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Preface

The primary goal of this book is to teach the IA-32 assembly language programming under
the Linux operating system. A secondary objective is to provide a gentle introduction to the
Fedora Linux operating system. Linux has evolved substantially since its first appearance in
1991. Over the years, its popularity has grown as well. According to an estimate posted on
http://counter.1li.org/, there are about 18 million Linux users worldwide. Hopefully,
this book encourages even more people to switch to Linux.

The book is self-contained and provides all the necessary background information. Since
assembly language is very closely linked to the underlying processor architecture, a part of the
book is dedicated to giving computer organization details. In addition, the basics of Linux are
introduced in a separate chapter. These details are sufficient to work with the Linux operation
system.

The reader is assumed to have had some experience in a structured, high-level language such
as C. However, the book does not assume extensive knowledge of any high-level language—only
the basics are needed.

Approach and Level of Presentation

The book is targeted for software professionals who would like to move to Linux and get a com-
prehensive introduction to the IA-32 assembly language. It provides detailed, step-by-step instruc-
tions to install Linux as the second operating system.

No previous knowledge of Linux is required. The reader is introduced to Linux and its com-
mands. Four chapters are dedicated to Linux and NASM assembler (installation and usage). The
accompanying DVD-ROMs provide the necessary software to install the Linux operating system
and learn assembly language programming.

The assembly language is presented from the professional viewpoint. Since most professionals
are full-time employees, the book takes their time constraints into consideration in presenting the
material.,
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Summary of Special Features

Here is a summary of the special features that sets this book apart:

* The book includes the Red Hat Fedora Core 3 Linux distribution (a total of two DVD-ROMs
are included with the book). Detailed step-by-step instructions are given to install Linux on
a Windows machine. A complete chapter is used for this purpose, with several screenshots
to help the reader during the installation process.

* Free NASM assembler is provided so that the readers can get hands-on assembly language
programming experience.

Special I/0 software is provided to simplify assembly language programming. A set of input
and output routines is provided so that the reader can focus on writing assembly language
programs rather than spending time in understanding how the input and output are done
using the basic I/0 functions provided by the operating system.

* Three chapters are included on computer organization. These chapters provide the necessary
background to program in the assembly language.

* Presentation of material is suitable for self-study. To facilitate this, extensive programming
examples and figures are used to help the reader grasp the concepts. Each chapter contains
a simple programming example in “Our First Program” section to gently introduce the con-
cepts discussed in the chapter. This section is typically followed by “Illustrative Examples”
section, which gives more programming examples.

* This book does not use fragments of code in examples. All examples are complete in
the sense that they can be assembled and run, giving a better feeling as to how these pro-
grams work. These programs are on the accompanying DVD-ROM (DVD 2). In addition,
you can also download these programs from the book’s Web site at the following URL:
http://www.scs.carleton.ca/ sivarama/linux_book.

* Each chapter begins with an overview and ends with a summary.

Overview of the Book

The book is divided into seven parts. Part I provides introduction to the assembly language and
gives reasons for programming in the assembly language. Assembly language is a low-level lan-
guage. To program in the assembly language, you should have some basic knowledge about the
underlying processor and system organization. Part II provides this background on computer orga-
nization. Chapter 2 introduces the digital logic circuits. The next chapter gives details on memory
organization. Chapter 4 describes the Intel IA-32 architecture.

Part IIT covers the topics related to Linux installation and usage. Chapter 5 gives detailed
information on how you can install the Fedora Core Linux provided on the accompanying DVD-
ROMs. It also explains how you can make your system dual bootable so that you can select the
operating system (Windows or Linux) at boot time. Chapter 6 gives a brief introduction to the
Linux operating system. It gives enough details so that you feel comfortable using the Linux
operating system. If you are familiar with Linux, you can skip this chapter.

Part IV also consists of two chapters. It deals with assembling and debugging assembly lan-
guage programs. Chapter 7 gives details on the NASM assembler. It also describes the 1/O routines
developed by the author to facilitate assembly language programming. The next chapter looks at
the debugging aspect of program development. We describe the GNU debugger (gdb), which
is a command-line debugger. This chapter also gives details on Data Display Debugger (DDD),
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which is a nice graphical front-end for gdb. Both debuggers are included on the accompanying
DVD-ROMs.

After covering the setup and usage details of Linux and NASM, we look at the assembly lan-
guage in Part V. This part introduces the basic instructions of the assembly language. To facilitate
modular program development, we introduce procedures in the third chapter of this part. The re-
maining chapters describe the addressing modes and other instructions that are commonly used in
assembly language programs.

Part VI deals with advanced assembly language topics. It deals with topics such as string
processing, recursion, floating-point operations, and interrupt processing. In addition, Chapter 21
explains how you can interface with high-level languages. By using C, we explain how you can call
assembly language procedures from C and vice versa. This chapter also discusses how assembly
language statements can be embedded into high-level language code. This process is called inline
assembly. Again, by using C, this chapter shows how inline assembly is done under Linux.

The last part consists of five appendices. These appendices give information on number sys-
tems and character representation. In addition, Appendix D gives a summary of the IA-32 instruc-
tion set. A comprehensive glossary is given in Appendix E.
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Overview



Assembly Language

The main objective of this chapter is to give you a brief introduction to the assembly language. To
achieve this goal, we compare and contrast the assembly language with high-level languages you
are familiar with. This comparison enables us to take a look at the pros and cons of the assembly
language vis-a-vis high-level languages.

Introduction

A user’s view of a computer system depends on the degree of abstraction provided by the under-
lying software. Figure 1.1 shows a hierarchy of levels at which one can interact with a computer
system. Moving to the top of the hierarchy shields the user from the lower-level details. At the
highest level, the user interaction is limited to the interface provided by application software such
as spreadsheet, word processor, and so on. The user is expected to have only a rudimentary knowl-
edge of how the system operates. Problem solving at this level, for example, involves composing
a letter using the word processor software.

At the next level, problem solving is done in one of the high-level languages such as C and
Java. A user interacting with the system at this level should have detailed knowledge of software
development. Typically, these users are application programmers. Level 4 users are knowledgeable
about the application and the high-level language that they would use to write the application
software. They may not, however, know internal details of the system unless they also happen to
be involved in developing system software such as device drivers, assemblers, linkers, and so on.

Both levels 4 and 5 are system independent, that is, independent of a particular processor used
in the system, For example, an application program written in C can be executed on a system with
an Intel processor or a PowerPC processor without modifying the source code. All we have to
do is recompile the program with a C compiler native to the target system. In contrast, software
development done at all levels below level 4 is system dependent.

Assembly language programming is referred to as low-level programming because each as-
sembly language instruction performs a much lower-level task compared to an instruction in a
high-level language. As a consequence, to perform the same task, assembly language code tends
to be much larger than the equivalent high-level language code.

Assembly language instructions are native to the processor used in the system. For example,
a program written in the Intel assembly language cannot be executed on the PowerPC processor.
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Level 5

Application program level
(Spreadsheet, Word Processor)

Increased Level 4 . System
level of independent
abstraction High-level language level
(C, Java)
_______ R LR
Level 3
Assembly fanguage level
System
dependent
Level 2

Machine language level

Operating system calls

Hardware level

Figure 1.1 A user’s view of a computer system.

Programming in the assembly language also requires knowledge about system internal details such
as the processor architecture, memory organization, and so on.

Machine language is a close relative of the assembly language. Typically, there is a one-to-one
correspondence between the assembly language and machine language instructions. The processor
understands only the machine language, whose instructions consist of strings of 1s and Os. We say
more on these two languages in the next section.
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Even though assembly language is considered a low-level language, programming in assembly
language will not expose you to all the nuts and bolts of the system. Our operating system hides
several of the low-level details so that the assembly language programmer can breathe easy. For
example, if we want to read input from the keyboard, we can rely on the services provided by the
operating system.

Well, ultimately there has to be something to execute the machine language instructions. This
is the system hardware, which consists of digital logic circuits and the associated support elec-
tronics. A detailed discussion of this topic is beyond the scope of this book. Books on computer
organization discuss this topic in detail.

What Is Assembly Language?

Assembly language is directly influenced by the instruction set and architecture of the processor.
In this book, we focus on the assembly language for the Intel 32-bit processors like the Pentium.
The assembly language code must be processed by a program in order to generate the machine
language code. Assembler is the program that translates the assembly language code into the
machine language.

NASM (Netwide Assembler), MASM (Microsoft Assembler), and TASM (Borland Turbo As-
sembler) are some of the popular assemblers for the Intel processors. In this book, we use the
NASM assembler. There are two main reasons for this selection: (i) It is a free assembler; and
(i1) NASM supports a variety of formats including the formats used by Microsoft Windows, Linux
and a host of others.

Are you curious as to how the assembly language instructions look like? Here are some exam-
ples:

inc result
mov class_size, 45

and maskl, 128
add marks, 10

The first instruction increments the variable result. This assembly language instruction is equiv-
alent to

result++;

in C. The second instruction initializes class_size to 45. The equivalent statement in C is
class_size = 45;

The third instruction performs the bitwise and operation on mask1 and can be expressed in C as
maskl = maskl & 128;

The last instruction updates marks by adding 10. In C, this is equivalent to
marks = marks + 10;

These examples illustrate several points:
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1. Assembly language instructions are cryptic.
2. Assembly language operations are expressed by using mnemonics (like and and inc).

3. Assembly language instructions are low level. For example, we cannot write the following
in the assembly language:

add marks,value
This instruction is invalid because two variables, marks and value, are not allowed in a

single instruction.

We appreciate the readability of the assembly language instructions by looking at the equiva-
lent machine language instructions. Here are some machine language examples:

Assembly language Operation Machine language (in hex)
nop No operation 90
inc result Increment FF060A00
mov class_size,45 Copy C7060C002D00
and mask,128 Logical and 80260E0080
add marks, 10 Integer addition 83060F000A

In the above table, machine language instructions are written in the hexadecimal number sys-
tem. If you are not familiar with this number system, see Appendix A for a quick review of number
systems.

It is obvious from these examples that understanding the code of a program in the machine
language is almost impossible. Since there is a one-to-one correspondence between the instruc-
tions of the assembly language and the machine language, it is fairly straightforward to translate
instructions from the assembly language to the machine language. As a result, only a masochist
would consider programming in a machine language. However, life was not so easy for some of
the early programmers. When microprocessors were first introduced, some programming was in
fact done in machine language!

Advantages of High-Level Languages

High-level languages are preferred to program applications, as they provide a convenient abstrac-
tion of the underlying system suitable for problem solving. Here are some advantages of program-
ming in a high-level language:

1. Program development is faster.
Many high-level languages provide structures (sequential, selection, iterative) that facilitate
program development. Programs written in a high-level language are relatively small com-
pared to the equivalent programs written in an assembly language. These programs are also
easier to code and debug.

2. Programs are easier to maintain.
Programming a new application can take from several weeks to several months and the
lifecycle of such an application software can be several years. Therefore, it is critical that
software development be done with a view of software maintainability, which involves ac-
tivities ranging from fixing bugs to generating the next version of the software. Programs
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written in a high-level language are easier to understand and, when good programming prac-
tices are followed, easier to maintain, Assembly language programs tend to be lengthy and
take more time to code and debug. As a result, they are also difficult to maintain.

3. Programs are portable.
High-level language programs contain very few processor-specific details. As a result, they
can be used with little or no modification on different computer systems. In contrast, assem-
bly language programs are processor-specific.

Why Program in Assembly Language?

The previous section gives enough reasons to discourage you from programming in the assem-
bly language. However, there are two main reasons why programming is still done in assembly
language: (i) efficiency, and (ii) accessibility to system hardware.

Efficiency refers to how “good” a program is in achieving a given objective. Here we consider
two objectives based on space (space-efficiency) and time (time-efficiency).

Space-efficiency refers to the memory requirements of a program, that is, the size of the ex-
ecutable code. Program A is said to be more space-efficient if it takes less memory space than
program B to perform the same task. Very often, programs written in the assembly language tend
to be more compact than those written in a high-level language.

Time-efficiency refers to the time taken to execute a program. Obviously a program that runs
faster is said to be better from the time-efficiency point of view. If we craft assembly language
programs carefully, they tend to run faster than their high-level language counterparts.

As an aside, we can also define a third objective: how fast a program can be developed (i.e.,
write code and debug). This objective is related to the programmer productivity, and assembly
language loses the battle to high-level languages as discussed in the last section.

The superiority of assembly language in generating compact code is becoming increasingly
less important for several reasons. First, the savings in space pertain only to the program code
and not to its data space. Thus, depending on the application, the savings in space obtained by
converting an application program from some high-level language to the assembly language may
not be substantial. Second, the cost of memory has been decreasing and memory capacity has
been increasing. Thus, the size of a program is not a major hurdle anymore. Finally, compil-
ers are becoming “smarter” in generating code that is both space- and time-efficient. However,
there are systems such as embedded controllers and handheld devices in which space-efficiency is
important.

One of the main reasons for writing programs in an assembly language is to generate code
that is time-efficient. The superiority of assembly language programs in producing efficient code
is a direct manifestation of specificity. That is, assembly language programs contain only the
code that is necessary to perform the given task. Even here, a “smart” compiler can optimize the
code that can compete well with its equivalent written in the assembly language. Although the
gap is narrowing with improvements in compiler technology, assembly language still retains its
advantage for now.

The other main reason for writing assembly language programs is to have direct control over
system hardware. High-level languages, on purpose, provide a restricted (abstract) view of the
underlying hardware. Because of this, it is almost impossible to perform certain tasks that require
access to the system hardware. For example, writing a device driver for a new scanner on the
market almost certainly requires programming in assembly language. Since assembly language
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does not impose any restrictions, you can have direct control over the system hardware. If you are
developing system software, you cannot avoid writing assembly language programs,

Typical Applications

We have identified three main advantages to programming in an assembly language.

1. Time-efficiency
2. Accessibility to hardware
3. Space-efficiency

Time-efficiency: Applications for which the execution speed is important fall under two categories:

1. Time convenience (to improve performance)
2. Time critical (to satisfy functionality)

Applications in the first category benefit from time-efficient programs because it is convenient or
desirable. However, time-efficiency is not absolutely necessary for their operation. For example,
a graphics package that scales an object instantaneously is more pleasant to use than the one that
takes noticeable time.

