent the magnitude of the number. For example, when N is 
4, Table A. 1 shows the range of numbers that can be represented. For comparison, the unsigned 
representation is also included in this table. The range of n-bit signed magnitude representation is 
_2n- i _|_ 1 to +2"^"^ — 1. Note that in this method, 0 has two representations: +0 and - 0 . 

Excess-M Representation 

In this method, a number is mapped to a nonnegative integer so that its binary representation can 
be used. This transformation is done by adding a value called bias to the number to be represented. 
For an n bit representation, the bias should be such that the mapped number is less than 2 ^. 

To find out the binary representation of a number in this method, simply add the bias M to the 
number and find the corresponding binary representation. That is, the representation for number 
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Table A.1 Number representation using 4-bit binary (All numbers except Binary column in decimal) 

Unsigned 
representation 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Binary 
pattern 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
n i l 

Signed 
magnitude 

0 
1 
2 
3 
4 
5 
6 
7 

- 0 
- 1 
- 2 
- 3 
- 4 
- 5 
- 6 
- 7 

Excess-7 
=̂ 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 

0 
1 
2 
3 
4 
5 
6 
7 
8 

I's Complement 
0 
1 
2 
3 
4 
5 
6 
7 

- 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 
- 0 

2's Complement 
0 
1 
2 
3 
4 
5 
6 
7 

- 8 
- 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 

X is the binary representation for the number X -\- M, where M is the bias. For example, in the 
excess-7 system, -3D is represented as 

- 3 + 7 = + 4 - OlOOB. 

Numbers represented in excess-M are called biased integers for obvious reasons. Table A. 1 
gives examples of biased integers using 4-bit binary numbers. This representation, for example, 
is used to store the exponent values in the floating-point representation (discussed in the next 
section). 

1 's Complement Representation 

As in the excess-M representation, negative values are biased in I's complement and 2's com­
plement representations. For positive numbers, the standard binary representation is used. As in 
the signed magnitude representation, the most significant bit indicates the sign (0 = positive and 
1 = negative). In I's complement representation, negative values are biased by 6 ̂  - 1, where b 
is the base or radix of the number system. For the binary case that we are interested in here, the 
bias is 2 ̂  — 1. For the negative value —X, the representation used is the binary representation for 
(2^ — 1) — X. For example, if n is 4, we can represent —5 as 

2 ^ - 1 = HUB 
- 5 = -QIQIB 

lOlOB 

As you can see from this example, the I's complement of a number can be obtained by simply 
complementing individual bits (converting Os to Is and vice versa) of the number. Table A. 1 shows 
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I's complement representation using 4 bits. In this method also, 0 has two representations. The 
most significant bit is used to indicate the sign. To find the magnitude of a negative number in this 
representation, apply the process used to obtain the I's complement (i.e., complement individual 
bits) again. 

Representation of signed numbers in I's complement representation allows the use of simpler 
circuits for performing addition and subtraction than the other two representations we have seen 
so far (signed magnitude and excess-M). Some older computer systems used this representation 
for integers. An irritant with this representation is that 0 has two representations. Furthermore, 
the carry bit generated out of the sign bit will have to be added to the result. The 2's complement 
representation avoids these pitfalls. As a result, 2's complement representation is the choice of 
current computer systems. 

2's Complement Representation 

In 2's complement representation, positive numbers are represented the same way as in the signed 
magnitude and I's complement representations. The negative numbers are biased by 2 ^, where n 
is the number of bits used for number representation. Thus, the negative value - ^ is represented 
by (2^ - A) using n bits. Since the bias value is one more than that in the I's complement 
representation, we have to add 1 after complementing to obtain the 2's complement representation 
of a negative number. We can, however, discard any carry generated out of the sign bit. For 
example, —5 can be represented as 

5D= OIOIB—^complement—>1010B 
addl 1£ 

l O l l B 

Therefore, lOl lB represents — 5D in 2's complement representation. Table A.l shows the 2's 
complement representation of numbers using 4 bits. Notice that there is only one representation 
for 0. The range of an n-bit 2's complement integer is —2 ̂ ~^ to +2^"^ — 1. For example, using 
8 bits, the range is -128 to +127. 

To find the magnitude of a negative number in the 2's complement representation, as in the 
I's complement representation, simply reverse the sign of the number. That is, use the same 
conversion process i.e., complement and add 1 and discard any carry generated out of the leftmost 
bit. 

Sign Extension 

How do we extend a signed number? For example, we have shown that - 5 can be represented 
in the 2's complement representation as lOl lB. Suppose we want to save this as a byte. How 
do extend these four bits into eight bits? We have seen on page 466 that, for unsigned integers, 
we add zeros on the left to extend the number. However, as cannot use this technique for signed 
numbers because the most significant bit represents the sign. To extend a signed number, we have 
to copy the sign bit. In our example, —5 is represented using eight bits as 

sign bit 

-5D = mTio i i 
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We have copied the sign bit to extend the four-bit value to eight bits. Similarly, we can express - 5 
using 16 bits by extending it as follows: 

sign bit 

-5D = 1111111111111011 

This process is referred to as sign extension. 

Floating-Point Representation 
Using the decimal system for a moment, we can write very small and very large numbers in 
scientific notation as follows: 

1.2345 X 10^^ 

9.876543 x 10"^'^. 

Expressing such numbers using the positional number notation is difficult to write and understand, 
errorprone, and requires more space. In a similar fashion, binary numbers can be written in the 
scientific notation. For example, 

+1101.101 X 2-̂ ^̂ °°̂  - 13.625 X 2^^ 
= 4.57179 X 10^ 

As indicated, numbers expressed in this notation have two parts: a mantissa (or significand), and 
an exponent. There can be a sign (+ or - ) associated with each part. 

Numbers expressed in this notation can be written in several equivalent ways, as shown below: 

1.2345 X 10'̂ ^ 
123.45 X 10^^ 

0.00012345 X 10^^ 

This causes implementation problems to perform arithmetic operations, comparisons, and the like. 
This problem can be avoided by introducing a standard form called the normal form. Reverting to 
the binary case, a normalized binary form has the format 

±l.XiX2 • • • XM-IXM X 2±^^-i^^-2-^^^°, 

where Xi and Yj represent a bit, 1 < i < M, and 0 < j < N. The normalized form of 

+1101.101 X 2+^^^^° 

is 
+1.101101 x2+i^^^^ 

We normally write such numbers as 

+1.101101E11101. 

To represent such normalized numbers, we might use the format shown below: 
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- ^ bit ^ b i tH 8 bits H ^ -

31 130 23122 

(a) 

- ^ bit 

63 162 

11 bits 

23 bits 

s 
m 

exponent mantissa 

- ^ ^ - 52 bits 

s. exponent mantissa 

52151 

(b) 

Figure A.1 Floating-point formats (a) Single-precision (b) Double-precision. 

^ii Nbits bit Mblts 

Se exponent Sm mantissa 

where Sm and Se represent the sign of mantissa and exponent, respectively. 
Implementation of floating-point numbers varies from this generic format, usually for effi­

ciency reasons or to conform to a standard. From here on, we discuss the format of the IEEE 754 
floating-point standard. Such standards are useful, for example, to exchange data among several 
different computer systems and to write efficient numerical software libraries. 

The single-precision and double-precision floating-point formats are shown in Figure A. 1. 
Certain points are worth noting about these formats: 

1. The mantissa stores only the fractional part of a normalized number. The 1 to the left of 
the binary point is not explicitly stored but implied to save a bit. Since this bit is always 1, 
there is really no need to store it. However, representing 0.0 requires special attention, as 
we show later. 

2. There is no sign bit associated with the exponent. Instead, the exponent is converted to an 
excess-M form and stored. For the single-precision numbers, the bias used is 127D (= 7FH), 
and for the double-precision numbers, 1023 (= 3FFH). 

Special Values The representations of 0 and infinity (oo) require special attention. Table A.2 
shows the values of the three components to represent these values. Zero is represented by a 
zero exponent and fraction. We can have a - 0 or +0 depending on the sign bit. An exponent 
of all ones indicates a special floating-point value. An exponent of all ones with a zero mantissa 
indicates infinity. Again, the sign bit indicates the sign of the infinity. An exponent of all ones 
with a nonzero mantissa represents a not-a-number (NaN). The NaN values are used to represent 
operations like 0/0 and \ / ^ . 

The last entry in Table A.2 shows how denormalized values are represented. The denormals are 
used to represent values smaller than the smallest value that can be represented with normalized 



Appendix A • Number Systems 471 

Table A,2 Representation of special values in the floating-point format 

Special number 

+0 
- 0 
+ 0 0 

—oo 
NaN 
Denormals 

Sign 

0 
1 
0 
1 

0/1 
0/1 

Exponent (biased) 

0 
0 

FFH 
FFH 
FFH 

0 

Mantissa 

0 
0 
0 
0 

7^0 
^ 0 

floating-point numbers. For denormals, the implicit 1 to the left of the binary point becomes a 
0. The smallest normalized number has a 1 for the exponent (note zero is not allowed) and 0 
for the fraction. Thus, the smallest number is 1 x 2~^^^. The largest denormalized number has 
a zero exponent and all Is for the fraction. This represents approximately 0.9999999 x 2 ~^^ .̂ 
The smallest denormalized number would have zero as the exponent and a 1 in the last bit position 
(i.e., position 23). Thus, it represents 2 ~^̂  x 2~^^^, which is approximately 10~^^. For a thorough 
discussion of floating-point numbers, see D. Goldberg, "What Every Computer Scientist Should 
Know About Floating-Point Arithmetic," ACM Computing Surveys, Vol. 23, No. 1, March 1991, 
pp. 5-48. 

Summary 

We discussed how numbers are represented using the positional number system. Positional number 
systems are characterized by a base and an alphabet. The familiar decimal system is a base-
10 system with the alphabet 0 through 9. Computer systems use the binary system for internal 
storage. This is a base-2 number system with 0 and 1 as the alphabet. The remaining two number 
systems—octal (base-8) and hexadecimal (base-16)—are mainly used for convenience to write a 
binary number. For example, debuggers use the hexadecimal numbers to display address and data 
information. 

When we use several number systems, there is often a need to convert numbers from one sys­
tem to another. Conversion among binary, octal, and hexadecimal systems is simple and straight­
forward. We also discussed how numbers are converted from decimal to binary and vice versa. 

The remainder of the chapter was devoted to internal representation of numbers. Representa­
tion of unsigned integers is straightforward and uses binary representation. There are, however, 
several ways of representing signed integers. We discussed four methods to represent signed inte­
gers. Of these four methods, current computer systems use the 2's complement representation. 

Floating-point representation on most computers follows the IEEE 754 standard. There are 
three components of a floating-point number: mantissa, exponent, and the sign of the mantissa, 
There is no sign associated with the exponent. Instead, the exponent is stored as a biased number. 



B 
Character 
Representation 

This appendix discusses character representation. We identify some desirable properties that a 
character-encoding scheme should satisfy in order to faciUtate efficient character processing. Our 
focus is on the ASCII encoding; we don't discuss other character sets such as UCS and Unicode. 
The ASCII encoding, which is used by most computers, satisfies the requirements of an efficient 
character code. 

Character Representation 
As computers have the capability to store and understand the alphabet 0 and 1, characters should 
be assigned a sequence over this alphabet i.e., characters should be encoded using this alphabet. 
For efficient processing of characters, several guidelines have been developed. Some of these are 
mentioned here: 

1. Assigning a contiguous sequence of numbers (if treated as unsigned binary numbers) to 
letters in alphabetical order is desired. Upper and lowercase letters (A through Z and a 
through z) can be treated separately, but a contiguous sequence should be assigned to each 
case. This facilitates efficient character processing such as case conversion, identifying 
lowercase letters, and so on. 

2. In a similar fashion, digits should be assigned a contiguous sequence in the numerical order. 
This would be useful in numeric-to-character and character-to-numeric conversions. 

3. A space character should precede all letters and digits. 

These guidelines allow for efficient character processing including sorting by names or char­
acter strings. For example, to test if a given character code corresponds to a lowercase letter, all 
we have to do is to see if the code of the character is between that of a and z. These guidelines 
also aid in applications requiring sorting—for instance, sorting a class list by last name. 

Since computers are rarely used in isolation, exchange of information is an important con­
cern. This leads to the necessity of having some standard way of representing characters. Most 
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computers use the American Standard Code for Information Interchange (ASCII) for character 
representation. The standard ASCII uses 7 bits to encode a character. Thus, 2 ^ = 128 different 
characters can be represented. This number is sufficiently large to represent uppercase and lower­
case characters, digits, special characters such as !," and control characters such as CR (carriage 
return), LF (linefeed), etc. 

Since we store the bits in units of a power of 2, we end up storing 8 bits for each character— 
even though ASCII requires only 7 bits. The eighth bit is put to use for two purposes. 

1. To parity encode for error detection: The eighth bit can be used to represent the parity bit. 
This bit is made 0 or 1 such that the total number of 1 's in a byte is even (for even parity) or 
odd (for odd parity). This can be used to detect simple errors in data transmission. 

2. To represent an additional 128 characters: By using all eight bits we can represent a total of 
2 ̂  = 256 different characters. This is referred to as the extended ASCII. These additional 
codes are used for special graphics symbols, Greek letters, etc. make up the additional 128 
characters. 

The standard ASCII character code is presented in two tables on the next two pages. You 
will notice from these tables that ASCII encoding satisfies the three guidelines mentioned earlier. 
For instance, successive bit patterns are assigned to uppercase letters, lowercase letters, and digits. 
This assignment leads to some good properties. For example, the difference between the uppercase 
and lowercase characters is constant. That is, the difference between the character codes of a and 
A is the same as that between n and N, which is 32. This characteristic can be exploited for efficient 
case conversion. 

Another interesting feature of ASCII is that the character codes are assigned to the 10 digits 
such that the lower order four bits represent the binary equivalent of the corresponding digit. 
For example, digit 5 is encoded as 0110101. If you take the rightmost four bits (0101), they 
represent 5 in binary. This feature, again, helps in writing an efficient code for character-to-
numeric conversion. Such a conversion, for example, is required when you type a number as a 
sequence of digit characters. 

ASCII Character Set 
The next two pages give the standard ASCII character set. We divide the character set into control 
and printable characters. The control character codes are given on the next page and the printable 
ASCII characters are on page 476. 
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Hex 
00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
lA 
IB 
IC 
ID 
IE 
IF 
7F 

Decimal 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
127 

Control Codes 

Character 
~NUL 

SOH 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
SO 
SI 
DLE 
DCl 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
US 
DEL 

Meaning 
NULL 
Start of heading 
Start of text 
End of text 
End of transmission 
Enquiry 
Acknowledgment 
Bell 
Backspace 
Horizontal tab 
Line feed 
Vertical tab 
Form feed 
Carriage return 
Shift out 
Shift in 
Data link escape 
Device control 1 
Device control 2 
Device control 3 
Device control 4 
Negative acknowledgment 
Synchronous idle 
End of transmission block 
Cancel 
End of medium 
Substitute 
Escape 
File separator 
Group separator 
Record separator 
Unit separator 
Delete 
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Printable Character Codes 

Hex 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

Decimal 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Character 
Space 

I 
95 

# 
$ 
% 
& 
9 

( 
) 
* 
+ 

5 

-

/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

9 

< 

= 
> 
7 

Hex 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
4D 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
5A 
5B 
5C 
5D 
5E 
5F 

Decimal 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

Character 
@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 

Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 

[ 
\ 
] 
'̂  

-

Hex 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6A 
6B 
6C 
6D 
6E 
6F 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7A 
7B 
7C 
7D 
7E 

Decimal 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 

Character 
-
a 
b 
c 
d 
e 
f 

g 
h 
i 

J 
k 
1 
m 
n 
0 

P 
q 
r 
s 
t 
u 
V 

w 
X 

y 
z 

{ 
1 
} 

Note that 7FH (127 in decimal) is a control character listed on the previous page. 



c 
Programming Exercises 

This appendix gives several programming exercises. These exercises can be used to practice writ­
ing programs in the assembly language. 

