
����������

��
����
	������
�����
��
 !"#$%&$ '"()*

+������,-.-/0122345678943:9;<=>?

The Busy Coder's Guide to Advanced Android
Development

by Mark L. Murphy

The Busy Coder's Guide to Advanced Android Development
by Mark L. Murphy

Copyright © 2009-11 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

CommonsWare books may be purchased in printed (bulk) or digital form for educational or
business use. For more information, contact direct@commonsware.com.

Printing History:
Mar 2011:Version 1.9.2 ISBN: 978-0-9816780-1-6

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are
trademarks of CommonsWare, LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages
resulting from the use of the information contained herein.

Table of Contents

Welcome to the Warescription!..xix

Preface...xxi

Welcome to the Book!...xxi

Prerequisites. ...xxi

Warescription. ...xxiii

Errata and the Book Bug Bounty..xxiii

Source Code. ...xxv

Creative Commons and the Four-to-Free (42F) Guarantee.xxv

Lifecycle of a CommonsWare Book. ..xxvi

WebView, Inside and Out...1

Friends with Benefits. ...1

Turnabout is Fair Play. ...7

Crafting Your Own Views..13

Pick Your Poison..13

Colors, Mixed How You Like Them...15

The Layout. ...16

The Attributes. ..18

The Class. ..19

Seeing It In Use. ...24

iii

More Fun With ListViews. ..27

Giant Economy-Size Dividers. ...27

Choosing What Is Selectable. ...28

Introducing MergeAdapter. ..29

Lists via Merges. ...30

How MergeAdapter Does It...33

From Head To Toe. ..36

Control Your Selection...39

Create a Unified Row View. ..40

Configure the List, Get Control on Selection.41

Change the Row. ..43

Stating Your Selection..45

Creating Drawables. ...47

Traversing Along a Gradient. ..47

State Law. ...51

A Stitch In Time Saves Nine. ...53

The Name and the Border. ..54

Padding and the Box..54

Stretch Zones. ...55

Tooling. ...56

Using Nine-Patch Images. ...58

Home Screen App Widgets...63

East is East, and West is West...64

The Big Picture for a Small App Widget. ...64

Crafting App Widgets. ...65

The Manifest. ...66

The Metadata. ..67

iv

The Layout..68

The BroadcastReceiver. ...68

The Result..71

Another and Another. ..72

App Widgets: Their Life and Times. ...73

Controlling Your (App Widget's) Destiny. ...73

Change Your Look. ...74

One Size May Not Fit All. ..76

Advanced App Widgets on Android 3.x. ..76

New Widgets for App Widgets. ..77

Preview Images...78

Adapter-Based App Widgets...79

Being a Good Host. ..90

Interactive Maps. ..91

Get to the Point. ...92

Getting the Latitude and Longitude...92

Getting the Screen Position. ...92

Not-So-Tiny Bubbles..94

Options for Pop-up Panels. ...95

Defining a Panel Layout. ...95

Creating a PopupPanel Class. ...97

Showing and Hiding the Panel. ..97

Tying It Into the Overlay. ...99

Sign, Sign, Everywhere a Sign. ...105

Selected States...105

Per-Item Drawables..106

Changing Drawables Dynamically. ...107

v

In A New York Minute. Or Hopefully a Bit Faster.111

A Little Touch of Noo Yawk..114

Touch Events. ..114

Finding an Item. ..116

Dragging the Item. ..118

Creating Custom Dialogs and Preferences. ..121

Your Dialog, Chocolate-Covered. ...121

Basic AlertDialog Setup. ...123

Handling Color Changes. ...125

State Management. ...125

Preferring Your Own Preferences, Preferably...126

The Constructors. ...127

Creating the View. ..127

Dealing with Preference Values...128

Using the Preference. ..131

Animating Widgets..135

It's Not Just For Toons Anymore..135

A Quirky Translation. ...136

Mechanics of Translation. ..136

Imagining a Sliding Panel...137

The Aftermath. ..137

Introducing SlidingPanel. ..138

Using the Animation. ...140

Fading To Black. Or Some Other Color. ...140

Alpha Numbers..141

Animations in XML. ..141

Using XML Animations. ...142

vi

When It's All Said And Done. ..142

Loose Fill. ...143

Hit The Accelerator. ...144

Animate. Set. Match..145

Active Animations...146

Using the Camera. ..149

Sneaking a Peek. ...149

The Permission and the Feature..150

The SurfaceView. ...151

The Camera. ..152

Image Is Everything...155

Asking for a Camera. Maybe. ...156

Getting the Camera...157

Asking for a Format..160

Taking a Picture..160

Using AsyncTask...162

Maintaining Your Focus. ..163

All the Bells and Whistles. ...164

Playing Media..165

Get Your Media On. ..165

Making Noise. ...166

Moving Pictures...172

Pictures in the Stream...176

Rules for Streaming...177

Establishing the Surface. ..178

Floating Panels..179

Playing Video. ..181

vii

Touchable Controls. ...183

Other Ways to Make Noise. ...185

SoundPool. ..186

AudioTrack..187

ToneGenerator. ...187

Handling System Events. ..191

Get Moving, First Thing. ...191

The Permission. ..192

The Receiver Element...192

The Receiver Implementation. ..193

I Sense a Connection Between Us. ..194

Feeling Drained. ..197

Sticky Intents and the Battery. ..201

Other Power Triggers. ...202

Advanced Service Patterns. ..203

Remote Services. ...203

When IPC Attacks!...204

A Consumer Economy...206

Service From Afar. ...208

Servicing the Service...214

The Bind That Fails. ...220

If the Binding Is Too Tight. ..221

AlarmManager: Making the Services Run On Time.223

The WakefulIntentService Pattern. ..223

The How and Why of WakefulIntentService...................................228

Background Data Setting...232

The "Everlasting Service" Anti-Pattern. ..233

viii

Using System Settings and Services. ..235

Setting Expectations. ..235

Basic Settings. ...235

Secure Settings. ..239

Can You Hear Me Now? OK, How About Now?....................................240