In time-critical applications, tasks have to be completed within a specified time period. These
applications, also called real-time applications, include aircraft navigation systems, process con-
trol systems, robot control software, communications software, and target acquisition (e.g., missile
tracking) software.

Accessibility to hardware: System software often requires direct control over the system hardware.
Examples include operating systems, assemblers, compilers, linkers, loaders, device drivers, and
network interfaces. Some applications also require hardware control. Video games are an obvious
example.

Space-efficiency: As mentioned before, for most systems, compactness of application code is not

a major concern. However, in portable and handheld devices, code compactness is an important
factor. Space-efficiency is also important in spacecraft control systems.

Summary

We introduced assembly language and discussed where it fits in the hierarchy of computer lan-
guages. Our discussion focused on the usefulness of high-level languages vis-a-vis the assembly
language. We noted that high-level languages are preferred, as their use aids in faster program
development, program maintenance, and portability. Assembly language, however, provides two
chief benefits: faster program execution, and access to system hardware. We give more details on
the assembly language in Parts V and VL.



PART 11

Computer Organization



Digital Logic Circuits

Viewing computer systems at the digital logic level exposes us to the nuts and bolts of the basic
hardware. The goal of this chapter is to cover the necessary digital logic background. Our dis-
cussion can be divided into three parts. In the first part, we focus on the basics of digital logic
circuits. We start off with a look at the basic gates such as AND, OR, and NOT gates. We intro-
duce Boolean algebra to manipulate logical expressions. We also explain how logical expressions
are simplified in order to get an efficient digital circuit implementation.

The second part introduces combinational circuits, which provide a higher level of abstraction
than the basic circuits discussed in the first part. We review several commonly used combinational
circuits including multiplexers, decoders, comparators, adders, and ALUS.

In the last part, we review sequential circuits. In sequential circuits, the output depends both
on the current inputs as well as the past history. This feature brings the notion of time into digital
logic circuits. We introduce system clock to provide this timing information, We discuss two types
of circuits: latches and flip-flops. These devices can be used to store a single bit of data. Thus,
they provide the basic capability to design memories. These devices can be used to build larger
memories, a topic covered in detail in the next chapter.

Introduction

A computer system has three main components: a central processing unit (CPU) or processor,
a memory unit, and input/output (I/O) devices. These three components are interconnected by
a system bus. The term bus is used to represent a group of electrical signals or the wires that
carry these signals. Figure 2.1 shows details of how they are interconnected and what actually
constitutes the system bus. As shown in this figure, the three major components of the system bus
are the address bus, data bus, and control bus.

The width of address bus determines the memory addressing capacity of the processor. The
width of data bus indicates the size of the data transferred between the processor and memory or
I/0 device. For example, the 8086 processor had a 20-bit address bus and a 16-bit data bus. The
amount of physical memory that this processor can address is 229 bytes, or 1 MB, and each data
transfer involves 16 bits. The Pentium processor, for example, has 32 address lines and 64 data
lines. Thus, it can address up to 232 bytes, or a 4 GB memory. Furthermore, each data transfer can
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Figure 2.1 Simplified block diagram of a computer system.

move 64 bits. In comparison, the Intel 64-bit processor Itanium uses 64 address lines and 128 data
lines.

The control bus consists of a set of control signals. Typical control signals include memory
read, memory write, I/O read, /O write, interrupt, interrupt acknowledge, bus request, and bus
grant. These control signals indicate the type of action taking place on the system bus. For ex-
ample, when the processor is writing data into the memory, the memory write signal is asserted.
Similarly, when the processor is reading from an I/O device, the 1/O read signal is asserted.

The system memory, also called main memory or primary memory, is used to store both pro-
gram instructions and data. I/O devices such as the keyboard and display are used to provide user
interface. I/O devices are also used to interface with secondary storage devices such as disks.

The system bus is the communication medium for data transfers. Such data transfers are called
bus transactions. Some examples of bus transactions are memory read, memory write, I/O read,
1/0 write, and interrupt. Depending on the processor and the type of bus used, there may be other
types of transactions. For example, the Pentium processor supports a burst mode of data transfer
in which up to four 64 bits of data can be transferred in a burst cycle.

Every bus transaction involves a master and a slave. The master is the initiator of the transac-
tion and the slave is the target of the transaction. For example, when the processor wants to read
data from the memory, it initiates a bus transaction, also called a bus cycle, in which the processor
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is the bus master and memory is the slave. The processor usually acts as the master of the system
bus, while components like memory are usually slaves. Some components may act as slaves for
some transactions and as masters for other transactions.

When there is more than one master device, which is typically the case, the device requesting
the use of the bus sends a bus request signal to the bus arbiter using the bus request control line.
If the bus arbiter grants the request, it notifies the requesting device by sending a signal on the
bus grant control line. The granted device, which acts as the master, can then use the bus for data
transfer. The bus-request-grant procedure is called bus protocol. Different buses use different bus
protocols. In some protocols, permission to use the bus is granted for only one bus cycle; in others,
permission is granted until the bus master relinquishes the bus.

The hardware that is responsible for executing machine language instructions can be built
using a few basic building blocks. These building blocks are called logic gates. These logic gates
implement the familiar logical operations such as AND, OR, NOT, and so on, in hardware. The
purpose of this chapter is to provide the basics of the digital hardware. The next two chapters
introduce memory organization and architecture of the Intel IA-32 processors.

Our discussion of digital logic circuits is divided into three parts. The first part deals with the
basics of digital logic gates. Then we look at two higher levels of abstractions—combinational and
sequential circuits. In combinational circuits, the output of the circuit depends solely on the current
inputs applied to the circuit. The adder is an example of a combinational circuit. The output of
an adder depends only on the current inputs. On the other hand, the output of a sequential circuit
depends not only on the current inputs but also on the past inputs. That is, output depends both on
the current inputs as well as on how it got to the current state. For example, in a binary counter, the
output depends on the current value. The next value is obtained by incrementing the current value
(in a way, the current state represents a snapshot of the past inputs). That is, we cannot say what
the output of a counter will be unless we know its current state. Thus, the counter is a sequential
circuit. We review both combinational and sequential circuits in this chapter.

Simple Logic Gates

You are familiar with the three basic logical operators: AND, OR, and NOT. Digital circuits to
implement these and other logical functions are called gates. Figure 2.2a shows the symbol no-
tation used to represent the AND, OR, and NOT gates. The NOT gate is often referred to as the
inverter. We have also included the truth table for each gate. A rruth table is a list of all possible
input combinations and their corresponding output. For example, if you treat a logical zero as
representing false and a logical 1 truth, you can see that the truth table for the AND gate represents
the logical AND operation.

Even though the three gates shown in Figure 2.2a are sufficient to implement any logical func-
tion, it is convenient to implement certain other gates. Figure 2.2b shows three popularly used
gates. The NAND gate is equivalent to an AND gate followed by a NOT gate. Similarly, the NOR
gates are a combination of the OR and NOT gates. The exclusive-OR (XOR) gate generates a 1
output whenever the two inputs differ. This property makes it useful in certain applications such
as parity generation.

Logic gates are in turn built using transistors. One transistor is enough to implement a NOT
gate. But we need three transistors to implement the AND and OR gates. It is interesting to note
that, contrary to our intuition, implementing the NAND and NOR gates requires only two transis-
tors. In this sense, transistors are the basic electronic components of digital hardware circuits. For
example, the Pentium processor introduced in 1993 consists of about 3 million transistors. It is
now possible to design chips with more than 100 million transistors.
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Figure 2.2 Simple logic gates: Logic symbols and truth tables.

There is a propagation delay associated with each gate. This delay represents the time required
for the output to react to an input. The propagation delay depends on the complexity of the circuit
and the technology used. Typical values for the TTL gates are in the range of a few nanoseconds
(about 5 to 10 ns). A nanosecond (ns) is 10 2 second.

In addition to propagation delay, other parameters should be taken into consideration in de-
signing and building logic circuits. Two such parameters are fanin and fanout. Fanin specifies
the maximum number of inputs a logic gate can have. Fanout refers to the driving capacity of an
output. Fanout specifies the maximum number of gates that the output of a gate can drive.

A small set of independent logic gates (such as AND, NOT, NAND, etc.) are packaged into
an integrated circuit (IC) chip, or “chip” for short. These ICs are called small-scale integrated
(SSI) circuits and typically consist of about 1 to 10 gates. Medium-scale integrated (MSI) circuits
represent the next level of integration (typically between 10 and 100 gates). Both SSI and MSI
were introduced in the late 1960s. LSI (large-scale integration), introduced in early 1970s, can
integrate between 100 and 10,000 gates on a single chip. The final degree of integration, VLSI
(very large scale integration), was introduced in the late 1970s and is used for complex chips such
as microprocessors that require more than 10,000 gates.
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Table 2.1 Truth tables for the majority and even-parity functions

Majority function Even-parity function
A B C|F A B C|F

0 0 OO 0 0 010

0 0 110 0 0 1|1

0 1 0|0 0 1 0|1

0 1 1|1 0 1 110

1 0 0O 1 0 01

1 0 171 1 0 110

1 1 0] 1 1 1 0|0

1 1 11 1 1 11

Logic Functions

Logic functions can be specified in a variety of ways. In a sense their expression is similar to
problem specification in software development. A logical function can be specified verbally. For
example, a majority function can be specified as: Output should be 1 whenever the majority of
the inputs is 1. Similarly, an even-parity function can be specified as: Output (parity bit) is 1
whenever there is an odd number of 1s in the input. The major problem with verbal specification
is the imprecision and the scope for ambiguity.

We can make this specification precise by using a truth table. In the truth table method, for
each possible input combination, we specify the output value. The truth table method makes sense
for logical functions as the alphabet consists of only O and 1. The truth tables for the 3-input
majority and even-parity functions are shown in Table 2.1.

The advantage of the truth table method is that it is precise. This is important if you are
interfacing with a client who does not understand other more concise forms of logic function
expression. The main problem with the truth table method is that it is cumbersome as the number
of rows grows exponentially with the number of logical variables. Imagine writing a truth table
for a 10-variable function—it requires 29 = 1024 rows!

We can also use logical expressions to specify a logical function. Logical expressions use the
dot, +, and overbar to represent the AND, OR, and NOT operations, respectively. For example,
the output of the AND gate in Figure 2.2 is written as F = A - B. Assuming that single letters are
used for logical variables, we often omit the dot and write the previous AND function as F = AB.
Similarly, the OR function is written as F = A + B. The output of the NOT gate is expressed as
F = A. Some authors use a prime to represent the NOT operation as in F = A’ mainly because of
problems with typesetting the overbar.
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Figure 2.3 Logical circuit to implement the 3-input majority function.

The logical expressions for our 3-input majority and even-parity functions are shown below:

3-input majority function=AB + BC+ AC,
3-input even-parity function=ABC+ABC+ABC+ABC.

An advantage of this form of specification is that it is compact while it retains the precision of
the truth table method. Another major advantage is that logical expressions can be manipulated to
come up with an efficient design. We say more on this topic later.

The final form of specification uses a graphical notation. Figure 2.3 shows the logical circuit
to implement the 3-input majority function. As with the last two methods, it is also precise but is
more useful for hardware engineers to implement logical functions.

A logic circuit designer may use all the three forms during the design of a logic circuit. A
simple circuit design involves the following steps:

First we have to obtain the truth table from the input specifications.
Then we derive a logical expression from the truth table.

We do not want to implement the logical expression derived in the last step as it often
contains some redundancy, leading to an inefficient design. For this reason, we simplify the
logical expression.

In the final step, we implement the simplified logical expression. To express the implemen-
tation, we use the graphical notation.

The following sections give more details on these steps.
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Figure 2.4 Logic circuit for the 3-input majority function using the bubble notation.

Bubble Notation

In large circuits, drawing inverters can be avoided by following what is known as the “bubble”
notation. The use of the bubble notation simplifies the circuit diagrams. To appreciate the reduced
complexity, compare the bubble notation circuit for the 3-input majority function in Figure 2.4
with that in Figure 2.3.

Deriving Logical Expressions

We can write a logical expression from a truth table in one of two forms: sum-of-products (SOP)
and product-of-sums (POS) forms. In sum-of-products form, we specify the combination of inputs
for which the output should be 1. In product-of-sums form, we specify the combinations of inputs
for which the output should be 0.

Sum-of-Products Form

In this form, each input combination for which the output is 1 is expressed as an and term. This
is the product term as we use - to represent the AND operation. These product terms are ORed
together. That is why it is called sum-of-products as we use + for the OR operation to get the
final logical expression. In deriving the product terms, we write the variable if its value is 1 or its
complement if 0.

Let us look at the 3-input majority function. The truth table is given in Table 2.1. There are
four 1 outputs in this function. So, our logical expression will have four product terms. The first
product term we write is for row 4 with a 1 output. Since A has a value of 0, we use its complement
in the product term while using B and C as they have 1 as their value in this row. Thus, the product
term for this row is A B C. The product term for row 6 is A B C. Product terms for rows 7 and 8
are AB C and A B C, respectively. ORing these four product terms gives the logical expression as
ABC+ABC+ABC+ABC.
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Product-of-Sums Form

This is the dual form of the sum-of-products form. We essentially complement what we have done
to obtain the sum-of-products expression. Here we look for rows that have a 0 output. Each such
row input variable combination is expressed as an OR term. In this OR term, we use the variable
if its value in the row being considered is O or its complement if 1. We AND these sum terms to
get the final product-of-sums logical expression. The product-of-sums expression for the 3-input
majority functionis (A+B+C) (A+B+C)(A+B+C) (A +B+0).

This logical expression and the sum-of-products expressions derived before represent the same
truth table. Thus, despite their appearance, these two logical expressions are logically equivalent.
We can prove this logical equivalence by using the algebraic manipulation method described in
the next section.

Simplifying Logical Expressions

The sum-of-products and product-of-sums logical expressions can be used to come up with a
crude implementation that uses only the AND, OR, and NOT gates. The implementation process
is straightforward, We illustrate the process for sum-of-products expressions. Figure 2.3 shows the
brute force implementation of the sum-of-products expression we derived for the 3-input majority
function. If we simplify the logical expression, we can get a more efficient implementation (see
Figure 2.5).