1. Modify the a d d i g i t s . asm program given in Example 9.3 such that it accepts a string 
from the keyboard consisting of digit and nondigit characters. The program should display 
the sum of the digits present in the input string. All nondigit characters should be ignored. 
For example, if the input string is 

ABCl?5wy76:~2 

the output of the program should be 

sum of i n d i v i d u a l d i g i t s i s : 21 

2. Write an assembly language program to encrypt digits as shown below: 

input digit: 0 1 2 3 4 5 6 7 8 9 
encrypted digit: 4 6 9 5 0 3 1 8 7 2 

Your program should accept a string consisting of digit and nondigit characters. The en­
crypted string should be displayed in which only the digits are affected. Then the user 
should be queried whether he/she wants to terminate the program. If the response is either 
'y' or 'Y' you should terminate the program; otherwise, you should request another input 
string from the keyboard. 
The encryption scheme given here has the property that when you encrypt an already en­
crypted string, you get back the original string. Use this property to verify your program. 

3. Write a program to accept a number in the hexadecimal form and display the decimal equiv­
alent of the number. A typical interaction of your program is (user input is shown in bold): 

Please input a positive number in hex (4 digits max.): AlOF 
The decimal equivalent of AlOFH is 41231 
Do you want to terminate the program (Y/N): Y 

You can refer to Appendix A for an algorithm to convert from base b to decimal. You should 
do the required multiplication by the left shift instruction. Once you have converted the hex 
number into the equivalent in binary, you can use the p r i n t _ i n t system call to display 
the decimal equivalent. 
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4. Write a program that reads an input number (given in decimal) between 0 and 65,535 and 
displays the hexadecimal equivalent. You can read the input using r e a d _ i n t system call. 

5. Modify the above program to display the octal equivalent instead of the hexadecimal equiv­
alent of the input number. 

6. Write a procedure l o c a t e to locate a character in a given string. The procedure receives 
a pointer to a NULL-terminated character string and the character to be located. When the 
first occurrence of the character is located, its position is returned to main. If no match 
is found, a negative value is returned. The main procedure requests a character string and 
a character to be located and displays the position of the first occurrence of the character 
returned by the l o c a t e procedure. If there is no match, a message should be displayed to 
that effect. 

7. Write a procedure that receives a string and removes all leading blank characters in the 
string. For example, if the input string is (U indicates a blank character) 

U U U U UReadUUmyUlips. 

it will be modified by removing all leading blanks as 

ReadUUmyUlips. 

Write a main program to test your procedure. 
8. Write a procedure that receives a string and removes all leading and duplicate blank charac­

ters in the string. For example, if the input string is (U indicates a blank character) 

U U U U UReadU U UmyU U U U Ulips. 

it will be modified by removing all leading and duplicate blanks as 

ReadUmyUlips. 

Write a main program to test your procedure. 

9. Write a procedure to read a string, representing a person's name, in the format 

first-nameUMlUlast-name 

and displays the name in the format 

last-name, Ufirst-nameUMI 
where U indicates a blank character. As indicated, you can assume that the three names— 
first name, middle initial, and last name—are separated by single spaces. Write a main 
program to test your procedure. 

10. Modify the last exercise to work on an input that can contain multiple spaces between the 
names. Also, display the name as in the last exercise but with the last name in all capital 
letters. 

11. Write a complete assembly language program to read two matrices A and B and display the 
result matrix C, which is the sum of A and B. Note that the elements of C can be obtained 
as 

C[iJ] = A[iJ] + B[iJ]. 

Your program should consist of a main procedure that calls the r e a d _ m a t r i x procedure 
twice to read data for A and B. It should then call the mat r ix_add procedure, which 
receives pointers to A, B, C, and the size of the matrices. Note that both A and B should 
have the same size. The main procedure calls another procedure to display C. 
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12. Write a procedure to perform multiplication of matrices A and B. The procedure should 
receive pointers to the two input matrices (A of size / x m, B of size m x n), the product 
matrix C, and values I, m, and n. Also, the data for the two matrices should be obtained 
from the user. Devise a suitable user interface to read these numbers. 

13. Modify the program of the last exercise to work on matrices stored in the column-major 
order. 

14. Write a program to read a matrix (maximum size 10 x 10) from the user and display the 
transpose of the matrix. To obtain the transpose of matrix A, write rows of A as colunms. 
Here is an example: 

If the input matrix is 

the transpose of the matrix is 

12 34 56 78 
23 45 67 89 
34 56 78 90 
45 67 89 10 

12 23 34 45 
34 45 56 67 
56 67 78 89 
78 89 90 10 

15. Write a program to read a matrix (maximum size 10 x 15) from the user and display the 
subscripts of the maximum element in the matrix. Your program should consist of two pro­
cedures: main is responsible for reading the input matrix and for displaying the position of 
the maximum element. Another procedure mat_max is responsible for finding the position 
of the maximum element. For example, if the input matrix is 

12 34 56 78 
23 45 67 89 
34 56 78 90 
45 67 89 10 

the output of the program should be 

The maximum element is at (2,3), 

which points to the largest value (90 in our example). 
16. Write a program to read a matrix of integers, perform cyclic permutation of rows, and dis­

play the result matrix. Cyclic permutation of a sequence a 0,0.1,0,2,-- - iCtn-i is defined as 
ai, a 2 , . . . , cin-i, a 0- Apply this process for each row of the matrix. Your program should 
be able to handle up to 12 x 15 matrices. If the input matrix is 

12 34 56 78 
23 45 67 89 
34 56 78 90 
45 67 89 10 
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34 
45 
56 
67 

56 
67 
78 
89 

78 
89 
90 
10 

12 
23 
34 
45 

the permuted matrix is 

17. Generalize the last exercise to cyclically permute by a user-specified number of elements. 
18. Write a complete assembly language program to do the following: 

• Read the names of students in a class into a one-dimensional array. 
• Read test scores of each student into a two-dimensional marks array. 
• Output a letter grade for each student in the format: 

student name l e t t e r grade 

You can use the following information in writing your program: 

• Assume that the maximum class size is 20. 
• Assume that the class is given four tests of equal weight (i.e., 25 points each). 
• Test marks are rounded to the nearest integer so you can treat them as integers. 
• Use the following table to convert percentage marks (i.e, sum of all four tests) to a 

letter grade. 

Marks range 

85-100 
70-84 
60-69 
50-59 
0-49 

Grade 

A 
B 
C 
D 
F 

19. Modify the program for the last exercise to also generate a class summary stating the number 
of students receiving each letter grade in the following format: 

A = number of students receiving A, 
B = number of students receiving B, 
C = number of students receiving C, 
D = number of students receiving D, 
F = number of students receiving F. 

20. If we are given a square matrix (i.e., a matrix with the number of rows equal to the number of 
columns), we can classify it as the diagonal matrix if only its diagonal elements are nonzero; 
as an upper triangular matrix if all the elements below the diagonal are 0; and as a lower 
triangular matrix if all elements above the diagonal are 0. Some examples are: 

Diagonal matrix: 
r 28 0 0 0 

0 87 0 0 
0 0 97 0 

L 0 0 0 65 
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Upper triangular matrix: 

Lower triangular matrix: 

19 
0 
0 
0 

76 
44 
65 
87 

26 
78 
0 
0 

0 
38 
28 
56 

35 
43 
38 
0 

0 
0 
89 
67 

98 
65 
29 
82 

0 
0 
0 
54 

Write an assembly language program to read a matrix and output the type of matrix. 
21. In Appendix A, we discussed the format of the single-precision floating-point numbers. 

Write a program that reads the floating-point internal representation from the user as a string 
of eight hexadecimal digits and displays the three components—mantissa, exponent, and 
sign—in binary. For example, if the input to the program is 429DA000, the output should 
be: 

sign = 0 
mantissa =1.0011101101 
exponent = 110 

22. Modify the program for the last exercise to work with the double-precision floating-point 
representation. 

23. Ackermann's function A{m, n) is defined for m > 0 and n > 0 as 

A{0,n) = N + l 
A{m,0) = A{m-l,l) 
A{m,n) =A{m - l,A{m,n- 1)) 

forn > 0 
for m > 1 
form > l ,n > 1. 

Write a recursive procedure to compute this function. Your main program should handle the 
user interface to request m and n and display the final result. 

24. Write a program to solve the Towers of Hanoi puzzle. The puzzle consists of three pegs and 
Â  disks. Disk 1 is smaller than disk 2, which is smaller than disk 3, and so on. Disk Â  is 
the largest. Initially, all N disks are on peg 1 such that the largest disk is at the bottom and 
the smallest at the top (i.e., in the order A, A — 1, ..., 3, 2, 1 from bottom to top). The 
problem is to move these Â  disks from peg 1 to peg 2 under two constraints: You can move 
only one disk at a time and you must not place a larger disk on top of a smaller one. We can 
express a solution to this problem by using recursion. The function 

move(N, 1, 2, 3) 

moves A' disks from peg 1 to peg 2 using peg 3 as the extra peg. There is a simple solution 
if you concentrate on moving the bottom disk on peg 1. The task move (N, 1, 2 , 3) is 
equivalent to 

move(N-l, 1, 3, 2) 
move the remaining disk from peg 1 to 2 
move(N-l, 3, 2, 1) 
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Even though the task appears to be complex, we write a very elegant and simple solution to 
solve this puzzle. Here is a version in C. 

void move (int n, int x, int y, int z) 

{ 
if (n == 1) 

printf("Move the top disk from peg %d to %d\n",x,y}; 
else 

move(n-1, x, z, y) 
printf("Move the top disk from peg %d to %d\n",x,y}; 
move(n-1, z, y, x) 

} 

int main (void) 
{ 

int disks; 

scanf ("%d", Scdisks) / 
move(d i sks , 1, 2, 3 ) ; 

} 

Test your program for a very small number of disks (say, less than 6). Even for 64 disks, it 
takes hundreds of years on whatever PC you have! 

25. Write a procedure s t r_s t r that receives two pointers to strings s t r ing and subs t r ing 
and searches for s u b s t r i n g in s t r i n g . If a match is found, it returns the starting posi­
tion of the first match. Matching should be case sensitive. A negative value is returned if no 
match is found. For example, if 

s t r i n g = Good things come in small packages. 

and 

s u b s t r i n g = in 

the procedure should return 8 indicating a match of i n in t h i n g s . 
26. Write a procedure s t r _ n c p y to mimic the s t r n c p y function provided by the C library. 

The function s t r _ n c p y receives two strings, s t r i n g l and s t r i n g 2 , and a positive 
integer num. Of course, the procedure receives only the string pointers but not the actual 
strings. It should copy at most the first num characters from s t r i n g 2 to s t r i n g l . 

27. A palindrome is a word, verse, sentence, or a number that reads the same both backward 
and forward. Blanks, punctuation marks, and capitalization do not count in determining 
palindromes. Here are some examples: 

1991 
Able was I ere I saw Elba 
Madam! I'm Adam 

Write a program to determine if a given string is a palindrome. The procedure returns 1 if 
the string is a palindrome; otherwise, it returns 0. 

28. Write an assembly language program to read a string of characters from the user and that 
prints the vowel count. For each vowel, the count includes both uppercase and lowercase 
letters. For example, the input string 
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produces the following output: 

Vowel Count 
a or A 3 
eorE 3 
ior l 4 

oorO 2 
uorU 1 

29. Merge sort is a technique to combine two sorted arrays. Merge sort takes two sorted input 
arrays X and Y—say of size m and n—and produces a sorted array Z of size m -\- n that 
contains all elements of the two input arrays. The pseudocode of merge sort is as follows: 

merge s o r t (X, Y, Z, m, n) 
i := 0 {index variables for arrays X, Y, and Z} 
j : = 0 
k:=0 
while ((i < m) AND Q < n)) 

if (X[i] < Y[j]) {find largest of two} 
then 

Z[k] := X[i] {copy and update indices} 
k:=k+l 
i:=i+l 

else 
Z[k] := Y[j] {copy and update indices} 
k:=k+l 

end if 
end while 
if (i < m) {copy remainder of input array} 

while (i < m) 
Z[k]:=X[i] 
k:=k+l 
i:=i+l 

end while 
else 

while Q <n) 
Z[k]:=Y[j] 
k:=k+l 

end while 
end if 

end mergeso r t 

The merge sort algorithm scans the two input arrays while copying the smallest of the two 
elements from X and Y into Z. It updates indices appropriately. The first while loop termi­
nates when one of the arrays is exhausted. Then the other array is copied into Z. 
Write a merge sort procedure and test it with two sorted arrays. Assume that the user enters 
the two input arrays in sorted (ascending) order. 
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IA-32 Instruction Set 

Instruction format and encoding encompass a variety of factors: addressing modes, number of 
operands, number of registers, sources of operands, etc. Instructions can be of fixed length or 
variable length. In a fixed-length instruction set, all instructions are of the same length. The IA-32 
instruction set uses variable-length instructions to accommodate the complexity of the instructions. 
This appendix first gives the IA-32 instruction format. A subset of the IA-32 instruction set is 
described next. 

Instruction Format 
In the IA-32 architecture, instruction length varies between 1 and 16 bytes. The instruction format 
is shown in Figure D.l. The general instruction format is shown in Figure D.lb. In addition, 
instructions can have several optional instruction prefixes shown in Figure D.la. The next two 
subsections discuss the instruction format in detail. 

Instruction Prefixes 
There are four instruction prefixes, as shown in Figure D.la. These prefixes can appear in any 
order. All four prefixes are optional. When a prefix is present, it takes a byte. 

• Instruction Prefixes: Instruction prefixes such as r ep were discussed in Chapter 17. This 
group of prefixes consists of rep, r e p e / r e p z , r e p n e / r e p n z , and lock. The three 
repeat prefixes were discussed in detail in Chapter 17. The lock prefix is useful in multi­
processor systems to ensure exclusive use of shared memory. 

• Segment Override Prefixes: These prefixes are used to override the default segment asso­
ciation. For example, DS is the default segment for accessing data. We can override this 
by using a segment prefix. We saw an example of this in Chapter 11 (see Program 12.8 on 
page 269). The following segment override prefixes are available: CS, SS, DS, ES, FS, and 
GS. 

• Address-Size Override Prefix: This prefix is useful in overriding the default address size. As 
discussed in Chapter 4, the D bit indicates the default address and operand size. A D bit 
of 0 indicates the default address and operand sizes of 16 bits and a D bit of 1 indicates 32 
bits. The address size can be either 16 bits or 32 bits long. This prefix can be used to switch 
between the two sizes. 
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Number of Bytes Oor1 

Instruction 
prefix 

Oor1 

Address-size 
prefix 

Oor1 

Operand-size 
prefix 

Oor1 

Segment 
override 

(a) Optional instruction prefixes 

Number of Bytes 1 or 2 Oor1 Oor1 0, 1,2, or 4 0, 1,2, or 4 

Opcode Mod-R/M SIB Displacement Immediate 

Mod Reg/OpCode R/M SS Index Base 

2 1 0 Bits 7 6 5 4 3 2 1 

(b) General instruction format 

Figure D.1 The IA-32 instruction format. 

• Operand-Size Override Prefix: The use of this prefix allows us to switch from the default 
operand size to the other. For example, in the 16-bit operand mode, using a 32-bit register, 
for example, is possible by prefixing the instruction with the operand-size override prefix. 

These four prefixes can be used in any combination, and in any order. 

General Instruction Format 

The general instruction format consists of the Opcode, an optional address specifier consisting of a 
Mod R/M byte and SIB (scale-index-base) byte, an optional displacement, and an immediate data 
field, if required. Next we briefly discuss these five fields. 

• Opcode: This field can be 1 or 2 bytes long. This is the only field that must be present 
in every instruction. For example, the opcode for the popa instruction is 61H and takes 
only one byte. On the other hand, the opcode for the s h l d instruction with an immediate 
value for the shift count takes two bytes (the opcode is 0FA4H). The opcode field also 
contains other smaller encoding fields. These fields include the register encoding, direction 
of operation (to or from memory), the size of displacement, and whether the immediate data 
must be sign-extended. For example, the instructions 

push 
push 
push 
push 

EAX 
ECX 
EDX 
EBX 

are encoded as 50H, 51H, 52H, and 53H, respectively. Each takes only one byte that includes 
the operation code (push) as well as the register encoding (EAX, ECX, EDX, or EBX). 
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• Mod R/M: This byte and the SIB byte together provide addressing information. The Mod 
R/M byte consists of three fields, as shown in Figure D.l. 

