

Django JavaScript Integration:
AJAX and jQuery

Develop AJAX applications using Django and jQuery

Jonathan Hayward

 BIRMINGHAM - MUMBAI

Django JavaScript Integration: AJAX and jQuery

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2011

Production Reference: 1291210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-34-9

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Jonathan Hayward

Reviewers
Jake Kronika

Michael Szul

Acquisition Editor
Steven Wilding

Development Editor
Maitreya Bhakal

Technical Editors
Vanjeet D'souza

Conrad Sardinha

Indexers
Hemangini Bari

Monica Ajmera Mehta

Editorial Team Leader
Akshara Aware

Project Team Leader
Ashwin Shetty

Project Coordinator
Joel Goveya

Proofreader
Sandra Hopper

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Foreword

In this book, we will be exploring Django JavaScript integration and build an Ajax
application using jQuery. We will build a Web 2.0 intranet employee directory, and
we will aim for a solution that is Pythonic in more ways than one.

Web development that is more "Pythonic" than just Python
This book is intended to be a book about how to do web development in the spirit
of Python++.

The term "Python++" as we use it here is not the usual "Python is great," even if that
may also be our opinion, but a more direct analogy to C++. When the effort was
made to improve the C language, the basic kind of improvement attempted was to
expand and broaden the core language. It is no accident that Stroustrup's The C++
Programming Language is far longer than Kernigan and Ritchie's The C Programming
Language. The latter is a small book describing a small core language, while the
former is a large book made large by the large core language it describes. The analogy
intended by Python++ is somewhat loose here, and specifically does not include a
large, or even a small, expansion of the core language. It is possible to tinker with
the core language—easy_extend lets you extend Python to include a do-while loop
(where the test condition is first evaluated at the end, not the beginning)—or add
primitive syntax so you can do things like if remote_ip in 10.0.0.0:, but this
is almost beside the point.

The real possibilities for expanding Python do not need to radically expand the core
language, or change the core language at all. Django (http://www.djangoproject.
com/) is not a general purpose enhancement to Python: if you are automating system
administration tasks, for instance, you very probably have no reason to use Django.
But for a limited problem domain, namely certain kinds of web development, Django
is more Pythonic than Python. Python's cgi module is good for some kinds of small
and simple tasks, but if you are going to make a serious, large-scale web application
with many standard functions, using Python core language + Python standard library +
Django is a fundamentally more Pythonic approach than just Python core language +
Python standard library alone.

On StackOverflow, someone asked the question, "Have you considered using Django
and found good reasons not to?" There were various answers, but the answer with
the most "up" votes by far said, "I am an honest guy, and the client wanted to charge
by the hour. There was no way Django was going to make me enough money."

Django itself is not the limit to Python++. Pinax (http://pinaxproject.com/) is
built on top of Django and offers a "more Django than Django" platform to build a
social network. Satchmo (http://satchmoproject.com/) is also "more Django than
Django" for another narrower focus: e-commerce webshops. And there are other
platforms built on Django; it is time well spent to search the Python Package Index
(http://pypi.python.org/pypi) for Django to see what is already available. In this
text we will often use "Django" as a shorthand for either basic Django or any of the
many good tools built on top of Django.

Depending on what you are trying to do, it may be that the bulk of the Python work
in Django is resolved surprisingly quickly: you can build and brand a Pinax social
network by doing little more than overriding the CSS and adding images. This book
will address the Python side and try to give a solid basis for programming Python
for Django, working with the templates, and so on, but that problem can often be
solved so cleanly that most of the work that remains is styling and Ajax.

Django and its templating engine
Before further exploring technical details, it would be worth taking a look at the
opinions and philosophy behind the Django templating language, because an
understandable approach of, "������ Oh, it's a general purpose programming language
very slightly adapted for templating,��� " is a recipe for needless frustration and
pain. The Django developers themselves acknowledge that their opinions in the
templating language are one just opinion in an area where different people have
different opinions, and you are welcome to disagree with them if you want. If you
don't like the templating system that Django comes with, Django is designed to let
you use another. But it is worth understanding what exactly the philosophy behind
the templating language is; even if this is not the only philosophy one could use, it is
carefully thought out.

The Django templating language is intended to foster the separation of presentation
and logic. In its design decisions, both large and small, the Django's templating engine
is optimized primarily for designers to use for designing, rather than programmers
to use for programming, and its limitations are almost as carefully chosen as the
features it provides. Unlike ASP, JSP, and PHP, it is not a programming language
interspersed with HTML. It provides enough power for presentation, is intended not
to provide enough power to do serious programming work where it doesn't belong
(in the Django opinion), and is simple enough that some non-programmers can pick
it up in a day. For a programmer, the difficulty of learning the templating basics is
comparable to the difficulty of simple HTML or SQL: it is simple, and a good bit
easier to learn than wrapping your arms around a regular programming language.
It is likely that there are a number of Django programmers out there who started by
asking, "Why doesn't the templating language just let you mix Python and HTML?"
and after playing with it, found themselves saying, "This isn't what I would have
come up with myself, but I really, really like it."

Additional benefits include it being fast (most of the work is done by a single regular
expression call, and the founders talk about disabling caching because it couldn't
keep up with the template rendering engine's speed), secure (it is designed so that it
can be used by untrusted designers without allowing a malicious designer to execute
arbitrary code), and versatile enough to generate whatever text format you want:
plain text, HTML, XML, XHTML, JSON, JavaScript, CSV, ReStructuredText, and so
on. We will be using it to generate web pages and JSON, but Django's templating
language is a general-purpose text templating solution.

What we will do in this book—building a Web 2.0 intranet
employee photo directory
Many books will teach you a new technology by walking through a sample
project. This book is no different, but the sample project is not a toy: it is a walk
through making a real, live Web 2.0 intranet employee photo directory that you can
customize to your organization's needs. This is something that is both useful, and
will give us a tour of the potential for developing Ajax applications using Django on
the server side and jQuery on the client side.

 - Jonathan Hayward

About the Author

Jonathan Hayward as a child ranked 7th in a nationwide math contest, and
later programmed a video game on his calculator. He holds master's degrees in
bridging mathematics and computer science (UIUC), and philosophy and theology
(Cambridge). Jonathan has lived in the U.S., Malaysia, France, and England, and
has studied well over a dozen dialects and languages. He wears the hats of author,
philosopher, theologian, artist, poet, wayfarer, philologist, inventor, and a skilled
web developer who holds a deep interest in the human side of computing. He has a
website showcasing his works at http://JonathansCorner.com and can be reached
via e-mail at jonathan.hayward@pobox.com.

I would like to thank my parents, John and Linda, who love learning
and taught me faith, my brothers, Matthew, Kirk and Joe, my parish,
St. Innocent of Moscow, for a wealth of support. I would also like
to thank the editorial team at Packt: Steven Wilding, who helped
me come up with the book idea in the first place, Ved Prakash Jha,
who helped see it to completion, and Joel Goyeva, who helped
me with innumerable logistics along the way. And, of course, the
reviewers Jake Kronika and Michael Szul, who offered an invaluable
sharpening. The Django list, django-users@googlegroups.com, is
worth its weight in gold. I would like to thank Daniel Roseman, Alex
Robbins, Dan Harris, Karen Tracey, Oleg Lokalma, Mark Linsey, Jeff
Green, Elijah Rutschman, Brian Neal, Euan Goddard, Sævar Öfjörð,
"Ringemup", Ben Atkin, Tom Evans, Sam Lai, and Preston Holmes.

Authors have to leave somebody out who deserves to be mentioned;
that's just part of the territory. But I would like to thank one person
in particular: the reader. You're really the reason the book is here,
and you've chosen to invest some money in a book and some time in
fascinating technologies and let me help you along the way. Thank
you so much.

About the Reviewers

Jake Kronika, a web designer and developer with over fifteen years of experience,
brings to this book a strong background in frontend development with JavaScript
and AJAX, as well as exposure to the Django framework.

Having earned a Bachelors of Science degree in Computer Science from Illinois
Wesleyan University in 2005, with a minor in Business Administration, Jake went
on to become Senior User Interface (UI) Specialist for Imaginary Landscape, LLC, a
small web development firm in Ravenswood, on the north side of Chicago. In this
role, the foundations of his strengths in Cascading Style Sheets (CSS) and JavaScript
(JS) were built, as well as extensive use of Python and the Django Framework.

From there, Jake went on to work for the Sun-Times News Group, owner of the
Chicago Sun-Times and numerous suburban newspapers in Chicagoland. It was in
this role that he was initially exposed and rapidly became an expert with the jQuery
framework for JS.

Following an intermediate position as Technology Consultant with Objective
Arts, Inc, Jake has worked as UI Prototyper for JP Morgan Chase since February
2010. Since 1999, he has also operated Gridline Design & Development, a sole
proprietorship for web design, development, and administration.

I would like to thank my wife, Veronica, for her ongoing support.
She and my twin children Mykaela and Kaden provide all the joy I
could want in this world.

Michael Szul has designed and developed software applications for Fortune
500 companies, including AIG and Praxair, since 1998. Later, he served as a senior
software engineer for the technology division of Performance Media Group,
contributing to their fast growth and success, including placement on the Inc. 5000.

Szul's expertise in social software development led to a lateral move within the
company to become the director of development for their travel social network. He
even built successful social software for companies such as Apple Vacations and
Conde Naste's Gourmet Magazine.

As a partner at Barbella Digital, Inc., he currently designs and develops enterprise-
level workflow systems and mobile applications for educational institutions.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

•
•
•

Table of Contents
Preface	 1
Chapter 1: jQuery and Ajax Integration in Django	 7

Ajax and the XMLHttpRequest object	 8
Human speech: An overlaid function	 8
Ajax: Another overlaid function	 8
The technologies Ajax is overlaid on	 9

JavaScript	 9
XMLHttpRequest	 14

Methods	 14
Properties	 15

HTML/XHTML	 17
XML	 18
JSON	 18
CSS	 19
The DOM	 19
iframes and other Ajax variations	 20
JavaScript/Ajax Libraries	 21
Server-side technologies	 21

A look at Django	 21
Django templating kickstart	 22
A more complete glimpse at Django templating	 23

Setting JavaScript and other static content in place	 32
Summary	 33

Chapter 2: jQuery—the Most Common JavaScript Framework	 35
jQuery and basic Ajax	 36
jQuery Ajax facilities	 39

$.ajax()	 39
context	 40
data	 42

Table of Contents

[ii]

dataFilter	 43
dataType	 43
error(XMLHttpRequest, textStatus, errorThrown)	 44
success(data, textStatus, XMLHttpRequest)	 44
type	 44
url	 44

$.aj0axSetup()	 45
Sample invocation	 45
$.get() and $.post()	 45
.load()	 46

jQuery as a virtual higher-level language	 48
The selectors	 48

A closure-based example to measure clock skew	 52
Case study: A more in-depth application	 56

Chapter 3: Validating Form Input on the Server Side	 56
Chapter 4: Server-side Database Search with Ajax	 56
Chapter 5: Signing Up and Logging into a Website Using Ajax	 57
Chapter 6: jQuery In-place Editing Using Ajax	 57
Chapter 7: Using jQuery UI Autocomplete in Django Templates	 57
Chapter 8: Django ModelForm: a CSS Makeover	 57
Chapter 9: Database and Search Handling	 57
Chapter 10: Tinkering Around: Bugfixes, Friendlier Password Input,
and a Directory That Tells Local Time	 58
Chapter 11: Usability for Hackers	 58
Appendix: Debugging Hard JavaScript Bugs	 58

Summary	 58
Chapter 3: Validating Form Input on the Server Side	 61

The standard lecture: low-level validation	 62
Matching regular expressions	 62
You cannot guarantee absolutely valid data	 63
Validating can detect (some) malicious input	 63

The Django way of validation	 64
Django gives you some things for free	 64
The steps in Django's validation	 65
A more sensible and cruelty-free approach to validation	 66
Things get murkier	 67
The zero-one-infinity rule: a cardinal rule of thumb in usability	 68
An improvement on Django's advertised approach	 68
A validation example: GPS coordinates	 70
Avoiding error messages that point fingers and say, "You're wrong!"	 71

Table of Contents

[iii]

Validation as demanding that assumptions be met	 72
Old-school: conform to our U.S.-based assumptions!	 72
Adding the wrong kind of band-aid	 74

Making assumptions and demanding that users conform	 76
At least names are simple, right?	 76
Even in ASCII, things keep getting murkier	 77

Better validation may be less validation	 78
Caveat: English is something of a lingua franca	 79
We don't have to negotiate with pistols	 80
Doing our best to solve the wrong problem: a story	 81
It really does apply to validation	 82
Facebook and LinkedIn know something better	 83

Summary	 83
Chapter 4: Server-side Database Search with Ajax	 85

Searching on the client side and server side	 86
Handling databases through Django models	 86
Models for an intranet employee photo directory	 87
Searching our database	 95
A tour of Django persistence facilities	 100
Summary	 103

Chapter 5: Signing Up and Logging into a Website Using Ajax	 105
admin.py: administrative functions called once	 107
functions.py: project-specific functions, including our
@ajax_login_required decorator	 107
views.py: functions that render web pages	 108
style.css: basic styling for usability	 113
search.html: a template for client-side Ajax	 114
The Django admin interface	 122
Summary	 124

Chapter 6: jQuery In-place Editing Using Ajax	 125
Including a plugin	 127

How to make pages more responsive	 127
A template handling the client-side requirements	 128

The bulk of the profile	 132
Whitespace and delivery	 133
Page-specific JavaScript	 136
Support on the server side	 137

Summary	 139

Table of Contents

[iv]

Chapter 7: Using jQuery UI Autocomplete in Django Templates	 141
Adding autocomplete: first attempt	 142

Progressive enhancement, a best practice	 142
A real-world workaround	 146

"Interest-based negotiation": a power tool for problem solving
when plan A doesn't work	 146
A first workaround	 148
Boilerplate code from jQuery UI documentation	 154
Turning on Ajax behavior (or trying to)	 156
Code on the server side	 156

Refining our solution further	 159
Summary	 163

Chapter 8: Django ModelForm: a CSS Makeover	 165
"Hello, world!" in ModelForm	 165
Expanding and customizing the example	 168
Customizing ModelForm pages' appearance	 170
Going under ModelForm's hood	 182
An excellent "stupid" question: where's the e-mail slot?	 184
Summary	 187

Chapter 9: Database and Search Handling	 189
Moving forward to an AHAH solution	 189

Django templates for simple AHAH	 192
Templating for a list of search results	 192
Template for an individual profile	 195

Views on the server side	 202
Telling if the user is logged in	 202
A view to support deletion	 202
The AHAH view to load profiles	 203
Helper functions for the AHAH view for searching	 204
An updated model	 206
An AHAH server-side search function	 207

Handling the client-side: A template for the main page	 209
CSS for styling the directory	 232

Our updated urlpatterns	 241
Summary	 241

Chapter 10: Tinkering Around: Bugfixes, Friendlier
Password Input, and a Directory That Tells Local Time	 243

Minor tweaks and bugfixes	 243
Setting a default name of "(Insert name here)"	 244
Eliminating Borg behavior	 244

Table of Contents

[�]

Confusing jQuery's load() with html()	 245
Preventing display of deleted instances	 246
Adding a favicon.ico	 249

Handling password input in a slightly different way	 250
A directory that includes local timekeeping	 252
Summary	 260

Chapter 11: Usability for Hackers	 261
Usability begins with anthropology… and Django hackers
have a good start on anthropology	 262
Anthropological usability techniques	 263

An introductory example: card sorting	 263
Focus groups: cargo cult research for usability	 265
Anthropological observation: the bedrock of usability	 265

More than one way to see the same situation	 266
Applying this foundation to usability	 268
It's just like (hard) debugging	 271
Lessons from other areas	 272

Live cross-cultural encounters	 272
History	 273
Old books and literature	 274
The last other area: whatever you have	 277

Understanding the user	 278
A lesson from optimization	 278
What's wrong with scratching an itch, or you are not your user	 279
Worst practices from the jargon file	 279

Python and usability	 280
It's not all about the computer!	 280

What to do in the concrete	 282
Further reading	 283
Summary	 284

Appendix: Debugging Hard JavaScript Bugs	 285
"Just fiddling with Firebug" is considered harmful	 285

Cargo cult debugging at your fingertips	 285
The scientific method of debugging	 286
Exhausting yourself by barking up the wrong tree	 287
The humble debugger	 289
The value of taking a break	 289
Two major benefits to asking for help	 290

Table of Contents

[vi]

Firebug and Chrome developer tools	 290
The basics across browsers	 290
Zeroing in on Chrome	 293

Summary	 298
Index	 299

Preface
You want to create an AJAX application. Why would you use Django? Why would
you use jQuery? Why would you use both together? Enter Django JavaScript
Integration: AJAX and jQuery—your comprehensive answer to all these questions
and the only extensive, practical, and hands-on guide to developing any AJAX
application with Django and jQuery.

Gone are the days when you used to lament over the lack of official documentation
on AJAX with Django. This book will teach you exactly why Django is called The
web framework for perfectionists with deadlines, how jQuery—the "write less do
more" JavaScript library—is practically a virtual higher-level language, and why
they both deserve to be integrated with AJAX.

This hands-on-guide shows you how to put Django and jQuery together in the
process of creating an AJAX application. In this book, they are brought together
in a real-world scenario, with attention to usability, to build and develop an
AJAX application.

The first two chapters provide a short and necessary introduction to the world of
Django, jQuery, and AJAX; the remaining chapters are based on a case study that
will make you realize the immense potential and benefits of integrating Django and
jQuery with your AJAX application.

By the time you are done with this book, you'll be developing your AJAX
applications with Django and jQuery in less time than you can say "integrate".

You will cover the basics of AJAX; use jQuery, the most common JavaScript library,
on the client side, and learn form validation with an eye towards usability,
build things with Django on the server side, handle login and authentication
via Django-based AJAX, and then dip into the rich jQuery plugin ecosystem
to build in-place editing into your pages.

Preface

[�]

You will add auto-complete functionality courtesy of jQuery UI, easily build forms
with Django ModelForm, and then look at a client-side search implementation that
can look things up without network access after initial download. You will learn to
implement a simple, expandable undo system, and offer more full-blooded account
management, tinker, fix some bugs, offer a more usable way to handle password
input, add local time support for people who are not in your time zone, look at
usability, and finally take a look at debugging.

After working through this book, you will have both an AJAX application: a Web 2.0
employee intranet photo directory, and with it a deep understanding that you can
use to customize, extend, and further develop it in your organization.

What this book covers
This book covers Django JavaScript integration and building an Ajax application
with Django on the server side and jQuery on the client side. It provides first an
overview, then a first Ajax application, and introduces jQuery; discusses form
validation, server-side database search; Ajax login facilities; jQuery in-place
editing and autocomplete, Django Modelform, and how to give auto-generated
forms a transformational CSS makeover. It also discusses client-side functionality,
customization, and further development with tinkering and added features,
before a grand finale exploring usability, and an appendix on debugging hard
JavaScript bugs.

Chapter 1, jQuery and Ajax Integration in Django lays a solid foundation and introduces
you to the working pieces of Django Ajax to be explored in the
rest of the book.

Chapter 2, jQuery—the Most Common JavaScript Framework explores the "higher-level"
way of doing things in jQuery. You will learn how jQuery is not Python and does
not look like Python, but how there is something "Pythonic in spirit" about how
it works.

Chapter 3, Validating Form Input on the Server Side will teach you how to send
an Ajax request to the server via jQuery, and validate it on the server side based
on the principle that all input is guilty until proven innocent of being malicious,
malformed, incomplete, or otherwise invalid.

Chapter 4, Server-side Database Search with Ajax looks both at the merits of
handling searching and other backend functions with the full power of a backend
environment, and explores why, on the client side, you should work hard to be as
lazy as possible in doing network-related work.

Preface

[�]

Chapter 5, Signing-up and Logging into a Website Using Ajax introduces Django
authentication facilities and account management and includes both server-side
and client-side code.

Chapter 6, jQuery In-place Editing Using Ajax goes from a basic foundation to a
continuing practical application. It will show a way to use jQuery to make an
in-place replacement of a table that allows in-place editing, which communicates
with the server in the background, adding persistence to changes.

Chapter 7, Using jQuery UI Autocomplete in Django Templates tells you what you need
on the client side and server side to get autocomplete working with jQuery UI. It also
includes creative problem solving when something goes wrong. This chapter will
tell you why it is not uncommon for programmers to write plugins their first day
doing jQuery.

Chapter 8, Django ModelForm: a CSS Makeover explores Django ModelForm and how
to use it.

Chapter 9, Database and Search Handling covers all the bases for a simple, AHAH
solution. In addition to showing "lazy" best practices, it also showcases a JavaScript
in-memory database, with an application designed, at the developer's preference, to
either always perform lazy handling of search and other requests, or start loading an
in-memory database and falling back to lazy handling until the in-memory database
is available.

Chapter 10, Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That
Tells Local Time covers some tinkering and tweaks, and bugfixes along the way

Chapter 11, Usability for Hackers steps back from your application and takes a look at
usability and the bedrock competencies hackers can leverage to do usability.

Appendix, Debugging Hard JavaScript Bugs looks at the state of mind that is needed to
debug difficult bugs.

What you need for this book
This book assumes a broad technical maturity and an ability to learn and integrate
different skills. It helps to be a Pythonista with the usual strengths that come with
Python, and knowledge of the Web. A basic understanding of, or the ability to learn,
Django and JavaScript will be helpful.

If you're a good generalist programmer who wants to learn Django JavaScript
integration, this book is for you.

Preface

[�]

Who this book is for
This book is for people looking to integrate AJAX / JavaScript functionality into their
web applications. It is for Django users who are looking to easily integrate AJAX
features into their applications. Conversely, it will also be a priceless companion for
users familiar with Django and jQuery who are looking to integrate them in their
AJAX applications. A working knowledge of Django and basic familiarity with AJAX
and jQuery are assumed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You can override the empty string by
setting TEMPLATE_STRING_IF_INVALID in your settings.py file".

A block of code is set as follows:

function outer()
 {
 result = 0;
 for(i = 0; i < 100; ++i)
 {
 result += inner(i);
 }
 return result
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def ajax_profile(request, id):
 entity = directory.models.Entity.objects.filter(id = int(id))[0]
 if entity.is_invisible:
 return HttpResponse(u'<h2>People, etc.</h2>')

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "������� We can
then click on Entity (or Locations), and add an entity��".

Warnings or important notes appear in a box like this.

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

jQuery and Ajax Integration
in Django

We will be working with the leading Python web framework, Django, on the server
side, and jQuery-powered Ajax on the client side. During the course of this book, we
will cover the basic technologies and then see them come together in an employee
intranet photo directory that shares some Web 2.0 strengths.

There is more than one good JavaScript library; we will be working with jQuery,
which has reached acceptance as a standard lightweight JavaScript library. It might
be suggested that Pythonistas may find much to like in jQuery: jQuery, like Python,
was carefully designed to enable the developer to get powerful results easily.

In this chapter, we will:

Discuss Ajax as not a single technology but a technique which is overlaid on
other technologies
Cover the basic technologies used in Ajax JavaScript
Cover "Hello, world!" in a Django kickstart
Introduce the Django templating engine
Cover how to serve up static content in Django

Overall, what we will be doing is laying a solid foundation and introducing the
working pieces of Django Ajax to be explored in this book.

•

•

•

•

•

jQuery and Ajax Integration in Django

[�]

Ajax and the XMLHttpRequest object
Ajax is not a technology like JavaScript or CSS, but is more like an overlaid function.
So, what exactly is that?

Human speech: An overlaid function
Human speech is an overlaid function. What is meant by this is reflected in the
answer to a question: "What part of the human body has the basic job of speech?"
The tongue, for one answer, is used in speech, but it also tastes food and helps us
swallow. The lungs and diaphragm, for another answer, perform the essential task
of breathing. The brain cannot be overlooked, but it also does a great many other
jobs. All of these parts of the body do something more essential than speech and,
for that matter, all of these can be found among animals that cannot talk. Speech
is something that is overlaid over organs that are there in the first place because of
something other than speech.

Something similar to this is true for Ajax, which is not a technology in itself,
but something overlaid on top of other technologies. Ajax, some people say,
stands for Asynchronous JavaScript and XML, but that was a retroactive expansion.
JavaScript was introduced almost a decade before people began seriously talking
about Ajax. Not only is it technically possible to use Ajax without JavaScript (one
can substitute VBScript at the expense of browser compatibility), but there are
quite a few substantial reasons to use JavaScript Object Notation (JSON) in lieu of
heavy-on-the-wire eXtensible Markup Language (XML). Performing the overlaid
function of Ajax with JSON replacing XML is just as eligible to be considered
full-fledged Ajax as a solution incorporating XML.

Ajax: Another overlaid function
What exactly is this overlaid function?

Ajax is a way of using client-side technologies to talk with a server and perform partial page
updates. Updates may be to all or part of the page, or simply to data handled behind
the scenes. It is an alternative to the older paradigm of having a whole page replaced
by a new page loaded when someone clicks on a link or submits a form. Partial
page updates, in Ajax, are associated with Web 2.0, while whole page updates are
associated with Web 1.0; it is important to note that "Web 2.0" and "Ajax" are not
interchangeable. Web 2.0 includes more decentralized control and contributions
besides Ajax, and for some objectives it may make perfect sense to develop an
e-commerce site that uses Ajax but does not open the door to the same kind of
community contributions as Web 2.0.

Chapter 1

[�]

Some of the key features common in Web 2.0 include:

Partial page updates with JavaScript communicating with a server and
rendering to a page
An emphasis on user-centered design
Enabling community participation to update the website
Enabling information sharing as core to what this communication allows

The concept of "partial page updates" may not sound very big, but part of its
significance may be seen in an unintended effect. The original expectation of partial
page updates was that it would enable web applications that were more responsive.
The expectation was that if submitting a form would only change a small area of a
page, using Ajax to just load the change would be faster than reloading the entire
page for every minor change. That much was true, but once programmers began
exploring, what they used Ajax for was not simply minor page updates, but making
client-side applications that took on challenges more like those one would expect a
desktop program to do, and the more interesting Ajax applications usually became
slower. Again, this was not because you could not fetch part of the page and update
it faster, but because programmers were trying to do things on the client side that
simply were not possible under the older way of doing things, and were pushing the
envelope on the concept of a web application and what web applications can do.

The technologies Ajax is overlaid on
Now let us look at some of the technologies where Ajax may be said to be overlaid.

JavaScript
JavaScript deserves pride of place, and while it is possible to use VBScript for
Internet Explorer as much more than a proof of concept, for now if you are
doing Ajax, it will almost certainly be Ajax running JavaScript as its engine. Your
application will have JavaScript working with XMLHttpRequest, JavaScript working
with HTML, XHTML, or HTML5; JavaScript working with the DOM, JavaScript
working with CSS, JavaScript working with XML or JSON, and perhaps JavaScript
working with other things.

•

•

•

•

jQuery and Ajax Integration in Django

[10]

While addressing a group of Django developers or Pythonistas, it would seem
appropriate to open with, "I share your enthusiasm." On the other hand, while
addressing a group of JavaScript programmers, in a few ways it is more appropriate
to say, "I feel your pain." JavaScript is a language that has been discovered as a gem,
but its warts were enough for it to be largely unappreciated for a long time. "Ajax
is the gateway drug to JavaScript," as it has been said—however, JavaScript needs a
gateway drug before people get hooked on it. JavaScript is an excellent language and
a terrible language rolled into one.

Before discussing some of the strengths of JavaScript—and the language does have
some truly deep strengths—I would like to say "I feel your pain" and discuss two
quite distinct types of pain in the JavaScript language.

The first source of pain is some of the language decisions in JavaScript:

The Wikipedia article says it was designed to resemble Java but be easier for
non-programmers, a decision reminiscent of SQL and COBOL.
The Java programmer who finds the C-family idiom of for(i = 0; i < 100;
++i) available will be astonished to find that the functions are clobbering
each other's assignments to i until they are explicitly declared local to the
function by declaring the variables with var. There is more pain where that
came from.

The following two functions will not perform the naively expected mathematical
calculation correctly; the assignments to i and the result will clobber each other:

function outer()
 {
 result = 0;
 for(i = 0; i < 100; ++i)
 {
 result += inner(i);
 }
 return result
 }

function inner(limit)
 {
 result = 0;
 for(i = 0; i < limit; ++i)
 {
 result += i;
 }
 return result;
 }

•

•

Chapter 1

[11]

The second source of pain is quite different. It is a pain of inconsistent
implementation: the pain of, "Write once, debug everywhere." Strictly speaking, this
is not JavaScript's fault; browsers are inconsistent. And it need not be a pain in the
server-side use of JavaScript or other non-browser uses. However, it comes along
for the ride for people who wish to use JavaScript to do Ajax. Cross-browser testing
is a foundational practice in web development of any stripe; a good web page with
semantic markup and good CSS styling that is developed on Firefox will usually look
sane on Internet Explorer (or vice versa), even if not quite pixel-perfect. But program
directly for the JavaScript implementation on one version of a browser, and you
stand rather sharp odds of your application not working at all on another browser.
The most important object by far for Ajax is the XMLHttpRequest and not only is it
not the case that you may have to do different things to get an XMLHttpRequest in
different browsers or sometimes different (common) versions of the same browser,
and, even when you have code that will get an XMLHttpRequest object, the objects
you have can be incompatible so that code that works on one will show strange bugs
for another. Just because you have done the work of getting an XMLHttpRequest
object in all of the major browsers, it doesn't mean you're home free.

Before discussing some of the strengths of the JavaScript language itself, it
would be worth pointing out that a good library significantly reduces the second
source of pain. Almost any sane library will provide a single, consistent way to get
XMLHttpRequest functionality, and consistent behavior for the access it provides.
In other words, one of the services provided by a good JavaScript library is a much
more uniform behavior, so that you are programming for only one model, or as
close as it can manage, and not, for instance, pasting conditional boilerplate code to
do simple things that are handled differently by different browser versions, often
rendering surprisingly different interpretations of JavaScript. We will be using the
jQuery library in this book as a standard, well-designed, lightweight library. Many
of the things we will see done well as we explore jQuery are also done well in
other libraries.

We previously said that JavaScript is an excellent language and a terrible language
rolled into one; what is to be said in favor of JavaScript? The list of faults is hardly all
that is wrong with JavaScript, and saying that libraries can dull the pain is not itself
a great compliment. But in fact, something much stronger can be said for JavaScript:
If you can figure out why Python is a good language, you can figure out why JavaScript is
a good language.

jQuery and Ajax Integration in Django

[12]

I remember, when I was chasing pointer errors in what became 60,000 lines of C,
teasing a fellow student for using Perl instead of a real language. It was clear in my
mind that there were interpreted scripting languages, such as the bash scripting that
I used for minor convenience scripts, and then there were real languages, which were
compiled to machine code. I was sure that a real language was identified with being
compiled, among other things, and that power in a language was the sort of thing C
traded in. (I wonder why he didn't ask me if he wasn't a real programmer because
he didn't spend half his time chasing pointer errors.) Within the past year or so I've
been asked if "Python is a real programming language or is just used for scripting,"
and something similar to the attitude shift I needed to appreciate Perl and Python is
needed to properly appreciate JavaScript.

The name "JavaScript" is unfortunate; like calling Python "Assembler Kit", it's a
way to ask people not to see its real strengths. (Someone looking for tools for
working on an assembler would be rather disgusted to buy an "Assembler Kit" and
find Python inside. People looking for Java's strengths in JavaScript will almost
certainly be disappointed.)

JavaScript code may look like Java in an editor, but the resemblance is a façade;
besides Mocha, which had been renamed LiveScript, being renamed to JavaScript
just when Netscape was announcing Java support in web browsers, it is has been
described as being descended from NewtonScript, Self, Smalltalk, and Lisp, as well
as being influenced by Scheme, Perl, Python, C, and Java. What's under the Java
façade is pretty interesting. And, in the sense of the simplifying "façade" design
pattern, JavaScript was marketed in a way almost guaranteed not to communicate its
strengths to programmers. It was marketed as something that nontechnical people
could add snippets of, in order to achieve minor, and usually annoying, effects on
their web pages. It may not have been a toy language, but it sure was dressed up
like one.

Python may not have functions clobbering each other's variables (at least not
unless they are explicitly declared global), but Python and JavaScript are both
multiparadigm languages that support object-oriented programming, and their
versions of "object-oriented" have a lot in common, particularly as compared to (for
instance) Java. In Java, an object's class defines its methods and the type of its fields,
and this much is set in stone. In Python, an object's class defines what an object starts
off as, but methods and fields can be attached and detached at will. In JavaScript,
classes as such do not exist (unless simulated by a library such as Prototype), but
an object can inherit from another object, making a prototype and by implication
a prototype chain, and like Python it is dynamic in that fields can be attached and
detached at will. In Java, the instanceof keyword is important, as are class casts,
associated with strong, static typing; Python doesn't have casts, and its isinstance()
function is seen by some as a mistake, hence the blog posting "isinstance()
considered harmful" at http://www.canonical.org/~kragen/isinstance/.

Chapter 1

[13]

The concern is that Python, like JavaScript, is a duck-typing language: If it looks like
a duck, and it quacks like a duck, it's a duck! In a duck-typing language, if you write
a program that polls weather data, and there's a ForecastFromScreenscraper
object that is several years old and screenscrapes an HTML page, you should be
able to write a ForecastFromRSS object that gets the same information much more
cleanly from an RSS feed. You should be able to use it as a drop-in replacement as
long as you have the interface right. That is different from Java; at least if it were a
ForecastFromScreenscraper object, code would break immediately if you handed
it a ForecastFromRSS object. Now, in fairness to Java, the "best practices" Java
way to do it would probably separate out an IForecast interface, which would be
implemented by both ForecastFromScreenscraper and later ForecastFromRSS,
and Java has ways of allowing drop-in replacements if they have been explicitly
foreseen and planned for. However, in duck-typed languages, the reality goes
beyond the fact that if the people in charge designed things carefully and used
an interface for a particular role played by an object, you can make a drop-in
replacement. In a duck-typed language, you can make a drop-in replacement for
things that the original developers never imagined you would want to replace.

JavaScript's reputation is changing. More and more people are recognizing that
there's more to the language than design flaws. More and more people are looking
past the fact that JavaScript is packaged like Java, like packaging a hammer to give
the impression that it is basically like a wrench. More and more people are looking
past the silly "toy language" Halloween costume that JavaScript was stuffed into
as a kid.

One of the ways good programmers grow is by learning new languages, and
JavaScript is not just the gateway to mainstream Ajax; it is an interesting language
in itself. With that much stated, we will be making a carefully chosen, selective
use of JavaScript, and not make a language lover's exploration of the JavaScript
language, overall. Much of our work will be with the jQuery library; if you have just
programmed a little "bare JavaScript", discovering jQuery is a bit like discovering
Python, in terms of a tool that cuts like a hot knife through butter. It takes learning,
but it yields power and interesting results soon as well as having some room
to grow.

jQuery and Ajax Integration in Django

[14]

XMLHttpRequest
The XMLHttpRequest object is the reason why the kind of games that can be
implemented with Ajax technologies do not stop at clones of Tetris and other games
that do not know or care if they are attached to a network. They include massive
multiplayer online role-playing games where the network is the computer. Without
having something like XMLHttpRequest, "Ajax chess" would probably mean a game
of chess against a chess engine running in your browser's JavaScript engine; with
XMLHttpRequest, "Ajax chess" is more likely man-to-man chess against another
human player connected via the network. The XMLHttpRequest object is the object
that lets Gmail, Google Maps, Bing Maps, Facebook, and many less famous Ajax
applications deliver on Sun's promise: the network is the computer.

There are differences and some incompatibilities between different versions
of XMLHttpRequest, and efforts are underway to advance "level-2-compliant"
XMLHttpRequest implementations, featuring everything that is expected of an
XMLHttpRequest object today and providing further functionality in addition,
somewhat in the spirit of level 2 or level 3 CSS compliance. We will not be looking
at level 2 efforts, but we will look at the baseline of what is expected as standard in
most XMLHttpRequest objects.

The basic way that an XMLHttpRequest object is used is that the object is created or
reused (the preferred practice usually being to reuse rather than create and discard
a large number), a callback event handler is specified, the connection is opened, the
data is sent, and then when the network operation completes, the callback handler
retrieves the response from XMLHttpRequest and takes an appropriate action.

A bare-bones XMLHttpRequest object can be expected to have the following methods
and properties.

Methods
A bare-bones XMLHttpRequest object can be expected to have the following methods:

1.	 XMLHttpRequest.abort()

This cancels any active request.
2.	 XMLHttpRequest.getAllResponseHeaders()

This returns all HTTP response headers sent with the response.
3.	 XMLHttpRequest.getResponseHeader(headerName)

This returns the requested header if available, or a browser-dependent false
value if the header is not defined.

Chapter 1

[15]

4.	 XMLHttpRequest.open(method, URL),
XMLHttpRequest.open(method, URL, asynchronous),
XMLHttpRequest.open(method, URL, asynchronous, username),
XMLHttpRequest.open(method, URL, asynchronous, username,
password)

The method is GET, POST, HEAD, or one of the other less frequently used
methods defined for HTTP.
The URL is the relative or absolute URL to fetch. As a security measure for
JavaScript running in browsers on trusted internal networks, a same origin
policy is in effect, prohibiting direct access to servers other than one the
web page came from. Note that this is less restrictive than it sounds, as it is
entirely permissible for the server to act as a proxy for any server it has
access to: for developers willing to undertake the necessary chores, other
sites on the public internet are "virtually accessible".
The asynchronous variable defaults to true, meaning that the method call
should return quickly in most cases, instead of waiting for the network
operation to complete. Normally this default value should be preserved.
Among other problems, setting it to false can lock up the visitor's browser.
The last two arguments are the username and password as optionally
specified in HTTP. If they are not specified, they default to any username
and password defined for the web page.

5.	 XMLHttpRequest.send(content)

Content can be a string or a reference to a document.

Properties
A bare-bones XMLHttpRequest object can be expected to have the following
properties:

1.	 XMLHttpRequest.onreadystatechange,
XMLHttpRequest.readyState

In addition to the provided methods, the reference to one other method is
supplied by the developer as a property, XMLHttpRequest.onreadystate-
change, which is called without argument each time the ready state of
XMLHttpRequest changes. An XMLHttpRequest object can have five
ready states:

Uninitialized, meaning that open() has not been called.
Open, meaning that open() has been called but send() has not.
Sent, meaning that send() has been called, and headers and status
are available, but the response is not yet available.

°

°

°

jQuery and Ajax Integration in Django

[16]

Receiving, meaning that the response is being downloaded and
responseText has the portion that is presently available.
Loaded, meaning that the network operation has completed. If
it has completed successfully (that is, the HTTP status stored in
XMLHttpRequest.status is 200), this is when the web page would
be updated based on the response.

2.	 XMLHttpRequest.responseText, XMLHttpRequest.responseXML
The text of the response. It is important to note that while the name
"XMLHttpRequest" is now very well established, and it was originally
envisioned as a tool to get XML, the job done today is quite often to get text
that may or may not happen to be XML. While there have been problems
encountered with using XMLHttpRequest to fetch raw binary data, the
XMLHttpRequest object is commonly used to fetch not only XML but
XHTML, HTML, plain text, and JSON, among others. If it were being named
today, it would make excellent sense to name it "TextHttpRequest." Once
the request reaches a ready state of 4 ("loaded"), the responseText field will
contain the text that was served up, whether the specific text format is XML
or anything else. In addition, if the format does turn out to be XML, the
responseXML field will hold a parsed XML document.

3.	 XMLHttpRequest.status, XMLHttpRequest.statusText
The status field contains the HTTP code, such as 200 for OK; the
statusText field has a short text description, like OK. The callback event
handler should ordinarily check XMLHttpRequest.readyState and wait
before acting on server-provided data until the readyState is 4. In addition,
because there could be a server error or a network error, the callback will
check whether the status is 200 or something else: a code like 4xx or 5xx in
particular needs to be treated as an error. If the server-response has been
transmitted successfully, the readyState will be 4 and the status will
be 200.

This is the basic work that needs to be done for the XMLHttpRequest side of Ajax.
Other frameworks may simplify this and do much of the cross-browser debugging
work for you; we will see in the next chapter how jQuery simplifies this work. But
this kind of task is something you will need to have done with any library, and
it's worth knowing what's behind the simplified interfaces that jQuery and other
libraries provide.

°

°

Chapter 1

[17]

HTML/XHTML
HTML and XHTML make up the bedrock markup language for the web. JavaScript
and CSS were introduced in relation to HTML; perhaps some people are now saying
that JavaScript is a very interesting language independent of web browsers and
using standalone interpreters such as SpiderMonkey and Rhino. However, HTML
was on the scene first and other players on the web exist in relation to HTML's
story. Even when re-implemented as XHTML, to do HTML's job while potentially
making much more sense to parsers, a very early web page, the beginning of the
source at http://www.w3.org/History/19921103-hypertext/hypertext/WWW/
TheProject.html, is still quite intelligible:

<HEADER>
<TITLE>The World Wide Web project</TITLE>
<NEXTID N="55">
</HEADER>
<BODY>
<H1>World Wide Web</H1>The WorldWideWeb (W3)
is a wide-area

hypermedia information retrieval
initiative aiming to give universal
access to a large universe of documents.<P>
Everything there is online about
W3 is linked directly or indirectly
to this document, including an
executive
summary of the project,

Mailing lists ,
Policy , November's
W3 news ,
Frequently Asked Questions
 .
<DL>
…

At the time of this writing, HTML 5 is taking shape but is not "out in the wild", and
so there are no reports of how the shoe feels after the public has worn it for a while.
Code in this book, where possible, will be written in XHTML 1.0 Strict. Depending
on your situation, this may or may not be the right decision for you; if you are
working with an existing project, the right HTML/XHTML is often the one that
maintains consistency within the project.

jQuery and Ajax Integration in Django

[18]

XML
eXtensible Markup Language (XML) is tied to an attempt to clean up early
HTML. At least in earliest forms, HTML was a black sheep among specific markup
languages derived from the generalized and quite heavy Standard Generalized
Markup Language (SGML). Forgiving web browsers meant, in part, that early web
hobbyists could write terrible markup and it would still display well in a browser.
The amount of terrible markup on the web was not just an issue for purists; it
meant that making a parser that could make sense of early "Wild West" web pages
in general was a nearly impossible task. XML is vastly simplified from SGML, but
it provides a generic space where an HTML variant, XHTML, could pick up the
work done by HTML but not present parsers with unpredictable tag soup. XHTML
could be described as HTML brought back into the fold, still good for doing web
development, but without making machine interpretation such a hopeless cause.
Where early HTML was developed with browsers that were meant to be forgiving,
XML requested draconian error handling, and validated XML or XHTML documents
are documents that can be parsed in a sensible way.

XML works for exchanging information, and it works where many of its
predecessors had failed: it provides interoperability between different systems after a
long history of failed attempts at automating B2B communication and failed attempts
at automated conversion between text data formats. Notwithstanding this, it is a
heavy and verbose solution, with a bureaucratic ambiance, compared in particular
to a lean, mean JSON. XML-based approaches to data storage and communication
are increasingly critiqued in discussions on the web. If you have a reasonable choice
between XML and JSON, we suggest that you seriously consider JSON.

JSON
JavaScript Object Notation (JSON) is a brilliantly simple idea. While formats like
XML, ReStructuredText, and so on share the assumption that "if you're going to
parse this from your language, your language will need to have a parser added,"
JSON simply takes advantage of how an object would be specified in JavaScript,
and clarifies a couple of minor points to make JSON conceptually simpler and
cross-browser friendly. JSON is clear, simple, and concise enough that not only is it
a format of choice for JavaScript, but it is gaining traction in other languages, and it
is being used for communication between languages that need a (simple, added)
parser to parse JSON. The other languages can't use eval() to simply run JSON,
and in JavaScript you should have JSON checked to make sure it does not contain
malicious JavaScript you should not eval(). However, JSON is turning out to have
a much broader impact than the initial "in communicating with JavaScript, just give
it code to declare the object being communicated that can simply be evaluated
to construct the object."

Chapter 1

[19]

CSS
Cascading Style Sheets (CSS) may have introduced some new possibilities for
presentation, but quite a lot of presentation was already possible beforehand. CSS
did not so much add styling capabilities, as it added good engineering to styling
(good engineering is the essence of "separating presentation from content"), and
make the combination of semantic markup and attractive appearance a far more
attainable goal. It allows parlor tricks such as in-place rebranding of websites:
making changes in images and changing one stylesheet is, at least in principle,
enough to reskin an extensive website without touching a single character of its
HTML/XHTML markup. In Ajax, as for the rest of the web, the preferred practice is
to use semantic, structural markup, and then add styles in a stylesheet (not inline)
so that a particular element, optionally belonging to the right class or given the right
ID, will have the desired appearance. Tables are not deprecated but should be used
for semantic presentation of tabular data where it makes sense to use not only a td
but a th as well. What is discouraged is using the side effect that tables can position
content that is not, semantically speaking, tabular data.

The DOM
As far as direct human browsing is concerned, HTML and associated technologies
are vehicles to deliver a pickled Document Object Model (DOM), and nothing
more. In this respect, HTML is a means to an end: the DOM is the "deserialized
object," or better, the "live form" of what we really deliver to people. HTML may
help provide a complete blueprint, and the "complete blueprint" is a means to the
"fully realized building." This is why solving Ajax problems on the level of HTML
text are like answering the wrong question, or at least solving a problem on the
wrong level. It is like deciding that you want a painting hung on a wall of a building,
and then going about getting it by adding the painting to the blueprint and asking
construction personnel to implement the specified change. It may be better to hang
the painting on the wall directly, as is done in Ajax DOM manipulations.

document.write() and document.getElementById().innerHTML() still have
a place in web development. It is a sensible optimization to want a static, cacheable
HTML/XHTML file include that will only be downloaded once in the usual
multi-page visit. A JavaScript include with a series of document.write() may be
the least Shanghaiing you can do to technologies and still achieve that goal. But this
is not Ajax; it is barely JavaScript, and this is not where we should be getting our
bearings. In Ajax, a serious alternative to this kind of solution for altering part of a
web page is with the DOM.

As the book progresses, we will explore Ajax development that works with
the DOM.

jQuery and Ajax Integration in Django

[20]

iframes and other Ajax variations
Ajax includes several variations; Comet for instance, is a variation on standard Ajax
in which either an XMLHttpRequest object's connection to a server is kept open
and streaming indefinitely, or a new connection is opened whenever an old one is
closed, creating an Ajax environment in which the server as well as the client can
push material. This is used, for instance, in some instant messaging implementations.
One much more essential Ajax variation has to do with loading documents into
seamlessly integrated iframes instead of making DOM manipulations to a single,
frame-free web page.

If you click around on the page for a Gmail account, you will see partial page
refreshes that look consistent with Ajax DOM manipulations: what happens when
you click on Compose Mail, or a filter, or a message subject, looks very much like
an Ajax update where the Gmail web application talks with the server if it needs to,
and then updates the DOM in accordance with your clicks. However, there is one
important difference between Gmail's behavior and a similar Ajax clone that updates
the DOM for one frameless web page: what happens when you click the browser
"Back" button. Normally, if you click on a link, you trigger an Ajax event but not a
whole page refresh, and Ajax optionally communicates with a server and updates
some part of the DOM. This does not register in the browser's history, and hitting the
Back button would not simply reset the last Ajax partial page update. If you made an
Ajax clone of Gmail that used DOM manipulations instead of seamlessly integrated
iframes, there would be one important difference in using the clone: hitting Back
would do far more than reverse the last DOM manipulation. It would take you back
to the login or load screen. In Gmail, the browser's Back button works with surgical
accuracy, and the reason it can do something much better than take you back to the
login screen is that Gmail is carefully implemented with iframes, and every change
that the Back button can undo is implemented by a fresh page load in one of the
seamlessly integrated iframes. That creates browsing history.

For that matter, a proof of concept has been created for an Ajax application that
does not use client-side scripting or programming, instead using, on the client side,
a system of frames/iframes, targets, links, form submissions, and meta refresh tags
in order to perform partial page updates. Whether this variant technique lends
itself to creating graceful alternatives to standard Ajax implementations, or is only
a curiosity merely lending itself to proofs of concept, it is in principle possible to
make an Ajax application that loses nothing if a visitor's browser has turned off
scripting completely.

Comet and iframes are two of many possible variations on the basic Ajax technique;
what qualifies as Ajax is more a matter of Python- or JavaScript-style duck-typing
than Java-style static typing. "Asynchronous JavaScript and XML" describes a
reference example more than a strict definition, and it is not appropriate to say "if

Chapter 1

[21]

you replace XML with JSON then, by definition, it isn't really Ajax." This is a case of,
"the proof of the pudding is in the eating," not what technologies or even techniques
are in the kitchen.

JavaScript/Ajax Libraries
This book advocates taking advantage of libraries, and as a limitation of scope
focuses on jQuery. If you only learn one library, or if you are starting with just one
library, jQuery is a good choice, and it is widely used. It is powerful, but it is also a
much easier environment to get started in than some other libraries; in that way, it is
somewhat like Python. However, it is best not to ask, "Which one library is best?"
but "Which library or libraries are the right tools for this job?", and it is common
real-world practice to use more than one library, possibly several.

JavaScript libraries offer several advantages. They can reduce chores and boilerplate
code, significantly lessening the pain of JavaScript, and provide a more uniform
interface. They can also provide (for instance) ready-made widgets; we will be
working with a jQuery slider later on in this book. And on a broad scale, they
can let the JavaScript you write be higher-level and a little more Pythonic.

Server-side technologies
Many of the "usual suspects" in client-side technologies have been mentioned.
The list of client-side technologies is generally constrained by what is available
in common web browsers; the list of available server-side technologies is only
constrained by what will work on the server, and any general-purpose programming
language can do the job. The question on the server is not "What is available?" but
"Which option would you choose?" Python and Django make an excellent choice
of server-side technology, and we will work with them in this book.

A look at Django
Django's developers call it "the web framework for perfectionists with deadlines,"
and it is one of the most popular Python web frameworks, perhaps the most popular.
In contrast to the MVC pattern, which separates concerns into Model, View, and
Controller, it could be described as an MTV pattern, which separates concerns into
Model, Template, and View. The Model is a class that ties into an ORM where
instances correspond to rows in the table but act and feel like Python objects. The
Template is a system designed to be easy for non-Python developers (though easy
for Pythonistas too), and limits the extent to which HTML needs to be sprinkled
throughout the Python source. The View is a function that renders, in most cases,
from a template. Let's look at a kickstart example of Django in action.

jQuery and Ajax Integration in Django

[22]

Django templating kickstart
Let us briefly go through how to install Django, create a sample project, and create
and use a basic template that can serve as a basis for further tinkering.

Django installation instructions are at http://docs.djangoproject.com/en/dev/
intro/install/; for Ubuntu, for instance, you will want to run sudo apt-get
install python-django.

Once you have Django installed, create a project named sample:

django-admin.py startproject sample

Go into the sample directory, and create the directory templates. Enter the
templates directory.

Create a template file named index.html containing the following template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
lang="en-US">
 <head>
 <title>{% block title %}Hello, world!{% endblock title %}
 </title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 </head>
 <body>
 {% block body %}
 <h1>{% block heading %}Hello, world!
 {% endblock heading %}</h1>
 {% block content %}<p>Greetings from the Django
 templating engine!</p>{% endblock content %}
 {% endblock body %}
 </body>
</html>

Go up one level to the sample directory and edit the urls.py file so that the first line
after urlpatterns = patterns('', is:

 (r'^$', 'sample.views.home'),

Then create the views.py file containing the following:

#!/usr/bin/python/

from django.shortcuts import render_to_response

def home(request):
 return render_to_response(u'index.html')

Chapter 1

[23]

Edit the settings.py file, and add:

 os.path.join(os.path.dirname(__file__), "templates"),

right after:

TEMPLATE_DIRS = (

Then, from the command line, run:

python manage.py runserver

This makes the server accessible to your computer only by entering the URL
http://localhost:8080/ in your web browser.

If you are in a protected environment behind a firewall, appropriate NATting, or the
like, you can make the development server available to the network by running:

python manage.py runserver 0.0.0.0:8080

There is one point of clarification we would like to make clear. Django is packaged
with a minimal, single-threaded web server that is intended to be just enough to start
exploring Django in a development environment. Django's creators are attempting to
make a good, competitive web framework and not a good, competitive web server,
and the development server has never undergone a security audit. The explicit advice
from Django's creators is: when deploying, use a good, serious web server; they also
provide instructions for doing this.

A more complete glimpse at Django templating
Before further exploring technical details, it would be worth taking a look at the
opinions and philosophy behind the Django templating language, because an
understandable approach of, "Oh, it's a general purpose programming language
used for templating," is a recipe for needless frustration and pain. The Django
developers themselves acknowledge that their opinions in the templating language
are one just opinion in an area where different people have different opinions, and
you are welcome to disagree with them if you want. If you don't like the templating
system that Django comes with, Django is designed to let you use another. But
it is worth understanding what exactly the philosophy is behind the templating
language; even if this is not the only philosophy one could use, it is carefully
thought out.

jQuery and Ajax Integration in Django

[24]

The Django templating language is intended to foster the separation of presentation
and logic. In its design decisions, both large and small, Django's templating engine
is optimized primarily for designers to use for designing, rather than programmers
to use for programming, and its limitations are almost as carefully chosen as the
features it provides. Unlike ASP, JSP, and PHP, it is not a programming language
interspersed with HTML. It provides enough power for presentation, and is intended
not to provide enough power to do serious programming work where it doesn't
belong (in the Django opinion), and is simple enough that some non-programmers
can pick it up in a day. For a programmer, the difficulty of learning the templating
basics is comparable to the difficulty of simple HTML or SQL: it is simple, and a
good bit easier to learn than wrapping your arms around a regular programming
language. Some programmers like it immediately, but there are some who started by
asking, "Why doesn't the templating language just let you mix Python and HTML?"
and after playing with it, found themselves saying, "This isn't what I would have
come up with myself, but I really, really like it."

Additional benefits include it being fast (most of the work is done by a single regular
expression call, and the founders talk about disabling caching because it wasn't
as fast as the template rendering), secure (it is designed so that it can be used by
untrusted designers without allowing a malicious designer to execute arbitrary
code), and versatile enough to generate whatever text format you want: plain text,
HTML, XML, XHTML, JSON, JavaScript, CSV, ReStructuredText, and so on. We will
be using it to generate web pages and JSON, but Django's templating language is a
general-purpose text templating solution.

Following the Django site's lead, let us use a template intended as an example
of how one might begin a base template for a site, then start to walk through its
contents, and then look at some of how it could be used and parts overridden
to create a specific document.

This renders as follows, if we strip out blank lines:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
lang="en-US">
 <head>
 <title></title>
 <link rel="icon" href="/static/favicon.ico"
 type="x-icon" />
 <link rel="shortcut icon" href="/static/favicon.ico"
 type="x-icon" />
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 <meta http-equiv="Content-Language" value="en-US" />

Chapter 1

[25]

 <link rel="stylesheet" type="text/css"
 href="/static/css/style.css" />
 </head>
 <body>
 <div id="sidebar">
 </div>
 <div id="content">
 <div id="header">
 <h1></h1>
 </div>
 </div>
 <div id="footer">
 </div>
 </body>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.js"></script>
</html>

Let us unwrap what is going on here; there is more to the template than how it
renders to this page, but let us start with that much.

The {% block dtd %} style tags begin, or the case of {% endblock dtd %} end, a
semantic block of text that can be left untouched or can be replaced. In the case of
this one template, the effect is to strip them out like comments, but they will yield
benefits later on, much like semantic HTML markup with CSS yields benefits
later on.