Let us now focus on how we can simplify the logical expressions obtained from truth tables.
Our focus is on sum-of-products expressions. There are three basic techniques; the algebraic ma-
nipulation, Karnaugh map, and Quine-McCluskey methods. Algebraic manipulation uses Boolean
laws to derive a simplified logical expression. The Karnaugh map method uses a graphical form
and is suitable for simplifying logical expressions with a small number of variables. The last
method is a tabular method and is particularly suitable for simplifying logical expressions with a
large number of variables. In addition, the Quine-McCluskey method can be used to automate
the simplification process. In this section, we discuss the first two methods (for details on the last
method, see Fundamentals of Computer Organization and Design by Dandamudi).

Algebraic Manipulation

In this method, we use the Boolean algebra to manipulate logical expressions. We need Boolean
identities to facilitate this manipulation. These are discussed next. Following this discussion, we
show how the identities developed can be used to simplify logical expressions.

Table 2.2 presents some basic Boolean laws. For most laws, there are two versions: an and
version and an or version. If there is only one version, we list it under the and version. We can
transform a law from the and version to the or version by replacing each 1 witha 0, O witha 1, +
with a -, and - with a +. This relationship is called duality.

We can use the Boolean laws to simplify the logical expressions. We illustrate this method by
looking at the sum-of-products expression for the majority function. A straightforward simplifica-
tion leads us to the following expression:

Majority function=ABC 4+ ABC + ABC + ABC
| —
AB
=ABC + ABC + AB.
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Table 2.2 Boolean laws

Name and version or version
Identity z-1 ==z z+0 =z

Complement z-T =0 x+7T =1

Commutative Ty =y x r+y = ytzx
Distribution z-(y+z) = (z-y)+(z 2) z+(y-z) = (x+y) (z+2)
Idempotent T x =z T4+ =2

Null z-0=20 z+1 =1

Involution T =2z —_
Absorption z-{(z+y) ==« x4 (zy) =z
Associative z (y 2)=(z-y) -z e+ (y+z) = (z+y)+2
de Morgan Ty =ZIT+7 X+y =77y

Do you know if this is the final simplified form? This is the hard part in applying algebraic
manipulation (in addition to the inherent problem of which rule should be applied). This method
definitely requires good intuition, which often implies that one needs experience to know if the
final form has been derived. In our example, the expression can be further simplified. We start by
rewriting the original logical expression by repeating the term A B C twice and then simplifying
the expression as shown below.

Majority function=ABC + ABC + ABC + ABC + ABC + ABC
Added oxtra
=ABC + ABC + ABC + ABC + ABC + ABC
BC AC AB
=BC+AC+AB.

This is the final simplified expression. In the next section, we show a simpler method to derive
this expression. Figure 2.5 shows an implementation of this logical expression.

We can see the benefits of implementing the simplified logical expressions by comparing this
implementation with the one shown in Figure 2.3. The simplified version reduces not only the gate
count but also the gate complexity.

Karnaugh Map Method

This is a graphical method and is suitable for simplifying logical expressions with a small number
of Boolean variables (typically six or less). It provides a straightforward method to derive min-
imal sum-of-products expressions. This method is preferred to the algebraic method as it takes
the guesswork out of the simplification process. For example, in the previous majority function
example, it was not straightforward to guess that we have to duplicate the term A B C twice in
order to get the final logical expression.
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Figure 2.5 An implementation of the simplified 3-input majority function.
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Figure 2.6 Maps used for simplifying 2-, 3-, and 4-variable logical expressions using the Karnaugh
map method.

The Karnaugh map method uses maps to represent the logical function output. Figure 2.6
shows the maps used for 2-, 3-, and 4-variable logical expressions. Each cell in these maps rep-
resents a particular input combination. Each cell is filled with the output value of the function
corresponding to the input combination represented by the cell. For example, the bottom left-hand
cell represents the input combination A = | and B = 0 for the two-variable map (Figure 2.6a),
A =1,B =0, and C = 0 for the three-variable map (Figure 2.6b), and A=1,B=0,C =0, and
D =0 for the four-variable map (Figure 2.6¢).

The basic idea behind this method is to label cells such that the neighboring cells differ in only
one input bit position. This is the reason why the cells are labeled 00, 01, 11, 10 (notice the change
in the order of the last two labels from the normal binary number order). What we are doing is
labeling with a Hamming distance of 1. Hamming distance is the number of bit positions in which
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Figure 2.7 Three-variable logical expression simplification using the Karnaugh map method: (a)
majority function; (b) even-parity function.

two binary numbers differ. This labeling is also called gray code. Why are we so interested in this
gray code labeling? Simply because we can then eliminate a variable as the following holds:

ABCD + ABCD = ABD.

Figure 2.7 shows how the maps are used to obtain minimal sum-of-products expressions for
three-variable logical expressions. Notice that each cell is filled with the output value of the
function corresponding to the input combination for that cell. After the map of a logical function
is obtained, we can derive a simplified logical expression by grouping neighboring cells with 1 into
areas. Let us first concentrate on the majority function map shown in Figure 2.7a. The two cells
in the third column are combined into one area. These two cells represent inputs A B C (top cell)
and A B C (bottom cell). We can, therefore, combine these two cells to yield a product term B C.
Similarly, we can combine the three 1s in the bottom row into two areas of two cells each. The
corresponding product terms for these two areas are A C and A B as shown in Figure 2.7a. Now we
can write the minimal expression as B C + A C + A B, which is what we got in the last section using
the algebraic simplification process. Notice that the cell for AB C (third cell in the bottom row)
participates in all three areas. This is fine. What this means is that we need to duplicate this term
two times to simplify the expression. This is exactly what we did in our algebraic simplification
procedure.

We now have the necessary intuition to develop the required rules for simplification. These
simple rules govern the simplification process:

1. Form regular areas that contain 2° cells, where i > 0. What we mean by a regular area is
that they can be either rectangles or squares. For example, we cannot use an “L” shaped
area.

2. Use a minimum number of areas to cover all cells with 1. This implies that we should form
as large an area as possible and redundant areas should be eliminated.

Once minimal areas have been formed, we write a logical expression for each area. These rep-
resent terms in the sum-of-products expressions. We can write the final expression by connecting
the terms with OR.



22 Assembly Language Programming in Linux

AB
BC /
AN_ 00 0 11/ 19
0] n| oo ] ( 1
1|1 ) 1 o |1
/’
AB

Figure 2.8 An example Karnaugh map that uses the fact that the first and last columns are adjacent.

In Figure 2.7a, we cannot form a regular area with four cells. Next we have to see if we can
form areas of two cells. The answer is yes. Let us assume that we first formed a vertical area
(labeled B C). That leaves two 1s uncovered by an area. So, we form two more areas to cover
these two 1s. We also make sure that we indeed need these three areas to cover all 1s. Our next
step is to write the logical expression for these areas.

When writing an expression for an area, look at the values of a variable that is 0 as well as 1.
For example, for the area identified by B C, the variable A has 0 and 1. That is, the two cells we
are combining represent A B C and A B C. Thus, we can eliminate variable A. The variables B and
C have the same value for the whole area. Since they both have the value 1, we write B C as the
expression for this area. It is straightforward to see that the other two areas are represented by AC
and AB.

If we look at the Karnaugh map for the even-parity function (Figure 2.7b), we find that we
cannot form areas bigger than one cell. This tells us that no further simplification is possible for
this function.

Note that, in the three-variable maps, the first and last columns are adjacent. We did not need
this fact in our previous two examples. You can visualize the Karnaugh map as a tube, cut open to
draw in two dimensions. This fact is important because we can combine these two columns into a
square area as shown in Figure 2.8. This square area is represented by C.

You might have noticed that we can eliminate log,n variables from the product term, where n
is the number of cells in the area. For example, the four-cell square in Figure 2.8 eliminates two
variables from the product term that represents this area.

Figure 2.9 shows an example of a four-variable logical expression simplification using the
Karnaugh map method. It is important to remember the fact that first and last columns as well
as first and last rows are adjacent. Then it is not difficult to see why the four corner cells form
a regular area and are represented by the expression BD. In writing an expression for an area,
look at the input variables and ignore those that assume both 0 and 1. For example, for this weird
square area, looking at the first and last rows, we notice that variable A has O for the first row and
1 for the last row. Thus, we eliminate A. Since B has a value of 0, we use B. Similarly, by looking
at the first and last columns, we eliminate C. We use D as D has a value of 0. Thus, the expression
for this area is BD. Following our simplification procedure to cover all cells with 1, we get the
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Figure 2.9 Different minimal expressions will result depending on the groupings.

following minimal expression for Figure 2.9a:
BD + ACD + ABD.

We also note from Figure 2.9 that a different grouping leads to a different minimal expression.
The logical expression for Figure 2.9b is

BD + ABC + ABD.

Even though this expression is slightly different from the logical expression obtained from Fig-
ure 2.9a, both expressions are minimal and logically equivalent.

The best way to understand the Karnaugh map method is to practice until you develop your
intuition. After that, it is unlikely you will ever forget how this method works even if you have not
used it in years.

Combinational Circuits

So far, we have focused on implementations using only the basic gates. One key characteristic of
the circuits that we have designed so far is that the output of the circuit is a function of the inputs.
Such devices are called combinational circuits as the output can be expressed as a combination of
the inputs. We continue our discussion of combinational circuits in this section.

Although gate-level abstraction is better than working at the transistor level, a higher level of
abstraction is needed in designing and building complex digital systems. We now discuss some
combinational circuits that provide this higher level of abstraction.

Higher-level abstraction helps the digital circuit design and implementation process in several
ways. The most important ones are the following:

1. Higher-level abstraction helps us in the logical design process as we can use functional
building blocks that typically require several gates to implement. This, therefore, reduces
the complexity.
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Figure 2.10 A 4-data input multiplexer block diagram and truth table.

2. The other equally important point is that the use of these higher-level functional devices
reduces the chip count to implement a complex logical function.

The second point is important from the practical viewpoint. If you look at a typical motherboard,
these low-level gates take a lot of area on the printed circuit board (PCB). Even though the low-
level gate chips were introduced in the 1970s, you still find them sprinkled on your PCB along
with your Pentium processor. In fact, they seem to take more space. Thus, reducing the chip count
is important to make your circuit compact. The combinational circuits provide one mechanism to
incorporate a higher level of integration.

The reduced chip count also helps in reducing the production cost (fewer ICs to insert and sol-
der) and improving the reliability. Several combinational circuits are available for implementation.
Here we look at a sampler of these circuits.

Multiplexers

A multiplexer (MUX) is characterized by 2™ data inputs, n selection inputs, and a single output.
The block diagram representation of a 4-input multiplexer (4-to-1 multiplexer) is shown in Fig-
ure 2.10. The multiplexer connects one of 2™ inputs, selected by the selection inputs, to the output.
Treating the selection input as a binary number, data input I; is connected to the output when the
selection input is ¢ as shown in Figure 2.10.

Figure 2.11 shows an implementation of a 4-to- 1 multiplexer. If you look closely, it somewhat
resembles our logic circuit used by the brute force method for implementing sum-of-products
expressions (compare this figure with Figure 2.3 on page 16). This visual observation is useful in
developing our intuition about one important property of the multiplexers: we can implement any
logical function using only multiplexers. The best thing about using multiplexers in implementing
a logical function is that you don’t have to simplify the logical expression. We can proceed directly
from the truth table to implementation, using the multiplexer as the building block.

How do we implement a truth table using the multiplexer? Simple. Connect the logical vari-
ables in the logical expression as the selection inputs and the function outputs as constants to the
data inputs. To follow this straightforward implementation, we need a 2° data input multiplexer
with b selection inputs to implement a b variable logical expression. The process is best illustrated
by means of an example.

Figure 2.12 shows how an 8-to-1 multiplexer can be used to implement our two running ex-
amples: the 3-input majority and 3-input even-parity functions. From these examples, you can see
that the data input is simply a copy of the output column in the corresponding truth table. You just
need to take care how you connect the logical variables: connect the most significant variable in
the truth table to the most significant selection input of the multiplexer as shown in Figure 2,12,
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Figure 2.11 A 4-to-1 multiplexer implementation using the basic gates.
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Figure 2.12 Two example implementations using an 8-to-1 multiplexer.

Demultiplexers

The demultiplexer (DeMUX) performs the complementary operation of a multiplexer. As in the
multiplexer, a demultiplexer has n selection inputs. However, the roles of data input and output are
reversed. In a demultiplexer with n selection inputs, there are 2™ data outputs and one data input.
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Figure 2.13 Demultiplexer block diagram and its implementation.

Depending on the value of the selection input, the data input is connected to the corresponding
data output. The block diagram and the implementation of a 4-data out demultiplexer is shown in
Figure 2.13.

Decoders

The decoder is another basic building block that is useful in selecting one-out-of-N lines. The
input to a decoder is an I-bit binary (i.e., encoded) number and the output is 2 bits of decoded
data. Figure 2,14 shows a 2-to-4 decoder and its logical implementation. Among the 2/ outputs
of a decoder, only one output line is 1 at any time as shown in the truth table (Figure 2.14). In the
next chapter we show how decoders are useful in designing system memory.

Comparators

Comparators are useful for implementing relational operations such as =, <, >, and so on. For
example, we can use XOR gates to test whether two numbers are equal. Figure 2.15 shows a 4-
bit comparator that outputs 1 if the two 4-bit input numbers A = A3A;A1Ag and B = B3B,B1Bg
match. However, implementing < and > is more involved than testing for equality. While equality
can be established by comparing bit by bit, positional weights must be taken into consideration
when comparing two numbers for < and >. We leave it as an exercise to design such a circuit.

Adders

We now look at adder circuits that provide the basic capability to perform arithmetic operations.
The simplest of the adders is called a half-adder, which adds two bits and produces a sum and
carry output as shown in Figure 2.16a. From the truth table it is straightforward to see that the
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Figure 2.14 Decoder block diagram and its implementation.

D

Figure 2.15 A 4-bit comparator implementation using XOR gates.

carry output C,,; can be generated by a single AND gate and the sum output by a single XOR
gate.

The problem with the half-adder is that we cannot use it to build adders that can add more than
two 1-bit numbers. If we want to use the 1-bit adder as a building block to construct larger adders
that can add two N -bit numbers, we need an adder that takes the two input bits and a potential
carry generated by the previous bit position. This is what the full-adder does. A full adder takes
three bits and produces two outputs as shown in Figure 2.16b. An implementation of the full-adder
is shown in Figure 2.16.