- Mod: This field (2 bits) along with the R/M field (3 bits) specify one of 32 possible 
choices: 8 registers and 24 indexing modes. 

- Reg/Opcode: This field (3 bits) specifies either a register number or three more bits of 
opcode information. The first byte of the instruction determines the meaning of this 
field. 

- R/M: This field (3 bits) either specifies a register as the location of operand or forms 
part of the addressing-mode encoding along with the Mod field. 

• SIB: The based indexed and scaled indexed modes of 32-bit addressing require the SIB byte. 
The presence of the SIB byte is indicated by certain encodings of the Mod R/M byte. The 
SIB byte consists of three fields, as shown in Figure D.l. The SS field (2 bits) specifies the 
scale factor (1,2, 4, or 8). The index and base fields (3 bits each) specify the index and base 
registers, respectively. 

• Displacement: If an addressing mode requires a displacement value, this field provides the 
required value. When present, it is an 8-, 16- or 32-bit signed integer. For example 

jg SHORT done 
pop EBX 

done: 

generates the code 7F 01 for the j g conditional jump instruction. The opcode for j g is 7FH 
and the displacement is 01 because the pop instruction encoding takes only a single byte. 

• Immediate: The immediate field is the last one in the instruction. It is present in those 
instructions that specify an immediate operand. When present, it is an 8-, 16- or 32-bit 
operand. For example 

mov EAX,2 56 

is encoded asB8 00000100. Note that the first byte B8 not only identifies the instruction 
as mov but also specifies the destination register as EAX (by the least significant three bits 
of the opcode byte). The following encoding is used for the 32-bit registers: 

EAX = 0 ESP = 4 
ECX =1 EBP = 5 
EDX = 2 ESI = 6 
EBX = 3 EDI = 7 

The last four bytes represent the immediate value 256, which is equal to 00000 lOOH. If we 
change the register from EAX to EBX, the opcode byte changes from B8 to BB. 

Selected Instructions 
This section gives selected instructions in alphabetical order. For each instruction, instruction 
mnemonic, flags affected, format, and a description are given. For a more detailed description, 
please refer to the Pentium Processor Family Developer's Manual—Volume 3: Architecture and 
Programming Manual. The clock cycles reported are for the Pentium processor. While most of 
the components are self explanatory, flags section requires some explanation regarding the notation 
used. An instruction can affect a flag bit in one of several ways. We use the following notation to 
represent the effect of an instruction on a flag bit. 



488 Assembly Language Programming Under Linux 

0 — 
1 — 
- — 
M — 
• 

Cleared 
Set 
Unchanged 
Updated according to the result 
Undefined 

aaa — ASCII adjust after addition C 
M 

0 
* 

z 
* 

s 
* 

p 
* 

A 
M 

Format: aaa 

Description: ASCII adjusts AL register contents after addition. The AF and CF are set 
if there is a decimal carry, cleared otherwise. See Chapter 18 for details. 
Clock cycles: 3. 

aad — ASCII adjust before division C 
* 

0 
* 

z 
M 

S 
M 

P 
M 

A 
* 

Format: aad 

Description: ASCII adjusts AX register contents before division. See Chapter 18 for 
details. Clock cycles: 10. 

aam — ASCII adjust after Multiplication C 
* 

0 
* 

z 
M 

S 
M 

P 
M 

A 
* 

Format: aam 

Description: ASCII adjusts AX register contents after multiplication. See Chapter 18 
for details. Clock cycles: 18. 

aas — ASCII adjust after subtraction 

Format: aa s 

Description: ASCII adjusts AL register contents after 
set if there is a decimal carry, cleared othei 
Clock cycles: 3. 
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subtraction. The AF and CF are 
"wise. See Chapter 18 for details. 



Appendix D • [A-32 Instruction Set 489 

adc — Add with carry 

Format: adc d e s t , s r c 

Description: Performs integer addition of s r c and de £ 
(des t + s r c + CF) is assigned to d e s t 
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3t with the carry flag. The result 
. Clock cycles: 1-3. 

add — Add without carry C 
M 
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Format: add d e s t , s r c 

Description: Performs integer addition of s r c and d e s t . The result (des t + s rc ) is 
1 assigned to d e s t . Clock cycles: 1-3. 

and — Logical bitwise and 

Format: and d e s t , s r c 

Description: Performs logical bitwise and operation. 
stored in d e s t . Clock cycles: 1-3 
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The result s r c and d e s t is 

bsf — Bit scan forward C 
* 

0 
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* 

Format: bsf d e s t , s r c 

Description: Scans the bits in s r c starting with the least significant bit. The ZF flag 
is set if all bits are 0; otherwise, ZF is cleared and the d e s t register is 
loaded with the bit index of the first set bit. Note that d e s t and s r c must 
be either both 16- or 32-bit operands. While the s r e operand can be either 
in a register or memory, d e s t must be a register. Clock cycles: 6-35 for 
16-bit operands and 6-43 for 32-bit operands. 
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bsr — Bit scan reverse C 
* 
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Format: b s r d e s t , s r c 

Description: Scans the bits in s r c starting with the most significant bit. The ZF flag 
is set if all bits are 0; otherwise, ZF is is cleared and the d e s t registei 
is loaded with the bit index of the first set bit when scanning s r c in the 
reverse direction. Note that d e s t and s r c must be either both 16- or 32-
bit operands. While the s r e operand can be either in a register or memory, 
d e s t must be a register. Clock cycles: 7-40 for 16-bit operands and 7-72 
for 32-bit operands. 

bsv̂ âp — Byte swap C 0 Z S p A 

Format: bswap s r c 

Description: Reverses the byte order of a 32-bit register s r c . This effectively converts 
a value from little endian to big endian, and vice versa. Note that s r c must 
be a 32-bit register. Result is undefined if a 16-bit register is used. Clock 
cycles: 1. 

bt — Bit test C 
M 

0 Z S P A 

Format: b t s r c l , s r c 2 

Description: The value of the bit in s r c l , whose position is indicated by s rc2 , is 
saved in the carry flag. The first operand s r c l can be a 16- or 32-bit value 
that is either in a register or in memory. The second operand s rc2 can 
be a 16- or 32-bit value located in a register or an 8-bit immediate value. 
Clock cycles: 4-9. 

btc — Bit test and complement 

Format: b t c s r c l , s r c 2 

Description: The value of the bit in s r c l , whose pc 
saved in the carry flag and then the bit in s 
operand s r c l can be a 16- or 32-bit vak 
memory. The second operand s rc2 can 
in a register or an 8-bit immediate value. 
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)sition is indicated by s rc2 , is 
s r c l is complemented. The first 
le that is either in a register or in 
be a 16- or 32-bit value located 
Clock cycles: 7-13. 
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btr — Bit test and reset C 
M 

0 Z s p A 

Format: b t r s r c l , s r c 2 

Description: The value of the bit in s r c l , whose position is indicated by s rc2 , is 
saved in the carry flag and then the bit in s r c l is reset (i.e., cleared). The 
first operand s r c l can be a 16- or 32-bit value that is either in a register or 
in memory. The second operand s rc2 can be a 16- or 32-bit value located 
in a register or an 8-bit immediate value. Clock cycles: 7-13. 

bts — Bit test and set C 
M 

0 Z s p A 

Format: b t s s r c l , s r c 2 

Description: The value of the bit in s r c l , whose position is indicated by s rc2 , is 
saved in the carry flag and then the bit in s r c l is set (i.e., stores 1). The 
first operand s r c l can be a 16- or 32-bit value that is either in a register or 
in memory. The second operand s rc2 can be a 16- or 32-bit value located 
in a register or an 8-bit immediate value. Clock cycles: 7-13. 

call — Call procedure 

Format: 

Description: 

c 0 z s p A 

c a l l d e s t 

The c a l l instruction causes the procedure in the operand to be executed. 
There are a variety of call types. We indicated that the flags are not affected 
by c a l l . This is true only if there is no task switch. For more details on 
the c a l l instruction, see Chapter 11. For details on other forms of call, 
see the Pentium data book. Clock cycles: vary depending on the type of 
call. 

cbw — Convert byte to word 

Format: cbw 

Description: Converts the signed byte in AL to a signec 
bit of AL (the most significant bit) to all b 

C 0 Z S P A 

word in AX by copying the sign 
)its of AH. Clock cycles: 3. 
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cdq — Convert doubleword to quadword C 0 Z S P A 

Format: cdq 

Description: Converts the signed doubleword in EAX to a signed quadword in 
EDX:EAX by copying the sign bit of EAX (the most significant bit) to 
all bits of EDX. Clock cycles: 2. 

clc — Clear carry flag 

Format: c l c 

Description: Clears the carry flag. Clock cycles: 2. 

C 
0 

0 z s p A 

eld — Clear direction flag 

Format: e l d 

Description: Clears the direction flag. Clock cycles: 2. 

C 0 Z S P A 

cli — Clear interrupt flag 

Format: c l i 

Description: Clears the interrupt flag. Note that maska 
the interrupt flag is cleared. Clock cycles: 

C 0 Z s p A 

ble interrupts are disabled when 
7. 

cmc — Complement carry flag 

Format: cmc 

Description: Complements the carry flag. Clock cycles 

C 
M 

0 Z s p A 

>:2. 
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cmp — Compare two operands C 
M 
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Format: cmp d e s t , s r c 

Description: Compares the two operands specified by performing d e s t - s r c . How­
ever, the result of this subtraction is not stored (unlike the sub instruction) 
but only the flags are updated to reflect the result of the subtract operation. 
This instruction is typically used in conjunction with conditional jumps 
If an operand greater than 1 byte is compared to an immediate byte, the 
byte value is first sign-extended. Clock cycles: 1 if no memory operand is 
involved; 2 if one of the operands is in memory. 
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cmps — Compare string operands 

Format: cmps d e s t , s r c 
cmpsb 
cmpsw 
cmpsd 

Description: Compares the byte, word, or doubleword pointed by the source index reg­
ister (SI or ESI) with an operand of equal size pointed by the destination 
index register (DI or EDI). If the address size is 16 bits, SI and DI registers 
are used; ESI and EDI registers are used for 32-bit addresses. The com­
parison is done by subtracting operand pointed by the DI or EDI register 
from that by SI or ESI register. That is, the cmps instructions performs 
either [SI]-[DI] or [ESI]-[EDI]. The result is not stored but used to up­
date the flags, as in the cmp instruction. After the comparison, both source 
and destination index registers are automatically updated. Whether these 
two registers are incremented or decremented depends on the direction flag 
(DF). The registers are incremented if DP is 0 (see the e l d instruction to 
clear the direction flag); if the DF is 1, both index registers are decremented 
(see the s t d instruction to set the direction flag). The two registers are 
incremented or decremented by 1 for byte comparisons, 2 for word com­
parisons, and 4 for doubleword comparisons. 
Note that the specification of the operands in cmps is not really required 
as the two operands are assumed to be pointed by the index registers. The 
cmpsb, cmpsw, and cmpsd are synonyms for the byte, word, and dou­
bleword cmps instructions, respectively. 
The repeat prefix instructions (i.e., rep , r epe or repne) can precede the 
cmps instructions for array or string comparisons. See r e p instruction for 
details. Clock cycles: 5. 
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cwd — Convert word to doubleword C 0 z s p A 

Format: cwd 

Description: Converts the signed word in AX to a signed doubleword in DX:AX by 
copying the sign bit of AX (the most significant bit) to all bits of DX 
In fact, cdq and this instruction use the same opcode (99H). Which one is 
executed depends on the default operand size. If the operand size is 16 bits, 
cwd is performed; cdq is performed for 32-bit operands. Clock cycles: 2. 

cwde — Convert word to doubleword C 0 Z S P A 

Format: cwde 

Description: Converts the signed word in AX to a signed doubleword in EAX by copy­
ing the sign bit of AX (the most significant bit) to all bits of the upper word 
of EAX. In fact, cbw and cwde are the same instructions (i.e., share the 
same opcode of 98H). The action performed depends on the operand size. 
If the operand size is 16 bits, cbw is performed; cwde is performed for 
32-bit operands. Clock cycles: 3. 
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daa — Decimal adjust after addition 

Format: daa 

Description: The daa instruction is useful in BCD arithmetic. It adjusts the AL register 
to contain the correct two-digit packed decimal result. This instruction 
should be used after an addition instruction, as described in Chapter 18. 
Both AF and CF flags are set if there is a decimal carry; these two flags are 
cleared otherwise. The ZF, SF, and PF flags are set according to the result. 
Clock cycles: 3. 
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das — Decimal adjust after subtraction C 
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Format: das 

Description: The das instruction is useful in BCD arithmetic. It adjusts the AL register 
to contain the correct two-digit packed decimal result. This instruction 
should be used after a subtract instruction, as described in Chapter 18. 
Both AF and CF flags are set if there is a decimal borrow; these two flags 
are cleared otherwise. The ZF, SF, and PF flags are set according to the 
result. Clock cycles: 3. 

dec — Decrement by 1 C 
-
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Format: dec d e s t 

Description: The dec instruction decrements the d e s t operand by 1. The carry flag is 
not affected. Clock cycles: 1 if d e s t is a register; 3 if d e s t is in memory 

div — Unsigned divide C 
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Format: d i v d i v i s o r 

Description: The d i v instruction performs unsigned division. The divisor can be an 
8-, 16-, or 32-bit operand, located either in a register or in memory. The 
dividend is assumed to be in AX (for byte divisor), DX:AX (for word 
divisor), or EDX:EAX (for doubleword divisor). The quotient is stored 
in AL, AX, or EAX for 8-, 16-, and 32-bit divisors, respectively. The 
remainder is stored in AH, DX, or EDX for 8-, 16-, and 32-bit divisors, 
respectively. It generates interrupt 0 if the result cannot fit the quotient 
register (AL, AX, or EAX), or if the divisor is zero. See Chapter 14 for 
details. Clock cycles: 17 for an 8-bit divisor, 25 for a 16-bit divisor, and 
41 for a 32-bit divisor. 