Django templating reflects a choice to go with hooks rather than includes because
hooks provide the more versatile solution. The "beginner's mistake" version of
a header to include might be something like the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
lang="en-US">
 <head>
 <title>Welcome to my site!</title>
 <link rel="icon" href="/favicon.ico" type="x-icon" />
 <link rel="shortcut icon" href="/favicon.ico"
 type="x-icon" />
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 <meta http-equiv="Content-Language" value="en-US" />
 <link rel="stylesheet" type="text/css"
 href="/css/style.css" />
 </head>
 <body>

jQuery and Ajax Integration in Django

[26]

This solution could be continued by adding a sidebar, but there is a minor problem,
or at least it seems minor at first: there are bits of this header that are not generic.
For a serious site, having every page titled, "Welcome to my site!" would be an
embarrassment. The language is declared to be "en-US", meaning U.S. English, which
is wonderful if the entire site is in U.S. English, but if it expands to include more than
U.S. English content, hardcoding "en-US" will be a problem. If the only concern is to
accurately label British English, then the more expansive "en" could be substituted in,
but hardcoding "en-US" and "en" are equally unhelpful if the site expands to feature
a section in Russian. This header does not include other meta tags that might be
desirable, such as "description", which is ideally written for a specific page and not
done as site-wide boilerplate. Including the header verbatim solves a problem, but it
doesn't provide a very flexible solution.

The previous example builds in hooks. It does specify:

{% block html_tag %}<html xmlns="http://www.w3.org/1999/xhtml" xml:
lang="en-US" lang="en-US">{% endblock html_tag %}

If not overridden, this will render as:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
lang="en-US">

However, in a template that extends this, by having {% extends "base.html" %} as
its opening tag, if the base is loaded as base.html, then:

{% block html_tag %}<html xmlns="http://www.w3.org/1999/xhtml" xml:
lang="en-GB" lang="en-GB">{% endblock html_tag %}

will render:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-GB"
lang="en-GB">

And Russian may be declared in the same way:

{% block html_tag %}<html xmlns="http://www.w3.org/1999/xhtml" xml:
lang="ru-RU" lang="ru-RU">{% endblock html_tag %}

will render:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="ru-RU"
lang="ru-RU">

The template as given does specify "en-US" more than once, but each of these is
inside a block that can be overridden to specify another language.

Chapter 1

[27]

We define initial blocks. First, the DTD:

{% block dtd %}<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//
EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
{% endblock dtd %}

Then, the HTML tag:

{% block html_tag %}<html xmlns="http://www.w3.org/1999/xhtml" xml:
lang="en-US" lang="en-US">{% endblock html_tag %}

Then we define the head, with the title and favicon:

 {% block head %}<head>
 <title>{% block title %}{{ page.title }}
 {% endblock title %}</title>
 {% block head_favicon %}<link rel="icon"
 href="/static/favicon.ico" type="x-icon" />
 <link rel="shortcut icon" href="/static/favicon.ico"
 type="x-icon" />{% endblock head_favicon %}

Then we define hooks for meta tags in the head. We define a Content-Type of UTF-8;
this is a basic point so that non-ASCII content will display correctly:

 {% block head_meta %}
 {% block head_meta_author%}{% endblock head_meta_author %}
 {% block head_meta_charset %}
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8" />
 {% endblock head_meta_charset %}
 {% block head_meta_contentlanguage %}
 <meta http-equiv="Content-Language" value="en-US" />
 {% endblock head_meta_contentlanguage %}
 {% block head_meta_description %}
 {% endblock head_meta_description %}
 {% block head_meta_keywords %}
 {% endblock head_meta_keywords %}
 {% block head_meta_othertags %}
 {% endblock head_meta_othertags %}
 {% block head_meta_refresh %}
 {% endblock head_meta_refresh %}
 {% block head_meta_robots %}
 {% endblock head_meta_robots %}
 {% endblock head_meta %}

We declare a block to specify an RSS feed for the page:

 {% block head_rss %}{% endblock head_rss %}

jQuery and Ajax Integration in Django

[28]

We add hooks for CSS, both at the site level, and section, and page. This allows
a fairly fine granularity of control:

 {% block head_css %}
 {% block head_css_site %}
 <link rel="stylesheet" type="text/css"
 href="/static/css/style.css" />
 {% endblock head_css_site %}
 {% block head_css_section %}
 {% endblock head_css_section %}
 {% block head_css_page %}{% endblock head_css_page %}
 {% endblock head_css %}

We add section- and page-specific header information:

 {% block head_section %}{% endblock head_section %}
 {% block head_page %}{% endblock head_page %}

Then we close the head and open the body:

 </head>{% endblock head %}
 {% block body %}
 <body>

We define a sidebar block, with a hook to populate it:

 <div id="sidebar">
 {% block body_sidebar %}{% endblock body_sidebar %}
 </div>

We define a block for the main content area:

 <div id="content">
 {% block body_content %}

For the header of the main content area, we define a banner hook, and a header for
the page's title, should such be provided. (If none is provided, there is no crash or
error; the empty string is displayed for {{ page.title }}.)

 <div id="header">
 {% block body_header %}
 {% block body_header_banner %}
 {% endblock body_header_banner %}
 {% block body_header_title %}<h1>
 {{ page.title }}</h1>
 {% endblock body_header_title %}

Chapter 1

[29]

We define a breadcrumb, which is one of many small usability touches that can
be desirable:

 {% block body_header_breadcrumb %}
 {{ page.breadcrumb }}
 {% endblock body_header_breadcrumb %}
 {% endblock body_header %}
 </div>

We add a slot for announcements, then the body's main area, and then close the
block and div:

 {% block body_announcements %}
 {% endblock body_announcements %}
 {% block body_main %}{% endblock body_main %}
 {% endblock body_content %}
 </div>

We define a footer div, with a footer breadcrumb, and a hook for anything our
company's lawyers asked us to put:

 <div id="footer">
 {% block body_footer %}
 {% block body_footer_breadcrumb %}
 {{ page.breadcrumb }}
 {% endblock body_footer_breadcrumb %}
 {% block body_footer_legal %}
 {% endblock body_footer_legal %}
 {% endblock body_footer %}

Now we close that div, the body, and the body block:
 </div>
 </body>{% endblock body %}

We add a footer, with JavaScript blocks, again at the site/section/page level
of hooks:

 {% block footer %}
 {% block footer_javascript %}
 {% block footer_javascript_site %}
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.js"></script>
 {% endblock footer_javascript_site %}
 {% block footer_javascript_section %}
 {% endblock footer_javascript_section %}
 {% block footer_javascript_page %}

jQuery and Ajax Integration in Django

[30]

 {% endblock footer_javascript_page %}
 {% endblock footer_javascript %}
 {% endblock footer %}
</html>

And that's it.

You can make as many layers of templates as you want. One suggested approach
is to make three layers: one base template for your entire site, then more specific
templates for sections of your site (whatever they may be), and then individual
templates for end use. The template given is a base template, and it provides
hooks as narrow as a specific meta tag or as broad as the main content area.

For our extended example, if it is named \base.html, then we can create another
template, russian.html, which will declare its content to be in the Russian
language. (Ordinarily one would do more interesting things in overriding a template
than merely replacing tags, but for illustration purposes we will do that, and
only that:

{% extends "base.html" %}
{% block html_tag %}<html xmlns="http://www.w3.org/1999/xhtml" xml:
lang="ru-RU" lang="ru-RU">{% endblock html_tag %}
{% block head_meta_contentlanguage %}<meta http-equiv="Content-
Language" value="ru-RU" />{% endblock head_meta_contentlanguage %}

These block overrides may occur anywhere; while the {% extends "base.html" %}
tag must be placed first, the two tags may be swapped. It would work just as well
to create a language-agnostic base.html with only an empty hook:

 {% block head_meta_contentlanguage %}
 {% endblock head_meta_contentlanguage %}

and a default HTML tag of:

<html xmlns="http://www.w3.org/1999/xhtml">

And then create english.html and russian.html, or en-US.html and ru-RU.html,
as base templates for those languages.

However, there are many other tags than those used for blocks and overriding. We
will just barely sample them below, looking at how to display variables, and then
other tags.

Chapter 1

[31]

There are other tags that look like {% … %}, but I would comment briefly on the
variable tags such as {{ page.title }}. The Django templating language uses
dotted references, but not in exactly the same way as Python's dotted references.
Where Python requires a couple of different things to get values, dotted references
provide one-stop shopping in Django's templating. When a reference to {{ page.
title }} occurs, it will display page[u'title'] if page[u'title'] is available. If
not, it will display page.title if page.title is available as an attribute, and if there
is no such attribute, it will display page.title() if page.title() is available, and
failing that, if the reference is a non-negative integer like 2, it will display page[2]
if page.2 is requested. If all of these fail, then Django defaults to the empty string
because it's not acceptable for a professional site to crash because a programming
error has the template asking for something that is not available. You can override
the empty string by setting TEMPLATE_STRING_IF_INVALID in your settings.py
file, and in development it may make sense to set TEMPLATE_STRING_IF_INVALID to
something like LOOKUP FAILED, but you will want to set it back to the empty string
for deployment in any production environment.

At this point, while there are explicit hooks to pull in multiple JavaScript and
CSS files, the preferred practice, per Steve Souders's ground rules for client-side
optimizations for high performance websites, is: for each page to load initially, you
should have one HTML/XHTML page, one CSS file included at the top, and one
JavaScript file included at the bottom. The hooks are more flexible than that, but this
is intended more as "development leeway" than what the tightened final product
should be.

If-then, if-then-else statements, and for loops are straightforward, and else clauses
are optional:

{% if results %}

 {% for result in results %}
 {% result.title %}
 {% endfor %}

{% else %}
 <p>There were no results.</p>
{% endif %}

There are a number of convenience features and minor variations available; these are
several of the major features.

jQuery and Ajax Integration in Django

[32]

Setting JavaScript and other static
content in place
For the development server, putting static content, including images, CSS, and static
content, is straightforward. For production use, the recommended best practice is
to use a different implementation, and Django users are advised to use a separate
server if possible, optimized for serving static media, such as a stripped-down build of
Apache, or nginx. However, for development use, the following steps will serve up
static content:

1.	 Create a directory named static within your project. (Note that other
names may be used, but do not use media, as that can collide with
administrative tools.)

2.	 Edit the settings.py file, and add the following at the top, after import os:
DIRNAME = os.path.abspath(os.path.dirname(__file__))

3.	 Change the settings of MEDIA_ROOT and MEDIA_URL:
MEDIA_ROOT = os.path.join(DIRNAME, 'static/')
…
MEDIA_URL = '/static/'

4.	 At the end of the settings.py file, add the following:
if settings.DEBUG:
 urlpatterns += patterns('django.views.static',
 (r'^%s(?P<path>.*)$' % (settings.MEDIA_URL[1:],), 'serve', {
 'document_root': settings.MEDIA_ROOT,
 'show_indexes': True }),)

This will turn off static media service when DEBUG is turned off, so that this code
does not need to be changed when your site is deployed live, but the subdirectory
static within your project should now serve up static content, like a very simplified
Apache. We suggest that you create three subdirectories of static: static/css,
static/images, and static/js, for serving up CSS, image, and JavaScript
static content.

Chapter 1

[33]

Summary
Guido van Rossum, the creator of the Python programming language, for one
project asked about different Python frameworks and chose the Django templating
engine for his purposes (http://www.artima.com/weblogs/viewpost.
jsp?thread=146606). This chapter has provided an overview of Ajax and then
provided a kickstart introduction to the Django templating engine. There's more
to Django than its templating engine, but this should be enough to start exploring
and playing.

In learning a new technology, a crucial threshold has been passed when there is
enough of a critical mass of things you can do with a technology to begin tinkering,
and taking one step often invites the question: "What can we do to take this one step
further?". In this chapter, we have provided a kickstart to begin working with the
Django templating engine.

In this chapter, we have looked at the idea of Pythonic problem solving, discussed
Django and jQuery in relation to Pythonic problem solving, and discussed Ajax as
not a single technology, but an overlaid function or technique that is overlaid on top
of existing technologies. We have taken an overview of what the "usual suspect"
technologies are for Ajax; given a kickstart to the Django templating engine,
introducing some of its beauty and power; and addressed a minor but important
detail: putting static content in place for Django's development server.

This is meant to serve as a point of departure for further discussion of jQuery Ajax
in the next chapter, and building our sample application. Interested readers who
want to know more of what they can do can read the official documentation at
http://docs.djangoproject.com/en/dev/topics/templates/.

In the next chapter, we will push further and aim for a critical mass of things we can
do. We will explore jQuery, the most common JavaScript library, and begin to see
how we can use it to reach the point of tinkering, of having something that works
and wondering, "What if we try this?", "What if we try that?", and being able to do it.

jQuery—the Most Common
JavaScript Framework

JavaScript frameworks can offer at least two kinds of advantages, as we have
discussed earlier. Firstly, they can offer considerable facilities when compared
to building from scratch. TurboGears and Django are both server-side web
frameworks in Python and both offer major advantages compared to web application
development in Python using only the standard library, even with the CGI module
included. Secondly, they can offer a more uniform virtual programming interface
compared to writing unadorned JavaScript with enough detection and conditional
logic to directly conform to disparate JavaScript environments so that code written in
one browser and debugged in another browser stands a fighting chance of working
without crashing in every common browser.

As regards the question, "Which is best?" if you only learn one client-side JavaScript
framework, jQuery is an excellent choice. It is one of the most popular JavaScript
frameworks, partly because it is (like Python) gentle to newcomers. However,
comparing jQuery to Dojo is like comparing a hammer to a wrench. (A general
JavaScript framework comparison is at http://en.wikipedia.org/wiki/
Comparison_of_JavaScript_frameworks.) Unlike server-side web development
frameworks such as Django and TurboGears, you don't necessarily ask, "Which one
will we use for this project?" as there might be good reasons to use more than one
framework in a web application. jQuery's developers know it isn't the only thing
out there. It only uses two names in the global namespace: $ and jQuery. Both
do the same thing; you can always use jQuery() in lieu of $(), and if you call
jQuery.noconflict(), jQuery will let go of $ so that other libraries like Prototype
(http://www.prototypejs.org/) are free to use that name.

jQuery—the Most Common JavaScript Framework

[36]

Finally, we suggest that jQuery might be something like a "virtual higher-level
language" built on top of JavaScript. A programmer's first reaction after viewing
the JavaScript code, on seeing code using jQuery, might well be, "Is that really
JavaScript? It doesn't look like JavaScript!" A programmer using jQuery can operate
on element sets, and refine or expand, without ever typing out a JavaScript variable
assignment or keyword such as if, else, or for, and even without cross-browser
concerns, one runs into jQuery code that does the work of dozens of lines of "bare
JavaScript" in a single line. But these are single lines that can be very easily read
once you know the ground rules, not the cryptic one-liners of the Perl art form.
This "virtual higher-level language" of jQuery is not Python and does not look like
Python, but there is something "Pythonic in spirit" about how it works.

In this chapter, we will cover:

How jQuery simplifies "Hello, world!" in Ajax
The basic Ajax facilities jQuery offers
How jQuery effectively offers a "virtual higher-level language"
jQuery selectors, as they illustrate the kind of more Pythonic "virtual
higher-level language facilities" that jQuery offers
A sample "kickstart Django Ajax application," which covers every major basic
feature except for server-side persistence management
An overview of a more serious, in-depth Django application, to be covered in
upcoming chapters

Let's explore the higher-level way to do things in jQuery.

jQuery and basic Ajax
Let's look at a "Hello, world!" in Ajax. A request containing one variable, text, is
sent to the server, and the server responds with "Hello, [contents of the variable text]!"
which is then put into the innerHTML of a paragraph with ID result:

if (typeof XMLHttpRequest == "undefined")
 {
 XMLHttpRequest = function()
 {
 try
 {
 return new ActiveXObject("Msxml2.XMLHTTP.6.0");
 }
 catch(exception)
 {

•

•

•

•

•

•

Chapter 2

[37]

 try
 {
 return new ActiveXObject("Msxml2.XMLHTTP.3.0");
 }
 catch(exception)
 {
 try
 {
 return new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch(exception)
 {
 throw new Error("Could not construct
 XMLHttpRequest");
 }
 }
 }
 }
 }

var xhr = new XMLHttpRequest();
xhr.open("GET", "/project/server.cgi?text=world");
callback = function()
 {
 if (xhr.readyState == 4 && xhr.status >= 200 && xhr.status < 300)
 {
 document.getElementById("result").innerHTML =
 xhr.responseText;
 }
 }
xhr.onreadystatechange = callback;
xhr.send(null);

With the simpler, "virtual high-level language" of jQuery, you accomplish more or
less the same with only:

$("#result").load("/project/server.cgi", "text=world");

$() selects a wrapped set. This can be a CSS designation, a single HTML entity
referenced by ID as we do here, or some other things. jQuery works on wrapped
sets. Here, as is common in jQuery, we create a wrapped set and call a function on it.
$.load() loads from a server URL, and we can optionally specify a query string.

How do we do things with jQuery? To start off, we create a wrapped set. The syntax
is based on CSS and CSS2 selectors, with some useful extensions.

jQuery—the Most Common JavaScript Framework

[38]

Here are some examples of creating a wrapped set:

$("#result");
$("p");
$("p.summary");
$("a");
$("p a");
$("p > a");
$("li > p");
$("p.summary > a");
$("table.striped tr:even");

They select nodes from the DOM more or less as one would expect:

$("#result#") selects the item with HTML ID result
$("p") selects all paragraph elements
$("p.summary") selects all paragraph elements with class summary
$("a") selects all anchor tags
$("p a") selects all anchor tags in a paragraph
$("p > a") selects all anchor tags whose immediate parent is a paragraph tag
$("li > p") selects all p tags whose immediate parent is a li tag
$("p.summary > a") selects all anchor tags whose immediate parent is a
paragraph tag with class summary
$("table.striped tr:even") selects even-numbered rows from all tables
belonging to class striped

The difference between $("p a") and $("p > a") is that the first selects any tag
contained in a p tag, whether its immediate parent is the p tag or whether there
are intervening span, em, or strong tags, and the second selects only those tags
whose immediate parent is a p tag; the latter yields a subset of the former. This last
approach lends itself to a straightforward and clean way to address the chore of
tiger-striping tables:

$("table.striped tr:even").addClass("even");

The statements before this last example are not useful in themselves, but they lay
a powerful foundation by creating a wrapped set. A wrapped set is an object that
encapsulates both a set of DOM elements and a full complement of operations, such
as .addClass(), which assigns a CSS class to all elements from a wrapped set, or
.load(), which provided a one-line Ajax solution earlier.

•

•

•

•

•

•

•

•

•

Chapter 2

[39]

One of the key features of a wrapped set is that these operations return the same
wrapped set, unless they are one of a few exceptions, such as operations designed
to change the set by adding or removing members. This means that operations can
be chained; for a somewhat artificial example, our code to stripe items in a table
could be extended to slowly hiding them, waiting for a second (specified as 1000
milliseconds), and then showing them again:

$("table.striped tr:even").addClass("even").hide("slow").delay(1000).
show("slow");

In this statement, all of the operations return the same wrapped set. Dozens of
further operations could be appended after the .show() call if desired. In chaining
of operations, the additional functions can function as separate "virtual statements".
The previous line of code, in pseudocode, could be written:

Select even-numbered table rows from tables having the class
"striped".
Add the class "even" to them.
Slowly hide them.
Wait 1000 milliseconds.
Slowly show them.

The final appearance of the page should be as if merely $("table.striped tr:
even").addClass("even"); had been called.

jQuery Ajax facilities
jQuery provides good facilities both for Ajax and other JavaScript usage. The API is
excellent and can be bookmarked from http://api.jquery.com/.

We will be going through some key facilities, Ajax and otherwise, and making
comments on how these facilities might best be used.

$.ajax()
The most foundational and low-level workhorse in jQuery is $.ajax(). It takes the
arguments as shown in the following Sample invocation. Default values can be set
with $.ajaxSetup(), as discussed below:

$.ajax({data: "surname=Smith&cartTotal=12.34", dataType: "text",
error: function(XMLHttpRequest, textStatus, errorThrown) {
 displayErrorMessage("An error has occurred: " + textStatus);
 }, success: function(data, textStatus, XMLHttpRequest) {
 try
 {

jQuery—the Most Common JavaScript Framework

[40]

 updatePage(JSON.parse(data));
 }
 catch(error)
 {
 displayErrorMessage("There was an error updating your
 shopping cart. Please call customer service at
 800-555-1212.");
 }
 }, type: "POST", url: "/update-user"};

Some of the fields that can be passed are described in the following sections.

context
The context, available as the variable this, can be used to give access to variables
in callbacks, even if they have fallen out of scope. The following code prompts for
the user's name and e-mail address and provides them in a context, anonymously,
so that the data are available to the callback function but are never a part of the
global namespace.

$.ajax({success: function(data, textStatus, XMLHttpRequest)
 {
 alert(this.name + ", your email address is " +
 this.email + ".");
 processData(data, this.name, this.email);
 }, context:
 {
 name: prompt("What is your name?", ""),
 email: prompt("What is your email address?", "")
 }, …
 });

Closures
The principle at play is the principle of closures. The wrong way, perhaps, to learn
about closures is to look for academic-style introductions to what you need to know
in order to understand them. There's a lot there, and it's a lot harder to understand
than learning by jumping in. Closures represent a key concept in core JavaScript,
along with other things such as functions, objects, and prototypes. Closures are part of
the conceptual landscape and not only because they are the basis on how to effectively
create an object with private fields. So we will jump in and give a closure that serves
as a proof of concept as, effectively, an object with private fields. To give a standard,
"bare JavaScript" example of using a closure to create an object with private variables,
which creates an object that stores an integer value, has a getter and setter, but in Java
fashion ensures that the field can only have an integer value.

Chapter 2

[41]

We define a function, which we will be immediately evaluating; closureExample
stores not the anonymous function but its return value. The variable field is a
local variable:

var closure_example = function()
 {
 var field = 0;
 return {

The getter is an unadorned getter as in Java:

 get: function()
 {
 return field;
 },

The setter could be an unadorned setter, storing newValue in a field and doing
nothing else. However, we provide a more discriminating behavior: we make a
string of the object and then see if it can be parsed as an integer. This will be an
integer if we obtain an integer and NaN (Not a Number) if it cannot be parsed as an
integer. If the value is not a number, then we return false; if it gives us an integer,
then we store the integer and return true:

 set: function(newValue)
 {
 var value = parseInt(newValue.toString());
 if (isNaN(value))
 {
 return false;
 }
 else
 {
 field = value;
 return true;
 }
 }
 }
 } ();

This creates and evaluates an anonymous function. Local variables (in this case,
field) do not enter the global namespace but also remain around, lurking, accessible
to the object returned and its two members: functions that can still access field. As
long as the object stored in closure_example is available, its members will have
access to its local variables, which are not gone and garbage collected until the
object in closure_example itself is gone and eligible for garbage collection.

jQuery—the Most Common JavaScript Framework

[42]

We can use it as follows:

closure_example.set(3);
var retrieved = closure_example.get();
closure_example.set(1.2);
var assignment_was_successful = closure_example.set(1.2)

Prototypes and prototypal inheritance
Prototypes and prototypal inheritance are a basis for object-oriented programming,
with inheritance, but without classes. In Java, certain features of a class are fixed.
In Python, an object inherits from a class but features that are fixed in Java cannot
be overridden. In JavaScript, we go one step further and say that objects inherit
from other objects. Class-based objects run in a Platonic fashion, where there is an
ideal type and concrete shadows or copies of that ideal type. Prototypal inheritance
is more like the evolutionary picture of single-celled organisms that can mutate,
reproduce asexually by cell division, and pass on (accumulated) mutations when
they divide. In JavaScript, an object's prototype is set by, for instance:

customer.prototype = employee;

Redefine members for a customer when one wants to change from the attributes
of an employee. (Members that are not redefined default to the prototype's values,
and if not found on the prototype, default to members on the prototype's prototype,
going all the way up the chain to the object if need be.) Also note that this inheritance
may or may not mean moving from more general to more specific; inheritance may
better be seen as "customer mutates from employee" than "customer is a more specific
type of employee."

Let us return to the parameters of $.ajax().

data
This is the form data to pass, whether given as a string as it would appear in a GET
URI, as follows:

query=pizza&page=2

or given as a dictionary, as follows:

{page: 2, query: "pizza"}

Chapter 2

[43]

dataFilter
This is a reference to a function that will be passed two arguments: the raw response
given by an XMLHttpRequest, and a type (xml, json, script, or html). This offers an
important security hook: JSON can be passed to an eval(), but malicious JavaScript
that is passed in place of JSON data can also be passed to an eval().

One of the cardinal rules of security on both the client-side and server-side is to
treat all input as guilty until proven innocent of being malicious. Even though it is
a "double work" chore, user input should both be validated at the client-side and
the server-side: client-side as a courtesy to the user to improve the user experience
and not as trustworthy security, and on the server side as a security measure against
malicious data even if it is malformed malicious data that no normal web browser
would send.

We might comment that the Django principle of Don't Repeat Yourself (DRY), is
a major Django selling point but is not a reason to dodge handling both the user
interface side of validation, and the security side. In practice, this means both
validating from Django on the server-side and JavaScript on the client-side, for what
we are doing. Needlessly repeating yourself in Django is a sign of bad code, but this
is not needless repetition, even if it is a chore. It's needed repetition.

jQuery does not automatically include functionality to test whether something
served up as JSON is malicious, and methods like .getJSON() trustingly execute
what might contain malicious JavaScript. One serious alternative is the JSON.
parse() method defined in http://www.json.org/json2.js. It will return a
parsed object or throw a SyntaxError if it finds something suspicious.

dataType
This is something you should specify, and provide a default specified value via
$.ajaxSetup(), for example:

$.ajaxSetup({dataType: "text"});

The possible values are html, json, jsonp, script, text, and xml. If you do
not specify a value, jQuery will use an unsecure "intelligent guessing" that may
trustingly execute any JavaScript or JSON it is passed without any attempt to
determine if it is malicious. If you specify a dataType of text, your callback will be
given the raw text which you can then test call JSON.parse() on. If you specify a
dataType of json, you will get the parsed JSON object. So specify text even if you
know you want JSON.

jQuery—the Most Common JavaScript Framework

[44]

error(XMLHttpRequest, textStatus, errorThrown)
An error callback that takes up to three arguments. For example:

$.ajax({error: function(XMLHttpRequest, textStatus, errorThrown)
 {
 registerError(textStatus);
 }, …
 });

success(data, textStatus, XMLHttpRequest)
A callback for success that also takes up to three arguments, but in different order.
For example:

$.ajax({success: function(data, textStatus, XMLHttpRequest) {
 processData(data);
 }, …
 });

If you want to do something immediately after the request has completed, the
recommended best practice is to specify a callback function that will pick up after the
request has completed. If you want to make certain variables available to the callback
function that would not otherwise remain available, you may specify the context as
discussed above.

type
The type of the request, for example GET, POST, and so on. The default is GET,
but this is only appropriate in very limited cases and it may make sense to simply
always use POST. The more serious the work you are doing, the more likely it is
that you should only use POST. GET is appropriate only when it doesn't matter
how many extra times a form is submitted. In other words, GET is only appropriate
when there are no significant side effects, and in particular no destructive side
effects. In a shopping cart application, GET may be appropriate to view the contents
of a shopping cart, although POST is also appropriate and has the side effect of
guaranteeing a fresh load. GET is not, however, appropriate for creating, modifying,
fulfilling, or deleting an order, and you should use POST when any or all of these
are involved.

url
The URL to submit to; this defaults to the current page.

Chapter 2

[45]

$.aj0axSetup()
This takes the same arguments as $.ajax(). All arguments are optional, but you can
use this to specify default values. In terms of DRY, if something can be appropriately
offloaded to $.ajaxSetup(), it probably should be offloaded to $.ajaxSetup().

Sample invocation
A sample invocation is as follows:

$.ajaxSetup({dataType: "text", type: "POST"});

$.get() and $.post()
These are convenience methods for $.ajax() that allow you to specify
commonly used parameters without key-value hash syntax and are intended
to simplify GET and POST operations. They both have the same signature.

The sample invocation is as follows:

$.get("/resources/update");
$.post("/resources/update");
$.post("/resources/update", "user=jsmith&product_id=112");
$.post("/resources/update", {user: "jsmith", product_id: 112});
$.post("/resources/update", function(data) { ("#result").html(data)
});
$.get("/resources/update", "user=jsmith&product_id=112",
 function(data, textStatus, XMLHttpRequest) {
 ("#result").html(data);
 logStatus(textStatus);
 });
$.post("/resources/update", "user=jsmith&product_id=112",
 function(data, textStatus, XMLHttpRequest) {
 ("#result").html(data);
 logStatus(textStatus);
 }, "text");

These are convenience methods for $.ajax() and make several common features
from $.ajax() available, but notably not an error callback function. If you want
a callback called in the case of an error for appropriate handling, as well as when
everything goes perfectly well, register a global error handler or use $.ajax().

For the real world, this is a substantial endorsement of not using the
convenience methods alone, but either specifying a global error handler
or using $.ajax().

jQuery—the Most Common JavaScript Framework

[46]

Something can go wrong in front of your boss, or worse, work perfectly when you
show your boss and then proceed to blow up completely when your boss shows it
to your customer. Heisenbugs, (subtle and hard-to-pin-down bugs that just show
up under circumstances that are difficult to repeat), network errors, and server
errors will occur, and unless a noop response is appropriate and production-ready
behavior when an error prevents successful completion, you will want to specify an
appropriate error callback.

Or, alternatively, it may be acceptable to specify a global error handler using
$.ajaxSetup({error: myErrorHandler}) if you can write something appropriate
to generically but correctly handle all Ajax error conditions where you did not
directly call $.ajax() and specify an error handler. This includes all calls to
$.get(), $.load(), and $.post().

.load()
This is a very convenient convenience method. If you're looking for a simple,
higher-level alternative to $.ajax(), you can call this method on a wrapped set
to load the results of an Ajax call into it. There are some caveats, however. Let's
give some sample invocations, look at why .load() is attractive, and then give
appropriate qualifications and warnings.

Sample invocations
The sample invocation is as follows:

$("#messages").load("/sitewide-messages");
$("#messages").load("/user-messages", "username=jsmith");
$("#hidden").load("/user-customizations", "username=jsmith",
function(responseText, textStatus, XMLHttpRequest) {
 performUserCustomizations(responseText);
 });

On the surface, this looks like a good example of an alternative to doing JavaScript
work that incorporates jQuery, and instead using the "virtual higher-level language"
that jQuery provides. .load(), like many jQuery functions, is a function of a
wrapped set and returns a wrapped set (as often, the wrapped set it was given).
It is, therefore, in principle something that can be put in a chain.

Why "in principle"? It makes sense, upon some condition, to hide all of the
paragraphs in a form containing a checkbox that is not checked:

$("form p:has(input[type=checkbox]:not(:checked))").hide("slow");

This says, "For all p elements in a form that have an unchecked checkbox, slowly
hide them."

Chapter 2

[47]

Furthermore, one could want to do several actions instead of one:

$("form p:has(input[type=checkbox]:not(:checked))").
addClass("strikethru").delay(500).hide("slow");

That is a more elaborate animation: "For all p elements in a form that have an
unchecked checkbox, add the class strikethru (which can be defined in CSS to have
a strikethrough line through text), then wait half a second (500 milliseconds), and
then slowly hide it as was done before."

But for a wrapped set like this, it would not make much sense to insert a .load()
after the wrapped set is generated:

$("form p:has(input[type=checkbox]:not(:checked))").load("/updates");

What that says is, "For all p elements in a form that have an unchecked box, load the
contents of the relative URL /updates and replace whatever the selected p elements
contain with what was loaded." That's legal, but it's not as clear why someone would
want to do this. Ordinarily, if you are going to load something from Ajax to add to
the web page, it will make sense to insert it in one place and not every element in a
multi-element wrapped set. So the possibility of calling .load() on any wrapped
set, instead of a single DOM element as can be encapsulated in a wrapped set like
$.("#results"), is not obviously such a terribly great improvement.

Furthermore, .load() will return immediately, not when things are loaded, so items
following it in the chain should not be assumed to have the data loaded. But they
also should not be assumed not to have the data loaded; we have a race condition,
and we should only chain other items after .load() when race conditions about the
order of execution do not matter. So the fact that we can chain other operations after
.load(), which is arguably the glory of jQuery, does not mean that it is always wise
to do so.

Another point to be made is as above: .load(), like $.get() and $.post(),
effectively forces a noop error handler, and therefore should be used only when it
is acceptable for nothing to be done when any of a number of things that can go
wrong, do go wrong. There may be some cases where a noop is the best error
handler, but usually best practices in Ajax are to give some feedback that something
has gone wrong.

Convenience methods exist, but we recommend using $.ajax() because it provides
callback facilities for error situations as well as for success, or writing an appropriate
generic, all-purpose error callback to give to $.ajaxSetup() or equivalent (there
are other alternatives, including $.ajaxError()). The best practices are to use a
convenience method in conjunction with a global error handler, which can be
made more sophisticated by examining the information in its arguments to tell
what went wrong.

jQuery—the Most Common JavaScript Framework

[48]

jQuery as a virtual higher-level language
There are some other basic functions that we have seen in jQuery besides direct
Ajax. One example of other kinds of functions includes selectors.

The selectors
Selectors create a wrapped set. Some examples of selectors include:

$("*"): Selects all DOM elements.
$(":animated"): Selects all elements that are in the process of an animation
at the time the selector is called.
$("id|=header"): Selects all elements with attribute id (in this illustration),
whose content matches header or header-*, like header-image. In this case,
this would be an element ID. This and following selectors matching text are
case sensitive, meaning that an ID of "HEADER" or even "Header" would not
be matched.
$("value*=import"): Selects all elements with attribute value containing
the string import. This would include both strings like "Then import the
following class." and "This is important."
$("value~=import"): Matches elements having a value that contains the
string import, but is delimited by spaces. This would include "Then we
import the following class." but exclude "This is important."
$("id$=wrapper"): Matches all elements having an ID that ends with
wrapper. This would include an ID of "comment-wrapper" as well
as wrapper.
$("http-equiv=refresh"): Matches all elements where the http-equiv
attribute exactly equals refresh.
$("id!=result"): Matches all elements having IDs, where the ID does not
equal result. This will not match elements that do not have IDs.
$("class^=main"): Matches all elements having a class that begins
with main.
$(":button"): Selects all buttons, whether button elements directly or
inputs of type button.
$(":checkbox"): Selects all inputs of type checkbox.
$(":checked"): Selects all checked inputs.
$(":contains('important')"): Selects all elements containing the
text important.
$(":disabled"): Selects all inputs that are disabled.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[49]

$(":empty"): Select all elements that have no children, not even a text node.
This would include a node from <img src='logo.png' height='120'
width='100' alt='Widgets, Inc.' />" or "<p></p>", but not
"<p>Hello.</p>" or the outer element of "<p></p>.
$(":enabled"): Selects all elements that are enabled.
$("p").eq(0): This gives two examples. First, all tags of a name may be
found by calling their tag name; hence $("li") returns all li elements
(regardless of the case in the source HTML). The .eq() function performs
zero-based array indexing on the set. It is conceptually like how a JavaScript
$("p")[0]. $("p").eq(0) returns a wrapped set containing one item: the
first p element.
$(":even"): Selects all even-numbered elements, but zero-based.
Counter-intuitively, $("table#directory tr:even"), which says "Take the
table with ID directory and return all even-numbered tr elements from it,"
will return the first, third, fifth, and so on, tr elements from the table if the
table contains at least five table rows.
$(":file"): Selects all inputs of type file.
$(":first-child"): Selects all elements that are the first child of their
parent. For example:
<html>
 <head>
 <link rel="stylesheet"
 type="text/css" href="/style.css" />
 <title>Welcome to our community!</title>
 <meta http-equiv="refresh" content="900" />
 </head>
 <body>
 <p>Welcome to our community! We offer:</p>

 Experienced leadership.
 Well-furnished facilities.
 Good neighbors.

 </body>
</html>

$(":first-child") will return the head element, the link element, the
p element, and the first li element. Note that this does not noisily and
legalistically include every DOM text element. The text node containing
"Good neighbors." is technically the first child of its li parent, but $(":
first-child") returns a more useful, and conceptually cleaner to use,
version of the first child.

•

•

•

•

•

•

•

jQuery—the Most Common JavaScript Framework

[50]

.(":gt(2)") will return all elements with (zero-based) index greater than
two in the wrapped set. $("p").(":gt(2)") will return the fourth and
subsequent p elements, or an empty wrapped set if there are not at least
four p elements.
$(":has(a)"): Returns all elements containing an anchor. $("p:has(a)")
returns all p elements containing an a element.
$(":header"): Returns all h1, h2, h3, and so on, elements.
$(":hidden"): Returns all elements that are hidden.
$(":image"): Returns all images.
$(":input"): Returns all buttons, inputs, selects, and text areas.
$(":last-child"): Like $("first-child"), but selects the last instead
of first element.
.(":last"): Returns the last element in a wrapped set if that set is
non-empty; the Python equivalent to $("p").(":last") would be
paragraphs[-1].
.(":lt"): Like .(":gt"), but selects elements less than the (zero-based)
index. $("p").(":lt(2)") would return the first two out of any p elements.
.(":not(p a)"): $("p:not(p a)") would return a matched set of all
paragraphs that do not contain an a element.
$(":nth-child(3n)"): Would return every element that is the
one-based third child of its parent. As well as $(":nth-child(3n)"),
$(":nth-child(4n)"), and so on, being allowed, there is a more intuitive,
one-based $(":nth-child(even)") and $(":nth-child(odd)"), which
more predictably have odd nth children starting with the first child and
even with the second.
The reason for this inconsistency is historical: other elements are zero-based
in following JavaScript's and other languages' wide precedent, while this
option is one-based in strictly following the CSS specification.
$(":odd"): A selector that is counter-intuitively zero-based. $("p:odd")
returns the second, fourth, sixth, and so on, paragraph elements if available.
$(":only-child"): Selects all elements that are the only child of
their parent.
$(":parent"): Selects all nodes that are parents of other nodes, including
text nodes. (Would return the p element for <p>Hello, world!</p>.)
$(":password"): Selects all inputs of type password.
$(":radio"): Selects all inputs of type radio.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[51]

$(":reset"): Selects all inputs of type reset.
$(":selected"): Returns all elements that are selected.
$(":submit"): Returns all inputs of type submit.
$(":text"): Returns all inputs of type text.
$(":visible"): Returns all elements that are visible.

There are several remarks to be made here.

The first is that the selectors in these examples are (usually) given alone, but this is
like words being listed alone in an old-fashioned paper dictionary. In English, there
are a few things you can say with a single word, like "Stop!" but usually you say
things by combining them, as we have done for a few examples. These selectors are
powerful by themselves, but they are more powerful when viewed as words that
make up sentences like $("div.product ul:nth-child(odd)"), which returns the
first, third, fifth, and so on, li elements in each unordered list contained in a div
of class product, such as one would use for tiger-striping unordered lists. Many of
these selectors are useful by themselves, but they are intended, like pipable Unix
command-line tools, to work well together and to be assembled like Lego bricks.

One of the first remarks one might make to someone learning Perl is, "You are not
really thinking Perl until you are thinking dictionaries/hashes/associative arrays."
If you are solving problems like they do in a C class, from the basic data types such
as int, long[], char**, and void*, then you are missing one of the most important
workhorses Perl has to offer (and Python, for that matter). And in similar fashion,
you are not really thinking jQuery until you are thinking wrapped sets as created by selectors
like the examples above. It's a foundational part of idiomatic use of the "virtual
higher-level language" jQuery offers.

In some other libraries, and in unadorned JavaScript, you operate on the DOM one
element at a time. If you want to operate on several elements, you still operate on
them one at a time, but you do this several times in sequence. However, the basic
unit of work in jQuery is the wrapped set; it may be a wrapped set of one, such as
one may create by calling $("#main:first-child") or $("div").eq(0), or one
may end up getting it by calling $("h2") when the DOM contains exactly one h2
header. However, even then it is missing something about jQuery to think of the
set as simply a wrapper for an isolated, unitary element.

The list of the selectors above is something like a paper dictionary of nouns. We
haven't yet discussed the verbs, or how to put them together in speech. Let's explore
one example of including jQuery in simple Django Ajax. This example does not
demonstrate jQuery's power and elegance yet. That is part of the goal in subsequent
chapters, as they show Django Ajax put together using jQuery.

•

•

•

•

•

jQuery—the Most Common JavaScript Framework

[52]

A closure-based example to measure
clock skew
Let's put some things together in making a simple Ajax example. We will load a
web page that will measure how long it takes to make a request from the server, and
given a request that gives the time on the server, estimate clock skew between the
server and the client. The server will give its answer in JSON, and we will do some
DOM manipulations: we will use jQuery rather than an inline onclick-style attribute
to register with the button's click event, and we will update the DOM without
ever using innerHTML. And, for good measure, we will use a closure to make one
incursion into the global namespace, so that if our code or some extension of it is
reused, it will not overwrite other global variables.

First, let us make the template, for the sake of discussion starting from base.html
as defined at the end of the last chapter. We will include it in the same directory as
base.html, saved as clockskew.html:

{% extends "base.html" %}
{% block title %}Measure Clock Skew{% endblock title %}
{% block body_header_title %}Measure Clock Skew{% endblock body_
header_title %}
{% block head_css_page %}<style type="text/css">
<!--
.error
 {
 color: red;
 }
.success
 {
 font-weight: bold;
 }
// -->
</style>
{% endblock head_css_page %}
{% block footer_javascript_page %}<script language="JavaScript"
type="text/javascript" src="/static/js/json2.js"></script>
<script language="JavaScript" type="text/javascript"
 src="/static/js/clock_skew.js"></script>
{% endblock footer_javascript_page %}
{% block body_content %}<ul id="results">
<button id="button">Measure Clock Skew</button>
{% endblock body_content %}

Chapter 2

[53]

Now this page could stand to be refactored on a couple of grounds. Firstly, it
includes as page-specific /static/js/json2.js, which as a library for safer parsing
of JavaScript presented as JSON should probably be included sitewide, or to go one
step further, it should be concatenated with /static/js/jquery.js at least for
sitewide deployment, and any other sitewide includes, so that only one JavaScript
HTTP request slows things down. (As far as HTTP requests go, a 2 KB download
plus another 2 KB download, especially if they are 2 KB JavaScript downloads,
add up to more slowness in page rendering than one 4 KB download.) Secondly,
one of the major principles of Django is DRY, and the fact that this page repeats
"Measure Clock Skew" three times is an invitation for refactoring. This example and
what follows deliberately have room left for refinements. (Can you spot any further
improvements to make?)

We will also define a couple of models, one to serve up this template and one to
serve JSON, adapt and extend the urls.py file, and write the Ajax to add behavior
to the page. Here is the JavaScript clock_skew.js file:

var MeasureClockSkew = function()
 {
 var that = this;
 var lastButtonPress = new Date().getTime();
 var registerError = function(XMLHttpRequest, textStatus,
 errorThrown)
 {
 $("#results").append("<li class='error'>Error: " +
 textStatus + "");
 $("#button").removeAttr("disabled");
 };
 var registerSuccess = function(data, textStatus, XMLHttpRequest)
 {
 try
 {
 var remote = JSON.parse(data).time;
 var halfway = (lastButtonPress +
 new Date().getTime()) / 2;
 var skew = (remote - halfway) / 1000;
 $("#results").append("<li class='success'>Estimated clock
 skew: " + skew + "
 seconds.");
 }
 catch(error)
 {
 $("#results").append("<li class='error'>Error parsing
 JSON.");
 }

jQuery—the Most Common JavaScript Framework

[54]

 $("#button").removeAttr("disabled");
 };
 var buttonPress = function()
 {
 lastButtonPress = new Date().getTime();
 $("#button").attr("disabled", "disabled");
 $.ajax({data: "", dataType: "text", error: registerError,
 success: registerSuccess, type: "POST",
 url: "/time/json"});
 };
 return {
 buttonPress: buttonPress
 }
 } ();
$("#button").click(MeasureClockSkew.buttonPress);

Before going further, we would like to make a few comments about double
submission and race conditions. If our test script is deployed live on a faraway
web server, with netlag we could fairly easily click the button twice before the
response came back, and then it would calculate invalid data. The object, as a means
of accounting for netlag, estimates that the server gave its timestamp halfway
between when we submitted the click and when we received it, and if we clicked a
button twice before the response came back, in addition to any inaccuracies in this
estimation, it would combine the time the second click was made and when the first
click's response came back, making the calculation corrupt. There are other ways this
could have been dealt with; we could make a closure within a closure that would
create a separate object for each click and allow overlapping trials with each end
time matched to the corresponding start time. But here we have followed a much
more generally applicable pattern from the e-commerce world, which is to disable
the submit button so the user should not be able to generate overlapping clicks. This
is another area where doing things right, even if it means doing double work, means
that on the client side you prevent a second submission when that would not be in
your visitor's best interests (you don't want your customers charged twice because
they got impatient and pressed the button again), and on the server side you also
take actions to prevent undesirable forms of double submission (remember, not all
visitors have JavaScript enabled).

Furthermore, there is one other best practice worth mentioning: this is available
only when an object is being constructed; but we can save a reference as that.

Chapter 2

[55]

A Django model is a class that corresponds to a table in a database in Django's
object-relational mapping. A Django model instance corresponds to a table
row. The division of labor, or separation of concerns, is not exactly MVC, or
model-view-controller, but MTV, model-template-view, where the model is a class
of object that corresponds to a table in the database, a template is a designer-editable
component that gets most HTML out of Python code, and a view is what renders
a template or otherwise generates a loaded page. We will create two Django view
methods to serve things up on the server side. One is like what we have seen before,
and another is new but in principle self-explanatory. A view that serves up JSON is
as follows:

#!/usr/bin/python/

import json
import time
from django.core import serializers
from django.http import HttpResponse
from django.shortcuts import render_to_response

def home(request):
 return render_to_response(u'clock_skew.html')

def timestamp(request):
 return HttpResponse(json.dumps({u'time': 1000 * time.time()}),
 mimetype=u'application/json')

We save both views in clock_skew.py, and then edit urls.py, so that after

 (r'^$', 'sample.views.home'),

we also have:

 (r'^time$', 'sample.clock_skew.home'),
 (r'^time/json$', 'sample.clock_skew.timestamp'),

This is a brief nutshell example of many, but not all, of the kinds of features we will
use in our more in-depth case study. The astute reader may have noticed that this
brief microcosm does not have the server storing information and saving the state for
the user later. However, this does provide Ajax, jQuery, JSON, and some of the most
foundational features that Django offers. As we move on we will take these features,
incorporate Django models and database usage, and move into a more complex and
more sophisticated usage of the features that are presented in this brief example.

jQuery—the Most Common JavaScript Framework

[56]

Case study: A more in-depth application
In the following chapters, we will build a Django Ajax web application and
use jQuery. The web application will be meant to work as a company's intranet
employee photo directory, and we hope to put you in a position both to use our
model application and customize it to your company's specific needs. In this test
application, we will demonstrate both basic features and best practices in putting
together a web application using our core technologies. The chapters in our case
study will include the following sections.

Chapter 3: Validating Form Input on the
Server Side
In this chapter, we will send an Ajax request to the server via jQuery, and validate it
on the server side based on the principle that all input is guilty until proven innocent
of being malicious, malformed, incomplete, or otherwise invalid. We will look at
standard server validation approaches in light of usability practices and look
for improvement.

Chapter 4: Server-side Database Search
with Ajax
We will compare the merits of server-side and client-side searching, and look at
the limitations of JavaScript, both in terms of language limitations, and in terms of
client-side performance issues associated with doing too much in the client. We will
look both at the merits of handling searching and other backend functions with the
full power of a backend environment, and explore why, on the client side, we should
work hard to be as lazy as possible in doing network-related work.

We might clarify that "lazy" here does not specifically refer to the programmer's
virtue of a proactive laziness that tries to solve a problem once, correctly, rather than
dash off a bad solution and then spend a lot of time cleaning up after a suboptimal
solution. That is worth encouraging, but it is not what we are talking about here.
"Lazy" refers, for instance, to Python's xrange(), a generator which yields integers
one at a time as they are requested, rather than Python's range(), that builds a
complete array immediately and takes significantly more memory for large ranges.

Chapter 2

[57]

In our case, "lazy" refers in particular to not having the client try to anticipate user
needs by fetching what might or might not be needed beforehand, but requesting
the minimum necessary to meet user requests, only when requested. We will be
exploring several approaches; "lazy" is one approach that we should definitely
know about and be able to use.

Chapter 5: Signing Up and Logging into
a Website Using Ajax
This chapter will introduce Django authentication facilities and account
management, and explore how we can attractively handle the client side of
authentication through Ajax client-side communication with the server and
corresponding Ajax client-side updates.

Chapter 6: jQuery In-place Editing Using Ajax
In this chapter, we will show a way to use jQuery to make an in-place replacement
of a table that allows in-place editing, which communicates with the server in the
background, adding persistence to changes.

Chapter 7: Using jQuery UI Autocomplete in
Django Templates
We will discuss jQuery's basic intention as having a useful core that's designed to
invite plugins to the point of it not being uncommon for programmers to write
plugins their first day doing jQuery. We will use autocomplete from the jQuery UI.
We will then integrate this into Django templates and our project's user interface.

Chapter 8: Django ModelForm:
a CSS Makeover
Django comes with a straightforward way to easily build forms from Django models.
We will explore this feature and how to use it.

Chapter 9: Database and Search Handling
In this chapter, we will be showing "lazy" best practices in developing
our application.

jQuery—the Most Common JavaScript Framework

[58]

Chapter 10: Tinkering Around: Bugfixes,
Friendlier Password Input, and a Directory
That Tells Local Time
If you are interested in having an employee photo directory for your intranet,
we not only want to provide an application but also help you have a starting
point to create a customized application around your company's needs.

Chapter 11: Usability for Hackers
If you are reading this book, you may have some surprising strengths for usability.
This chapter explores them. With this chapter we take a step back from our
application and take a look at usability and the bedrock competencies hackers
can leverage to do usability.

Appendix: Debugging Hard JavaScript Bugs
In this appendix, we take a look at the state of mind that is needed to debug
difficult bugs.

Summary
The goal of these first two chapters has been to provide both a big picture
and a sense for how things fit together. Ajax is a bit interdisciplinary; it involves
server-side technologies (Django for us), client-side scripting and libraries (including
jQuery for us), CSS, HTML, and the DOM, and the goal is very human in character.
Ajax is interesting because it opens doors in user interface, usability, and user
experience, and in that regard doing well with Ajax isn't just technical; it's also
a bit like the arts and humanities.

Chapter 2

[59]

We have covered the technical side of Django Ajax with jQuery in broad
strokes, including:

A tour of "Hello, world!" in Ajax, and how jQuery makes this an easier
operation than library-free, "bare metal" JavaScript
The basic facilities jQuery offers for Ajax
A tour of jQuery selectors as an illustration of how jQuery offers a more
Pythonic "virtual higher-level language"
A minimal Django Ajax application with jQuery, with a discussion of what
is going on
An overview of the in-depth application to be covered in the
upcoming chapters

These upcoming chapters will move from broad strokes to more in-depth
competencies with specific technologies integrated into a more in-depth application.

Let's begin!

•

•

•

•

•

Validating Form Input on the
Server Side

This chapter will look at the topic of server-side validation, albeit from a lens that is
unorthodox on a couple of counts.

First, part of the established school of thought is that server-side validation should
define what is correct and be as strict as possible in enforcing the expectations.
What this claim means is that server-side validation should impose assumptions as
rigidly as possible. Perhaps there was a day when it was legitimate to assume that
all addresses worked like United States addresses and were written in ASCII, not
Unicode. In today's world, websites will see users from the whole world, and it is
no longer best practice to strive to be strict in enforcing assumptions, such as can be
made about United States postal addresses.

Second, in a bygone era where a hard drive was comparable in size to a large
laundry appliance and had a storage capacity in the tens of megabytes, it made sense
to be as thrifty with individual bytes as possible and truncate data so the databases
could have limited column widths.

Now, both obsolete assumptions should be modified in favor of usability and
globalization best practices.

In this chapter, we will:

First, look at what has been the standard security perspective, a perspective
still worth understanding even as we depart from it on some points.
Look at what is provided "for free" in terms of security and validation
in Django.
Look at what Django provides as of version 1.2 in terms of hooks that can be
used and adapted for specific validation needs.

•

•

•

Validating Form Input on the Server Side

[62]

Discuss usability best practices as they are mostly followed in Python—but
not as well in Django's default way of doing things—and how the defaults
can be compensated for.
Look at GPS coordinates as an example of a legitimate place to exercise
server-side validation.
Discuss validation as an area where less is more.
Look at why traditional validation is "negotiating with pistols", and what
can be done as an alternative—underscoring that Python and Django already
take care of several important security considerations.
Look at a better usabilility/UX alternative requiring every field be filled out
before a user may move on.

The standard lecture: low-level validation
Let us look first at the mindset for low-level validation, and look at the use of regular
expressions in validation for security.

Matching regular expressions
Though, strictly speaking, validation on the server-side is more than a security
measure, client-side validation is not the right place for security validation.
Client-side validation is a courtesy to the user that can allow more graceful handling
of honest end-user mistakes. Server-side validation should be based on the premise
that input is guilty until proven innocent of being malicious, and no assumption may
be made that input comes from your client-side software at all. If you have a page or
subsite that handles Ajax requests, it should stand up to any malicious request that
could be sent to that URL from a standard or non-standard client.

For example, you have a JavaScript date picker that sets a form field to an ISO-8601
yyyy-mm-dd format, such as "2001-01-01" for when an event is to be scheduled. You
want to at least perform a regular expression check or equivalent, such as:

is_valid = re.match(r"^\d{4}-\d{2}-\d{2}$")

This may be appropriate as a first layer of validation, although by itself it is
incomplete. "9999-99-99" matches this regular expression but does not qualify as a
valid date. Furthermore, if the date is for an event being scheduled, it should be in
the future. "1327-12-25", however valid as a date, cannot be a valid date in the future.
On that point there is a moral tale:

A programmer has a problem involving validating strings.
The programmer thinks, "I know! I'll use regular expressions."
Now the programmer has two problems.

•

•

•
•

•

Chapter 3

[63]

Regular expressions may have a place, but they bear liabilities: they are terse
and cryptic. So errors will not jump out as easily as in Python-style "executable
pseudocode". This is a major problem for a tool used for security, and there are
some things that are either very difficult to do or impossible. A regular expression
that would accurately test for valid dates would be a completely undecipherable
screenful of code. A regular expression that would in addition test for a date that
is today or in the future would not only be a completely undecipherable screenful
of code—it would have to be a dynamically generated completely undecipherable
screenful of code!

All this is to say that regular expressions should not be our only tool for validation,
even if it is tempting to use them that way.

You cannot guarantee absolutely valid data
One further point is that though we speak of "validation", in general it is not possible
to fully validate input, in the sense that we have guaranteed it is correct. If a user
has selected a date from a date picker, and accidentally clicked on the option next
to the intended date; there is no real way we can protect against such errors. There
might be some things we can do to the user interface so such errors are more likely
to be noticed by the user, but "validation" can't prove that we have the date the
user intended.

Likewise, if we request a user's name, "dfsjkhlasdlhjksdfjhklds" is not appropriate
input. Although, it would be a fool's errand to try to make an input validation
routine that would accept any real personal name in Unicode but would avoid
garbage like "dfsjkhlasdlhjksdfjhklds". The point of validation is not to guarantee
that input is valid, but to guarantee that certain foreseeable types of invalid input
are not given, and in particular to avoid malicious input.