Using full adders, it is straightforward to build an adder that can add two N-bit numbers. An
example 16-bit adder is shown in Figure 2.17. Such adders are called ripple-carry adders as the
carry ripples through bit positions 1 through 15. Let us assume that this ripple-carry adder is using
the full adder shown in Figure 2.16b. If we assume a gate delay of 5 ns, each full adder takes three
gate delays (=15 ns) to generate C,,¢. Thus, the 16-bit ripple-carry adder shown in Figure 2.17
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Figure 2.16 Full- and half-adder truth tables and implementations.

takes 16 x 15 =240 ns. If we were to use this type of adder circuit in a system, it cannot run more
than 1/240 ns = 4 MHz with each addition taking about a clock cycle.

How can we speed up multibit adders? If we analyze the reasons for the “slowness” of the
ripple-carry adders, we see that carry propagation is causing the delay in producing the final N-bit
output. If we want to improve the performance, we have to remove this dependency and determine
the required carry-in for each bit position independently. Such adders are called carry lookahead
adders. The main problem with these adders is that they are complex to implement for long words.
To see why this is so and also to give you an idea of how each full adder can generate its own carry-
in bit, let us look at the logical expression that should be implemented to generate the carry-in.
Carry-out from the rightmost bit position Cy is obtained as

Co=AgBg.

C, is given by
Ci=Co(A; + By) + A1 By.

By substituting Ag By for Cy, we get

Ci=A0Bo A1 + AgBgB1 + A1 B;.
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Figure 2.17 A 16-bit ripple-carry adder using the full adder building blocks.

Similarly, we get C, as

C; = Ci(A2 + Ba) + A2 By
= AsAogBopA; + A2 AgBoB1 + Az A1 By
+ B AgBogA; + Bo AgBoB: + Bo A1 By + Az By,

Using this procedure, we can generate the necessary carry-in inputs independently. The logical
expression for C; is a sum-of-products expression involving only A and B, ¢ < k < 0. Thus,
independent of the length of the word, only two gate delays are involved, assuming a single gate
can implement each product term. The complexity of implementing such a circuit makes it im-
practical for more than 8-bit words. Typically, carry lookahead is implemented at the 4- or 8-bit
level. We can apply our ripple-carry method of building higher word length adders by using these
4- or 8-bit carry lookahead adders.

Programmable Logic Devices

We have seen several ways of implementing sum-of-products expressions, Programmable logic
devices provide yet another way to implement these expressions. There are two types of these
devices that are very similar to each other. The next two subsections describe these devices.

Programmable Logic Arrays (PLAS)

PLA is a field programmable device to implement sum-of-product expressions. It consists of an
AND array and an OR array as shown in Figure 2.18. A PLA takes IV inputs and produces M
outputs. Each input is a logical variable. Each output of a PLA represents a logical function output.
Internally, each input is complemented, and a total of 2V inputs is connected to each AND gate
in the AND array through a fuse. The example PL.A, shown in Figure 2.18, is a 2 x 2 PLA with
two inputs and two outputs. Each AND gate receives four inputs: 1o, Iy, I1, and I;. The fuses are
shown as small white rectangles. Each AND gate can be used to implement a product term in the
sum-of-products expression.
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Figure 2.18 An example PLA with two inputs and two outputs.

The OR array is organized similarly except that the inputs to the OR gates are the outputs of
the AND array. Thus, the number of inputs to each OR gate is equal to the number of AND gates
in the AND array. The output of each OR gate represents a function output.

When the chip is shipped from the factory, all fuses are intact. We program the PLA by
selectively blowing some fuses (generally by passing a high current through them). The chip
design guarantees that an input with a blown fuse acts as 1 for the AND gates and as O for the OR
gates.

Figure 2.19 shows an example implementation of functions Fo and F;. The rightmost AND
gate in the AND array produces the product term A B. To produce this output, the inputs of this
gate are programmed by blowing the second and fourth fuses that connect inputs A and B, respec-
tively, Programming a PLA to implement a sum-of-products function involves implementing each
product term by an AND gate. Then a single OR gate in the OR array is used to obtain the final
function. In Figure 2.19, we are using two product terms generated by the middle two AND gates
(P; and P3) as inputs to both OR gates as these two terms appear in both Fg and F;.

To simplify specification of the connections, the notation shown in Figure 2.20 is used. Each
AND and OR gate input is represented by a single line. A x is placed if the corresponding input
is connected to the AND or OR gates as shown in this figure.

Programmable Array Logic Devices (PALs)

PL.As are very flexible in implementing sum-of-products expressions. However, the cost of pro-
viding a large number of fuses is high. For example, a 12 x 12 PLA with a 50-gate AND array
and 12-gate OR array requires 24 x 50 = 1200 fuses for the AND array and 50 x 12 = 600 fuses
for the OR array for a total of 1800 fuses. We can reduce this complexity by noting that we can
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Figure 2.20 A simplified notation to show implementation details of a PLA.

retain most of the flexibility by cutting down the set of fuses in the OR array. This is the rationale
for PALs. Due to their cost advantage, most manufacturers produce only PALs.

PALs are very similar to PLAs except that there is no programmable OR array. Instead, the
OR connections are fixed. Figure 2.21 shows a PAL with the bottom OR gate connected to the
leftmost two product terms and the other OR gate connected to the other two product terms. As a
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Figure 2.21 Programmable array logic device with fixed OR gate connections. We have used the
simplified notation to indicate the connections in the AND array.

result of these connections, we cannot implement the two functions shown in Figure 2.20. This is
the loss of flexibility that sometimes may cause problems but in practice is not such a big problem.
But the advantage of PAL devices is that we can cut down all the OR array fuses that are present in
a PLA. In the last example, we reduce the number of fuses by a third—from 1800 fuses to 1200.

Arithmetic and Logic Units

We are now ready to design our own arithmetic and logic unit. The ALU forms the computational
core of a processor, performing basic arithmetic and logical operations such as integer addition,
subtraction, and logical AND and OR functions. Figure 2.22 shows an example ALU that can per-
form two arithmetic functions (addition and subtraction) and two logical functions (AND and OR).
We use a multiplexer to select one of the four functions. The implementation is straightforward
except that we implement the subtractor using a full adder by negating the B input.

To see why this is so, you need to understand the 2’s complement representation for nega-
tive numbers. A detailed discussion of this number representation is given in Appendix A (see
page 468). Here we give a brief explanation. The operation (z — y) is treated as adding —y to .
That is, (x — y) is implemented as = + (—y) so that we can use an adder to perform subtraction.
For example, 12 — 5 is implemented by adding —5 to 12. In the 2’s complement notation, —5 is
represented as 1011B, which is obtained by complementing the bits of number 5 and adding 1.
This operation produces the correct result as shown below:
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Figure 2.22 A simple 1-bit ALU that can perform addition, subtraction, AND, and OR operations.
The carry output of the circuit is incomplete in this figure as a better and more efficient circuit is
shown in the next figure. Note: “+" and “-” represent arithmetic addition and subtraction operations,
respectively.

12D =1100B
-5D=1011B
0111B = 7D

To implement the subtract operation, we first convert B to —B in 2’s complement representa-
tion. We get the 2’s complement representation by complementing the bits and adding 1. We need
an inverter to complement, The required 1 is added via Cij,.

Since the difference between the adder and subtractor is really the negation of the one input,
we can get a better circuit by using a programmable inverter. Figure 2.23 shows the final design
with the XOR gate acting as a programmable inverter. Remember that, when one of the inputs
is one, the XOR gate acts as an inverter for the other input. We can use these 1-bit ALUs to get
word-length ALUs. Figure 2.24 shows an implementation of a 16-bit ALU using the 1-bit ALU
of Figure 2.23.

To illustrate how the circuit in Figure 2.24 subtracts two 16-bit numbers, let us consider an
example with A = 1001 1110 1101 1110 and B = 0110 1011 0110 1101. Since B is internally
complemented, we get B = 1001 0100 1001 0010. Now we add A and B with the carry-in to the
rightmost bit set to 1 (through the F bit):
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Figure 2.23 A better 1-bit ALU that uses a single full adder for both addition and subtraction oper-
ations.
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Figure 2.24 A 16-bit ALU built with the 1-bit ALU: The F function bit sets Ci, to 1 for the subtract
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which is the correct value. If B is larger than A, we get a negative number. In this case, the result
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Figure 2.25 Main components of a sequential circuit.

will be in the 2’s complement form. Also note that, in the 2’s complement representation, we
ignore any carry generated out of the most significant bit.

Sequential Circuits

The output of a combinational circuit depends only on the current inputs. In contrast, the output
of a sequential circuit depends both on the current input values as well as the past inputs. This
dependence on past inputs gives the property of “memory” for sequential circuits.

In general, the sequence of past inputs is encoded into a set of state variables. There is a feed-
back path that feeds these variables to the input of a combinational circuit as shown in Figure 2.25.
Sometimes, this feedback consists of a simple interconnection of some outputs of the combina-
tional circuit to its inputs. For the most part, however, the feedback circuit consists of elements
such as flip-flops that we discuss later. These elements themselves are sequential circuits that can
remember or store the state information. Next we introduce system clock to incorporate time into
digital circuits.

System Clock

Digital circuits can operate in asynchronous or synchronous mode. Circuits that operate in asyn-
chronous mode are independent of each other, That is, the time at which a change occurs in one
circuit has no relation to the time a change occurs in another circuit. Asynchronous mode of oper-
ation causes serious problems in a typical digital system in which the output of one circuit goes as
input to several others. Similarly, a single circuit may receive outputs of several circuits as inputs.
Asynchronous mode of operation implies that all required inputs to a circuit may not be valid at
the same time.

To avoid these problems, circuits are operated in synchronous mode. In this mode, all circuits
in the system change their state at some precisely defined instants. The clock signal provides such
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Figure 2.26 Three types of clock signals with the same clock period.

a global definition of time instants at which changes can take place. Implicit in this definition is
the fact that the clock signal also specifies the speed at which a circuit can operate.

A clock is a sequence of 1s and Os as shown in Figure 2.26. We refer to the period during
which the clock is 1 as the ON period and the period with 0 as the OFF period. Even though we
normally use symmetric clock signals with equal ON and OFF periods as in Figure 2.26a, clock
signals can take asymmetric forms as shown in Figures 2.26b and c.

The clock signal edge going from O to 1 is referred to as the rising edge (also called the positive
or leading edge). Analogously, we can define a falling edge as shown in Figure 2.26a. The falling
edge is also referred to as a negative or trailing edge.

A clock cycle is defined as the time between two successive rising edges as shown in Fig-
ure 2.26. You can also treat the period between successive falling edges as a clock cycle.

Clock rate or frequency is measured in number of cycles per second. This number is referred
to as Hertz (Hz). The clock period is defined as the time represented by one clock cycle. All three
clock signals in Figure 2.26 have the same clock period.

1

Clock perlod = Wequency

For example, a clock frequency of 1 GHz yields a clock period of
1
1x 109

Note that one nanosecond (ns) is equal to 10 =2 second. ,
The clock signal serves two distinct purposes in a digital circuit. It provides the global syn-
chronization signal for the entire system. Each clock cycle provides three distinct epochs: start of

= 1ns.



Chapter 2 « Digital Logic Circuits 37

3 S R|Qu
0 0
v oL Qn
0 1] 0
1 o 1
R Q ~—R Qf— —+——0—
() Circuit diagram (b) Logic symbol (¢) Truth table

Figure 2.27 A NOR gate implementation of the SR latch.

a clock cycle, end of a clock cycle, and an intermediate point at which the clock signal changes
levels. This intermediate point is in the middle of a clock cycle for symmetric clock signals. The
other equally important purpose is to provide timing information in the form of a clock period.

Latches

It is time to look at some simple sequential circuits that can remember a single bit value. We
discuss latches in this section. Latches are level-sensitive devices in that the device responds to the
input signal levels (high or low). In contrast, flip-flops are edge-triggered. That is, output changes
only at either the rising or falling edge. We look at flip-flops in the next section.

SR Latch

The SR latch is the simplest of the sequential circuits that we consider. It requires just two NOR
gates. The feedback in this latch is a simple connection from the output of one NOR gate to the
input of the other NOR gate as shown in Figure 2.27a. The logic symbol for the SR latch is shown
in Figure 2.27b.

A simplified truth table for the SR latch is shown in Figure 2.27c. The outputs of the two
NOR gates are labeled Q and Q because these two outputs should be complementary in normal
operating mode. We use the notation Q,, to represent the current value (i.e., current state) and
Qu+1 to represent the next value (i.e., next state).

Let us analyze the truth table. First consider the two straightforward cases. When S = 0 and
R =1, we can see that independent of the current state, output Q is forced to be 0 as R is 1. Thus,
the two inputs to the upper NOR gate are 0. This leads @Q to be 1. This is a stable state. That is, Q
and Q can stay at 0 and 1, respectively. You can verify that when S = 1 and R = 0, another stable
state Q = 1 and Q = 0 results.

When both S and R are zero, the next output depends on the current output. Assume that the
current output is Q = 1 and Q =0. Thus, when you change inputs from S=1andR=0to S=R =0,
the next state 3,1 remains the same as the current state Q,,. Now assume that the current state
is Q =0 and Q = 1. It is straightforward to verify that changing inputs from S =0 andR = | to
S =R =0, leaves the output unchanged. We have summarized this behavior by placing Q ,, as the
output for S =R = 0 in the first row of Figure 2.27c.

What happens when both S and R are 1?7 As long as these two inputs are held high, both
outputs are forced to take 0. We struck this state from the truth table to indicate that this input
combination is undesirable. To see why this is the case, consider what happens when S and R
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Figure 2.28 Clocked SR latch.

inputs are changed from S =R =1 to S =R = 0. It is only in theory that we can assume that both
inputs change simultaneously. In practice, there is always some finite time difference between the
two signal changes. If the S input goes low earlier than the R signal, the sequence of input changes
is SR =11 — 01 — 00. Because of the intermediate state SR = 01, the output will be Q = 0 and
Q=1

If, on the other hand, the R signal goes low before the S signal does, the sequence of input
changes is SR = 11 — 10 — 00. Because the transition goes through the SR = 10 intermediate
state, the output will be Q = 1 and Q = 0. Thus, when the input changes from 11 to 00, the output
is indeterminate. This is the reason we want to avoid this state.