496 Assembly Language Programming Under Linux 

enter — Allocate stack frame 

Format: 

Description: 

c 0 z s p A 

e n t e r b y t e s , l e v e l 

This instruction creates a stack frame at procedure entry. The first operand 
b y t e s specifies the number of bytes for the local variable storage in the 
stack frame. The second operand l e v e l gives the nesting level of the 
procedure. If we specify a nonzero level, it copies l e v e l stack, frame 
pointers into the new frame from the preceding stack frame. In all our 
examples, we set the second operand to zero. Thus the 

e n t e r XX, 0 

statement is equivalent to 

push 
mov 
sub 

EBP 
E B P , E S P 
E S P , X X 

See Chapter 11 for more details on its usage. Clock cycles: 11 if l e v e l 
is zero. 

hit —Halt C 0 Z S P A 

Format: h i t 

Description: This instruction halts instruction execution indefinitely. An interrupt or a 
reset will enable instruction execution. Clock cycles: oo. 
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idiv — Signed divide 

Format: i d i v 

c 
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d i v i s o r 

Description: Similar to d i v instruction except that i d i v performs signed division. The 
divisor can be an 8-, 16-, or 32-bit operand, located either in a register or in 
memory. The dividend is assumed to be in AX (for byte divisor), DX:AX 
(for word divisor), or EDX:EAX (for doubleword divisor). The quotient 
is stored in AL, AX, or EAX for 8-, 16-, and 32-bit divisors, respectively. 
The remainder is stored in AH, DX, or EDX for 8-, 16-, and 32-bit divisors, 
respectively. It generates interrupt 0 if the result cannot fit the quotient 
register (AL, AX, or EAX), or if the divisor is zero. See Chapter 14 for 
details. Clock cycles: 22 for an 8-bit divisor, 30 for a 16-bit divisor, and 
46 for a 32-bit divisor. 
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* imul — Signed multiplication 

Format: imul src 
imul dest,src 
imul dest,src,constant 

Description: This instruction performs signed multiplication. The number of operands 
for imul can be between 1 and 3, depending on the format used. In the 
one-operand format, the other operand is assumed to be in the AL, AX, 
or EAX register depending on whether the s r c operand is 8, 16, or 32 
bits long, respectively. The s r c operand can be either in a register or in 
memory. The result, which is twice as long as the s r c operand, is placed 
in AX, DX:AX, or EDX:EAX for 8-, 16-, or 32-bit s r c operands, respec­
tively. In the other two forms, the result is of the same length as the input 
operands. 
The two-operand format specifies both operands required for multiplica­
tion. In this case, s r c and d e s t must both be either 16-bit or 32-bit 
operands. While s r c can be either in a register or in memory, d e s t must 
be a register. 
In the three-operand format, a constant can be specified as an immediate 
operand. The result ( s rc x c o n s t a n t ) is stored in d e s t . As in the 
two-operand format, the d e s t operand must be a register. The s r c can 
be either in a register or in memory. The immediate constant can be an 8-, 
16-, or 32-bit value. For additional restrictions, refer to the Pentium data 
book. Clock cycles: 10(11 if the one-operand format is used with either 
8- or 16-bit operands). 
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in — Input from a port C 0 Z S P A 

Format: i n d e s t , p o r t 
i n dest ,DX 

Description: This instruction has two formats. In both formats, d e s t must be the AL, 
AX, or EAX register. In the first format, it reads a byte, word, or double-
word from p o r t into the AL, AX, or EAX register, respectively. Note that 
p o r t is an 8-bit immediate value. This format is restrictive in the sense 
that only the first 256 ports can be accessed. The other format is more 
flexible and allows access to the complete I/O space (i.e., any port between 
0 and 65,535). In this format, the port number is assumed to be in the DX 
register. Clock cycles: varies—see Pentium data book. 

inc — Increment by 1 

Format: 

Description: 
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i n c d e s t 

The i n c instruction increments the d e s t operand by 1. The carry flag is 
not affected. Clock cycles: 1 if d e s t is a register; 3 if d e s t is in memory. 

c 0 z s p A ins — Input from a port to string 

Format: i n s b 
insw 
i n s d 

Description: This instruction transfers an 8-, 16-, or 32-bit data from the input port spec­
ified in the DX register to a location in memory pointed by ES:(E)DI. The 
DI index register is used if the address size is 16 bits and EDI index register 
for 32-bit addresses. Unlike the i n instruction, the i n s instruction does 
not allow the specification of the port number as an immediate value. Af­
ter the data transfer, the index register is updated automatically. The index 
register is incremented if DF is 0; it is decremented if DF is 1. The index 
register is incremented or decremented by 1,2, or 4 for byte, word, double-
word operands, respectively. The repeat prefix can be used along with the 
i n s instruction to transfer a block of data (the number of data transfers is 
indicated by the CX register—see the r e p instruction for details). Clock 
cycles: varies—see Pentium data book. 
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int — Interrupt 

Format: 

Description: 

c 0 z s p A 

int interrupt-type 

The i n t instruction calls an interrupt service routine or handler associated 
with i n t e r r u p t - type . The i n t e r r u p t - type is an immediate 8-bit 
operand. This value is used as an index into the Interrupt Descriptor Table 
(IDT). See Chapter 20 for details on the interrupt invocation mechanism. 
Clock cycles: varies—see Pentium data book. 

into — Interrupt on overflow C 0 Z S P A 

Format: i n t o 

Description: The i n t o instruction is a conditional software interrupt identical to i n t 
4 except that the i n t is implicit and the interrupt handler is invoked con­
ditionally only when the overflow flag is set. Clock cycles: varies—see 
Pentium data book. 

iret — Interrupt return C 
M 
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Format: i r e t 
i r e t d 

Description: The i r e t instruction returns control from an interrupt handler. In real 
address mode, it loads the instruction pointer and the flags register with 
values from the stack and resumes the interrupted routine. Both i r e t and 
i r e t d are synonymous (and use the opcode CFH). The operand size in 
effect determines whether the 16-bit or 32-bit instruction pointer (IP or 
EIP) and flags (FLAGS or EFLAGS) are to be used. See Chapter 20 for 
more details. This instruction affects all flags as the flags register is popped 
from stack. Clock cycles: varies—see Pentium data book. 

I 
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jcc — Jump if condition cc is satisfied c 0 z s p A 

Format: j c c t a r g e t 
Description: The j c c instruction alters program execution by transferring control con­

ditionally to the t a r g e t location in the same segment. The t a r g e t 
operand is a relative offset (relative to the instruction following the con­
ditional jump instruction). The relative offset can be a signed 8-, 16-, or 
32-bit value. Most efficient instruction encoding results if 8-bit offsets are 
used. With 8-bit offsets, the target should be within -128 to +127 of the 
first byte of the next instruction. For 16- and 32-bit offsets, the correspond­
ing values are 2^^ to 2^̂  - 1 and 2̂ ^ to 2̂ ^ - 1, respectively. When the 
target is in another segment, test for the opposite condition and use the un­
conditional jmp instruction, as explained in Chapter 15. See Chapter 15 
for details on the various conditions tested like j a, j be , etc. The j cxz 
instruction tests the contents of the CX or ECX register and jumps to the 
target location only if (E)CX = 0. The default operand size determines 
whether CX or ECX is used for comparison. Clock cycles: 1 for all condi­
tional jumps (except j cxz, which takes 5 or 6 cycles). 

jmp — Unconditional jump c 0 z s p A 

Format: j mp t a r g e t 
Description: The j mp instruction alters program execution by transferring control un­

conditionally to the t a r g e t location. This instruction allows jumps to 
another segment. In direct jumps, the t a r g e t operand is a relative offset 
(relative to the instruction following the j mp instruction). The relative off­
set can be an 8-, 16-, or 32-bit value as in the conditional jump instruction. 
In addition, the relative offset can be specified indirectly via a register or 
memory location. See Chapter 15 for an example. For other forms of the 
j mp instruction, see the Pentium data book. Note: Flags are not affected 
unless there is a task switch, in which case all flags are affected. Clock cy­
cles: 1 for direct jumps, 2 for indirect jumps (more clock cycles for other 
types of jumps). 
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lahf — Load flags into AH register C 0 z s p A 

Format: l ah f 

Description: The l ah f instruction loads the AH register with the low byte of the flags 
register. AH := SF, ZF, *, AF, *, PF, *, CF where * represent indeterminate 
value. Clock cycles: 2. 

Ids/les/lfs/lgs/lss — Load full pointer C 0 z s p A 

Format: I d s d e s t , s r c 
l e s d e s t , s r c 
I f s d e s t , s r c 
I g s d e s t , s r c 
I s s d e s t , s r c 

Description: These instructions read a full pointer from memory (given by the s r c 
operand) and load the corresponding segment register (e.g., DS register 

1 for the Id s instruction, ES register for the l e s instruction, etc.) and the 
de s t register. The de s t operand must be a 16- or 32-bit register. The first 
2 or 4 bytes (depending on whether the d e s t is a 16- or 32-bit register) at 
the effective address given by the s r c operand are loaded into the d e s t 
register and the next 2 bytes into the corresponding segment register. Clock 
cycles: 4 (except I s s ) . 

lea — Load effective address 

Format: 

Description: 

c 0 z s p A 

l e a d e s t , s r c 

The l e a instruction computes the effective address of a memory operand 
given by s r c and stores it in the d e s t register. The d e s t must be either 
a 16- or 32-bit register. If the d e s t register is a 16-bit register and the 
address size is 32, only the lower 16 bits are stored. On the other hand, 
if a 32-bit register is specified when the address size 16 bits, the effective 
address is zero-extended to 32 bits. Clock cycles: 1. 
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leave — Procedure exit C 0 Z S P A 

Format: l e a v e 

Description: The l e a v e instruction takes no operands. Effectively, it reverses the ac­
tions of the e n t e r instruction. It performs two actions: 

• Releases the local variable stack space allocated by the e n t e r in­
struction; 

• Old frame pointer is popped into (E)BP register. 

This instruction is typically used just before the r e t instruction. Clock 
cycles: 3. 

lods — Load string operand C 0 Z S P A 

Format: l odsb 
lodsw 
lodsd 

Description: The l ods instruction loads the AL, AX, or EAX register with the memory 
byte, word, or doubleword at the location pointed by DS:SI or DS:ESI. The 
address size attribute determines whether the SI or ESI register is used 
The lodsw and l oadsd instructions share the same opcode (ADH). The 
operand size is used to load either a word or a doubleword. After loading, 
the source index register is updated automatically. The index register is 
incremented if DF is 0; it is decremented if DF is 1. The index register 
is incremented or decremented by 1, 2, or 4 for byte, word, doubleword 
operands, respectively. The r e p prefix can be used with this instruction 
but is not useful, as explained in Chapter 17. This instruction is typically 
used in a loop (see the loop instruction). Clock cycles: 2. 
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c 0 z s p A loop/loope/loopne — Loop control 

Format: loop target 
loope/loopz target 
loopne/loopnz target 

Description: The loop instruction decrements the count register (CX if the address 
size attribute is 16 and ECX if it is 32) and jumps to t a r g e t if the count 
register is not zero. This instruction decrements the (E)CX register without 
changing any flags. The operand t a r g e t is a relative 8-bit offset (i.e., the 
target must be in the range —128 to +127 bytes). 
The loope instruction is similar to loop except that it also checks the ZF 
value to jump to the t a r g e t . That is, control is transferred to t a r g e t 
if, after decrementing the (E)CX register, the count register is not zero and 
ZF = 1. The loopz is a synonym for the loope instruction. 
The loopne instruction is similar to loopne except that it transfers con­
trol to t a r g e t if ZF is 0 (instead of 1 as in the loope instruction). See 
Chapter 15 for more details on these instructions. Clock cycles: 5 or 6 for 
loop and 7 or 8 for the other two. 
Note that the unconditional loop instruction takes longer to execute than 
a functionally equivalent two-instruction sequence that decrements the 
(E)CX register and jumps conditionally. 

mov — Copy data 

Format: mov d e s t , s r c 

Description: Copies data from s r c to d e s t . Clock 
tions except when copying into a segment 
cycles. 

C 0 Z S P A 

cycles: 1 for most mov instruc-
register, which takes more clock 
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movs — Copy string data C 0 Z S P A 

Format: movs d e s t , s r c 
movsb 
movsw 
movsd 

Description: Copies the byte, word, or doubleword pointed by the source index register 
(SI or ESI) to the byte, word, or doubleword pointed by the destination 
index register (DI or EDI). If the address size is 16 bits, SI and DI registers 
are used; ESI and EDI registers are used for 32-bit addresses. The default 
segment for the source is DS and ES for the destination. Segment override 
prefix can be used only for the source operand. After the move, both source 
and destination index registers are automatically updated as in the cmps 

i instruction. 
1 The r e p prefix instruction can precede the movs instruction for block 

movement of data. See r ep instruction for details. Clock cycles: 4. 

movsx — Copy with sign extension C 0 Z S P A 

Format: movsx r e g l 6 , s r c 8 
movsx r e g 3 2 , s r c 8 
movsx r e g 3 2 , s r c l 6 

Description: Copies the sign-extended source operand s r c 8 / s r c l 6 into the destina­
tion r e g l 6 / r e g 3 2. The destination can be either a 16-bit or 32-bit reg­
ister only. The source can be a register or memory byte or word operand. 
Note that r e g l 6 and reg32 represent a 16- and 32-bit register, respec­
tively. Similarly, s r c8 and s r c 16 represent a byte and word operand, 
respectively. Clock cycles: 3. 

movzx — Copy with zero extension 

Format: movzx regl6,src£ 

c 0 z s p A 

movzx reg32,src8 
movzx reg32,srcl6 

Description: Similar to movsx instruction except movzx copies the zero-extended 
source operand into destination. Clock cycles: 3. 
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mul — Unsigned multiplication c 
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Format: 

Description: 

mul 
mul 
mul 

AL,src8 
AX,srcl6 
EAX,src32 

Performs unsigned multiplication of two 8-, 16-, or 32-bit operands. Only 
one of the operand needs to be specified; the other operand, matching in 
size, is assumed to be in the AL, AX, or EAX register. 

• For an 8-bit multiplication, the result is in the AX register. CF and 
OF are cleared if AH is zero; otherwise, they are set. 

• For a 16-bit multiplication, the result is in the DX:AX register pair. 
The higher-order 16 bits are in DX. CF and OF are cleared if DX is 
zero; otherwise, they are set. 

• For a 32-bit multiplication, the result is in the EDX:EAX register 
pair. The higher-order 32 bits are in EDX. CF and OF are cleared if 
EDX is zero; otherwise, they are set. 

Clock cycles: 11 for 8- or 16-bit operands and 10 for 32-bit operands. 

neg — Negate sign (two's complement) C 
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Format: neg operand 

Description: Performs 2's complement negation (sign reversal) of the operand specified. 
The operand specified can be 8, 16, or 32 bits in size and can be located in 
a register or memory. The operand is subtracted from zero and the result is 
stored back in the operand. The CF flag is set for nonzero result; cleared 
otherwise. Other flags are set according to the result. Clock cycles: 1 for 
register operands and 3 for memory operands. 

nop — No operation 

Format: nop 

Description: Performs no operation. Interestingly, the r 
xchg (E) AX, (E) AX instruction. Cloc 

C 0 Z S P A 

lop instruction is an alias for the 
k cycles: 1. 
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not — Logical bitwise not C 0 Z S P A 

Format: no t operand 

Description: Performs I's complement bitwise not operation (a 1 becomes 0 and vice 
versa). Clock cycles: 1 for register operands and 3 for memory operands. 

or — Logical bitwise or C 
0 

0 
0 
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Format: o r d e s t , s r c 

Description: Performs bitwise or operation. The result (des t or s rc ) is stored in 
d e s t . Clock cycles: 1 for register and immediate operands and 3 if a 
memory operand is involved. 

out — Output to a port C 0 Z S P A 

Format: ou t p o r t , s r c 
ou t DX,src 

Description: Like the i n instruction, this instruction has two formats. In both formats, 
s r c must be in the AL, AX, or EAX register. In the first format, it outputs 
a byte, word, or doubleword from s r c to the I/O port specified by the first 
operand p o r t . Note that p o r t is an 8-bit immediate value. This format 
limits access to the first 256 I/O ports in the I/O space. The other format is 
more general and allows access to the full I/O space (i.e., any port between 
0 and 65,535). In this format, the port number is assumed to be in the DX 
register. Clock cycles: varies—see Pentium data book. 
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outs — Output from a string to a port C 0 Z S P A 

Format: o u t s b 
outsw 
o u t s d 

Description: This instruction transfers an 8-, 16-, or 32-bit data from a string (pointed 
by the source index register) to the output port specified in the DX register. 
Similar to the i n s instruction, it uses the SI index register for 16-bit ad­
dresses and the ESI register if the address size is 32. The (E)SI register is 
automatically updated after the transfer of a data item. The index register 
is incremented if DF is 0; it is decremented if DF is 1. The index register 
is incremented or decremented by 1, 2, or 4 for byte, word, or doubleword 
operands, respectively. The repeat prefix can be used with out s for block 
transfer of data. Clock cycles: varies—see Pentium data book. 

pop — Pop a word from the stack C O Z S P A 

Format: pop d e s t 

Description: Pops a word or doubleword from the top of the stack. If the address size 
attribute is 16 bits, SS:SP is used as the top of the stack pointer; otherwise, 
SS:ESP is used, d e s t can be a register or memory operand. In addition, 
it can also be a segment register DS, ES, SS, FS, or GS (e.g., pop DS) 
The stack pointer is incremented by 2 (if the operand size is 16 bits) or 4 
(if the operand size is 32 bits). Note that pop CS is not allowed. This can 
be done only indirectly by the r e t instruction. Clock cycles: 1 if d e s t is 
a general register; 3 if d e s t is a segment register or memory operand. 

popa — Pop all general registers 

Format: popa 
popad 

Description: Pops all eight 16-bit (popa) or 32-bit (pc 
top of the stack. The popa loads the n 
discard next two bytes (to skip loading i 
That is, DI is popped first and AX last. Tl 
same order on the 32-bit registers. Clock 

C 0 Z S P A 

Dp ad) general registers from the 
agisters in the order DI, SI, BP, 
tito SP), BX, DX, CX, and AX 
le popad instruction follows the 
cycles: 5. 
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popf — Pop flags register 

Format: popf 
popf d 

Description: Pops the 16-bit (popf) or 32-bit (popfd) flags register (FLAGS or 
EFLAGS) from the top of the stack. Bits 16 (VM flag) and 17 (RF flag) of 
the EFLAGS register are not affected by this instruction. Clock cycles: 6 
in the real mode and 4 in the protected mode. 