Validating can detect (some) malicious input
A canonical example of malicious input is SQL injection. If, in PHP, you execute a
constructed query of:

"INSERT INTO comments_log (comment, timestamp) VALUES (
 '" . $_POST['comment'] . "', NOW());"

And $_POST['comment'] is something like:

"', NOW()); DELETE FROM comments_log; --"

Validating Form Input on the Server Side

[64]

Then the executed SQL statements will effectively be:

INSERT INTO comments_log (comment, timestamp) VALUES ('', NOW());
DELETE FROM comments_log; --', NOW());

With that, the comments_log table is effectively wiped out.

I gave the example in PHP, not specifically to pick on PHP, but because there is no
particularly straightforward way to accidentally create this vulnerability in Python
(or Django). In Python and Django you can't shoot yourself in the foot like this
unless you really go out of your way to do so. If you write direct SQL in Python in
the preferred, standard way, Python will handle "escaping" of the SQL so that this
doesn't happen. And if you do standard things in a standard way in Django, Django
will use Python in such a way that this doesn't happen. To minimally correct our
PHP example, if the query is constructed as follows, with a backslash added before
each single quote, we have:

"INSERT INTO comments_log (comment, timestamp) VALUES (
 '" . str_replace("'", "\\'", $_POST['comment']) . "', NOW());"

That still isn't 100% correct because backslashes themselves aren't escaped. But,
even without correcting that additional bug, we have addressed the vulnerability
so that the code behaves in the programmer's intended way when people enter
text that includes a single quote. (The genuinely correct solution in PHP is to use
provided escaping functions: pg_escape_string(), mysql_escape_string(),
mssql_real_escape_string(), and similar functions.)

The Django way of validation
In Django, many of the low-level requirements are irrelevant. This is not because
they need to be done, but because the framework takes care of certain things for
you. Django assumes that the input is guilty of being potentially malformed, until
proven innocent.

Django gives you some things for free
In Django, much validation is already taken care of for you. Django offers a
set of fields including: (forms.)BooleanField, CharField, ChoiceField,
TypedChoiceField, DateField, DateTimeField, DecimalField, EmailField,
FileField, FilePathField, FloatField, ImageField, IntegerField,
IPAddressField, MultipleChoiceField, NullBooleanField, RegexField,
SlugField, TimeField, and URLField.

Chapter 3

[65]

These fields are stored in the database using the database's built-in types: an
EmailField or a URLField ends up being stored by default as a VARCHAR. However,
Django provides validation that they are correct as e-mail addresses or URLs, and
(though this can be optionally turned off) Django will check that a URL exists and
does not give a 404 on attempted access. The validation that comes along more or
less "for free" in Django is quite a lot; malformed input like GET /?%?%?%?%%%%&&&&
HTTP/1.1 will be rejected as malformed before your validation has to deal with
it. If input is passed on, it has probably passed a sanity check. FloatField and
IntegerField, for instance, will be coerced to floats and integers with an exception
raised if the text of the CGI input value cannot be so coerced.

There are several steps in validation; the different steps serve as hooks that can be
customized, often (but not always) by overriding the appropriate method. Note that
in some cases the best practice is to add specific validation to an existing field type
rather than create a new field type. If we wish to confirm that a product key passes
our cryptographic check for a valid product key, we could make a CharField of
appropriate size and set its validator to throw a ValidationError if it did not
pass our check.

The steps in Django's validation
The specific steps of validation as of Django 1.2, in rough order, are:

1.	 to_python() returns an appropriate Python datatype, such as int for
IntegerField, or else throws a ValidationError. Here and elsewhere,
any ValidationError should be constructed with a string explaining how
the form input failed validation.

2.	 validate(), for the field, handles any validation that shouldn't be
handled by validators (which are functions that can be specified in
a field's construction). It takes a value in the correct datatype and
raises a ValidationError on error. It should not alter the value.

3.	 run_validators() runs all of a field's validators, and aggregates
any ValidationErrors (if there are more than one) into a single
ValidationError.
It should not usually be necessary to override the run_validators()
method itself; validators to feed into run_validators() can be specified
on field construction.

4.	 The field's clean() method runs to_python(), validate(), and
run_validators(), and propagates any errors generated. The cleaned
version is returned, and used to populate the form's cleaned_data dictionary.

Validating Form Input on the Server Side

[66]

5.	 Any form subclass's clean_<fieldname>() method can be overridden, will
need to look up data from the form's cleaned_data dictionary, and will
return the cleaned data (whether changed or unchanged). If we subclassed
form and wanted to confirm that an included serial number was legitimate,
a clean_serialnumber() method would be appropriate and should raise
a ValidationError if the serial number is not legitimate.

6.	 Any form subclass's clean() method. This hook in particular is intended
for requirements that do not strictly belong to individual fields. For instance,
if you require that someone filling out a help request provide either phone
or e-mail contact information, then neither the phone nor the e-mail field
individually is required. But, a form subclass's clean() method is a natural
place to check and raise an error if the user has not provided at least one.
Alternatively, a feedback form might be explicitly intended for users who
wish to leave feedback but may or may not wish to be contacted. In that
case, it may make sense to have a checkbox for whether the user wishes a
response, and require contact information only if the user desires a response.
If a user is presented a form to specify options for an order and some
combinations do not make sense, the form subclass clean() method can also
be used to check that the user has not selected a combination of options that
cannot be fulfilled.

A more sensible and cruelty-free approach
to validation
To give an example of use, let us initially develop a form to collect a telephone
number from end users. One basic usability concern is that while it may be entirely
appropriate to store a telephone number in the database as a string of digits, it is
both lazy and rude to users to impose "validation" that says "If you type any
non-digit character at all, I'm going to reject it as wrong." The same principle is
true with credit cards, although if we are writing code to handle credit cards in
Django and we are not (for instance) the developer of a major ecommerce app, we
are probably reinventing the wheel and therefore creating trouble for ourselves,
when we could reuse existing debugged software. For credit cards, it is rude
to demand that people type in credit cards as "4111111111111111" because you
choose not to show the courtesy to write software that will overlook non-numeric
characters and accept credit card numbers entered like "4111 1111 1111 1111" or
"4111-1111-1111-1111".

Chapter 3

[67]

Returning to telephone numbers, for very good reason people usually do not write,
for example, U.S. telephone numbers like "8005551212". There is some variety in
the wild between formats like "(800) 555-1212", "800-555-1212", and "800.555.1212";
but all of them break the numbers up because giving people 10 digits in a row is
unnecessarily cruel. Furthermore, standardizing a credit card number to a string
of digits desired for database storage is an introductory-level exercise:

from django.db import models

class CreditCardNumber(models.TextField):
 def clean(self):
 return re.sub(r'\D', '', str(self))

Or, if we wish to be able to store "(800) 555-1212 x123" as "8005551212x123" and
perhaps vanity numbers like "(888) 4-VANITY" as "8884VANITY," then:

from django.db import models

class PhoneNumber(models.TextField):
 def clean(self):
 return re.sub(r'\W', '', str(self))

And perhaps add .lower() or .upper() to standardize case. (Alternatively, it may
make sense to only allow a whitelist of letters, perhaps just 'x'. Where a digit means
a number dialled and an 'x' only means "This is not for dialling; wait for the phone
to be picked up and then go on dialling digits," or perhaps an algorithm could store
upper-case letters for vanity values and a lowercase 'x' for extensions.)

Things get murkier
So what would this look like in Django? We would subclass form and add a
validator, but there's another issue that comes up. What's the maximum length
of a phone number that we need to support? Even if we restrict our attention
to U.S. telephone numbers, the previous examples show a 10 character limit to
be shortsighted, and sometimes a bit of a straitjacket. It is a relatively common
occurrence that the number a person leaves is 10 digits, plus an extension of 3 to
perhaps 5 digits. Less commonly, conference calls can have more like 7-10 digits
conference PINs.

In the U.S. alone, possible phone numbers can be a bit open-ended in length, and
writing code with only the U.S. in mind is breakage by design. How many digits
can phone numbers be worldwide?

Validating Form Input on the Server Side

[68]

The zero-one-infinity rule: a cardinal rule of
thumb in usability
This is a good time to make a point that the Django documentation at http://docs.
djangoproject.com/en/1.2/ or http://djangobook.com/ never make clearly:
there is a rule of thumb in interface design of "Don't allow _____ at all, or allow
up to one of ______ but not more, or allow as many of _____ as available resources
support." This principle is called the zero-one-infinity rule, and while zero and one
both have a place, two or twenty but not more are breakage by design.

In traditional SQL, breaking the zero-one-infinity rule is almost required. Normally
in declaring a column, you declare where it will break the zero-one-infinity rule. You
may try to add a healthy bit of slack in how you do this, but you ordinarily create
a column for people's names as VARCHAR(20), or VARCHAR(100), or whatever, but
whatever the limit you choose, you specify an arbitrary line and guarantee that if
a user enters one character more, let alone twenty, you will drop it on the floor.

An improvement on Django's advertised
approach
Django is Pythonic in many ways, and Python observes the zero-one-infinity
rule well:

Strings can be of any length that available resources will support
Lists and tuples may likewise be as large as can be supported
Partly through deft handling of integer overflow, you can have correct
integer calculations with integers of three digits or three thousand

However, Django follows SQL and not Python to present "breakage by design" as
the normal way of handling most situations: fields such as CharField, EmailField,
and the like are built on SQL's VARCHAR and presented in the documentation with the
request that you specify an arbitrary length for CharField, EmailField, and the like
so that if a user provides just one character more, the data will be truncated.

Fields like EmailField can be subclassed to use TEXT instead of VARCHAR, so that
there is no arbitrary threshold beyond which data will be corrupted. For instance:

from django.db import models

class TextEmailField(models.EmailField):
 def get_internal_type(self):
 return 'TextField'

•

•

•

Chapter 3

[69]

To return to telephone numbers, yet another solution, and perhaps a better one,
would be to preserve the formatting characters so that the formatting provided by
the user is still available, save it as TEXT, and declare that two phone numbers are
equal if they contain the same digits:

from django.db import models

class TextPhoneField(models.TextField):
 def __eq__(self, other):
 try:
 return self.remove_formatting() == other.remove_
formatting()
 except:
 return False
 def remove_formatting(self):
 return re.sub(ur'\D', u'', str(self))

This overloads ==, and respects Python's duck typing by avoiding isinstance:
if someone else creates a class that does the work of a TextPhoneField but is not
descended from it, we don't want to declare all of its instances unequal to any
TextPhoneField, because it is not an instance or a subclass. The way we remove
formatting has been offloaded to its own method, both to make it available and to
allow changes (for instance, if we decide to change what characters we do and do
not remove, perhaps by replacing the regular expression ur'\D' with ur'\W').

Let us look at one more detail of Django validation before building a validated form
for our case study. Django fields can be created with the argument required = True
or required = False, defaulting to required = True. For instance, a CharField or
TextField created the default way will register a validation failure on an empty
value. There are at least two different cases where you will want to set required
= False: if you ever might want to allow an empty value (it is usually not a user
interface best practice to make people fill out all fields, all the time); or if you want to
have a useful BooleanField, normally rendered as a checkbox (the BooleanField,
like other fields, defaults to being required that you fill it in, meaning that it defaults
to being rejected as invalid if you do not click a checkbox—the meaning of the
checkbox is not "Do you mean 'Yes' or 'No'?" but "Say 'Yes', and give your rubber
stamp here.").

Validating Form Input on the Server Side

[70]

A validation example: GPS coordinates
Let's take a slightly more involved example of input validation: a field for GPS
coordinates. This is complicated in part because "GPS coordinate" does not exactly
mean a single system, but one of a few different systems. For this specific system,
which is something of an exception, we could use the VARCHAR based CharField.
This is because like the information stored in a Date or DateTime, there actually is
an upper limit to how long a useful value will be. A measurement to the nearest
thousandth of a second is specific to within a distance you could measure with a
handheld ruler. We will allow some added space, but the goal is not specifically
to create a GPS coordinate field that allows subatomic precision.

Among the ways an address could be specified are the following:

36° 09' 55.8"N, 86° 46' 58.8"W
36.16586 -86.78425
37° 25.330'N, 122° 5.039'W

N36 09 55.781
W86 46 58.287

We may find it helpful to use regular expressions at some point. While it should,
in principle, be recommended to make a single regular expression call to handle
all these cases, much better would be to break it down into a series of manageable
tests, in this case returning success if input matches a test as valid, and then raising
a ValidationError if none of the tests could interpret it as valid. We will specify a
maximum length, but for now leave it unspecified, something to be determined after
we know how long the longest validating entry will be.

Our code is as follows:

from django.db import models
from django.core.exceptions import ValidationError
import re

def gps_validator(value):
 # Create a normalized working copy of the value.
 working_copy = value
 working_copy = working_copy.replace(u'\n', u',')
 working_copy = working_copy.replace(u'\r', u',')
 working_copy = re.sub(ur',*$', '', working_copy)
 working_copy = re.sub(ur',+', u',', working_copy)
 if not u',' in working_copy and not \
 re.match(ur'.* .* .*', working_copy):
 working_copy = working_copy.replace(u' ', u',')

Chapter 3

[71]

 working_copy = re.sub(u'[\00B0\2018\2019\201C\201D\'"]', ' ',
 working_copy)
 working_copy = working_copy.replace(u',', u', ')
 working_copy = re.sub(ur'\s+', u' ', working_copy)
 working_copy = working_copy.strip()
 working_copy = working_copy.upper()
 # Test the normalized working copy against regular
 # expressions for different kinds of GPS format.
 if re.match(ur'[-NS]? ?\d{1,3} [0-5]\d [0-5]\d(\.\d+)[NS]?,
 [-EW]? ?\d{1,3} [0-5]\d [0-5]\d(\.\d+)[EW]?',
 working_copy):
 return working_copy
 elif re.match(ur'[-NS]? ?\d{1,3} [0-5]\d(\.\d+)[NS]?,
 [-EW]? ?\d{1,3} [0-5]\d(\.\d+)[EW]?',
 working_copy):
 return working_copy
 elif re.match(ur'[-NS]? ?\d{1,3}(\.\d+)[NS]?,
 [-EW]? ?\d{1,3}(\.\d+)[EW]?',
 working_copy):
 return working_copy
 else:
 raise ValidationError(u'We could not recognize this as a valid
GPS coordinate.')

class GPSField(models.TextField):
 default_error_messages = {
 u'invalid': u'We could not recognize this as a valid GPS
coordinate.',
 }
 default_validators = [gps_validator]

The regular expressions are cryptic and ugly, but, in a nutshell, what is done is to
coerce the data to a normalized form, and then test for whether the normalized form
of the input looks like "N36 09 55.781, W86 46 258.287" or other comparable forms.

Avoiding error messages that point fingers
and say, "You're wrong!"
We might also briefly stop to note a principle of user experience and user interface.
The computer must at times bear bad news, but there is a difference in how the
software comes across between saying, "We could not recognize this as valid input"
and "You messed up."

Validating Form Input on the Server Side

[72]

Your software will be better liked and better received if it handles validation
failures by saying "We could not recognize this as valid input", "We need additional
information before we can continue", and so on than if it says, "You entered data
that was invalid", or "You failed to provide required information". If nothing else,
there is much less egg on the programmer's face if the senior vice-president is an
avid geocaching hobbyist who knows GPS inside and out, and enters GPS data in a
perfectly valid format that we didn't know about. It is much better to tell a hobbyist
vice-president who knows GPS better than we do, "We couldn't recognize this as a
valid format." than, effectively, You idiot, we know better than you that you don't know
how to write a valid GPS location.

Now, after the fact, if we allow for specification of up to a thousandth of a second,
a "maximally long believable cleaned input" might be:

N100 10 10.111, S100 10 10.111

That creates a Unicode string of length 30. We might suggest that a good
programmer might be slightly nervous about fixing a length of 30, probably because
if someone adds extra whitespace, or in light of unforeseen future developments, it
makes sense to use GPS coordinates to sub-millimeter precision and so people start
to enter data like:

N 100°, 10', 10.11111",
S 100°, 10', 10.11111"

Our regular expressions may be slightly more future-proof because they are written
flexibly. But even here, there is reason to be a bit nervous about choosing VARCHAR
over TEXT.

Validation as demanding that
assumptions be met
To validate is to demand that user data conform to your expectations, meaning
assumptions, about what constitutes valid data. It's hard to make assumptions
that are valid the world around.

Old-school: conform to our U.S.-based
assumptions!
Let's take a somewhat standard, old-school approach to validation of what goes in
the database. This approach says that you don't want junk data in your database and
you define strict rules and take every possible step to prevent junk data entering. The
initial, U.S.-centric form has:

Chapter 3

[73]

Street address, line 1 (required)
Street address, line 2 (optional)
City (required)
State (required, and specified by a dropdown menu)
Zip code (required)

This is U.S.-centric but not entirely fair to U.S. residents themselves. For starters,
some forms like this out in the wild reject valid input. There is a five-digit and a nine-
digit version of a ZIP code. Although the diligent nine-digit zip code is preferred and
is intended to allow mail to reach its destination faster, enter a nine-digit zip code on
many forms like this and you will get a response amounting to "This is unacceptable;
please try again and give a real zip code this time."

But even if that problem is not present, there is another problem as far as the state
goes. If we just let people type in a two-letter state code, we are inviting typos, even
if many of them could be caught by straightforward server-side checks. But if we
require a drop-down menu so they can't type an invalid state, something really
funny happens even if every single record has a real state. Valued customers who
may not have spent long hours on Pac-Man (let alone growing up on smartphones
and SecondLife) try their best to handle the long dropdown menu but still leave
addresses like:

Ashley Jones
1745 Broadway
New York, NC 10019

Whereas we could tell there was a problem if this person accidentally made a typo
corresponding to an invalid state, here the error is that a different valid state has
been (mis-)registered as the customer's state. And what is worse, we get many
more of these invalid records than if we just let customers type in their own states.
Not only is the long dropdown menu cruel to users, it makes a good many users
have more trouble entering the data they intended. As a result, the dropdown
menu delivers more than a painful user experience. It delivers significantly and
substantially more corrupt data in the database than if we had just been "lazy" and
let them type a two-letter state code. And it delivers corrupt data that is harder
to identify than typos like "NU" which are usually not valid state codes and are
therefore often more straightforward to identify as corrupt data.

•

•

•

•

•

Validating Form Input on the Server Side

[74]

What do we do if we want to take a form like this and make it more international?
One solution that perhaps all of us have seen is:

Address, line 1 (required)
Address, line 2 (optional)
City (required)
State, province, district, region, or territory (required)
Zip or postal code, if applicable (optional)
Country (required)

And we can particularly offend Canadians, who wince at (real or imagined) evidence
that the U.S. lumps them in as the 51st state, by making a "state/province/…" menu
that intermingles U.S. states and Canadian provinces and then leaves the rest of the
world's regions as "Other (please specify below:)". This solution is probably meant as
a gesture of warmth from the U.S. to Canada, but it is a gesture of warmth that quite
probably did not include consulting a Canadian about Canadian sensibilities.

There is at least one U.S.-specific concession that actually makes a lot of sense. For
the New Yorker who didn't grow up on video games, putting all of the countries in
alphabetical order may end up with a problematic number of street addresses like:

Ashley Jones
1745 Broadway
New York, NC 10019
United Arab Emirates

If we wanted to trust the user's judgment a little more, we could let people fill out
their country as text. That could result in less-uniform data, as "USA", "US", "U.S.A.",
and "U.S." would probably all appear in any number of U.S. residents. But it would
both be merciful to the end user and refrain from the cruelty of making people pick
a needle out of the haystack of a long dropdown menu, and result in better and more
correct information in our database.

Adding the wrong kind of band-aid
The solution that is taken, in many cases, is to make "United States of America" the
first option of the menu so as to avoid giving U.S. residents the needle-in-a-haystack
cruelty of finding their country buried under the "U" section of an alphabetical list
of every country in the world. And it is needlessly cruel to residents of the United
States of America… or the United Kingdom… or United Arab Emirates… or…

•

•

•

•

•

•

Chapter 3

[75]

This leaves out the internationalization issue that not all addresses are constructed
like U.S. addresses. If you take the original structure of:

Street address, line 1 (required)
Street address, line 2 (optional)
City (required)
State (required, and specified by a dropdown menu)
Zip code (required)

Appending country and making the "State" and "Zip" slots generic does not make
the structure flexible enough to accommodate internationalized address handling.
Some countries have more lines in their street addresses, while some have fewer.
Part of this is absorbed by the optional second street address line, but there are still
addresses worldwide that are mangled if you demand that they fit this format. Even
if you will allow letters in a postal code and freeform text for the state-like field.

Then what can be done? It should be almost theoretically possible to just present a
dropdown menu first, specifying country, and then have Ajax adjust the form so
that there is an appropriate form for the country. On the backend, an equally Rube
Goldberg system of rules could enforce this mentality for every locality worldwide,
and on the backend at least, people wouldn't get frustrated waiting for the enormous
Ajax application to load and possibly crash their browsers. But at least, in principle,
this mentality can be internationalized to put its heavy hand on every international
address in fully localized form.

But there is an alternative—A single textarea.

Perhaps some programmers might feel like they're not doing their jobs if they "just"
give a textarea for address without further doing diligent work, like making people
suffer through long dropdown menus, to convince themselves they're preventing
people from getting bad data into the system. Even if it means that for every one
case where they prevent an address like "…New York, NU…" from entering the
system, ten addresses like "…New York, NC…" get through validation. But really,
honestly, it's better to let go of the control freak mentality, stop making people jump
between fields on your particular form, and just type an address they know well in
an ordinary, clearly legible, and attractively styled textarea. Really, less is more.

•

•

•

•

•

Validating Form Input on the Server Side

[76]

And one additional point to underscore that less is more: Even in the U.S., I've
run aground with "more is more" computers that negotiated with pistols. One
"negotiated with pistols" demand is that if you have a valid address, you include
a street address with a house number. And my address was:

Jonathan Hayward
Department of Theology
Fordham University
Bronx, NY 10458-9993

And this was treated as not an acceptable address, period. Never mind that the
ZIP+9 alone told which department in the university to send correspondence to. I
did not have the expected street address beginning with a number, and therefore,
by definition it seemed, I could not have entered a valid address and I could not
be allowed to move forward. And this occasional loss of U.S. customers is a way
to drive away customers the world around. People in other parts of the world may
wish to pat me on the head and say, "Poor baby! You had a taste, once, of what
happens to us all the time!"

Making assumptions and demanding that
users conform
Let's look at one other type of basic information: a person's name. For this discussion,
we will ignore Unicode issues completely and look at problems that come up even if
we stick to ASCII. LinkedIn and Facebook alike request a first and last name, but this
isn't quite right.

At least names are simple, right?
On the surface, one obvious validation, if we do not coerce case, is that a person
will have a first and last name, each of which is an uppercase letter followed by
one or more lowercase letters. That's easy enough to test for, but it doesn't allow
for a lot more than a first initial, optionally followed by a period. And strictly
speaking, it doesn't allow even most American full legal names at birth. Though
"Firstname Lastname" is often treated as a person's full name, most full legal names
are "Firstname Middlename Lastname." And most people will treat the common
exception of the CamelCased last name, such as the Scottish "MacDonald" or the
Irish "McDonald".

Chapter 3

[77]

But here we have the Monty Python sketch where the Cardinals announce "Our
two chief weapons are fear and surprise," because there's at least one more common
exception. The French "de Balzac"/"de BALZAC", the German "von Friar", or
the Dutch "van Driel" or "van den Driel", which in European convention are
alphabetized under the capitalized name because "de"/"von"/"van…" is not strictly
part of the name. So our two chief exceptions are Celtic CamelCase, and European
words translating to "of" (namely "de"/"von"/"van…") that are added before the
proper part of the name. And also the case where Americans of Dutch ancestry
have CamelCased or otherwise altered the European convention, making a name
of VanDriel or Vandriel.

Even in ASCII, things keep getting murkier
So now our three chief exceptions to our general-purpose validation rule are as
above, and also that it is becoming more common practice for women to list both
their maiden and married names as last names.

Our four chief exceptions to the general-purpose validation rule include Celtic
CamelCasing, variations on European "de"/"von"/"van…", women listing two last
names, and Orthodox monks and nuns. An Orthodox woman named Sarah Smith
who becomes a nun will take a new first name such as Xenia and give up her last
name, will be properly addressed as "Mo. Xenia" (that is "Mother Xenia"), and not
be referred to with her last name at all. When it is necessary from context to perhaps
specify which Mo. Xenia is being referred to, parentheses are expected around
her last name. So she would then for clarification be referred to by name as "Xenia
(Smith)". So our validation, if it allows for this, will need to allow for no last name,
or a last name that begins and ends with parentheses, or both. Orthodox bishops are
monks and thus have only one name, but it is written in ALL CAPS, for example
"His Grace BASIL".

Our simple validation rule is imposing certain assumptions, and the list of exceptions
seems to get longer each time we list it.

Furthermore, the pattern of a first and last name, where the first is a personal
name and the last is a family name, is far from universal. In Chinese culture, people
have a first and last name, but the first name is the family name and the last is a
personal name.

We would propose the following, which almost assuredly imposes some cultural
assumptions that do not hold in all cultures:

An optional Unicode slot for any honorific(s)
A Unicode slot for a person's name

•

•

Validating Form Input on the Server Side

[78]

An optional Unicode slot for what in Western culture are letters after a
person's name, including not only academic degrees but religious order
membership, titles, and an open-ended list of other things that should not
exclude being a LinkedIn Open Networker

In U.S. culture, there is an informal society where it is considered unpretentious
to simply be addressed by your first name and no honorific. This is not a pattern
worldwide and giving people a place to indicate what honorifics are proper to
address them by is appropriate. Or, as an alternative which may be pursued for
the greater good of the UI, we may have a single slot that holds honorifics, name,
and post-nominals.

Now there is nothing wrong with creating heuristics that will try to extract a first
and last name, and Django server-side heuristics could be made that would be
quite accurate in handling U.S.-style names.

Better validation may be less validation
As far as server-side validation goes, really, less is more. Perhaps we as programmers
are always looking for ways we can be more diligent, and we look for ways we can
work harder that will deliver a better solution. But there's something we need to
understand about validation.

Each requirement in validation is a demand that data meet an assumption. Each
assumption is a way to make a solution more culture-specific and harder to
internationalize, and also less future-proof.

Validation that requires a real five-digit U.S. zip code creates an unpleasant surprise
to the customer who diligently gave a perfectly valid nine-digit form in the hope that
a product might arrive one day sooner. Old U.S. validation requirements, from when
a database really would only hold U.S. information, are almost invariably a legacy
obstacle to gracefully handling internationalized and localized information in today's
world. There may as well not be a single database validation measure for data like
addresses that originally only took U.S. data into consideration that does not create
obstacles to handling internationalized data gracefully. Almost by definition, they
demand that data meet assumptions that things behave the way they do in the U.S.
What if our GPS validator is used in French localization? In English, a period is used
to specify a decimal; π to two decimal places would be written, "3.14". In French
numbers, the comma does this job, as in "3,14". Our GPS validation routine above,
in English localization, would validate "36.16586 -86.78425" but reject a French-style
"36,16586 -86,78425".

•

Chapter 3

[79]

Caveat: English is something of a lingua franca
Surely our GPS validator could be adjusted to tolerate either locale's decimal marker,
but this is the road to Rube Goldberg nightmare code. It might make sense to ask
people entering GPS data to use English localization as lingua franca for that part of
the code. And not only because a GPS field is something we might want to parse and
have the computer understand, and it would be a Rube Goldberg code nightmare to
write a parser for every possible localized form of GPS coordinates. To native English
speakers concerned about cultural chauvinism, we might suggest that it makes a lot
more sense, internationally, than we might suspect.

When I was studying in Paris, I remember seeing a keyboard synthesizer, looking to
see what was selected, and being utterly shocked to see "HONKY-TONK PIANO," in
English. I had assumed that in the U.S. synthesizers were labeled in English, and in
France synthesizers would just as naturally be labeled in French. But the markings,
instrument names, and so on were pure English and I was the only one to find this
strange. English is lingua franca, or close to it, for technology, and speakers of some
other languages find it normal to have an online forum with the user interface in
English (and forum threads in their native language).

Latin remained the language of scholarship and international discourse in Europe
whether or not there were any native Latin speakers at all. When Europe moved to
writing scholarship in people's native languages, book titles remained in Latin for
much longer. The 20th century German Ludwig Wittgenstein's seminal Tractatus
Logico-Philosophicus is written in German, but the title is in Latin. And when the work
is dealt with in English, the contents are translated to English. But the title, which
could be translated in English like "Logical-Philosophical Treatment", is abbreviated
to Tractatus but seems to only be given in Latin even among English speakers who
have never studied Latin.

English now is a bit like Latin: it is something of a standard language, especially in
matters of technology. And many non-native speakers make it their first choice in
discussing technology. Furthermore, it might be pointed out that Google has made
extraordinary efforts at localization, with meticulous attention to detail for giving
directions in Japan for instance. Google Maps at the time of this writing accepts
"36.16586 -86.78425" and pulls it up immediately, but for a location of "36,16586 -
86,78425", answers, "We could not understand the location 36,16586 -86,78425".

We might point out that the error message, "We could not understand…"
is well done and minimizes any message of "You don't know what
you're doing."

Validating Form Input on the Server Side

[80]

Django comes with validated, and worldwide, EmailField and URLField fields. And
it was designed by journalist professionals who would know perfectly well that
it is desirable to be able to store phone numbers and postal addresses. However,
there is no PhoneField or StreetAddressField because making worldwide
validation for these is a tarpit. There are tools to make a U.S.-centric address
field, complete with long, cruel dropdown menus to specify a valid state, but no
WorldStreetAddressField because that would be a Rube Goldberg tarpit.

Then is there any validation to be done, or do we simply drop it? We might propose
one alternative.

We don't have to negotiate with pistols
The standard rule of practice is for validation to negotiate with pistols. So if data
doesn't meet your assumptions, you say "I will not let you move forward until
you change this data to what I assume it should be." As far as Django server-side
validation goes, if you specify that an input fails validation, you guarantee that the
input as submitted could never be entered into the database. But there is another
client-side option.

For the client side, possibly the most common error is not specifying a complete
address including country. And it would be both possible and sensible to run a
client-side test to see if you can recognize the provided address as including a country.
If you cater to a mainly U.S. clientele, it is also entirely permissible to have the system
infer a U.S. address if the address ends in something like "New York, NY 10019-4343".

But you don't have to negotiate with pistols. Instead of refusing to continue unless the
user enters an address that meets our assumptions, we could give a dialog that
says, "We could not identify what country this address belongs to" with buttons of
Go back and specify a country and This address is correct. This provides a way to
identify foreseeable data errors, and asks the user to correct them. But at the same
time, it avoids creating an absolute roadblock to the user who specifies an entirely
appropriate address that our validation routines didn't foresee.

For a U.S. company keeping a directory of telephone numbers, with, say, four-digit
phone extensions. A phone number might be tested, client-side, by stripping out
non-word characters, and accepting a phone number of at least ten digits as valid; or
a phone number of ten digits, an 'x', and at least one more digit as valid; or exactly
four digits optionally preceded by an 'x' as valid; or warn for any other number. That
offers significantly better flexibility for people coming from outside the U.S., even if
it does not undertake the (again) Rube Goldberg task of checking for country codes
and numbers that correspond to the given country code. But if the validation warns,
instead of demanding that its assumptions be met, someone who tries to make an
entry of "466453" (for texting queries to Google) will be allowed, after a warning,
to enter a number not foreseen in the validator's assumptions.

Chapter 3

[81]

Doing our best to solve the wrong problem:
a story
Perhaps the most inappropriate textbook example of why we need precise
requirements tells of a professor who assigned as homework that students should
program a four-function calculator. One student turned in a flawless four-function
calculator using Roman numerals, complete with a full user's manual in Latin. The
obvious point that was presented in the example is that the professor would have been
better to be more precise in the homework specification, but this is naïve and stupid.
The student was giving a crystal-clear signal, "I'm in the wrong class!" It is stupidity
worthy of Dilbert's boss to try to solve this problem with more specific requirements.
Had the professor been more specific, stating that Arabic numerals were acceptable
and Roman numerals were not, this would have accomplished two things:

First, it would have made the assignment more confusing for most of this
student's classmates
Second, it would have thrown down the gauntlet to any student who was
in the wrong class

The student, perhaps, would have produced a fully functional four-function
calculator, implementing the specification to the legalistic letter, and the professor,
perhaps, would have been surprised to type:

> 7*8
56

And then find, ostensibly to provide enhanced accessibility, that the program played
a sound clip of a painfully loud note on an out-of-tune piano fifty-six times before
moving on. And the student had taken thought to set a Unix terminal mode that
included disabling the usual ways to send a suspend or interrupt from the keyboard.

The problem when a student hands in a four-function calculator—with Roman
numerals and a full Latin user's manual—is that the student is bored silly in the
wrong class. The correct solution is to bump the student up some classes until the
student's ability and the class's challenge level are in sync. Kneejerk reactions to
move towards more legalistic requirements do not help. Part of the Agile experience
is that handling requirements more legalistically does not help in the real world,
either, not as much as one might think. (The documents and communication of
Agile delivering its best solutions probably never have the legalistic precision of a
heavyweight waterfall requirements document solving a badly identified problem
as precisely as possible.) Communicating clearly, of course, is always an asset, but
trying to manage risk and change by trying to be legalistic and pin things down
that way is an attempt to solve the wrong problem, which rarely does a good job
of addressing the correct real-world problem.

•

•

Validating Form Input on the Server Side

[82]

It really does apply to validation
And the same insight holds for the "Big Design Up Front," heavyweight design
process mentality for validation. If we deal only with U.S. contacts, we can use
a form with:

Address, line 1 (required)
Address, line 2 (optional)
City (required)
State (required)
Zip (required, any valid zip code accepted)

If we are afraid that people will give junk values, with a city like "afdjkfdkj", we
may be able to use USPS web services or the website to test whether an actual
street address is given. But then what if people use an address across the country?
Conceivably, we could locate their IP's geographical location in relation to the
address. But this is being silly, not to mention that customers might find it a tad
creepy. People who really want to provide junk data, perhaps to preserve the
anonymity of their addresses when it is inappropriately demanded, will do so.
We can try to do things that will catch common data entry errors; but trying to
legalistically keep invalid data out of our databases will accomplish little more
than a more legalistic wording for the four-function calculator assignment.

But don't we need to assume data is guilty until proven innocent of being malicious
and possibly malformed? Not personally if we are using Django, because Django is
intended to take care of those basics for us. If we can find a way to straightforwardly
build a model with Django-provided fields, with Django managing the SQL, and
still succeed in executing arbitrary SQL by an injection attack, we should contact
security@djangoproject.com about how we managed to straightforwardly use
Django models and fields and create such a vulnerability.

For that matter, if you manage to find a strange and convoluted setup that
exposes any vulnerability that you didn't deliberately create, please notify
security@djangoproject.com. They would like to know even if it turns out, on
later inspection, to be spurious. They have tried very hard to make "naïve" use of
their models and fields as safe as possible. And while no programmer worth trusting
would say "We know that our program is free from vulnerabilities," they have tried
very hard, and undergone intense public scrutiny, so that Django can take care of
being paranoid about attacks like malformed input and SQL injection for us. At least
as far as security basics are concerned, Django is designed to take care of assuming
that data is guilty until proven innocent of being malicious and possibly malformed.

•

•

•

•

•

Chapter 3

[83]

Facebook and LinkedIn know something better
We would last make an observation from social networks. Social networks, like
Facebook and LinkedIn, thrive on full profiles but demand surprisingly little
information to be let in, at least to start off with. The initially required information asks
little beyond the core essentials without which the network cannot handle the user.
But then they use another dynamic: while demanding lots of information up front is
off-putting and would kill them, people like to have complete profiles. And both social
networks provide feedback that a particular account is 25% filled in, or 80% filled in,
and suggest a concrete and manageable step to take to improve on that percentage.

We will be developing as our model application, an intranet employee photo
directory. While not intended to compete with social networks, we will take a cue
and require to start with a minimal amount of information and then let people
move towards a 100% complete profile, one step at a time.

Summary
We've looked at server-side validation with an emphasis on usability and
internationalization concerns, and raised the idea that a validation requirement,
especially on the server side, is a demand that user input conform to your
assumptions. That is exactly how U.S.-centric assumptions in data validation can
leave non-U.S. visitors with no way to move forward giving their address in a form
that will pass validation.

Django does a lot for us, including a lot of work to gracefully handle Unicode. We
might be advised to use TextField instead of CharField, and TEXT in preference
to VARCHAR due to a basic usability concern, but Django already does a lot for us,
including quite a lot of holding data innocent until proven guilty of being malicious
and possibly malformed.

In this chapter we have covered the insights traditionally considered essential to
optimal server-side validation. Then we moved on to how Django addresses certain
basic security concerns and provides a framework for validation. We introduced one
usability principle and best practice—the "zero-one-infinity rule"—and discussed
how Django can be adapted to observe it. We also provided an example of how
to make a validated field for GPS coordinates, discussed when and where "less is
more" with validation, and how this relates to usability and internationalization. We
then discussed usability best practices to encourage profile completion while not
demanding that users fill in every field before being allowed
to continue; this we will see in the next chapter.

Next, let's look at searching on the server side with Django, for which it provides
excellent tools.

Server-side Database Search
with Ajax

In this chapter we will cover some of Django's database and persistence basics,
create a model, and create an Ajax-oriented search for that model. We will build on
the observation that context switching between Python and SQL, especially if it is
frequent, bears a "cognitive tax" and makes for buggier code. The way the Django
developers have tried to offer an improvement is to create features so that most
of the work addressed by writing SQL can now be managed without disrupting a
programmer from "Python mode." We will both take an overview of the basics and
then see a simple case of these basics in action.

More specifically, we will:

Compare client and server roles and discuss reasons for a server-side home
to search functionality
Introduce Django models, and build an in-depth sample Django model
Begin work on our intranet employee photo directory
Discuss what kind of functionality is desirable in a search tool
Create a Django view to serve as the JSON backend part of the search tool
Tour the Django database search functionality, and discuss how it is similar
to things we have already seen in jQuery selectors

Let's take a look at searching on the client or server side.

•

•

•

•

•

•

Server-side Database Search with Ajax

[86]

Searching on the client side and
server side
There exist powerful options for an in-memory client-side JavaScript database. This
much means that the difference between server-side and client-side options is not a
choice between excellent and terrible. However, two features are worth considering.

Persistence: Much of the attraction and reason for using a server-side database is that
it offers persistence. Having a database that does not support persistence defeats the
point, like a car without any room for passengers or the driver. This is not to say that
a client-side JavaScript database cannot have persistence. With Ajax, it is possible to
create a persistence solution. However, it is to say that creating a server-side database
is a solution to the persistence problem, and a client-side in-memory database is not.

Scaling: For the application we are using, and for personal and test use of that
application, delivering everything in the database we might possibly need except the
files themselves is not that terribly big a download. For some production purposes,
"everything in the database we might possibly need" is still not that big a deal in
terms of download speed or memory footprint. However, for many production
purposes the database becomes large enough to make delivering an in-memory
database problematic. In many cases the recommended best practice is to work hard
to be as lazy as you can. In other words, the best practice is not to have the client
download what might sometime be needed, but download what actually is needed
on a "just-in-time" basis. A production database is designed so that if anticipated or
unanticipated reasons cause the dataset to grow ten times bigger, performance will
not necessarily take too much of a hit. But if it does, there are things that can be done
to compensate. If you define your solution to deliver an in-memory database, the
problems with a tenfold increase in the dataset are not so easily resolved.

Let us explore the server side first.

Handling databases through Django
models
The power of Ajax is derived partly from storage of information on the server-side,
quite often in a database. Django provides an excellent platform for handling the
database side.

Django attempts to offer certain facilities and then let you go your own way if you
want. It is not as opinionated a framework as Ruby on Rails. You can choose, if
you want, to use other packages like psycopg2 and sqlite3 and bypass Django's
persistence facilities as much as you want, and you can also handle raw SQL while

Chapter 4

[87]

using Django's persistence facilities. However, Django database handling is very
carefully thought out, and it is well worth taking the effort to understand.

One Pythonic observation feeding into Django's approach is that frequent context
switching bears a "cognitive tax," even if the templating is done by a developer who
handles the models, rather than the web designers Django's templating is designed
for. The Django approach is meant to spare the developer the cognitive strain of
repeatedly switching between Python and HTML on a single screen of code. With
SQL the cognitive tax is even more important. Repeated switching between Python
and SQL introduces a strain that makes it easier to introduce bugs and then easier
for the bugs to pass unnoticed. Django's approach is meant to remove this strain and
allow for persistence to be handled without switching out of "Python mode."

Let us look at this more concretely.

Models for an intranet employee photo
directory
Let us look at the models for an employee intranet photo directory. For our directory
we will attempt to cover routine information for employees, such as office, extension,
tagged skills, and so on. In general, solving a problem correctly in Django means
taking advantage of existing working parts, those that come standard with Django
and those that are available. For the purposes of an intranet employee photo
directory, it might make good sense to use a Pinax social network as a basis. Our
reasons for not using Pinax are not mainly due to its deficiencies, but because we
need a sample application that will let us tour Django and Ajax. Pinax may solve
enough of the problem for us that we would not have as informative a tour. This
is not a criticism of Pinax; it's just a statement about what makes a good sample
application that will get the reader's hands dirty with the power of Django and Ajax.

The OFFICE_CHOICES list is only illustrative; we expect that it would be replaced for
production code. This one uses a two-character code. If you were making a choice
like this, you could use one, or three, or ten. The short form is stored in the database
and the long form is displayed in the example dropdown menu:

Server-side Database Search with Ajax

[88]

The code defining this choice, and the beginning of our models.py source file, is:
#!/usr/bin/python

from django.db import models
import datetime

OFFICE_CHOICES = (
 (u'CN', u'Chicago North Office, Illinois, USA'),
 (u'CS', u'Chicago South Office, Illinois, USA'),
 (u'WH', u'Wheaton Office, Illinois, USA'),
 (u'SY', u'Sydney Office, New South Wales, Australia'),
)

The ExtensionField in this case is implemented as a TextField, but this may
be one case where a VARCHAR-based CharField makes sense to store, for example,
a four or five digit extension field can be safely assumed, and is possibly deeply
entrenched. The existing ExtensionField is:

class ExtensionField(models.TextField):
 pass

If you wanted to specify an extension of up to five digits, you could declare a field
like the following:

import django.forms
import re

EXTENSION_LENGTH = 5

def is_extension(number):
 if len(str(number)) > EXTENSION_LENGTH:
 raise forms.ValidationError(u'This extension is too long.')
 #elif len(str(number)) < EXTENSION_LENGTH:
 #raise forms.ValidationError(u'This extension is too short.')
 else:
 return text

class ExtensionField(PositiveIntegerField):
 default_error_messages = {
 u'invalid': u'Enter a valid extension.',
 }
 default_validators = [is_extension]

(The commented-out lines, if uncommented, enforce that the extension is exactly
EXTENSION_LENGTH digits long, instead of being at most that length.)

Chapter 4

[89]

Returning to the code, we have a Location model, which has several fields. Note
the required = False: Django's default behavior is to treat all fields as required, and
in this case we want to support several kinds of information without requiring the
user to fill them in before continuing. The notes field is for any particular notes on a
location. The office field is a CharField populated from a choice, meaning that if
it is filled in, it will be one of the remaining values in the choice above. If you want
a choice for a U.S. state, you don't need to reinvent the wheel, just import and use
django.contrib.localflavor.us.forms.USStateField. And if that sort of thing
wasn't covered, it would make sense to make a CharField of length 2 populated by
a straightforward choice letting people pick full state names and guaranteeing that
any value stored in the database was one of the two that were entered. Besides that
issue, companies around the world have a use for specifying a department, product
line, or other item where there is a fixed list. It may be less of a real strength that one
can save a few bytes by using an abbreviation for database storage and other internal
use. However, a choice like this is a useful and powerful tool for our toolbox, and
it's nice that Django allows us to decouple what is displayed from how it is
represented internally.

Again, the Location object is designed to allow and encourage information to be
filled, instead of requiring everything be given up front:

class Location(models.Model):
 notes = models.TextField(required = False)
 office = models.CharField(max_length = 2,
 choices = OFFICE_CHOICES,
 required = False)
 postal_address = models.TextField(required = False)
 room = models.TextField(required = False)
 coordinates = GPSCoordinate(required = False)

class TextEmailField(models.EmailField):
 entity = models.ForeignKey(Entity)
 def get_internal_type(self):
 return u'TextField'

class TextPhoneField(models.TextField):
 number = TextField()
 description = TextField()
 def __eq__(self, other):
 try:
 return self.remove_formatting() ==
 other.remove_formatting()
 except:
 return False

Server-side Database Search with Ajax

[90]

 def remove_formatting(self):
 return re.sub(ur'\D', u'', str(self))

class TextURLField(models.URLField):
 def get_internal_type(self):
 return u'TextField'

We have text-based fields that work similarly to Django's EmailField and URLField,
but in the database are represented by TEXT fields instead of VARCHAR, which breaks
the zero-one-infinity rule.

One specific design decision that needs to be explained is why the following class is
not called the Person or Employee class, but the Entity class. Scope creep is one of
the facts of life in the programming world: if something is working, people want it
to do more. The same insight lies behind the saying, "A successful tool is one that is
used to do something its original creator never imagined." The baseline of success
for this project is whether it works as an intranet employee photo directory, and if
it doesn't, it fails, period. If it succeeds, people are going to want to put information
besides specific employee details into the database, guaranteed. While no amount
of foresight will get us a product that is officially certified to be future-proof, if
we design for flexibility from the beginning, we will less certainly have painted
ourselves into a corner.

Calling the class Entity by itself sounds like a move Dilbert's boss would encourage.
But the class is designed for flexibility, and the name Entity is a carefully chosen
reminder that the directory may include not only employees, but potentially
departments, customers, events, or other things we cannot foresee. Perhaps some
of these are more likely to happen than others. It may be unlikely that a company
with any kind of serious CRM solution would want to be duplicating that kind of
information in their employee directory.

If the people using our software—who will rarely do what we expect, and almost
never do what we intend them to do—decide to store customer contact information
in our directory, we want our solution to behave as gracefully as we can manage.
Calling the class Entity is a reminder that we are trying to make a flexible solution:
a solution that behaves gracefully when users do things that go against our
assumptions. And while we cannot guarantee something future proof, at least we
can minimize imposing the kind of assumptions that make for gratuitous failure
to be future proof. (We will give our users enough pain even if we try not to.)

This class is basically the "Person" class; however, it is called
"Entity" to emphasize that it is intended to accommodate people,
offices, organizational units, and possibly other areas.

Chapter 4

[91]

class Entity(models.Model):
 active = models.BooleanField(required = False)
 department = models.ForeignKey(Entity, required = False)

Note that at this point we are trying to make, and internally "dog food," one entity
class that should be flexible enough to serve as a department. What this last line says,
in slightly opaque form, is that the department, if one is specified, is another entity:

 description = models.TextField(required = False)
 email = TextEmailField(required = False)
 extension = ExtensionField(required = False)
 homepage = TextURLField(required = False)

One remark here about not being control freaks and the last line: many corporations,
at least the larger ones, have enough intranets with varying degrees of official
support that "How many intranet sites do we have?" is the sort of question that
no one likely knows the answer to. If you are in charge of a project on an officially
sponsored intranet site, wonderful. But do not think in terms of the real intranet and
then the unimportant, unofficial fluff.

If it makes sense in terms of your company to use a homepage field for personal
homepages, Twitter feeds, and the like, that is one valid use of a homepage field.
But even if personal links are discouraged, it makes excellent sense for the "official"
intranet to have at least a little bit of a roadmap to connect people to "spontaneous
intranet" sites. Perhaps a homepage field is not enough, and such functionality may
or may not belong in a directory. Although, there would seem to be real added value
in an official directory that had data on departments, organizations, and groups,
including a link to the unofficial intranet sites that not only are not going away, but
probably should not go away.

We will cover ways to associate more than one of X with a model. There could be
a Website class created, with a URL and a displayed name, and then entities could
list zero, one, ten, or more than twenty URLs. That would not be a bad idea; it is just
something not included in this implementation but left as room for the reader
to expand and tinker with the starting point provided here:

 image = models.FileField(required = False)

Server-side Database Search with Ajax

[92]

Since we are working on an employee intranet photo directory, this is an important
field, and one comment is apropos here: we have chosen to allow at most one image.
This is not the only option; it is a defensible choice to design to allow for a gallery
with arbitrarily many photos, and one selected to be displayed first. In our case, it
makes a page like:

The point underscored here is not that there is anything wrong with photo galleries
(even if it may not be obvious that a mere photo directory needs to give Facebook's
multiple galleries a run for their money). But in terms of the zero-one-infinity rule, both
"at most one" and "as many as you want" are sensible design choices. The iPhone and
iPad interface, with one app at a time, and the Droid interface allowing multiple apps,
are both sound design decisions and are both part of a carefully designed interface,
partly because they both respect the zero-one-infinity rule. We will not try to resolve
the question of which is better, but we would pointedly suggest that both make sense.

If you want to make a version of the directory that allows arbitrarily many
photographs, and more power to you, then this book is intended to put you in a
position to hack and tinker. If your first action is to explore how you can change this
design decision, that's excellent. We'll be glad that we helped get you tinkering.

 location = LocationField(required = False)
 honorifics = models.TextField(required = False)
 name = models.TextField(required = False)
 post_nominals = models.TextField(required = False)

Chapter 4

[93]

In these fields we incorporate a name and how a person should be addressed, as
discussed earlier. The name is a TextField, and there is an optional field for any
honorifics, and an optional field for any letters after a person's name, whether for
academic degrees or any other reason. (In this case name is also optional, as we are
trying to let people create an empty initial entry and fill it in later, but of all the fields
on the form, this may have the strongest case to be required.)

 publish_externally = models.BooleanField(required = False)

This is a field that is placed as room to grow. At present, the conceived use of the
directory is one that will live behind a firewall and allow anyone on the trusted
network area to read information, and appropriately authorized users to write. If
it is additionally used to present information externally, this is used for an entity
to "opt-in" to external placement. Note that in that case it may make sense for
whitelisted fields only to be displayed.

In terms of the Agile "You ain't gonna need it," it would be entirely defensible
to delete this field if you do not need it now. If you find you need it later, it can
be added when it is needed, and omitting such features now does not paint any
Pythonist into a corner if they turn out to be needed later on.

 reports_to = models.ForeignKey(Entity, required = False)
 start_date = models.DateField(required = False)

Tagging is intended at least initially to locate areas of expertise
tagging.register(Entity)

In Django-tagging, the way you make a model subject to tagging is not to add a field,
but by calling tagging.register() on the model.

class TextStatus(models.Model):
 datetime = models.DateTimeField(default=datetime.now)
 entity = models.ForeignKey(Entity)
 text = models.TextField()

An Entity may have many TextStatus tags; the intent in this field is to allow status
within the company to be published. While not all corporate cultures would really
have a use for such things, and certain corporate cultures could squelch any really
useful functionality, having a Twitter-like status for current projects and the like
could render very valuable internal communication services.

Server-side Database Search with Ajax

[94]

That could look like the following:

Note that no specific character limit is given, and it may make sense to post updates
that are copies of the previous ones, updated where a change is warranted.

You are welcome to disable or delete this feature if it does not make enough sense in
your organization.

Other many-to-one fields could be given. A many-to-one phone field is:

class EntityPhoneField(TextPhoneField):
 entity = models.ForeignKey(Entity)

If you want to support multiple images, the database backend could be handled by
a model containing a models.FileField() and a foreign key as shown. You would
presumably want to delete the single image field. Or, alternatively, the existing could
be kept as a main image field. In addition, there could be galleries supporting as
many images as desired.

We might comment that making this change correctly would involve appropriately
adapting the user interface. The bulk of the work in doing it right would be user
interface work rather than making a couple of changes on the backend.

Chapter 4

[95]

Searching our database
We will be making a deliberately limited basic search field, but one that is
carefully chosen.

One basic user interface principle is that if there is a standard user interface, it is
almost always the right decision to go with the standard interface rather than make
something completely different, however clever. In terms of office software, that
means the correct solution will be one that "feels like" Microsoft Office, and it is not
an accident that at least before the ribbon, OpenOffice looked a lot like Microsoft
Office. If some feature of the standard interface is patented, that throws in a monkey
wrench, but it doesn't change the basic principle that the optimal interface is the one
people expect.

In terms of searching, Bing has made inroads but Google is still the standard, and
that rather cleanly answers the question of what we should be aiming for: one
text input that people enter search terms into, no Advanced search to fight with, a
Submit button you press to search, and then you get results, beginning with the ones
that are probably most relevant. (Even if Bing's interface departs from Google's at
points, they still have one query input field front and center, one button to press, and
serve up a result page with the most relevant results first. Even if you're competing
with Google, you will probably want to imitate Google on the all-important basics.)
Compare Google with Bing:

Server-side Database Search with Ajax

[96]

And the Bing search page:

We will be aiming to achieve Google-like basics with Ajax. What this means is that
while we will be implementing our search with partial page refreshes and Ajax
internals, we will still aim for that familiar feel. Of course we might not be quite as
good as Google in our implementation, but we have a very clear reference about
what to aim for. If we shoot for a Google quality interface and miss, we might still
land among the stars.

In terms of backend functionality we will take a deliberately restrained search and
only search in one text field, the entity's name. A full-text search might be highly
desirable but would be very easy to get wrong. For instance, a search for "Alice"
could bury all employees named Alice under a mountain of employees who have
ever registered a status of, for example, "Worked with Alice to investigate bug
1234. Marked RESOLVED INVALID." An appropriately done full-text search might
include entities with a status containing the string "Alice", but it should presumably
prioritize entities named "Alice" and place them earlier in the results.

Chapter 4

[97]

If the tagging is used to denote employee areas of expertise, it would be very
desirable to be able to search by tags, and we note as an area for improvement that
our implementation does not address that desirable feature. Another desirable
feature might be to make searches tolerant of spelling errors. The py-editdist
package (http://www.mindrot.org/projects/py-editdist) is one package
used to calculate the Levenstein edit distance between two strings, which can be
used to guess a near-miss spelling match. Completing some of these features may
involve doing work in Python beyond what is done through the Django database
functionality, and in fact we will do this in our implementation. There are functions
to match by regular expressions, but backend functionality varies from database to
database, and an implementation that used the Django database regular expression
functionality may work reasonably well with some database backends and break
completely for non-ASCII Unicode names with others. We will be taking advantage
of the features provided, before providing a discussion of other facilities Django
offers, but we will also be writing our own code to provide a consistent and correct
behavior across database backends.

What we want to do first is break the search string into words. This will be done by
a Unicode-sensitive regular expression split into non-word characters, although this
is not globalization-wise a perfect solution. Some languages have more or less one
character per word, instead of one character per sound, and so separating words
by non-word characters is not a universally assumed pattern. We will mark this as
a known issue and move forward with this solution for lack of knowing a better
obvious and straightforward solution.

We define a view:

#!/usr/bin/python

from django.core import serializers

RESULTS_PER_PAGE = 10

def search(request):
 query = request.POST[u'query']
 split_query = re.split(ur'(?u)\W', query)
 while u'' in split_query:
 split_query.remove(u'')

The (?u) passes a flag to be Unicode sensitive. With it, any letter/word character
in any language is recognized as a word character. Without it, only some ASCII
characters would be recognized, so the split query would fail to preserve
non-ASCII letters.