Attaching SeekBars to Volume Streams. ..241

Putting Stuff on the Clipboard. ...244

Using the Clipboard on Android 1.x/2.x...244

Advanced Clipboard on Android 3.x. ...248

The Rest of the Gang. ...253

Content Provider Theory..255

Using a Content Provider...255

Pieces of Me..256

Getting a Handle. ...257

The Database-Style API. ..257

The File System-Style API. ..262

Building Content Providers. ..262

First, Some Dissection. ..263

Next, Some Typing...264

Implementing the Database-Style API. ..265

Implementing the File System-Style API. ..269

Issues with Content Providers...270

Content Provider Implementation Patterns.273

The Single-Table Database-Backed Content Provider.273

Step #1: Create a Provider Class...273

Step #2: Supply a Uri. ..280

Step #3: Declare the "Columns". ..281

ix

Step #4: Update the Manifest..282

The Local-File Content Provider. ..282

Step #1: Create the Provider Class...282

Step #2: Update the Manifest..285

Using this Provider. ...286

The Contacts Content Provider..287

Introducing You to Your Contacts. ...287

ContentProvider Recap. ..288

Organizational Structure. ...288

A Look Back at Android 1.6. ..289

Pick a Peck of Pickled People..289

Spin Through Your Contacts. ..293

Contact Permissions. ...294

Pre-Joined Data. ...294

The Sample Activity. ..295

Dealing with API Versions. ...297

Accessing People. ...300

Accessing Phone Numbers. ...302

Accessing Email Addresses..302

Makin' Contacts. ...303

Searching with SearchManager. ..309

Hunting Season. ...309

Search Yourself. ..311

Craft the Search Activity...312

Update the Manifest. ..315

Searching for Meaning In Randomness...317

May I Make a Suggestion?. ...319

x

SearchRecentSuggestionsProvider. ..320

Custom Suggestion Providers. ..322

Integrating Suggestion Providers. ...323

Putting Yourself (Almost) On Par with Google.324

Implement a Suggestions Provider. ..325

Augment the Metadata. ...325

Convince the User. ...326

The Results..327

Introspection and Integration..331

Would You Like to See the Menu?. ...332

Give Users a Choice. ...334

Asking Around. ...335

Middle Management. ...339

Finding Applications and Packages. ...339

Finding Resources. ...340

Finding Components. ..340

Get In the Loop..341

The Manifest. ..342

The Main Activity...343

The Test Activity. ...344

The Results. ..345

Take the Shortcut. ..346

Registering a Shortcut Provider. ...347

Implementing a Shortcut Provider. ..347

Using the Shortcuts. ..349

Your Own Private URL. ..353

Manifest Modifications. ...353

xi

Creating a Custom URL. ..355

Reacting to the Link...356

Homing Beacons for Intents. ...358

Working With SMS..359

Sending Out an SOS, Give or Take a Letter. ..359

Sending Via the SMS Client. ...360

Sending SMS Directly. ...360

Inside the Sender Sample...361

You Can't Get There From Here..367

Receiving SMS. ...367

Working With Existing Messages...369

More on the Manifest..371

Just Looking For Some Elbow Room. ..371

Configuring Your App to Reside on External Storage.372

What the User Sees. ...374

What the Pirate Sees. ...376

What Your App Sees...When the Card is Removed.........................377

Choosing Whether to Support External Storage.............................380

Using an Alias. ...381

Device Configuration..383

The Happy Shiny Way. ..384

Settings.System. ...384

WifiManager...384

The Dark Arts..385

Settings.Secure. ..385

System Properties. ...386

Automation, Both Shiny and Dark..387

xii

Push Notifications with C2DM...389

Pieces of Push. ..390

The Account. ..390

The Android App. ..390

Your Server. ..390

Google's Server. ...391

Google's On-Device Code. ...391

Google's Client Code...391

Getting From Here to There...391

Permissions for Push. ...392

Registering an Interest. ..393

Push It Real Good. ..397

Getting Authenticated. ..397

Sending a Notification. ..398

About the Message...399

A Controlled Push. ...399

Message Parameters. ...400

Notable Message Responses. ...401

The Right Way to Push...401

The Role of Scripting Languages. ..405

All Grown Up. ...405

Following the Script...406

Your Expertise..406

Your Users' Expertise...407

Crowd-Developing. ..407

Going Off-Script. ..408

Security. ..408

xiii

Performance. ..409

Cross-Platform Compatibility...409

Maturity...On Android. ..410

The Scripting Layer for Android. ..411

The Role of SL4A..411

On-Device Development. ...411

Getting Started with SL4A..412

Installing SL4A..412

Installing Interpreters. ...412

Running Supplied Scripts...417

Writing SL4A Scripts..420

Editing Options..420

Calling Into Android. ...423

Browsing the API. ..424

Running SL4A Scripts...425

Background. ...426

Shortcuts...426

Other Alternatives. ..427

Potential Issues. ..427

Security...From Scripts...427

Security...From Other Apps. ...428

JVM Scripting Languages..429

Languages on Languages. ..429

A Brief History of JVM Scripting. ..430

Limitations...431

Android SDK Limits..431

Wrong Bytecode...432

xiv

Age...432

SL4A and JVM Languages. ...432

Embedding JVM Languages. ..433

Architecture for Embedding..433

Inside the InterpreterService. ...434

BeanShell on Android..444

Rhino on Android. ...447

Other JVM Scripting Languages..450

Groovy..451

Jython...451

Reusable Components..455

Pick Up a JAR. ...455

The JAR Itself..456

Resources. ...456

Assets. ...459

Manifest Entries. ..459

AIDL Interfaces. ...460

Permissions. ...460

Other Source Code. ..461

Your API. ...461

Documentation. ...462

Licensing...462

Pros, Cons, and Other Forms of Navel-Gazing......................................463