push — Push a word onto the stack C 0 Z S P A 

Format: push s r c 

Description: Pushes a word or doubleword onto the top of the stack. If the address size 
attribute is 16 bits, SS:SP is used as the top of the stack pointer; otherwise 
SS:ESP is used, s r c can be (i) a register, or (ii) a memory operand, or (iii) 
a segment register (CS, SS, DS, ES, FS, or GS), or (iv) an immediate byte, 
word, or doubleword operand. The stack pointer is decremented by 2 (if the 
operand size is 16 bits) or 4 (if the operand size is 32 bits). The push ESP 
instruction pushes the ESP register value before it was decremented by the 
push instruction. On the other hand, push SP pushes the decrementec 
SP value onto the stack. Clock cycles: 1 (except when the operand is in 
memory, in which case it takes 2 clock cycles). 

pusha — Push all general registers C 0 Z S P A 

Format: pusha 
pushad 

Description: Pushes all eight 16-bit (pusha) or 32-bit (pushad) general registers onto 
the stack. The pusha pushes the registers onto the stack in the order AX, 
CX, DX, BX, SP, BP, SI, and DI. That is, AX is pushed first and DI last 
The pushad instruction follows the same order on the 32-bit registers. It 
decrements the stack pointer SP by 16 for word operands; decrements ESP 
by 32 for doubleword operands. Clock cycles: 5. 
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pushf — Push flags register C 0 Z S P A 

Format: pushf 
pushfd 

Description: Pushes the 16-bit (pushf) or 32-bit (pushfd) flags register (FLAGS oi 
EFLAGS) onto the stack. Decrements SP by 2 (pushf) for word operands 
and decrements ESP by 4 (pushfd) for doubleword operands. Clock cy­
cles: 4 in the real mode and 3 in the protected mode. 

rep/repe/repz/repne/repnz — Repeat instruction C 
-
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A 
-

Format: r e p s t r i n g - i n s t 
r e p e / r e p z s t r i n g - i n s t 
r e p n e / r e p n z s t r i n g - i n s t 

Description: These three prefixes repeat the specified string instruction until the condi­
tions are met. The r e p instruction decrements the count register (CX or 
ECX) each time the string instruction is executed. The string instruction 
is repeatedly executed until the count register is zero. The r epe (repeat 
while equal) has an additional termination condition: ZF = 0. The repz 
is an alias for the repe instruction. The repne (repeat while not equal) 
is similar to repe except that the additional termination condition is ZF 
=1. The repnz is an alias for the repne instruction. The ZF flag is af­
fected by the r e p cmps and r e p seas instructions. For more details, 
see Chapter 17. Clock cycles: varies—see Pentium data book for details. 

ret — Return form a procedure 

Format: r e t 
r e t v a l u e 

Description: Transfers control to the instruction follow 
struction. The optional immediate va lu 
(for 16-bit operands) or number of words 
be cleared from the stack after the return 
to clear the stack of the input parameters. 
Clock cycles: 2 for near return and 3 for i 
is specified, add one more clock cycle. 
more clocks—see Pentium data book. 

C 0 z S P A 

dng the corresponding c a l l in-
e specifies the number of bytes 
(for 32-bit operands) that are to 
. This parameter is usually used 
See Chapter 11 for more details. 
'ar return; if the optional v a l u e 
Changing privilege levels takes 



510 Assembly Language Programming Under Linux 

rol/ror/rcl/rcr — Rotate instructions 

Format: 

Description: 
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rol/ror/rcl/rcr 
rol/ror/rcl/rcr 
rol/ror/rcl/rcr 

s r c , 1 
s r c , c o u n t 
s rc ,CL 

This group of instructions supports rotation of 8-, 16-, or 32-bit data. The 
r o l (rotate left) and r o r (rotate right) instructions rotate the s r c data as 
explained in Chapter 16. The second operand gives the number of times 
s r c is to be rotated. This operand can be given as an immediate value 
(a constant 1 or a byte value count) or preloaded into the CL register. 
The other two rotate instructions r c l (rotate left including CF) and r c r 
(rotate right including CF) rotate the s r c data with the carry flag (CF) 
included in the rotation process, as explained in Chapter 16. The OF flag 
is affected only for single bit rotates; it is undefined for multibit rotates. 
Clock cycles: r o l and r o r take 1 (if s r c is a register) or 3 (if s r c is 
a memory operand) for the immediate mode (constant 1 or count) and 4 
for the CL version; for the other two instructions, it can take as many as 27 
clock cycles—see Pentium data book for details. 

sahf — Store AH into flags register 

Format: sahf 

Description: The AH register bits 7, 6, 4, 2, and 0 are 
and CF, respectively. Clock cycles: 2. 
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loaded into flags SF, ZF, AF, PF, 
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sal/sar/shl/shr — Shift instructions 

Format: 

Description: 
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sal/sar/shl/shr 
sal/sar/shl/shr 
sal/sar/shl/shr 

s r c , 1 
s r c , c o u n t 
s rc ,CL 

This group of instructions supports shifting of 8-, 16-, or 32-bit data. The 
format is similar to the rotate instructions. The s a l (shift arithmetic left) 
and its synonym s h l (shift left) instructions shift the s r c data left. The 
shifted out bit goes into CF and the vacated bit is cleared, as explained 
in Chapter 16. The second operand gives the number of times s r c is to 
be shifted. This operand can be given as an immediate value (a constant 
1 or a byte value count) or preloaded into the CL register. The sh r 
(shift right) is similar to s h l except for the direction of the shift. The s a r 
(shift arithmetic right) is similar to s a l except for two differences: the 
shift direction is right and the sign bit is copied into the vacated bits. If 
shift count is zero, no flags are affected. The CF flag contains the last bit 
shifted out. The OF flag is defined only for single shifts; it is undefined 
for multibit shifts. Clock cycles: 1 (if s r c is a register) or 3 (if s r c is 
a memory operand) for the immediate mode (constant 1 or count) and 4 
for the CL version. 

sbb — Subtract with borrow 

Format: sbb d e s t , s r c 

Description: Performs integer subtraction with borrow. 
of d e s t - (src+CF) .Clock cycles: 1-
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The d e s t is assigned the result 
•3 . 
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seas — Compare string operands c 
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Format: 

Description: 

seas 
scasb 
scasw 
scasd 

operand 

Subtracts the memory byte, word, or doubleword pointed by the destina­
tion index register (DI or EDI) from the AL, AX, or EAX register, respec­
tively. The result is not stored but used to update the flags. The memory 
operand must be addressable from the ES register. Segment override is 
not allowed in this instruction. If the address size is 16 bits, DI register 
is used; EDI register is used for 32-bit addresses. After the subtraction, 
the destination index register is updated automatically. Whether the regis­
ter is incremented or decremented depends on the direction flag (DF). The 
register is incremented if DF is 0 (see the e l d instruction to clear the di­
rection flag); if the DF is 1, the index register is decremented (see the s t d 
instruction to set the direction flag). The amount of increment or decre­
ment is 1 (for byte operands), 2 (for word operands), or 4 (for doubleword 
operands). 
Note that the specification of the operand in s ea s is not really required as 
the memory operand is assumed to be pointed by the index register. The 
scasb , scasw, and scasd are synonyms for the byte, word, and dou­
bleword s ea s instructions, respectively. 
The repeat prefix instructions (i.e., r epe or repne) can precede the s e a s 
instructions for array or string comparisons. See the r e p instruction for 
details. Clock cycles: 4. 

setCC — Byte set on condition operands C 0 Z S P A 

Format: setCC d e s t 

Description: Sets d e s t byte to 1 if the condition CC is met; otherwise, sets to zero 
The operand d e s t must be either an 8-bit register or a memory operand. 
The conditions tested are similar to the conditional jump instruction (see 
j CC instruction). The conditions are A, AE, B, BE, E, NE, G, GE, L, LE, 
NA, NAE, NB, NBE, NG, NGE, NL, NLE, C, NC, 0, NO, P, PE, PO 
NP, 0, NO, S, NS, Z, NZ. The conditions can specify signed and unsigned 
comparisons as well as flag values. Clock cycles: 1 for register operanc 
and 2 for memory operand. 

> 

1 
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shld/shrd — Double precision shift 

Format: s h l d / s h r d d e s t , s r c , count 

Description: The s h l d instruction performs left shift of d e s t by count times. The 
second operand s r c provides the bits to shift in from the right. In other 
words, the s h l d instruction performs a left shift of d e s t concatenated 
with s r c and the result in the upper half is copied into d e s t . d e s t and 
s r c operands can both be either 16- or 32-bit operands. While d e s t can 
be a register or memory operand, s r c must be a register of the same size 
as d e s t . The third operand count can be an immediate byte value or 
the CL register can be used as in the shift instructions. The contents of the 
s r c register are not altered. 
The sh rd instruction (double precision shift right) is similar to s h l d ex­
cept for the direction of the shift. 
If the shift count is zero, no flags are affected. The CF flag contains the last 
bit shifted out. The OF flag is defined only for single shifts; it is undefined 
for multibit shifts. The SF, ZF, and PF flags are set according to the result. 
Clock cycles: 4 (5 if d e s t is a memory operand and the CL register is 
used for count). 

stc — Set carry flag 

Format: s t c 

Description: Sets the carry flag to 1. Clock cycles: 2. 

C 
1 

0 Z s p A 

std — Set direction flag 

Format: s t d 

Description: Sets the direction flag to 1. Clock cycles: 

C 0 Z s p A 

2. 

sti — Set interrupt flag 

Format: s t i 

Description: Sets the interrupt flag to 1. Clock cycles: 

C 0 Z s p A 

7. 
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c 0 z s p A stos — store string operand 

Format: stosb 
stosw 
stosd 

Description: Stores the contents of the AL, AX, or EAX register at the memory byte, 
word, or doubleword pointed by the destination index register (DI or EDI), 
respectively. If the address size is 16 bits, DI register is used; EDI register 
is used for 32-bit addresses. After the load, the destination index register 
is automatically updated. Whether this register is incremented or decre­
mented depends on the direction flag (DF). The register is incremented 
if DF is 0 (see the e l d instruction to clear the direction flag); if the DF 
is 1, the index register is decremented (see the s t d instruction to set the 
direction flag). The amount of increment or decrement depends on the 
operand size (1 for byte operands, 2 for word operands, and 4 for double-
word operands). 
The repeat prefix instruction r e p can precede the s t o s instruction to fill 
a block of CX/ECX bytes, words, or doublewords. Clock cycles: 3. 

sub — Subtract 

Format: 

Description: 
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sub d e s t , s r c 

Performs integer subtraction. The d e s t is assigned the result of d e s t 
s r c . Clock cycles: 1-3. 

test — Logical compare 

Format: 

Description: 
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t e s t d e s t , s r c 

Performs logical and operation (des t and s rc) . However, the result 
of the and operation is discarded. The d e s t operand can be either in a 
register or in memory. The s r c operand can be either an immediate value 
or a register. Both d e s t and s r c operands are not affected. Sets SF, ZF, 
and PF flags according to the result. Clock cycles: 1 if d e s t is a register 
operand and 2 if it is a memory operand. 
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xchg — Exchange data C 0 Z S P A 

Format: xchg d e s t , s r c 

Description: Exchanges the values of the two operands s r c and d e s t . Clock cycles: 
2 if both operands are registers or 3 if one of them is a memory operand. 

xlat — Translate byte C 0 Z S P A 

Format: x l a t t a b l e - o f f s e t 
x l a t b 

Description: Translates the data in the AL register using a table lookup. It changes the 
AL register from the table index to the corresponding table contents. The 
contents of the BX (for 16-bit addresses) or EBX (for 32-bit addresses) 
registers are used as the offset to the the translation table base. The con­
tents of the AL register are treated as an index into this table. The byte 
value at this index replaces the index value in AL. The default segment for 
the translation table is DS. This is used in both formats. However, in the 
operand version, a segment override is possible. Clock cycles: 4. 

xor — Logical bitwise exclusive-or C 
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Format: xor d e s t , s r c 

Description: Performs logical bitwise exclusive-or (xor) operation (des t xor s rc ) and 
the result is stored in d e s t . Sets the SF, ZF, and PF flags according to the 
result. Clock cycles: 1-3. 



E 
Glossary 

Aborts See Exceptions 

Access permissions Unix and Linux systems provide a sophisticated security mechanism to 
control access to individual files and directories. Each file and directory has certain access permis­
sions that indicate who can access and in what mode (read-only, read/write, and so on). With these 
permissions the system can protect, for example, users from accessing other user's files. Linux, 
like the UNIX systems, associates three types of access permissions to files and directories: read 
(r), write (w), and execute (x). As the names indicate, the read permission allows read access and 
the write permission allows writing into the file or directory. The execute permission is required 
to execute a file and, for obvious reasons, should be used with binary and script files that contain 
executable code or commands. The Linux system uses nine bits to keep the access permissions as 
there are three types of users, each of which can have three types of permissions. 

Address bus A group of parallel wires that carry the address of a memory location or I/O port. 
The width of the address bus determines the memory addressing capacity of a processor. Typically, 
32-bit processors support 32-bit addresses. Thus, these processors can address up to 4 GB (2 ^̂  
bytes) of main memory. 

Addressing mode Most assembly language instructions require operands. There are several 
ways to specify the location of the operands. These are called the addressing modes. A complete 
discussion of the addressing modes is given in Chapter 13. 

ALU see Arithmetic and logic unit 

Arithmetic and logic unit This unit forms the computational core of a processor. It performs the 
basic arithmetic and logical operations such as integer addition, subtraction, and logical AND and 
OR functions. 

Assembler Assembler is a program that translates an assembly language source program to its 
machine language equivalent (usually into an object file format such as ELF). 

Assembler directives These directives provide information to the assembler on various aspects 
of the assembly process. These instructions are also called pseudo-ops. Assembler directives are 
nonexecutable and do not generate any machine language instructions. 
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Auxiliary flag The auxiliary flag indicates whether an operation has produced a result that has 
generated a carry out of or a borrow into the low-order four bits of 8-, 16-, or 32-bit operands. The 
auxiliary flag is set if there is such a carry or borrow; otherwise it is cleared. 

Based addressing mode In this addressing mode, one of the registers acts as the base register 
in computing the effective address of an operand. The effective address is computed by adding 
the contents of the specified base register with a signed displacement value given as part of the 
instruction. For 16-bit addresses, the signed displacement is either an 8- or a 16-bit number. For 
32-bit addresses, it is either an 8- or a 32-bit number. Based addressing provides a convenient way 
to access individual elements of a structure. Typically, a base register can be set up to point to the 
base of the structure and the displacement can be used to access an element within the structure. 

Based-indexed addressing mode In this addressing mode, the effective address is computed as 

Base + Index + signed displacement. 

The displacement can be a signed 8- or 16-bit number for 16-bit addresses; it can be a signed 8- or 
32-bit number for 32-bit addresses. This addressing mode is useful in accessing two-dimensional 
arrays with the displacement representing the offset to the beginning of the array. This mode can 
also be used to access arrays of records where the displacement represents the offset to a field in a 
record. In addition, this addressing mode is used to access arrays passed on to a procedure. In this 
case, the base register could point to the beginning of the array, and an index register can hold the 
offset to a specific element. 

Based-indexed addressing mode with a scale factor In this addressing mode, the effective 
address is computed as 

Base + (Index * scale factor) + signed displacement. 

This addressing mode provides an efficient indexing mechanism into a two-dimensional array 
when the element size is 2, 4, or 8 bytes. 

Big-endian byte order When storing multibyte data, the big-endian byte order stores the data 
from the most-significant byte to the least-significant byte. 

Breakpoint Breakpoint is a debugging technique. Often we know that some parts of the program 
work correctly. In this case, it is a sheer waste of time to single step or trace the code. What we 
would like is to execute this part of the program and then stop for more careful debugging (perhaps 
by single stepping). Debuggers provide commands to set up breakpoints. The program execution 
stops at breakpoints, giving us a chance to look at the state of the program. 