Server-side Database Search with Ajax

[98]

Having found the query, we will do an OR search by searching for all the query
words. However, this is one point where we will depart from standard use of the
database. We will be doing a case-insensitive search for exact words, so that people
with short names or parts of names don't spuriously match. We do not want a
search for "ed"/"Ed" to register as an exact match for "Ted", "Edna", "Edward", and
similar names. And Django's database facilities allow a case-insensitive search for
a substring, but matching word boundaries correctly in Unicode appears to be
inconsistently supported by database backends. We will be using Django's database
facilities to pull results containing query terms (so "ed" will pull "Ed", "Ted", "Edna"
and "Edward", among other possibilities), but we will enter Python territory by
doing the equivalent of the above code. Out of all the database hits, some are ones
we will want.

 results = []
 for word in split_query:
 for entity in Entity.objects.filter(name__icontains = word):
 if re.match(ur'(?ui)\b' + word + ur'\b'):
 entry = {u'id': entity.id, u'name': entity.name,
 u'description': entity.description}
 if not entry in results:
 results.append(entry)

This is creating a list containing select fields, and this much (namely
Entity.objects.filter()) is working with Django's persistence facilities
normally. The next few lines of code are working with Python objects in memory,
not Django persistence facilities, for reasons partly discussed, and also partly
discussed in the following.

Later in this chapter, we will provide a more direct look at Django persistence facilities.

 for entry in result:
 score = 0
 for word in split_query:
 if re.match(ur'(?ui)\b' + word + ur'\b'):
 score += 1
 entry[u'score'] = score
 def compare(a, b):
 if cmp(a[u'score'], b[u'score']) == 0:
 return cmp(a[u'name'], b[u'name'])
 else:
 return -cmp(a[u'score'], b[u'score'])
 results.sort(compare)

Chapter 4

[99]

Two remarks before we continue with the function. What we have done has
neutralized one of the major benefits of working with a database, a benefit that
Django preserves: laziness, meaning that data are loaded on an as-needed basis. In
the days of ancient computers where a 64 megabyte memory was an unimaginably
vast dream, it meant a major strength: you could deal with information too big to fit
in memory. We have lost that benefit here, but if your company is large enough that
loading the information stored above is taking too much memory on the server, then
your company should be able to afford a dedicated server with maxed-out memory.

Second, the scoring, which we have handled by an inner function, ranks first by
number of query terms that are matched (the -cmp is to ensure highest scores first,
not lowest), and then as a tiebreaker sorts by alphabetical order. This is a basic
scoring system that should be adequate, but it is one of many parts intended to
allow the reader to tinker and see if it can be improved. The goal is to put the most
interesting results here, and the specific criterion is intended as a sort of "adequate
placeholder" that can be used as is but also invites tinkering and customization
to your company's needs.

 try:
 start = int(request.POST[u'start'])
 except:
 start = 0
 try:
 results_per_page = int(request.POST[u'results_per_page'])
 except:
 results_per_page = RESULTS_PER_PAGE
 returned_results = results[start:start + results_per_page]
 json_serializer = serializers.get_serialized(u'json')()
 response = HttpResponse()
 response[u'Content-type'] = u'text/json'
 json_serializer.serialize([returned_results, len(results)],
 ensure_ascii = False, stream = response)
 return response

In the last few lines, we look at some CGI variables, create an object with one page's
worth of results plus the total count of results found, and put it in a JSON response.
Once parsed on the client end, the client will have one page's worth of results,
including the names of the entities, their descriptions, and their Django-assigned
ID numbers, which can be used as a basis to link them to this person's page. Here
again there is room to tinker and expand. For instance, since we are working on a
photo directory, we might search for a thumbnail creator (sorl-thumbnail turns up
quickly as a Django image thumbnailer) and work on a way to deliver a client-side
page that includes thumbnail images.

Server-side Database Search with Ajax

[100]

Let us look at another point, beginning with an earlier remark about Django
philosophy as contrasted to Ruby on Rails—Rails is an unapologetically opinionated
framework: "You're using my framework, you do it my way." Django is intended
to offer certain facilities, and then stay out of your way if you choose to do things
differently. Here we have used Django persistence facilities, but not played to their
usual strengths. We realized a problem existed while thinking somewhat outside the
box, and chose a basic implementation that Django's documentation doesn't really
suggest. This does not showcase the natural strengths of Django persistence facilities,
but it does showcase how Django avoids demanding, "It's my way or the highway."
With that stated, let's look a little more at Django persistence facilities and how they
would be used in a solution that plays better to Django's natural strengths.

A tour of Django persistence facilities
It has been said that Object-relational Management (ORM) is the Vietnam War of
computer science. People keep throwing money, resources, and work at the problem,
and it remains unsolved. If the problem is conceived in a general way, namely to
take whatever objects Python programmers may create, and straightforwardly have
an automatic system that will retroactively figure out how to serialize/deserialize
(pickle/unpickle) them in a relational database, that problem, in general, is a hard
problem and one that may never have a good solution. However, Django handles
ORM in such a way that it is not only solvable, but solved neatly.

Django models and related classes are designed from the ground up to be mappable
to databases. And that is a different matter from designing out of object-oriented
concerns without consideration for relational databases, and then trying to retrofit
storage in relational databases. A model class corresponds to a table, an instance of
a model corresponds to an individual row, and fields of the model correspond to
columns in the table/row. While Django is meant to let you stay in "Python mode"
and avoid frequent Python/SQL context switching, it asks you to correctly solve
problems like foreign keys and many-to-one relationships (as we have used) or
many-to-many relationships. This means that the programmer is asked to solve the
problem so that the ORM is straightforward, and keeps Django's ORM code from
the tarpit of correctly implementing "Do what I mean!" functionality of mapping any
object(s) to a relational database correctly, and do what the programmer would have
meant to do. Django's approach to ORM is to provide carefully designed, Pythonic
facilities and asks us as developers, "Say what you mean!"

For search and lookups, you can, on the model class, call something like:

Entity.objects.get(name__icontains = u'ed')

Chapter 4

[101]

For name__icontains, on the left of the double underscore separator is a field name,
and to the right is an operator, such as:

contains: the string you supply is contained in the field value, case-
sensitive. One compatibility note: description__contains = u'book'
is translated into SQL of ...description LIKE '%book%'.... On some
database backends, LIKE preserves case sensitivity; on other backends,
the interpretation of this SQL command forces case insensitivity. Django
seems not, in general, to smooth over differences between database
backends to provide uniform behavior; this means that switching the
database backend could cause a change in how identical Django searches
behave. In one case, description__contains = u'book' will match a
description of u'Books for sale!', and in another case it won't.
day: for date/datetime fields, exact one-based day match.
endswith: ends with, case-sensitive.
exact: a case-sensitive, exact match.
gt: greater than.
gte: greater than or equal to.
icontains: the string you supply is contained in the field value,
case-insensitive.
iexact: a case-insensitive exact string match.
in: the field value is in a list you provide.
iendswith: ends with, case-insensitive.
iregex: case-insensitive regular expression search.
isnull: if this is equal to true, specifies that a field is null; if it is false,
specifies that the field is not.
istartswith: starts with, case-insensitive.
lt: less than.
lte: less than or equal to.
month: for date/datetime fields, exact one-based month match.
regex: case-sensitive regular expression search.
startswith: starts with, case-sensitive.
week_day: Day of week, from 1 (Sunday) to 7 (Saturday).
year: for date/datetime fields, exact four-digit year match.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Server-side Database Search with Ajax

[102]

There is some similarity between the combinations of field names and the list above,
and jQuery selectors like $(".emphasized") that served as a "virtual higher-level
language" from JavaScript. There are several parallels, and we could say in similar
fashion that just as jQuery offers a "virtual higher-level language" on top of bare
JavaScript, Django offers a "virtual higher-level language" over a mixture of bare
Python and bare SQL. And the similarity goes further. Just as jQuery is intended
to allow chaining, Django allows chained operations. Let's suppose that we want
to search for entities with descriptions containing the string "book", take out all
entries containing the string "bookworm", be case insensitive in both instances, and
sort them in alphabetical order by name and then description. In Django this looks
remarkably similar to jQuery chaining:

queryset = Entity.objects.filter(description__icontains = u'book').
exclude(description__icontains = u'bookworm').order_by(u'name',
u'description')

We've made a few different adjustments as we've refined our requirements in the
code above. Now how many database hits has this cost us? Trick question: the
answer is, "None." Django's database handling is lazy, and doesn't fetch results until
it knows what results are really needed, when they are needed. If we make an initial
request and then make adjustments, all it does is keep its notes up to date. If and
when we want results, we can get them, with database hits as needed, by something
like the following:

for entity in queryset.all():
 # Do something with each entity

And in classic relational database tradition, this means that you can have a much
bigger dataset without increasing the memory taken. If you want to, you can create
a computer with a more than a terabyte hard drive and only 64 megabytes of RAM,
and do database searches through genomic data without running out of memory.

This example was for illustration purposes. If you are a researcher
working with genomic data, don't reinvent the internal combustion
engine. Use BioPerl. It's a far more Pythonic solution than building
in Python from scratch.

The objects we have been dealing with are queries and QuerySet and further Django
documentation is online.

Chapter 4

[103]

Summary
We have taken an overview of Django's persistence facilities, its way of building
models so that ORM is not a tarpit but is solved cleanly, and we have looked at how
a solution might work using these building blocks. Specific points covered include
why the server is a natural home to address persistence issues though a database or
otherwise, as well as what a Django model that demonstrates several key features
could look like, to make a view that performs a basic search on this model and
returns JSON, which could be useful to client-side Ajax parts of an application,
finally, what some of the other Django search functionality is, and how it resembles
one of jQuery's selling points.

Let us continue. Our next chapter, Signing Up and Logging into a Website Using Ajax
covers both front end and back end tools to have a Django Ajax login. This will
get our hands dirty, and we will be working to build a graceful Web 2.0-style
login process.

Signing Up and Logging into
a Website Using Ajax

Authentication and logins using Django Ajax can be accomplished using
the following:

On the server-side, an @ajax_login_required decorator for views that
is used similarly to Django's @login_required, and also server-side Ajax
authentication handling.
On the client-side, a function that will, if an Ajax call returns a specific
message saying authentication is needed, will provide an appropriate
client-side div requesting login credentials and other details, and allow
the request to be resubmitted after authentication has been cleared.

A decorator is a function that encapsulates another function and provides some
added or modified functionality compared to the bare original. It is one of the
patterns defined in the "gang of four" patterns book, "Patterns: Elements of Reusable
Object-Oriented Software" by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides; Addison-Wesley Professional.

•

•

Signing Up and Logging into a Website Using Ajax

[106]

In this specific decorator, an inner function wrap is defined, which calls the original
function if the user is authenticated and returns a JSON message that the user is not
authenticated otherwise.

We will go over both server-side and client-side details to do this. The initial search
page will present a regular search interface whether or not a user is logged in. If a
user is not logged in, the screen should be dimmed and the user should see an Ajax
modal dialog allowing the user to log in, as in the screenshot.

In this chapter we will look at both server-side and client-side code, covering:

admin.py, used to have functionality called once and only once on
the server-side.
functions.py, with different utility functions, such as the
@ajax_login_required decorator.
views.py, which has functions that render web pages and the server's
responses to Ajax requests. One view shows how we can slowly build
a view by hand, and another shows an excellent Django shortcut.
style.css, which has basic styling for utilitarian needs and usability.

•

•

•

•

Chapter 5

[107]

search.html, which has basic client-side Ajax for our search. Normally
Ajax is factored out into its own files; this could be done to some degree but
we have chosen an implementation that means that settings changes are
centralized to the top of settings.py. Part of our solution entails JavaScript
files that are populated as Django templates rather than being completely
static, separate files.
The Django admin interface, which we can use to create test data.

Let's begin!

admin.py: administrative functions
called once
In admin.py, we have certain things that we wish to have called once and only once.
This sets up the admin interface to be able to handle Entities:

import django.contrib.admin
import directory.models

django.contrib.admin.autodiscover()
django.contrib.admin.site.register(directory.models.Entity)
django.contrib.admin.site.register(directory.models.Location)

functions.py: project-specific functions,
including our @ajax_login_required
decorator
This is our functions.py file, which incorporates a StackOverflow solution.
Traditionally in Django the @login_required decorator is placed before a view
to have Django check to see if a user is authenticated and request authentication the
old-fashioned way if a user is not logged in. This @ajax_login_required decorator
works along the same lines: it is intended for Ajax-oriented views that return
JSON, should pass along the view's output if the user is authenticated, and should
otherwise output JSON with not_authenticated as TRUE.

•

•

Signing Up and Logging into a Website Using Ajax

[108]

On the client side, the appropriate behavior is to take a returned JSON value, and see
if it has not_authenticated defined as TRUE. If so, the client should behave in an
appropriate fashion to the user not being authenticated. In our case, we will present
a modal dialog form via jQuery UI, which will allow a user to log in and eventually
register for an account. Note that we should allow an escape hatch, as sometimes the
user would rather not register. However important the website may be to us, it may
not be so important to all users, and we want to gracefully handle the case where the
user isn't interested enough to log in or register.

from django.http import HttpResponse

import json

def ajax_login_required(view_function):
 def wrap(request, *arguments, **keywords):
 if request.user.is_authenticated():
 return view_function(request, *arguments, **keywords)
 output = json.dumps({ 'not_authenticated': True })
 return HttpResponse(output, mimetype = 'application/json')
 wrap.__doc__ = view_function.__doc__
 wrap.__dict__ = view_function.__dict__
 return wrap

This is a good working example of creating a decorator. Its docstring (__doc__) and
dictionary (__dict__) are assigned to be those of the inner function, and the inner
function is returned. We see this decorator used in the first function in views.py,
as will be shown in the following section.

views.py: functions that render web pages
The pattern that has been perhaps the most popular, the most used, and the most
misused is the MVC pattern. Here there is a separation of concerns between the
Model, the View, and the Controller. Theoretically, the concerns are separated.

In Django, the most common pattern is the MTV pattern, where the three letters
mean Model, Template, and View. We have edited models before, and we will be
using a simple template later on in this chapter. Here we will be looking at two
views. At least in their classical definitions, a Django MTV view is not quite the
same thing as an MVC view. While MVC and MTV models may be doing basically
the same thing, a Django MTV view has a job description that includes some
responsibilities of an MVC controller. There are many similarities between MVC
and MTV, and both make a careful separation of concerns, but the division of labor
is different and the Django view has some of the responsibilities of both the view
and controller under MVC.

Chapter 5

[109]

#!/usr/bin/python

from django.contrib.auth import authenticate, login
from django.core import serializers
from django.http import HttpResponse
from django.shortcuts import render_to_response
from directory.functions import ajax_login_required

import directory.models
import json
import re

RESULTS_PER_PAGE = 10

def ajax_login_request(request):
 try:
 request.POST[u'login']
 dictionary = request.POST
 except:
 dictionary = request.GET

The preceding code is important for debugging purposes: it checks for a basic key
first in request.POST, defaulting to request.GET if this is not found.

The benefit of this is not relevant to production, and more pointedly it should not
be used in production, where credentials should be submitted via POST over SSL.
In production Ajax calls to this function should always use POST rather than GET,
but for debugging purposes it can be highly desirable to fall back to GET. The
reason is to provide one way of dealing with an uncaught exception. If there is an
uncaught exception and Django has DEBUG set to True, it will serve up a detailed
and informative error page. Unfortunately, if jQuery is expecting JSON and gets a
detailed HTML error page, it will offer a singularly uninformative account of the
error, which is not useful for debugging.

As a workaround for this phenomenon, you can manually make GET requests for at
least some queries. If, for example, the base URL is http://127.0.0.1:8000/ajax/
login for this view, you can add GET data at the end and manually visit a URL like
http://127.0.0.1:8000/ajax/login?login=mylogin&password=mypassword.

Signing Up and Logging into a Website Using Ajax

[110]

If your system isn't working correctly, and your (POST) Ajax query is throwing an
error, manually querying by GET in a browser window can be a good way to access a
detailed error page designed to help pinpoint what exact exception is being thrown,
and where.

 user = authenticate(username = dictionary[u'login'],
 password = dictionary[u'password'])
 if user and user.is_active:
 login(request, user)
 result = True
 else:
 result = False
 response = HttpResponse(json.dumps(result),
 mimetype = u'application/json')
 return response

The authenticate() and login() functions do different jobs. For Django's normal
(non-Ajax) login procedures, inactive accounts cannot log in. But here we need to
check for ourselves that authenticate() returns a valid user, and furthermore that
the valid user is_active (that is, has not been marked inactive). This function both
logs the user in (if appropriate) and then returns a Boolean value telling whether the
login has been successful. It is recommended procedure not to delete user accounts,
but set them to inactive. This best practice avoids creating holes in the database
where something refers to a user who is no longer available.

The following function is protected by the @ajax_login_required decorator. It is
relatively long; let us walk through it:

@ajax_login_required
def search(request):
 try:
 query = request.POST[u'query']
 dictionary = request.POST
 except:
 query = request.GET[u'query']
 dictionary = request.GET

Here we repeat what we have discussed before: besides the decorator, we look
for POST but default to GET to make debugging easier. Note that the debugging
information is exposed only if settings.py has DEBUG set to TRUE. In general, it is
bad security practice to give information about internals in error messages. And
if Django's settings.py has DEBUG set to FALSE, it will shut off detailed error
messages and give generic messages intended to avoid exposing your program's
internal structure. However, when we are developing with DEBUG set to TRUE, this

Chapter 5

[111]

gives us a chance to load an equivalent to a query that triggered an error by typing
the equivalent GET query in our browser. This could be made a DEBUG only feature,
but it may not be clear what the advantage or added security would be to that.

 split_query = re.split(ur'(?u)\W', query)

Here are a couple of notes on syntax for this regular expression operation. We have
been using strings like u'test' to indicate a Unicode string. Here we want to give
a raw string, as is usual for regular expressions. This means that (in this case) the
backslash will not be interpreted, as u'(?u)\W' will be interpreted simply as the
backslash escaping the W, which doesn't do anything particularly interesting, giving
a string that will effectively be treated as u'(?u)W'. We could achieve the intended
effect by giving u'(?u)\\W', but manually keeping track of extra backslashes is a
consolation prize as a solution compared to simply asking Python to interpret the
string as raw. This is done by changing the u to ur; note that the u comes first: we
want ur'(?u)\W', not ru'(?u)\W'; the latter will cause a syntax error. It is generally
recommended to make a practice and habit of using raw strings when dealing with
regular expressions.

In the regular expression, we pass the Unicode flag with (?u) at the beginning of
the string. This will cause the \W, the regular expression sequence for a non-word
character, to recognize Unicode word versus non-word characters, rather than
(for instance) recognizing only ASCII word characters and treating other alphabets,
ideograms, and so on as non-word characters.

The possibility of consistently doing this in Python is why we are doing, in Python,
the kind of work that Django developers often offload to the databases. The database
backends offer inconsistent support for Unicode-sensitive word breaks.

 while u'' in split_query:
 split_query.remove(u'')

We are interested in blocks of word characters; the regular expression call may leave
both the blocks of word characters we want, and empty strings. We remove the
empty strings to get the sequences of word characters included in the search string.

This solution may not separate words for languages where one character represents
one word rather than a sound or part of a word. If a workaround is needed, users
can put a space between each word. (But if this is a significant concern, it would be
better to adapt the solution so that people can give search terms in the way that is
natural to them, and the computer seems to auto-magically do the right thing.)

 results = []
 for word in split_query:
 for entity in directory.models.Entity.objects.filter(name__
icontains = word):

Signing Up and Logging into a Website Using Ajax

[112]

 if re.match(ur'(?ui)\b' + word + ur'\b', entity.name):
 entry = {u'id': entity.id, u'name': entity.name,
 u'description': entity.description}
 if not entry in results:
 results.append(entry)

For each word in the split query, we search for objects containing the word, and then
if the word matches, we add it to our list of results if it is not already there.

The directory.models.Entity.objects.filter(name__icontains = word) is a
brief example of the kind of workhorse one uses in Django's ORM; the usual correct
solution would be based on that. Here we do a case-insensitive search for objects
containing the word. So if the word is "ed", this will turn up results containing
the names "Ed", "Ted", "Edna", and other similar names. For the purposes of this
discussion, we only want exact matches, so we perform a regular expression check:
(ui) requests both "Unicode aware" and "case-insensitive," and \b specifies a word
boundary, so "Ed" will match "ed" while "Ted" and "Edna" will not.

 for entry in results:
 score = 0
 for word in split_query:
 if re.match(ur'(?ui)\b' + word + ur'\b', entry[u'name']):
 score += 1
 entry[u'score'] = score

This is a bare-bones scoring algorithm, and one of many places where you should be
able to play around with the provided starting point and make it better.

 def compare(a, b):
 if cmp(a[u'score'], b[u'score']) == 0:
 return cmp(a[u'name'], b[u'name'])
 else:
 return -cmp(a[u'score'], b[u'score'])
 results.sort(compare)

This defines a function that sorts first by score, and then by name in alphabetical order.

 try:
 start = int(dictionary[u'start'])
 except:
 start = 0
 try:
 results_per_page = int(dictionary[u'results_per_page'])
 except:
 results_per_page = RESULTS_PER_PAGE

Chapter 5

[113]

 returned_results = results[start:start + results_per_page]
 response = HttpResponse(json.dumps([returned_results,
 len(results)]),
 mimetype = u'application/json')
 return response

Here we take a slice of the result set, and send a response with a JSON encoding of
the appropriate slice of a result set (so the client can obtain page 2 at 10 results per
page, or page 3 of 50 results per page, and so on and so forth), and the total number
of results. Both of these are hooks meant to support pagination. The default behavior
if the client does not specify our POST/GET fields for pagination is to return the first
10 results (or all results if there are less than 10) and the number of results total.

def homepage(request):
 return render_to_response(u'search.html')

This two-line view is a Django shortcut in action, and an example of how Django can
save us time.

style.css: basic styling for usability
The CSS we use is straightforward. There is little ornament, but there is styling to
make text easier to read, such as requesting a font that was very carefully designed
for readability on screen: one of the best fonts optimized for usability. Some of the
styling is utilitarian: the form to log in via Ajax is not shown by default. There is a
notifications div, which has certain styles, and the text input for the search query
is prominent and large:

body
 {
 font-family: Verdana, Arial, sans;
 }

#login_form
 {
 display: none;
 }

#notifications
 {
 background-color: #ff8080;
 border: 3px solid #800000;
 display: none;
 padding: 20px;
 }

Signing Up and Logging into a Website Using Ajax

[114]

#search_form
 {
 margin-left: 40px;
 }

#submit
 {
 border: 2px solid black;
 font-size: 2em;
 margin-left: 10px;
 }

search.html: a template for client-side
Ajax
Next we will go through the template that defines the search page. We note in
advance that while this template gets a lot done, it is not a showcase of Django
templating features. The Django templating engine is intended for designers and
allows designers to access variables, perform looping and conditionals, and other
major features while not being given the power to execute arbitrary code. But even
without harnessing most of the templating engine's features, we can still get quite
a lot done.

{% extends "base.html" %}
{% block head_title %}Photo Directory: Search{% endblock head_title %}

The first line states which template it extends, and the second gives it a title. The
code that follows contains HTML, and in many cases hooks for Ajax, to serve as
a base for client-side work.

{% block body_main %}
<div id="notifications"></div>

The notifications div is meant to serve as a hook that will be available for Ajax
manipulations as a message area. With a bit of Ajax shown later on, notifications will
fade in, stay there for five seconds, and fade out. When a notification is fully faded in
it can look like the following:

Chapter 5

[115]

The HTML is:

<form name="search_form" id="search_form" action="/">
 <input type="text" name="query" id="query" />

 <input type="submit" name="submit" id="submit" value="Search" />
</form>

This is the search form. In keeping with semantic markup, we define the form
semantically, and then use jQuery to submit searches and do partial page updates
with the results. Note that every HTML element has an ID. This is not required for
semantic markup as such, but it helps for styling elements via CSS when desired, for
customizing behavior via jQuery or other Ajax tools, and for graceful degradation.

Although we have not implemented server-side support for this, the form as it
stands could work perfectly well for a graceful degradation strategy to let people
search the old-fashioned way with JavaScript turned off. (Such support will be
added later.)

<div id="results"></div>

Signing Up and Logging into a Website Using Ajax

[116]

Like the notifications div seen earlier, this is a hook for Ajax to manipulate and,
in this case, populate with results.

<div id="login_form" title="Log in">
 <form>
 <fieldset>
 <label for="login">Login</label>
 <input type="text" name="login" id="login"
 class="text ui-widget-content ui-corner-all" />

 <label for="password">Password</label>
 <input type="password" name="password" id="password"
 class="text ui-widget-content ui-corner-all" />

 </fieldset>
 </form>
</div>

This div, initially hidden, is used for Ajax login. For demonstration purposes, the
directory is only searchable to users who are logged in, and this is the login form
that is displayed when someone who is not logged in tries to search.

If you wish the search functionality to be available regardless of whether a user is
logged in, simply comment or remove the @ajax_login_required decorator before
search() in views.py.

In the next two lines, we indicate that we are done with content for the
body_main hook, and are moving on to the page-specific JavaScript hook,
footer_javascript_page.

{% endblock body_main %}
{% block footer_javascript_page %}

We include a JavaScript file, and then write functionality for this page. The main
jQuery script has already been included in the base.html Django template; we
don't need to do anything more for that here.

The following is a helper function. Right now, on both the server-side and client-side
we have not discussed the several reasons a user might not be treated as logged in:

No attempt has been made to log in
The user has attempted to log in with an invalid account
The user has attempted to log in to a valid account but got the
password wrong
The user has correctly authenticated to an account that does not have
is_valid set

•

•

•

•

Chapter 5

[117]

In terms of room for expansion, it might be helpful to distinguish which of these
several options has occurred. Particularly in the Palaeolithic era, when programmers
sat down on stone benches and logged in to monochrome terminals, it made sense
to answer either an invalid login or password with "login incorrect" and avoid
divulging whether the login or password is wrong. Now refusing to give any hint
of an answer to "Did I get my login or password wrong?" is needless and usually
doesn't do much to improve websites' security. One way this program could be
improved is for the server and client to distinguish between possible reasons an
attempted login did not succeed.

<script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.effects.fade.js"></script>
<script language="JavaScript" type="text/javascript">
<!--
function check_authentication(parsed_json)
 {
 if (parsed_json.not_authenticated)
 {
 return false;
 }
 else
 {
 return true;
 }
 }

The following function is a less generic helper function. It mostly draws on
functionality that is defined elsewhere:

function offer_login()
 {
 $("#login_form").dialog("open");
 }

The following function kicks off a notification appearing and disappearing—with
animation—in the notifications area. setTimeout() is called so that
send_notification() will return control to its caller quickly, instead of
slowing down any caller by five seconds plus the duration of two animations:

function send_notification(message)
 {
 $("#notifications").html("<p>" + message + "</p>");
 setTimeout(function()
 {
 $('#notifications').show('slow').delay(5000).hide('slow');
 }, 0);
 }

Signing Up and Logging into a Website Using Ajax

[118]

The following function encapsulates the search submission. Its success function
does not assume that the user is logged in, because a successful XMLHttpRequest call
could happen whether or not the user is logged in, and could be search results, but
could only be a message saying that the user is not authenticated.

If the user is not authenticated, it offers the option of logging in. That part is indirectly
recursive in that a successful login from the offer_login() call will resubmit the
search and should pull the results. Whether or not the implementation details could
be done differently, this is the correct user interface behavior if login is required to
do a search:

1.	 The search form is presented.
2.	 If the user is not authenticated, the user is given the option of logging in, but

is also free to decide that this isn't worth logging in.
3.	 If the user authenticates successfully, the flow of activity continues from

where it was left off. The user doesn't have to hit Search again, retype
the query, or otherwise start over on the request. Instead, on successful
authentication, the flow of activity continues without disruption as if
the user had already been authenticated.

The function encapsulates a call to jQuery's low-level $.ajax(). This is an option
worth considering in this case, but in many cases higher-level functions will be
called, with a signature like $("#messages").load("/messages/current").

function submit_search()
 {
 $.ajax(
 {
 data:
 {
 query: document.search_form.query.value
 },
 datatype: 'json',
 success: function(data, textStatus, XMLHttpRequest)
 {
 if (data)
 {
 if (check_authentication(data))
 {

Chapter 5

[119]

If data is "real" data, instead of a "not authenticated" message, we use jQuery to
display the results. The system is designed with an eye to allowing pagination, but
for now we simply display all results. The following code illustrates how one may
manipulate the DOM using Ajax. Another approach would be to build the HTML
constructed here on the server, perhaps make the HTML as a string stored in
data.html, and simply call something like $("#results").html(data.html);.
Both approaches can work, although we will focus on Ajax DOM manipulation:

 $("#results").html("");
 var results = data[0];
 var length = data[1];
 for (var index = 0; index < results.length;
 ++index)
 {
 var result = results[index];
 $("#results").append("<p><a href='/entities/"
 + result["id"] + "'>" + result["name"] +
 "
" + result["description"] +
 "</p>");
 }
 }
 else
 {
 offer_login();
 }
 }
 },
 type: 'POST',
 url: '/ajax/search',
 });
 }

The $(function(){…}); in the following code specifies functionality to be executed
when the DOM is ready. Note that this is not identical to the onload event because
the DOM can be ready before images are loaded, and this will be executed sooner.
An arbitrary number of functions can be requested this way; we have wrapped the
function calls we want in one anonymous outer function, but it would have been
equivalent to use two $(function(){…}); calls, one per wrapped call. However,
doing things this way and specifying a body onload do not work together; we
should do things this way when we want something executed when the DOM is
available and ready.

Signing Up and Logging into a Website Using Ajax

[120]

The following function() call is a bare bones example of hijaxing: replacing an
element's default behavior on a given event with an Ajax effect. In this case, the
submit button, which will perform a Web 1.0-style form submission and whole page
replacement on a click, is hijaxed with a function that, in our case, calls a function,
and then returns false, which prevents the default event handling from taking place.
Unlike other facets of JavaScript, we cannot return 0, '', or other non-true values
besides false and achieve the same effect; we specifically need to return false.

$(function()
 {
 $("#submit").click(function()
 {
 submit_search();
 return false;
 });

The text input field is shrunk to make room for the submit button.

This is an example of using jQuery to get pixel-perfect CSS-style effects. The
intended effect is that the query field and the submit button make up one line, and
that one line is centered. This may degrade if the user has selected a larger or smaller
font, but the basic effect of two items, with the query text input sized so that together
with the search button it is centered, is an example of presentation that is more easily
achieved with jQuery than CSS.

 $("#query").width($(window).width() - 240);

The following call is based on jQuery UI rather than jQuery core alone, and uses
the login_form div as the basis for a modal dialog. It adds a Log in button,
which will attempt to log in and submit the search on being clicked, and presently
unimplemented Forgot password and Create account buttons, which should be
created for production purposes and should be doable by the same principles as
the server-side and client-side code enabling Ajax login.

 $("#login_form").dialog({
 autoOpen: false,
 height: 150,
 width: 350,
 modal: true,
 buttons:
 {
 'Log in': function()
 {
 $.ajax({
 data:
 {

Chapter 5

[121]

 login: $("#login").val(),
 password: $("#password").val(),
 },
 datatype: 'text',
 success: function(data, textStatus,
 XMLHttpRequest)
 {
 if (data)
 {
 send_notification(
 "You have successfully logged in.");
 $(this).dialog('close');
 submit_search();
 }
 else
 {
 send_notification(
 "Your login was not successful.");
 }
 },
 type: 'POST',
 url: '/ajax/login',
 });
 $("#password").val("");
 },
 'Forgot password': function()
 {
 send_notification(
 "This feature has not been implemented.");
 },
 'Create account': function()
 {
 send_notification(
 "This feature has not been implemented.");
 },
 },
 });

The following call registers a global error handler that will be called by default by all
Ajax operations. At present this is an error handler for developers rather than end
users. textStatus and errorThrown are the sort of innards that can be helpful for
a developer but are not appropriate to inflict on innocent users. Depending on the
browser, the textStatus and errorThrown may not even be the sort of thing that
would help a developer. In my case they were, respectively, "error" and "undefined"
in every case, although much more useful debugging information was presumably
available from digging through the XMLHttpRequest argument's data.

Signing Up and Logging into a Website Using Ajax

[122]

In terms of a production-ready message, neither "error"/"undefined" nor digging up
the response received by the XMLHttpRequest are appropriate. It would be better to
send a notification of There was an error handling your request. We apologize for
the inconvenience, or if you want to make a more sophisticated error handler, see
what information can be obtained from the XMLHttpRequest, and then give a more
customized user-friendly error like We're sorry, but we had an error trying to save
your information. The development team has been alerted and will try to address
the root problem. If you need help, please contact [email/phone/contact link].

 $.ajaxSetup(
 {
 error: function(XMLHttpRequest, textStatus, errorThrown)
 {
 send_notification(textStatus + "</p><p>" +
 errorThrown);
 },
 });
 });
// -->
</script>
{% endblock footer_javascript_page %}

The Django admin interface
The Django admin interface is a full Create, Read, Update, and Delete (CRUD)
capable interface. The basic philosophy behind the interface is that some forms of
Create, Read, Update, and Delete operations need to be done in project-specific
ways, which are often interesting challenges, and the Django admin interface is not
intended for that purpose. What the admin interface is intended for is to address
certain routine boilerplate Create, Read, Update, and Delete functionality, so that
the more chore-like features are taken care of for you well.

The steps to make the admin site in Django 1.2.x available are:

1.	 Go to your settings.py and ensure that INSTALLED_APPS
contains django.contrib.admin, django.contrib.auth, and
django.contrib.contenttypes.

2.	 Put a line like the following in your admin.py file for every model that you
want to be available via the admin interface:
django.contrib.admin.site.register(directory.models.Entity)

Chapter 5

[123]

3.	 Include in your urls.py the following lines, firstly at the top:
import admin

And in your urlpatterns include the following line or anything of
its equivalent:
(r'^admin/', include(admin.site.urls))

4.	 Restart the server.

After that, we should see a screen like the following once we have logged in with the
user we've created:

We can then click on Entity (or Locations), and add an entity. We have set things up
so all fields are optional.

We will be working later on to make a more responsive, Ajax-based interface with
in-place editing. It has been said, "Where there is output, let there be input." Ideally,
if someone wants to change information that is displayed, and that person has
privileges to do so, it should be possible to click on that information and update it
there, rather than scout out what other part of the site is responsible for giving input.
However, the Django admin interface is decent, and we can use it for test data
in particular.

Signing Up and Logging into a Website Using Ajax

[124]

Summary
With all the pieces put together, you should be able to use the Django admin
interface to create test data, and then search and see a basic results page. There is
room to expand and improve in almost all of what we have done, and we invite
you to tinker around and make something better. But this is a substantial working
system, and we have dealt with real and serious code.

We have covered admin.py, for functions that we want called exactly once when the
server starts. We have also covered functions.py, a file we have created for utility
functions and in particular an @ajax_login_required decorator that requires users
to authenticate before seeing a view, but unlike the standard @login_required
workhorse is optimized to respond appropriately to Ajax clients expecting JSON
rather than web browsers rendering whole HTML pages. We have covered
views.py, which defines two views. Again, these are views under Django's MTV
Model-Template-View division of labor and separation of concerns, and not the
classic MVC Model-View-Controller separation of concerns. We have covered
search.html, a template that renders the desired web page without even needing
to use many Django templating engine features. We have also covered the Django
admin interface, which lets us handle routine Create, Read, Update, and Delete
operations almost for free. We can (and in this case will) work on another interface,
but for now we have a powerful and friendly way to create test data and one that
would serve us well for production purposes if we wanted.

jQuery is a library designed to allow an ecosystem of plugins. In our next chapter,
we will look at a snazzier interface that heeds the words, "Where there is output, let
there be input." We will use a jQuery plugin to allow in-place Ajax editing, giving
a Web 2.0 shine. Furthermore, we will log changes: in terms of successful intranets,
companies that turn on anonymity tend to turn it off very quickly. Making the
directory more like a wiki can result in better and more up-to-date information.
This isn't the only option, but it is the one we will explore next.

On to in-place editing!

jQuery In-place Editing
Using Ajax

jQuery as a library is intended to have a good, solid, lightweight core that invites
an ecosystem of plugins. Ordinary JavaScript programmers have been known to
learn jQuery and start writing new plugins on their first day. In this chapter, we will
take advantage of the Jeditable – Edit In Place Plugin For jQuery, with homepage
at http://www.appelsiini.net/projects/jeditable. Jeditable is not the only
plugin out there, nor the only good one; it is one of a number of interesting and
useful plugins that are available in the jQuery plugin ecosystem. If you would like
to find or explore jQuery plugins, http://plugins.jquery.com/ is a good place
to start.

In this chapter, we will cover:

How to include a plugin on a page
How to use jQuery with the Jeditable plugin to add "edit-in-place"
functionality
How to use Django to keep track of the server-side responsibilities
How to make a detailed profile page that supports in-place editing, as well as
adding the same functionality to the search results page

In our next chapter, we will complete the profile pages, building on autocomplete
features to allow an employee's supervisor to be specified without a long dropdown
menu, as well as exploring autocomplete for search.

•

•

•

•

jQuery In-place Editing Using Ajax

[126]

This will allow us to create a results page as shown:

If someone clicks on the name, for instance, it becomes:

Chapter 6

[127]

When someone clicks OK, the data is saved on the server, and also shown on
the page.

Let's get started on how this works.

Including a plugin
We include a jQuery plugin on a page by including jQuery, then including the plugin
(or plugins, if we have more than one). In our base.html, we update:

{% block footer_javascript_site %}
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.js"></script>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery-ui.js"></script>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.jeditable.js"></script>
{% endblock footer_javascript_site %}

This is followed by the footer_javascript_section and footer_javascript_page
blocks. This means that if we don't want the plugin ,which is the last inclusion, to be
downloaded for each page, we could put it in overridden section and page blocks. This
would render as including the plugin after jQuery.

How to make pages more responsive
We would also note that the setup, with three JavaScript downloads, is appropriate
for development purposes but not for deployment. In terms of YSlow client-side
performance optimization, the recommended best practice is to have one
HTML/XHTML hit, one CSS hit at the top, and one JavaScript hit at the bottom.
One of the basic principles of client-side optimization, discussed by Steve Souders
(see http://developer.yahoo.com/yslow/) is, since HTTP requests slow the
page down, the recommended best practice is to have one (preferably minified)
CSS inclusion at the top of the page, and then one (preferably minified) JavaScript
inclusion at the bottom of each page. Each HTTP request beyond this makes things
slower, so combining CSS and/or JavaScript requests into a single concatenated
file is low-hanging fruit to improve how quick and responsive your web pages
appear to users.

jQuery In-place Editing Using Ajax

[128]

For deployment, we should minify and combine the JavaScript. As we are
developing, we also have JavaScript included in templates and rendered into
the delivered XHTML; this may be appropriate for development purposes. For
deployment though, as much shared functionality as possible should be factored
out into an included JavaScript file. For content that can be delivered statically,
such as CSS, JavaScript, and even non-dynamic images, setting far-future Expires/
Cache-Control headers is desirable. (One practice is to never change the content of a
published URL for the kind of content that has a far-future expiration set, and then
if it needs updating, instead of changing the content at the same location, leave the
content where it is, publish at a new location possibly including a version number,
and reference the new location.)

A template handling the client-side
requirements
Here's the template. Its view will render it with an entity and other information. At
present it extends the base directly; it is desirable in many cases to have the templates
that are rendered extend section templates, which in turn extend the base. In our
simple application, we have two templates which are directly rendered to web pages.
One is the page that handles both search and search results—dealt with earlier—and
the other, the page that handles a profile, from the following template:

{% extends "base.html" %}

Following earlier discussion, we include honorifics before the name, and
post-nominals after. At this point we do not do anything to make it editable.

{% block head_title %}
{{ entity.honorifics }} {{ entity.name }} {{ entity.post_nominals }}
{% endblock head_title %}
{% block body_main %}

There is one important point about Django and the title block. The Django
developers do not find it acceptable to write a templating engine that produces
errors in production if someone attempts to access an undefined value (by typos, for
instance). As a result of this design decision, if you attempt to access an undefined
value, the templating engine will silently insert an empty string and move on. This
means that it is safe to include a value that may or may not exist, although there are
ways to test if a value exists and is nonempty, and display another default value in
that case. We will see how to do this soon. Let's move on to the main block, defined
by the last line of code.

Chapter 6

[129]

Once we are in the main block, we have an h1 which is almost identical to the title
block, but this time it is marked up to support editing in place. Let us look at the
honorifics span; the name and post_nominals spans work the same way:

<h1>

 {% if entity.honorifics %}
 {{ entity.honorifics }}
 {% else %}
 Click to edit.
 {% endif %}

The class edit is used to give all $(".edit") items some basic special treatment
with Jeditable; there is nothing magical about the class name, which could have been
replaced by user-may-change-this or something else. edit merely happens to be
a good name choice, like almost any good variable/function/object name.

We create a naming convention in the span's HTML ID which will enable the
server side to know which—of a long and possibly open-ended number of things
we could intend to change—is the one we want. In a nutshell, the convention is
modelname_fieldname_instanceID. The first token is the model name, and is everything
up to the first underscore. (Even if we were only interested in one model now, it is
more future proof to design so that we can accommodate changes that introduce
more models.)

The last token is the instance ID, an integer. The middle token, which may contain
underscores (for example post_nominals in the following code), is the field name.
There is no specific requirement to follow a naming convention, but it allows us
to specify an HTML ID that the server-side view can parse for information about
which field on which instance of which model is being edited.

We also provide a default value, in this case Click to edit, intended not only
to serve as a placeholder, but to give users a sense on how this information can
be updated.

We might also observe that here and in the following code, we do not presently
have checks against race conditions in place. So nothing here or in the following
code will stop users from overwriting each others' changes. This may be taken as
a challenge to refine and extend the solution to either prevent race conditions or
mitigate their damage.

 {% if entity.name %}
 {{ entity.name }}

jQuery In-place Editing Using Ajax

[130]

 {% else %}
 Click to edit.
 {% endif %}

 {% if entity.post_nominals %}
 {{ entity.post_nominals }}
 {% else %}
 Click to edit.
 {% endif %}

</h1>

This approach is an excellent first approach but in practice is an h1 with three
slots that say Click to edit on a profile, creating needless confusion. We move
to a simplified:

<h1 class="edit" id="Entity_name_{{ entity.id }}">
 {{ entity.name }}
</h1>

Taken together, the three statements form the heading in this screenshot:

Chapter 6

[131]

If we click on the name (for instance) it becomes:

The image is presently a placeholder; this should be expanded to allow an image
to be uploaded if the user clicks on the picture (implementing consistent-feeling
behavior whether or not we do so via the same plugin). We also need the view and
urlpattern on the backend:

{% if entity.image %}

{% endif %}

jQuery In-place Editing Using Ajax

[132]

The bulk of the profile
For small bits of text, we use the edit CSS class, which will be transformed to an
input of type text on click (or double-click or mouseover, if we were using Jeditable
differently). The description is an example of something that would more naturally
lend itself to a textarea, so we will use the edit_textarea CSS class, which will be
configured to use a textarea.

<p>
 Description
 <strong id="Entity_description_{{ entity.id }}"
 class="edit_textarea">
 {{ entity.description }}

</p>

The Department, as well as Reports to field, are not arbitrary text in our
implementation; they are another entity (if one is specified). This could appropriately
enough be implemented as a dropdown menu, but even a carefully pruned
dropdown menu could be long and unwieldy for a large company. We will,
in our next chapter, use an autocomplete plugin for this job.

One additional note on usability: When displaying "label: value" information on pages,
particularly heavily used pages, the most basic option is not to use any emphasis:

Name: J. Smith

To help people's eyes find what they want, one obvious solution is to emphasize the
label, as in:

Name: J. Smith

This works well the first time. However, if people are looking at the same set of
fields, in the same order, on a web page they visit repeatedly, it is no longer best
to emphasize the labels. Regular visitors already know what the labels are, and the
motive for even looking at the labels is to see the value. Therefore, for our directory,
we will be using bold for the value rather than the label:

Name: J. Smith

<p>Department:

 {{ entity.department.name }}

<p>Homepage:
 {% if entity.homepage %}

Chapter 6

[133]

 {% endif %}
 <strong class="edit_rightclick"
 id="Entity_homepage_{{ entity.id }}">
 {% if entity.homepage %}
 {{ entity.homepage }}
 {% else %}
 Right click to change.
 {% endif %}

 {% if entity.homepage %}

 {% endif %}
</p>

If a homepage is defined, we give the URL, wrapped in a link and a strong that
makes the link editable by right clicking. If the link were just editable by a regular
click, Jeditable would short-circuit the usual and expected behavior of clicking on a
link taking you to the corresponding page or opening the corresponding e-mail. To
allow editing while also allowing normal use of links on a profile page, we assign
the right click rather than click event to be the way to allow editing. From a UI
consistency perspective, it might be desirable to additionally always allow a right
click to trigger any (possible) editing. However, we will leave that on our wishlist for
now. We will define JavaScript later on in this chapter that will add desired behavior.

Whitespace and delivery
The formatting used above is preferable for development; for actual delivery, we
may wish to strip out all whitespace that can be stripped out, for this page:

{% if entity.homepage %}{% endif
%}<strong class="edit_rightclick" id="entity_homepage_{{ entity.id
}}">{% if entity.homepage %}{{ entity.homepage }}{% else %}Right click
to change.{% endif %}{% if entity.homepage %}{% endif
%}

Some browsers now are better about this, but it has happened in the past that if
you have whitespace such as a line break between the intended text of a link and
the tag, you could get unwanted trailing whitespace with a visible underline
on the rendered link. In addition, pages load faster if minified. For development
purposes, though, we will add whitespace for clarity. In the next code, we will
have a spurious space before rendered commas because we are not stripping out
unnecessary whitespace:

<p>Email:

 {% for email in emails %}

jQuery In-place Editing Using Ajax

[134]

 <a id="EntityEmail_email_{{ email.id }}"
 class="edit_rightclick"
 href="mailto:{{ email.email }}">
 {{ email.email }}

 {% if not forloop.last %}
 ,
 {% endif %}
 {% endfor %}

 Click to add email.

</p>

This allows e-mails to be added, like so:

Chapter 6

[135]

For the Location field, we are deferring an intelligent way to let people choose an
existing location, or create a new one, until the next chapter. For now we simply
display a location's identifier, which is meant as a human-readable identifier rather
than a machine-readable primary key or other identifier:

<p>Location:

 {{ entity.location.identifier }}

</p>

This entails a change to the Location model, to allow:

class Location(models.Model):
 identifier = models.TextField(blank = True)
 description = models.TextField(blank = True)
 office = models.CharField(max_length = 2,
 choices = OFFICE_CHOICES,
 blank = True)
 postal_address = models.TextField(blank = True)
 room = models.TextField(blank = True)
 coordinates = GPSField(blank = True)

The Phone field is the last one that is user editable.

<p>Phone:
 <strong class="edit" id="Entity_phone_{{ entity.id }}">
 {% if entity.phone %}
 {{ entity.phone }}
 {% else %}
 Click to edit.
 {% endif %}

</p>

The following fields are presently only displayed. The Reports to field should be
autocomplete based. The Start date field might well enough be left alone as a field
that should not need to be updated, or for demonstration purposes it could be set
to a jQuery UI datepicker, which would presumably need to have Ajax saving
functionality added.

<p>Reports to:

 {{ entity.reports_to.name }}

</p>

jQuery In-place Editing Using Ajax

[136]

<p>Start date:

 {{ entity.start_date }}

</p>
{% endblock body_main %}

Page-specific JavaScript
The page-specific JavaScript follows. The first few lines enable the edit,
edit_rightclick, and edit_textarea CSS classes to have in-place editing:

{% block footer_javascript_page %}
<script language="JavaScript" type="text/javascript">
<!--
function register_editables()
 {
 $(".edit").editable("/ajax/save",
 {
 cancel: "Cancel",
 submit: "OK",
 tooltip: "Click to edit.",
 });
 $(".edit_rightclick").editable("/ajax/save",
 {
 cancel: "Cancel",
 submit: "OK",
 tooltip: "Right click to edit.",
 event: "contextmenu",
 });
 $(".edit_textarea").editable("/ajax/save",
 {
 cancel: "Cancel",
 submit: "OK",
 tooltip: "Click to edit.",
 type: "textarea",
 });
 }

$(function()
 {
 register_editables();
 });
// -->
</script>
{% endblock footer_javascript_page %}

Chapter 6

[137]

Support on the server side
This function provides a rather unadorned logging of changes. This could be
expanded to logging in a form intended for machine parsing, display in views,
and so on in functions.py:

def log_message(message):
 log_file = os.path.join(os.path.dirname(__file__),
 directory.settings.LOGFILE)
 open(log_file, u'a').write(u"%s: %s\n" % (time.asctime(),
 message)

In settings.py, after the DATABASE_PORT is set:

Relative pathname for user changes logfile for directory
LOGFILE = u'log'

In the urlpattern in urls.py:
 (ur'^ajax/save', views.save),
 (ur'^profile/(\d+)$', views.profile),

In views.py, our import section has grown to the following:

from django.contrib.auth import authenticate, login
from django.contrib.auth.decorators import login_required
from django.core import serializers
from django.db.models import get_model
from django.http import HttpResponse
from django.shortcuts import render_to_response
from django.template import Context, Template
from django.template.defaultfilters import escape
from django.template.loader import get_template
from directory.functions import ajax_login_required

import directory.models
import json
import re

In views.py proper, we define a profile view, with the regular @login_required
decorator. (We use @ajax_login_required for views that return JSON or other data
for Ajax requests, and @login_required for views that return a full web page.)

@login_required
def profile(request, id):
 entity = directory.models.Entity.objects.get(pk = id)
 emails = directory.models.EntityEmail.objects.filter(
 entity__exact = id).all()
 return HttpResponse(get_template(u'profile.html').render(Context(
 {u'entity': entity, u'emails': emails})))

jQuery In-place Editing Using Ajax

[138]

The following view saves changes made via in-place edits:

@ajax_login_required
def save(request):
 try:
 html_id = request.POST[u'id']
 value = request.POST[u'value']
 except:
 html_id = request.GET[u'id']
 value = request.GET[u'value']
 if not re.match(ur'^\w+$', html_id):
 raise Exception(u'Invalid HTML id.')

First we test, specifically, for whether a new e-mail is being added. The last parsed
token in that case will be the ID of the Entity the e-mail address is for.

 match = re.match(ur'EntityEmail_new_(\d+)', html_id)
 if match:
 model = int(match.group(1))

We create and save the new EntityEmail instance:

 email = directory.models.EntityEmail(email = value,
 entity = directory.models.Entity.objects.get(
 pk = model))
 email.save()

We log what we have done, and for a view servicing Jeditable Ajax requests,
return the HTML that is to be displayed. In this case we return a new link, and
re-run the script that applies in-place edit functionality to all appropriate classes, as
dynamically added content will not have this happen automatically. Our motive is
that people will sometimes hit Save and then realize they made a mistake they want
to correct, and we need to handle this as gracefully as the case where the in-place
edit is perfect on the first try. We escape for display:

 directory.functions.log_message(u'EntityEmail for Entity ' +
 str(model) + u') added by: ' + request.user.username +
 u', value: ' + value + u'\n')
 return HttpResponse(
 u'<a class="edit_rightclick"
 id="EntityEmail_email_' + str(email.id) + u'"
 href="mailto:' + value + u'">' + value + u'' +
 u'''
 Click to add email.''' % str(email.id))

Chapter 6

[139]

The else clause is the normal case. First it parses the model, field, and id:

 else:
 match = re.match(ur'^(.*?)_(.*)_(\d+)$', html_id)
 model = match.group(1)
 field = match.group(2).lower()
 id = int(match.group(3))

Then it looks up the selected model (under the directory module, rather than
anywhere), finds the instance having this ID, sets the instance's field value, and
saves the instance. The solution is generic, and does the usual job that would be
done by code like entity.name = new_name.

 selected_model = get_model(u'directory', model)
 instance = selected_model.objects.get(pk = id)
 setattr(instance, field, value)
 instance.save()

Finally, we log the change and return the HTML to display, in this case simply the
value. As with previous examples, we escape the output against injection attacks:

 directory.functions.log_message(model + u'.' + field + u'('
 + str(id) + u') changed by: ' + request.user.username
 + u' to: ' + value + u'\n')
 return HttpResponse(escape(value))

Summary
We have now gone from a basic foundation to continuing practical application. We
have seen how to divide the labor between the client side and server side. We used
this to make a profile page in an employee directory where clicking on text that can
be edited enables in-place editing, and we have started to look at usability concerns.

More specifically, we have covered how to use a jQuery plugin, in our case Jeditable,
in a solution for Ajax in-place editing. We saw how to use Jeditable in slightly
different ways to more appropriately accommodate editable plain text and editable
e-mail/URL links. We discussed the server-side responsibilities, including both
a generic solution for when a naming convention is required. We looked at an
example of customizing behavior when we want something more closely tailored
to specific cases (which often is part of solving usability problems well), and also
how a detailed profile page can be put together.

In the next chapter, we will address part of the profile page not solved here, namely,
how to use autocomplete-style functionality to provide a well-scaling alternative
to let people choose Entities for the department and reports_to field. Let's look
at that more closely.

Using jQuery UI Autocomplete
in Django Templates

In this chapter, we will cover ground in two different dimensions. First of all, we
will use jQuery UI's autocomplete, with Django templates and views, covering both
the server-side and client-side aspects and explore Django Ajax a little more deeply.
Second, we will use something more like a real-world process of discovery while we
are doing this. That is to say, instead of starting immediately with a finished solution,
we will show what it is like to meet roadblocks along the way and still deliver
a working project.

In this chapter we will cover:

jQuery UI's autocomplete and themeroller
A "progressive enhancement" combobox
What needs to be done on the server-side and client-side to do the following:

Using Django templating to dynamically create elements
Client-side event handling to send autocomplete-based selections
to the server
DOM Level 0 and iframe-based alternatives on the client-side
Extending server-side Django Ajax views to handle updates from
the client
Refining the working solution

An example of practical problem solving when issues arise

In previous chapters, we have explored how to get a solution working under optimal
conditions. Here we'll look at what we can do when tools don't always work.

•

•

•

°

°

°

°

°

•

Using jQuery UI Autocomplete in Django Templates

[142]

Adding autocomplete: first attempt
For further development, we will be using a jQuery theme. What specific theme can
be used is customizable, but autocomplete and other plugins require some theme
such as jQuery UI Themeroller provides. jQuery UI Themeroller, which lets you
customize and tweak a theme (or just download a default), is available at:

http://jqueryui.com/themeroller/

When you have made any customizations and downloaded a theme, you can
unpack it under your static content directory. In our base.html template, after our
site-specific stylesheet, we have added an include to the jQuery custom stylesheet
(note that you may download a different version number than we have used here).

{% block head_css_site %}<link rel="stylesheet" type="text/css"
href="/static/css/style.css" />
<link rel="stylesheet" type="text/css"
href="/static/css/smoothness/jquery-ui-1.8.2.custom.css" />
{% endblock head_css_site %}

We will be using the jQuery UI combobox, which offers a "progressive enhancement"
strategy by building a page that will still work with JavaScript off and will be more
accessible than building a solution with nothing but Ajax.