The inputs S and R stand for “Set” and “Reset,” respectively. When the set input is high (and
reset is low), Q is set (i.e., Q = 1). On the other hand, if set is 0 and reset is 1, Q is reset or cleared
(ie.,Q=0).

From this discussion, it is clear that this latch is level sensitive. The outputs respond to changes
in input levels. This is true for all the latches.

We notice that this simple latch has the capability to store a bit. To write 1 into this latch,
set SR as 10; to write 0, use SR = 01. To retain a stored bit, keep both S and R inputs at 0. In
summary, we have the capacity to write O or | and retain it as long as there is power to the circuit.
This is the basic 1-bit cell that static RAMs use. Once we have the design to store a single bit, we
can replicate this circuit to store wider data as well as multiple words. We look at memory design
issues in the next chapter.

Clocked SR Latch

A basic problem with the SR latch is that the output follows the changes in the input. If we want
to make the output respond to changes in the input at specific instants in order to synchronize with
the rest of the system, we have to modify the circuit as shown in Figure 2.28a. The main change is
that a clock input is used to gate the S and R inputs. These inputs are passed onto the original SR
latch only when the clock signal is high. The inputs have no effect on the output when the clock
signal is low. When the clock signal is high, the circuit implements the truth table of the SR latch
given in Figure 2.27c. This latch is level sensitive as well. As long as the clock signal is high, the
output responds to the SR inputs.
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Figure 2.29 D latch uses an inverter to avoid the SR = 11 input combination.
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Figure 2.30 Logic symbol notation for latches and flip-flops: (a) high level-sensitive latch; (b) low
level-sensitive latch; (c) positive edge-triggered flip-flop; (d) negative edge-triggered flip-flop.

D Latch

A problem with both versions of SR latches is that we have to avoid the SR = 11 input combination.
This problem is solved by the D latch shown in Figure 2.29a. We use a single inverter to provide
only complementary inputs at S and R inputs of the clocked SR latch. To retain the value, we
maintain the clock input at 0. The logic symbol and the truth table for the D latch clearly show
that it can store a single bit.

Storing a bit in the D-latch is straightforward. All we have to do is feed the data bit to the D
input and apply a clock pulse to store the bit. Once stored, the latch retains the bit as long as the
clock input is zero. This simple circuit is our first 1-bit memory. In the next chapter, we show how
we can use this basic building block to design larger memories.

Flip-Flops

We have noted that flip-flops are edge-triggered devices whereas latches are level sensitive. In the
logic symbol, we use an arrowhead on the clock input to indicate a positive edge-triggered flip-flop
as shown in Figure 2.30c. The absence of this arrowhead indicates a high level-sensitive latch (see
Figure 2.30a). We add a bubble in front of the clock input to indicate a negative edge-triggered
flip-flop (Figure 2.30d) or a low level-sensitive latch (Figure 2.30b).

As is obvious from the bubble notation, we can convert a high level-sensitive latch to a low
level-sensitive one by feeding the clock signal through an inverter. Recall that the bubble represents
an inverter (see page 17). Similarly, we can invert the clock signal to change a negative edge-
triggered flip-flop to a positive edge-triggered one.
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Figure 2.31 Truth table and logic symbol of the JK flip-flop. The logic symbol is for a negative edge
triggered flip-flop. For a negative flip-flop, delete the bubble on the clock input.
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Figure 2.32 A 4-bit shift register using JK flip-flops.

In this section, we look at JK flip-flops. The truth table and logic symbol of this flip-flop is
shown in Figure 2.31. Unlike the SR latch, the JK flip-flop allows all four input combinations.
When JK = 11, the output toggles. This characteristic is used to build counters. Next we show
couple of example sequential circuits that use the JK flip-flops.

Shift Registers

Shift registers, as the name suggests, shift data left or right with each clock pulse. Designing a
shift register is relatively straightforward as shown in Figure 2.32. This shift register, built with
positive edge-triggered JK flip-flops, shifts data to the right. For the first JK flip-flop, we need an
inverter so that the K input is the complement of the data coming in (“Serial in” input). The data
out, taken from the Q output of the rightmost JK flip-flop, is a copy of the input serial signal except
that this signal is delayed by four clock periods. This is one of the uses of the shift registers.
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(b) Timing diagram

Figure 2.33 A binary ripple counter implementation using negative edge-triggered JK flip-flops.

We can also use a shift register for serial-to-parallel conversion. For example, a serial signal,
given as input to the shift register in Figure 2.32, produces a parallel 4-bit output (taken from the
four Q outputs of the JK flip-flops) as shown in Figure 2.32. Even though we have not shown it
here, we can design a shift register that accepts input in parallel (i.e., parallel load) as well as serial
form. Shift registers are also useful in implementing logical bit shift operations in the ALU of a
processor.

Counters

A counter is another example of a sequential circuit that is often used in digital circuits. To see
how we can build a counter, let us consider the simplest of all counters: the binary counter. A
binary counter with B bits can count from 0 to 2% — 1. For example, a 3-bit binary counter can
count from 0 to 7. After counting eight (with a count value of 7), the count value wraps around to
zero. Such a counter is called a modulo-8 counter.

We know that a modulo-8 counter requires 3 bits to represent the count value. In general, a
modulo-2# counter requires B bits (i.e., log,2? bits). To develop our intuition, it is helpful to
look at the values 0 through 7, written in the binary form in that sequence. If you look at the
rightmost bit, you will notice that it changes with every count. The middle bit changes whenever
the rightmost bit changes from 1 to 0. The leftmost bit changes whenever the middle bit changes
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Figure 2.34 A synchronous modulo-8 counter.

from 1 to 0. These observations can be generalized to counters that use more bits. There is a simple
rule that governs the counter behavior: a bit changes (flips) its value whenever its immediately
preceding right bit goes from 1 to 0. This observation gives the necessary clue to design our
counter. Suppose we have a negative edge-triggered JK flip-flop. We know that this flip-flop
changes its output with every negative edge on the clock input, provided we hold both J and K
inputs high. Well, that is the final design of our 3-bit counter as shown in Figure 2.33.

We operate the JK flip-flops in the “toggle” mode with JK = 11. The Q output of one flip-flop
is connected as the clock input of the next flip-flop. The input clock, which drives our counter,
is applied to FFO. When we write the counter output as Q2Q1Qo, the count value represents
the number of negative edges in the clock signal. For example, the dotted line in Figure 2.33b
represents Q2Q1Qo = 011. This value matches the number of falling edges to the left of the dotted
line in the input clock.

Counters are also useful in generating clocks with different frequencies by dividing the input
clock. For example, the frequency of the clock signal at Qo output is half of the input clock.
Similarly, frequencies of the signals at Q; and Q2 are one-fourth and one-eighth of the counter
input clock frequency.

The counter design shown in Figure 2.33 is called a ripple counter as the count bits ripple from
the rightmost to the leftmost bit (i.e., in our example, from FFO to FF2). A major problem with
ripple counters is that they take a long time to propagate the count value. We have had a similar
discussion about ripple carry adders on page 28.

How can we speed up the operation of the ripple binary counters? We apply the same trick
that we used to derive the carry lookahead adder on page 28. We can design a counter in which
all output bits change more or less at the same time. These are called synchronous counters. We
can obtain a synchronous counter by manipulating the clock input to each flip-flop. We observe
from the timing diagram in Figure 2.33b that a clock input should be applied to a flip-flop if all the
previous bits are 1. For example, a clock input should be applied to FF1 whenever the output of
FFO is 1. Similarly, a clock input for FF2 should be applied when the outputs of FFO and FF1 are
both 1. A synchronous counter based on this observation is shown in Figure 2.34.

Sequential circuit design is relatively more complex than designing a combinational circuit.
A detailed discussion of this topic is outside the scope of this book. If you are interested in this
topic, you can refer to Fundamentals of Computer Organization and Design by Dandamudi for
more details.
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Summary

A computer system consists of three main components: processor, memory, and I/O. These three
components are glued together by a system bus. The system bus consists of three buses: data
bus, address bus, and control bus. The address bus is used to carry the address information. The
width of this bus determines the memory address space of the processor. The data bus is used
for transferring data between these components (e.g., from memory to processor). The data bus
width determines the size of the data moved in one transfer cycle. The control bus provides
several control signals to facilitate a variety of activities on the system bus. These activities include
memory read, I/O write, and so on.

The remainder of the chapter looked at the digital logic circuits in detail. We introduced
several simple logic gates such as AND, OR, NOT gates as well as NAND, NOR, and XOR gates.
Although the first three gates are considered as the basic gates, we often find that the other three
gates are useful in practice.

We described three ways of representing logical functions: truth table, logical expression, and
graphical form. The truth table method is cumbersome for logical expressions with more than
a few variables. Logical expression representation is useful to derive simplified expressions by
applying Boolean identities. The graphical form is useful to implement logical circuits.

Logical expressions can be written in one of two basic forms: sum-of-products or product-
of-sums. From either of these expressions, it is straightforward to obtain logic circuit implemen-
tations. However, such circuits are not the best designs as simplifying logical expressions can
minimize the component count. Several methods are available to simplify logical expressions. We
have discussed two of them: the algebraic and Karnaugh map methods.

Combinational circuits provide a higher level of abstraction than the basic logic gates. Higher-
level logical functionality provided by these circuits helps in the design of complex digital circuits.
We have discussed several commonly used combinational circuits including multiplexers, demul-
tiplexers, decoders, comparators, adders, and ALUs.

We also presented details about two types of programmable logic devices: PLAs and PALs.
These devices can also be used to implement any logical function. Both these devices use inter-
nal fuses that can be selectively blown to implement a given logical function. PALSs reduce the
complexity of the device by using fewer fuses than PLAs. As a result, most commercial imple-
mentations of programmable logic devices are PALs.

Our discussion of ALU design suggests that complex digital circuit design can be simplified
by using the higher level of abstraction provided by the combinational circuits.

In combinational circuits, the output depends only on the current inputs. In contrast, output of
a sequential circuit depends both on the current inputs as well as the past history. In other words,
sequential circuits are state-dependent whereas the combinational circuits are stateless.

Design of a sequential circuit is relatively more complex than designing a combinational cir-
cuit. In sequential circuits, we need a notion of time. We introduced the clock signal to provide this
timing information. Clocks also facilitate synchronization of actions in a large, complex digital
system that has both combinational and sequential circuits.

We discussed two basic types of circuits: latches and flip-flops. The key difference between
these two devices is that latches are level sensitive whereas flip-flops are edge-triggered. These
devices can be used to store a single bit of data. Thus, they provide the basic capability to design
memories. We discuss memory design in the next chapter.
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We presented some example sequential circuits—shift registers and counters—that are com-
monly used in digital circuits. There are several other sequential circuit building blocks that are
commercially available,



Memory Organization

In the last chapter, we have seen how flip-flops and latches can be used to store a bit. This chapter
builds on this foundation and explains how we can use these basic devices and build larger memory
blocks and modules. We start off with an overview of memory operations and the types of memory.
The following section discusses how larger memories can be built using memory chips. The design
process is fairly intuitive. The basic technique involves using a two-dimensional array of memory
chips. A characteristic of these designs is the use of chip select. Chip select input can be used to
select or deselect a chip or a memory module. Chip select allows us to connect multiple devices
to the system bus. Appropriate chip select signal generation facilitates communication among the
entities connected to the system bus.

Chip select logic is also useful in mapping memory modules to memory address space. We
present details about two ways of mapping a memory module to the address space. Before ending
the chapter, we describe how multibyte data are stored in memory and explain the reasons why
data alignment leads to improved application performance. We end the chapter with a summary.

Introduction

The memory of a computer system consists of tiny electronic switches, with each switch set in
one of two states: open or closed. 1t is, however, more convenient to think of these states as 0
and 1 rather than open and closed. A single such switch can be used to represent two (i.e., binary)
numbers: a zero and a one. Thus, each switch can represent a binary digit or bit, as it is known.
The memory unit consists of millions of such bits. In order to make memory more manageable,
bits are organized into groups of eight bits called bytes. Memory can then be viewed as consisting
of an ordered sequence of bytes. Each byte in this memory can be identified by its sequence
number starting with 0, as shown in Figure 3.1. This is referred to as the memory address of the
byte. Such memory is called byte addressable memory.

The amount of memory that a processor can address depends on the address bus width. Typ-
ically, 32-bit processors support 32-bit addresses. Thus, these processors can address up to 4 GB
(232 bytes) of main memory as shown in Figure 3.1. This number is referred to as the memory ad-
dress space. The actual memory in a system, however, is always less than or equal to the memory
address space. The amount of memory in a system is determined by how much of this memory
address space is populated with memory chips.
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Figure 3.1 Logical view of the system memory.

This chapter gives details about memory organization. In the next section we give details about
the two basic memory operations—read and write. Memory can be broadly divided into read-only
and read/write types. Details about the types of memory are given next. After giving these details,
we look at the memory design issues. Towards the end of the chapter, we describe two ways of
storing multibyte data and the reasons why data alignment results in improved performance.

Basic Memory Operations

The memory unit supports two fundamental operations: read and write. The read operation reads
a previously stored data and the write operation stores a value in memory. Both of these operations
require an address in memory from which to read a value or to which to write a value. In addition,
the write operation requires specification of the data to be written. The block diagram of the
memory unit is shown in Figure 3.2. The address and data of the memory unit are connected to
the address and data buses of the system bus, respectively. The read and write signals come from
the control bus.

Two metrics are used to characterize memory. Access time refers to the amount of time required
by the memory to retrieve the data at the addressed location. The other metric is the memory cycle
time, which refers to the minimum time between successive memory operations. Memory transfer
rates can be measured by the bandwidth metric, which specifies the number of bytes transferred
per second.

The read operation is nondestructive in the sense that one can read a location of the memory
as many times as one wishes without destroying the contents of that location. The write operation,
on the other hand, is destructive, as writing a value into a location destroys the old contents of that
memory location.
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Address
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Figure 3.2 Block diagram of the system memory.

Steps in a typical read cycle

1. Place the address of the location to be read on the address bus;
2. Activate the memory read control signal on the control bus;

3. Wait for the memory to retrieve the data from the addressed memory location and place it
on the data bus;

4. Read the data from the data bus;

5. Drop the memory read control signal to terminate the read cycle.

For example, a simple Pentium read cycle takes three clock cycles. During the first clock
cycle, steps 1 and 2 are performed. The processor waits until the end of the second clock and
reads the data and drops the read control signal. If the memory is slower (and therefore cannot
supply data within the specified time), the memory unit indicates its inability to the processor and
the processor waits longer for the memory to supply data by inserting wait cycles. Note that each

wait cycle introduces a waiting period equal to one system clock period and thus slows down the
system operation.