Richness of API. ...464

Code Duplication...464

Ease of Initial Deployment..465

Intended Form of Integration. ..465

xv

A Private Library. ...466

Creating a Library Project. ..466

Using a Library Project. ...467

Limitations of Library Projects. ..468

Picking Up a Parcel. ...468

Binary-Only Library Projects. ...469

Resource Naming Conventions. ...469

Parcel Distribution...472

Testing...473

You Get What They Give You..473

Erecting More Scaffolding. ..475

Testing Real Stuff..477

ActivityInstrumentationTestCase...477

AndroidTestCase. ..480

Other Alternatives. ...481

Monkeying Around. ...482

Production Applications. ...485

Market Theory. ...485

Making Your Mark. ..486

Role of Code Signing. ..486

What Happens In Debug Mode..487

Creating a Production Signing Key. ...488

Signing with the Production Key. ..490

Two Types of Key Security. ...493

Related Keys. ..494

Get Ready To Go To Market..494

Versioning. ...494

xvi

Package Name. ...495

Icon and Label..495

Logging. ..496

Testing. ...497

EULA...498

To Market, To Market..499

Google Checkout. ..499

Terms and Conditions. ..500

Data Collection. ..501

Pulling Distribution. ..507

Market Filters. ..507

Going Wide. ..507

Click Here To Download. ..509

xvii

Welcome to the Warescription!

We hope you enjoy this ebook and its updates – subscribe to the
Warescription newsletter on the Warescription site to learn when new
editions of this book, or other books, are available.

All editions of CommonsWare titles, print and ebook, follow a software-
style numbering system. Major releases (1.0, 2.0, etc.) are available in both
print and ebook; minor releases (0.1, 0.9, etc.) are available in ebook form
for Warescription subscribers only. Releases ending in .9 are "release
candidates" for the next major release, lacking perhaps an index but
otherwise being complete.

Each Warescription ebook is licensed for the exclusive use of its subscriber
and is tagged with the subscriber's name. We ask that you not distribute
these books. If you work for a firm and wish to have several employees have
access, enterprise Warescriptions are available. Just contact us at
enterprise@commonsware.com.

Also, bear in mind that eventually this edition of this title will be released
under a Creative Commons license – more on this in the preface.

Remember that the CommonsWare Web site has errata and resources (e.g.,
source code) for each of our titles. Just visit the Web page for the book you
are interested in and follow the links.

You can search through the PDF using most PDF readers (e.g., Adobe
Reader). If you wish to search all of the CommonsWare books at once, and

xix

mailto:enterprise@commonsware.com
http://wares.commonsware.com/

your operating system does not support that directly, you can always
combine the PDFs into one, using tools like PDF Split-And-Merge or the
Linux command pdftk *.pdf cat output combined.pdf.

xx

http://www.pdfsam.org/

Preface

Welcome to the Book!

If you come to this book after having read its companion volume, The Busy
Coder's Guide to Android Development, thanks for sticking with the series!
CommonsWare aims to have the most comprehensive set of Android
development resources (outside of the Open Handset Alliance itself), and
we appreciate your interest.

If you come to this book having learned about Android from other sources,
thanks for joining the CommonsWare community! Android, while aimed at
small devices, is a surprisingly vast platform, making it difficult for any
given book, training, wiki, or other source to completely cover everything
one needs to know. This book will hopefully augment your knowledge of
the ins and outs of Android-dom and make it easier for you to create "killer
apps" that use the Android platform.

And, most of all, thanks for your interest in this book! I sincerely hope you
find it useful and at least occasionally entertaining.

Prerequisites

This book assumes you have experience in Android development, whether
from a CommonsWare resource or someplace else. In other words, you
should have:

xxi

http://commonsware.com/Android/
http://commonsware.com/Android/

• A working Android development environment, whether it is based
on Eclipse, another IDE, or just the command-line tools that
accompany the Android SDK

• A strong understanding of how to create activities and the various
stock widgets available in Android

• A working knowledge of the Intent system, how it serves as a
message bus, and how to use it to launch other activities

• Experience in creating, or at least using, content providers and
services

If you picked this book up expecting to learn those topics, you really need
another source first, since this book focuses on other topics. While we are
fans of The Busy Coder's Guide to Android Development, there are plenty of
other books available covering the Android basics, blog posts, wikis, and, of
course, the main Android site itself. A list of currently-available Android
books can be found on the Android Programming knol.

Some chapters may reference material in previous chapters, though usually
with a link back to the preceding section of relevance. Many chapters will
reference material in The Busy Coder's Guide to Android Development,
sometimes via the shorthand BCG to Android moniker.

In order to make effective use of this book, you will want to download the
source code for it off of the book's page on the CommonsWare site.

You can find out when new releases of this book are available via:

• The cw-android Google Group, which is also a great place to ask
questions about the book and its examples

• The commonsguy Twitter feed

• The CommonsBlog

• The Warescription newsletter, which you can subscribe to off of
your Warescription page

xxii

http://wares.commonsware.com/
http://commonsware.com/blog
http://twitter.com/commonsguy
http://groups.google.com/group/cw-android
http://commonsware.com/AdvAndroid/
http://knol.google.com/k/-/android-programming
http://code.google.com/android/

Warescription

This book will be published both in print and in digital form. The digital
versions of all CommonsWare titles are available via an annual subscription
– the Warescription.

The Warescription entitles you, for the duration of your subscription, to
digital forms of all CommonsWare titles, not just the one you are reading.
Presently, CommonsWare offers PDF and Kindle; other digital formats will
be added based on interest and the openness of the format.

Each subscriber gets personalized editions of all editions of each title: both
those mirroring printed editions and in-between updates that are only
available in digital form. That way, your digital books are never out of date
for long, and you can take advantage of new material as it is made available
instead of having to wait for a whole new print edition. For example, when
new releases of the Android SDK are made available, this book will be
quickly updated to be accurate with changes in the APIs.

From time to time, subscribers will also receive access to subscriber-only
online material, including not-yet-published new titles.

Also, if you own a print copy of a CommonsWare book, and it is in good
clean condition with no marks or stickers, you can exchange that copy for a
free four-month Warescription.