Progressive enhancement, a best practice
"Progressive enhancement," in a nutshell, means that as much as possible you
build a system that works without JavaScript or CSS, with semantic markup and
similar practices, then add appearance with CSS, and then customize behavior with
JavaScript. A textbook example of customizing behavior is to make a sortable table
which is originally sortable, in Web 1.0 fashion, by clicking on a link in a table header
which will load a version of the table sorted by that link. Then the links are "hijaxed"
by using JavaScript to sort the table purely by JavaScript manipulations of the page,
so that if a user does not have JavaScript on, clicking on the links loads a fresh page
with the table sorted by that column, and if the user does have JavaScript, the same
end result is achieved without waiting on a network hit. In this case, we mark up
and populate a dropdown menu of available entities, which the JavaScript will hide
and replace with an autocomplete box. The option tags follow a naming convention
of fieldname.id; all the autocomplete fields are for fields of an entity, and the naming
convention is not directly for the benefit of server-side code, but so that an event
listener knows which field it has been given a value for.

Chapter 7

[143]

Here we follow the same basic formula for department, location, and
reports_to. We produce a list of all available options. The first entry is for no
selected department/location/reports_to; as a courtesy to the user we add
selected="selected" to the presently selected value so that the form is smart
enough to remember the last selected value, rather than defaulting to a (presumably
unwanted) choice each time the user visits it.

This much of the code is run once and creates the beginning of the containing
paragraph, sets a strong tag, and creates the entry for no department selected
(and selects it if appropriate):

<p>Department:

 <select name="department" id="department"
 class="autocomplete">
 <option
 {% if not entity.department.id %}
 selected="selected"
 {% endif %}
 value="department.-1">— Select —</option>

Then we loop through the list of departments, creating an option that has a value
of "department." followed by the id of the entity provided as a department.
Remember that earlier we simply used a list of all entities for departments. If you
are interested in tinkering, you could add a checkbox to indicate whether an entity
should be considered a department or a reports_to candidate. (Locations are a
different data type, so no paring should be obviously helpful for them.)

 {% for department in departments %}
 <option
 {% if department.id == entity.department.id %}
 selected="selected"
 {% endif %}
 value="department.{{ department.id }}">
 {{ department.name}}
 </option>
 {% endfor %}

We then close the select and strong, and move on to the next line.

 </select>

</p>

Using jQuery UI Autocomplete in Django Templates

[144]

The location and reports_to are handled similarly:

Location:
 <select name="location" id="location" class="autocomplete">

We add the default, unselected option:

 <option
 {% if not entity.location.id %}
 selected="selected"
 {% endif %}
 value="location.-1">— Select —</option>

Then we loop through available locations and build their options.

 {% for location in locations %}
 <option
 {% if locationi.id == entity.locationi.id %}
 selected="selected"
 {% endif %}
 value="location.{{ location.id }}">
 {{ location.identifier }}</option>
 {% endfor %}
 </select>
 </p>

And likewise in Reports to:

<p>
Reports to:
 <select name="reports_to" id="reports_to" class="autocomplete">
 <option
 {% if not entity.reports_to.id %}
 selected="selected"
 {% endif %}
 value="reports_to_-1">— Select —</option>
 {% for reports_to in reports_to_candidates %}
 <option
 {% if reports_to.id == entity.reports_to.id %}
 selected="selected"
 {% endif %}
 value="reports_to_{{ reports_to.id }}">
 {{ reports_to.name }}</option>
 {% endfor %}
 </select>
</p>

Chapter 7

[145]

Our profile page is modified to provide more variables to the template. Later on,
we might identify which entities can be an entity's departments and which entities
can be reported to, thus improving the available options by paring away irrelevant
entities, but for now we simply provide all entities.

@login_required
def profile(request, id):
 entity = directory.models.Entity.objects.get(pk = id)
 emails = directory.models.EntityEmail.objects.filter(
 entity__exact = id).all()
 all_entities = directory.models.Entity.objects.all()
 all_locations = directory.models.Location.objects.all()
 return HttpResponse(get_template(u'profile.html').render(Context(
 {
 u'entity': entity,
 u'emails': emails,
 u'departments': all_entities,
 u'reports_to_candidates': all_entities,
 u'locations': all_locations,
 })))

This provides nice-looking autocomplete functionality like:

Using jQuery UI Autocomplete in Django Templates

[146]

However, there's a bit of a quirk. When we use the code as implemented earlier, it
does not seem to save our changes; they are not persistent across page views.

A real-world workaround
In the course of writing this book, a difficulty was encountered. We will take
advantage of that opportunity to look at finding alternatives when things do not
work. For those interested in jQuery UI complete specifically, the StackOverflow
question at http://stackoverflow.com/questions/188442/whats-a-good-
ajax-autocomplete-plugin-for-jquery is recommended, and a response with
nine upvotes as of this writing said autocomplete doesn't work as of roughly jQuery
UI 1.6. http://pastie.org/362706 is reported as a working version. However,
let's look at a workaround when things don't work—because even a recommended
plugin for a good library may not work, or may not work for us. However, we will
succeed later on working with the provided plugin.

The difficulty in question is as follows. jQuery UI includes autocomplete
functionality. As downloaded in our case, the autocomplete functionality appeared
to work from the user interface perspective, but did not appear to be saving data on
the server. A callback function had been created and (attemptedly) registered, but
it was not being called. Inserting alert() in the beginning of the function did not
trigger any alert boxes, and no error appeared in the browser console. Consulting
forums at http://forum.jquery.com/ and http://stackoverflow.com/,
which are excellent resources, did not seem to turn up results. A bug was filed
at http://dev.jqueryui.com/, but that did not generate any response quickly.
Supposing that we have deadlines looming, what should we do in a case like this?

"Interest-based negotiation": a power tool for
problem solving when plan A doesn't work
At this point we might discuss a tangent from interest-based negotiation.

Fisher and Ury's negotiation classic Getting to Yes discusses two basic kinds of
negotiation: hard and soft. Hard negotiation tries to bend as little as possible from
its stated position; soft negotiation, such as often occurs in informal and friendly
settings, is much more flexible. But they both suffer from an Achilles heel: when
both sides start by defining a position, and the only question is who is going to
give how much from their initial positions, the result is almost guaranteed to be
suboptimal. If you play that game in the first place, you lose because you are
playing the wrong game.

Chapter 7

[147]

The alternative, interest-based negotiation, which involves finding what interests
exist on both sides and doing creative problem solving based on those interests,
is much more likely to produce a winner for all involved. Getting to Yes discusses
interest-based negotiation as a power tool for hostile negotiations where the other
side has the upper hand, and perhaps it may be. But some of the best mileage you
can get out of interest-based negotiations is in friendly negotiations.

One such situation that keeps coming up at work is when someone has basically
figured out what they consider a solution to a problem, and then asks for you to
attend to the implementation. For example, a manager might have come to a system
administrator in the days when pagers were the hot new thing and said, "Our
disk filled up last night! In order to prevent this from happening again, is there
any way you can set up an automatic process to send the output of a df to a pager
every five minutes?" And almost the worst response in that situation is, "Yes, I'll
get right on it." In cases like these, if the solution was envisioned, architected, and
designed by someone nontechnical, and the technical person is asked only to handle
implementation details, the solution is almost guaranteed to be wrong.

The correct solution is not to negotiate on a level of positions, but of interests. This
particular solution uses a program whose output is designed for a full terminal
window, which would be quite painful to scroll through on an early pager even
once. It is a "boy who cried wolf" solution that means to the system administrator,
"Here's some spam you have to scroll through every five minutes to find out if there
is interesting data." Not, necessarily, that it is wrong to send something to a pager. It
might well be an appropriate solution to periodically check and send a brief message
to the system administrators if the disk is fuller than some threshold percentage, or if
the disk is being filled up beyond some threshold percentage per unit of time. But in
many cases the correct response is to politely receive the stated position and then get
on to identifying the interests involved and trying as best you can to craft a position.

In this case, we are applying the principle of interest-based negotiation to negotiation
with the computer. Our initial position, "Follow the jQuery UI instructions" has not
produced the desired results, at least not yet. So the next thing we can do is identify
our interests. Our interest here, without degrading anything else, is to provide
autocomplete functionality to the user interface. This allows at least four potential
ways to get past the obstacle:

Resolve the problem and complete the intended solution
Work around the bug using the same framework
Find another jQuery plugin to handle autocomplete
Use a standalone solution, or another library

•

•

•

•

Using jQuery UI Autocomplete in Django Templates

[148]

We don't need to stay stuck; in fact, we have several options. The first option
cannot be ruled out, but right now we have not succeeded. Let's say that's not
an option in our case. The third and fourth possibilities almost certainly have
multiple options, and multiple live options, but in this case we can bend the rules
a little bit, comment out our event-handling code, and give a little nudge to let our
jQuery UI-based solution work with all of the niceties of using jQuery UI. We will go
with this workaround, but we are not just a workaround away from being blocked
by a brick wall. There are presumably several live options, and the more we think in
terms of interests rather than positions, and identify interests to feed into problem
solving, the more a brick wall fades into a cornucopia of possibilities.

A first workaround
The workaround, like many workarounds, is itself an example of interest-based
negotiation with the computer. What we want to happen, that isn't happening
yet, is for the data to be saved. The obvious way for us to save the data is by an
XMLHttpRequest based call but it is not strictly an interest to say that we go through
XMLHttpRequest or jQuery for the submission. It would also work to have a form
that submitted the same data to an iframe. This is not a first choice solution, but we
should be much more cautious about ruling out positions altogether than identifying
our interests. Now we don't want a spurious iframe on the page, but we can set it to
display: none;, and treat it as a bit bucket, or a Unix /dev/null. And the graceful
degradation solution provided by jQuery UI uses a select, so we can specify an
onchange for the select that will submit the form whenever the select is changed,
that is whenever an autocomplete value is selected. jQuery UI allows us to display
the select, and we will do this, both to allow a person to see available options, and
to provide a choice about means of input.

Our revised code is as follows in static/style.css:

bitbucket, #bitbucket
 {
 display: none;
 }

In the top of the body_main block in templates/profile.html we add:

<iframe class="bitbucket" id="bitbucket" name="bitbucket"
 src="about:blank"></iframe>

Chapter 7

[149]

One design consideration from our implementation is that it wraps each of the
select tags (that populate an autocomplete) in its own form element. This means
that semantically we cannot have all of them in different br separated lines of the
same p, but this gives an opportunity to make the design better. If we put each
field in its own paragraph, it will make a more readable use of whitespace. So we
give each field its own paragraph, wrap the paragraphs with select tags in form
elements which submit via POST to our Ajax-geared URL and have a target of
bitbucket, add a hidden form element which will receive special treatment on the
server side as will be discussed later, and specify an onchange form submission for
select. This workaround uses what is informally called "DOM Level 0," and is not
a first choice. It does, however, allow us to keep a "close to jQuery" solution, with a
workaround that is readily replaced by a more preferable solution if a bug is fixed.

The previous code is largely the same, but is wrapped in a form tag, and preceded by
a hidden input designed to ensure that the view has all the information it needs.

<form action="/ajax/save" method="POST" name="department_form"
 id="department_form" target="bitbucket">
 <input type="hidden" name="id"
 value="Entity_department_{{ entity.id }}" />
 <p>Department:

The select has an onchange set to submit the form wrapping it. This kind of
approach, informally referred to as DOM Level 0 scripting, is not a first choice
solution; it is not exactly semantic markup. But it has been said, "In theory, theory
and practice are the same. In practice, theory and practice are different." Especially
if you have a deadline, given a choice between purist semantic markup that doesn't
work, and a less pure solution that works, choose the solution that works. (But, of
course, if you have a choice between a purist solution that works and a less pure
solution that works, choose the purist solution that works, even if it involves more
learning or more work up front.)

 <select name="department" id="department" class="autocomplete"
 onchange="this.form.submit();">
 <option
 {% if not entity.department.id %}
 selected="selected"
 {% endif %}

We changed an option value of — Select —, such as is a common
practice for select used for their own sake, to None. The reason has to do with
why we are building this select: we wish to populate an autocomplete, and for
autocomplete purposes, if someone wants to set a value to None, it is unlikely
that they will start typing "Select".

Using jQuery UI Autocomplete in Django Templates

[150]

But these are changes of relatively small details. The select is still essentially like
it was before. And that is a benefit: if we are able to get things working in pure
semantic markup using best practices, it helps to have a page that's still basically
like a "best practices" implementation.

 value="department.-1">None</option>
 {% for department in departments %}
 <option
 {% if department.id == entity.department.id %}
 selected="selected"
 {% endif %}
 value="department.{{ department.id }}">
 {{ department.name }}</option>
 {% endfor %}
 </select>
 </p>
</form>

The other fields are changed, if slightly. They are in their own paragraphs, which is
semantically at least as good as having them one per line in a large paragraph, and
lends itself to display with better use of whitespace—a major benefit if people will
be using our directory a lot!

We define a link for the homepage:

<p>
 Homepage:
 {% if entity.homepage %}

 {% endif %}

Within the link we define strong, which is marked up for (right-click) editing, and
display the URL inside the link:

 <strong class="edit_rightclick"
 id="entity_homepage_{{ entity.id }}">{{ entity.homepage }}

Then we close the link and paragraph:

 {% if entity.homepage %}

 {% endif %}
</p>

Chapter 7

[151]

We define similar, but not identical, handling for the e-mail:

<p>
 Email:

 {% for email in emails %}
 <a id="EntityEmail_email_{{ email.id }}"
 class="edit_rightclick"
 href="mailto:{{ email.email }}">

We eliminate some whitespace so that there will not be a space between the link and
the separating comma:

 {{ email.email }}{% if not forloop.last %},
 {% endif %}
 {% endfor %}

 Click to add email.

</p>

The location fields, as the reports_to field in the following snippet, follow the
same pattern as the department previously seen.

We define a form:

<form action="/ajax/save" method="POST" name="location_form"
 id="location_form" target="bitbucket">

We define a hidden input so the server-side code has a parsable identifier:

 <input type="hidden" name="id"
 value="Entity_location_{{ entity.id }}" />
 <p>
 Location:

We define a select with a DOM Level 0 submit:

 <select name="location" id="location" class="autocomplete"
 onchange="this.form.submit();">

We build the first option for when nothing has been selected:

 <option
 {% if not entity.location.id %}
 selected="selected"
 {% endif %}
 value="location.-1">None</option>

Using jQuery UI Autocomplete in Django Templates

[152]

We populate the rest of the list:

 {% for location in locations %}
 <option
 {% if locationi.id == entity.locationi.id %}
 selected="selected"
 {% endif %}
 value="location.{{ location.id }}">
 {{ location.identifier }}</option>
 {% endfor %}

And we close tags that need to be closed:

 </select>
 </p>
</form>

The Phone field is an in-place edit field. It works as a regular in-place edit field, not
an autocomplete:

<p>
 Phone:
 <strong class="edit" id="entity_phone_{{ entity.id }}">
 {% if entity.phone %}
 {{ entity.phone }}
 {% else %}
 Click to change.
 {% endif %}

</p>

And finally, we have our third and last autocomplete, which works like the first two:

<form action="/ajax/save" method="POST" name="reports_to_form"
 id="reports_to_form" target="bitbucket">
 <input type="hidden" name="id"
 value="Entity_reports_to_{{ entity.id }}" />
 <p>
 Reports to:
 <select name="reports_to" id="reports_to" class="autocomplete"
 onchange="this.form.submit();">
 <option
 {% if not entity.reports_to.id %}
 selected="selected"
 {% endif %}
 value="reports_to_-1">None</option>

Chapter 7

[153]

 {% for reports_to in reports_to_candidates %}
 <option
 {% if reports_to.id == entity.reports_to.id %}
 selected="selected"
 {% endif %}
 value="reports_to_{{ reports_to.id }}">
 {{ reports_to.name }}</option>
 {% endfor %}
 </select>
 </p>
</form>
<p>
 Start date:

 {{ entity.start_date }}

</p>

The handler follows the signature for event handlers registered, as we wish to
register them. While we do not use the event object, we keep it in the signature.
context.item should be the option that was selected. Its value will look like
department.1 and is meant to carry all the information needed for this function.
The data submitted follows the same id-value structure as we have already used
for in-place editing in the previous chapter, and submits it to the same view. We
will in fact have different server-side code handling these selections. The code that
stores text in a field will not take an ID and look up the right instance of the intended
field, at least not without significant refactoring. However, we are developing with
an analogous interface in mind: submitted data in the id-value format, with the ID
following the ModelName_fieldname_instanceID naming convention.

function update_autocomplete(event, context)
 {
 var split_value = context.item.value.split(".");
 if (split_value.length == 2 && !isNaN(split_value[1]))
 {
 var field = split_value[0];
 var id = split_value[1];
 $.ajax({
 data:
 {
 id: "Entity_" + field + "_" + {{ entity.id }},
 value: id,
 },

Using jQuery UI Autocomplete in Django Templates

[154]

 url: "/ajax/save",
 });
 };
 }

Boilerplate code from jQuery UI documentation
It is commonplace when using software to include adding boilerplate code. Here is
an example. We insert boilerplate code from the documentation pages for jQuery UI
at http://jqueryui.com/demos/autocomplete/#combobox:

 (function($) {
 $.widget("ui.combobox", {
 _create: function() {
 var self = this;
 var select = this.element.hide();
 var input = $("<input>")
 .insertAfter(select)
 .autocomplete({
 source: function(request, response) {
 var matcher = new RegExp(request.term,
 "i");
response(select.children("option").map(function() {
 var text = $(this).text();
 if (this.value && (!request.term ||
 matcher.test(text)))
 return {
 id: this.value,
 label: text.replace(new
RegExp("(?![^&;]+;)(?!<[^<>]*)(" +
$.ui.autocomplete.escapeRegex(request.term) +
")(?![^<>]*>)(?![^&;]+;)", "gi"), "$1"),
 value: text
 };
 }));
 },
 delay: 0,
 change: function(event, ui) {
 if (!ui.item) {
 // remove invalid value,
 // as it didn't match anything
 $(this).val("");
 return false;

Chapter 7

[155]

 }
 select.val(ui.item.id);
 self._trigger("selected", event, {
 item: select.find("[value='" +
 ui.item.id + "']")
 });

 },
 minLength: 0
 })
 .addClass(
 "ui-widget ui-widget-content ui-corner-left");
 $("<button> </button>")
 .attr("tabIndex", -1)
 .attr("title", "Show All Items")
 .insertAfter(input)
 .button({
 icons: {
 primary: "ui-icon-triangle-1-s"
 },
 text: false
 }).removeClass("ui-corner-all")
 .addClass("ui-corner-right ui-button-icon")
 .click(function() {
 // close if already visible
 if (input.autocomplete("widget").is(":visible")) {
 input.autocomplete("close");
 return;
 }
 // pass empty string as value to search for,
 // displaying all results
 input.autocomplete("search", "");
 input.focus();
 });
 }
 });

 })(jQuery);

Using jQuery UI Autocomplete in Django Templates

[156]

Turning on Ajax behavior (or trying to)
We make autocompletes out of the relevant selects, and also display the selects,
which the combobox() call hides by default. The user now has a choice between
the select and an autocomplete box.

$(function()
 {
 $(".autocomplete").combobox();
 $(".autocomplete").toggle();

Here we have code which, from the documentation, might be expected to call
the update_autocomplete() event handler when a selection or change is made.
However, at this point we encounter a bend in the road.

The bend in the road is this: the following commented code, when uncommented,
doesn't seem to be able to trigger the handler being called. When it was
uncommented, and an alert() placed at the beginning of update_autocomplete(),
the alert() was not triggered even once. And the usual suspects in terms of
forums and even filing a bug did not succeed in getting the handler to be called.
The alert()was still not called.

After this code, let's look at our updated code on the server side, and then see how
this bend in the road can be addressed.

 /*
 $(".autocomplete").autocomplete({select: update_autocomplete});
 $(".autocomplete").bind({"autocompleteselect": update_
autocomplete});
 $(".autocomplete").bind({"autocompletechange": update_
autocomplete});
 */
 });

Now let us turn our attention to the server side.

Code on the server side
Here we have the updated save() view which has been expanded to address its
broader scope. We accept either GET or POST requests, although requests that alter
data should only be made by POST for production purposes, and save the dictionary
for exploration.

@ajax_login_required
def save(request):
 try:
 html_id = request.POST[u'id']

Chapter 7

[157]

 dictionary = request.POST
 except:
 html_id = request.GET[u'id']
 dictionary = request.GET

If we have one of the autocomplete values, we have a hidden field named id which
guarantees that any submission will have that field in its dictionary, either request.
POST or request.GET. However, the department, location, and reports_to
fields are not all named value, and we manually check for them and use value
as a default:

 if html_id.startswith(u'Entity_department_'):
 value = dictionary[u'department']
 elif html_id.startswith(u'Entity_location_'):
 value = dictionary[u'location']
 elif html_id.startswith(u'Entity_reports_to_'):
 value = dictionary[u'reports_to']
 else:
 value = dictionary[u'value']

We perform some basic validation. Our code's HTML ID should only consist of
word characters:

 if not re.match(ur'^\w+$', html_id):
 raise Exception("Invalid HTML id.")

Then we handle several special cases before the general-purpose code that handles
most /ajax/save requests. If there is a new EntityEmail, we create it and save it:

 match = re.match(ur'EntityEmail_new_(\d+)', html_id)
 if match:
 model = int(match.group(1))
 email = directory.models.EntityEmail(email = value, entity =
 directory.models.Entity.objects.get(pk = model))
 email.save()
 directory.functions.log_message(u'EntityEmail for Entity ' +
 str(model) + u' added by: ' + request.user.username + u',
 value: ' + value + u'\n')
 return HttpResponse(
 u'<a class="edit_rightclick"
 id="EntityEmail_email_' + str(email.id)
 + u'" href="mailto:' + value + u'">' + value + u'' +
 u'''
 Click to add email.''' % str(email.id))

Using jQuery UI Autocomplete in Django Templates

[158]

We have the added code to look up the entity, look up the appropriate department
(if any), assign the updated department, and save the entity. This technique is
repeated, with slight variation, for the location and reports_to fields. We still
need to return an HttpResponse, even if the value is ignored. On the client-side,
the following code we develop will report a Django error page for development
purposes but even then will discard the reported value if the update runs
without error.

Here we have the special case of an Entity's department being set. While we create
the illusion on the client-side that this is just the same sort of submission as (say) an
Entity's description, we need to handle a few things on the server side to give the
client-side a simple appearance of "Mark it up right and save it, and it will be saved."

 elif html_id.startswith(u'Entity_department_'):
 entity_id = int(html_id[len(u'Entity_department_'):])
 department_id = int(value[len(u'department.'):])
 entity = directory.models.Entity.objects.get(pk = entity_id)
 if department_id == -1:
 entity.department = None
 else:
 entity.department = directory.models.Entity.objects.get(
 pk = department_id)
 entity.save()
 return HttpResponse(value)

The location code works the same way as reports_to and department:

 elif html_id.startswith(u'Entity_location_'):
 entity_id = int(html_id[len(u'Entity_location_'):])
 location_id = int(value[len(u'location.'):])
 if location_id == -1:
 entity.location = None
 else:
 entity.location = directory.models.Location.objects.get(
 pk == location_id)
 entity.save()
 return HttpResponse(value)
 elif html_id.startswith(u'Entity_reports_to_'):
 entity_id = int(html_id[len(u'Entity_reports_to'):])
 reports_to_id = int(value[len(u'reports_to.'):])
 entity = directory.models.Entity.object.get(pk = entity_id)
 if reports_to_id == -1:
 entity.reports_to = None
 else:

Chapter 7

[159]

 entity.reports_to = directory.models.Entity.objects.get(
 pk == reports_to_id)
 entity.save()
 return HttpResponse(value)

Although it is last, this is the mainstream and most generic handler, handling the
usual cases of text fields supporting in-place editing:

 else:
 match = re.match(ur'^(.*?)_(.*)_(\d+)$', html_id)
 model = match.group(1)
 field = match.group(2)
 id = int(match.group(3))
 selected_model = get_model(u'directory', model)
 instance = selected_model.objects.get(pk = id)
 setattr(instance, field, value)
 instance.save()
 directory.functions.log_message(model + u'.' + field +
 u'(' + str(id) + u') changed by: ' +
 request.user.username + u' to: ' + value + u'\n')
 return HttpResponse(escape(value))

Refining our solution further
This approach works, but there is room to further clean it up. First of all, we can set
things up in the base template so that, for development, Django's informative error
pages are displayed; we also set form submissions to POST by default. We make
a target div for the notifications:

 {% block body_site_announcements %}
 {% endblock body_site_announcements %}
 {% block body_notifications %}<div
 id="notifications"></div>
 {% endblock body_notifications %}

Then we add, to the footer_javascript_site block, a slightly tweaked
send_notifications(). Compared to our earlier code, instead of delaying five
seconds, it delays five seconds plus two milliseconds per character of the message.
This does not have a noticeably different effect for normal, short notifications, but it
means that if a 60k Django error page is served up, you have more time to inspect the
error. We could tweak it further so that above a threshold length, or on some other
conditions, the notification is only dismissed by explicitly pressing a button, but we
will stop here.

<script language="JavaScript" type="text/javascript">
function send_notification(message)
 {

Using jQuery UI Autocomplete in Django Templates

[160]

 $("#notifications").html("<p>" + message + "</p>");
 setTimeout("$('#notifications').show('slow').delay(" + (5000 +
 message.length * 2) + ").hide('slow');", 0);
 }

Our notifications area has several different messages, not all of which need to be
visually labeled as errors, so we move from a red-based styling to one that is silver
and grey in static/css/style.css:

#notifications
 {
 background-color: #c0c0c0;
 border: 3px solid #808080;
 display: none;
 padding: 20px;
 }

We call, on page load, $.ajaxSetup() to specify a default error handler, and also
specify form submission via POST. This will need to be changed for deployment, but
together this means that a valuable Django error page is displayed as a notification
whenever an Ajax error occurs, which is a kind of "best of both worlds" solution
for development.

$(function()
 {
 $.ajaxSetup(
 {
 error: function(XMLHttpRequest, textStatus, errorThrown)
 {
 send_notification(XMLHttpRequest.responseText);
 },
 type: "POST",
 });
 });
</script>

In the profile template, we will remove the containing form elements and the
hidden inputs, and replace the contents of the onchange attributes. We will also
rename the original update_autocomplete() to update_autocomplete_handler(),
leaving it available should the originally intended approach work. The new
update_autocomplete() will make the Ajax call, submitting the same information
as the (now) update_autocomplete_handler(). We will remove the bit bucket
iframe, although we leave the CSS in, in case a bit bucket is desired later on.

We are in a position technically to make one big paragraph out of several fields as we
did originally, but breaking them into their own paragraphs was a fortunate change,
and we will retain it.

Chapter 7

[161]

The Department paragraph now looks like a cross between the previous two entries.
It is its own paragraph, but the form is gone. There is an onchange attribute set,
although its contents are different from earlier. It calls update_autocomplete()
with an ID following the name convention and the present value of the select.

<p>Department:
 <select name="department" id="department" class="autocomplete"
 onchange="update_autocomplete(
 'Entity_department_{{ entity.id}}', this.value);">
 <option
 {% if not entity.department.id %}
 selected="selected"
 {% endif %}
 value="department.-1">None</option>
 {% for department in departments %}
 <option
 {% if department.id == entity.department.id %}
 selected="selected"
 {% endif %}
 value="department.{{ department.id }}">
 {{ department.name }}</option>
 {% endfor %}
 </select>
</p>

The location and reports_to areas follow suit:

<p>Location:
 <select name="location" id="location" class="autocomplete"
 onchange="update_autocomplete('Entity_location_{{ entity.id}}',
 this.value);">
 <option
 {% if not entity.location.id %}
 selected="selected"
 {% endif %}
 value="location.-1">None</option>
 {% for location in locations %}
 <option
 {% if location.id == entity.location.id %}
 selected="selected"
 {% endif %}
 value="location.{{ location.id }}">
 {{ location.identifier }}</option>
 {% endfor %}
 </select>
</p>

Using jQuery UI Autocomplete in Django Templates

[162]

The Reports to field also follows suit:
<p>Reports to:
 <select name="reports_to" id="reports_to" class="autocomplete"
 onchange="update_autocomplete(
 'Entity_reports_to_{{ entity.id}}', this.value);">
 <option
 {% if not entity.reports_to.id %}
 selected="selected"
 {% endif %}
 value="reports_to_-1">None</option>
 {% for reports_to in reports_to_candidates %}
 <option
 {% if reports_to.id == entity.reports_to.id %}
 selected="selected"
 {% endif %}
 value="reports_to_{{ reports_to.id }}">
 {{ reports_to.name }}</option>
 {% endfor %}
 </select>
</p>

And that's it. We now have a working, and slightly more polished internally,
implementation that supports autocomplete and in-place editing like the following.

For the autocomplete:

Chapter 7

[163]

Or, for another of several examples of user input that was allowed, here is an
in-place edit used to add a new email address.

Summary
Again, we have moved in two different dimensions in this chapter. The first
dimension is the obvious one: what we need on the client-side and server-side to get
autocomplete working with jQuery UI. The second dimension has to do with creative
problem solving when something goes wrong.

We have covered the nuts and bolts of jQuery UI's autocomplete, and where plugins
can be obtained. We continue with the concept of "progressive enhancement," and a
concrete example. We looked at what tools we have on the server-side and client-side
to do this. We have continued to get our hands dirty with Django templating to build
the desired pages.

Using jQuery UI Autocomplete in Django Templates

[164]

We have covered the ideal case of setting up an event listener that will communicate
with the server and keep it updated with pure Ajax, looked at DOM Level 0 and
iframe-based alternatives on the client side, and further expanded the Django Ajax
view on the server side so that it will accommodate autocomplete requests as well
as the original edit-in-place requests. Once we had a working solution, we looked at
how we could make it work better. We have also taken a cue from best practices in
negotiation to look at getting the best from a computer when we can't get what we
were first looking for.

In our next chapter, we will look at Django ModelForm or how to easily build forms
from Django models. We have a great deal of power and control if we are going
to build interfaces, but Django provides some built-in features that can get results
quickly. Perhaps, for instance, your organization only has a few locations and it is
not the best use of resources to build a fancy in-place edit/autocomplete page for
data that is updated maybe once a month? Or perhaps you have one or two main
models you need updated, and several more that don't need to be updated that
often but do need to be available for editing?

Django ModelForms to the rescue!

Django ModelForm:
a CSS Makeover

The Django admin interface provides a ready-made solution to the Create, Read,
Update, and Delete operations. The idea is not that the Django admin interface is the
only right way for your website to handle such operations, but rather that the chore
of creating the same basic functionality is lifted off your shoulders. You can create
the interface yourself for the kind of interface web developers find interesting, and
leave the remaining chore to Django's admin interface. And Django's admin interface
showcases ModelForm. We will be looking at the ModelForm that powers Django's
admin interface, and at how we can add admin interface-like functionality wherever
we want. In this chapter we will cover:

Using ModelForm to get a "Hello, world!" ready-made form
Styling ModelForm and giving a polished presentation
Going under the hood and exploring additional customization
ModelForm's limitations, where it is helpful, and where it is not
Using CSS to take a raw initial appearance and give a visual transformation

Let's get started!

"Hello, world!" in ModelForm
Our application as it stands only allows Entities and Locations to be created from
the Django admin interface. This may not be a problem. For some companies, it may
make sense for one person or group of persons to shoulder that responsibility, while
allowing "the rest of us" to keep the details of pages up to date.

•

•

•

•

•

Django ModelForm: a CSS Makeover

[166]

However, some organizations may not want tiered update abilities. If the Entity
model is used for anything employees want to keep track of, an organization may
decide, "Secretaries do not need written pre-authorization from the CEO to order
pencils." Without giving full admin interface privileges to all users, let's explore how
we can use ModelForm to give the same kind of interface to let users add Entities
and Locations. In some ways this interface may actually be nicer for creating a
new user from scratch. Our in-place edit system works very gracefully for in-place,
piecemeal editing, but if you want to specify most available fields, an old-fashioned
form may be the best solution.

We start by making a ModelForm that in the Django documentation is said
to "inherit" from our model. "Inherit" does not literally mean object-oriented
inheritance, but describes something analogous. In our models.py file, we define
two additional classes that in object-oriented fashion inherit from ModelForm,
and in the ModelForm sense "inherit" from Entity and Location respectively.
(If we have not done so, we add the appropriate import at the top.)

import django.forms

class EntityForm(django.forms.ModelForm):
 class Meta:
 model = Entity

class LocationForm(django.forms.ModelForm):
 class Meta:
 model = Location

Next we add views that check if a form has been submitted, and if it is valid, saves it.
Then it populates a RequestContext and renders it to a response:

@login_required
def modelform_Entity(request):
 if request.method == u'POST':
 form = directory.models.EntityForm(request.POST)
 if form.is_valid():
 form.save()
 else:
 form = directory.models.EntityForm()
 variables = RequestContext(request,
 {
 u'form': form,
 u'title': u'Entity',
 })
 return render_to_response(u'modelform.html', variables)

Chapter 8

[167]

@login_required
def modelform_Location(request):
 if request.method == u'POST':
 form = directory.models.LocationForm(request.POST)
 if form.is_valid():
 form.save()
 else:
 form = directory.models.LocationForm()
 variables = RequestContext(request,
 {
 u'form': form,
 u'title': u'Location',
 })
 return render_to_response(u'modelform.html', variables)

We add entries to the urlconf in urls.py to create the models:

 (ur'^create/Entity', views.modelform_Entity),
 (ur'^create/Location', views.modelform_Location),

Lastly, we create a template, modelform.html, which will wrap the table
contents provided:

{% extends "base.html" %}
{% block head_title %}{{ title }}{% endblock head_title %}
{% block body_header_title %}<h1>{{ title }}</h1>
{% endblock body_header_title %}
{% block body_main %}
<form action="" method="POST">
 <table>
 {{ form }}
 <tr>
 <th> </th>
 <td><input type="submit" /></td>
 </tr>
 </table>
</form>
{% endblock body_main %}

Django ModelForm: a CSS Makeover

[168]

We can visit http://127.0.0.1:8000/create/Entity; this will bring up the
following page:

And now a logged-in user can create new Entities and Locations. We have achieved
"Hello, world!" levels of functionality.

Expanding and customizing the example
As it stands now, our "Hello, world!" functionality works to create new Entities and
Locations, but it does not provide the ability to look up an already-existing Entity or
Location. Let's begin by updating the urlpatterns in urls.py. We change "create"
to "manage", because part of "best practices" is to have well-chosen names, and while
"create" accurately describes the link above, "manage" describes its broader ambit
now. Though this is not necessary on a test system that no real users have seen, we
should also perform any and all redirects so that any URL we have advertised ends
up in the right place. Users should never visit a link you have sent them to before,
and get an error page.

Chapter 8

[169]

First, we update urls.py and replace the create/Entity and create/Location
lines. We choose to be forgiving of a trailing slash left out, although a URL such as
http://example.com/manage/Entity/12 would be slightly better to advertise
than a URL like http://example.com/manage/Entity12. We enclose some of the
information in parentheses so it can be sent as an argument to the views that deal
with them.

 (ur'^(create/Entity)', views.redirect),
 (ur'^(create/Location)', views.redirect),
 (ur'^manage/Entity/?(\d*)', views.modelform_Entity),
 (ur'^manage/Location/?(\d*)', views.modelform_Location),

In views.py, we update the include section:
from django.http import HttpResponse, HttpResponseRedirect,
HttpResponsePermanentRedirect

Then we create a redirect view that permanently redirects the two URLs we want
to redirect, and by default temporarily redirects to the homepage for anything else:

def redirect(request, original_url):
 if original_url == u'create/Entity':
 return HttpResponsePermanentRedirect(u'/manage/Entity')
 elif original_url == u'create/Location':
 return HttpResponsePermanentRedirect(u'/manage/Location')
 else:
 return HttpResponseRedirect(u'/')

We update modelform_Entity() and modelform_Location() to try and look an
item up by integer primary key:

def modelform_Entity(request, id):
 if request.method == u'POST':
 form = directory.models.EntityForm(request.POST)
 if form.is_valid():
 form.save()
 else:
 try:
 form = directory.models.EntityForm(instance =
 directory.models.Entity.objects.get(pk = int(id)))
 except:
 form = directory.models.EntityForm()
 variables = RequestContext(request,
 {
 u'form': form,
 u'title': u'Entity',
 })
 return render_to_response(u'modelform.html', variables)

Django ModelForm: a CSS Makeover

[170]

def modelform_Location(request, id):
 if request.method == u'POST':
 form = directory.models.LocationForm(request.POST)
 if form.is_valid():
 form.save()
 else:
 try:
 form = directory.models.LocationForm(instance =
 directory.models.Location.objects.get(pk = int(id)))
 except:
 form = directory.models.LocationForm()
 variables = RequestContext(request,
 {
 u'form': form,
 u'title': u'Location',
 })
 return render_to_response(u'modelform.html', variables)

We also clarify the template's title:

{% block head_title %}Manage {{ title }}{% endblock head_title %}

Customizing ModelForm pages'
appearance
In order to observe the zero-one-infinity rule (either you don't allow something at
all, or you allow at most one, or you allow as many as available resources support),
we have used TEXT based, instead of VARCHAR based, fields. When you have a TEXT
based field, Django assumes that you want the data to be large, and so it uses a
textarea instead of a text input.

Before going further, I would like to address one question: why so much effort to
compensate for Django's using a textarea here? The answer, in short, is that we
are looking at a positive skill that is an asset to Ajax developers. Saying "There is
no 'CSS' in 'Asynchronous JavaScript and XML,'" is somewhat like saying, "There
is no 'JSON' in 'Asynchronous JavaScript and XML.'" It is true in a legalistic sense,
but an Ajax developer who needs someone else to handle JSON has a liability
and an Ajax developer who needs someone else to handle CSS is at a marked
professional disadvantage. We take a lemon served to us by Django, namely that
when you specify a TEXT database field Django hears a TEXTAREA in generated
HTML, and see how far we can go to make lemonade from this lemon. The overall
transformation is meant to broaden the list of bases covered and strengths this book
developed it, and it does not stop at all, nor should it, once CSS rules are in place

Chapter 8

[171]

to address initially unwieldy TEXTAREA height. The intent is to provide a
progressive transformation such as Edward Tufte offers in his now classic books
such as Envisioning Information, and make the best of a good opportunity.

Django hearing TEXTAREA if you say TEXT means, for our models, that the forms
use up more vertical space than they need to. We will use CSS to do much more than
address just this issue. The page is marked up semantically while leaving any custom
styling to the developers.

CSS styling does not have a direct way to specify how many rows or columns a
textarea has—instead, width and height may be set. There are several units one
can use; the best practice scales up or down if people change the font size. The em
unit is one that is proportional to the font size, and if one is specifying a size, use em
in preference to px/pt/in/cm. Also, depending on what HTML element you are
using, a percentage based off that element may be calculated, browser-dependent,
on the element's native size or on something else. Style an h2 to be 80% tall and
some browsers will give 80% of the base size of an unstyled h2, but still larger
than unstyled text, while other browsers will give 80% of the size of unstyled text,
meaning an h2 that is smaller than both an unstyled h2 and unstyled text. Specifying
a value in em, like 1.5em or 2em, both avoids the accessibility issues of px/pt/in/cm,
and mitigates against certain cross-browser headaches.

Before we start styling, our page looks like:

Django ModelForm: a CSS Makeover

[172]

Let's start styling:

textarea
 {
 height: 1.5em;
 }

This lets much more fit on a single page as shown in the following:

On a large monitor, there's a lot of screen real estate to the right of the text fields that
isn't being used. Let's change that:

{% block head_css_page %}
<style type="text/css">
<!--

table
 {
 width: 99.9%;
 }

td
 {
 width: 99.9%;
 }

textarea
 {

Chapter 8

[173]

 height: 1.5em;
 width: 99.9%;
 }

// -->
</style>
{% endblock head_css_page %}

In some browsers' default settings, textarea elements have a fixed-width font.
The best practice on usability and accessibility grounds is to have a proportional
sans-serif font; Verdana is a recommended choice ("Therefore, from a usability
perspective, the clear winner is Verdana," http://www.theinternetdigest.net/
archive/websafefonts.html). This is common practice because it is a best practice,
and not perceived as a best practice because it is a common practice. If we update the
textarea style:

textarea
 {
 font-family: Verdana, Arial, sans;
 height: 1.5em;
 width: 100%;
 }

It would appear different in Firefox, going to:

Django ModelForm: a CSS Makeover

[174]

We add margins to the body to improve the effect at the right of the screen
in particular:

body
 {
 padding-left: 40px;
 padding-right: 40px;
 }

And we specify a text-align of right, instead of center, for the th elements
Django ModelForm uses for labels. A text-align of left would also be an
improvement, but not quite the same:

th
 {
 text-align: right;
 }

Chapter 8

[175]

We now have a page that looks like the following:

Now, there may be some fields that we want to be a bit longer: the Description,
unlike the Identifier for instance, may be much longer than some other fields will
normally be. The textarea elements have HTML IDs like id_description, so we
can override that element's height:

textarea#id_description
 {
 height: 10em;
 }

Django ModelForm: a CSS Makeover

[176]

This gives more screen real estate to the Description:

Right now we have bold for visual emphasis, but this is in the wrong place.
Especially if people are going to use the form again and again, we should not draw
their eyes to the labels, where the bold emphasis is now, but to the text that is input.
Bold labels are standard practice, but whether this is the most usable standard
practice is what is being disputed.

th
 {
 font-style: normal;
 font-weight: normal;
 text-align: right;
 }

textarea
 {
 font-family: Verdana, Arial, sans;

Chapter 8

[177]

 font-weight: bold;
 height: 1.5em;
 width: 100%;
 }

There's a noticeable difference, but at this size the text in the textarea may be hard
to read:

We can address this problem, and make the page easier to read, by slightly
increasing the font size:

textarea
 {
 font-family: Verdana, Arial, sans;
 font-size: larger;
 font-weight: bold;
 height: 1.5em;
 width: 100%;
 }

Django ModelForm: a CSS Makeover

[178]

This makes text in the textarea easier to read.

The borders are slightly more forceful than we need; a light touch would help:

textarea
 {
 border: 1px solid silver;
 font-family: Verdana, Arial, sans;
 font-size: larger;
 font-weight: bold;
 height: 1.5em;
 width: 100%;
 }

Now they are less of a distraction:

Now we will pay attention to the text input elements, which are as yet unstyled. For
this form we could achieve comparable styling with CSS, as the page source shows
what the HTML ID is for our text input, but this means that the solution is more
brittle. Right now we have one template that works for both Entities and Locations,
and we would ideally build open-ended functionality so that our solution works
correctly for future expansion.

Chapter 8

[179]

jQuery can do things that are CSS-like that CSS itself does not do very well, or rather
that the top tier of CSS3 handles perfectly but which should not be relied on as
available in CSS implementations for visitors' browsers, such as specify styles for
all input elements of type text. And so, instead of hardcoding HTML ID's in the
page-specific CSS, we will define a CSS class to apply to all text inputs:

input.text
 {
 border: 1px solid silver;
 font-size: larger;
 font-weight: bold;
 height: 1.5em;
 width: 100%;
 }

Then we use jQuery to apply that class to inputs of type text:

<script language="JavaScript" type="text/javascript">
<!--

 $("input:text").addClass("text");

// -->
</script>

One nicety to have is zebra striping. Slight visual emphasis helps prevent rows
from blending and visually bleeding into each other. We define even and odd styles,
although even is empty:

.even
 {
 }

.odd
 {
 background-color: #eeeeee;
 }

Then we run into one of the quirks of zero-based and one-based indices running into
each other, namely, jQuery counts even and odd rows from zero rather than one, so
the first row is even, the second row is odd, and so on. To remedy this behavior, we
do a crossover in registering the styles in the JavaScript:

 $("tr:even").addClass("odd");
 $("tr:odd").addClass("even");

Django ModelForm: a CSS Makeover

[180]

And now we have the following page:

It would be nice to have muted zebra striping for the textarea elements and text
input elements. So we define empty hooks for further CSS development so that
maintainers will see what they need to customize and override even if we do
nothing with it before maintainers have to deal with it:

.odd input
 {
 }

.odd textarea
 {
 }

.odd input
 {
 background-color: #f4f4f4;
 }

.odd textarea
 {
 background-color: #f4f4f4;
 }

Chapter 8

[181]

There is a slight break visually between the table cells. This sort of thing is not
enough to necessarily be noticed, but subtly distract people. We set the table
element's border-spacing property to zero, and slightly pad th and td:

table
 {
 border-spacing: 0;
 width: 100%;
 }

td
 {
 padding: 4px;
 width: 100%;
 }

th
 {
 padding: 4px;
 font-style: normal;
 font-weight: normal;
 text-align: right;
 }

And that has taken us from an initial, unstyled appearance as shown:

Django ModelForm: a CSS Makeover

[182]

To a final result that can be seen and appreciated:

The interested reader who wants to know where the ideas came from is encouraged
to read the works of Edward Tufte; Envisioning Information is a salient starting point.
The makeover here is largely an imitation of the kind of makeover he fleshes out in
his texts.

Going under ModelForm's hood
Django ModelForm is intended to allow a ready-made form, and its markup, to be
easily styled. However, it is also intended to allow more server-side control if you
want. We will leave our CSS and jQuery styling as they are, and go under the hood
to customize the control.

Chapter 8

[183]

You may or may not want all available fields to show up. Django supports both
 "opt-out" and "opt-in" approaches. Theoretically, one could use both, although it is not
clear what kind of use case would make that desirable. Our Entity model has active,
department, description, image, homepage, honorifics, name, post_nominals,
phone, publish_externally, and reports_to fields. If we wished to allow anything
but the homepage and image to be set, we could "opt-out" by setting:

class EntityForm(django.forms.ModelForm):
 class Meta:
 model = Entity
 exclude = (u'homepage', u'image')

Or we could "opt-in" by setting:

class EntityForm(django.forms.ModelForm):
 class Meta:
 model = Entity
 fields = (u'active', u'department', u'description', u'image',
 u'homepage', u'honorifics', u'name',
 u'post_nominals', u'phone', u'publish_externally',
 u'reports_to')

By default, ModelForm displays fields in the order they were declared on the model.
This usually has room for improvement. The best order for programmers to see is for
code maintainability, and the best order for users to see will rarely be the same. We
can use the "opt-in" approach, but specify another order to rearrange the fields:

class EntityForm(django.forms.ModelForm):
 class Meta:
 model = Entity
 fields = (u'name', u'honorifics', u'post_nominals',
 u'description', u'homepage', u'phone',
 u'department', u'reports_to', u'active',
 u'publish_externally')

This rearranges the fields in a way that may make more sense than our
alphabetical-like order.

The Django documentation tells of a number of other things one can do, such as
customize how the data is cleaned, effectively having several forms on the same
page, and so on. But we would best pause to listen to a "stupid" question.

Django ModelForm: a CSS Makeover

[184]

An excellent "stupid" question: where's
the e-mail slot?
You may have looked at the screenshots and asked, "Aren't Entities allowed to have
e-mail addresses? I see phone numbers and a space for a homepage, but I don't see
an e-mail address on the form." And that is a point worth pausing on.

The design decision was made to allow unlimited e-mail addresses, and, for
purposes of illustration, only one homepage and/or phone. (For production
purposes, only listing one phone number is a design flaw. It would be better
to allow unlimited URLs and phone numbers, which can be done in the same basic
way we allowed unlimited e-mail addresses.) The implementation, which we worked
to seamlessly hide in our regular editing page, is that e-mail addresses are stored in
their own models, which have a foreign key to an Entity. (Statuses are also handled
that way, although we have not presently integrated them into the user interface.)
Logically, the e-mails belong to the Entities, but the implementation is something
like a legal fiction. E-mails are not fields on the Entities and the ModelForm has no
way of knowing what the e-mail addresses (and, for production readiness, URLs and
phone numbers, the latter of which should be stored with a description) are from the
user's perspective.

We could change this behavior by allowing at most one e-mail address, which would
allow e-mail to be handled gracefully by ModelForm. However, this would be a bad
case of the tail wagging the dog. The question we should be answering is not "What
can we do to best support implementation concerns?" but "What can we do to best
support user needs?" (A clean, easy implementation is usually preferable to a hairy
or involved implementation, but a hairy or involved implementation that serves
user needs well is always preferable to a clean, easy implementation that serves
user needs badly.)

And this means that ModelForm may not be the right solution for creating
Entities. (But the solution we have developed works gracefully and appropriately
for Locations.)

What we need to do for Entities is simply to create an Add New link. Let's add one
at the top-right of both the Search and Profile pages. To do that, we update the
beginning of profile() in views.py:

@login_required
def profile(request, id):
 if id == "new":
 entity = directory.models.Entity()
 entity.save()
 id = entity.id

Chapter 8

[185]

 else:
 entity = directory.models.Entity.objects.get(pk = int(id))
 emails = directory.models.EntityEmail.objects.filter(
 entity__exact = id).all()

We insert, just before the previous profile line in views.py the following:

 (ur'^profile/(new)$', views.profile),

In this specific case we could place it anywhere on the list, but in some cases order
matters because the first pattern that successfully matches a request is the one that
is called.

Now we update the base.html template to have a hook for adding things at the top
of the body tag:

{% block body %}<body>
 {% block body_preamble_site %}
 {% endblock body_preamble_site %}
 {% block body_preamble_section %}
 {% endblock body_preamble_section %}
 {% block body_preamble_page %}
 {% endblock body_preamble_page %}

We would like this Add New feature to be available both from the main search page
and from profile pages. Right now both of these inherit directly from base.html.
We will create an intervening template, main.html, which will include the link
main.html has:

{% extends "base.html" %}
{% block body_preamble_section %}
<ul class="standard_links">
<li href="/profile/new">Add New

{% endblock body_preamble_section %}

We change search.html and profile.html to extend main.html rather than
base.html directly:

{% extends "main.html" %}

We also add styling to static/css/style.css:
div.standard_links
 {
 font-weight: bold;
 margin-right: 15px;
 margin-top: 15px;
 text-align: right;
 }

Django ModelForm: a CSS Makeover

[186]

This places a simple, nicely styled link at the top-right of the Search and Profile page.
The Search page now looks like this:

Following this link lets the user edit a new Entity, as shown:

Chapter 8

[187]

Summary
Django ModelForm is very easy to use. If you have a model and want to let people
edit its fields, without doing all the legwork of implementing things from scratch
yourself, ModelForm lets you "cut to the chase," developing your own interfaces
for the really interesting parts of your application, and falling back to ModelForm
for the less interesting parts, particularly if you want to allow some of the Django
admin interface functionality without having people in the admin interface itself. The
markup it produces is good, semantic markup, and it is easily styled and customized
in appearance. You can go under the hood and further customize what happens
before it outputs the markup.

However, it is also limited: it seems not to offer a graceful way to handle cases
like our e-mail address where we have used standard techniques to associate an
unlimited number of e-mail addresses with one Entity. It would be possible to make
a ModelForm page for Entities and another one for the e-mail address model, but
the resulting implementation would be confusing to users, who can and should
think of e-mail addresses as just one more piece of data you fill out for a person
or department.

In this chapter, we have covered all the basics to get a "Hello, world!" ModelForm
up and running. We have looked at how to take advantage of ModelForm's good
markup to customize and style the appearance of the page to be easier and more
powerful to use. We have explored the beginning of poking around under the
hood to customize appearance. We have seen ModelForm's limitations, when to
use it, and when it is not the best choice (because it does not handle some legal
fictions gracefully). And in all this we have made a visual transformation by a
CSS makeover.

Let's move on to database and search handling. Let's go!

Database and Search
Handling

One early paradox that was discovered in the initial Web 2.0 buzz was that trying
to be proactive and be more responsive by being prepared ahead of time ended up
making applications less responsive, not more. The initial expectation that partial
page updates would make more responsive applications met with a surprise when
programmers made applications more like a desktop application and, initially at
least, less responsive. The recommended best practice now is to be as lazy
as possible.

In this chapter, we will:

Start with a solution that demonstrates the easy AHAH (Asynchronous
HTTP And HTML) technique, and plays to Django's strengths
Demonstrate "graceful degradation" that allows our application to serve up
read-only access with JavaScript turned off

Simply put, we will explore a solution with the responsiveness of an "as lazy as
possible" solution. Behind the scenes, we will show how that solution showcases
Django strengths.

Moving forward to an AHAH solution
Let's start with a "fewer moving parts" solution that will play to Django's strengths
reasonably well. We will move on to a more in-depth solution, but some have said,
"Every complex system that works is found to have evolved from a simple system
that works," and we can make a relatively simple system that works well before we
start trying to push the envelope of what the system can do.

•

•

Database and Search Handling

[190]

Part of "graceful degradation" means making a solution that works without
JavaScript. In our case we will make a modest goal of "read-only" functionality
accommodated without JavaScript; that is, we will not be attempting graceful
degradation that can update the data without JavaScript on. That job can be done
with the Django admin interface, by registering all relevant models as editable, and
adding a link, possibly enclosed in <noscript> tags, to update the database. While
our directory is intended to be easily updated, the main use is read only.

For purposes of illustration, in previous chapters we required an Ajax login before
the user could see any data. Now we will attempt a more user-friendly, and realistic,
approach in which users may search and see profiles without logging in, but must
log in to do anything that makes a change to the data. For organizations that do not
want all users to be able to change any data, this offers a slightly finer granularity of
access, by creating accounts only for people who should be allowed to make changes
to the database. Others will have full-fledged access to search and view profiles; they
just won't be able to make changes.

We are also updating the model/database schema by making expanded internal use
of Entities to serve as Locations. That is, Locations are no longer their own Model;
their work is now done by Entities.

When the user first loads the screen, it should look like the following:

Chapter 9

[191]

When the user has searched and loaded a profile, it should look like the following:

In both cases, the user's attention is drawn to three different areas of the page,
each doing a different job. On a live computer, the left Search results area is a light
blue, and the right People, etc. area is a light yellow. One accessibility note is to
avoid using color to be the only way a piece of information is delivered, but we are
following this guideline in what we are doing here because we are using color to
offer additional emphasis to information that is delivered elsewhere. The bold red
"✘", which could be replaced by a sprite in a production application for greater
compatibility with Internet Explorer, is still a bold "✘" to the colorblind, and the
light blue and light yellow differ slightly in value.

Non-colorblind designers wishing to see how something looks to the colorblind, may
visit the web page filter at http://colorfilter.wickline.org/. In this case, one
would expect people with different forms of colorblindness to perceive the slightly
different values for the yellow and blue areas as slightly different shades of gray,
if not slightly different colors. But even then, their job is to provide an additional
underscore that says "Here on the left is one area of the screen doing one job, and
here on the right is another area of the screen doing another job."

Database and Search Handling

[192]

The breakdown we will use to accomplish this will be one parent template that hosts
the search box at the top, and two child templates: a sidebar to the left that lists
search results, and a larger template to the right that drills down to the details of one
specific Entity. This interface allows users to retain their list of search results while
they look at the specific result they have drilled down to at the moment.

Django templates for simple AHAH
"AHAH", or "Asynchronous HTML and HTTP", might be called Ajax lite and is
a clean, lightweight variant of Ajax that fetches chunks of HTML and does not
include intricate, surgical DOM manipulations.

We will be making three templates:

A parent template for the whole page
A template for search results
A template to drill down to a specific result

The whole page template will be in search.html with the search results
template in search_internal.html and the profile drill down template
in profile_internal.html.

Templating for a list of search results
The Search results sidebar to the left, stored in search_internal.html is:

<h2>Search results</h2>

We also add to the CSS, to prevent wrapping in the middle of the h2 tags, which we
never intend to wrap:

h2
 {
 white-space: nowrap;
 }

In addition, the perceptive reader may notice that this does not begin by extending
base.html, or any other template. The reason for this is the template named
search_internal.html, is a template to render partial web pages, and base.html
is a template to render whole web pages. For what we are doing, we don't want a
header, or a second body tag, or various other elements. Partial web page templates
will be named *_internal.html and will not need to be based on base.html.