Bus protocol When there is more than one master device, which is typically the case, the device 
requesting the use of the bus sends a bus request signal to the bus arbiter using the bus request 
control line. If the bus arbiter grants the request, it notifies the requesting device by sending a 
signal on the bus grant control line. The granted device, which acts as the master, can then use the 
bus for data transfer. The bus-request-grant procedure is called bus protocol. Different buses use 
different bus protocols. In some protocols, permission to use the bus is granted for only one bus 
cycle; in others, permission is granted until the bus master relinquishes the bus. 

Bus transaction A bus transaction refers to the data transfers taking place on the system bus. 
Some examples of bus transactions are memory read, memory write, I/O read, I/O write, and 
interrupt. Depending on the processor and the type of bus used, there may be other types of 
transactions. For example, the Pentium processor supports a burst mode of data transfer in which 
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up to four 64 bits of data can be transferred in a burst cycle. Every bus transaction involves a 
master and a slave. The master is the initiator of the transaction and the slave is the target of the 
transaction. The processor usually acts as the master of the system bus, while components like 
memory are usually slaves. Some components may act as slaves for some transactions and as 
masters for other transactions. 

Call-by-value parameter passing In the call-by-value mechanism, the called function is pro­
vided only the current values of the arguments for its use. Thus, in this case, the values of these 
arguments are not changed in the called function; these values can only be used as in a mathemat­
ical function. 

Call-by-reference parameter passing In the call-by-reference mechanism, the called function 
actually receives the addresses (i.e., pointers) of the parameters from the calling function. The 
function can change the contents of these parameters—and these changes will be seen by the 
calling function—by direcdy manipulating the argument storage space. 

Carry flag The carry flag records the fact that the result of an arithmetic operation on unsigned 
numbers is out of range (too big or too small) to fit the destination register or memory location. 

Clock A clock is a sequence of Is and Os. We refer to the period during which the clock is 1 as 
the ON period and the period with 0 as the OFF period. Even though we normally use symmetric 
clock signals with equal ON and OFF periods, clock signals can take asymmetric forms. 

Clock cycle A clock cycle is defined as the time between two successive rising edges or between 
successive falling edges. 

Clock frequency Clock frequency is measured in number of cycles per second. This number is 
referred to as Hertz (Hz). The abbreviation MHz refers to millions of cycles per second. 

Clock period The clock period is defined as the time represented by one clock cycle. 

Column-major order As the memory is a one-dimensional structure, we need to transform a 
multidimensional array to a one-dimensional structure. In the column-major order, array elements 
are stored column by column. This ordering is shown Figure 13.5b. Column-major ordering is 
used in FORTRAN. 

Combinational circuits The output of a combinational circuit depends only on the current inputs 
applied to the circuit. The adder is an example of a combinational circuit. 

Control bus The control bus consists of a set of control signals. Typical control signals include 
memory read, memory write, I/O read, I/O write, interrupt, interrupt acknowledge, bus request, 
and bus grant. These control signals indicate the type of action taking place on the system bus. For 
example, when the processor is writing data into the memory, the memory write signal is asserted. 
Similarly, when the processor is reading from an I/O device, the I/O read signal is asserted. 

Data bus A group of parallel wires that carry the data between the processor and memory or I/O 
device. The width of data bus indicates the size of the data transferred between the processor and 
memory or I/O device. 

DDD The Dynamic Data Display (DDD) provides a nice visual interface to command-line de­
buggers like GDB. For more details on this debugger interface, see Chapter 8. 

Decoder A decoder is useful in selecting one-out-of-A/̂  lines. The input to a decoder is an I-bit 
binary (i.e., encoded) number and the output is 2 ^ bits of decoded data. Among the 2^ outputs of 
a decoder, only one output line is 1 at any time. 
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Define directive In the assembly language, allocation of storage space is done by the define 
assembler directive. The define directive can be used to reserve and initialize one or more bytes. 
However, no interpretation (as in a C variable declaration) is attached to the contents of these 
bytes. It is entirely up to the program to interpret the bit pattern stored in the space reserved for 
data. 

Demultiplexer A demultiplexer has n selection inputs, 2^ data outputs, and one data input. 
Depending on the value of the selection input, the data input is connected to the corresponding 
data output. 

Direct addressing mode This is a memory addressing mode. In this addressing mode, the offset 
value is specified directly as part of the instruction. In an assembly language program, this value 
is usually indicated by the variable name of the data item. The assembler translates this name into 
its associated offset value during the assembly process. To facilitate this translation, assembler 
maintains a symbol table. This addressing mode is the simplest of all the memory addressing 
modes. A restriction associated with the memory addressing modes is that these can be used to 
specify only one operand. 

Direction flag The direction flag determines the direction of string processing done by the string 
instructions. If the direction flag is clear, string operations proceed in the forward direction (from 
head to tail of a string); otherwise, string processing is done in the opposite direction. 

Effective address To locate a data item in the data segment, we need two components: the 
segment start address and an offset value within the segment. The start address of the segment is 
typically found in the DS register. The offset value is often called the effective address. 

Executable instructions These instructions tell the processor what to do. Each executable 
instruction consists of an operation code {opcode for short). Executable instructions cause the 
assembler to generate machine language instructions. As stated in Chapter 1, each executable 
statement typically generates one machine language instruction. 

Exceptions An exception is a type of interrupt that is generated by the processor. The exceptions 
are classified inio faults, traps, and aborts depending on the way they are reported and whether the 
interrupted instruction is restarted. Faults and traps are reported at instruction boundaries. Faults 
use the boundary before the instruction during which the exception was detected. When a fault 
occurs, the system state is restored to the state before the current instruction so that the instruc­
tion can be restarted. The divide error, for instance, is a fault detected during the d i v or i d i v 
instruction. Traps are reported at the instruction boundary immediately following the instruction 
during which the exception was detected. For instance, the overflow exception (interrupt 4) is 
a trap. Aborts are exceptions that report severe errors. Examples include hardware errors and 
inconsistent values in system tables. 

EXTERN directive The e x t e r n directive is used to tell the assembler that certain labels are 
not defined in the current source file (i.e., module), but can be found in other modules. Thus, 
the assembler leaves ''holes" in the corresponding object file that the linker will fill in later. This 
directive and the g l o b a l directive facilitate separate assembly of source modules. 

Fanin Fanin specifies the maximum number of inputs a logic gate can have. 

Fanout Fanout refers to the driving capacity of an output. Fanout specifies the maximum number 
of gates that the output of a gate can drive. 

Faults See Exceptions 
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Fetch-decode-execute cycle See Processor execution cycle 

Full mapping Full mapping is useful in mapping a memory module to the memory address 
space. It refers to a one-to-one mapping function between the memory address and the address in 
memory address space. Thus, for each address value in memory address space that has a memory 
location mapped, there is one and only one memory location responding to the address. Full 
mapping, however, requires a more complex circuit to generate the chip select signal that is often 
not necessary. 

GDB GDB is a GNU debugger. This is a command-line debugger. For more details on this 
debugger, see Chapter 8. 

GLOBAL directive NASM provides the g l o b a l directive to make the associated label(s) avail­
able to other modules of the program. This directive is useful in writing multimodule programs. 
Microsoft and Borland assemblers use p u b l i c directive for this purpose. This directive and the 
e x t e r n directive facilitate separate assembly of source modules. 

Hardware interrupts Hardware interrupts are of hardware origin and asynchronous in nature. 
These interrupts are used by I/O devices such as the keyboard to get the processor's attention. 
Hardware interrupts can be divided into either maskable or nonmaskable interrupts (see Fig­
ure 20.1). A nonmaskable interrupt (NMI) can be triggered by applying an electrical signal on 
the NMI pin of the processor. This interrupt is called nonmaskable because the processor always 
responds to this signal. In other words, this interrupt cannot be disabled under program control. 
Most hardware interrupts are of maskable type. To cause this type of interrupt, an electrical signal 
should be applied to the INTR (INTerrupt Request) input of the processor. The processor recog­
nizes the INTR interrupt only if the interrupt enable flag (IF) bit of the flags register is set to 1. 
Thus, these interrupts can be masked or disabled by clearing the IF bit. 

I/O port An I/O port can be thought of as the address of a register associated with an I/O 
controller. 

Immediate addressing mode In this addressing mode, data is specified as part of the instruction 
itself. As a result, even though the data is in memory, it is located in the code segment, not in the 
data segment. This addressing mode is typically used in instructions that require at least two data 
items to manipulate. In this case, this mode can only specify the source operand and immediate 
data is always a constant. Thus, instructions typically use another addressing mode to specify the 
destination operand. 

Indexed addressing mode In this addressing mode, the effective address is computed as 

(Index * scale factor) + signed displacement. 

For 16-bit addresses, no scaling factor is allowed (see Table 13.1 on page 275). For 32-bit ad­
dresses, a scale factor of 2, 4, or 8 can be specified. Of course, we can use a scale factor in the 
16-bit addressing mode by using an address size override prefix. The indexed addressing mode 
is often used to access elements of an array. The beginning of the array is given by the displace­
ment, and the value of the index register selects an element within the array. The scale factor is 
particularly useful to access arrays whose element size is 2, 4, or 8 bytes. 

Indirect addressing mode This is a memory addressing mode. In this addressing mode, the offset 
or effective address of the data is in one of the general registers. For this reason, this addressing 
mode is sometimes referred to as the register indirect addressing mode. 
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Interrupt enable flag See Hardware interrupts 

Interrupts Interrupt is a mechanism by which a program's flow control can be altered. Interrupts 
provide a mechanism similar to that of a procedure call. Causing an interrupt transfers control to a 
procedure, which is referred to as an interrupt service routine (ISR). An ISR is sometimes called 
a handler. When the ISR is completed, the interrupted program resumes execution as if it were 
not interrupted. This behavior is analogous to a procedure call. There are, however, some basic 
differences between procedures and interrupts that make interrupts almost indispensable. One of 
the main differences is that interrupts can be initiated by both software and hardware. In contrast, 
procedures are purely software-initiated. The fact that interrupts can be initiated by hardware is 
the principal factor behind much of the power of interrupts. This capability gives us an efficient 
way by which external devices can get the processor's attention. 

Isolated I/O In isolated I/O, I/O ports are mapped to an I/O address space that is separate from 
the memory address space. In architectures such as the IA-32, which use the isolated I/O, special 
I/O instructions are needed to access the I/O address space. The IA-32 instruction set provides two 
instructions—in and out—to access I/O ports. The i n instruction can be used to read from an 
I/O port and the out for writing to an I/O port. 

Linker Linker is a program that takes one or more object programs as its input and produces 
executable code. 

Little-endian byte order When storing multibyte data, the little-endian byte order stores the data 
from the least-significant byte to the most-significant byte. The Intel 32-bit processors such as the 
Pentium use this byte order. 

Machine language Machine language is a close relative of the assembly language. Typically, 
there is a one-to-one correspondence between the assembly language and machine language in­
structions. The processor understands only the machine language, whose instructions consist of 
strings of Is andOs. 

Macros Macros provide a sophisticated text substitution mechanism. Macros permit the assembly 
language programmer to name a group of statements and refer to the group by the macro name. 
During the assembly process, each macro is replaced by the group of statements that it represents 
and assembled in place. This process is referred to as macro expansion. Macros are discussed in 
detail in Chapter 10. 

Maskable interrupts See Hardware interrupts 

Memory address space This refers to the amount of memory that a processor can address. 
Memory address space depends on the system address bus width. Typically, 32-bit processors 
support 32-bit addresses. Thus, these processors can address up to 4 GB (2 ^̂  bytes) of main 
memory. The actual memory in a system, however, is always less than or equal to the memory 
address space. The amount of memory in a system is determined by how much of this memory 
address space is populated with memory chips. 

Memory-mapped I/O In memory-mapped I/O, I/O ports are mapped to memory addresses. In 
systems that use memory mapped I/O, writing to an I/O port is similar to writing to a memory 
location. 

Multiplexer A multiplexer is characterized by 2" data inputs, n selection inputs, and a single 
output. It connects one of 2^ inputs, selected by the selection inputs, to the output. 

Nonmaskable interrupts See Hardware interrupts 
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Offset See Effective address 

Overflow flag The overflow flag is the carry flag counterpart for the signed number arithmetic. 
The main purpose of the overflow flag is to indicate whether an operation on signed numbers has 
produced a result that is out of range. 

PALs see Programmable array logic device 

Parameter passing Parameter passing in assembly language is different and more complicated 
than that used in high-level languages. In the assembly language, the calling procedure first places 
all the parameters needed by the called procedure in a mutually accessible storage area (usually 
registers or memory). Only then can the procedure be invoked. There are two common methods 
depending on the type of storage area used to pass parameters: register method or stack method. 
As their names imply, the register method uses general-purpose registers to pass parameters, and 
the stack is used in the other method. 

Parity flag The parity flag indicates the parity of the 8-bit result produced by an operation; if this 
result is 16 or 32 bits long, only the lower-order 8 bits are considered to set or clear the parity flag. 
The parity flag is set if the byte contains an even number of 1 bits; if there are an odd number of 1 
bits, it is cleared. In other words, the parity flag indicates an even parity condition of the byte. 

Partial mapping Partial mapping is useful in mapping a memory module to the memory ad­
dress space. This mapping reduces the complexity associated with full mapping by mapping each 
memory location to more than one address in the memory address space. Typically, the number of 
addresses a location is mapped to is a power of 2. 

Path name A path name specifies the location of a file or directory in hierarchical file system. 
A path can be specified as the absolute path or a relative path. In the former specification, you 
give the location of a file/directory starting from the root directory. Absolute path always begins 
with the root directory (/). In contrast, a relative path specifies the path relative to your current 
directory. 

Pipe Linux provides several commands, which can be treated as the basic building blocks. Often, 
we may need several commands to accomplish a complicated task. We may have to feed the output 
of one command as input to another to accomplish a task. The shell provides the pipe operator (|) 
to achieve this. The syntax is 

commandl | command2 

The output of the first command (commandl) is fed as input to the second command (command2). 
The output of command2 is the final output. Of course, we can generalize this to connect several 
commands. 

Processor execution cycle The processor execution cycle consists of the following: (i) Fetch 
an instruction from the memory; (ii) Decode the instruction (i.e., identify the instruction); (iii) 
Execute the instruction (i.e., perform the action specified by the instruction). 

Programmable array logic device A programmable array logic device is very similar to the 
FLA except that there is no programmable OR array. Instead, the OR connections are fixed. 
This reduces the complexity by cutting down the set of fuses in the OR array. Due to their cost 
advantage, most manufacturers produce only PALs. 

Programmable logic array A programmable logic array is a field programmable device to 
implement sum-of-product expressions. It consists of an AND array and an OR array. A FLA 
takes Â  inputs and produces M outputs. Each input is a logical variable. Each output of a FLA 
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represents a logical function output. Internally, each input is complemented, and a total of 2N 
inputs is connected to each AND gate in the AND array through a fuse. Each AND gate can be 
used to implement a product term in the sum-of-products expression. The OR array is organized 
similarly except that the inputs to the OR gates are the outputs of the AND array. Thus, the number 
of inputs to each OR gate is equal to the number of AND gates in the AND array. The output of 
each OR gate represents a function output. 

PLA See Programmable logic array 

Propagation delay Propagation delay represents the time required for the output of a circuit 
to react to an input. The propagation delay depends on the complexity of the circuit and the 
technology used. 

Protected-mode memory architecture The IA-32 architecture supports a sophisticated memory 
architecture under real and protected modes. The protected mode uses 32-bit addresses and is the 
native mode of the IA-32 architecture. In the protected mode, both segmentation and paging are 
supported. Paging is useful in implementing virtual memory; it is transparent to the application 
program, but segmentation is not. 

Queue A queue is a first-in-first-out (FIFO) data structure. A queue can be considered as a linear 
array with insertions done at one end of the array and deletions at the other end. 

Real-mode memory architecture The IA-32 architecture supports a sophisticated memory ar­
chitecture under real and protected modes. The real mode, which uses 16-bit addresses, is provided 
to run programs written for the 8086 processor. In this mode, it supports the segmented memory 
architecture of the 8086 processor. 

Register addressing mode In this addressing mode, processor's internal registers contain the 
data to be manipulated by an instruction. Register addressing mode is the most efficient way of 
specifying operands because they are within the processor and, therefore, no memory access is 
required. 

Row-major order As the memory is a one-dimensional structure, we need to transform a mul­
tidimensional array to a one-dimensional structure. In the row-major order, array elements are 
stored row by row. This ordering is shown Figure 13.5a. Row-major ordering is used in most 
high-level languages including C. 