If you are interested in a Warescription, visit the Warescription section of
the CommonsWare Web site.

Errata and the Book Bug Bounty

Books updated as frequently as CommonsWare's inevitably have bugs.
Flaws. Errors. Even the occasional gaffe, just to keep things interesting. You
will find a list of the known bugs on the errata page on the CommonsWare
Web site.

xxiii

http://commonsware.com/AdvAndroid/errata
http://commonsware.com/warescription.html
http://commonsware.com/trade-in.html

But, there are probably even more problems. If you find one, please let us
know!

Be the first to report a unique concrete problem in the current digital
edition, and we'll give you a coupon for a six-month Warescription as a
bounty for helping us deliver a better product. You can use that coupon to
get a new Warescription, renew an existing Warescription, or give the
coupon to a friend, colleague, or some random person you meet on the
subway.

By "concrete" problem, we mean things like:

• Typographical errors

• Sample applications that do not work as advertised, in the
environment described in the book

• Factual errors that cannot be open to interpretation

By "unique", we mean ones not yet reported. Each book has an errata page
on the CommonsWare Web site; most known problems will be listed there.
One coupon is given per email containing valid bug reports.

NOTE: Books with version numbers lower than 0.9 are ineligible for the
bounty program, as they are in various stages of completion. We appreciate
bug reports, though, if you choose to share them with us.

We appreciate hearing about "softer" issues as well, such as:

• Places where you think we are in error, but where we feel our
interpretation is reasonable

• Places where you think we could add sample applications, or
expand upon the existing material

• Samples that do not work due to "shifting sands" of the underlying
environment (e.g., changed APIs with new releases of an SDK)

However, those "softer" issues do not qualify for the formal bounty
program.

xxiv

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code

The source code samples shown in this book are available for download
from the book's GitHub repository. All of the Android projects are licensed
under the Apache 2.0 License, in case you have the desire to reuse any of it.

If you wish to use the source code from the CommonsWare Web site, bear
in mind a few things:

1. The projects are set up to be built by Ant, not by Eclipse. If you wish
to use the code with Eclipse, you will need to create a suitable
Android Eclipse project and import the code and other assets.

2. You should delete build.xml, then run android update project
-p ... (where ... is the path to a project of interest) on those
projects you wish to use, so the build files are updated for your
Android SDK version.

The book sometimes shows entire source files, and occasionally shows only
fragments of source files that are relevant to the current discussion. The
book rarely shows each and every file for the sample projects. Please refer
to the source code repository for the full source to any of the book samples.

Some samples will be from other Android projects, such as the
CommonsWare Android Components. Those chapters will include links to
their respective source code repositories.

Creative Commons and the Four-to-Free
(42F) Guarantee

Each CommonsWare book edition will be available for use under the
Creative Commons Attribution-Noncommercial-ShareAlike 3.0 license as of
the fourth anniversary of its publication date, or when 4,000 copies of the
edition have been sold, whichever comes first. That means that, once four
years have elapsed (perhaps sooner!), you can use this prose for non-
commercial purposes. That is our Four-to-Free Guarantee to our readers

xxv

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.apache.org/licenses/LICENSE-2.0.html
http://github.com/commonsguy/cw-advandroid
mailto:bounty@commonsware.com

and the broader community. For the purposes of this guarantee, new
Warescriptions and renewals will be counted as sales of this edition,
starting from the time the edition is published.

This edition of this book will be available under the aforementioned
Creative Commons license on March 1, 2015. Of course, watch the
CommonsWare Web site, as this edition might be relicensed sooner based
on sales.

For more details on the Creative Commons Attribution-Noncommercial-
ShareAlike 3.0 license, visit the Creative Commons Web site.

Note that future editions of this book will become free on later dates, each
four years from the publication of that edition or based on sales of that
specific edition. Releasing one edition under the Creative Commons license
does not automatically release all editions under that license.

Lifecycle of a CommonsWare Book

CommonsWare books generally go through a series of stages.

First are the pre-release editions. These will have version numbers below
0.9 (e.g., 0.2). These editions are incomplete, often times having but a few
chapters to go along with outlines and notes. However, we make them
available to those on the Warescription so they can get early access to the
material.

Release candidates are editions with version numbers ending in ".9" (0.9,
1.9, etc.). These editions should be complete. Once again, they are made
available to those on the Warescription so they get early access to the
material and can file bug reports (and receive bounties in return!).

Major editions are those with version numbers ending in ".0" (1.0, 2.0, etc.).
These will be first published digitally for the Warescription members, but
will shortly thereafter be available in print from booksellers worldwide.

xxvi

Versions between a major edition and the next release candidate (e.g., 1.1,
1.2) will contain bug fixes plus new material. Each of these editions should
also be complete, in that you will not see any "TBD" (to be done) markers
or the like. However, these editions may have bugs, and so bug reports are
eligible for the bounty program, as with release candidates and major
releases.

A book usually will progress fairly rapidly through the pre-release editions
to the first release candidate and Version 1.0 – often times, only a few
months. Depending on the book's scope, it may go through another cycle of
significant improvement (versions 1.1 through 2.0), though this may take
several months to a year or more. Eventually, though, the book will go into
more of a "maintenance mode", only getting updates to fix bugs and deal
with major ecosystem events – for example, a new release of the Android
SDK will necessitate an update to all Android books.

xxvii

PART I – Advanced UI

CHAPTER 1

WebView, Inside and Out

Android uses the WebKit browser engine as the foundation for both its
Browser application and the WebView embeddable browsing widget. The
Browser application, of course, is something Android users can interact
with directly; the WebView widget is something you can integrate into your
own applications for places where an HTML interface might be useful.

In BCG to Android, we saw a simple integration of a WebView into an Android
activity, with the activity dictating what the browsing widget displayed and
how it responded to links.

Here, we will expand on this theme, and show how to more tightly
integrate the Java environment of an Android application with the
Javascript environment of WebKit.