{% if first_portion %}

•

•

•

Chapter 9

[193]

The view that will be using this template will hand it two, possibly empty, lists:
first_portion and second_portion. In lieu of a full paging system, we will
display a limited number of results, ten by default and like several other features
configurable in the beginning of settings.py, and make an Ajax link to show
the rest.

In addition, we will make an Ajax feature: when the user "mouses over" a search
result, that profile is loaded. This makes for faster, lighter browsing, although
old-fashioned clicking on links still works.

If the first portion is nonempty, that is, if the search turned up any results, the
template loops through results and populates the query.

 {% for result in first_portion %}

 <div class="search_result"
 onmouseover="PHOTO_DIRECTORY.load_profile(
 {{ result.id }});">

The following link is a classic example of a Hijaxed link. There is a link pointing to
a URL, in this case RESTful, that quotes the query (escaped in the view), and the ID.
The overall application will be designed so that loading that URL will render the
desired page. Its onclick attribute is set to load the profile in the larger right pane
for drilling down to individual results and returns false to prevent the default
behavior. (One JavaScript gotcha is that you need to specifically return false to
prevent the default behavior; you cannot return 0 or other "falsy" values and get
the same result.)

There is another point to be made about URLs. Django is designed to flexibly allow
the creation of attractive URLs like http://example.com/2/test where we have an
effective URL of http://example.com/?query=test&id=2. And this is a carefully
chosen feature, since users are more likely to bookmark the former than the latter.
However, what we have chosen more directly correlates to "graceful degradation"
form submission, and is more straightforward, especially in the case of queries
containing characters that would need escaping. If you think you can improve on
the "graceful degradation" URL handling, especially in a way that showcases one
of Django's deliberately chosen features, go for it.

 <p><a href="/?query={{ query }}&id={{ result.id }}"
 onclick="PHOTO_DIRECTORY.load_profile({{ result.id }});
 return false;" >{{ result.name }}

Database and Search Handling

[194]

We will cover the CSS later on. The image class, search_results, is used to float the
remainder of the paragraph that is the Entity's description, around the image.

 {% if result.image %}
 <img class="search_results"
 src="/profile/images/{{ result.id }}" />
 {% endif %}
 {% if result.title %}
 {{ result.title }}{% if result.department.name %}
 ,
{% endif %}
 {% endif %}
 {{ result.department.name }}
 </p>
 </div>

 {% endfor %}

Having looped through the first portion of the search results, we forestall user
puzzlement when a search turns up no results, by explicitly treating them with
a simple note telling them why they do not see search results:

{% else %}
 <p>There were no matches to your search.</p>
{% endif %}

If the second "overflow" portion is non-empty, we add a JavaScript link (here, one
that does not degrade gracefully) to show the additional results, and open a div that
will initially be hidden, but still deliver them. This means that there will be a very
slightly longer initial download for the user, but if the Show all link is clicked, it
should work immediately without requiring a network request.

{% if second_portion %}
 <a class="show_additional_results"
 href="JavaScript:show_additional('results')"
 >+ Show all
 <div id="additional_results">

Now we loop through the second portion, doing the same thing for each result as
with the first:

 {% for result in second_portion %}

 <div class="search_result"
 onmouseover="PHOTO_DIRECTORY.load_profile(
 {{ result.id }});">
 <p><a href="/?query={{ query }}&id={{ result.id }}"

Chapter 9

[195]

 onclick="PHOTO_DIRECTORY.load_profile({{ result.id }});
 return false;">{{ result.name }}

 {% if result.image %}
 <img class="search_results"
 src="/profile/images/{{ result.id }}" />
 {% endif %}
 {% if result.title %}
 {{ result.title }}{% if result.department.name %}
 ,
{% endif %}
 {% endif %}
 {{ result.department.name }}
 </p>
 </div>

 {% endfor %}

We close the initially hidden div, and that's it for the template:

 </div>
{% endif %}

Template for an individual profile
Now we will be looking at how we keep the right, "drilldown individual profile"
pane up to date. It is possible to surgically update individual elements within the
div, and our code supports this to some degree. Jeditable is intended to do just that
with in-place edits. If we are going to spend a lot of time making a micro-optimized
solution, the first choice response may be to replace as little of the page as possible.

However, there are distinct advantages to a "fewest moving parts" solution that
simply replaces the "drilldown individual profile" with a fresh pane generated by
the server. The generated pane can be generated in a way that more directly plays
to Django's strengths. There are major advantages to debugging also, fewer moving
parts means fewer places bugs can creep in, and fewer places for them to hide
because when there is something wrong, it will often be more obviously wrong,
and "more obviously wrong" is much easier to debug than "sometimes appears
faintly wrong."

profile_internal.html contains the line:

<h2>People, etc.</h2>

Database and Search Handling

[196]

There is a link, which will be styled, to delete an Entity so that the interface supports
full Create, Read, Update, and Delete operations.

<div class="deletion">

Delete {{ entity.name }}
</div>

Here we have a container, in this case an h2, that is marked up for in-line editing
with Jeditable (http://www.appelsiini.net/projects/jeditable), by adding the
class edit. It follows the naming convention: "Entity" and then the field ("name"),
and then the entity's ID:

<h3 id="Entity_name_{{ id }}" title="Click to edit."
class="edit">{{ entity.name }}</h3>

The div uses the ajaxFileUpload plugin (http://www.phpletter.com/Our-
Projects/AjaxFileUpload/). It displays an image, if there is one, and provides an
Ajax file-uploading facility. It depends on the ajaxFileUpload code further down.

<div class="image">
 <form id="image_upload" name="image_upload"
 action="/ajax/saveimage/{{ id }}" method="POST"
 enctype="multipart/form-data">
 {% if entity.image_mimetype %}

 {% else %}
 <div id="image_slot"></div>
 Upload image:

 {% endif %}
 <button class="button" id="upload"
 onclick="return ajaxFileUpload({{ id }});">Upload</button>
 </form>
</div>

Now, with slight variations, we will go to Jeditable-based fields, those having
CSS class edit, edit_rightclick, or edit_textarea, interspersed with deletion
fields (✘ is the symbol "✘") handled by our own Ajax. First comes the title
and description:

<p>Title: <strong id="Entity_title_{{ id }}" title="Click to edit."
 class="edit">{{ entity.title }}</p>
<p>Description: <strong id="Entity_description_{{ id }}"
 title="Click to edit." class="edit_textarea">
{{ entity.description }}</p>

Chapter 9

[197]

After that come several similar, not particularly DRY (Don't Repeat Yourself,
a Django mantra) sections. We iterate through all existing telephone numbers,
displaying a Click to edit field with tooltip, and adding the deletion marker:

<p>Phone:
 {% for phone in phones %}
 <span id="Phone_{{ phone.id }}" class="edit"
 title="Click to edit.">{{ phone.number }}
 <span class="delete"
 id="Phone_{{ phone.id }}">✘
 {% endfor %}

Then, after the loop, we add a hook to add a new phone number:

 <span class="edit" title="Click to add."
 id="Phone_new_{{ id }}">
</p>

E-mails and URLs are handled basically the same way, but Click to edit the way
we did before would be undesirable because it would block the e-mail addresses
and URLs functioning as a live link (which is how we would normally want them
to function). Instead of using a regular click, we use the right click as the hook for
editing. The CSS is similar but noticeably different in the marker it appends:

<p>Email:
 {% for email in emails %}
 <a id="Email_{{ email.id }}" class="edit_rightclick"
 title="RIGHT click to edit." href="mailto:{{ email.email }}"
 >{{ email.email }}
 ✘

 {% endfor %}
 <span class="edit" title="Click to edit."
 id="Email_new_{{ id }}">
</p>

<p>Webpages:
 {% for url in urls %}
 <a id="URL_url_{{ url.id }}" class="edit_rightclick"
 title="RIGHT click to edit."
 href="{{ url.url }}">{{ url.url }}
 ✘

 {% endfor %}
 <span class="edit" title="Click to add."
 id="URL_new_{{ id }}">
</p>

Database and Search Handling

[198]

The GPS coordinates are handled by a live link; Google maps will search by GPS
coordinates, among many other kinds of queries, so this is a map link:

<p>GPS:
 {% if gps %}
 <a class="edit_rightclick" id="Entity_gps_{{ id }}"
 href="{{ gps_url }}">{{ gps }}
 {% else %}

 {% endif %}
</p>

Let's not forget the postal address:

<p>Postal address:
 <strong class="edit_textarea" title="Click to edit."
 id="Entity_postal_address_{{ id }}">
 {{ entity.postal_address }}</p>

In terms of being future-proof and addressing business considerations, it can be very
valuable to have a "catch-all" slot for other kinds of contact information. Right now
there are existing forms of contact information that have not been listed, for instance
a Skype ID, or IM addresses that are not identical to an e-mail address. It would be
a very careless assumption to assume that the forms of contact information we have
now are all we'll ever need. We can't guarantee a future-proof solution but listing a
few forms of contact information that will probably stay around, and being sure to
include a catch-all/wildcard slot, is almost certainly less wrong for the future than
only listing what our organization uses today.

<p>Other contact information:
 <strong class="edit_textarea" title="Click to edit."
 id="Entity_other_contact_{{ id }}">{{ entity.other_contact }}
 </p>

Tagging is a powerful value-added feature for a directory and is included in
searches; it also provides an example of a many-to-many relationship. We iterate
through an entity's tags in basically the same way we iterated through phone
numbers, e-mail addresses, and URLs:

<p>Tags:
 {% for tag in tags %}
 {{ tag.text }}
 <span class="delete"
 id="tag_{{ id }}_{{ tag.id }}">✘
 {% endfor %}

</p>

Chapter 9

[199]

For the Department, which is an Entity, we display its name as a hijaxed link to that
Entity's profile:

<p>Department:
 <a href="/?query={{ query }}&id={{ entity.department.id }}"
 onclick="load_profile({{ entity.department.id }});
 return false;">{{ entity.department.name }}

We build up a select, and it is important here that the select defaults to the
currently selected value and not whatever we happen to place first in our list.
The onchange calls a function that saves the change and refreshes the profile:

 <select name="department" id="department" class="autocomplete"
 onchange="PHOTO_DIRECTORY.update_autocomplete(
 'Entity_department_{{ id }}', 'department');">

First we manually create the option for no selected value:

 <option
 {% if not entity.department %}
 selected="selected"
 {% endif %}
 value="department.-1">None</option>

Then we loop through the available entities for the options.

We may note as a known issue, and possible area for future enhancements, that
the list of Entities is not trimmed to only present departments, locations, or bosses
when those select elements are populated. It would be possible to add a checkbox
below the department/location/reports_to paragraph saying that this Entity
is available to populate those fields, but for now we will leave that as future room
for enhancement.

 {% for department in entities %}
 <option
 {% if department.id == entity.department %}
 selected="selected"
 {% endif %}
 value="department.{{ department.id }}">
 {{ department.name }}</option>
 {% endfor %}
</select></p>

Database and Search Handling

[200]

The location and reports_to paragraphs are handled similarly:

<p>Location:
 <a href="/?query={{ query }}&id={{ entity.location.id }}"
 onclick="load_profile({{ entity.location.id }});
 return false;">{{ entity.location.name }}
 <select name="location" id="location" class="autocomplete"
 onchange="PHOTO_DIRECTORY.update_autocomplete(
 'Entity_location_{{ id }}', 'location');">
 <option
 {% if not entity.location %}
 selected="selected"
 {% endif %}
 value="location.-1">None</option>
 {% for location in entities %}
 <option
 {% if location.id == entity.location %}
 selected="selected"
 {% endif %}
 value="location.{{ location.id }}">
 {{ location.name }}</option>
 {% endfor %}
</select></p>

<p>Reports to:
 <a href="/?query={{ query }}&id={{ entity.reports_to.id }}"
 onclick="load_profile({{ entity.reports_to.id }});
 return false;">{{ entity.reports_to.name }}
 <select name="reports_to" id="reports_to" class="autocomplete"
 onchange="PHOTO_DIRECTORY.update_autocomplete(
 'Entity_reports_to_{{ id }}', 'reports_to');">
 <option
 {% if not entity.reports_to %}
 selected="selected"
 {% endif %}
 value="reports_to.-1">None</option>
 {% for reports_to in entities %}
 <option
 {% if reports_to.id == entity.reports_to %}
 selected="selected"
 {% endif %}
 value="reports_to.{{ reports_to.id }}">
 {{ reports_to.name }}</option>
 {% endfor %}
</select></p>

Chapter 9

[201]

The status field is used as in Facebook or Twitter, as we have discussed earlier.
This could be a very useful feature, but if it doesn't make sense in your corporate
environment, then it should be disabled. It may be that this is the one field
that consistently makes the database grow, and optimization concerns would
eschew such fields, but we should recall Donald Knuth's observation, "Premature
optimization is the root of all evil." And we should remember that our usual guesses
before investigation and research, about why a system is having performance issues,
are rarely correct. If this is an example of a feature that is not needed for performance
reasons, this should be an observation corroborated by experiment.

We break the statuses up as we broke up search results, although with initial
configuration we are only displaying the five most recent statuses:

<p>Status:</p>
<div class="edit_textarea" id="Status_new_{{ id }}"></div>
{% for status in first_statuses %}
<p>{{ status.text }}

{{ status.datetime }}</p>
{% endfor %}
{% if second_statuses %}
 <p><a class="show_additional_statuses"
 href="JavaScript:show_additional('statuses');"
 >+ Show all</p>
 <div class="additional_statuses">
 {% for status in second_statuses %}
 <p>{{ status.text }}

 {{ status.datetime }}</p>
 {% endfor %}
 </div>
{% endif %}

Here we add CSS overrides, enclosed in a noscript tag. The CSS styling adds
(dingbat) symbols after editable areas as a visual reminder that they can be edited
by clicking; but if JavaScript is turned off, so is that functionality. So this little snippet
removes the symbols:

<noscript>
 <style type="text/css">
 <!--

 .edit:after, .edit_textarea:after, .edit_rightclick:after
 {
 content: "";
 }

 // -->
 </style>
</noscript>

Database and Search Handling

[202]

Views on the server side
We have the following views to service requests on the server side.

Telling if the user is logged in
We make a view to allow Ajax to test if the user is logged in. Because we
have the @ajax_login_required decoator, we only need to write code to
unconditionally state that the user is logged in, and then guard the view using
the @ajax_login_required decorator:

@ajax_login_required
def ajax_check_login(request):
 output = json.dumps({ u'not_authenticated': False })
 return HttpResponse(output, mimetype = u'application/json')

A view to support deletion
The following view allows Ajax deletion of e-mail addresses, URLs, and so on,
as well as Entities.

@ajax_login_required
def ajax_delete(request):

The many-to-many relationship in tagging requires special treatment:

 if request.POST[u'id'].lower().startswith(u'tag_'):
 search = re.search(ur'[Tt]ag_(\d+)_(\d+)',
 request.POST[u'id'])
 if search:
 entity = directory.models.Entity.objects.get(
 id = int(search.group(1)))
 entity.tags.remove(directory.models.Tag.objects.get(
 id = int(search.group(2))))
 entity.save()

Everything else, that is, every deletion of a model instance (including e-mail
addresses and URLs as well as Entities), can be handled by the same method:

 else:
 search = re.search(ur'(.*)_(\d+)', request.POST[u'id'])
 if search:
 getattr(directory.models, search.group(1)).objects.get(
 id = int(search.group(2))).delete()

Chapter 9

[203]

In particular here, we log who made a deletion:

 directory.functions.log_message(u'Deleted: ' +
 request.POST[u'id'] + u' by ' + request.user.username + u'.')

The response, which may feed back into the slot in the page, is an empty string:

 return HttpResponse(u'')

These changes require an addition to the urlpatterns in urls.py. The full
urlpatterns example given for the hybrid solution will work for the AHAH
solution as well.

The AHAH view to load profiles
The AHAH view to load a profile returns a rendered XHTML fragment, not JSON.
It is fairly simple:

def ajax_profile(request, id):

First it looks up and/or calculates values needed by the template:

 entity = directory.models.Entity.objects.filter(id = int(id))[0]
 if entity.gps:
 gps = entity.gps
 elif entity.location and entity.location.gps:
 gps = entity.location.gps
 else:
 gps = u''
 if gps:
 gps_url = \
 u'http://maps.google.com/maps?f=q&source=s_q&hl=en&q=' \
 + gps.replace(u' ', u'+') + "&iwloc=A&hl=en"
 else:
 gps_url = u''

Then it feeds those values to the template and renders it to a returned response:

 return render_to_response(u'profile_internal.html',
 {
 u'entities': directory.models.Entity.objects.all(),
 u'entity': entity,
 u'first_statuses':
 directory.models.Status.objects.filter(
 entity = id).order_by(
 u'-datetime')[:directory.settings.INITIAL_STATUSES],
 u'gps': gps,

Database and Search Handling

[204]

 u'gps_url': gps_url,
 u'id': int(id),
 u'emails': directory.models.Email.objects.all(),
 u'phones': directory.models.Phone.objects.all(),
 u'second_statuses':
 directory.models.Status.objects.filter(
 entity = id).order_by(
 u'-datetime')[directory.settings.INITIAL_STATUSES:],
 u'tags': entity.tags.all().order_by(u'text'),
 u'urls': directory.models.URL.objects.all(),
 })

Helper functions for the AHAH view for searching
First, we define a function to count, case-insensitive, the number of times a token
appears in a string. The matching is whole word matching, so the string "they
looked" would be matched by the query "they" or "looked" but not "look." We put
this in functions.py, which now needs to have import re in its import section.
The string to search for is the first argument, and the token to search for is the
second argument:

def count_tokens(raw, query):
 result = 0
 try:

Note that this regular expression splits more or less on a non-word character, but
a hyphen is treated as a word character. This means, in particular, that tagging,
which uses this function, will count "customer-service" as one token, not two.

 tokens = re.split(ur'(?u)[^-\w]', raw)
 except TypeError:
 tokens = raw
 while u'' in tokens:
 tokens.remove(u'')
 try:
 matches = re.split(ur'(?u)[^-\w]', query)
 except TypeError:
 matches = query
 while u'' in matches:
 matches.remove(u'')
 for token in tokens:
 for match in matches:
 if token.lower() == match.lower():
 result += 1
 return result

Chapter 9

[205]

In addition, we define a weighted scoring function designed to estimate the
relevance of an Entity to a query. If a search term appears in an Entity's name, there
will be a very high score; if an Entity is tagged with the term, it will also be a high
score, but lower; if it appears in the Entity's statuses, it will have some relevance
but not nearly as high of a score.

The weighted scoring function is as follows. The scoring algorithm is simple: for
the Entity provided, count how many times a keyword matches a relevant field
associated with the Entity, and multiply it by a weight defined in settings.py.
This provides a way to try to present the best matches first. It also resides in
functions.py.

def score(entity, keywords):
 result = 0
 if entity.name:

In this case, long lines are broken up by adding a backslash (\) as the last character
before a line is broken; the indentation by two spaces more is a matter of convention
more than requirement, but makes for readability. There are some cases where a
line may be broken without a backslash, such as where a parenthesis, curly brace, or
square brace has been opened but not closed, in which case a backslash is permitted
but unnecessary:

result += count_tokens(entity.name, keywords) * \
 directory.settings.NAME_WEIGHT
 if entity.description:
 result += count_tokens(entity.description, keywords) *\
 directory.settings.DESCRIPTION_WEIGHT
 if entity.tags:
 for tag in entity.tags.all():
 result += count_tokens(tag.text, keywords) * \
 directory.settings.TAG_WEIGHT
 if entity.title:
 result += count_tokens(entity.title, keywords) * \
 directory.settings.TITLE_WEIGHT
 if entity.department:
 result += count_tokens(entity.department.name, keywords) * \
 directory.settings.DEPARTMENT_WEIGHT
 if entity.location:
 result += count_tokens(entity.location.name, keywords) * \
 directory.settings.LOCATION_WEIGHT
 for status in directory.models.Status.objects.filter(
 entity = entity.id):
 result += count_tokens(status.text, keywords) * \
 directory.settings.STATUS_WEIGHT
 return result

Database and Search Handling

[206]

We have added, towards the top of our settings.py, the scoring weights and other
custom settings for our photo directory:

DEBUG = True
TEMPLATE_DEBUG = DEBUG

DIRNAME = os.path.dirname(__file__)

These are constants used in the template.
DELAY_BETWEEN_RETRIES = 1
INITIAL_RESULTS = 10
INITIAL_STATUSES = 5
SHOULD_DOWNLOAD_DIRECTORY = 1 # 1 or 0, BUT NOT True or False
SHOULD_TURN_OFF_HIJAXING = 0 # 1 or 0, BUT NOT True or False
These are weightings used to determine importance in searches.
The values provided are integer clean, but the code should work for
the most
part with floating point values.
DEPARTMENT_WEIGHT = 30
DESCRIPTION_WEIGHT = 30
LOCATION_WEIGHT = 10
NAME_WEIGHT = 70
STATUS_WEIGHT = 1
TAG_WEIGHT = 50
TITLE_WEIGHT = 50

This concludes what we add to settings.py to customize behavior of our application.

An updated model
Before we move on, our Entity model has evolved; now would be a good time
to give the new Entity model. The changes are mostly straightforward, some fields
have been deleted and others added, and we now have a ManyToManyField:

class Entity(models.Model):
 active = models.BooleanField(blank = True)
 department = models.ForeignKey(u'self', blank = True,
 null = True, related_name = u'member')
 description = models.TextField(blank = True)
 gps = GPSField()
 image_mimetype = models.TextField(blank = True, null = True)
 location = models.ForeignKey(u'self', blank = True, null = True,
 related_name = u'occupant')
 name = models.TextField(blank = True)
 other_contact = models.TextField(blank = True)
 postal_address = models.TextField(blank = True)
 publish_externally = models.BooleanField(blank = True)
 reports_to = models.ForeignKey(u'self', blank = True,

Chapter 9

[207]

 null = True, related_name = u'subordinate')
 start_date = models.DateField(blank = True, null = True)
 tags = models.ManyToManyField(Tag)
 title = models.TextField(blank = True)

And that is the last thing before our AHAH search function.

An AHAH server-side search function
Without further ado, here is the Ajax search function. We determine the tokens in the
query first:

def ajax_search(request):
 try:
 query = request.POST[u'query']
 except KeyError:
 try:
 query = request.GET[u'query']
 except KeyError:
 return HttpResponse(u'')
 tokens = re.split(ur'(?u)[^-\w]', query)
 while u'' in tokens:
 tokens.remove(u'')

Then we compile a list of candidates for inclusion in the search results. A candidate,
in this context, is a two-item list containing an Entity and a starting relevance score
of zero. Because we are trying to preserve Unicode sensitivity, and not all database
backends play nice with Unicode case-insensitive regular expression matching,
we handle all of this in Python, instead of dancing around database backend
incompatibilities or needlessly restricting the reader's choices in database backends.

 candidates = []
 for candidate in directory.models.Entity.objects.all():
 candidates.append([candidate, 0])

Then, for each token, we weed out the candidates that don't match; that is, we have
AND-based and not an OR-based handling of query terms. If a candidate does make
the cut, its total score is increased by the total for that token.

 for token in tokens:
 new_candidates = []
 for candidate in candidates:
 if directory.functions.score(candidate[0], token) > 0:
 candidate[1] += directory.functions.score(
 candidate[0], token)
 new_candidates.append(candidate)
 candidates = new_candidates

Database and Search Handling

[208]

The candidates are sorted by score, from highest to lowest. We use an anonymous
function, a lambda function, which returns the negative of cmp of the first item in an
array: cmp() returns 1 if the first argument is greater (numerically or alphabetically),
0 if they are equal or equivalent, and -1 if the second argument is greater. We pass
a sort argument that requests sorting from highest to lowest score. candidates.
sort() can be passed a named or anonymous function, as long as the function takes
two arguments and returns a comparison such as can be used to sort from lowest
to highest (or highest to lowest).

 candidates.sort(lambda a, b: -cmp(a[1], b[1]))

The data structure we hand off to the template is not our raw list of candidates;
rather, we extract the description, id, whether or not an image should be
displayed, and the name of the candidate.

 export = []
 for candidate in candidates:
 if candidate[0].image_mimetype:
 image = True
 else:
 image = False
 export.append(
 {
 u'department': name,
 u'description': candidate[0].description,
 u'id': candidate[0].id,
 u'image': image,
 u'name': candidate[0].name,
 u'title': candidate[0].title,
 })

Without tackling a full pagination solution, we display a configurable number of
initial results in one area of the template, and then put the others in a hidden div
that is displayed if the user clicks Show all.

 first_portion = export[:directory.settings.INITIAL_RESULTS]
 second_portion = export[directory.settings.INITIAL_RESULTS:]
 return render_to_response(u'search_internal.html',
 {
 u'first_portion': first_portion,
 u'second_portion': second_portion,
 u'query': urllib.quote(query),
 })

Chapter 9

[209]

Handling the client-side: A template for the
main page
This template extends base.html, which contains all the JavaScript includes. This
page contains a small amount of boilerplate JavaScript that goes with jQuery plugins,
but is mostly custom JavaScript for our application.

We limit ourselves to one incursion into the global namespace above jQuery, namely
PHOTO_DIRECTORY. We enclose our jQuery-using code in:

jQuery(function($)
 {
 /* Code enclosed here. */
 });

This allows us to freely reference jQuery as $, but still create code that can coexist
with other libraries that use the $ identifier for their own purposes. Why are we
doing this in a test setup where no other libraries want to use $? There is a martial
arts maxim, which could just as well be taken from musical instrument performance:
"The way you practice is the way you will fight." The only time a martial artist or a
musician really has a live choice about how well to perform is in practice; in the heat
of performance the decision has already been made. So we follow this best practice,
now while we have a choice about it, and not in a project when we will confidently
use $ and incur the wrath of another library. While we will be placing everything
under the PHOTO_DIRECTORY namespace, we will not be using closures to try to lock
down unintended access. If other people want to incorporate this code and use it for
other purposes without editing its internals, we are leaving the door open.

We will be following a Whitesmith brace style, meaning that in code written from
scratch we will indent four spaces and indent braces along with the code they
go with:

function log(message)
 {
 try
 {
 console.log(message);
 }
 catch(error)
 {
 alert(message);
 }
 }

Database and Search Handling

[210]

We will, when possible, place functions and lists of variable assignment in
alphabetical order. The more functions or objects you have in a file (or the more
functions you have in an object), the easier it is to find things if they are arranged
in alphabetical order, or as alphabetical an order as constraints allow.

One surprising feature of this application, and one that is not generally expected,
is that in this version all top-level page renderings come from a single template,
search.html. This is an unexpected simplicity; ordinarily one would be managing
multiple templates for different top-level page renderings, and Django template
inheritance would be a more potent advantage. However, we will still see an
example of template inheritance.

The base.html template now reads as follows. We open by defining an XHTML 1.0
doctype and html tag:

{% block dtd %}
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
{% endblock dtd %}
{% block html_tag %}
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
 lang="en-US">
{% endblock html_tag %}

Then we open the head. In some cases we define actual tags within hooks; in
other cases we define hooks, the goal being to have more hooks rather than less
to override.

 {% block head %}<head>
 <title>{% block head_title %}{{ page.title }}
 {% endblock head_title %}</title>
 {% block head_favicon %}<link rel="icon"
 href="/static/favicon.ico" type="x-icon" />
 <link rel="shortcut icon" href="/static/favicon.ico"
 type="x-icon" />{% endblock head_favicon %}
 {% block head_meta %}
 {% block head_meta_author%}
 {% endblock head_meta_author %}

We specify a charset of UTF-8; without it, many Unicode characters are displayed
inappropriately, and user-provided Unicode content will be garbled:

 {% block head_meta_charset %}
 <meta http-equiv="Content-Type"
 content="text/html; charset=UTF-8" />
 {% endblock head_meta_charset %}

Chapter 9

[211]

 {% block head_meta_contentlanguage %}
 <meta http-equiv="Content-Language" value="en-US" />
 {% endblock head_meta_contentlanguage %}

We then define several tags, the meta description, keywords, and possibly refresh
and robots tags are important even if they are not defined in this template. If search
engine friendliness is at all a concern, you will want pages to define the meta
description tag and possibly others.

 {% block head_meta_description %}
 {% endblock head_meta_description %}
 {% block head_meta_keywords %}
 {% endblock head_meta_keywords %}
 {% block head_meta_othertags %}
 {% endblock head_meta_othertags %}
 {% block head_meta_refresh %}
 {% endblock head_meta_refresh %}
 {% block head_meta_robots %}
 {% endblock head_meta_robots %}
 {% endblock head_meta %}
 {% block head_rss %}{% endblock head_rss %}

The best practice is to have one HTML or XHTML page, with one CSS hit at the
top, and one JavaScript hit at the bottom. For development purposes, we do not yet
concatenate and minify down to one hit. We define section and page CSS files for
development; the principle again is that it is better to have more hooks than less.

 {% block head_css %}
 {% block head_css_site %}<link rel="stylesheet"
 type="text/css" href="/static/css/style.css" />
 <link rel="stylesheet" type="text/css"
 href="/static/css/smoothness/
 jquery-ui-1.8.2.custom.css" />
 {% endblock head_css_site %}
 {% block head_css_section %}
 {% endblock head_css_section %}
 {% block head_css_page %}{% endblock head_css_page %}
 {% endblock head_css %}
 {% block head_section %}{% endblock head_section %}
 {% block head_page %}{% endblock head_page %}
 </head>{% endblock head %}

Database and Search Handling

[212]

After adding more header hooks, we define multiple hooks in the main body of
the page:

 {% block body %}<body>
 {% block body_preamble_site %}
 {% endblock body_preamble_site %}
 {% block body_preamble_section %}
 {% endblock body_preamble_section %}
 {% block body_preamble_page %}
 {% endblock body_preamble_page %}
 <div id="sidebar">
 {% block body_sidebar %}{% endblock body_sidebar %}
 </div>
 <div id="content">
 {% block body_content %}
 <div id="header">
 {% block body_header %}
 {% block body_header_banner %}
 {% endblock body_header_banner %}
 {% block body_header_title %}<h1>
 {{ page.title }}</h1>
 {% endblock body_header_title %}
 {% block body_header_breadcrumb %}
 {{ page.breadcrumb }}
 {% endblock body_header_breadcrumb %}
 {% endblock body_header %}
 </div>
 {% block body_site_announcements %}
 {% endblock body_site_announcements %}
 {% block body_notifications %}
 <div id="notifications"></div>
 {% endblock body_notifications %}
 {% block body_main %}{% endblock body_main %}
 {% endblock body_content %}

Having placed those hooks in the body content, we define a footer. We leave
room for a breadcrumb in two places, at the top and the bottom of the page; from
a usability standpoint a breadcrumb is a minor feature but if it makes sense
to provide one, you should at least leave the door open to one.

 </div>
 <div id="footer">
 {% block body_footer %}
 {% block body_footer_breadcrumb %}
 {{ page.breadcrumb }}

Chapter 9

[213]

 {% endblock body_footer_breadcrumb %}
 {% block body_footer_legal %}
 {% endblock body_footer_legal %}
 {% endblock body_footer %}
 </div>
 </body>{% endblock body %}

We define a logical footer. In development we leave separate files for what we will
concatenate and minify for development.

 {% block footer %}
 {% block footer_javascript %}
 {% block footer_javascript_site %}
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.js"></script>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery-ui.js"></script>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.jeditable.js"></script>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/ajaxfileupload.js"></script>
 <script language="JavaScript" type="text/javascript"
 src="/static/js/jquery.effects.fade.js"></script>
 {% endblock footer_javascript_site %}
 {% block footer_javascript_section %}
 {% endblock footer_javascript_section %}
 {% block footer_javascript_page %}
 {% endblock footer_javascript_page %}
 {% endblock footer_javascript %}
 {% endblock footer %}
</html>

We open the template we are working on by declaring it to extend base.html:

{% extends "base.html" %}

We define the block that populates the HTML title:

{% block head_title %}Photo directory: Search
{% endblock head_title %}

Database and Search Handling

[214]

We override a (new) block in base.html to put something at the beginning of a page,
and put a link to add a new Entity. This will be styled to appear at the top right of
the page.

{% block body_preamble_page %}
<div id="body_preamble_page">

 <a href="/" onclick="PHOTO_DIRECTORY.add_new();
 return false;">Add new

</div>
{% endblock body_preamble_page %}

Now we will populate the main part of the page body.

{% block body_main %}

First, we define a semantically marked-up search form with a query and submit
button. These will be styled to be fairly striking, and centered (with a little help
from presentationally used jQuery to adjust things).

<h1>Photo directory: Search</h1>
<form name="search_form" id="search_form" action="/">
 <input type="text" name="query" id="query" value="{{ query }}" />
 <input type="submit" name="submit" id="submit" value="Search" />
</form>

We wrap the search results and Entity drilldown portions in two containing div
elements, in order to facilitate styling:

<div class="outer_outer">
 <div class="outer">

If there are search results, we display them, but if there are no search results, we still
populate the div with a heading. This means that when a user first visits a page and
is getting acquainted, it is easier to recognize what the search results portion of the
page is there for.

 <div id="search_results">
 {% if search_results %}
 {{ search_results }}
 {% else %}
 <h2>Search results</h2>
 {% endif %}
 </div>

Chapter 9

[215]

We do the same thing with the Entity drilldown page. However, we have chosen
a different label. For the purposes of development, there are benefits to using
an abstract term: not "Person" but "Entity". The directory is first and foremost a
directory to keep track of people, but a successful tool is one that is used in a way
that its maker never imagined, and if this succeeds people will keep track of more
than people. We both identify that this section of the page is for people, and that it
may be used for other things, with an h2 labeling it as People, etc.:

 <div id="profile">
 {% if profile %}
 {{ profile }}
 {% else %}
 <h2>People, etc.</h2>
 {% endif %}
 </div>
 </div>
</div>

This div is not displayed initially, but is used by jQuery UI to support Ajax logins.

<div id="login_form" title="Log in">
 <form>
 <fieldset>
 <label for="login">Login</label>
 <input type="text" name="login" id="login"
 class="text ui-widget-content ui-corner-all" />

 <label for="password">Password</label>
 <input type="password" name="password" id="password"
 class="text ui-widget-content ui-corner-all" />

 </fieldset>
 </form>
</div>

This is all that we will be putting in the main body area. We close this template
block, and move on to the page-specific JavaScript block:

{% endblock body_main %}
{% block footer_javascript_page %}
<script language="JavaScript" type="text/javascript">
<!--

Database and Search Handling

[216]

We enclose virtually all of our code in a jQuery(function($){ ... }); wrapper,
but the PHOTO_DIRECTORY namespace is declared outside so that it will be available
in the global namespace and therefore visible to event handlers and the like.

var PHOTO_DIRECTORY = new Object();

jQuery(function($)
 {

Firefox's Firebug plugin is a powerful debugging tool, and it provides a console.
log() function that is much better for diagnostic purposes than alert(). However,
if your code tries to call console.log() when Firebug is not open, an error is thrown
that may stop some of your JavaScript.

This means that if you forget and leave in a console.log() call that you were using
when you were debugging, you can have code that will work for your debugging
setup and break badly when a visitor tries to see it. It would be best of all not to
leave in a console.log() call, but the following code provides a safety net, that is,
if console.log() does not exist, we define it as a function that does nothing.

 try
 {
 console.log("Starting...");
 }
 catch(error)
 {
 console = function()
 {
 }
 console.log = console;
 }

We request that when the DOM is ready, the default values in jQuery's .ajax()
call be set. Besides a default returned data type and form submission type, the global
error handler does one other major service, namely, if the settings are set to debug
mode, it extracts the responseText from the XMLHttpRequest and sends it
in a notification.

This is important because in Ajax development, we will not necessarily see Django's
error pages when there has been a server error. This is unfortunate because they
often provide information that is helpful for debugging. This is a way that Ajax
development can have access to a helpful Django development feature.

Chapter 9

[217]

We only do this if settings.DEBUG is true. However helpful a good error page may
be to developers, including one in this way is needlessly confusing and intimidating
to users. If debug mode is off, a short and simple message is sent:

 $(function()
 {
 $.ajaxSetup(
 {
 datatype: "json",
 error: function(XMLHttpRequest, textStatus, errorThrown)
 {
 if (XMLHttpRequest.responseText)
 {
 {% if settings.DEBUG %}
 PHOTO_DIRECTORY.send_notification(
 XMLHttpRequest.responseText);
 {% else %}
 PHOTO_DIRECTORY.send_notification(
 "There was error handling your request.");
 {% endif %}
 }
 },
 type: "POST",
 });
 });

The following is boilerplate code provided for use with jQuery UI's autocomplete:

 (function($) {
 $.widget("ui.combobox", {
 _create: function() {
 var self = this;
 var select = this.element.hide(),
 selected = select.children(":selected"),
 value = selected.val() ? selected.text() : "";
 var input = $("<input>")
 .insertAfter(select)
 .val(value)
 .autocomplete({
 delay: 0,
 minLength: 0,
 source: function(request, response) {
 var matcher = new RegExp(
 $.ui.autocomplete.escapeRegex(
 request.term), "i");
 response(select.children(

Database and Search Handling

[218]

 "option").map(function() {
 var text = $(this).text();
 if (this.value && (!request.term ||
 matcher.test(text)))
 return {
 label: text.replace(
 new RegExp(
 "(?![^&;]+;)(?!<[^<>]*)(" +
 $.ui.autocomplete.escapeRegex(
 request.term) +
 ")(?![^<>]*>)(?![^&;]+;)",
 "gi"), "$1"
),
 value: text,
 option: this
 };
 }));
 },
 select: function(event, ui) {
 PHOTO_DIRECTORY.update_autocomplete_handler(
 event, ui);
 ui.item.option.selected = true;
 //select.val(ui.item.option.value);
 self._trigger("selected", event, {
 item: ui.item.option
 });
 },
 change: function(event, ui) {
 PHOTO_DIRECTORY.update_autocomplete_handler(
 event, ui);
 if (!ui.item) {
 var matcher = new RegExp("^" +
 $.ui.autocomplete.escapeRegex(
 $(this).val()) + "$", "i"),
 valid = false;
 select.children(
 "option").each(function() {
 if (this.value.match(
 matcher)) {
 this.selected = valid = true;
 return false;
 }
 });
 if (!valid) {
 // remove invalid value,
 // as it didn't match anything
 $(this).val("");

Chapter 9

[219]

 select.val("");
 return false;
 }
 }
 }
 })
 .addClass(
 "ui-widget ui-widget-content ui-corner-left");

 input.data("autocomplete")._renderItem = function(
 ul, item) {
 return $("")
 .data("item.autocomplete", item)
 .append("<a>" + item.label + "")
 .appendTo(ul);
 };

 $("<button> </button>")
 .attr("tabIndex", -1)
 .attr("title", "Show All Items")
 .insertAfter(input)
 .button({
 icons: {
 primary: "ui-icon-triangle-1-s"
 },
 text: false
 })
 .removeClass("ui-corner-all")
 .addClass("ui-corner-right ui-button-icon")
 .click(function() {
 // close if already visible
 if (input.autocomplete("widget").is(
 ":visible")) {
 input.autocomplete("close");
 return;
 }

 // pass empty string as value to search for,
 // displaying all results
 input.autocomplete("search", "");
 input.focus();
 });
 }
 });
 })(jQuery);

Database and Search Handling

[220]

Here we define several variables that will be used. The id provided by the view may
be empty if no page has been specified; we have an example of giving a default value
in the templating engine. The variable will be initialized to a JavaScript null value if
no (nonempty) id has been provided.

 PHOTO_DIRECTORY.current_profile = {{ id|default:"null" }} ;
 PHOTO_DIRECTORY.database_loaded = false;
 PHOTO_DIRECTORY.last_attempted_function = null;
 PHOTO_DIRECTORY.logged_in = false;
 PHOTO_DIRECTORY.DELAY_BETWEEN_RETRIES =
 {{ settings.DELAY_BETWEEN_RETRIES }};
 PHOTO_DIRECTORY.SHOULD_DOWNLOAD_DIRECTORY =
 {{ settings.SHOULD_DOWNLOAD_DIRECTORY }};
 PHOTO_DIRECTORY.SHOULD_TURN_OFF_HIJAXING =
 {{ settings.SHOULD_TURN_OFF_HIJAXING }};

Here is the function that requests a new Entity instance and pulls up its profile
for editing:

 PHOTO_DIRECTORY.add_new = function()
 {
 $.ajax({
 success: function(data, textStatus, XMLHttpRequest)
 {
 if (PHOTO_DIRECTORY.check_authentication(data))
 {
 PHOTO_DIRECTORY.load_profile(data[0].pk);
 }
 else
 {

While this functionality is not available everywhere across the program,
PHOTO_DIRECTORY.last_attempted_function is used for a callback on
successful login. On successful login, it will be called if non-null.

 PHOTO_DIRECTORY.last_attempted_function =
 PHOTO_DIRECTORY.add_new;
 PHOTO_DIRECTORY.offer_login();
 }
 },
 url: "/ajax/new/Entity",
 });
 }

Chapter 9

[221]

The following is boilerplate code provided for the ajaxFileUpload plugin,
homepage at http://www.phpletter.com/Our-Projects/AjaxFileUpload/:

 PHOTO_DIRECTORY.ajax_file_upload = function()
 {
 //starting setting some animation when the ajax starts
 // and completes
 $("#loading")
 .ajaxStart(function()
 {
 $(this).show();
 })
 .ajaxComplete(function()
 {
 $(this).hide();
 });
 /* preparing ajax file upload
 url: the url of script file handling the
 uploaded files
 fileElementId: the file type of input
 element id and it will be the index of
 $_FILES Array()
 dataType: it support json, xml
 secureuri:use secure protocol
 success: call back function when the ajax complete
 error: callback function when the ajax failed

 */
 $.ajaxFileUpload(
 {
 url: '/ajax/saveimage/' +
 PHOTO_DIRECTORY.current_profile,
 secureuri: false,
 fileElementId: 'image',
 dataType: 'json',
 success: function(data, status)
 {
 if (!PHOTO_DIRECTORY.check_authentication(data))
 {
 PHOTO_DIRECTORY.offer_login();
 }
 },
 });
 return false;
 }

Database and Search Handling

[222]

The following function is intended to check authentication on data returned by the
server. On the server the @ajax_login_required decorator intercepts the request
and, if the user is not logged in, returns JSON of {"not_authenticated": true}.
This function and check_login()both save their findings in PHOTO_DIRECTORY.
logged_in.

 PHOTO_DIRECTORY.check_authentication = function(parsed_json)
 {
 if (parsed_json == '{"not_authenticated": true}')
 {
 PHOTO_DIRECTORY.logged_in = false;
 return false;
 }
 try
 {
 if (parsed_json.not_authenticated)
 {
 PHOTO_DIRECTORY.logged_in = false;
 return false;
 }
 else
 {
 PHOTO_DIRECTORY.logged_in = true;
 return true;
 }
 PHOTO_DIRECTORY.logged_in = true;
 return true;
 }
 catch(error)
 {
 PHOTO_DIRECTORY.logged_in = false;
 return false;
 }
 }

check_login() serves a similar purpose but does not need to be supplied with any
data or arguments:

 PHOTO_DIRECTORY.check_login = function()
 {
 var result = $.ajax({
 success: function(data, textStatus, XMLHttpRequest)
 {
 if (PHOTO_DIRECTORY.check_authentication(data))
 {

Chapter 9

[223]

 PHOTO_DIRECTORY.logged_in = true;
 }
 else
 {
 PHOTO_DIRECTORY.logged_in = false;
 }
 },
 url: "/ajax/check_login",
 });
 }

A function to hide additional search results or statuses, beyond the limited number
that are initially displayed, would go something like the following:

 PHOTO_DIRECTORY.hide_additional = function(name)
 {
 $(".show_additional_" + name).hide();
 $("#additional_" + name).show("slow");
 }

The following is a function to load the currently selected profile, if there is one:

 PHOTO_DIRECTORY.load_current_profile = function()
 {
 if (PHOTO_DIRECTORY.current_profile)
 {
 $("#profile").load("/ajax/profile/" +
 PHOTO_DIRECTORY.current_profile,
 PHOTO_DIRECTORY.register_update);
 }
 else
 {
 $("#profile").load("");
 }
 }

A function to load an Entity's profile with a specified ID is shown below:

 PHOTO_DIRECTORY.load_profile = function(id)
 {
 PHOTO_DIRECTORY.current_profile = id;
 if (PHOTO_DIRECTORY.current_profile)
 {
 $("#profile").load("/ajax/profile/" +
 PHOTO_DIRECTORY.current_profile,
 PHOTO_DIRECTORY.register_update);

Database and Search Handling

[224]

 }
 else
 {
 $("#profile").html("");
 }
 }

If people upload their own photos, some of them will likely be rather large. This
proportionally scales down all images belonging to, say, img.profile that are
above a maximum width in pixels, to that maximum width.

The following function may be called before an image has loaded; in that case, its
width() may be 0, in which case the function sets a timeout to wait a configurable
number of milliseconds and retry:

 PHOTO_DIRECTORY.limit_width = function(css_class, limit)
 {
 $(css_class).each(function(index, element)
 {
 if ($(element).width() == 0)
 {
 setTimeout("PHOTO_DIRECTORY.limit_width('" +
 css_class + "', " + limit + ");",
 PHOTO_DIRECTORY.DELAY_BETWEEN_RETRIES);
 }
 if ($(element).width() > limit)
 {
 var height = Math.ceil($(element).height() * limit /
 $(element).width());
 $(element).width(limit);
 $(element).height(height);
 }
 });
 }

We place a wrapper around the code to display the login screen:

 PHOTO_DIRECTORY.offer_login = function()
 {
 $("#login_form").dialog("open");
 }

Chapter 9

[225]

The following code, when run, will hide the select elements of class autocomplete,
displaying an autocomplete text field. The commented-out line shows the hidden
select elements:

 PHOTO_DIRECTORY.register_autocomplete = function()
 {
 $(".autocomplete").combobox();
 /*
 $(".autocomplete").toggle();
 */
 }

This function enables inline editing and deletion for fields where in-place editing is
desired. We can prepare a field for this by following the naming convention where
an HTML ID of Entity_name_1 means "on the Entity of primary key 1, the field
name," and adding edit or another CSS class to enable editing, and making sure
this function is called.

The following function registers editables and elements otherwise needing to have
Ajax functionality added:

 PHOTO_DIRECTORY.register_editables = function()
 {

Items of class delete are set to send a request for the server to delete that item, and
then make a request to reload a fresh profile. This reloading the profile as a unit,
instead of trying to keep track of surgical updates, makes for fewer moving parts
with less complex debugging.

 $(".delete").each(function(index, item)
 {
 var id = item.id;
 $(item).click(function()
 {
 $.ajax(
 {
 data:
 {
 id: id,
 },
 datatype: "html",
 success: function(data)
 {

Database and Search Handling

[226]

If the user comes back as logged in, the profile is reloaded; if the user is not logged
in, a "reload the profile next" note is set, and a login screen is offered. (The login
screen offers an escape hatch in case the user is not interested enough to want to log
in, and we should not assume that our application is important enough to all of our
users that it will be worth logging in.)

 if (PHOTO_DIRECTORY.check_authentication(
 data))
 {
 PHOTO_DIRECTORY.reload_profile();
 }
 else
 {
 PHOTO_DIRECTORY.last_function_called =
 PHOTO_DIRECTORY.reload_profile;
 PHOTO_DIRECTORY.offer_login();
 }
 },
 url: "/ajax/delete",
 });
 });
 });

The .edit class, as compared to delete, has a similar overall structure. Its URL is
different (/ajax/save instead of /ajax/delete), and it is based on Jeditable, filling
out the details of a Jeditable call instead of doing everything from scratch.

 $(".edit").editable("/ajax/save",
 {
 callback: function(data)
 {
 if (PHOTO_DIRECTORY.check_authentication(data))
 {
 PHOTO_DIRECTORY.reload_profile();
 }
 else
 {
 PHOTO_DIRECTORY.last_function_called =
 PHOTO_DIRECTORY.reload_profile;
 PHOTO_DIRECTORY.offer_login();
 }
 },
 cancel: "Cancel",
 submit: "OK",
 });

Chapter 9

[227]

The .edit_rightclick class is basically the same as .edit, and works in basically
the same way. The chief difference is that it uses the contextmenu/right-click
event instead of the regular (usually left) click for e-mail addresses and URLs where
the desired behavior is not to initiate editing on a click as .edit is set to do, but
to let the normal click behavior occur when the user clicks, and then intercept the
contextmenu event (specified explicitly) to allow editing on a right-click.

 $(".edit_rightclick").editable("/ajax/save",
 {
 cancel: "Cancel",
 callback: function(data)
 {
 if (PHOTO_DIRECTORY.check_authentication(data))
 {
 PHOTO_DIRECTORY.reload_profile();
 }
 else
 {
 PHOTO_DIRECTORY.last_function_called =
 PHOTO_DIRECTORY.reload_profile;
 PHOTO_DIRECTORY.offer_login();
 }
 },
 event: "contextmenu",
 submit: "OK",
 tooltip: "Right click to edit.",
 });

Here we have another variation on the theme: instead of a text input for ordinarily
small fields, we allow a textarea for what may often be a much larger chunk
of data:

 $(".edit_textarea").editable("/ajax/save",
 {
 cancel: "Cancel",
 callback: function(data)
 {
 if (PHOTO_DIRECTORY.check_authentication(data))
 {
 PHOTO_DIRECTORY.reload_profile();
 }
 else
 {
 PHOTO_DIRECTORY.last_function_called =
 PHOTO_DIRECTORY.reload_profile;

Database and Search Handling

[228]

 PHOTO_DIRECTORY.offer_login();
 }
 },
 rows: 5,
 submit: "OK",
 tooltip: "Click to edit.",
 type: "textarea",
 });
 }

This is a convenience method that calls several things that should be called after the
page has been updated. If the settings.py says that link Hijaxing should be turned
off, the "graceful degradation" option will become the default.

 PHOTO_DIRECTORY.register_update = function()
 {
 PHOTO_DIRECTORY.limit_width("img.profile", 150);
 PHOTO_DIRECTORY.limit_width("img.search_results", 80);
 PHOTO_DIRECTORY.register_editables();
 PHOTO_DIRECTORY.register_autocomplete();
 if (PHOTO_DIRECTORY.SHOULD_TURN_OFF_HIJAXING)
 {
 $("a").removeAttr("onclick");
 // This link needs to be hijaxed:
 $("#add_new").click(function()
 {
 PHOTO_DIRECTORY.add_new();
 return false;
 });
 }
 }

The following function reloads the current profile. This can be called after an edit
to ensure a fresh and correct page.

 PHOTO_DIRECTORY.reload_profile = function()
 {
 PHOTO_DIRECTORY.tables_loaded = 0;
 PHOTO_DIRECTORY.load_current_profile();
 }

The following function hijaxes the search function:

 PHOTO_DIRECTORY.search = function()
 {
 $("#search_results").load("/ajax/search?query=" +

Chapter 9

[229]

 escape(document.search_form.query.value),
 PHOTO_DIRECTORY.register_update);
 }

The following function displays notifications to the user. The setTimeout() call is
used so that the function will return immediately, and jQuery calls are made to fade
it in, wait, and fade it out. The delay involved is five seconds plus two milliseconds
per character in the message; in production, this should make very little difference,
but if a detailed Django error page is served up, it will stay around for much longer.

 PHOTO_DIRECTORY.send_notification = function(message)
 {
 $("#notifications").html("<p>" + message + "</p>");
 clearTimeout($('#notifications').data('showTimeout'));
 $('#notifications').data('showTimeout',
 setTimeout((function(message)
 {
 return function ()
 {
 $('#notifications').show('slow').delay((5000 +
 (message.length * 2))).hide('slow');
 };
 })(message), 0);
 }

The following is a function to show additional search results or statuses. It hides the
link that says Show all:

 PHOTO_DIRECTORY.show_additional = function(name)
 {
 $(".show_additional_" + name).hide();
 $("#additional_" + name).show("slow");
 }

The following function is intended to be called with preset arguments by the event
handler for a select used in autocompletes:

 PHOTO_DIRECTORY.update_autocomplete = function(id, html_id)
 {
 var value = $("#" + html_id).val();
 $.ajax({
 data:
 {
 id: id,
 value: value,
 },

Database and Search Handling

[230]

 url: "/ajax/save",
 });
 PHOTO_DIRECTORY.reload_profile();
 }

The following function is intended to serve as an event handler by the autocomplete
fields themselves:

 PHOTO_DIRECTORY.update_autocomplete_handler = function(event, ui)
 {
 var split_value = ui.item.value.split(".");
 var field = split_value[0];
 var id = split_value[1];
 $.ajax({
 data:
 {
 id: "Entity_" + id + "_" +
 PHOTO_DIRECTORY.current_profile,
 value: field,
 },
 url: "/ajax/save",
 });
 PHOTO_DIRECTORY.reload_profile();
 }

The following setup function should be called as soon as the document's DOM
is ready.

 $(function()
 {
 if (!PHOTO_DIRECTORY.SHOULD_TURN_OFF_HIJAXING)
 {
 $("#search_form").submit(function(event)
 {
 PHOTO_DIRECTORY.search();
 return false;
 });
 }
 $("#query").width($(window).width() - 240);

A dialog is created for the login form; it is not initially used, but it is available for
offer_login(). The button makes an Ajax login call.

 $("#login_form").dialog({
 autoOpen: false,
 height: 300,

Chapter 9

[231]

 width: 350,
 modal: true,
 buttons:
 {
 'Log in': function()
 {
 $.ajax({
 data:
 {
 "login": document.getElementById(
 "login").value,
 "password": document.getElementById(
 "password").value,
 },
 datatype: 'text',

On a successful login attempt, we notify the user, and if a function has been
registered as the last attempted function before attempting login, that function was
called. This provides for some continuity after the interruption of a login request
to resume the prior workflow.

 success: function(data, textStatus,
 XMLHttpRequest)
 {

On login, we notify the user, load the database, and call any function registered as
what the user was attempting before login.

 if (data)
 {
 PHOTO_DIRECTORY.send_notification(
 "You have successfully logged " +
 "in and can now make changes.");
 PHOTO_DIRECTORY.load_database();

 $(".ui-dialog").hide();
 $(".ui-widget-overlay").hide();
 PHOTO_DIRECTORY.register_update();
 if (
 PHOTO_DIRECTORY.last_attempted_function)
 {
 PHOTO_DIRECTORY.last_attempted_function();
 }
 }
 else

Database and Search Handling

[232]

 {
 PHOTO_DIRECTORY.send_notification(
 "Your login was not successful.");
 }
 },
 url: "/ajax/login",

That takes us to the end of the setup. We perform a couple of housekeeping calls and
wind down:

 close: function(){},
 });
 },
 },
 });
 PHOTO_DIRECTORY.check_login();
 PHOTO_DIRECTORY.register_update();
 });

 });
// -->
</script>
{% endblock footer_javascript_page %}

And that's it.

Let's take a look at some of the CSS referred to earlier.

CSS for styling the directory
This is the stylesheet we use to style things, adding emphasis to some and
de-emphasizing other things. If we want to deliver a good, working system that is
graceful to use, saying "There is no 'CSS' in 'Asynchronous JavaScript and XML'"
is the same kind of legalistic error as saying, "There is no 'JSON' in 'Asynchronous
JavaScript and XML .'" CSS can be used for aesthetics that do not correlate to the
functionality of the core system, but the difference to usability and usefulness
between practical use of CSS and impractical (or no) CSS is substantial. CSS
will be treated here like JavaScript and other technologies as ways to deliver
practical usefulness.