Segment descriptors A segment descriptor provides the attributes of a segment. These attributes 
include its 32-bit base address, 20-bit segment size, as well as control and status information. 

Segment registers In the IA-32 architecture, these registers support the segmented memory 
organization. In this organization, memory is partitioned into segments, where each segment is a 
small part of the memory. The processor, at any point in time, can only access up to six segments 
of the main memory. The six segment registers point to where these segments are located in the 
memory. 

Sequential circuits The output of a sequential circuit depends not only on the current inputs but 
also on the past inputs. That is, output depends both on the current inputs as well as on how it got 
to the current state. For example, in a binary counter, the output depends on the current value. The 
next value is obtained by incrementing the current value (in a way, the current state represents a 
snapshot of the past inputs). That is, we cannot say what the output of a counter will be unless we 
know its current state. Thus, the counter is a sequential circuit. 
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Shell The shell can be thought of as the user's interface to the operating system. It acts as the 
command line interpreter. Several popular shells including the Bourne shell (sh), C-shell (csh), 
Kom shell (ksh), and Bourne Again shell (bash) are available. However, bash is the default 
shell in Fedora 3. 

Sign flag The sign flag indicates the sign of the result of an operation. Therefore, it is useful only 
when dealing with signed numbers. Note that the most significant bit is used to represent the sign 
of a number: 0 for positive numbers and 1 for negative numbers. The sign flag gets a copy of the 
sign bit of the result produced by arithmetic and related operations. 

Single-stepping Single-stepping is a debugging technique. To isolate a bug, program execution 
should be observed in slow motion. Most debuggers provide a command to execute the program 
in single-step mode. In this mode, a program executes a single statement and pauses. Then we can 
examine contents of registers, data in memory, stack contents, and so on. 

Software interrupts Software interrupts are caused by executing the i n t instruction. Thus 
these interrupts, like procedure calls, are anticipated or planned events. The main use of software 
interrupts is in accessing I/O devices such as the keyboard, printer, display screen, disk drive, and 
so on. 

Stack A stack is a last-in-first-out (LIFO) data structure. The operation of a stack is analogous 
to the stack of trays you find in cafeterias. The first tray removed from the stack of trays would be 
the last tray that had been placed on the stack. There are two operations associated with a stack: 
insertion and deletion. In stack terminology, insert and delete operations are referred to as push 
and pop operations, respectively. 

Status flags Status flags are used to monitor the outcome of the arithmetic, logical, and related 
operations. There are six status flags. These are the zero flag (ZF), carry flag (CF), overflow flag 
(OF), sign flag (SF), auxiliary flag (AF), and parity flag (PF). When an arithmetic operation is 
performed, some of the flags are updated (set or cleared) to indicate certain properties of the result 
of that operation. For example, if the result of an arithmetic operation is zero, the zero flag is set 
(i.e., ZF = 1). Once the flags are updated, we can use conditional branch instructions to alter flow 
control. 

Symbolic debugging Symbolic debugging allows us to debug using the source-level statements. 
However, to facilitate symbolic debugging, we need to pass the source code and symbol table 
information to the debugger. The GNU debugger expects the symbolic information in the s t a b s 
format. More details on this topic are given in Chapter 8. 

System bus A system bus interconnects the three main components of a computer system: a 
central processing unit (CPU) or processor, a memory unit, and input/output (I/O) devices. The 
three major components of the system bus are the address bus, data bus, and control bus (see 
Figure 2.1). 

Top of stack If we view the stack as a linear array of elements, stack insertion and deletion 
operations are restricted to one end of the array. The top-of-stack (TOS) identifies the only element 
that is directly accessible from the stack. 

TOS see Top of stack 

Trace Tracing is a debugging technique similar to the single stepping. In the single-step mode, a 
procedure call is treated as a single statement and the entire procedure is executed before pausing 
the program. This is useful if you know that the called procedure works correctly. Trace, on the 
other hand, can be used to single-step even the statements of a procedure call, which is useful to 
test procedures. 
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Traps See Exceptions 

Tristate buffers Tristate buffers can be in three states: 0, 1, or Z state. A tristate buffer output 
can be in state 0 or 1 just as with a normal logic gate. In addition, the output can also be in a 
high impedance (Z) state, in which the output floats. Thus, even though the output is physically 
connected to the bus, it behaves as though it is electrically and logically disconnected from the bus. 
Tristate buffers use a separate control signal so that the output can be in a high impedance state, 
independent of the data input. This particular feature makes them suitable for bus connections. 

Web browser An Internet application that allows you to surf the web. Netscape Navigator, 
Mozilla Fire Fox, and Microsoft Internet Explorer are some of the popular Web browsers. 

Zero flag The purpose of the zero flag (ZF) is to indicate whether the execution of the last 
instruction that affects the zero flag has produced a zero result. If the result was zero, ZF = 1; 
otherwise, ZF = 0. 
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.EXIT macro, 156 
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B 
based addressing mode, 276 
based-indexed addressing mode, 278 
b a s h , 135 
BCD number representation, 380 

packed, 381 
unpacked, 380 

binary numbers, 463 
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binary search, 285 
bit, 45 
bit manipulation, 348 
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breakpoint interrupt, 410 
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big-endian, 58 
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carry flag, 294 
c a t command, 140 
c d command, 140 
changing password, 120 
character representation, 473-474 

extended ASCII, 474 
chipselect, 51,54, 57, 58 
chmod command, 143 

clobber list, 438 
clock cycle, 36 
clock frequency, 36 
clock period, 36 
clock signal, 35-37 

cycle, 36 
falling edge, 36 
frequency, 36 
period, 36 
rising edge, 36 

column-major order, 280 
command line completion, 136 
commands 

c a t , 140 
cd, 140 
chmod, 143 
cp, 141 
e c h o , 137 
g r e p , 146 
h e a d , 141 
h i s t o r y , 136 
l e s s , 141 
I s , 140, 142, 143 
man, 134 
m k d i r , 140 
more , 140 
mv, 141 
pas swd , 135, 137 
p s , 138 
pwd, 140 
rm, 140, 141 
r m d i r , 140 
s e t , 146 
s o r t , 146 
su, 138 
t a i l , 141 
uname, 137 
wc, 145 
w h e r e i s , 137 

comparators, 26 
control bus, 12 
counters, 41 
cp command, 141 
CPUID instruction, 66 

D 
data alignment, 59-60 
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2-byte data, 60 
4-byte data, 60 
8-byte data, 60 
hard alignment, 60 
soft alignment, 60 

data allocation, 188-192 
define directives, 189-191 
multiple definitions, 191-192 
multiple initializations, 192 

data bus, 11 
Data display debugger (DDD), 179-183 
DB directive, 189 
DD directive, 189 
decoders, 26 
dedicated interrupts, 409 
demultiplexers, 25 
denormalized values, 470 
direction flag, 366 
DQ directive, 189 
DT directive, 189 
DW directive, 189 

echo command, 137 
effective address, 72, 194, 195 
EQU directive, 217 
even parity, 343, 344 
exceptions, 404, 408 

aborts, 408 
faults, 408 
segment-not-present, 70, 409 
traps, 408,409 

excess-M number representation, 466 
exclusive-OR gate, 13 
executable instructions, 187 
execution cycle, 63 
EXTERN directive, 260 

factorial, 391-394 
recursive procedure, 392 

faults, 408 
Fibonacci number, 401 
file descriptor, 411 
file pointer, 411 
file system 

browsing, 126 
firewall setup, 100 
flags register, 66, 292-302 

auxiliary flag, 299 
carry flag, 294 
CF, 294 
direction flag, 366,420 
IF flag, 418 
OF, 296 
overflow flag, 296 
parity flag, 300 
PF, 300 
SF, 298 
sign flag, 298 
status flags, 292-302 
trap flag, 409 
zero flag, 292 
ZF, 292 

flat segmentation model, 71 
flip-flops, 39-40 
floating-point, 469-471 

denormals, 452,470 
formats, 444 
IEEE 754,470 
representation, 469 
special values, 470 

00,470 
NaN, 470 
zero, 470 

floating-point unit organization, 444 
frame pointer, 245, 256 
full-adder, 27 

G 
GDB, 170-178 

commands, 171-173 
g e d i t , 127 
Getlnt8,313 
getting help, 134 
GLOBAL directive, 260 
GNOME desktop, 126 
g rep command, 146 

H 
half-adder, 26 
hardware interrupts, 404, 418 
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INTA signal, 419 
INTR input, 418 
maskable, 405,418 
NMI,418 
nonmaskable, 405,418 

head command, 141 
hexadecimal numbers, 463 
high-level language interface, 423-441 

assembling, 424 
calling assembly procedures from C, 424 
calling C from assembly, 432 
externals, 427 
globals, 427 
inline assembly, 434-441 
parameter passing, 425 
preserving registers, 427 
returning values, 427 

high-level language structures 
swi tch , 337 

h i s t o r y command, 136 
HOME, 139 

I 
I/O address space, 419 
I/O controller, 76 
I/O device, 76 
I/O ports, 77,419 

16-bit ports, 419 
32-bit ports, 419 
8-bit ports, 419 
accessing, 419 
in, 419 
i n s , 420 
out , 420 
o u t s , 420 

I/O routines, 157 
GetCh, 156 
Getint, 158 
GetLInt, 158 
GetStr, 157 
PutCh, 156 
Putint, 158 
PutLInt, 158 
PutStr, 157 

IA-32 flags register, 66 
IA-32 instructions 

aaa, 380-382,488 

aad, 380, 383,488 
aam, 380, 383, 488 
aas , 380, 382, 488 
adc, 489 
add, 198, 489 
and, 203, 342, 489 
arithmetic instructions, 302-309 
bit instructions, 354-355 
brf, 355 
bsf,355,489 
bs r , 490 
bswap,212,490 
b t , 355, 490 
b t c , 355,490 
b t r , 355,491 
b t s , 355,491 
c a l l , 239, 378, 491 
cbw, 308,491 
cdq, 308, 492 
clc,492 
e ld , 366,492 
c l i , 407, 418, 492 
cmc, 492 
cmp, 199, 493 
cmps, 370, 493 
conditional jump, 500 
cwd, 308,494 
cwde, 308,494 
daa, 381,385,494 
das, 381,386,495 
dec, 197,296,495 
div , 306,409,495 
division instructions, 306 
doubleshift instructions, 352 
e n t e r , 247, 259, 496 
h i t , 496 
i d i v , 306,409,497 
imul,305,497 
in, 419, 498 
inc , 197, 296,498 
i n s , 420, 498 
insb , 498 
insd , 498 
insw, 498 
int,410,499 
i n t o , 499 
i r e t , 499 
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r e p n e / r e p n z , 509 
repnz, 366 
repz , 366 
r e t , 241, 245, 509 
rol,215,510 
ror,215,510 
rotate instructions, 353-354 
sahf,510 
s a l , 350, 511 
sa r , 350,511 
sbb,511 
seas , 371, 512 
scasb , 371,512 
scasd, 371, 512 
scasw, 371, 512 
setCC, 512 
sgdt , 70 
shift instructions, 347-353 
shl,213,511 
shld , 352,513 
shr,213,511 
shrd,352,513 
s id t ,405 
s l d t , 7 0 
s t c , 513 
std,366,513 
s t i , 407,418, 513 
stos,368,514 
s t o s b , 368,514 
s tosd , 368,514 
stosw, 368, 514 
sub, 199,514 
t e s t , 204, 347, 514 
xchg,212,515 
xlat,213,227,515 
xor, 203, 345, 515 

IA-32 processor 
CPUID instruction, 66 
EIP register, 66 
flags register, 66 

alignment check flag, 66 
control flags, 66 
EFLAGS, 66 
FLAGS, 66 
interrupt flag, 66 
status flags, 66 
system flags, 66 

trap flag, 66 
VM flag, 66 
zero flag, 66 

floating-point instructions, 447-453 
addition, 449 
comparison, 451 
data movement, 448 
division, 451 
miscellaneous, 452 
multiplication, 450 
subtraction, 449 

floating-point registers, 444-447 
floating-point unit organization, 444 
instruction fetch, 75 
IP register, 66 
memory architecture, see memory ar­

chitecture 
protected mode, 67 
real mode, 72 
stack implementation, 234 
stack operations, 236 

IA-32 registers, 63-67,444-447 
control registers, 65 
data registers, 64 
floating-point registers, 444-447 
index registers, 65 
pointer registers, 65 
segment registers, see segment registers 

IA-32 trap flag, 66 
ICs, see integrated circuits 
IEEE 754 floating-point standard, 443,470 
indexed addressing mode, 277 
indirect procedure call, 378 
inline assembly, 434^41,457 

clobber list, 438 
input/output 

I/O address space, 77 
isolated I/O, 77 
memory-mapped I/O, 77 

insertion sort, 282 
installation, 92-107 

getting help, 114 
instruction decoding, 63 
instruction execution, 63 
instruction fetch, 63, 75 
instruction pointer, 65 
int21H, 156 
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int21H DOS services 
4CH return control, 156 

int3,410 
int4,410 
integrated circuits, 14 

LSI, 14 
MSI, 14 
propagation delay, 14 
SSI, 14 
SSI chips, 14 
VLSI, 14 

interrupt 1,409 
interrupt 2, 418 
interrupt 4, 409 
interrupt descriptor table, 405 
interruptflag, 66,418 
interrupt handler, 403 
interrupt processing 

protected mode, 405 
interrupt service routine, 403 
interrupts 

breakpoint, 410 
dedicated, 409 
descriptors, 406 
divide error, 409 
exceptions, 404, 408 
handler, 403 
hardware, 418 
hardware interrupts, 404 
IDT organization, 406 
ISR, 403 
maskable, 405 
nonmaskable, 405 
overflow, 410 
single-step, 409 
software interrupts, 404 
taxonomy, 404,407 

into, 410 
isolated I/O, 77 
Itanium processor, 62 

jump instructions 
backward jump, 318 
conditional jump, 322-327 
far jump, 319 
forward jump, 318 

indirect jump, 335-339 
intersegment jump, 319 
intrasegmentjump, 319 
near jump, 319 
SHORT directive, 319 
short jump, 319 
unconditional jump, 318 

direct, 318 

K 
Karnaugh maps, 19-23 
keyboard configuration, 117 

latches, 37-39 
clocked SR latch, 38 
D latch, 39 
SR latch, 37 

Id, 166 
left-pusher language, 425 
l e s s command, 141 
linear address, 67 
linear search, 330 
linking, 166 
Linux, 154 
Linux system calls, 411 

file system calls, 411 
file close, 414 
file create, 412 
file open, 413 
file read, 413 
file write, 414 
Iseek, 414 

local variables, 256 
logic circuits 

adders, 26 
ALUs, 32 
bubble notation, 17 
comparators, 26 
counters, 41 
decoders, 26 
demultiplexers, 25 
flip-flops, 39 
latches, 37 
multiplexers, 24 
PALs, 30 
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PLAs, 29 
shift registers, 40 

logic gates 
fanin, 14 
fanout, 14 
propagation delay, 14 

logical address, 72 
logical expressions, 15 

derivation, 17 
even parity, 16 
majority, 16 
product-of-sums, 18 
simplification, 18-23 