Steps in a typical write cycle

1. Place the address of the location to be written on the address bus;
2. Place the data to be written on the data bus;

3. Activate the memory write control signal on the control bus;

4. Wait for the memory to store the data at the addressed location;

5

. Drop the memory write signal to terminate the write cycle.

As with the read cycle, Pentium requires three clock cycles to perform a simple write operation.
During the first clock cycle, steps 1 and 3 are done. Step 2 is performed during the second clock
cycle. The processor gives memory time until the end of the second clock and drops the memory
write signal. If the memory cannot write data at the maximum processor rate, wait cycles can be
introduced to extend the write cycle.
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Types of Memory

The memory unit can be implemented using a variety of memory chips—different speeds, different
manufacturing technologies, and different sizes. The two basic types of memory are the read-only
memory and read/write memory.

A basic property of memory systems is, they are random access memories in that accessing
any memory location (for reading or writing) takes the same time. Contrast this with data stored
on a magnetic tape. Access time on the tape depends on the location of the data.

Volatility is another important property of a memory system. A volatile memory requires
power to retain its contents. A nonvolatile memory can retain its values even in the absence of
power.

Read-Only Memories Read-only memory (ROM) allows only read operations to be performed.
As the name suggests, we cannot write into this memory. The main advantage of ROM is that it is
nonvolatile. Most ROM is factory programmed and cannot be altered. The term programming in
this context refers to writing values into a ROM. This type of ROM is cheaper to manufacture in
large quantities than other types of ROM. The program that controls the standard input and output
functions (called BIOS), for instance, is kept in ROM. Current systems use the flash memory rather
than a ROM (see our discussion later).

Other types include programmable ROM (PROM) and erasable PROM (EPROM). PROM is
useful in situations where the contents of ROM are not yet fixed. For instance, when the program
is still in the development stage, it is convenient for the designer to be able to program the ROM
locally rather than at the time of manufacture.

In PROM, a fuse is associated with each bit cell. If the fuse is on, the bit cell supplies a 1
when read. The fuse has to be burned to read a 0 from that bit cell. When PROM is manufactured,
its contents are all set to 1. To program a PROM, selective fuses are burned (to introduce Os) by
sending high current. This is the writing process and is not reversible (i.e., a burned fuse cannot be
restored). EPROM offers further flexibility during system prototyping. Contents of EPROM can
be erased by exposing them to ultraviolet light for a few minutes. Once erased, EPROM can be
reprogrammed again.

Electrically erasable PROMs (EEPROMs) allow further flexibility. By exposing to ultraviolet
light, we erase all the contents of an EPROM. EEPROMS, on the other hand, allow the user to
selectively erase contents. Furthermore, erasing can be done in place; there is no need to place it
in a special ultraviolet chamber.

Flash memory is a special kind of EEPROM. One main difference between the EEPROM and
flash memory lies in how the memory contents are erased. The EEPROM is byte-erasable whereas
the flash memory is block-erasable. Thus, writing in the flash memory involves erasing a block
and rewriting it.

Current systems use the flash memory for BIOS so that changing BIOS versions is fairly
straightforward (You just have to “flash” the new version). Flash memory is also becoming very
popular as a removable media. The SmartMedia, CompactFlash, Sony’s Memory Stick are all
examples of various forms of removable flash media.

Flash memory, however, is slower than the RAMs we discuss next. For example, flash memory
cycle time is about 80 ns whereas the corresponding value for RAMs is about 10 ns. Nevertheless,
since flash memories are nonvolatile, they are used in applications where this property is important.
Apart from BIOS, we see them in devices like digital cameras and video game systems.
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Read/Write Memory Read/write memory is commonly referred to as random access memory
(RAM), even though ROM is also a random access memory. This terminology is so entrenched in
the literature that we follow it here with a cautionary note that RAM actually refers to RWM.

Read/write memory can be divided into static and dynamic categories. Static random access
memory (SRAM) retains the data, once written, without further manipulation so long as the source
of power holds its value. SRAM is typically used for implementing the processor registers and
cache memories.

The bulk of main memory in a typical computer system, however, consists of dynamic random
access memory (DRAM). DRAM is a complex memory device that uses a tiny capacitor to store a
bit. A charged capacitor represents 1 bit. Since capacitors slowly lose their charge due to leakage,
they must be periodically refreshed to replace the charges representing 1 bit. A typical refresh
period is about 64 ms. Reading from DRAM involves testing to see if the corresponding bit cells
are charged. Unfortunately, this test destroys the charges on the bit cells. Thus, DRAM is a
destructive read memory.

For proper operation, a read cycle is followed by a restore cycle. As a result, the DRAM cycle
time, the actual time necessary between accesses, is typically about twice the read access time,
which is the time necessary to retrieve a datum from the memory.

Several types of DRAM chips are available. We briefly describe some of most popular types
DRAMs next.

FPM DRAMs Fast page mode (FPM) DRAM:s are an improvement over the previous generation
DRAMs. FPM DRAMs exploit the fact that we access memory sequentially, most of the time. To
know how this access pattern characteristic is exploited, we have to look at how the memory is
organized. Internally, the memory is organized as a matrix of bits. For example, a 32 Mb memory
could be organized as 8 K rows (i.e., 8192 since K = 1024) and 4 K columns. To access a bit,
we have to supply a row address and a column address. In the FPM DRAM, a page represents
part of the memory with the same row address. To access a page, we specify the row address only
once; we can read the bits in the specified page by changing the column addresses. Since the row
address is not changing, we save on the memory cycle time.

EDO DRAMs Extended Data Output (EDO) DRAM is another type of FPM DRAM. It also ex-
ploits the fact that we access memory sequentially. However, it uses pipelining to speed up memory
access. That is, it initiates the next request before the previous memory access is completed. A
characteristic of pipelining inherited by EDO DRAMs is that single memory reference requests
are not speeded up. However, by overlapping multiple memory access requests, it improves the
memory bandwidth.

SDRAMs Both FPM DRAMs and EDO DRAMs are asynchronous in the sense that their data
output is not synchronized to a clock. The synchronous DRAM (SDRAM) uses an external clock
to synchronize the data output. This synchronization reduces delays and thereby improves the
memory performance. The SDRAM memories are used in systems that require memory satisfying
the PC100/PC133 specification. SDRAMs are dominant in low-end PC market and are cheap.

DDR SDRAMs The SDRAM memories are also called single data rate (SDR) SDRAMs as they
supply data once per memory cycle. However, with increasing processor speeds, the processor
bus (also called front-side bus or FSB) frequency is also going up. For example, PCs now have a
533 MHz FSB that supports a transfer rate of about 4.2 GB/s. To satisfy this transfer rate, SDRAMs
have been improved to provide data at both rising and falling edges of the clock. This effectively
doubles the memory bandwidth and satisfies the high data transfer rates of faster processors.
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Figure 3.3 Tristate buffer: (a) logic symbol; (b) it acts as an open circuit when the enable input is
inactive (E = 0); (c) it acts as a closed circuit when the enable input is active (E = 1); (d) truth table
(X = don’t care input, and Z = high impedance state).

RDRAMs Rambus DRAM (RDRAM) takes a completely different approach to increase the
memory bandwidth. A technology developed and licensed by Rambus, it is a memory subsystem
that consists of the RAM, RAM controller, and a high-speed bus called the Rambus channel. Like
the DDR DRAM, it also performs two transfers per cycle. In contrast to the 8-byte wide data bus
of DRAMs, Rambus channel is a 2-byte data bus. However, by using multiple channels, we can
increase the bandwidth of RDRAMs. For example, a dual-channel RDRAM operating at 533 MHz
provides a bandwidth of 533 * 2 x4 = 4.2 GB/s, sufficient for the 533 MHz FSB systems.

From this brief discussion it should be clear that DDR SDRAMSs and RDRAMs compete with
each other in the high-end market. The race between these two DRAM technologies continues as
Intel boosts its FSB to 800 MHz.

Building a Memory Block

In the last chapter, we discussed several basic building blocks such as flip-flops, multiplexers, and
decoders. For example, flip-flops provide the basic capability to store a bit of data. These devices
can be replicated to build larger memory units. For example, we can place 16 flip-flops together
in a row to store a 16-bit word. All the 16 flip-flops would have their clock inputs tied together to
form a single common clock to write a 16-bit word. We can place several such rows in a memory
chip to store multiple words of data. In this organization, each row supplies a word. To build even
larger memories, we can use multiple chips such that all their data lines are connected to the data
bus. This implies that we need to find a way to connect these outputs together. Tristate buffers are
used for this purpose.

Tristate Buffers

The logic circuits we have discussed in the last chapter have two possible states: 0 or 1. The
devices we discuss here are called tristate buffers as they can be in three states: 0, 1, or Z state. A
tristate buffer output can be in state 0 or 1 just as with a normal logic gate. In addition, the output
can also be in a high impedance (Z) state, in which the output floats. Thus, even though the output
is physically connected to the bus, it behaves as though it is electrically and logically disconnected
from the bus.

Tristate buffers use a separate control signal to float the output independent of the data input
(see Figure 3.3a). This particular feature makes them suitable for bus connections. Figure 3.3a
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shows the logic symbol for a tristate buffer. When the enable input (E) is low, the buffer acts as an
open circuit (i.e., output is in the high impedance state Z) as shown in Figure 3.3b; otherwise, it
acts as a short circuit (Figure 3.3¢). The enable input must be high in order to pass the input data
to output, as shown in the truth table (see Figure 3.3d).

Memory Design with D Flip-Flops

We begin our discussion with how one can build memories using the D flip-flops. Recall that we
use flip-flops for edge-triggered devices and latches for level-sensitive devices. The principle of
constructing memory out of D flip-flops is simple. We use a two-dimensional array of D flip-flops,
with each row storing a word. The number of rows is equal to the number of words the memory
should store. Thus, this organization uses “horizontal” expansion to increase the word width and
“vertical” expansion to increase the number of words.

In general, the number of columns and the number of rows is a power of two. We use the
notation M x N memory to represent a memory that can store M words, where each word is
N-bits long.

Figure 3.4 shows a4 x 3 memory built with 12 D flip-flops organized as a4 x 3 array. Since all
flip-flops in a row store a word of data, each row of flip-flops has their clock signals tied together
to form a single clock signal for each row. All flip-flops in a column receive input from the same
input data line. For example, the rightmost column D inputs are connected to the input data DO.

This memory requires two address lines to select one of the four words. The two address lines
are decoded to select a specific row by using a 2-to-4 decoder. The low-active write signal (WR)
is gated through an AND gate as shown in Figure 3.4. Depending on the address, only one of the
four decoder output lines will be high, permitting the WR signal to clock the selected row to write
the 3-bit data present on DO to D2 lines. Note that the decoder along with the four AND gates
forms a demultiplexer that routes the WR signal to the row selected by the address lines Al and
A0,

The design we have done so far allows us to write a 3-bit datum into the selected row. To
complete the design, we have to find a way to read data from this memory. As each bit of data is
supplied by one of the four D flip-flops in a column, we have to find a way to connect these four
outputs to a single data out line. A natural choice for the job is a 4-to-1 multiplexer. The MUX
selection inputs are connected to the address lines to allow appropriate data on the output lines DO
through D2. The final design is shown in Figure 3.4.

We need to pass the outputs of the multiplexers through tristate buffers as shown in Figure 3.4.
The enable input signal for these output tristate buffers is generated by ANDing the chip select
and read signals. Two inverters are used to provide low-active chip select (CS) and memory read
(RD) inputs to the memory block.

With the use of the tristate buffers, we can tie the corresponding data in and out signal lines to-
gether to satisfy the data bus connection requirements. Furthermore, we can completely disconnect
the outputs of this memory block by making CS high.

We can represent our design using the logic symbol shown in Figure 3.5. Our design uses
separate read and write signals. These two signals are part of the control bus (see Figure 2.1). It
is also possible to have a single line to serve as a read and write line. For example, a O on this
line can be interpreted as write and a 1 as read. Such signals are represented as the WR/RD line,
indicating low-active write and high-active read.
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Figure 3.4 A 4 x 3 memory design using D flip-flops.

Building Larger Memories

Now that we know how to build memory blocks using devices that can store a single bit, we move
on to building larger memory units using these memory blocks. We explain the design process
by using an example. Before discussing the design procedure, we briefly present details about
commercially available memory chips.
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Figure 3.5 Block diagram representation of a 4 x 3 memory.

Memory Chips

Several commercial memory chips are available to build larger memories. Here we look at two
example chips—a SRAM and a DRAM—{rom Micron Technology.

The SRAM we discuss is an 8-Mb chip that comes in three configurations: 512 K x 18,
256 K x 32, or 256 K x 36. Note that, in the first and last configurations, word length is not a
multiple of 8. These additional bits are useful for error detection/correction. These chips have an
access time of 3.5 ns. The 512 K x 18 chip requires 19 address lines, whereas the 256 K x 32/36
versions require 18 address lines.

An example DRAM (it is a synchronous DRAM) is the 256-Mb capacity chip that comes in
word lengths of 4, 8, or 16 bits. That is, this memory chip comes in three configurations: 64 M x 4,
32 M x 8, 0or 16 M x 16. The cycle time for this chip is about 7 ns.

In the days when the data bus widths were small (8 or 16), DRAM chips were available in 1-bit
widths. Current chips use a word width of more than 1 as it becomes impractical to string 64 1-bit
chips to get 64-bit word memories for processors such as the Pentium.

From the details of these two example memory chips, we see that the bit capacity of a memory
chip can be organized into several configurations. If we focus on the DRAM chip, for example,
what are the pros and cons of the various configurations? The advantage of wider memory chips
(i.e., chips with larger word size) is that we require fewer of them to build a larger memory. As
an example, consider building memory for your Pentium-based PC. Even though the Pentium is
a 32-bit processor, it uses a 64-bit wide data bus. Suppose that you want to build a 16 M x 64
memory. We can build this memory by using four 16 M x 16 chips, all in a single row. How do
we build such a memory using, for example, the 32 M x 8 version of the chip? Because our word
size is 64, we have to use 8§ such chips in order to provide 64-bit wide data. That means we get
32 M x 64 memory as the minimum instead of the required 16 M x 64. The problem becomes
even more serious if we were to use the 64 M x 4 version chip. We have to use 16 such chips, and
we end up with a 64 M x 64 memory. This example illustrates the tradeoff between using “wider”
memories versus ‘“deeper’” memories.