Friends with Benefits

When you integrate a WebView into your activity, you can control what Web
pages are displayed, whether they are from a local provider or come from
over the Internet, what should happen when a link is clicked, and so forth.
And between WebView, WebViewClient, and WebSettings, you can control a fair
bit about how the embedded browser behaves. Yet, by default, the browser
itself is just a browser, capable of showing Web pages and interacting with
Web sites, but otherwise gaining nothing from being hosted by an Android
application.

1

WebView, Inside and Out

Except for one thing: addJavascriptInterface().

The addJavascriptInterface() method on WebView allows you to inject a Java
object into the WebView, exposing its methods, so they can be called by
Javascript loaded by the Web content in the WebView itself.

Now you have the power to provide access to a wide range of Android
features and capabilities to your WebView-hosted content. If you can access it
from your activity, and if you can wrap it in something convenient for use
by Javascript, your Web pages can access it as well.

For example, Google's Gears project offers a Geolocation API, so Web pages
loaded in a Gears-enabled browser can find out where the browser is
located. This information could be used for everything from fine-tuning a
search to emphasize local content to serving up locale-tailored advertising.

We can do much of the same thing with Android and
addJavascriptInterface().

In the WebView/GeoWeb1 project, you will find a fairly simple layout
(main.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <WebView android:id="@+id/webkit"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

All this does is host a full-screen WebView widget.

Next, take a look at the GeoWebOne activity class:

package com.commonsware.android.geoweb;

2

http://code.google.com/apis/gears/api_geolocation.html
http://code.google.com/apis/gears/

WebView, Inside and Out

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.webkit.WebView;
import org.json.JSONException;
import org.json.JSONObject;

public class GeoWebOne extends Activity {
 private static String PROVIDER=LocationManager.GPS_PROVIDER;
 private WebView browser;
 private LocationManager myLocationManager=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE
);

 browser.getSettings().setJavaScriptEnabled(true);
 browser.addJavascriptInterface(new Locater(), "locater");
 browser.loadUrl("file:///android_asset/geoweb1.html");
 }

 @Override
 public void onResume() {
 super.onResume();
 myLocationManager.requestLocationUpdates(PROVIDER, 10000,
 100.0f,
 onLocation);
 }

 @Override
 public void onPause() {
 super.onPause();
 myLocationManager.removeUpdates(onLocation);
 }

 LocationListener onLocation=new LocationListener() {
 public void onLocationChanged(Location location) {
 // ignore...for now
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {

3

WebView, Inside and Out

 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 public class Locater {
 public String getLocation() throws JSONException {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(null);
 }

 JSONObject json=new JSONObject();

 json.put("lat", loc.getLatitude());
 json.put("lon", loc.getLongitude());

 return(json.toString());
 }
 }
}

This looks a bit like some of the WebView examples in The Busy Coder's Guide
to Android Development's chapter on integrating WebKit. However, it adds
three key bits of code:

1. It sets up the LocationManager to provide updates when the device
position changes, routing those updates to a do-nothing
LocationListener callback object

2. It has a Locater inner class that provides a convenient API for
accessing the current location, in the form of latitude and longitude
values encoded in JSON

3. It uses addJavascriptInterface() to expose a Locater instance under
the name locater to the Web content loaded in the WebView

The Locater API uses JSON to return both a latitude and a longitude at the
same time. We are limited to using data types that are in common between
Javascript and Java, so we cannot pass back the Location object we get from
the LocationManager. Hence, we convert the key Location data into a simple
JSON structure that the Javascript on the Web page can parse.

4

WebView, Inside and Out

The Web page itself is referenced in the source code as
file:///android_asset/geoweb1.html, so the GeoWeb1 project has a
corresponding assets/ directory containing geoweb1.html:

<html>
<head>
<title>Android GeoWebOne Demo</title>
<script language="javascript">
 function whereami() {
 var location=eval('(' + locater.getLocation() + ')');
 document.getElementById("lat").innerHTML=location.lat;
 document.getElementById("lon").innerHTML=location.lon;
 }
</script>
</head>
<body>
<p>
You are at:
 (unknown) latitude and

(unknown) longitude.
</p>
<p>Update Location</p>
</body>
</html>

When you click the "Update Location" link, the page calls a whereami()
Javascript function, which in turn uses the locater object to update the
latitude and longitude, initially shown as "(unknown)" on the page.

If you run the application, initially, the page is pretty boring:

5

WebView, Inside and Out

Figure 1. The GeoWebOne sample application, as initially launched

However, if you wait a bit for a GPS fix, and click the "Update Location"
link...the page is still pretty boring, but it at least knows where you are:

6

WebView, Inside and Out

Figure 2. The GeoWebOne sample application, after clicking the Update
Location link

Turnabout is Fair Play

Now that we have seen how Javascript can call into Java, it would be nice if
Java could somehow call out to Javascript. In our example, it would be
helpful if we could expose automatic location updates to the Web page, so
it could proactively update the position as the user moves, rather than wait
for a click on the "Update Location" link.

Well, as luck would have it, we can do that too. This is a good thing,
otherwise, this would be a really weak section of the book.

What is unusual is how you call out to Javascript. One might imagine there
would be an executeJavascript() counterpart to addJavascriptInterface(),
where you could supply some Javascript source and have it executed within
the context of the currently-loaded Web page.

7

WebView, Inside and Out

Oddly enough, that is not how this is accomplished.

Instead, given your snippet of Javascript source to execute, you call
loadUrl() on your WebView, as if you were going to load a Web page, but you
put javascript: in front of your code and use that as the "address" to load.

If you have ever created a "bookmarklet" for a desktop Web browser, you
will recognize this technique as being the Android analogue – the
javascript: prefix tells the browser to treat the rest of the address as
Javascript source, injected into the currently-viewed Web page.

So, armed with this capability, let us modify the previous example to
continuously update our position on the Web page.