Boolean algebra method, 1 i 
Karnaugh map method, 19 

sum-of-products, 17 
I s command, 140, 142, 143 

M 
machine language, 4 
macro directive, 218 
macro expansion, 212 
macro instructions, 220 
macro parameters, 219 
macros, 212, 218 

instructions, 220 
macro directive, 218 
parameters, 219 

man command, 134 
masking bit, 343 
MASM, 5 
memory 

Bandwidth, 46 
access time, 46 
address, 45 
address space, 45 
address translation, 73 
building a block, 50 
building larger memories, 52 
byte addressable, 45 
chipselect, 51,54, 57, 58 
cycle time, 46 
design with D flip-flops, 51 
DRAM, 49, 53 
dynamic, 49 
effective address, 72 
EPROM, 48 

larger memory design, 53 
linear address, 67 
logical address, 72, 73 
memory address space, 53 
memory chips, 53 
memory mapping, 56 

full mapping, 56 
partial mapping, 57 

nonvolatile, 48 
offset, 72 
physical address, 72, 73 
PROM, 48 
RAM, 49 
read cycle, 47 
read-only, 48 
read/write, 48 
ROM, 48 
SDRAM, 53 
segmentation models, 71 
segmented organization, 72 
SRAM, 49 
static, 49 
volatile, 48 
wait cycles, 47 
write cycle, 47 

memory access time, 46 
memory address space, 45, 53 
memory architecture 

IA-32, 72-75 
protected mode, 67 
real mode, 72-74 

memory bandwidth, 46 
memory cycle time, 46 
memory mapping, 56 

full mapping, 56 
partial mapping, 57 

memory read cycle, 47 
memory write cycle, 47 
memory-mapped I/O, 77 
merge sort, 483 
mixed mode operation, 74 
mixed-mode programs, 423 

calling assembly code, 424 
calling C from assembly, 432 
compiling, 425 
externals, 427 
globals, 427 
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inline assembly, 434-441 
parameter passing, 425 
preserving registers, 427 
returning values, 427 

mkdir command, 140 
more command, 140 
mounting file system, 110-112 
mouse configuration, 119 
multibyte data, 58 
multidimensional arrays, 279 
multiplexers, 24 
multisegment segmentation model, 71 
mv command, 141 

N 
HAND gate, 13 
NASM, 5, 154-156,160-166 
NOR gate, 13 
NOT gate, 13 
number representation 

floating-point, 469-471 
signed integer, 466 

I's complement, 467 
2's complement, 468 
excess-M, 466 
signed magnitude, 466 

unsigned integer, 466 
number systems, 461 

base, 461 
binary, 461,463 
conversion, 463-465 
decimal, 461,462 
floating-point, 469-471 
hexadecimal, 461,463 
notation, 462 
octal, 461,463 
radix, 461 

O 
octal numbers, 463 
office applications, 129 
one's complement, 467 
one-dimensional arrays, 278 
operand size override prefix, 275 
OR gate, 13 
overflow flag, 296 

overflow interrupt, 410 
override prefix, 74 

address size, 275 
operand size, 275 
segment override, 269 

package management, 107 
packed BCD numbers 

addition, 385 
processing, 385 
subtraction, 386 

paging, 67 
PALs, see programmable array logic devices 
parameter passing, 232, 242-252,425 

call-by-reference, 232 
call-by-value, 232 
register method, 242 
stack method, 243 
variable number of parameters, 268-272 

parity conversion, 345 
parity flag, 300 
parted, 83-85 

help, 84 
print, 85 
resize, 85 

partitioning hard disk, 82-92 
PartitionMagic, 88-92 
pa sswd command, 135, 137 
PATH, 136 
pathnames, 139 

absolute path, 139 
relative path, 140 

Pentium II processor, 62 
Pentium Pro processor, 62 
peripheral device, 76 
physical address, 72 
pipelining 

superscalar, 62 
pipes, 146 
PLAs, see programmable logic arrays 
p r e f e r e n c e s menu, 117 
procedure template, 248 
procedures 

indirect call, 378 
local variables, 256 

product-of-sums, 18 
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program counter, 66 
programmable array logic devices, 30 
programmable logic arrays, 29 
programmer productivity, 7 
protected mode architecture, 67 
ps command, 138 
Putlnt8,311 
pwd command, 140 

Q 
QTparted, 85-86 
quicksort, 396 

algorithm, 397 
Pentium procedure, 397 

R 
real mode architecture, 72-74 
real-time applications, 8 
recalling a command, 136 
recursion, 391-392 

activation record, 392 
factorial, 391 
Fibonacci number, 401 
versus iteration, 400 
in Pentium 

factorial procedure, 392 
quicksort procedure, 397 

quicksort algorithm, 397 
redirection, 145 

input, 145 
output, 145 

relative path, 140 
right-pusher language, 425 
rm command, 140, 141 
rmdi r command, 140 
root password selection, 102 
row-major order, 280 

screen resolution configuration, 119 
Screensaver configuration, 121 
segment descriptor, 69-70 
segment descriptor tables, 70-71 

GDT, 70 
IDT, 70 

LDT, 70 
segment override, 269 
segment registers, 67-69 

CS register, 67 
DS register, 67 
ES register, 67 
FS register, 67 
GS register, 67 
SS register, 67 

segmentation, 67 
segmentation models, 71 

flat, 71 
multisegment, 71 

segmented memory organization, 72 
segment base, 72 
segment offset, 72 

selection sort, 332 
s e t command, 146 
setting access permissions, 143 
setting date and time, 124 
setting display, 125 
shell, 135 
shift operations, 348 
shift registers, 40 
SHORT directive, 319 
sign bit, 466 
sign extension, 305,469 
sign flag, 298 
signed integer, 466 

1 's complement, 467 
2's complement, 468 
excess-M, 466 
signed magnitude representation, 466 

signed magnitude representation, 466 
single-step interrupt, 409 
software interrupts, 404, 410 

exceptions, 404 
system-defined, 404 
user-defined, 404 

s o r t command, 146 
space-efficiency, 7 
stack, 233-234 

activation record, 256 
frame pointer, 245, 256 
IA-32 processor implementation, 234 
operations, 236, 237 
operations on flags, 237 
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overflow, 235, 239 
stack frame, 244, 256 
top-of-stack, 233, 234 
underflow, 235, 239 
use, 238 
what is it, 233 

stack frame, 244, 256 
stack operations, 236, 237 
stack overflow, 235,239 
stack underflow, 235, 239 
status flags, 292-302 
string processing 

string compare, 375 
string length, 374 

string representation, 363 
fixed-length, 363 
variable-length, 363 

su command, 138 
sum-of-products, 17 
superscalar, 62 
symbol table, 192, 194 
system bus, 11 

truth table, 13 
AND, 13 
even parity, 15 
majority, 15 
HAND, 13 
NOR, 13 
NOT, 13 
OR, 13 
XOR, 13 

two's complement, 468 
type specifier, 197 

BYTE, 197 
DWORD, 197 
QWORD, 197 
TBYTE, 197 
WORD, 197 

types of memory, 48-50 

U 
uname command, 137 
unsigned integer representation, 466 

t a i l command, 141 
TASM, 5 
time zone selection, 102 
time-critical applications, 8 
time-efficiency, 7 
TIMES directive, 192 
top-of-stack, 233, 234 
towers of Hanoi, 481 
trap flag, 409 
traps, 408,409 
tristate buffers, 50 

variable number of parameters, 268-272 
vim editor, 147 

W 
wait cycles, 47 
wc command, 145 
where i s command, 137 

XOR gate, 13 

zero extension, 466 
zero flag, 66, 292 



The GNU General Public License 

Version2, June 1991 
Copyright © 1989, 1991 Free Software Foundation, Inc. 

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA 

Everyone is permitted to copy and distribute verbatim copies of this license document, but 
changing it is not allowed. 

PREAMBLE 

The licenses for most software are designed to take away your freedom to share and change it. 
By contrast, the GNU General Public License is intended to guarantee your freedom to share and 
change free software—to make sure the software is free for all its users. This General Public 
License applies to most of the Free Software Foundation's software and to any other program 
whose authors commit to using it. (Some other Free Software Foundation software is covered by 
the GNU Library General Public License instead.) You can apply it to your programs, too. 

When we speak of free software, we are referring to freedom, not price. Our General Public 
Licenses are designed to make sure that you have the freedom to distribute copies of free software 
(and charge for this service if you wish), that you receive source code or can get it if you want it, 
that you can change the software or use pieces of it in new free programs; and that you know you 
can do these things. 

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights 
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you 
if you distribute copies of the software, or if you modify it. 

For example, if you distribute copies of such a program, whether gratis or for a fee, you must 
give the recipients all the rights that you have. You must make sure that they, too, receive or can 
get the source code. And you must show them these terms so they know their rights. 

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license 
which gives you legal permission to copy, distribute and/or modify the software. 

Also, for each author's protection and ours, we want to make certain that everyone understands 
that there is no warranty for this free software. If the software is modified by someone else and 
passed on, we want its recipients to know that what they have is not the original, so that any 
problems introduced by others will not reflect on the original authors' reputations. 

Finally, any free program is threatened constantly by software patents. We wish to avoid 
the danger that redistributors of a free program will individually obtain patent licenses, in effect 
making the program proprietary. To prevent this, we have made it clear that any patent must be 
licensed for everyone's free use or not licensed at all. 

The precise terms and conditions for copying, distribution and modification follow. 
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TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND 
MODIFICATION 

0. This License applies to any program or other work which contains a notice placed by the 
copyright holder saying it may be distributed under the terms of this General Public License. 
The "Program", below, refers to any such program or work, and a "work based on the Pro­
gram" means either the Program or any derivative work under copyright law: that is to say, a 
work containing the Program or a portion of it, either verbatim or with modifications and/or 
translated into another language. (Hereinafter, translation is included without limitation in 
the term "modification".) Each licensee is addressed as "you". 
Activities other than copying, distribution and modification are not covered by this License; 
they are outside its scope. The act of running the Program is not restricted, and the output 
from the Program is covered only if its contents constitute a work based on the Program 
(independent of having been made by running the Program). Whether that is true depends 
on what the Program does. 

1. You may copy and distribute verbatim copies of the Program's source code as you receive 
it, in any medium, provided that you conspicuously and appropriately publish on each copy 
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that 
refer to this License and to the absence of any warranty; and give any other recipients of the 
Program a copy of this License along with the Program. 
You may charge a fee for the physical act of transferring a copy, and you may at your option 
offer warranty protection in exchange for a fee. 

2. You may modify your copy or copies of the Program or any portion of it, thus forming a 
work based on the Program, and copy and distribute such modifications or work under the 
terms of Section 1 above, provided that you also meet all of these conditions: 

(a) You must cause the modified files to carry prominent notices stating that you changed 
the files and the date of any change. 

(b) You must cause any work that you distribute or publish, that in whole or in part contains 
or is derived from the Program or any part thereof, to be licensed as a whole at no 
charge to all third parties under the terms of this License. 

(c) If the modified program normally reads commands interactively when run, you must 
cause it, when started running for such interactive use in the most ordinary way, to print 
or display an announcement including an appropriate copyright notice and a notice that 
there is no warranty (or else, saying that you provide a warranty) and that users may 
redistribute the program under these conditions, and telling the user how to view a copy 
of this License. (Exception: if the Program itself is interactive but does not normally 
print such an announcement, your work based on the Program is not required to print 
an announcement.) 

These requirements apply to the modified work as a whole. If identifiable sections of that 
work are not derived from the Program, and can be reasonably considered independent and 
separate works in themselves, then this License, and its terms, do not apply to those sections 
when you distribute them as separate works. But when you distribute the same sections as 
part of a whole which is a work based on the Program, the distribution of the whole must 
be on the terms of this License, whose permissions for other licensees extend to the entire 
whole, and thus to each and every part regardless of who wrote it. 
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Thus, it is not the intent of this section to claim rights or contest your rights to work writ­
ten entirely by you; rather, the intent is to exercise the right to control the distribution of 
derivative or collective works based on the Program. 
In addition, mere aggregation of another work not based on the Program with the Program 
(or with a work based on the Program) on a volume of a storage or distribution medium does 
not bring the other work under the scope of this License. 

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object 
code or executable form under the terms of Sections 1 and 2 above provided that you also 
do one of the following: 

(a) Accompany it with the complete corresponding machine-readable source code, which 
must be distributed under the terms of Sections 1 and 2 above on a medium customarily 
used for software interchange; or, 

(b) Accompany it with a written offer, valid for at least three years, to give any third party, 
for a charge no more than your cost of physically performing source distribution, a 
complete machine-readable copy of the corresponding source code, to be distributed 
under the terms of Sections 1 and 2 above on a medium customarily used for software 
interchange; or, 

(c) Accompany it with the information you received as to the offer to distribute corre­
sponding source code. (This alternative is allowed only for noncommercial distribu­
tion and only if you received the program in object code or executable form with such 
an offer, in accord with Subsection b above.) 

The source code for a work means the preferred form of the work for making modifica­
tions to it. For an executable work, complete source code means all the source code for 
all modules it contains, plus any associated interface definition files, plus the scripts used 
to control compilation and installation of the executable. However, as a special exception, 
the source code distributed need not include anything that is normally distributed (in either 
source or binary form) with the major components (compiler, kernel, and so on) of the op­
erating system on which the executable runs, unless that component itself accompanies the 
executable. 
If distribution of executable or object code is made by offering access to copy from a des­
ignated place, then offering equivalent access to copy the source code from the same place 
counts as distribution of the source code, even though third parties are not compelled to copy 
the source along with the object code. 

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro­
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute 
the Program is void, and will automatically terminate your rights under this License. How­
ever, parties who have received copies, or rights, from you under this License will not have 
their licenses terminated so long as such parties remain in full compliance. 

5. You are not required to accept this License, since you have not signed it. However, noth­
ing else grants you permission to modify or distribute the Program or its derivative works. 
These actions are prohibited by law if you do not accept this License. Therefore, by mod­
ifying or distributing the Program (or any work based on the Program), you indicate your 
acceptance of this License to do so, and all its terms and conditions for copying, distributing 
or modifying the Program or works based on it. 
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6. Each time you redistribute the Program (or any work based on the Program), the recipient 
automatically receives a license from the original licensor to copy, distribute or modify the 
Program subject to these terms and conditions. You may not impose any further restrictions 
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing 
compliance by third parties to this License. 

7. If, as a consequence of a court judgment or allegation of patent infringement or for any 
other reason (not limited to patent issues), conditions are imposed on you (whether by court 
order, agreement or otherwise) that contradict the conditions of this License, they do not 
excuse you from the conditions of this License. If you cannot distribute so as to satisfy 
simultaneously your obligations under this License and any other pertinent obligations, then 
as a consequence you may not distribute the Program at all. For example, if a patent license 
would not permit royalty-free redistribution of the Program by all those who receive copies 
directly or indirectly through you, then the only way you could satisfy both it and this 
License would be to refrain entirely from distribution of the Program. 
If any portion of this section is held invalid or unenforceable under any particular circum­
stance, the balance of the section is intended to apply and the section as a whole is intended 
to apply in other circumstances. 
It is not the purpose of this section to induce you to infringe any patents or other property 
right claims or to contest validity of any such claims; this section has the sole purpose of 
protecting the integrity of the free software distribution system, which is implemented by 
public license practices. Many people have made generous contributions to the wide range of 
software distributed through that system in reliance on consistent application of that system; 
it is up to the author/donor to decide if he or she is willing to distribute software through any 
other system and a licensee cannot impose that choice. 
This section is intended to make thoroughly clear what is believed to be a consequence of 
the rest of this License. 

8. If the distribution and/or use of the Program is restricted in certain countries either by patents 
or by copyrighted interfaces, the original copyright holder who places the Program under 
this License may add an explicit geographical distribution limitation excluding those coun­
tries, so that distribution is permitted only in or among countries not thus excluded. In such 
case, this License incorporates the limitation as if written in the body of this License. 

9. The Free Software Foundation may publish revised and/or new versions of the General 
Public License from time to time. Such new versions will be similar in spirit to the present 
version, but may differ in detail to address new problems or concerns. 
Each version is given a distinguishing version number. If the Program specifies a version 
number of this License which applies to it and "any later version", you have the option of 
following the terms and conditions either of that version or of any later version published 
by the Free Software Foundation. If the Program does not specify a version number of this 
License, you may choose any version ever published by the Free Software Foundation. 

10. If you wish to incorporate parts of the Program into other free programs whose distribution 
conditions are different, write to the author to ask for permission. For software which is 
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we 
sometimes make exceptions for this. Our decision will be guided by the two goals of pre­
serving the free status of all derivatives of our free software and of promoting the sharing 
and reuse of software generally. 
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No WARRANTY 

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR 
THE P R O G R A M , TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH­
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS A N D / O R OTHER PARTIES PRO­
VIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED 
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER­
CHANTABILITY AND HTNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO 
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO­
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, 
REPAIR OR CORRECTION. 

12. I N N O E V E N T U N L E S S R E Q U I R E D B Y A P P L I C A B L E LAW OR AGREED TO IN WRITING 

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY A N D / O R 
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM­
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM­
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT 
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES 
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE 
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN 
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

END OF TERMS AND CONDITIONS 
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