Larger Memory Design

Before proceeding with the design of a memory unit, we need to know if the memory address space
(MAS) supported by the processor is byte addressable or not. In a byte-addressable space, each
address identifies a byte. All popular processors—the Pentium, PowerPC, SPARC, and MIPS—
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support byte-addressable space. Therefore, in our design examples, we assume byte-addressable
space.

We now discuss how one can use memory chips, such as the ones discussed before, to build
system memory. The procedure is similar to the intuitive steps followed in the previous design
example.

First we have to decide on the configuration of the memory chip, assuming that we are using the
DRAM chip described before. As described in the last section, independent of the configuration,
the total bit capacity of a chip remains the same. That means the number of chips required remains
the same. For example, if we want to build a 64 M x 32 memory, we need eight chips. We can
use eight 64 M x 4 in a single row, eight 32 M x 8in 2 x 4 array, or 16 M x 16 in 4 x 2 array.
Although we have several alternatives for this example, there may be situations where the choice
is limited. For example, if we are designing a 16 M x 32 memory, we have no choice but to use
the 16 M x 16 chips.

Once we have decided on the memory chip configuration, it is straightforward to determine the
number of chips and the organization of the memory unit. Let us assume that we are using D x W
chips to build an M x N memory. Of course, we want to make sure thatD < M and W < N.

M x N
Number of chi ired =
umber of chips require D x W’
Number of rows = M ,
D
Number of col N
umbe = .
umns W

The read and write lines of all memory chips should be connected to form a single read and write
signal. These signals are connected to the control bus memory read and write lines. For simplicity,
we omit these connections in our design diagrams.

Data bus connections are straightforward. Each chip in a row supplies a subset of data bits. In
our design, the right chip supplies DO to D15, and the left chip supplies the remaining 16 data bits
(see Figure 3.6).

For each row, connect all chip select inputs as shown in Figure 3.6. Generating appropriate
chip select signals is the crucial part of the design process. To complete the design, partition the
address lines into three groups as shown in Figure 3.7.

The least significant Z address bits, where Z = log2(N/8), are not connected to the memory
unit. This is because each address going into the memory unit will select an N-bit value. Since
we are using byte-addressable memory address space, we can leave the Z least significant bits that
identify a byte out of N/8 bytes. In our example, N = 32, which gives us Z = 2. Therefore, the
address lines AO and A1 are not connected to the memory unit.

The next Y address bits, where Y = logaD, are connected to the address inputs of all the chips.
Since we are using 16 M chips, Y = 24. Thus, address lines A2 to A25 are connected to all the
chips as shown in Figure 3.6.

The remaining most significant address bits X are used to generate the chip select signals. This
group of address bits plays an important role in mapping the memory to a part of the memory ad-
dress space. We discuss this mapping in detail in the next section. The design shown in Figure 3.6
uses address lines A26 and A27 to generate four chip select signals, one for each row of chips. We
are using a low-active 2-to-4 decoder to generate the CS signals.
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Figure 3.6 Design of a 64 M x 32 memory using 16 M x 16 memory chips.

The top row of chips in Figure 3.6 is mapped to the first 64-MB address space (i.e., from
addresses 0 to 225 — 1). The second row is mapped to the next 64-MB address space, and so on.
After reading the next section, you will realize that this is a partial mapping.
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Figure 3.7 Address line partition.

Address bus A0 — A31
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Module B £

To data bus To data bus

Figure 3.8 Full address mapping.

Mapping Memory

Memory mapping refers to the placement of a memory unit in the memory address space (MAS).
For example, the IA-32 architecture supports 4 GB of address space (i.e., it uses 32 bits for ad-
dressing a byte in memory). If your system has 128 MB of memory, it can be mapped to one of
several address subspaces. This section describes how this mapping is done.

Full Mapping

Full mapping refers to a one-to-one mapping function between the memory address and the address
in MAS. This means, for each address value in MAS that has a memory location mapped, there is
one and only one memory location responding to the address.

Full mapping is done by completely decoding the higher-order X bits of memory (see Fig-
ure 3.7) to generate the chip select signals. Two example mappings of 16 M x 32 memory mod-
ules are shown in Figure 3.8. Both these mappings are full mappings as all higher-order X bits
participate in generating the CS signal.

Logically we can divide the 32 address lines into two groups. One group, consisting of address
lines Y and Z, locates a byte in the selected 16 M x 32 memory module. The remaining higher-
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Address bus A0 — A31

AQ — A23

— 16M X 32

DO — D31
Module A

To data bus To data bus

Figure 3.9 Partial address mapping.

order bits (i.e., the X group) are used to generate the CS signal. Given this delineation, it is simple
to find the mapping.

We illustrate the technique by using the two examples shown in Figure 3.8. Since the memory
modules have a low-active chip select input, a given module is selected if its CS input is 0. For
Module A, the NAND gate output is low when A26 and A29 are low and the remaining four ad-
dress lines are high. Thus, this memory module responds to memory read/write activity whenever
the higher-order six address bits are 110110. From this, we can get the address locations mapped
to this module as D800000OH to DBFFFFFFH. For convenience, we have expressed the addresses
in the hexadecimal system (as indicated by the suffix letter H). The address D800000OOH is mapped
to the first location and the address DBFFFFFFH to the last location of Module A. For addresses
that are outside this range, the CS input to Module A is high and, therefore, it is deselected.

For Module B, the same inputs are used except that the NAND gate is replaced by an OR gate.
Thus, the output of this OR gate is low when the higher-order six address bits are 001001. From
this, we can see that mapping for Module B is 24000000H to 27FFFFFFH. As these two ranges
are mutually exclusive, we can keep both mappings without causing conflict problems.

Partial Mapping

Full mapping is useful in mapping a memory module; however, often the complexity associated
with generating the CS signal is not necessary. For example, we needed a 6-input NAND or OR
gate to map the two memory modules in Figure 3.8. Partial mapping reduces this complexity by
mapping each memory location to more than one address in MAS. We can obtain simplified CS’
logic if the number of addresses a location is mapped to is a power of 2.

Let us look at the mapping of Module A in Figure 3.9 to clarify some of these points. The
CS logic is the same except that we are not connecting the A26 address line to the NAND gate,
Because A26 is not participating in generating the signal, it becomes a don’t care input. In this
mapping, Module A is selected when the higher-order six address bits are 110110 or 110111,
Thus, Module A is mapped to the address space D8000000H to DBFFFFFFH and DCO00000H
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Figure 3.10 Two byte ordering schemes.

to DFFFFFFFH. That is, the first location in Module A responds to addresses D800O0O0OH and
DCO00000H. Since we have left out one address bit A26, two (i.e., 21) addresses are mapped to
a memory location. In general, if we leave out k£ address bits from the chip select logic, we map
2% addresses to each memory location. For example, in our memory design of Figure 3.6, four
address lines (A28 to A31) are not used. Thus, 24 = 16 addresses are mapped to each memory
location.

We leave it as an exercise to verify that each location in Module B is mapped to eight addresses
as there are three address lines that are not used to generate the CS signal.

Storing Multibyte Data

Storing data often requires more than a byte. For example, we need four bytes of memory to store
an integer variable that can take a value between 0 and 232 — 1. Let us assume that the value to be
stored is the one shown in Figure 3.10a.

Suppose that we want to store these 4-byte data in memory at locations 100 through 103. How
do we store them? Figure 3.10 shows two possibilities: least significant byte (Figure 3.10b) or
most significant byte (Figure 3.10c) is stored at location 100. These two byte ordering schemes
are referred to as the little endian and big endian. In either case, we always refer to such multibyte
data by specifying the lowest memory address (100 in this example).

Is one byte ordering scheme better than the other? Not really! It is largely a matter of choice
for the designers. For example, the IA-32 processors use the little-endian byte ordering. However,
most processors leave it up to the system designer to configure the processor. For example, the
MIPS and PowerPC processors use the big-endian byte ordering by default, but these processors
can be configured to use the little-endian scheme.
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Figure 3.11 Byte-addressable memory interface to the 32-bit data bus.

The particular byte-ordering scheme used does not pose any problems as long as you are
working with machines that use the same byte-ordering scheme. However, difficulties arise when
you want to transfer data between two machines that use different schemes. In this case, conversion
from one scheme to the other is required. For example, the IA-32 instruction set provides two
instructions to facilitate such conversion: one to perform 16-bit data conversions and the other for
32-bit data. Later chapters give details on these instructions.

Alignment of Data

We can use our memory example to understand why data alignment improves the performance of
applications. Suppose we want to read 32-bit data from the memory shown in Figure 3.6. If the
address of these 32-bit data is a multiple of four (i.e., address lines A0 and Al are 0), the 32-bit
data are stored in a single row of memory. Thus the processor can get the 32-bit data in one read
cycle. If this condition is not satisfied, then the 32-bit data item is spread over two rows. Thus the
processor needs to read two 32-bits of data and extract the required 32-bit data. This scenario is
clearly demonstrated in Figure 3.11.

In Figure 3.11, the 32-bit data item stored at address 8 (shown by hashed lines) is aligned. Due
to this alignment, the processor can read this data item in one read cycle. On the other hand, the
data item stored at address 17 (shown shaded) is unaligned. Reading this data item requires two
read cycles: one to read the 32 bits at address 16 and the other to read the 32 bits at address 20.
The processor can internally assemble the required 32-bit data item from the 64-bit data read from
the memory.

You can easily extend this discussion to the Pentium’s 64-bit data bus. It should be clear to
you that aligned data improve system performance.
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* 2-Byte Data: A 16-bit data item is aligned if it is stored at an even address (i.e., addresses
that are multiples of two). This means that the least significant bit of the address must be 0.

* 4-Byte Data: A 32-bit data item is aligned if it is stored at an address that is a multiple of
four. This implies that the least significant two bits of the address must be 0 as discussed in
the last example.

* 8-Byte Data: A 64-bit data item is aligned if it is stored at an address that is a multiple
of eight. This means that the least significant three bits of the address must be 0. This
alignment is important for Pentium processors, as they have a 64-bit wide data bus. On
80486 processors, since their data bus is 32-bits wide, a 64-bit data item is read in two bus
cycles and alignment at 4-byte boundaries is sufficient.

The TA-32 processors allow both aligned and unaligned data items. Of course, unaligned data
cause performance degradation. Alignment constraints of this type are referred to as soft alignment
constraints. Because of the performance penalty associated with unaligned data, some processors
do not allow unaligned data. This alignment constraint is referred to as the hard alignment con-
straint.

Summary

We have discussed the basic memory design issues. We have shown how flip-flops can be used
to build memory blocks. Interfacing a memory unit to the system bus typically requires tristate
buffers. We have described by means of an example how tristate buffers are useful in connecting
the memory outputs to the data bus.

Building larger memories requires both horizontal and vertical expansion. Horizontal expan-
sion is used to expand the word size, and vertical expansion provides an increased number of
words. We have shown how one can design memory modules using standard memory chips. In all
these designs, chip select plays an important role in allowing multiple entities to be attached to the
system bus.

Chip select logic also plays an important role in mapping memory modules into the address
space. Two basic mapping functions are used: full mapping and partial mapping. Full mapping
provides a one-to-one mapping between memory locations and addresses. In partial mapping, each
memory location is mapped to a number of addresses equal to a power of 2. The main advantage
of partial mapping is that it simplifies the chip select logic.

We have described the big-endian or little-endian formats to store multibyte data. We have also
discussed the importance of data alignment. Unaligned data can lead to performance degradation.
We have discussed the reasons for improvement in performance due to alignment of data.



The 1A-32 Architecture

When you are programming in a high-level language like C, you don’t have to know anything
about the underlying processor and the system. However, when programming in an assembly
language, you should have some understanding of how the processor is organized and the system
is put together. This chapter provides these details for the Intel IA-32 architecture. The Pentium
processor is an implementation of this architecture. Of course, several other processors such as
Celeron, Pentium 4, and Xeon also belong to this architecture. We present details of its registers
and memory architecture. It supports two memory architectures: protected-mode and real-mode.
Protected-mode architecture is the native mode and the real-mode is provided to mimic the 16-bit
8086 memory architecture. Both modes support segmented memory architecture. It is important
for the assembly language programmer to understand the segmented memory organization. Other
details of this architecture are given in later chapters.

Introduction

Intel introduced microprocessors way back in 1969. Their first 4-bit microprocessor was the 4004.
This was followed by the 8080 and 8085 processors. The work on these early microprocessors led
to the development of the Intel architecture (IA). The first processor in the IA family was the 8086
processor, introduced in 1979. It has a 20-bit address bus and a 16-bit data bus.

The 8088 is a less expensive version of the 8086 processor. The cost reduction is obtained by
using an 8-bit data bus. Except for this difference, the 8088 is identical to the 8086 processor. Intel
introduced segmentation with these processors. These processors can address up to four segments
of 64 KB each. This IA segmentation is referred to as the real-mode segmentation and is discussed
later in this chapter.

The 80186 is a faster version of the 8086. It also has a 20-bit address bus and 16-bit data bus,
but has an improved instruction set. The 80186 was never widely used in computer systems. The
real successor to the 8086 is the 80286, which was introduced in 1982, It has a 24-bit address
bus, which implies 16 MB of memory address space. The data bus is still 16 bits wide, but the
80286 has some memory protection capabilities. It introduced the protection mode into the IA
architecture. Segmentation in this new mode is different from the real-mode segmentation. We
present details on this new segmentation later. The 80286 is backward compatible in that it can
run the 8086-based software.
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Intel introduced its first 32-bit processor—the 80386—in 1985. It has a 32-bit data bus and
32-bit address bus. It follows their 32-bit architecture known as IA-32. The memory address space
has grown substantially (from 16 MB address space to 4 GB). This processor introduced paging
into the IA architecture. It also allowed definition of segments as large as 4 GB. This effectively
allowed for a “flat” model (i.e., effectively turning oft segmentation). Later sections present details
on this aspect. Like the 80286, it can run all the programs written for 8086 and 8088 processors.