Chapter 9

[233]

The following links show initially hidden search results or statuses that are
important and are emphasize them:

a.hide_additional_statuses, a.hide_additional_results
 {
 font-weight: bold;
 }

a.show_additional_statuses, a.show_additional_results
 {
 font-weight: bold;
 }

Not presently in use, this is intended for a non-displayed iframe to send unwanted
submissions to:

.bitbucket, #bitbucket
 {
 display: none;
 }

This is a usability-related choice of fonts; Verdana in particular reads very well on
the screen, and it looks larger.

Note that we are not making a common web design mistake of choosing Verdana for
its usability, and then cancelling out some of its usability benefits by shrinking it to
free up more screen real estate.

body
 {
 font-family: Verdana, Arial, sans;
 }

The following is for the links at the upper right-hand corner of the page:

#body_preamble_page
 {
 text-align: right;
 margin-right: 30px;
 margin-top: 15px;
 }

Database and Search Handling

[234]

These are the initially hidden div elements with "extra" search results or statuses if
there are more than will be displayed initially. (The parameters for how many search
results or statuses are displayed are modifiable in settings.py.)

div#additional_statuses, div#additional_results
 {
 display: none;
 }

The the following div is for the link to delete a whole Entity:

div.deletion
 {
 float: right;
 margin-right: 20px;
 }

An entity's description, postal address, status, or other editable fields are specified as
textarea. Here and with other fields, we do the opposite of having a bold label and
plaintext content: we leave the label with the default appearance and font weight,
and make the content itself bold:

div.edit_textarea
 {
 font-weight: bold;
 }

The :after pseudo-class will be used to display Unicode symbols as a cue that fields
are user editable. This specifies that they will not be in bold.

div.edit_textarea:after
 {
 font-weight: normal;
 }

div.image
 {
 float: left;
 }

We use semantic markup and style with CSS even when we want a table-like display.

div.outer
 {
 display: table-row;
 }

Chapter 9

[235]

div.outer_outer
 {
 display: table;
 width: 100%;
 }

div.search_result
 {
 display: table;
 margin-bottom: 20px;
 padding-right: 50px;
 width: 100%;
 }

div.search_result:hover
 {
 background-color: #ffffc0;
 }

Links in a search result div will be Entities' names, and will pull up their profiles.

div.search_result a
 {
 font-weight: bold;
 }

The following is used for the Add new link, and we will add below a Bad network
connection link:

div.standard_links
 {
 font-weight: bold;
 margin-right: 15px;
 margin-top: 15px;
 text-align: right;
 }

We add a symbol showing a hand with a pen, grayed to lighten its visual effect, but
larger to be easier to see. This will appear as HTML entities belonging to the relevant
CSS classes.

.edit:after, .edit_textarea:after
 {
 color: #808080;

 content: "✍"; /* The symbol, not ASCII encoding, of ✍ */
 font-size: larger;
 }

Database and Search Handling

[236]

We add a similar, but not identical, markup to the end of links, which are edited by
right-clicking. There are two symbols as we added a finger pointing right, and the
symbol is a darker shade of grey. These do not make a perfect solution, and it would
be wrong to expect users to automatically infer what the tooltip says: Right-click to
edit. However, they provide a distinct and distinctive visual cue, and even if they
are not perfect, they make the interface easier to remember and use.

.edit_rightclick:after
 {
 color: #404040;

 content: "☛✍"; /* The symbols, not ASCII encodings, of ☛
 and then ✍ */
 text-decoration: none;
 font-size: larger;
 }

img.profile
 {
 float: left;
 margin-bottom: 20px;
 margin-right: 20px;
 }

h1 and h2 tags are made to be large, but the emphasis of being bold is taken away,
to be given instead to the search query, profile data, and similar tags. This develops
a theme introduced earlier: labels are not emphasized; real content is made bold.

h1
 {
 font-size: 3em;
 font-weight: normal;
 margin-bottom: 50px;
 text-align: center;
 }

h2
 {
 font-size: 2em;
 font-weight: normal;
 }

h3
 {
 font-size: 1.8em;
 }

Chapter 9

[237]

img.search_results
 {
 float: left;
 }

The markup used for the Ajax login is hidden immediately.

#login_form
 {
 display: none;
 }

Notifications have a yellow background and grey border. This is striking and catches
the eye, and we intentionally are not using red as not all notifications are errors and
we do not want to imitate the error dialog that says, "Error: The operation completed
successfully." (Not to mention that computers make some people nervous and a
bright red error message has needless force.)

#notifications
 {
 background-color: #ffff80;
 border: 3px solid #808080;
 display: none;
 padding: 20px;
 }

The profile has a light blue background, while the search results have a light
yellow background and the search bar itself has a plain white background. These
backgrounds are not specifically intended for aesthetics, but to visually mark out
how the screen is divided into different areas doing different jobs. The purpose is to
add (helpful) redundancy in the signals provided about where the user is and what
things the user can do.

#profile
 {
 background-color: #ffffc0;
 display: table-cell;
 height: 100%;
 padding: 50px;
 width: 100%;
 }

Database and Search Handling

[238]

Especially for an empty profile, it is nice to have a little more padding at the bottom
than the top. This accomplishes that slight aesthetic touch.

#profile h2
 {
 margin-top: 0;
 }

.search_result
 {
 padding: 10px;
 padding-right: 0px;
 }

.search_result:hover
 {
 background-color: #ccccff;
 }

#search_results
 {
 background-color: #ddddff;
 display: table-cell;
 height: 100%;
 padding: 50px;
 padding-right: 0px;
 width: 32%;
 }

#search_results h2
 {
 margin-top: 0;
 }

The following is the span that is used to delete an added URL, e-mail address,
and so on from an Entity:

span.delete
 {
 color: #aa0000;
 font-size: larger;
 font-weight: bold;
 }

Chapter 9

[239]

span.emphasized
 {
 font-size: larger;
 }

span.placeholder
 {
 font-style: italic;
 font-weight: normal;
 }

We style tag elements to look slightly distinctive compared to the rest of
the application:

span.tag
 {
 background-color: #dddddd;
 border: 1px solid silver;
 padding-left: 3px;
 padding-right: 3px;
 }

The timestamp below a status is displayed, but it is visually downplayed, as usually
the status is the important thing to read.

span.timestamp
 {
 font-size: smaller;
 color: #808080;
 }

We also use more usable fonts in a textarea. We style textarea elements to
have a reasonable height (CSS requires a hack if it is to be used to allow for direct
specification of a number of rows in a textarea), and to be as wide as they can.

textarea
 {
 font-family: Verdana, Arial, sans;
 font-size: larger;
 height: 5em;
 width: 100%;
 }

Database and Search Handling

[240]

The input for the user query is large, and is given bold emphasis:

#query
 {
 border: 2px solid black;
 font-size: 2em;
 font-weight: bold;
 margin-bottom: 50px;
 padding: 2px;
 width: 80%;
 }

#search_form
 {
 margin-left: 40px;
 }

#submit
 {
 border: 2px solid black;
 font-size: 2em;
 font-weight: bold;
 margin-left: 10px;
 }

The following is boilerplate CSS for a div used to dim the screen in Ajax modal
forms, including our Ajax login functionality:

.ui-widget-overlay
 {
 background: #000000;
 -ms-filter:"progid:DXImageTransform.Microsoft.Alpha(Opacity=50)";
 filter: alpha(opacity=50);
 opacity: .5;
 position: absolute;
 top: 0;
 bottom: 0;
 left: 0;
 right: 0;
 z-index: 1000;
 }

Chapter 9

[241]

Our updated urlpatterns
Our urlpatterns, for the example AHAH solution above and for the fuller
client-side database example solution below, are as follows:

urlpatterns = patterns(u'',
 (ur'^$', directory.views.homepage),
 (ur'^accounts/login/$', u'django.contrib.auth.views.login'),
 (ur'^admin/', include(admin.site.urls)),
 (ur'^ajax/check_login', directory.views.ajax_check_login),
 (ur'^ajax/delete', directory.views.ajax_delete),
 (ur'^ajax/download/(Email|Entity|Phone|Status|Tag|URL)',
 directory.views.ajax_download_model),
 (ur'^ajax/login', directory.views.ajax_login_request),
 (ur'^ajax/new/Entity', directory.views.new_Entity),
 (ur'^ajax/profile/(\d+)', directory.views.ajax_profile),
 (ur'^ajax/saveimage/(\d+)', directory.views.saveimage),
 (ur'^ajax/save', directory.views.save),
 (ur'^ajax/search', directory.views.ajax_search),
 (ur'^(create/Entity)', directory.views.redirect),
 (ur'^(create/Location)', directory.views.redirect),
 (ur'^manage/Entity/?(\d*)', directory.views.modelform_Entity),
 (ur'^manage/Location/?(\d*)',
 directory.views.modelform_Location),
 (ur'^profile/images/(\d+)', directory.views.image),
 (ur'^profile/(new)$', directory.views.profile_new),
 (ur'^profile/(\d+)$', directory.views.profile_existing),
)

And that is the last of the code we need!

We now have, on the server-side and client-side, all the pieces in place for a complete
system that includes some best practices. We can tinker and extend it, but we have
a complete working system now.

Summary
We have now covered all the bases for a simple, AHAH solution, and most of
the time this will be best. However, there is more that we can do. In general, lazy
programming and lazy network access that pulls as little as possible and does so as
late as possible is the solution of choice and works better than a premature proactive
solution that seems to be the root of all evil.

In our next chapter we will cover further customization and development. Let's go!

Tinkering Around: Bugfixes,
Friendlier Password Input,
and a Directory That Tells

Local Time
One of the great joys of programming is not when we are trying to get the bare
essentials basically working, but when the system is working as a whole, and we
start to ask, "What about this? What about that?" One positive sense of the term
"hacking" can refer to this tinkering, and it can be a joy to tinker with an already
working system to see what enhancements are possible. Here we will tinker with the
system and make some minor tweaks and two slightly more major enhancements.
We will cover:

Minor bugfixes and enhancements
A more usable input solution for passwords
Telling an (approximate) local time for other people we are working with,
who may be in different time zones

Let's dig in.

Minor tweaks and bugfixes
Good tinkering can be a process that begins with tweaks and bugfixes, and
snowballs from there. Let's begin with some of the smaller tweaks and bugfixes
before tinkering further.

•

•

•

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[244]

Setting a default name of "(Insert name here)"
Most of the fields on an Entity default to blank, which is in general appropriate.
However, this means that there is a zero-width link for any search result which has
not had a name set. If a user fills out the Entity's name before navigating away from
that page, everything is fine, but it is a very suspicious assumption that all users
will magically use our software in whatever fashion would be most convenient
for our implementation.

So, instead, we set a default name of "(Insert name here)" in the definition of an
Entity, in models.py:

name = models.TextField(blank = True,
 default = u'(Insert name here)')

Eliminating Borg behavior
One variant on the classic Singleton pattern in Gang of Four is the Borg pattern,
where arbitrarily many instances of a Borg class may exist, but they share the same
dictionary, so that if you set an attribute on one of them, you set the attribute on
all of them. At present we have a bug, which is that our views pull all available
instances. We need to specify something different. We update the end of
ajax_profile(), including a slot for time zones to be used later in this chapter, to:

 return render_to_response(u'profile_internal.html',
 {
 u'entities': directory.models.Entity.objects.filter(
 is_invisible = False).order_by(u'name'),
 u'entity': entity,
 u'first_stati': directory.models.Status.objects.filter(
 entity = id).order_by(
 u'-datetime')[:directory.settings.INITIAL_STATI],
 u'gps': gps,
 u'gps_url': gps_url,
 u'id': int(id),
 u'emails': directory.models.Email.objects.filter(
 entity = entity, is_invisible = False),
 u'phones': directory.models.Phone.objects.filter(
 entity = entity, is_invisible = False),
 u'second_stati': directory.models.Status.objects.filter(
 entity = id).order_by(
 u'-datetime')[directory.settings.INITIAL_STATI:],
 u'tags': directory.models.Tag.objects.filter(entity = entity,
 is_invisible = False).order_by(u'text'),

Chapter 10

[245]

 u'time_zones': directory.models.TIME_ZONE_CHOICES,
 u'urls': directory.models.URL.objects.filter(entity = entity,
 is_invisible = False),
 })

Likewise, we update homepage():

 profile = template.render(Context(
 {
 u'entities':
 directory.models.Entity.objects.filter(
 is_invisible = False),
 u'entity': entity,
 u'first_stati': directory.models.Status.objects.filter(
 entity = id).order_by(
 u'-datetime')[:directory.settings.INITIAL_STATI],
 u'gps': gps,
 u'gps_url': gps_url,
 u'id': int(id),
 u'emails': directory.models.Email.objects.filter(
 entity = entity, is_invisible = False),
 u'phones': directory.models.Phone.objects.filter(
 entity = entity, is_invisible = False),
 u'query': urllib.quote(query),
 u'second_stati':directory.models.Status.objects.filter(
 entity = id).order_by(
 u'-datetime')[directory.settings.INITIAL_STATI:],
 u'time_zones': directory.models.TIME_ZONE_CHOICES,
 u'tags': directory.models.Tag.objects.filter(
 entity = entity,
 is_invisible = False).order_by(u'text'),
 u'urls': directory.models.URL.objects.filter(
 entity = entity, is_invisible = False),
 }))

Confusing jQuery's load() with html()
If we have failed to load a profile in the main search.html template, we had a call
to load(""). What we needed was:

 else
 {
 $("#profile").html("");
 }

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[246]

$("#profile").load("") loads a copy of the current page into the div named
profile. We can improve on this slightly to "blank" contents that include the
default header:

 else
 {
 $("#profile").html("<h2>People, etc.</h2>");
 }

Preventing display of deleted instances
In our system, enabling undo means that there can be instances (Entities, Emails,
URLs, and so on) which have been deleted but are still available for undo. We
have implemented deletion by setting an is_invisible flag to True, and we also
need to check before displaying to avoid puzzling behavior like a user deleting an
Entity, being told Your change has been saved, and then seeing the Entity's profile
displayed exactly as before.

We accomplish this by a specifying, for a Queryset .filter(is_invisible =
False) where we might earlier have specified .all(), or adding is_invisible =
False to the conditions of a pre-existing filter; for instance:

def ajax_download_model(request, model):
 if directory.settings.SHOULD_DOWNLOAD_DIRECTORY:
 json_serializer = serializers.get_serializer(u'json')()
 response = HttpResponse(mimetype = u'application/json')
 if model == u'Entity':
 json_serializer.serialize(getattr(directory.models,
 model).objects.filter(
 is_invisible = False).order_by(u'name'),
 ensure_ascii = False, stream = response)
 else:
 json_serializer.serialize(getattr(directory.models,
 model).objects.filter(is_invisible = False),
 ensure_ascii = False,
 stream = response)
 return response
 else:
 return HttpResponse(u'This feature has been turned off.')

In the main view for the profile, we add a check in the beginning so that a (basically)
blank result page is shown:

def ajax_profile(request, id):
 entity = directory.models.Entity.objects.filter(id = int(id))[0]
 if entity.is_invisible:
 return HttpResponse(u'<h2>People, etc.</h2>')

Chapter 10

[247]

One nicety we provide is usually loading a profile on mouseover for its area of the
search result page. This means that users can more quickly and easily scan through
drilldown pages in search of the right match; however, there is a performance gotcha
for simply specifying an onmouseover handler. If you specify an onmouseover for a
containing div, you may get a separate event call for every time the user hovers over
an element contained in the div, easily getting 3+ calls if a user moves the mouse
over to the link. That could be annoying to people on a VPN connection if it means
that they are getting the network hits for numerous needless profile loads.

To cut back on this, we define an initially null variable for the last profile
moused over:

 PHOTO_DIRECTORY.last_mouseover_profile = null;

Then we call the following function in the containing div element's onmouseover:

 PHOTO_DIRECTORY.mouseover_profile = function(profile)
 {
 if (profile != PHOTO_DIRECTORY.last_mouseover_profile)
 {
 PHOTO_DIRECTORY.load_profile(profile);
 PHOTO_DIRECTORY.last_mouseover_profile = profile;
 PHOTO_DIRECTORY.register_editables();
 }
 }

The relevant code from search_internal.html is as follows:

 <div class="search_result"
 onmouseover="PHOTO_DIRECTORY.mouseover_profile(
 {{ result.id }});"
 onclick="PHOTO_DIRECTORY.click_profile({{ result.id }});">

We usually, but not always, enable this mouseover functionality; not always, because
it works out to annoying behavior if a person is trying to edit, does a drag select,
mouses over the profile area, and reloads a fresh, non-edited profile. Here we edit
the Jeditable plugin's source code and add a few lines; we also perform a second
check for if the user is logged in, and offer a login form if so:

 /* if element is empty add something clickable
 (if requested) */
 if (!$.trim($(this).html())) {
 $(this).html(settings.placeholder);
 }

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[248]

 $(this).bind(settings.event, function(e) {

 $("div").removeAttr("onmouseover");
 if (!PHOTO_DIRECTORY.check_login())
 {
 PHOTO_DIRECTORY.offer_login();
 }
 /* abort if disabled for this element */
 if (true === $(this).data('disabled.editable')) {
 return;
 }

For Jeditable-enabled elements, we can override the placeholder for an empty
element at method call, but the default placeholder is cleared when editing begins;
overridden placeholders aren't. We override the placeholder with something that
gives us a little more control and styling freedom:

// publicly accessible defaults
 $.fn.editable.defaults = {
 name : 'value',
 id : 'id',
 type : 'text',
 width : 'auto',
 height : 'auto',
 event : 'click.editable',
 onblur : 'cancel',
 loadtype : 'GET',
 loadtext : 'Loading...',
 placeholder: '
 Click to add.',
 loaddata : {},
 submitdata : {},
 ajaxoptions: {}
 };

All of this is added to the file jquery.jeditable.js.

We now have, as well as an @ajax_login_required decorator, an
@ajax_permission_required decorator. We test for this variable in the default
postprocessor specified in $.ajaxSetup() for the complete handler. Because
Jeditable will place the returned data inline, we also refresh the profile.

This occurs after the code to check for an undoable edit and offer an undo option
to the user.

 complete: function(XMLHttpRequest, textStatus)
 {
 var data = XMLHttpRequest.responseText;

Chapter 10

[249]

 var regular_expression = new RegExp("<!-" +
 "-# (\\d+) #-" + "->");
 if (data.match(regular_expression))
 {
 var match = regular_expression.exec(data);
 PHOTO_DIRECTORY.undo_notification(
 "Your changes have been saved. " +
 "<a href='JavaScript:PHOTO_DIRECTORY.undo(" +
 match[1] + ")'>Undo");
 }
 else if (data == '{"not_permitted": true}' ||
 data == "{'not_permitted': true}")
 {
 PHOTO_DIRECTORY.send_notification(
 "We are sorry, but we cannot allow you " +
 "to do that.");
 PHOTO_DIRECTORY.reload_profile();
 }
 },

Note that we have tried to produce the least painful of clear message we can:
we avoid both saying "You shouldn't be doing that," and a terse, "bad movie
computer"-style message of "Access denied" or "Permission denied."

We also removed from that method code to call offer_login() if a call came back
not authenticated. This looked good on paper, but our code was making Ajax calls
soon enough that the user would get an immediate, unprovoked, modal login dialog
on loading the page.

Adding a favicon.ico
In terms of minor tweaks, some visually distinct favicon.ico
(http://softpedia.com/ is one of many free sources of favicon.ico files, or
the favicon generator at http://tools.dynamicdrive.com/favicon/ which
can take an image like your company logo as the basis for an icon) helps your
tabs look different at a glance from other tabs. Save a good, simple favicon in
static/favicon.ico. The icon may not show up immediately when you refresh,
but a good favicon makes it slightly easier for visitors to manage your pages among
others that they have to deal with. It shows up in the address bar, bookmarks, and
possibly other places.

This brings us to the end of the minor tweaks; let us look at two slightly larger
additions to the directory.

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[250]

Handling password input in a slightly
different way
Our first addition has to do with password inputs. The traditional style of password
input leaves plenty of room for second guessing about "Did I hit this key hard
enough? Did I mistype something?" Logging in and specifying your password the
traditional way ranks up with CAPTCHA as the hardest part of the form for regular
users (apart from any disability issues).

What we will do, then, is present a regular text input for the default (users can
click on Hide password for the old-school password input), and work a little Ajax
to let the users switch. We will have two inputs, and when one of them receives a
keydown or keyup event, its data is copied to the other. Only one of them, and only
one link, will be visible at a time. In our style.css we have:

#new_password_hidden, #password_hidden
 {
 display: none
 }

#show_new_password, #show_password
 {
 display: none;
 }

In the template, we expand the markup for the login and create account forms:

<div id="login_form" title="Log in">
 <form>
 <fieldset>
 <label for="login">Login</label>

 <input type="text" name="login" id="login"
 class="text ui-widget-content ui-corner-all" />

 <label for="password">Password</label>

 <input onkeyup="PHOTO_DIRECTORY.field_sync(
 'password_visible', 'password_hidden');"
 onkeydown="PHOTO_DIRECTORY.field_sync(
 'password_visible', 'password_hidden');"
 autocomplete="off" type="text" name="password_visible"
 id="password_visible"
 class="text ui-widget-content ui-corner-all" />
 <input onkeyup="PHOTO_DIRECTORY.field_sync(
 'password_hidden', 'password_visible');"
 onkeydown="PHOTO_DIRECTORY.field_sync(
 'password_hidden', 'password_visible');"

Chapter 10

[251]

 type="password" name="password_hidden"
 id="password_hidden"
 class="text ui-widget-content ui-corner-all" />

 <a id="hide_password" name="hide_password"
 href="JavaScript:PHOTO_DIRECTORY.hide_element(
 'password');">Hide password
 <a id="show_password" name="show_password"
 href="JavaScript:PHOTO_DIRECTORY.show_element(
 'password');">Show password
 </fieldset>
 </form>
</div>
<div id="create_account" title="Create account">
 <form>
 <fieldset>
 <label for="new_username">Account name</label>

 <input type="text" name="new_username" id="new_username"
 class="text ui-widget-content ui-corner-all" />

 <label for="new_email">Email</label>

 <input type="text" name="new_email" id="new_email"
 class="text ui-widget-content ui-corner-all" />

 <label for="new_password">Password</label>

 <input onkeyup="PHOTO_DIRECTORY.field_sync(
 'new_password_visible', 'new_password_hidden');"
 onkeydown="PHOTO_DIRECTORY.field_sync(
 'new_password_visible', 'new_password_hidden');"
 autocomplete="off" type="text"
 name="new_password_visible" id="new_password_visible"
 class="text ui-widget-content ui-corner-all" />
 <input onkeyup="PHOTO_DIRECTORY.field_sync(
 'new_password_hidden', 'new_password_visible');"
 onkeydown="PHOTO_DIRECTORY.field_sync(
 'new_password_hidden', 'new_password_visible');"
 type="password" name="new_password_hidden"
 id="new_password_hidden"
 class="text ui-widget-content ui-corner-all" />

 <a id="hide_new_password" name="hide_new_password"
 href="JavaScript:PHOTO_DIRECTORY.hide_element(
 'new_password');">Hide password
 <a id="show_new_password" name="show_new_password"
 href="JavaScript:PHOTO_DIRECTORY.show_element(
 'new_password');">Show password
 </fieldset>
 </form>
</div>

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[252]

With this change, we also change the search.html file's reference to
document.getElementById("password").value to document.
getElementById("password_visible").value.

field_sync() copies data from one specified form element to another:

 PHOTO_DIRECTORY.field_sync = function(from, to)
 {
 $("#" + to).val($("#" + from).val());
 }

hide_element() and show_element() feed their argument into toggling visibility
for several elements:

 PHOTO_DIRECTORY.hide_element = function(name)
 {
 $("#hide_" + name + ".#" + name + "_visible").hide();
 $("#show_" + name + ".#" + name "_hidden").show();
 }

And with the last arguments reversed:

 PHOTO_DIRECTORY.show_element = function(name)
 {
 $("#hide_" + name + ".#" + name + "_visible").show();
 $("#show_" + name + ".#" + name "_hidden").hide();
 }

In our HTML markup for the inputs of type text, we specified autocomplete="off",
which is an important housekeeping detail to exclude the password from the list of
form elements that are quietly recorded whether the user wants it that way or not.

And that completes this usability enhancement.

A directory that includes local timekeeping
We live in a world where we can deal with people in many different time zones, and
sometimes it would be nice to know what time it is for the other person.

The solution here is an approximate solution that can run aground on the intricacies of
Daylight Saving Time. Readers wishing for a more accurate solution may find an Ajax
use of the Python module pytz on the backend (http://pytz.sourceforge.net/) to
be more accurate in handling Daylight Saving Time. All the world's time zones amount
to a lot of nooks and crannies, and a server-side database allows a finer granularity
than a quick client-side solution. However, even an approximate client-side solution
can be helpful in knowing, "What time of day is it for the other person?"

Chapter 10

[253]

First of all, we define a choice for a time zone. (Note that we are using strings rather
than decimals for offsets; pure decimals had implementation issues and produced
results that JavaScript did not recognize as equal.)

TIME_ZONE_CHOICES = (
 (None, "Select"),
 ("1.0", "A: Paris, +1:00"),
 ("2.0", "B: Athens, +2:00"),
 ("3.0", "C: Moscow, +3:00"),
 ("4.0", "D: Dubai, +4:00"),
 ("4.5", "-: Kabul, +4:30"),
 ("5.0", "E: Karachi, +5:00"),
 ("5.5", "-: New Delhi, +5:30"),
 ("5.75", "-: Kathmandu, :5:45"),
 ("6.0", "F: Dhaka, +6:00"),
 ("6.5", "-: Rangoon, +6:30"),
 ("7.0", "G: Jakarta, +7:00"),
 ("8.0", "H: Kuala Lumpur, +8:00"),
 ("9.0", "I: Tokyo, +9:00"),
 ("9.5", "-: Adelaide, +9:30"),
 ("10.0", "K: Sydney, +10:00"),
 ("10.5", "-: Lord Howe Island, +10:30"),
 ("11.0", "L: Solomon Islands, +11:00"),
 ("11.5", "-: Norfolk Island, +11:50"),
 ("12.0", "M: Auckland, +12:00"),
 ("12.75", "-: Chatham Islands, +12:45"),
 ("13.0", "-: Tonga, +13:00"),
 ("14.0", "-: Line Islands, +14:00"),
 ("-1.0", "N: Azores, -1:00"),
 ("-2.0", "O: Fernando de Norohna, -2:00"),
 ("-3.0", "P: Rio de Janiero, -3:00"),
 ("-3.5", "-: St. John's, -3:50"),
 ("-4.0", "Q: Santiago, -4:00"),
 ("-4.5", "-: Caracas, -4:30"),
 ("-5.0", "R: New York City, -5:00"),
 ("-6.0", "S: Chicago, -6:00"),
 ("-7.0", "T: Boulder, -7:00"),
 ("-8.0", "U: Los Angeles, -8:00"),
 ("-9.0", "V: Anchorage, -9:00"),
 ("-9.5", "-: Marquesas Islands, -9:30"),
 ("-10.0", "W: Hawaii, -10:00"),
 ("-11.0", "X: Samoa, -11:00"),
 ("-12.0", "Y: Baker Island, -12:00"),
 ("0.0", "Z: London, +0:00"),
)

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[254]

We expand the Entity definition to include a time zone slot, along with a checkmark
for whether Daylight Saving Time is observed:

class Entity(models.Model):
 active = models.BooleanField(blank = True)
 department = models.ForeignKey(u'self', blank = True, null =
 True, related_name = u'member')
 description = models.TextField(blank = True)
 gps = GPSField()
 image_mimetype = models.TextField(blank = True, null = True)
 is_invisible = models.BooleanField(default = False)
 location = models.ForeignKey(u'self', blank = True, null = True,
 related_name = u'occupant')
 name = models.TextField(blank = True,
 default = u'(Insert name here)')
 observes_daylight_saving_time = models.BooleanField(
 blank = True, default = True)
 other_contact = models.TextField(blank = True)
 postal_address = models.TextField(blank = True)
 publish_externally = models.BooleanField(blank = True)
 reports_to = models.ForeignKey(u'self', blank = True,
 null = True, related_name = u'subordinate')
 start_date = models.DateField(blank = True, null = True)
 time_zone = models.CharField(max_length = 5, null = True,
 choices = TIME_ZONE_CHOICES)
 title = models.TextField(blank = True)
 class Meta:
 permissions = (
 ("view_changelog", "View the editing changelog"),
)

Then we expand the profile_internal.html template to allow selection of time
zone and Daylight Saving Time observance:

<p>Time zone:
 <select name="time_zone" id="time_zone"
 onchange="PHOTO_DIRECTORY.update_autocomplete(
 'Entity_time_zone_{{ id }}', 'time_zone');">
 {% for time_zone in time_zones %}
 <option value="{{ time_zone.0 }}"
 {% if time_zone.0 == entity.time_zone %}
 selected="selected"
 {% endif %}
 >{{ time_zone.1 }}</option>
 {% endfor %}

Chapter 10

[255]

 </select>

Observes daylight saving time: <input type="checkbox"
 name="observes_daylight_saving_time"
 id="observes_daylight_saving_time"
 onchange="PHOTO_DIRECTORY.update_autocomplete(
 'Entity_observes_daylight_saving_time_{{ id }}',
 'observes_daylight_saving_time');"
 {% if entity.observes_daylight_saving_time %}
 checked="checked"
 {% endif %}
 /></p>

And in addition, we add hooks to be filled out with the local time:

{% if entity.time_zone != None %}
<p>Local time:
{{ entity.time_zone }}
</p>
{% endif %}

The local_time_zone span is hidden:

#local_time_zone
 {
 display: none;
 }

Its purpose is to let Ajax fetch the Entity's time zone. In search.html, we expand the
register_update() to set the clock:

 PHOTO_DIRECTORY.register_update = function()
 {
 PHOTO_DIRECTORY.limit_width("img.profile", 150);
 PHOTO_DIRECTORY.limit_width("img.search_results", 80);
 PHOTO_DIRECTORY.register_editables();
 PHOTO_DIRECTORY.register_autocomplete();
 if (!PHOTO_DIRECTORY.SHOULD_TURN_ON_HIJAXING)
 {
 $("a").removeAttr("onclick");
 // This link needs to be hijaxed:
 $("#add_new").click(function()
 {
 PHOTO_DIRECTORY.add_new();
 return false;
 });
 }

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[256]

One gotcha has to do with Daylight Saving Time: some places observe daylight
saving time, some places don't, and if you don't take it into account, it's an easy
way to be wrong by an hour about the other party's local time.

JavaScript offers no explicit facility to tell if our local time includes Daylight Saving
Time. One way to tell if we have Daylight Saving Time right now is by looking at our
offset from UTC and seeing if it is the same as the January 1 offset. If the two offsets
are different then we are in Daylight Saving Time.

 if ($("#local_time_zone").html())
 {
 var date = new Date();
 var profile_offset = -parseFloat(
 $("#local_time_zone").html()) * 3600000;
 var january_offset = new Date(date.getFullYear(), 0,
 1).getTimezoneOffset() * 60000;
 var our_offset = date.getTimezoneOffset() * 60000;
 if (our_offset != january_offset)
 {
 if (document.getElementById(
 "observes_daylight_saving_time").checked)
 {
 profile_offset -= 60 * 60 * 1000;
 }
 }
 PHOTO_DIRECTORY.update_clock(our_offset - profile_offset,
 PHOTO_DIRECTORY.current_profile);
 }
 }

And we define the update_clock function. First it checks to see if the profile it was
registered with is the current profile, and if not, we bail out:

 PHOTO_DIRECTORY.update_clock = function(offset, id)
 {
 if (id != PHOTO_DIRECTORY.current_profile)
 {
 return;
 }

Then we make an adjusted date, "fudged" to give us values for the Entity's local time,
and build human-friendly display output for it.

 var adjusted_date = new Date(new Date().getTime() + offset);
 var days = ["Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"];

Chapter 10

[257]

 var months = ["January", "February", "March", "April",
 "May", "June", "July", "August", "September", "November",
 "December"];
 var ampm = "AM";
 var hours = adjusted_date.getHours()
 if (hours > 11)
 {
 hours -= 12;
 ampm = "PM"
 }
 if (hours == 0)
 {
 hours = 12;
 }
 var formatted_date = "" + hours + ":";
 if (adjusted_date.getMinutes() < 10)
 {
 formatted_date += "0";
 }
 formatted_date += adjusted_date.getMinutes() + " " + ampm;
 formatted_date += ", ";
 formatted_date += days[adjusted_date.getDay()] + " ";
 formatted_date += months[adjusted_date.getMonth()] + " ";
 formatted_date += adjusted_date.getDate() + ", ";
 formatted_date += adjusted_date.getFullYear();
 $("#local_time").html(formatted_date + ".");

An example of the formatted output this produces is "12:01 PM, January 1, 2001."

Lastly, before closing, we set the clock to update again in a second, to keep the
displayed value fresh.

 setTimeout("PHOTO_DIRECTORY.update_clock(" + offset + ", " +
 id + ")", 1000);
 }

In the code to dynamically build a profile, we add, after Other contact information
and before Department, fields to build the equivalent of what we added
to profile_internal.html earlier:

 result += "<p>Other contact information: <strong ";
 result += "class='edit_textarea' " +
 "title='Click to edit.' " +
 "id='Entity_other_contact_" + id + "'>" +
 entity.fields.other_contact + "</p>\n";

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[258]

 result += "<p>Time zone: ";
 result += "<select name='time_zone' id='time_zone'";
 result += "onchange=
 'PHOTO_DIRECTORY.update_autocomplete(
 \"Entity_time_zone_{{ id }}\", \"time_zone\");'>";
 {% for time_zone in time_zones %}
 result += "<option value='{{ time_zone.0 }}'>";
 result += "{{ time_zone.1 }}</option>\n";
 {% endfor %}
 result += "</select>
\n";
 result += "Observes daylight saving time: ";
 result += "<input type='checkbox' ";
 result += "name='observes_daylight_saving_time' ";
 result += "id='observes_daylight_saving_time' ";
 result += "onchange=
 'PHOTO_DIRECTORY.update_autocomplete(";
 result += '"Entity_observes_daylight_saving_time_';
 result += id;
 result += '", "observes_daylight_saving_time");';
 result += "'";
 if (entity.fields.observes_daylight_saving_time)
 {
 result += " checked='checked'";
 }
 result += " /></p>";
 if (entity.fields.time_zone)
 {
 result += "<p>Local time:";
 result += "";
 result += entity.fields.time_zone;
 result += "
 </p>";
 }
 result += "<p>Department: ";

The code fails to select the Entity's time zone; we remedy that after
build_profile() is called:

PHOTO_DIRECTORY.load_profile = function(id)
 {
 PHOTO_DIRECTORY.current_profile = id;
 if (PHOTO_DIRECTORY.SHOULD_TURN_ON_HIJAXING)
 {
 try
 {

Chapter 10

[259]

 $("#profile").html(PHOTO_DIRECTORY.build_profile(id));
 if (PHOTO_DIRECTORY.entities[id].fields.time_zone !=
 null)
 {
 $("#time_zone").val(
 PHOTO_DIRECTORY.entities[id].fields.time_zone);
 }
 PHOTO_DIRECTORY.register_update();

We add a bit of styling:

#local_time
 {
 font-weight: bold;
 }

#local_time strong
 {
 font-size: 2em;
 }

And with that, we have a clear local time slot in our profile:

Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time

[260]

Summary
We have covered some tinkering and tweaks, and bugfixes along the way. Our
directory has fewer rough spots! These include: updating the code to handle deletion
correctly after we have added undoing and we retain some "deleted" items in the
database, tweaking a standard plugin to enhance its behavior, improving a basic
widget in terms of its usability, and adding a good first pass at a world time zone
"What's their local time?" slot on the profile.

Let us continue to take a look at usability itself in the next chapter.

Usability for Hackers
The heart of software craftsmanship is writing code that is usable to programmers,
including the author re-reading his own code in six months.

In this chapter we will look at usability concerns that make a user interface make
sense to non-programmers. Certain kinds of math loom large in algorithms, and
cultural anthropology looms large in good usability. We will look at anthropology
as it relates to usability, and move from theory to practice.

In this chapter we will discuss:

Anthropology as the foundation of usability
Anthropologists' strengths that Django hackers are likely to share
An example of an anthropology-based technique and the surprise it brought
an investigator
Why focus groups are deprecated for usability research
Anthropology as a way of breaking up a seemingly simple and straightforward
thing and understanding it through multiple cultural explanations
How to apply this foundation to observing users as they deal with
an interface
How good usability observation is like solving a hard bug
Examples of other background elements we can turn to our advantage in
usability observation
Liabilities that this book's readership may need to compensate for
What the main tools for usability testing are and when they should be used
Usability as the soul of what is Pythonic
Further reading and resources

This chapter takes a little step further back than some of the others, and there is a lot
there, but it is interesting material. Let's dig in!

•

•

•

•

•

•

•

•

•

•

•

•

Usability for Hackers

[262]

Usability begins with anthropology…
and Django hackers have a good start on
anthropology
If you're reading this text, there's a good chance that you are already halfway
to being an anthropologist.

Note: for the purposes of this chapter, 'anthropology' is used to refer
to cultural anthropology. Other anthropological disciplines exist (for
example, biological or physical anthropology, linguistic anthropology,
and archaeology), but it is cultural anthropology and its techniques
which are most directly relevant here.

How could an author know that you are probably at least half an anthropologist?
Let's turn the question around. Why are you reading this book at all? Visual Basic
.NET has enormous marketing muscle behind it, possibly eclipsing the marketing
budgets for all open source technologies put together. Guido van Rossum holds a
dim view of marketing, as does much of the Python community. Monster.com lists
three thousand Visual Basic positions, almost five thousand .NET positions, but only
one thousand Python positions. Why are you reading a Django book when you could
be reading a title like Completely Master Visual Basic in Thirty Seconds or Less?

You are probably a hacker. It does not matter if you were mortified when you found
out the preferred JavaScript technique to create an object with fields that aren't
globally accessible variables, or if you wince when you hear of a devious way to
get technology to do things that shouldn't be possible, or if you have no desire to
be considered a 133t hax0r. You're probably a hacker. The classic How to Become
a Hacker (http://www.catb.org/~esr/faqs/hacker-howto.html) for the most
part outlines things that have a very obvious relationship to being a hacker: attitudes
towards technical problem solving, or learning an open source Unix, learning to
program and contribute to the web, and so on and so forth. Towards the end there is
a particularly interesting section, because on the surface it looks completely beside
the point. The section is titled Points for Style and mentions learning to write well,
reading in science fiction, training in martial arts, meditation, music (preferably
obscure), and wordplay. Other things could be added: avoiding mainstream TV or
having arcane hobbies and interests, for instance, so that in a social context hackers
may ask each other questions about obscure hobbies as a rough social equivalent to,
"What's your favorite TV show?"

Chapter 11

[263]

Not that any of these is necessary to be a hacker, but together these common trends
point to a personality profile that can learn the anthropological style of observation
relevant to usability work much more easily than the general public, or even Joe
Professional Programmer who regards learning new technologies as a necessary
evil rather than a joy, works in Visual Basic .NET after being swayed by advertising,
goes home and watches TV after work, has probably never heard of ThinkGeek, and
would probably rather do gift shopping at Walmart even if that programmer does
know of ThinkGeek.

All of this is to say that the culture surrounding you is not, to you, like water to a
fish. It is a basic fact of life that you don't automatically share the perspective of
others. Cross-cultural experience or ethnic minority status may accentuate this, but
this is true even if you're not (regarded as) a minority. And this kind of experience
provides a very good foundation for anthropological ways of understanding exactly
how you are not a user and users don't think like you.

Anthropological usability techniques
There are a number of anthropology-based techniques that apply in usability. They
include card sorting, discussed below, and also activities such as observing users
try to use your site, eyetracking "heatmap" studies, cognitive walkthroughs, and
so on. http://www.usabilityfirst.com/usability-methods/ shows some
standard techniques, although it lists focus groups without the standard warning.
Focus groups, as will be discussed, are cargo cult anthropology. They are considered
harmful when used for usability instead of marketing research, and are for that
matter considered harmful by some of the more savvy market researchers who are
realizing that to understand your audience you need the best anthropology has
to offer.

An introductory example: card sorting
One basic challenge for organizing a site's information architecture is the taxonomy,
or way of breaking things down. If one is asked for an example of a good taxonomy,
one example par excellence is the biological taxonomy that organizes all the way
from kingdoms down to species or subspecies and varieties. And indeed that is one
kind of taxonomy, but it is not the only possibility. If one is asked to break down
a list of a fork, spoon, plate, bowl, soup, and macaroni and cheese, one obvious
way is to put the fork and spoon together as cutlery, the plate and bowl together as
dishware, and the soup and macaroni and cheese together as food. But this is not
the only basic way, and it can make sense to put the fork, plate, and macaroni and
cheese together as representing one complete option, and the spoon, bowl, and soup
together as representing another basic option.

Usability for Hackers

[264]

Stores and websites that have adopted the latter approach, such as a gardening store
or website that organizes its products according to the type of garden a customer
is trying to make and what the customer is trying to do, see a significant increase
in sales. Even biology could use other complementary technologies: a taxonomy
that classified organisms according to both ecosystems and their roles within their
ecosystems and ecological subsystems could say something very valuable that the
eighteenth century classification wouldn't.

In terms of websites, an information architecture that corresponds to the
organization's org chart is never a helpful choice. Even when we are talking about
an intranet intended only for organizational insiders, one section or subsite for each
department is not the right choice. A better option would be to support workflow
and design around the tasks that employees will be doing with the intranet.

What is the best information architecture? That is not a question to answer by
looking something up in a book or even thinking it out. It is something that we
should work out based on what we observe doing research, even if we also read
and need to do a bit of thinking. And this is the best practice across the board
for usability.

One valuable exercise to help guide information architecture design is called card
sorting. In this exercise, we get a stack of index cards, perhaps 3 x 5, and write the
individual names of different pieces of functionality the website should offer, trying
to name things neutrally so that the names do not have common terms suggesting
how certain parts belong together. Then we shuffle and lay out the cards, and
individually ask subjects (people who will participate in an experiment and who
are not insiders, whether employees of your organization or of an external website,
or information technology professionals) to organize them so that cards that belong
together are put in the same stack.

Then we note which cards have been placed together, thank the subject, and move
on to the next person.

On looking through the notes, we may see a few things. First, not all people think the
same. We will likely see some breakdowns that are very similar, but there will likely
be two or more breakdowns as fundamentally divergent as our breakdowns of the
fork, spoon, plate, bowl, soup, and macaroni and cheese. Second, there will probably
be a breakdown that simply catches us off guard. And this is good; it means the
exercise is working.

After doing this, we can go about looking for a preferably standard information
architecture that will gracefully serve the major ways we observed of breaking
things down.

Chapter 11

[265]

Focus groups: cargo cult research for
usability
With an eye to how to best approach observation, we would like to take a moment
to talk about Coca-Cola's blunder with "New Coke" and explain why focus
groups—bringing in a group of people and asking them what they want—are
deprecated as a recipe to make products that look good on paper but don't wear well
in normal use. For those of you who don't remember the uproar some years back,
the Coca-Cola company announced that it was switching to a new and improved
formula, and there was massive public outlash from people who wanted the old
Coke back. (Now the company sells both the old formula as Coke Classic and the
new formula as Coke II, and Coke Classic is vastly more popular.)

Why would the Coca-Cola company announce it was terminating its cash cow? The
answer is that it did naïve marketing research, ran taste tests, and asked members of
the public which they would choose: the formula today sold as Coke Classic, or the
formula today sold as Coke II. The rather clear answer from the taste tests was that
people said they would rather have the new formula, and it was a clear enough answer
that it looked like a sensible course of action to simply drop the second-best formula.
It was not until everybody could see that the Coca-Cola company had given itself a
PR black eye that the company woke up to a baseline observation in anthropology:
the horse's mouth is a vastly overrated source of information. Most anthropological
observations, including the kinds relevant to usability, are about paying close attention
to what people do, and not being too distracted by their good faith efforts to explain
things that are very hard to get right.

Anthropological observation: the
bedrock of usability
The first step in understanding your users is to wake up to how something that
goes without saying to the entire development team can be unknown to your users.
The first step to that is waking up to how many ways there can be to see one clear,
simple situation.

Usability for Hackers

[266]

More than one way to see the same situation
The kind of observation needed is probably closest to the anthropological technique
of participant observation, except that instead of participating in using software or a
website, we are observing others as they use software. Half the goal is to understand
how the same thing can be observed differently. To quote from James Spradley's
Participant Observation, which is an excellent resource:

One afternoon in 1973 I came across the following news item in the Minneapolis
Tribune:

Nov. 23, 1973. Hartford, Connecticut. Three policemen giving a heart massage
and oxygen to a heart attack victim Friday were attacked by a crowd of 75 to
100 people who apparently did not realize what the policemen were doing. Other
policemen fended off the crowd of mostly Spanish-speaking residents until an
ambulance arrived. Police said they tried to explain to the crowd what they were
doing, but the crowd apparently thought they were beating the woman.

Despite the policemen's efforts the victim, Evangelica Echevacria, 59, died.

Here we see people using their culture. Members of two different groups observed
the same event but their interpretations were drastically different. The crowd used
their cultural knowledge (a) to interpret the behavior of the policemen as cruel and
(b) to act on the woman's behalf to put a stop to what they perceived as brutality.
They had acquired the cultural principles for acting and interpreting things this
way through a particular shared experience.

The policemen, on the other hand, used their cultural knowledge (a) to interpret
the woman's condition as heart failure and their own behavior as life-saving effort
and (b) to give her cardiac massage and oxygen. They used artifacts like an oxygen
mask and ambulance. Furthermore, they interpreted the actions of the crowd in
an entirely different manner from how the crowd saw their own behavior. The two
groups of people each had elaborate cultural rules for interpreting their experience
and for acting in emergency situations, and the conflict arose, at least in part,
because these cultural rules were so different.

Before making my main point, we would simply like to comment that the Spanish-
speaking crowd's response makes a lot more sense than it would first seem. It makes
a lot of sense even on the assumption that the crowd did in fact understand the
police officer's explanation that they "apparently did not understand." What the
article explicitly states is that the police officers were using an oxygen mask, and that
is a device that needs to be pressed against a person's face and necessarily cover the
same parts of a person's face one would cover to try to cause suffocation. If you are
not expecting something like that, it looks awfully strange. (At best!)

Chapter 11

[267]

Furthermore, although we might not know whether this actually happened, it
is standard operating procedure to many emergency medical technicians and
paramedics who perform CPR to cut off the person's top completely, palpate to the
best place to place one's hands, and mark the spot with a ball-point pen. This may
or may not have happened here, but if it did, it is appropriate enough for neighbors
to view it as an extreme indignity. Lastly, although today's best practices in CPR are
more forceful than was recommended in the past, "heart massage" is a technical term
that does not refer to anything like softly kneading a friend's shoulder. People who
do CPR regularly say they crack ribs all the time: cracking ribs may not be desirable
on its own, but if a responder is doing good CPR with enough force to be effective,
breaking a patient's ribs is considered entirely normal and not a red flag that CPR is
being done inappropriately or with excessive force.

Furthermore, the woman's age of 59 raises the question of osteoporosis. Racism is
almost certainly a factor in the community's memories; the community had quite
probable stories circulating of bad treatment by police officers and possible police
brutality. We know that the police tried to explain what they were doing, but if many
of us saw police apparently trying to suffocate a member of our community, possibly
saw an offensive indignity in that a senior's shirt and underwear had been cut away,
and saw an officer keep on forcefully shoving down on her chest and probably heard
ribs crackling with every shove, it would take quite some convincing, and almost a
reprehensible gullibility, for the bystanders to believe the other officers who tried
to explain, "No, really, we're trying to help her!"

For reasons that follow, we should be very wary of saying that she
probably would have survived if only the crowd hadn't intervened.
We shall view this example from a historical point of view, that is, the
information presented here was the medical opinion of the times.

We may pause to note that neither group, nor apparently the authors of the
newspaper article or anthropology text, appears to grasp how the situation would
be viewed by a doctor. "Heart massage" is now more commonly known as "Cardio-
pulmonary resuscitation" or CPR, resuscitation being an otherwise obscure synonym
for resurrection or returning from the dead. In French religious language, for instance,
resuscitation is the term one uses for Christ returning to life after death on a cross.
There is, to the purist, some fundamental confusion in the marketing-style slogan,
"CPR saves lives." Clinically and legally, it was thought that death occurs when a
person's heart stops beating. If a person is still alive, and if there is any chance of
saving the person's life, then CPR is both premature and inappropriate.

Usability for Hackers

[268]

The Uniform Determination Of Death Act, United States (1981): An
individual who has sustained either (1) irreversible cessation of circulatory
and respiratory functions, or (2) irreversible cessation of all functions of the
entire brain, including the brain stem, is pronounced death.

Once a person has entered a state of "cardiac arrest," which meant death (historically),
then there might be a possibility of getting that person back by cardio-pulmonary
resuscitation, even if that is a long shot. CPR at its very best is a third as effective as a
heart beating normally, and even under ideal conditions can only slow deterioration to
give the emergency room perhaps a 5% to 10% chance of getting the person back. And
that is assuming that ideal conditions are possible: in reality ideal conditions do not
happen. Though most people giving CPR do not have to deal with a crowd interpreting
their efforts as assault, hoping to deliver perfect CPR is like hoping to become a good
enough coder that one need not contend with debugging. Eric Raymond implicitly
showed great maturity as a programmer by saying he was dumbfounded when his
first attempt at Python meta-programming worked without debugging. The person
who does CPR in a public setting will contend not only with the difficulties of CPR
itself, but an "uh-oh squad", bystanders who second-guess one's efforts and create a
social dynamic like that of giving a speech to an audience of hecklers.

Now there is no question of blows or physical restraint when it comes to the idea
of CPR or cardiac massage as a way to save lives that is apparently shared by the
newspaper article author, the anthropology author, and possibly the police. And the
medical view is that CPR is "only indicated in the case of cardiac arrest," meaning
that it is premature and inappropriate unless a person has already died, but can
preserve a remote chance of getting a patient back after the patient has crossed the
threshold of clinical death. Emergency room doctors who view CPR as slowing
deterioration and holding onto a slender chance of getting someone back will
be quite grateful for CPR performed by police officers and other members of the
general public who view CPR as a skill which saves lives. But the understanding
is still fundamentally different, and differences like this come up in how computer
interfaces are understood: differences you will want and need to appreciate.

Applying this foundation to usability
The core of usability testing is designing some sample tasks, asking users to do them,
and observing, as a fly on the wall, without helping. If you can record sessions, great;
if not, a notepad, notebook, or netbook works well. (The advantage of recording
sessions is that almost invariably people will say, "There is no way the user could
have that much trouble with our design," and a five-minute video of a user looking
everywhere on the page but where users are intended to look, is worth a thousand
arguments.) Usually studying five users is sufficient.

Chapter 11

[269]

There is a saying in customer service of, "The customer is always right." One may
read the cautionary tale of a salesperson who kept on winning arguments with
customers and somehow never closed a sale. And the principle is very simple. A
customer who is wrong is to be treated as a valued customer as well as a customer
who is right, and whether our customer is right or wrong, we treat each customer as
a valued customer. Unless we are talking about an abusive customer, in which case
it is appropriate to draw a line in the sand, we don't send a message of "I'm right,
you're wrong."

That is not what we are talking about when we say, "The user is always right."
Anyone who teaches programmers or remembers what it was like to begin
programming remembers hearing, "There's no way the computer can be right! The
computer has to be running my code wrong, or the compiler isn't working right,
or SQL's lying to me again!" And it is a slow and at times painful lesson that the
computer is in fact (almost) always right, that no matter how right your code seems,
or how certain you are, if your code is not working, it is because you did something
you did not intend, and your code will begin working when you find out how your
code does not obviously say what you think it does, and adjust that part of your
code. Bugs in libraries and (more rarely) compilers and interpreters do exist, but one
important threshold has been crossed when a programmer stops blaming the tool for
confusing bugs and begins to take responsibility personally.

And in the same sense that the computer is always right, and not the sense that the
customer is always right, the user is always right about how users behave. If the user
interacts with the user interface and does something counterproductive, this means
the same sort of thing as code doing something counterproductive if it has been
compiled. The user, who is always right, has identified an area where the interface
needs improvement. The user should be regarded as "always right" just as the
computer should be regarded as "always right," and when the user is wrong,
that is good information about where the user interface has problems.

I could say that the only thing we really need to do at all is observe the user. But
observing the user includes a major challenge: it includes the major task of grasping
things that violate our assumptions. The task is something like first encountering
how JavaScript's support for object-oriented programming includes objects and
inheritance, but without classes, first coming to a scripting language and asking,
"When does integer overflow occur?" and being told, "Your question does have
an answer, but it matters less than you might think," or the experience of a novice
programmer who posted to a forum, "How do I turn off all the annoying compiler
warnings I'm getting?" and was extremely frustrated to have more than one guru
say, "You want to beg your compiler to give you as many warnings as you can get,
and treat all warnings as errors."

Usability for Hackers

[270]

It was a deft move for Google to give Chrome a single search and URL bar, but the
main reason may not be the one you think. Searching was heavily enough used that
Firefox made life easier for many users by adding a second bar to the right of the
URL bar so that we could search without first pulling up the Google homepage. For
heavy users, simplifying the URL bar and the search bar into one full-width piece
is the next refinement. But this is not the main reason why it was deft for Google
to give Chrome a unified search/URL bar, or at very least not the only reason.

My own experience helping others out with their computers has revealed that
something obvious to us has been absolutely non-existent in their minds. Perhaps
you have had the experience, too, of telling someone to enter something in a
page's text field, and they start typing it in the URL bar, or vice versa typing a URL
into a page's search field. What this unearths is that something that is patently
obvious to web designers is not obvious to many web users. "Here is an important,
impenetrable dividing line, and all the chrome above that line belongs to the
browser, and everything below that line (above the bottom chrome, and excluding
any scroll bars) belongs to the website." This division of labor is obvious enough
to most web designers that only experience could teach them that there are some
people who don't understand it. But the real world has many users who do not have
any such concept, and behaviors like typing search terms in the URL bar (years
before Chrome was available) are clues to "This is something that is out there."

And if you think, "OK, but users are more sophisticated now," you might go through
your website's search logs and see how many website addresses you can see. It will
not be nearly as many as ordinary search terms, but have you ever wondered where
the addresses to MySpace and porn sites in your search logs come from?

Culture shock is a fundamental reality of when things go contrary to your
expectations. Most of us experience small amounts of culture shock in our
day-to-day living and much greater amounts if we travel to another country or do
something else. The three examples given earlier, of classless objects in JavaScript,
integer overflow in scripting languages as not terribly important, and asking for a
more draconian handling of warnings are examples of culture shock in relation to
technologies. As a rule of thumb, if you are not experiencing culture shock from
your user observations, you are not deriving full benefit from them, and you do not
understand your users well enough to make the fullest improvements to the design.
To put it more forcefully, if you aren't experiencing culture shock from your user
observations, that's because you're taking a shower with your raincoat on.

Chapter 11

[271]

It's just like (hard) debugging
We would like to make one closing parallel to debugging. There are several types
of debugging we are not talking about; for instance, a missing close parenthesis
causes an immediate error that makes it fairly quick work to find out what is wrong
and what line of code it is. A traceback can also provide an excellent starting point
for quick and effective debugging. Although debugging a failed unit test may
not be quite so easy, a unit test is not just a tool to say that something is wrong,
somewhere; it is a tool that should point a finger, and usually narrow the search field
significantly. And many other bugs that are neither syntax errors nor resolved with
the help of unit tests are still easy enough to fix that we need not be terribly aware of
them. When we think of debugging, we may only think of the few hard bugs rather
than the majority of bugs which better programmers resolve without really thinking
about it, like we turn on light switches on entering a darkened room, or unzip a coat
outdoors when the day warms up, without giving the matter too much conscious
thought or vividly remembering that we do this. (This is, incidentally, somewhat of
an ethnographic observation of good programmers.)