The layout for this new project (WebView/GeoWeb2) is the same as before. The
Java source for our activity changes a bit:

package com.commonsware.android.geoweb;

import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.webkit.WebView;
import org.json.JSONException;
import org.json.JSONObject;

public class GeoWebTwo extends Activity {
 private static String PROVIDER="gps";
 private WebView browser;
 private LocationManager myLocationManager=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 myLocationManager=(LocationManager)getSystemService(Context.LOCATION_SERVICE
);

 browser.getSettings().setJavaScriptEnabled(true);
 browser.addJavascriptInterface(new Locater(), "locater");

8

WebView, Inside and Out

 browser.loadUrl("file:///android_asset/geoweb2.html");
 }

 @Override
 public void onResume() {
 super.onResume();
 myLocationManager.requestLocationUpdates(PROVIDER, 0,
 0,
 onLocation);
 }

 @Override
 public void onPause() {
 super.onPause();
 myLocationManager.removeUpdates(onLocation);
 }

 LocationListener onLocation=new LocationListener() {
 public void onLocationChanged(Location location) {
 StringBuilder buf=new StringBuilder("javascript:whereami(");

 buf.append(String.valueOf(location.getLatitude()));
 buf.append(",");
 buf.append(String.valueOf(location.getLongitude()));
 buf.append(")");

 browser.loadUrl(buf.toString());
 }

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
 };

 public class Locater {
 public String getLocation() throws JSONException {
 Location loc=myLocationManager.getLastKnownLocation(PROVIDER);

 if (loc==null) {
 return(null);
 }

 JSONObject json=new JSONObject();

 json.put("lat", loc.getLatitude());

9

WebView, Inside and Out

 json.put("lon", loc.getLongitude());

 return(json.toString());
 }
 }
}

Before, the onLocationChanged() method of our LocationListener callback
did nothing. Now, it builds up a call to a whereami() Javascript function,
providing the latitude and longitude as parameters to that call. So, for
example, if our location were 40 degrees latitude and -75 degrees longitude,
the call would be whereami(40,-75). Then, it puts javascript: in front of it
and calls loadUrl() on the WebView. The result is that a whereami() function
in the Web page gets called with the new location.

That Web page, of course, also needed a slight revision, to accommodate
the option of having the position be passed in:

<html>
<head>
<title>Android GeoWebTwo Demo</title>
<script language="javascript">
 function whereami(lat, lon) {
 document.getElementById("lat").innerHTML=lat;
 document.getElementById("lon").innerHTML=lon;
 }

 function pull() {
 var location=eval('(' + locater.getLocation() + ')');
 whereami(location.lat, location.lon);
 }
</script>
</head>
<body>
<p>
You are at:
 (unknown) latitude and

(unknown) longitude.
</p>
<p>Update Location</p>
</body>
</html>

The basics are the same, and we can even keep our "Update Location" link,
albeit with a slightly different onClick attribute.

10

WebView, Inside and Out

If you build, install, and run this revised sample on a GPS-equipped
Android device, the page will initially display with "(unknown)" for the
current position. After a fix is ready, though, the page will automatically
update to reflect your actual position. And, as before, you can always click
"Update Location" if you wish.

11

CHAPTER 2

Crafting Your Own Views

One of the classic forms of code reuse is the GUI widget. Since the advent
of Microsoft Windows – and, to some extent, even earlier – developers have
been creating their own widgets to extend an existing widget set. These
range from 16-bit Windows "custom controls" to 32-bit Windows OCX
components to the innumerable widgets available for Java Swing and SWT,
and beyond. Android lets you craft your own widgets as well, such as
extending an existing widget with a new UI or new behaviors.

This chapter starts with a discussion of the various ways you can go about
creating custom View classes. It then moves into an examination of
ColorMixer, a composite widget, made up of several other widgets within a
layout.

Note that the material in this chapter is focused on creating custom View
classes for use within a single Android project. If your goal is to truly create
reusable custom widgets, you will also need to learn how to package them
so they can be reused – that is covered in a later chapter.

Pick Your Poison

You have five major options for creating a custom View class.

First, your "custom View class" might really only be custom Drawable
resources. Many widgets can adopt a radically different look and feel just

13

Crafting Your Own Views

with replacement graphics. For example, you might think that these toggle
buttons from the Android 2.1 Google Maps application are some fancy
custom widget:

Figure 3. Google Maps navigation toggle buttons

In reality, those are just radio buttons with replacement images.

Second, your custom View class might be a simple subclass of an existing
widget, where you override some behaviors or otherwise inject your own
logic. Unfortunately, most of the built-in Android widgets are not really
designed for this sort of simple subclassing, so you may be disappointed in
how well this particular technique works.

Third, your custom View class might be a composite widget – akin to an
activity's contents, complete with layout and such, but encapsulated in its
own class. This allows you to create something more elaborate than you will
just by tweaking resources. We will see this later in the chapter with
ColorMixer.

Fourth, you might want to implement your own layout manager, if your
GUI rules do not fit well with RelativeLayout, TableLayout, or other built-in
containers. For example, you might want to create a layout manager that
more closely mirrors the "box model" approach taken by XUL and Flex, or
you might want to create one that mirrors Swing's FlowLayout (laying
widgets out horizontally until there is no more room on the current row,
then start a new row).

Finally, you might want to do something totally different, where you need
to draw the widget yourself. For example, the ColorMixer widget uses
SeekBar widgets to control the mix of red, blue, and green. But, you might
create a ColorWheel widget that draws a spectrum gradient, detects touch
events, and lets the user pick a color that way.

14

Crafting Your Own Views

Some of these techniques are fairly simple; others are fairly complex. All
share some common traits, such as widget-defined attributes, that we will
see throughout the remainder of this chapter.

Colors, Mixed How You Like Them

The classic way for a user to pick a color in a GUI is to use a color wheel like
this one:

Figure 4. A color wheel from the API samples

There is even code to make one in the API samples.

However, a color wheel like that is difficult to manipulate on a touch
screen, particularly a capacitive touchscreen designed for finger input.
Fingers are great for gross touch events and lousy for selecting a particular
color pixel.