The Intel 80486 processor was introduced in 1989, This is an improved version of the 80386.
While maintaining the same address and data buses, it combined the coprocessor functions for
performing floating-point arithmetic. The 80486 processor has added more parallel execution
capability to instruction decode and execution units to achieve a scalar execution rate of one in-
struction per clock. It has an 8 KB onchip L1 cache. Furthermore, support for the L2 cache and
multiprocessing has been added. Later versions of the 80486 processors incorporated features such
as energy saving mode for notebooks.

The latest in the family is the Pentium series. It is not named 80586 because Intel found
belatedly that numbers couldn’t be trademarked! The first Pentium was introduced in 1993. The
Pentium is similar to the 80486 but uses a 64-bit wide data bus. Internally, it has 128- and 256-bit
wide datapaths to speed up internal data transfers. However, the Pentium instruction set supports
32-bit operands like the 80486 processor. It has added a second execution pipeline to achieve
superscalar performance by having the capability to execute two instructions per clock. It has also
doubled the onchip L1 cache, with 8 KB for data and another 8 KB for the instructions. Branch
prediction has also been added.

The Pentium Pro processor has a three-way superscalar architecture. That is, it can execute
three instructions per clock cycle. The address bus has been expanded to 36 bits, which gives it an
address space of 64 GB. It also provides dynamic execution including out-of-order and speculative
execution. In addition to the L1 caches provided by the Pentium, the Pentium Pro has a 256 KB
L2 cache in the same package as the CPU.

The Pentium II processor has added multimedia (MMX) instructions to the Pentium Pro archi-
tecture. It has expanded the L1 data and instruction caches to 16 KB each. It has also added more
comprehensive power management features including Sleep and Deep Sleep modes to conserve
power during idle times.

The Pentium III processor introduced streaming SIMD extensions (SSE), cache prefetch in-
structions, and memory fences, and the single-instruction multiple-data (SIMD) architecture for
concurrent execution of multiple floating-point operations. Pentium 4 enhanced these features
further.

Intel’s 64-bit Itanium processor is targeted for server applications. For these applications, the
32-bit memory address space is not adequate. The Itanium uses a 64-bit address bus to provide
substantially larger address space. Its data bus is 128 bits wide. In a major departure, Intel has
moved from the CISC designs used in their 32-bit processors to RISC orientation for their 64-
bit Itanium processors. The Itanium also incorporates several advanced architectural features to
provide improved performance for the high-end server market.

In the rest of the chapter, we look at the basic architectural details of the IA-32 architecture.
Our focus is on the internal registers and memory architecture. Other details are covered in later
chapters.
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Figure 4.1 Execution cycle of a typical computer system.

Processor Execution Cycle

The processor acts as the controller of all actions or services provided by the system. It can be
thought of as executing the following cycle forever:

1. Fetch an instruction from the memory;
2. Decode the instruction (i.e., identify the instruction);

3. Execute the instruction (i.e., perform the action specified by the instruction).

This process is often referred to as the fetch-decode-execute cycle, or simply the execution cycle.

The execution cycle of a processor is shown in Figure 4.1. As discussed in the last chapter,
Fetching an instruction from the main memory involves placing the appropriate address on the
address bus and activating the memory read signal on the control bus to indicate to the memory
unit that an instruction should be read from that location. The memory unit requires time to read
the instruction at the addressed location. The memory then places the instruction on the data bus.
The processor, after instructing the memory unit to read, waits until the instruction is available on
the data bus and then reads the instruction.

Decoding involves identifying the instruction that has been fetched from the memory. To facil-
itate the decoding process, machine language instructions follow a particular instruction-encoding
scheme.

To execute an instruction, the processor contains hardware consisting of control circuitry and
an arithmetic and logic unit (ALU). The control circuitry is needed to provide timing controls as
well as to instruct the internal hardware components to perform a specific operation. As described
in Chapter 2, the ALU is mainly responsible for performing arithmetic operations (such as add
and divide) and logical operations (such as and, or) on data.

In practice, instructions and data are not fetched, most of the time, from the main memory.
There is a high-speed cache memory that provides faster access to instructions and data than the
main memory. For example, the Pentium processor provides a 16 KB on-chip cache. This is
divided equally into data cache and instruction cache. The presence of on-chip cache is transparent
to application programs—it helps improve application performance.

Processor Registers

The IA-32 architecture provides ten 32-bit and six 16-bit registers. These registers are grouped
into general, control, and segment registers. The general registers are further divided into data,
pointer, and index registers as shown in Figures 4.2 and 4.3.
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Figure 4.2 Data registers (the 16-bit registers are shown shaded).
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Figure 4.3 Index and pointer registers.

Data Registers

There are four 32-bit data registers that can be used for arithmetic, logical, and other operations
(see Figure 4.2). These four registers are unique in that they can be used as follows:

*» Four 32-bit registers (EAX, EBX, ECX, EDX); or
+ Four 16-bit registers (AX, BX, CX, DX); or
* Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).

As shown in Figure 4.2, it is possible to use a 32-bit register and access its lower half of the data by
the corresponding 16-bit register name, For example, the lower 16 bits of EAX can be accessed by
using AX. Similarly, the lower two bytes can be individually accessed by using the 8-bit register
names. For example, the lower byte of AX can be accessed as AL and the upper byte as AH.

The data registers can be used without constraint in most arithmetic and logical instructions.
However, some registers in this group have special functions when executing specific instructions.
For example, when performing a multiplication operation, one of the two operands should be in
the EAX, AX, or AL register depending on the operand size. Similarly, the ECX or CX register is
assumed to contain the loop count value for iterative instructions.
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Figure 4.4 Flags and instruction pointer registers.

Pointer and Index Registers

Figure 4.3 shows the four 32-bit registers in this group. These registers can be used either as 16-
or 32-bit registers. The two index registers play a special role in the string processing instructions
(these instructions are discussed in Chapter 17). In addition, they can be used as general-purpose
data registers.

The pointer registers are mainly used to maintain the stack. Even though they can be used as
general-purpose data registers, they are almost exclusively used for maintaining the stack. The
stack implementation is discussed in Chapter 11.

Control Registers

This group of registers consists of two 32-bit registers: the instruction pointer register and the flags
register (see Figure 4.4). The processor uses the instruction pointer register to keep track of the
location of the next instruction to be executed. Instruction pointer register is sometimes called the
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Figure 4.5 The six segment registers support the segmented memory architecture.

program counter register. The instruction pointer can be used either as a 16-bit register (IP), or as
a 32-bit register (EIP). The IP register is used for 16-bit addresses and the EIP register for 32-bit
addresses.

When an instruction is fetched from memory, the instruction pointer is updated to point to the
next instruction. This register is also modified during the execution of an instruction that transfers
control to another location in the program (such as a jump, procedure call, or interrupt).

The flags register can be considered as either a 16-bit FLAGS register, or a 32-bit EFLAGS
register. The FLAGS register is useful in executing 8086 processor code. The EFLAGS register
consists of 6 sratus flags, 1 control flag, and 10 system flags, as shown in Figure 4.4. Bits of this
register can be set (1) or cleared (0). The IA-32 instruction set has instructions to set and clear
some of the flags. For example, the clc instruction clears the carry flag, and the st c instruction
sets it.

The six status flags record certain information about the most recent arithmetic or logical
operation. For example, if a subtract operation produces a zero result, the zero flag (ZF) would be
set (i.e., ZF = 1). Chapter 14 discusses the status flags in detail.

The control flag is useful in string operations. This flag determines whether a string operation
should scan the string in the forward or backward direction. The function of the direction flag is
described in Chapter 17, which discusses the string instructions.

The 10 system flags control the operation of the processor. A detailed discussion of all 10
system flags is beyond the scope of this book. Here we briefly discuss a few flags in this group.
The two interrupt enable flags—the trap enable flag (TF) and the interrupt enable flag (IF)—
are useful in interrupt-related activities. For example, setting the trap flag causes the processor
to single-step through a program, which is useful in debugging programs. These two flags are
covered in Chapter 20, which discusses the interrupt processing mechanism.

The ability to set and clear the identification (ID) flag indicates that the processor supports the
CPUID instruction. The CPUID instruction provides information to software about the vendor
(Intel chips use a “Genuinelntel” string), processor family, model, and so on. The virtual-8086
mode (VM) flag, when set, emulates the programming environment of the 8086 processor.

The last flag that we discuss is the alignment check (AC) flag. When this flag is set, the
processor operates in alignment check mode and generates exceptions when a reference is made
to an unaligned memory address. We discussed data alignment in the last chapter.
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Figure 4.6 Logical to physical address translation process in the protected mode.

Segment Registers

The six 16-bit segment registers are shown in Figure 4.5. These registers support the segmented
memory organization, In this organization, memory is partitioned into segments, where each seg-
ment is a small part of the memory. The processor, at any point in time, can only access up to
six segments of the main memory. The six segment registers point to where these segments are
located in the memory.

A program is logically divided into two parts: a code part that contains only the instructions,
and a data part that keeps only the data. The code segment (CS) register points to where the
program’s instructions are stored in the main memory, and the data segment (DS) register points
to the data part of the program. The stack segment (SS) register points to the program’s stack
segment (further discussed in Chapter 11).

The last three segment registers—ES, FS, and GS—are additional segment registers that can
be used in a similar way as the other segment registers. For example, if a program’s data could
not fit into a single data segment, we could use two segment registers to point to the two data
segments. We will say more about these registers later.

Protected Mode Memory Architecture

The TA-32 architecture supports a sophisticated memory architecture under real and protected
modes. The real mode, which uses 16-bit addresses, is provided to run programs written for the
8086 processor. In this mode, it supports the segmented memory architecture of the 8086 proces-
sor. The protected mode uses 32-bit addresses and is the native mode of the 1A-32 architecture. In
the protected mode, both segmentation and paging are supported. Paging is useful in implement-
ing virtual memory; it is transparent to the application program, but segmentation is not. We do
not look at the paging features here. We discuss the real-mode memory architecture in the next
section, and devote the rest of this section to describing the protected-mode segmented memory
architecture.

In the protected mode, a sophisticated segmentation mechanism is supported. In this mode,
the segment unit translates a logical address into a 32-bit linear address. The paging unit translates
the linear address into a 32-bit physical address, as shown in Figure 4.6. If no paging mechanism
is used, the linear address is treated as the physical address. In the remainder of this section, we
focus on the segment translation process only.

Protected mode segment translation process is shown in Figure 4.7. In this mode, contents of
the segment register are taken as an index into a segment descriptor table to get a descriptor. Seg-
ment descriptors provide the 32-bit segment base address, its size, and access rights. To translate
a logical address to the corresponding linear address, the offset is added to the 32-bit base address.
The offset value can be either a 16-bit or 32-bit number.
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Figure 4.7 Protected mode address translation.
Visible part Invisible part

Segment selector

Segment selector

Segment selector

Segment selector

Segment selector

Segment selector

Figure 4.8 Visible and invisible parts of segment registers.

Segment Registers

Every segment register has a “visible” part and an “invisible” part, as shown in Figure 4.8. When
we talk about segment registers, we are referring to the 16-bit visible part. The visible part is
referred to as the segment selector. There are direct instructions to load the segment selector.
These instructions include mov, pop, 1ds, les, 1ss, 1gs, and 1fs. Some of these instructions
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Figure 4.9 A segment descriptor.

are discussed in later chapters and in Appendix D. The invisible part of the segment registers is
automatically loaded by the processor from a descriptor table (described next).
As shown in Figure 4.7, the segment selector provides three pieces of information:

* Index: The index selects a segment descriptor from one of two descriptor tables: a local
descriptor table or a global descriptor table. Since the index is a 13-bit value, it can select
one of 2!3 = 8192 descriptors from the selected descriptor table. Since each descriptor,
shown in Figure 4.9, is 8 bytes long, the processor multiplies the index by 8 and adds the
result to the base address of the selected descriptor table.

* Table Indicator (TI): This bit indicates whether the local or global descriptor table should
be used.

0 = Global descriptor table,
1 = Local descriptor table.

* Requester Privilege Level (RPL): This field identifies the privilege level to provide protected
access to data: the smaller the RPL value, the higher the privilege level. Operating systems
don’t have to use all four levels. For example, Linux uses level O for the kernel and level 3
for the user programs. It does not use levels I and 2,

Segment Descriptors

A segment descriptor provides the attributes of a segment. These attributes include its 32-bit base
address, 20-bit segment size, as well as control and status information, as shown in Figure 4.9,
Here we provide a brief description of some of the fields shown in this figure.

* Base Address: This 32-bit address specifies the starting address of a segment in the 4 GB
physical address space. This 32-bit value is added to the offset value to get the linear address
(see Figure 4.7).

* Granularity (G). This bit indicates whether the segment size value, described next, should be
interpreted in units of bytes or 4 KB, If the granularity bit is zero, segment size is interpreted
in bytes; otherwise, in units of 4 KB.

« Segment Limit: This is a 20-bit number that specifies the size of the segment. Depending on
the granularity bit, two interpretations are possible:
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1. If the granularity bit is zero, segment size can range from 1 byte to 1 MB (i.e., 2?°

bytes), in increments of 1 byte.

2. If the granularity bit is 1, segment size can range from 4 KB to 4 GB, in increments of
4 KB.

* D/B Bit: In a code segment, this bit is called the D bit and specifies the default size for
operands and offsets. If the D bit is 0, default operands and offsets are assumed to be 16
bits; for 32-bit operands and offsets, the D bit must be 1.

In a data segment, this bit is called the B bit and controls the size of the stack and stack
pointer. If the B bit is 0, stack operations use the SP register and the upper bound for the
stack is FFFFH. If the B bit is 1, the ESP register is used for the stack operations with
a stack upper bound of FFFFFFFFH. Recall that numbers expressed in the hexadecimal
number system are indicated by suffix H (see Appendix A).

Typically, this bit is cleared for the real-mode operation and set for the protected-mode
operation. Later we describe how 16- and 32-bit operands and addresses can be mixed in a
given mode of operation.

* S Bit: This bit identifies whether the segment is a system segment or an application segment.

If the bit is 0, the segment is identified as a system segment; otherwise, as an application

(code or data) segment.

Descriptor Privilege Level (DPL): This field defines the privilege level of the segment. It is

useful in controlling access to the segmen