What we are talking about, as hard bugs, are bugs where you go through every
investigative tool you can think of, and still cannot pin down what is going on. (This
may include a relatively small proportion of bugs that also generate tracebacks or
unit test failures.) Observing the bug seems like observing, not a miniature ship in
a bottle, but a ship in a seamless glass sphere. There's no way you can tell that the
ship could have gotten in there, but it is quite clear that the ship in fact is in a glass
container that has no openings that you can imagine the ship getting in through.

Isaac Asimov said, "The most exciting sound in science is not, 'Eureka!' [I've found
it!], but 'That's funny,'" and the history of science bears him out. Today, X-rays are
widely known among scientifically literate people to be a very high-energy, short-
wavelength radiation belonging to the same spectrum as visible light, but it was not
always so; the name "X-rays" is itself a holdover from when they were a fascinating
and mysterious phenomenon, with the "X" in "X-rays" referring to something
unknown. It was known that they were radiation of some sort, but they passed
through some opaque material and in general did not fit into anything people had a
conceptual place for.

In the middle of efforts to understand this mystery, there was one physicist who
stumbled upon a golden clue that X-rays might be something like light He left
unexposed photographic plates near a source of X-rays, and upon using and
developing them, observed that they had all been partially exposed. His response,
however, was to contact the photographic supply company and demand that they
replace the photographic plates as defective. As Winston Churchill observed, "Man
will occasionally stumble over the truth, but most of the time he will pick himself
up and continue on."

Usability for Hackers

[272]

In debugging, hard bugs, the kind that remain unresolved after we have investigated
all the usual suspects, are rarely solved because we go looking for the right error and
find exactly what we expected to find. With the analogy of the ship in the sphere,
it is more like deciding there has to be some kind of concealed seam from gluing or
otherwise sealing an aperture big enough to allow the ship to enter, at least in pieces.
After looking the glasswork over, using magnifying glasses and lights, and still
finding no trace of a seam, you stop ignoring something you had noticed along the
way: the ship itself appeared surprisingly glossy. When you stop to look at the ship
for a second, you realize that it is not made of the wood and cloth you expected (and
that it appears to be at first glance), but as far as you can tell is shaped out of colored
glass. And, after doing a little more research, you learn of a glassblower who makes
colored glass ships and forms seamless glass spheres around them. In this case, you
were not wrong in saying there was no seam. There is still no way that such a thing
could have been crafted at room temperature, and there is in fact no ultra-subtle
seam that you failed to notice in your efforts to find the seam to an aperture through
which the ship could have been inserted at room temperature, even in pieces. But
that's not the point. The ship in a globe was made at glassblowers' temperatures,
and there it is possible to create a seamless sphere around a colored glass ship.

Hard bugs are debugged successfully when you learn to stop upon stumbling over
the truth. And the same is true in the anthropological side of usability techniques:
some things you can know to look for, and find, but the much more important
competency is to recognize when you have stumbled over the truth, and stop and
pay attention to something you don't know to look for.

Almost all of the difference between doing user observation badly and doing it well
hinges on learning to recognize when you have stumbled over the truth.

Lessons from other areas
Opportunities to learn, and sharpen, core anthropological competencies for usability
are all around us. We need, in many cases, simply to open our eyes, and transfer what
we have learned from one area to another.

Live cross-cultural encounters
Learning and observing in cross-cultural encounters is an excellent way to learn
how to pick up cues the way a user interface developer needs to. There are two
basic cross-cultural encounters we recommend as particularly valuable. The first of
these, as it takes shape in the U.S., is to spend time volunteering with an English as
a Second Language program and tutor on computer basics. Or find out if you can
tutor in classes at your local library. (If possible, work in an adult computer class
that has seniors and not too many young people.) This may or may not be the most

Chapter 11

[273]

pleasant experience, but it is one of the most valuable. I remember one experience
where I was working with a Sudanese refugee, quite possibly an escapee of genocide
against Christians, who had just had his life uprooted under presumably traumatic
circumstances and was learning to deal with living in the U.S. all at once, which
would quite probably be traumatic in itself. I remember, in particular, one moment
when we had very slowly typed a word or two in a word processor, and ticked the
button to close a document, and were staring at a dialog box asking if we wanted
to save the document before closing. And I remember a slow dawning realization
that not only did he not know the quite substantial cultural concepts involved in
recognizing that this was how culturally one asks a question, expecting an answer
in the form of a click on one of two areas of the screen to answer Yes, No, or "Mu"
(Cancel). But the question itself, "Do you want to save this document before closing?"
was a question that did not exist at all in his culture, and even if I spoke his native
language I would probably not be able to explain the question in terms that would
make any sense to him. That was probably my most difficult teaching experience,
and the one where I have the most doubts about whether I succeeded in teaching
anything at all. But it was a profoundly valuable experience to me, and helped me
see how things could "go without saying" to me but be baffling to others.

The second of these two cross-cultural encounters is whatever you already have.
Few if any of us have no cross-cultural encounters; whether one is ethnically or
(a)religiously a majority or a minority, an immigrant or a native citizen of one's
country, or considering face-to-face encounters or Internet connections, most of us
have at least some experience in cross-cultural encounters. The differences are there;
if you have learned something from cross-cultural encounter, the experience can help
you more readily recognize the cues you need to recognize.

History
While we are wary of reducing history to merely an apparatus to understand the
cultures of previous times, most historians arrive at a fairly deep understanding
of a culture that is not their own, and may arrive at a sensitivity to the ways, all
too easy to ignore, in which historical texts veto modern assumptions. There was
an experiment in which a question concerning Abraham Lincoln and a number of
historical primary sources was given to a number of elementary school teachers, plus
one historian of Lincoln, and a historian whose specialties were unrelated. During
the time of the experiment, the elementary school teachers started with a wrong
conceptual framework that imposed today's basic categories on the texts, and
did not progress to anything better.

Usability for Hackers

[274]

The historian of Lincoln started with a highly accurate conceptual framework and
very quickly arrived at the answer. But what is particularly interesting is the other
historian, who was trained as a historian but had little directly relevant knowledge
of Lincoln. He started with the same conceptual framework as the non-historians,
but by the end he had corrected his framework to the point of reaching where the
Lincoln historian had started.

This latter historian is perhaps the most interesting, not because he was not initially
right, but because he was self-correcting. Even though his starting framework was
no better than the school teachers, he was sufficiently able to adjust his perspective
from cues based on the text so that he reached the framework the Lincoln historian
started with. And, one would imagine, the Lincoln historian would have had a
similar self-correcting sensitivity to the texts had he been asked the same kind of
question about a historical setting he did not initially understand.

Getting history right is relevant to us in two ways. First, you or I understand one, or
perhaps many, other cultures more or less well. Second, when you or I trip over a
clue that is wrong, we can stop and learn from it, instead of hoping it will go away.
Both of these strengths are a powerful foundation to usability.

Old books and literature
Books can be a very good place to sharpen anthropological competencies through
meeting other cultures. However, we might clear the ground of some distractions if
it is tempting to say, "But I meet other cultures in all my favorite books! I'm an avid
reader of science fiction and fantasy."

All science fiction is not created equal in terms of cultural encounter. There is
a marked difference between reading Heinlein's Stranger in a Strange Land and
watching Star Trek. Heinlein understood both culture and culture shock, and though
his book only treats one alien culture, it is written to create culture shock in the
reader, and challenge us in assumptions we didn't know we had. "Whaaa—? They
can't do that!" is a normal and intended reaction to several parts of the book. In Star
Trek, there are many races, but culture shock in the viewer is almost non-existent
even when the plot is intended to surprise. To put it more pointedly, the average
American's culture shock from watching years of Star Trek is probably much less
than the average American student's culture shock from a few months' experience in
a foreign exchange program, perhaps less than the culture shock in the first month of
that program. By comparison with a live encounter with another human culture, the
alien races in Star Trek have less their own alien cultures than a shared personality
profile we can already relate to even when we don't like it.

Chapter 11

[275]

Likewise, not all fantasy is created equal. J.R.R. Tolkein and C.S. Lewis were both
Oxford-educated medievalists who knew medieval literature intimately. The genre
of fantasy that appeared in their wake, if you have seriously read medieval literature,
seems by comparison like the opening rant in the movie Dungeons & Dragons, where
a supposedly medieval character gives an impassioned "Miss America" speech about
how horrible it is that the realm's government is unlike a U.S.-style democracy.
Today's genre fantasy reads like the story of Westerners from our time who happen
to be wearing armor. By contrast, in The Chronicles of Narnia some of the characters
are indeed from the twentieth century, but in terms of how the story is put together
there is something a bit medieval, and not individualist, about their characterization.

If our cultures' science fiction and fantasy are not the best place to be challenged by
another encounter, and to develop that kind of sensitivity, where can we go? One
obvious response is to look to be challenged by books like the Dao De Jing and the
Bhagavad-Gita. Those are both excellent places to look to be challenged, but if we
assume that we can be challenged by the Bhagavad-Gita but not Plato, we are selling
both of them short. Plato's image of climbing out of the cave with its shadows and
looking at the sun is something that a Hindu commentator on the Bhagavad-Gita can
quite easily relate to, and in a certain sense Plato has more in common with that kind
of Hinduism than with his disciple Aristotle.

How does one read a text to see what one can pick up culturally? Consider the
following text:

QUANTUM THEORY, THE. As recently as the opening years of the present
century the vast majority of physicists still regarded Newton's dynamical laws
as something established for all time. And they were not without solid grounds
for this faith. Many phenomena were indeed known, chiefly those which may be
classed under the heading radiation, for example, black body radiation and line
spectra, which refused to accommodate themselves to any sort of theory founded
on Newtonian principle. But it was generally believed that such phenomena
would, sooner or later, be completely accounted for without any departure from the
classical principles of physics. Even the theory of relativity developed by Lorentz,
Einstein, Minkowski and their successors was regarded only as a widening or
generalization of the Newtonian basis of physics. It was the culmination of classical
physical theory. These phenomena we now believe, cannot be accounted for on
the basis of classical physical theory, whether Newtonian or Einsteinian. The
first act of sacrilege was committed by Max Planck, until recently professor of
theoretical physics at the University of Berlin, about the end of the year 1900, when
he initiated the quantum theory. One of the problems engaging the attention of
physicists during the closing years of the last century was that of the radiation from
a black body...

Usability for Hackers

[276]

The reconciliation of these two aspects of the phenomenon, namely the
independence of the energy of the ejected photo-electrons and the intensity, on the
one hand, and the wave character of the radiation on the other, constitutes one of
the most formidable problems which physical science has ever encountered...

Now we would like to make a couple of points. We could, for instance, have chosen
an interminable fight narrative from a medieval Arthurian legend to say, "We look
on Arthurian legends as mysterious tales of wonder. Did you know that a large
portion of those legends is actually quite dull to the modern reader?" Some readers
may be wondering, "This is a scientific article, not a cultural area where anything
goes." But, even if science is not a domain where anything goes, there are cultural
issues here, and it may be possible to date the article by cultural markers as well
as by values given for physical constants. (Based on details further on in the text,
Avogadro's number appears to be given as 6.06 x 1023, not today's 6.022 x 1023, and
the unit of electrical charge is reported in the text to have current values consistent
with initial measurements, despite the fact that the initial reported experimental
value was erroneous and subsequent experimenters fudged until it was found
acceptable to report what is now believed to be the correct value.)

In the quoted text, there are two significant markers that date the text as showing
significant cultural difference from how things are viewed today.

A physicist or philosopher today would say that Newtonian physics, Einsteinian
physics, quantum physics, and for that matter superstring theory are fundamentally
irreconcilable on an ontological plane but happen to predict the same behaviors
for the kind of experiments one would expect of a high school physics lab: the
predicted results for each of these theories are vastly smaller than even a top-notch
experimental physicist doing high school experiments could possibly observe. But
the reasons behind those differences are irreconcilable, like the difference between
saying "You see this OS behavior because it is running natively on your computer,"
and "You see this OS behavior because it is being emulated under virtualization
with several levels of indirection that are extremely slippery to understand." The
behavior predicted is interchangeable, but the reasons proposed for the behavior
are fundamentally irreconcilable. Furthermore, this is not just true if one compares
quantum physics with Einsteinian or Newtonian physics; it is also true if one
compares Einsteinian with Newtonian physics: to today's take on things, it is a bit
astonishing to say, "on the basis of classical physical theory, whether Newtonian or
Einsteinian." The usual way of presenting things in a physics class today is to present
Einstein's theory of relativity as the first in a stream of foundational upsets after
Newton reigned unchallenged and apparently eternally established for centuries.
Today we would expect to need to dig a bit to find more examples of Einstein's
theory referred to as a further expansion developing Newton, which should still be
considered "classical physical theory."

Chapter 11

[277]

The second quoted paragraph refers to how light (and, it may be mentioned,
practically everything else as seen in quantum theory) behaves as a particle when
treated in some ways and as a wave when treated in others. This duality has since
hit the rumor mill well enough that a favorite illustration from science in theology
programs is how light exists as both a particle and a wave, which reflects the extent
to which the duality of light as particle and wave remains unresolved but is no
longer regarded as, "one of the most formidable problems that physical science
has ever encountered."

Our point is not to deride the article, which is written at a higher level of sophistication
and detail than, for instance, Wikipedia. Apart from its certitude in the existence of an
"aether," slightly surprising in light of the fact that the Michelson-Morley experiment
dates to 1887 and the article refers to 1900 as a past year, its picture of quantum physics
portrays the same core science one would expect of a physics text today. But, even in
physics, which is not in any sense a field where just anything goes, culture is present,
and for that matter in this article the cultural cues alone are most likely sufficient for
an historian of twentieth century physics to closely date it.

This kind of cue is what you can practice learning in reading old books, and this
kind of cue is what you need to be able to pick up in observing for good user
interface development.

The way you observe that a user does not share an understanding that is obvious
to you is by the same kind of cue that can clue you in that a text doesn't share an
understanding that is obvious to you.

The last other area: whatever you have
Whatever else you have is probably a resource you can draw on. Do you love
birding? Birding is a hobby of observation. Do you do martial arts, for instance?
A common theme in martial arts is harmony between opponents, and if you can
attune yourself to a sparring partner, you should be able to attune yourself to a user.
Comedy or performing arts? You are not a good comedian if you are insensitive
to your audience. Have you made a lot of mistakes, and learned from them, or
at least started to learn? Wonderful news! (Are you an amateur or professional
anthropologist? That one does not need explaining!) There is some connection
between any two areas of life; let other skills support and strengthen your
usability work.

Usability for Hackers

[278]

Understanding the user
Do we best understand the user by sitting off by ourselves and speculating how a
user would look, think, and act about our interface? Let us take a look at what may
be a very familiar lesson to expert programmers, however unreal it may seem
to novices.

A lesson from optimization
Knuth said, for the novice programmer, "Do not optimize," and to experts only,
"Optimize later." Always writing for optimization is a recipe for bad, unreadable
code, and for that matter slow code, compared to code written for clarity that is later
optimized using that clarity. And Knuth also said, "Premature optimization is the
root of all evil."

In one production system I was working on, I wrote one search with the realization
that the implementation I was using was extremely inefficient, and had to
deliberately refrain from optimizing it, to leave for later. When the whole system
was put together, it took a couple of seconds longer than was acceptable, and I
began mentally gearing up to optimize the inefficient search. Before doing so, I did
some testing, and found to my surprise that my inefficient search implementation
took very little time to run, and when I began mapping things out, found the root
problem. I had called a poorly chosen method, and with that choice made a purely
preventable network call, and that network call took a few seconds. When that
problem was fixed, the remaining code ran at an acceptably fast rate for even the
largest accounts.

This story is my own version of something that keeps on being retold in the
programming literature: "Our system was running slowly, and we had reasonable
ideas about what was going on here, but our reasonable ideas were wrong. We
didn't know what the real problem was until we dug into some observation."

This basic lesson in optimization is a fundamental phenomenon in usability as
well. We will have reasonable ideas about what the usability issues are, and our
reasonable ideas will be wrong. We won't know what the real issues are until
we dig into some observation.

Chapter 11

[279]

What's wrong with scratching an itch, or you
are not your user
The open source community is largely driven by scratching itches, but scratching
a programmer's itch is a terrible way to approach user interface design.

The story is told of a program used in an office where a popup window appeared
and said, "Type mismatch." And the secretary obediently typed M-I-S-M-A-T-C-H,
a perfectly appropriate user response to an inappropriate error message. (This
kind of thing shows up in many more subtle ways, some of which are not so
obviously wrong.)

Designing a user interface that makes sense to someone who understands its inner
workings, and designing a user interface that makes sense to its intended audience,
are not the same thing. A mechanic's understanding of how a car starts is very
elaborate and detailed, but a user should be able to get by thinking, "I turn the key
and press the gas, and the car starts" without necessarily thinking anything about
what is under the hood. If users need to understand what's under the hood
to operate the car, the car needs improvement.

Worst practices from the jargon file
The Jargon File defines the extremely pejorative "PEBKAC" as:

[Abbrev., "Problem Exists Between Keyboard And Chair"] Used by support people,
particularly at call centers and help desks. Not used with the public. Denotes pilot
error as the cause of the crash, especially stupid errors that even a luser could figure
out. Very derogatory. Usage: 'Did you ever figure out why that guy couldn't
print?' 'Yeah, he kept canceling the operation before it could finish. PEBKAC'.
See also ID10T. Compare pilot error, UBD.

And the particular example is unfortunately revealing of an attitude user interface
people need to avoid like the plague.

It is common enough in computer programs to have modal dialog boxes; the humble
JavaScript alert("Hello, world!"); is one of innumerable ways to get them.
And what they mean from an ordinary non-technical user perspective is, "A box
popped up, probably one that you do not want and may not understand. What is
even more annoying is that it is blocking your work; you can't continue what you are
doing until you get rid of it." And so an entirely appropriate way to deal with these
annoyances is to get rid of them as quickly as possible.

Usability for Hackers

[280]

The example given in the Jargon File's definition of "PEBKAC" is:

'Did you ever figure out why that guy couldn't print?' 'Yeah, he kept canceling the
operation before it could finish. PEBKAC.'

For a long time, at least, attempting to print from a GUI gave something that looked
like a modal dialog box, but for this "modal dialog lookalike," there is one important
difference in behavior. When you click on the button to make it go away, it destroys
your print job. This is not a case of a problem existing between the user's keyboard
and chair. It is a case of a problem existing between the user interface designer's
keyboard and chair. PEBKAC.

To pick on the jargon file a little more, "Drool-proof paper" is defined as:

Documentation that has been obsessively dumbed down, to the point where only
a cretin could bear to read it, is said to have succumbed to the "drool-proof paper
syndrome" or to have been "written on drool-proof paper." For example, this is an
actual quote from Apple Computer's LaserWriter manual: "Do not expose your
LaserWriter to open fire or flame."

Let's ignore the fact that this sounds less like a technical writer trying to be easy
to understand, than corporate legal counsel trying to ward off ambulance chasers.

There is a very user-hostile attitude here: the basic idea that if your system is too
difficult for your users to understand, the users must be too stupid, and making
something user-friendly is a matter of stretching to meet people you should not
have to cater to. Stories and terms like this circulate among programmers. We might
suggest that terms like these, for your software's audience, are little, if any, better
than a racial slur. They reflect an attitude we do not need.

Python and usability
You do not really understand Python until you understand something about
usability as it appears in Python. Usability is the soul of "Pythonic."

It's not all about the computer!
There is something genuinely different about Python, and to explain it we would like
to discuss the advantages of C.

If you want to nano-optimize every ounce of performance you can get, there is
little serious competition to C. You can write assembler for different platforms,
or write in C++ that is multi-paradigm like Python and have some parts of your
program use high-level features like objects, templates, and operator overloading,

Chapter 11

[281]

while still writing almost unadulterated C for parts that are performance-critical.
And the group of programmers that "vote with their keyboards" for using C this
way, includes Guido van Rossum, who created Python. The first and canonical
Python implementation is written in C, and a Pythonista underscoring the point that
Python's switch statement is a very efficient dictionary will explain that Python's
dictionary is implemented in tightly optimized C.

But this kind of advantage comes at a price. In the canonical list of ways to shoot
yourself in the foot in different programming languages, C is "for people who want
to load their own rounds before shooting themselves in the foot." In one Python
forum, a wannabe 133t hax0r asked how to write a buffer overflow in Python, and
a wry Pythonista replied apologetically: "We're sorry, but Python doesn't support
that feature." But C does support the "feature" of buffer overflows. Its default string
handling never leaves home without it. With manual memory management and
manual handling of pointers, C also supports "features" including all kinds of
memory leaks and subtle pointer errors that can be extremely difficult to debug.
Python closes this Pandora's box, although Python is hardly the only language with
the wisdom to do so. Python, PHP, Ruby, Perl, Tcl, and Java all close the Pandora's
box that must be wide open if you are to have tightly optimized C.

C has been called a language that combines the power of using assembler with the
ease of using assembler, and there may be no compiled language that surpasses C
for power over bare metal, or for corresponding possibilities for tight optimization.
However, this is not the only way to keep score. Python keeps score by another
metric: programmer productivity.

The one overriding concern motivating decisions in Python is not how you can get
the tightest control over the computer's productivity. It is how to let the programmer
be most productive, and it has been said of this relentless pursuit of programmer
productivity that capital sentences are passed with less thorough deliberation than
obscure Python features. And if you have used Python, the difference you have
experienced is precisely because of this one overriding concern, this relentless pursuit.
The people in charge of Python have decided that Python is not about what to do to
optimize the computer; it is about what you do to empower the programmer.

If you are interested in usability, you have a good working example of usability to
look at. To put Python's strength a little differently, Python is a language where the
one overriding concern and relentless pursuit is usability for you, the programmer.
If you are working on usability, you are working to give end-users the same kind
of thing that Python gives you. You are making a product more Pythonic to use, as
opposed to giving the more C-like experience of an interface that lets users load their
own rounds before shooting themselves in the foot.

Usability is about how to go from giving C user interfaces, to giving Pythonic
user interfaces.

Usability for Hackers

[282]

What to do in the concrete
We might take a cue from expert practice in solving problems updating Gentoo
Linux. Gentoo is not an attempt to make the best "for the rest of us" Linux
distribution; Gentoo is like a brand of car intended to be a favorite of amateur
and professional mechanics. It allows very fine-grained control and tightly tuned
systems. However, upgrades do not always work, and if we try to keep a Gentoo
installation up to date, we may find that the upgrades break.

There may be a lot to Gentoo, but there is one basic, versatile, powerful technique that
works for a wide variety of problems: copy the error message or salient parts, and
make a well-crafted search to see where the problem has come up on the web. Most
of the time deft searching is the primary skill to address breakage, and when things
break, using this one skill well is often all you need even for very different problems.

There are a lot of usability methods, and a web search for "usability methods"
will turn up as much information as you care to read. However, one or two basic
methods, used well and used persistently, can deliver a lot of power. We suggest:

Get five "average Joe" users who are not programmers or insiders, and ask
them to do tasks with your system. NEVER help them, even by pointing out
something very little and obvious. (If we help them, we have tainted our
data.) Observe with a notebook; if you can videotape the interactions, that's
great. Oftentimes they will have trouble in the "wrong" part of your system,
not the part you're trying to focus on; that is still valuable data to heed.
Observe people in their own "field environment," on their turf, doing their
tasks, their ways. Once again they will do things that catch you off guard.
Being caught off guard, and writing down what they are doing "wrong," is
a good part of why such observations are desirable. This is an even more
powerful setting to learn exactly how "The user is always right."

Furthermore, these should not be something tacked on at the end, as user acceptance
testing is traditionally done by the waterfall method. They should feed into Agile
iterations: test early, test often. An early, cheap, unsophisticated set of usability tests
early on is more valuable than an expensive and in-depth test when things are set in
stone. That the first attempt will be wrong is non-negotiable, and the user interface
should be considered wrong until it tests as working—but this is another form of
the basic observation in software development that untested code has defects and
should be recognized to have defects until it has been tested and defects have
been addressed.

•

•

Chapter 11

[283]

Further reading
There are several resources available to expand your know-how on the topic:

Academic anthropology texts, even though they usually do not mention
usability. James Spradley's Participant Observation quoted earlier is one such
text. The Wikipedia articles for "participant observation," "ethnography," or
"cultural anthropology" provide a good nutshell summary and footnote texts
that offer a helpful broadening of horizons.
With Alertbox (http://useit.com/alertbox), Jakob Nielsen provides
quick, five- or ten-minute nuggets of usability insight, and while some people
complain he is stuck in the past, his work remains a basic primer about
things that people still get wrong today.
Edwin Tufte's works, such as Envisioning Information. His works often discuss
the process of a makeover to deliver information with more accuracy and less
distraction, and are a good reference point. They are not always related to
computers, but they deal with usably solving difficult problems in presenting
information visually.
Plain Language (http://plainlanguage.gov) is a U.S. government website
that deals with makeovers for usability in language. Like Tufte, they start
with something that is painful to use and demonstrate how to transform it
to something much easier.
A List Apart, http://alistapart.com. Not all of their content is centered
on usability; however, they discuss designing things well.
Web searches for "usability" or related phrases. There's a lot of good
stuff there. As mentioned earlier, there are several sites listing usability
techniques. One such site was mentioned:
http://www.usabilityfirst.com/usability-methods/

Only half of these are directly about improving software or web usability, but the
combination of direct and oblique references will help you pretty much as far as
you have time and energy to dig.

•

•

•

•

•

•

Usability for Hackers

[284]

Summary
We have covered a lot of material here; let us summarize some salient points:

Most Python/Django types have some personal strengths that are relevant
to usability testing, even if we do not realize we have them.
Cultural anthropology is bedrock to the way of observing that helps
with users.
When you are testing, resist the temptation to help the user and taint the test.
Waterfall placement of UAT as the last step is broken, but usability works
well when it is integrated into Agile iterative processes from the beginning.
Get it wrong the first time, and keep iterating until it is excellent.
Test early, test often.
A lot of unsophisticated tests are worth more than you might think.
There are some very good resources out there that cover transforming from
something terrible to something excellent.
Focus groups and their whole approach is deprecated in usability work
because the horse's mouth is a vastly overrated source of information.
Observe with a notebook, and record things on camera if you can.
Especially in usability and user interface, do not ask, "What can the computer
do?" Ask instead, "How can the computer support the person using it?"
Relevant interests that can help us range from history to cross-cultural
encounters to martial arts; getting better at usability means stretching out
into other areas besides programming.

This brings us to the end of our book. Let us turn to an appendix on debugging. We
will look at debugging, and while we will cover tools such as Firebug, our work will
not be about tools in the computer, but skills in the developer that wield different
tools to cut to the heart of bugs.

Let's begin!

•

•

•

•

•

•

•

•

•

•

•

•

Debugging Hard JavaScript
Bugs

In this section we are going to look at debugging hard bugs. (If there is a particular
kind of bug that is old hat and is debugged easily, wonderful—but then you do not
need this appendix's assistance.)

In this chapter we will cover:

Some aspects of hard debugging in any context
Using browser debugging tools, which will be considered as a group

Firefox (with Firebug), Chrome, IE 8, Opera, and Safari have something a bit like
Firebug. Firefox, Chrome, IE8, and Opera all offer debugging facilities and all let
you use console.log().

"Just fiddling with Firebug" is considered
harmful
With a tool like Firebug comes a temptation to offload the responsibility from our
shoulders to the debugger's. Features like Firebug's console.dir(), which lets
you explore an object interactively, can be very powerful. However, they can
become a crutch.

Cargo cult debugging at your fingertips
Who is most effective in hand-to-hand combat: someone unskilled who is
wielding a sword, someone unskilled wielding a mace, or a good blackbelt
who is empty-handed?

•

•

Debugging Hard JavaScript Bugs

[286]

Any, or depending on the martial art, all of these people may be more effective with
a weapon than without. But weapons do not wield themselves: people, skilled or
unskilled, wield them. And as impressive a tool as Firebug is, or Chrome's developer
tools, a skilled developer using alert() well can and will debug better than a
programmer who hopes that Firebug will provide a way out of the difficult
work of understanding hard bugs.

Some people have raised concerns that expensive medical diagnostics make for
worse physician diagnoses, not better. The reason for this is that a doctor relying on
clinical observation is aware of the need for attentive vigilance in trying to make the
best observations from what is available. With testing, there is a new temptation to
try and let the test make the diagnosis, and a test that is asked to make a diagnosis is
just not as good as a good physician's observation and reasoning. Nobody sets out
for this to happen, but it does happen.

In the imagination of popular children's stories, detectives carry around magnifying
glasses to look at things. Detectives today use more technology, not less, and can
and do make magnified photographs. Perhaps the picturesque magnifying glass is a
quaint image, and real police detectives may not use them as well-equipped soldiers
do not have quaint flintlock muskets any more. But it is the martial artist, detective,
doctor, or developer, who uses the tool. And that means that before we look at how
good debugging can use Firebug or Google Chrome's developer tools, we should
look at good debugging itself. Only after we have laid a foundation is it appropriate
to ornament it with the virtues of good debugging weapons.

The scientific method of debugging
The core of the scientific method is not just something useful for explicitly labeled
science. It can be used in several cases. In the scientific method, we do something
like the following:

Start with something you have observed but you don't understand
Then you make hypotheses: educated guesses that might account for
the phenomenon
Think of an experiment, or experiments, where your hypotheses predict
different results
Perform the experiment(s) and try to narrow down which hypotheses
account for all the data
Repeat the cycle as desired

•

•

•

•

•

Appendix

[287]

In science, this method is applied to understand how the natural world works. In
scientific debugging, we use it to understand how our software does not work: we
cannot solve the problem correctly until we understand what the problem is. And
in debugging, band-aid solutions are just that: band-aids that leave the root cause
unaddressed. The scientific method of debugging is not a tool for finding a band-aid
that will mask a problem, but for finding the root cause so we can fix it there. We try
first to duplicate a problem, then reproduce it consistently, then pin down when it
does and does not happen. This is true whether or not we have debugging tools
to use.

Exhausting yourself by barking up the
wrong tree
Often when we are having trouble finding a bug, we are looking somewhere the
bug cannot be found. You cannot find something by looking twice as hard in the
wrong place.

Sometimes, if we listen, we will get subtle, easily overlooked clues that we are barking
up the wrong tree. For instance, suppose we have the following code:

function init()
 {
 if (detect_feature())
 {
 initialize_with_feature();
 }
 else
 {
 initialize_without_feature();
 }
 }

And we can't tell which branch of the conditional is being executed. So we add
console.log() calls (which work in either Firebug or Chrome):

function init()
 {
 if (detect_feature())
 {
 console.log("init 1");
 initialize_with_feature();
 }
 else

Debugging Hard JavaScript Bugs

[288]

 {
 console.log("init 2");
 initialize_without_feature();
 }
 }

We might suggest a naming convention for console.log()
calls of the function's name, and then a space, and then a
number or unique identifier for the call, and then any variable
or other information which we might want to inspect. This is
both easy and makes large amounts of logging material, if we
need it, more navigable.

So we run this, and to our consternation nothing shows up in the log: neither init
1 nor init 2 is logged. The temptation is to say that the experiment was a complete
failure. But if we are open to a surprise and a bit of serendipity, the experiment was
a success: it showed that neither branch was being executed. That could be because
init() was not being called at all, or because detect_feature() was hanging and
not returning, or throwing an exception that is silenced later on. So to test that, we
could add another log line:

function init()
 {
 console.log("init 3");
 if (detect_feature())
 {
 console.log("init 1");
 initialize_with_feature();
 }
 else
 {
 console.log("init 2");
 initialize_without_feature();
 }
 }

And then we have evidence either that init() is not being called, or that it is being
called but detect_feature() is not completing, quickly and successfully, and
passing control to either branch of the conditional.

Appendix

[289]

The humble debugger
Dijkstra's famous essay The humble programmer talked about how arrogance about one's
programming abilities makes for a bad programmer. Humility can help us debug, and
not only by letting us accept that our code has defects. Another side of programming
humility, on a deeper level, lets us be open to surprises. Humility is an openness that
can receive serendipity, and it is an openness that can receive what the code actually
has instead of projecting its desires, reading into the code what it wants to see. More
concretely, part of humble openness means that when you do something and the
program doesn't do what you want, you are open, and choose to be open, to what the
program is actually doing. What you avoid is doing the same thing a few more times
in the hope that it will work correctly when you know you have seen a bug.

In concrete, this means unplugging a time sink that slowly nickels and dimes away
time spent sticking one's head in the sand when we could cut to the chase and start
real debugging the first time the bug shows itself, not reluctantly after it refuses to
go away and yield to our wishful thinking. If you are looking and looking for a bug and
not finding it, the reason may well be that the bug you are looking for doesn't exist anywhere.
What you need to do is recognize when you are searching and by accident stumble over a
different problem that will let you address the issue. Now part of debugging may involve
legitimately doing things again to try to sound out the scope and what triggers a
bug. But that does not make it helpful to consent to having our time nickeled and
dimed away because we allow ourselves wishful thinking and the tacit hope that
maybe the bug will go away without being fixed if only we try again a time or two.

Solving hard bugs is usually a matter of serendipity. It is like trying to find a needle in a
haystack, and accidentally discovering that there are valuables that had been hidden in the
haystack. It is tripping over the truth but not, pace Winston Churchill, picking yourself
up and continuing on.

The value of taking a break
Taking a break can work. Asking an extra set of eyes can work. And pulling an
all-nighter is working harder, not smarter: one hour of looking at code with fresh
and well-rested eyes is worth a dozen hours of staring at the same code with blurry,
sleepy eyes.

If humility matters more than you might think, persistence may be overrated. If you
are locked into finding a bug one way, you may do well with a break. A Whack on
the Side of the Head by Roger von Oech, Business Plus, available as an iPhone app, may
be invaluable (see http://creativethink.com/). Conceptual Blockbusting by James
Adams, Perseus is also invaluable. A bit of brainstorming may help you loosen up
from being locked into searching where the problem may not be at all. And a bit of
exercise can get blood flowing as well as loosening your thoughts.

Debugging Hard JavaScript Bugs

[290]

Two major benefits to asking for help
There are two major benefits to asking for help. The first benefit is that the person
you ask might be able to solve the problem. But there is another, less obvious
benefit: when you ask another programmer for help, usually you do not just say
"My program is not working"; you carefully explain what is going on so the other
person has something to go on. And it happens more than you might expect that
in the course of explaining what is going on, you realize what is causing the other
bug, whether or not your dialogue partner spoke a word. "Confessional debugging"
happens all the time.

Firebug and Chrome developer tools
Firebug set the standard for good debugging support, and Chrome web
development tools are not a port of Firebug to Chrome, but are for Chrome what
Firebug is for Firebox. Both are powerful; for CSS work, sometimes there may be
things visible in Firebug that do not show up in Chrome.

The basics across browsers
Firebug's console displays the output of console.log(), and it also displays
requests (GET, POST, and the like), which you can drill down and see their contents.

One helpful thing when something isn't working is to look at what the server is
returning in response to requests. The basic question is whether the server is sending
good data that the client is not handling properly, or whether the server is sending
bad data: in terms of scientific debugging, this is a way to narrow down where the
bug is hiding.

Appendix

[291]

The console, with the output of console.log() statements, looks like this:

It is accessed by installing Firebug from http://getfirebug.com/, and then
clicking the bug icon at the bottom-right of your window:

Debugging Hard JavaScript Bugs

[292]

Google Chrome has developer tools under its View menu, and lets you see the
JavaScript console:

Internet Explorer has developer tools available as shown in the following:

Appendix

[293]

And in Opera, we have the following:

Zeroing in on Chrome
Chrome has the following tabs/buttons:

Elements, which allows drilldown access to the live DOM.
Resources, which is a dashboard for seeing what the delays were in a page
being rendered.
Scripts, which provides debugger services in the tradition of GDB for
debugging JavaScript, including setting breakpoints, seeing the values of
variables, and so on.

•

•

•

Debugging Hard JavaScript Bugs

[294]

Timelines, which can be used to track resource usage for optimization. The
bottom-left hand of the screen has record/stop and clear buttons:

Profiles, which allows CPU and memory usage profiling.
Storage, which looks at cookies, sessions, HTML5 databases, and other
local storage.
Audits, which are meant to support third-party plugins to audit pretty much
anything: mobile readiness, network optimization, and so on.
Console, which provides a command-line console that includes but goes
beyond Firebug's command line.

What you can see, in terms of the DOM, JavaScript, CSS, and so on, you can modify
to allow surgical experiments rather than reloading a page and doing multiple
things to keep track of state. In keeping with "Where there is output, let there be input,"
clicking, double-clicking, or right-clicking on the live DOM model, JavaScript code,
properties in CSS as well as the DOM or JavaScript, and the like, can be used to
modify existing values.

Firebug got the game going and showed what it was to utilize a JavaScript debugger
correctly. Internet Explorer has something vaguely in the same vein, but perhaps
not a full-blooded replacement. Google in making Chrome tried to see how far they
could push the envelope; as already mentioned, the developer tools are for Chrome

•

•

•

•

•

Appendix

[295]

what Firebug is for Firebox, but they are not a Firebug port. They are extremely
deep and worth a book in their own right; Google's resources on the web can be
found at http://www.chromium.org/devtools, with an in-depth video at
http://tinyurl.com/GoogleChromeDevToolsInDepth, to which we refer the
reader for further study. A dir(), for example, of our PHOTO_DIRECTORY namespace
yields both a broad overview and deep possibilities for drilling down:

Debugging Hard JavaScript Bugs

[296]

Let's stop a minute and pause for a moment of, "That's funny…"

We are not now actively trying to solve a bug, but we may have stumbled on
something odd: this screenshot shows three Entities and six Entities_by_id. Our
off-the-cuff expectation may be that that the two counts should be the same. Even
though we aren't actively trying to track down a bug, nor address symptoms, this
may be the root cause of a bug.

Before we drill down it would help to think. There are at least two obvious
expectations, one or both of which may be wrong. It could be that Entities_by_id
are getting things twice; we observe that six Entities_by_id is exactly a multiple of
three Entities. Or it could just be a few more. If there are Entities that have been
deleted, it could be that Entities_by_id reflects deleted entries and Entities does
not. With that in mind, let's drill down and see what we see, how well the system
treats our hypotheses:

Appendix

[297]

This suggests another explanation, that despite Chrome leading us to believe we
have a six-element array, we might have an array of length 6 from JavaScript's
perspective, but the keys used to populate it max out at five. It has exactly three
physical entries, just like the other. Let's go over to the Scripts page and select the
:8000/ entry (the one for JavaScript on the page, although we can see other source
files too). That reads as follows:

Debugging Hard JavaScript Bugs

[298]

load_database() loads into Entities_by_id exactly what the name would
suggest: it is being used as a hash with what turn out to be primary keys assigned
by Django, and this installation has some entries that are deleted, leaving holes. It
so happens that, for our implementation, the JavaScript interpreter treats this as a
(slightly) sparse integer array.

This particular bug hunt was a lottery ticket that, like most lottery tickets, didn't
pan out. However, it is an example of how to debug live, and live debugging isn't
just when you use the tool optimally and pin down an annoying bug with seven
symptoms. That may be the kind of story we prefer to tell our fellow programmers,
but it isn't the only story in a debugging phase of programming. It is a live example
of the exploratory process that sometimes finds the bugs being traced, sometimes
stumbles on unrelated bugs, and sometimes doesn't turn up anything interesting.
(Or it may turn up something else interesting, like a juicy hook for an improved
feature offering.)

The point of debugging remains scientific debugging, even with tools at our
fingertips that will do all this and more.

Summary
In this appendix, we have looked at the basic mindset for debugging and use of tools,
tools available for different browsers, and Chrome's developer tools.

In this book, we have had a whirlwind tour of Django Ajax with jQuery, and paid
attention to usability. We have covered the basics of Ajax with Django, jQuery as
the most common JavaScript framework, server-side validation, especially in light
of usability, server-side database search in Django, jQuery UI in-place editing, how
to implement autocomplete functionality, Django's ModelForm as a powerful and
easy tool, client-side processing, including a client-side database, customization
and further development, tinkering to make a working system better, usability for
hackers, and debugging JavaScript.

Where next?

Probably best a mixture of web searches, library trips, practical development, and
a brainstorm or two about places to go!

Index
Symbols
$.aj0axSetup()

$.get() 45, 46
$.post() 45, 46
.load() 46
about 45
sample invocation 45

$.ajax()
about 39
closures 40, 41
context 40
data 42
dataFilter 43
dataType 43
error(XMLHttpRequest, textStatus, error-

Thrown) 44
prototypes and prototypal inheritance 42
success(data, textStatus, XMLHttpRequest)

44
type 44
url 44

(?u) 97
-cmp 99
.getJSON() 43
.load()

about 46
sample invocation 46, 47

@ajax_login_required decorator 107
@login_required decorator 107

A
admin.py 106, 107
AHAH solution

about 189-192

Django templates 192
Ajax

about 8
partial page updates 8
technologies 9

ajax_profile() 244
Ajax technologies

Comet 20
CSS 19
DOM 19
HTML/XHTML 17
iframes 20
JavaScript 9
JavaScript/Ajax libraries 21
JSON 18
server-side technologies 21
XML 18
XMLHttpRequest 14

anthropological observation, usability 266,
267

anthropology
about 262
resources 283

anthropology-based techniques
about 263
card sorting 263, 264

assumptions
making 76
U.S.-based assumptions! 72, 74

Asynchronous JavaScript and XML. See
Ajax

authenticate() function 110

[300]

B
body_main hook 116
boilerplate code

inserting, for jQuery UI 154, 155
build_profile() 258

C
C

advantages 280, 281
card sorting

about 263
example 263, 264

cargo cult research 265
Cascading Style Sheets. See CSS
Chrome

developer tool 290, 292
tabs/buttons 293-298

clean() method 65, 66
clean_<fieldname>() method 66
clean_serialnumber() method 66
client-side

handling 209-232
client-side search 86
closure-based example

about 52
creating 52-55

Comet 20
console.dir() 285
console.log() 285
contains 101
CPR 267
cross-cultural encounters 272, 273
CSS

about 19, 232
for styling directory 232-240

culture shock 270

D
database

handling, through Django models 86, 87
searching for 95-100

day 101
Daylight Saving Time

handling 252-258

decorator 105
detect_feature() 288
Django

about 7, 21, 35
AHAH solution 189-192
kickstart example 22

Django admin interface 122, 123
Django models

database, handling through 86, 87
for intranet employee photo directory 87-94

Django templates
workaround 146

Django templates, for AHAH
about 192
parent template 192
profile drill-down template 192-201
search results template 192-195

Django templates, workaround
about 146
Ajax behavior, turning on 156
boilerplate code, from jQuery UI documen-

tation 154, 155
first workaround 148-153
interest-based negotiation 146, 147
refining 159-162
server side code 156-159

Django templating engine
about 23-30, 114
benefits 24
kickstart example 22

Document Object Model. See DOM
DOM 19
Domain Specific Languages. See DSLs
Don't Repeat Yourself (DRY) 43

E
else clause 139
endswith 101
Entity class 90
exact 101
eXtensible Markup Language. See XML
ExtensionField 88

F
Facebook 83
field_sync() 252

[301]

Firebug
about 285
barking up wrong tree 287, 288
benefits, of asking for help 290
cargo cult debugging 285, 286
developer tool 290, 291
humble debugger 289
scientific method, of debugging 286

footer_javascript_page 116
functions.py

about 106
project-specific functions 107
StackOverflow solution 107

G
Gentoo 282
gt 101
gte 101

H
Hello, World!

customizing 168-170
expanding 168-170
ModelForm, using 165-167

hide_element() 252
hijaxing 120
homepage() 245
homepage field 91
HTML 17
human speech 8

I
icontains 101
iendswith 101
iexact 101
iframes 20
image field 94
in 101
instanceof keyword 12
Internet Explorer

developer tool 292
intranet employee photo directory

models for 87-94
iregex 101

isinstance() function 12
isnull 101
istartswith 101

J
jargon file

about 279
example 280

JavaScript
about 9
language decisions, limitations 10
setting 32
versus Python 12

JavaScript/Ajax libraries 21
JavaScript frameworks 35
Jeditable-enabled elements 248
jQuery

about 125
selectors 48

jQuery-powered Ajax 7
jQuery Ajax facilities

$.aj0axSetup() 45
$.ajax() 39
about 39

jQuery UI
boilerplate code, adding for 154, 155

jQuery UI autocomplete
adding 142, 146

jQuery UI themeroller 142
JSON 8, 18
JSON.parse() method 43

L
language decisions, JavaScript

limitations 10
LinkedIn 83
Location model 89, 135
Location object 89
login() function 110
low-level validation

about 62
malicious input, example 63, 64
regular expressions, matching 62, 63

lt 101
lte 101

[302]

M
methods, XMLHttpRequest

abort() 14
getAllResponseHeaders() 14
getResponseHeader() 14
open() 15
send() 15

Model 21
ModelForm

page appearance, customizing 170-182
using for Hello, World! 165-168

ModelForm hood
customizing 182, 183

models
for intranet employee photo directory 87-94

models.FileField() 94
Monster.com 262
month 101
MTV pattern 21, 108

N
name__icontains 101
notes field 89
notifications div 114

O
Object-relational Management (ORM) 100,

102
offer_login() 118, 249
OFFICE_CHOICES list 87
office field 89
onload event 119
onmouseover handler 247
onsole.log() function 216
overlaid function 8

P
page

making responsive 127
plugin, including 127

page-specific JavaScript 136, 137

page appearance, ModelForm
customizing 170-182

partial page updates 8, 9
password input

handling 250, 252
plugin

including, on page 127
profile drill-down template 195-201
progressive enhancement 142-146
prototypes and prototypal inheritance 42
py-editdist package 97
Python

versus JavaScript 12

R
regex 101
run_validators() 65

S
search.html 107, 114-121
search results template 192-195
selectors, jQuery 48, 51
send_notification() 117
server-side search 86
server-side technologies 21
server side views

AHAH server-side search function 207, 208
AHAH view 203
entities, deleting 202
helper functions, AHAH view 204, 206
updated model 206
user login status, verifying 202

setTimeout() 117
SGML 18
show_element() 252
sorl-thumbnail 99
Standard Generalized Markup Language.

See SGML
startswith 101
static content

setting 32
style.css 106, 113
success function 118

[303]

T
tagging.register() 93
technologies, Ajax

Comet 20
CSS 19
DOM 19
HTML/XHTML 17
iframes 20
JavaScript 9
JavaScript/Ajax libraries 21
JSON 18
server-side technologies 21
XML 18
XMLHttpRequest 14

template
about 21
for client-side requirements 128, 129, 132
page-specific JavaScript 136, 137
profile bulk 132, 133
server-side, support on 137-139
whitespace and delivery 133-136

TextStatus tags 93
to_python() 65
traceback 271
TurboGears 35
tweaks and bugfixes

Borg behavior, eliminating 244, 245
default name, setting 244
deleted instances display, preventing 246-

249
favicon.ico, adding 249
jQuery's load(), confusing with html() 245

U
U.S.-based assumptions!

conforming to 72, 74
Uniform Determination Of Death Act 268
update_autocomplete() event handler 156
updated urlpatterns 241
usability

anthropological observation 265-268
anthropology-based techniques 263
cargo cult research 265

debugging 271, 272
history 273
live cross-cultural encounters 272, 273
methods 282

user
optimization 278

V
validate() 65
validation 78
validation, Django way

about 64
approach 66, 67
error messages, avoiding 71
GPS coordinates, example 70, 71
Pythonic way 68, 69
steps 65, 66
zero-one-infinity rule 68

View 21
views.py

about 106
functions, webpages rendering 108-112

Visual Basic .NET 262

W
Web 1.0 8
Web 2.0

about 8
features 9

Website class 91
week_day 101
Whitesmith brace style 209
workaround, Django templates

about 146
Ajax behavior, turning on 156
boilerplate code, from jQuery UI documen-

tation 154, 155
first workaround 148-153
interest-based negotiation 146, 147
refining 159-162
server side code 156-159

[304]

X
XHTML 17
XML 8, 18
XMLHttpRequest

about 9, 11, 14
methods 14
properties 15

XMLHttpRequest methods
abort() 14
about 14

getAllResponseHeaders() 14
getResponseHeader() 14
open() 15
send() 15

Y
year 101

Z
zero-one-infinity rule 68

Thank you for buying
Django JavaScript Integration: AJAX and jQuery

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Django 1.0 Website Development
ISBN: 978-1-847196-78-1 Paperback: 272 pages

Build powerful web applications, quickly and cleanly,
with the Django application framework

1.	 Teaches everything you need to create a
complete Web 2.0-style web application with
Django 1.0

2.	 Learn rapid development and clean,
pragmatic design

3.	 No knowledge of Django required

4.	 Packed with examples and screenshots for
better understanding

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 For web designers to create interactive elements
for their designs

Please check www.PacktPub.com for information on our titles

Django 1.1 Testing and Debugging
ISBN: 978-1-847197-56-6 Paperback: 436 pages

Building rigorously tested and bug-free Django
applications

1.	 Develop Django applications quickly with
fewer bugs through effective use of automated
testing and debugging tools.

2.	 Ensure your code is accurate and stable
throughout development and production by
using Django’s test framework.

3.	 Understand the working of code and its
generated output with the help of debugging
tools.

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1.	 Quickly look up features of the jQuery library

2.	 Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3.	 Understand the anatomy of a jQuery script

4.	 Write your own plug-ins using jQuery’s
powerful plug-in architecture

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: jQuery and Ajax Integration in Django
	Ajax and the XMLHttpRequest object
	Human speech: An overlaid function
	Ajax: Another overlaid function
	The technologies Ajax is overlaid on
	JavaScript

	XMLHttpRequest
	Methods
	Properties

	HTML/XHTML
	XML
	JSON
	CSS
	The DOM
	iframes and other Ajax variations
	JavaScript/Ajax Libraries
	Server-side technologies

	A look at Django
	Django templating kickstart
	A more complete glimpse at Django templating

	Setting JavaScript and other static content in place
	Summary

	Chapter 2: jQuery—the Most Common JavaScript Framework
	jQuery and basic Ajax
	jQuery Ajax facilities
	$.ajax()
	context
	data
	dataFilter
	dataType
	error(XMLHttpRequest, textStatus, errorThrown)
	success(data, textStatus, XMLHttpRequest)
	type
	url

	$.aj0axSetup()
	Sample invocation
	$.get() and $.post()
	.load()

	jQuery as a virtual higher-level language
	The selectors

	A closure-based example to measure clock skew
	Case study: A more in-depth application
	Chapter 3: Validating Form Input on the Server Side
	Chapter 4: Server-side Database Search with Ajax
	Chapter 5: Signing Up and Logging into a Website Using Ajax
	Chapter 6: jQuery In-place Editing Using Ajax
	Chapter 7: Using jQuery UI Autocomplete in Django Templates
	Chapter 8: Django ModelForm: a CSS Makeover
	Chapter 9: Database and Search Handling
	Chapter 10: Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time
	Chapter 11: Usability for Hackers
	Appendix: Debugging Hard JavaScript Bugs

	Summary

	Chapter 3: Validating Form Input on the Server Side
	The standard lecture: low-level validation
	Matching regular expressions
	You cannot guarantee absolutely valid data
	Validating can detect (some) malicious input

	The Django way of validation
	Django gives you some things for free
	The steps in Django's validation
	A more sensible and cruelty-free approach to validation
	Things get murkier
	The zero-one-infinity rule: a cardinal rule of thumb in usability
	An improvement on Django's advertised approach
	A validation example: GPS coordinates
	Avoiding error messages that point fingers and say, "You're wrong!"

	Validation as demanding that assumptions be met
	Old-school: conform to our U.S.-based assumptions!
	Adding the wrong kind of band-aid

	Making assumptions and demanding that users conform
	At least names are simple, right?
	Even in ASCII, things keep getting murkier

	Better validation may be less validation
	Caveat: English is something of a lingua franca
	We don't have to negotiate with pistols
	Doing our best to solve the wrong problem: a story
	It really does apply to validation
	Facebook and LinkedIn know something better

	Summary

	Chapter 4: Server-side Database Search with Ajax
	Searching on the client side and server side
	Handling databases through Django models
	Models for an intranet employee photo directory
	Searching our database
	A tour of Django persistence facilities
	Summary

	Chapter 5: Signing Up and Logging into a Website Using Ajax
	admin.py: administrative functions called once
	functions.py: project-specific functions, including our @ajax_login_required decorator
	views.py: functions that render web pages
	style.css: basic styling for usability
	search.html: a template for client-side Ajax
	The Django admin interface
	Summary

	Chapter 6: jQuery In-place Editing Using Ajax
	Including a plugin
	How to make pages more responsive

	A template handling the client-side requirements
	The bulk of the profile
	Whitespace and delivery
	Page-specific JavaScript
	Support on the server side

	Summary

	Chapter 7: Using jQuery UI Autocomplete in Django Templates
	Adding autocomplete: first attempt
	Progressive enhancement, a best practice

	A real-world workaround
	"Interest-based negotiation": a power tool for problem solving when plan A doesn't work
	A first workaround
	Boilerplate code from jQuery UI documentation
	Turning on Ajax behavior (or trying to)
	Code on the server side

	Refining our solution further
	Summary

	Chapter 8: Django ModelForm: a CSS Makeover
	"Hello, world!" in ModelForm
	Expanding and customizing the example
	Customizing ModelForm pages' appearance
	Going under ModelForm's hood
	An excellent "stupid" question: where's the e-mail slot?
	Summary

	Chapter 9: Database and Search Handling
	Moving forward to an AHAH solution
	Django templates for simple AHAH
	Templating for a list of search results
	Template for an individual profile

	Views on the server side
	Telling if the user is logged in
	A view to support deletion
	The AHAH view to load profiles
	Helper functions for the AHAH view for searching
	An updated model
	An AHAH server-side search function

	Handling the client-side: A template for the main page
	CSS for styling the directory
	Our updated urlpatterns

	Summary

	Chapter 10: Tinkering Around: Bugfixes, Friendlier Password Input, and a Directory That Tells Local Time
	Minor tweaks and bugfixes
	Setting a default name of "(Insert name here)"
	Eliminating Borg behavior
	Confusing jQuery's load() with html()
	Preventing display of deleted instances
	Adding a favicon.ico

	Handling password input in a slightly different way
	A directory that includes local timekeeping
	Summary

	Chapter 11: Usability for Hackers
	Usability begins with anthropology… and Django hackers have a good start on anthropology
	Anthropological usability techniques
	An introductory example: card sorting

	Focus groups: cargo cult research for usability
	Anthropological observation: the bedrock of usability
	More than one way to see the same situation

	Applying this foundation to usability
	It's just like (hard) debugging
	Lessons from other areas
	Live cross-cultural encounters
	History
	Old books and literature
	The last other area: whatever you have

	Understanding the user
	A lesson from optimization
	What's wrong with scratching an itch, or you are not your user
	Worst practices from the jargon file

	Python and usability
	It's not all about the computer!

	What to do in the concrete
	Further reading
	Summary

	Appendix: Debugging Hard JavaScript Bugs
	"Just fiddling with Firebug" is considered harmful
	Cargo cult debugging at your fingertips
	The scientific method of debugging
	Exhausting yourself by barking up the wrong tree
	The humble debugger
	The value of taking a break
	Two major benefits to asking for help

	Firebug and Chrome developer tools
	The basics across browsers
	Zeroing in on Chrome

	Summary

	Index