Another approach is to use a mixer, with sliders to control the red, green,
and blue values:

15

http://developer.android.com/resources/samples/ApiDemos/src/com/example/android/apis/graphics/ColorPickerDialog.html

Crafting Your Own Views

Figure 5. The ColorMixer widget, inside an activity

That is the custom widget you will see in this section, based on the code in
the Views/ColorMixer project.

The Layout

ColorMixer is a composite widget, meaning that its contents are created
from other widgets and containers. Hence, we can use a layout file to
describe what the widget should look like.

The layout to be used for the widget is not that much: three SeekBar widgets
(to control the colors), three TextView widgets (to label the colors), and one
plain View (the "swatch" on the left that shows what the currently selected
color is). Here is the file, found in res/layout/mixer.xml in the
Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<merge xmlns:android="http://schemas.android.com/apk/res/android">
 <View android:id="@+id/swatch"

16

Crafting Your Own Views

 android:layout_width="40dip"
 android:layout_height="40dip"
 android:layout_alignParentLeft="true"
 android:layout_centerVertical="true"
 android:layout_marginLeft="4dip"
 />
 <TextView android:id="@+id/redLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/swatch"
 android:layout_toRightOf="@id/swatch"
 android:layout_marginLeft="4dip"
 android:text="@string/red"
 android:textSize="10pt"
 />
 <SeekBar android:id="@+id/red"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/redLabel"
 android:layout_toRightOf="@id/redLabel"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="8dip"
 />
 <TextView android:id="@+id/greenLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/redLabel"
 android:layout_toRightOf="@id/swatch"
 android:layout_marginLeft="4dip"
 android:layout_marginTop="4dip"
 android:text="@string/green"
 android:textSize="10pt"
 />
 <SeekBar android:id="@+id/green"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignTop="@id/greenLabel"
 android:layout_toRightOf="@id/greenLabel"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="8dip"
 />
 <TextView android:id="@+id/blueLabel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/greenLabel"
 android:layout_toRightOf="@id/swatch"
 android:layout_marginLeft="4dip"
 android:layout_marginTop="4dip"
 android:text="@string/blue"
 android:textSize="10pt"
 />
 <SeekBar android:id="@+id/blue"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

17

Crafting Your Own Views

 android:layout_alignTop="@id/blueLabel"
 android:layout_toRightOf="@id/blueLabel"
 android:layout_marginLeft="4dip"
 android:layout_marginRight="8dip"
 />
</merge>

One thing that is a bit interesting about this layout, though, is the root
element: <merge>. A <merge> layout is a bag of widgets that can be poured
into some other container. The layout rules on the children of <merge> are
then used in conjunction with whatever container they are added to. As we
will see shortly, ColorMixer itself inherits from RelativeLayout, and the
children of the <merge> element will become children of ColorMixer in Java.
Basically, the <merge> element is only there because XML files need a single
root – otherwise, the <merge> element itself is ignored in the layout.

The Attributes

Widgets usually have attributes that you can set in the XML file, such as the
android:src attribute you can specify on an ImageButton widget. You can
create your own custom attributes that can be used in your custom widget,
by creating a res/values/attrs.xml file containing declare-styleable
resources to specify them.

For example, here is the attributes file for ColorMixer:

<resources>
 <declare-styleable name="ColorMixer">
 <attr name="initialColor" format="color" />
 </declare-styleable>
</resources>

The declare-styleable element describes what attributes are available on
the widget class specified in the name attribute – in our case, ColorMixer.
Inside declare-styleable you can have one or more attr elements, each
indicating the name of an attribute (e.g., initialColor) and what data format
the attribute has (e.g., color). The data type will help with compile-time
validation and in getting any supplied values for this attribute parsed into
the appropriate type at runtime.

18

Crafting Your Own Views

Here, we indicate there are only one attribute: initialColor, which will hold
the initial color we want the mixer set to when it first appears.

There are many possible values for the format attribute in an attr element,
including:

• boolean

• color

• dimension

• float

• fraction

• integer

• reference (which means a reference to another resource, such as a
Drawable)

• string

You can even support multiple formats for an attribute, by separating the
values with a pipe (e.g., reference|color).

The Class

Our ColorMixer class, a subclass of RelativeLayout, will take those attributes
and provide the actual custom widget implementation, for use in activities.

Constructor Flavors

A View has three possible constructors:

• One takes just a Context, which usually will be an Activity

• One takes a Context and an AttributeSet, the latter of which
represents the attributes supplied via layout XML

• One takes a Context, an AttributeSet, and the default style to apply
to the attributes

19

Crafting Your Own Views

If you are expecting to use your custom widget in layout XML files, you will
need to implement the second constructor and chain to the superclass. If
you want to use styles with your custom widget when declared in layout
XML files, you will need to implement the third constructor and chain to
the superclass. If you want developers to create instances of your View class
in Java code directly, you probably should implement the first constructor
and, again, chain to the superclass.

In the case of ColorMixer, all three constructors are implemented, eventually
routing to the three-parameter edition, which initializes our widget. Below,
you will see the first two of those constructors, with the third coming up in
the next section:

public ColorMixer(Context context) {
 this(context, null);
}

public ColorMixer(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
}

Using the Attributes

The ColorMixer has a starting color – after all, the SeekBar widgets and
swatch View have to show something. Developers can, if they wish, set that
color via a setColor() method:

public void setColor(int color) {
 red.setProgress(Color.red(color));
 green.setProgress(Color.green(color));
 blue.setProgress(Color.blue(color));
 swatch.setBackgroundColor(color);
}

If, however, we want developers to be able to use layout XML, we need to
get the value of initialColor out of the supplied AttributeSet. In ColorMixer,
this is handled in the three-parameter constructor:

public ColorMixer(Context context, AttributeSet attrs, int defStyle) {
 super(context, attrs, defStyle);

 ((Activity)getContext())

20

Crafting Your Own Views

 .getLayoutInflater()
 .inflate(R.layout.mixer, this, true);

 swatch=findViewById(R.id.swatch);

 red=(SeekBar)findViewById(R.id.red);
 red.setMax(0xFF);
 red.setOnSeekBarChangeListener(onMix);

 green=(SeekBar)findViewById(R.id.green);
 green.setMax(0xFF);
 green.setOnSeekBarChangeListener(onMix);

 blue=(SeekBar)findViewById(R.id.blue);
 blue.setMax(0xFF);
 blue.setOnSeekBarChangeListener(onMix);

 if (attrs!=null) {
 TypedArray a=getContext()
 .obtainStyledAttributes(attrs,
 R.styleable.ColorMixer,
 0, 0);

 setColor(a.getInt(R.styleable.ColorMixer_initialColor,
 0xFFA4C639));
 a.recycle();
 }
}

There are three steps for getting attribute values:

1. Get a TypedArray conversion of the AttributeSet by calling
obtainStyledAttributes() on our Context, supplying it the
AttributeSet and the ID of our styleable resource (in this case,
R.styleable.ColorMixer, since we set the name of the declare-
styleable element to be ColorMixer)

2. Use the TypedArray to access specific attributes of interest, by calling
an appropriate getter (e.g., getColor()) with the ID of the specific
attribute to fetch (R.styleable.ColorMixer_initialColor)

3. Recycle the TypedArray when done, via a call to recycle(), to make
the object available to Android for use with other widgets via an
object pool (versus creating new instances every time)

Note that the name of any given attribute, from the standpoint of
TypedArray, is the name of the styleable resource (R.styleable.ColorMixer)

21

Crafting Your Own Views

concatenated with an underscore and the name of the attribute itself
(_initialColor).

In ColorMixer, we get the attribute and pass it to setColor(). Since
getColor() on AttributeSet takes a default value, we supply some stock
color that will be used if the developer declined to supply an initialColor
attribute.

Also note that our ColorMixer constructor inflates the widget's layout. In
particular, it supplies true as the third parameter to inflate(), meaning
that the contents of the layout should be added as children to the
ColorMixer itself. When the layout is inflated, the <merge> element is
ignored, and the <merge> element's children are added as children to the
ColorMixer.

Saving the State

Similar to activities, a custom View overrides onSaveInstanceState() and
onRestoreInstanceState() to persist data as needed, such as to handle a
screen orientation change. The biggest difference is that rather than receive
a Bundle as a parameter, onSaveInstanceState() must return a Parcelable
with its state...including whatever state comes from the parent View.

The simplest way to do that is to return a Bundle, in which we have filled in
our state (the chosen color) and the parent class' state (whatever that may
be).

So, for example, here are implementations of onSaveInstanceState() and
onRestoreInstanceState() from ColorMixer:

@Override
public Parcelable onSaveInstanceState() {
 Bundle state=new Bundle();

 state.putParcelable(SUPERSTATE, super.onSaveInstanceState());
 state.putInt(COLOR, getColor());

 return(state);
}

22

Crafting Your Own Views

@Override
public void onRestoreInstanceState(Parcelable ss) {
 Bundle state=(Bundle)ss;

 super.onRestoreInstanceState(state.getParcelable(SUPERSTATE));

 setColor(state.getInt(COLOR));
}

The Rest of the Functionality

ColorMixer defines a callback interface, named OnColorChangedListener:

public interface OnColorChangedListener {
 public void onColorChange(int argb);
}

ColorMixer also provides getters and setters for an OnColorChangedListener
object:

public OnColorChangedListener getOnColorChangedListener() {
 return(listener);
}

public void setOnColorChangedListener(OnColorChangedListener listener) {
 this.listener=listener;
}

The rest of the logic is mostly tied up in the SeekBar handler, which will
adjust the swatch based on the new color and invoke the
OnColorChangedListener object, if there is one:

private SeekBar.OnSeekBarChangeListener onMix=new
SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 int color=getColor();

 swatch.setBackgroundColor(color);

 if (listener!=null) {
 listener.onColorChange(color);
 }
 }

 public void onStartTrackingTouch(SeekBar seekBar) {

23

Crafting Your Own Views

 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
};

Seeing It In Use

The project contains a sample activity, ColorMixerDemo, that shows the use of
the ColorMixer widget.

The layout for that activity, shown below, can be found in
res/layout/main.xml of the Views/ColorMixer project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:mixer="http://schemas.android.com/apk/res/com.commonsware.android.colorm
ixer"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
>
 <TextView android:id="@+id/color"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <com.commonsware.android.colormixer.ColorMixer
 android:id="@+id/mixer"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 mixer:initialColor="#FFA4C639"
 />
</LinearLayout>

Notice that the root LinearLayout element defines two namespaces, the
standard android namespace, and a separate one named mixer. The URL
associated with that namespace indicates that we are looking to reference
styleable attributes from the com.commonsware.android.colormixer package.

Our ColorMixer widget is in the layout, with a fully-qualified class name
(com.commonsware.android.colormixer.ColorMixer), since ColorMixer is not in

24

Crafting Your Own Views

the android.widget package. Notice that we can treat our custom widget like
any other, giving it a width and height and so on.

The one attribute of our ColorMixer widget that is unusual is
mixer:initialColor. initialColor, you may recall, was the name of the
attribute we declared in res/values/attrs.xml and retrieve in Java code, to
represent the color to start with. The mixer namespace is needed to identify
where Android should be pulling the rules for what sort of values an
initialColor attribute can hold. Since our <attr> element indicated that the
format of initialColor was color, Android will expect to see a color value
here, rather than a string or dimension.

The ColorMixerDemo activity is not very elaborate:

package com.commonsware.android.colormixer;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class ColorMixerDemo extends Activity {
 private TextView color=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 color=(TextView)findViewById(R.id.color);

 ColorMixer mixer=(ColorMixer)findViewById(R.id.mixer);

 mixer.setOnColorChangedListener(onColorChange);
 }

 private ColorMixer.OnColorChangedListener onColorChange=
 new ColorMixer.OnColorChangedListener() {
 public void onColorChange(int argb) {
 color.setText(Integer.toHexString(argb));
 }
 };
}

It gets access to both the ColorMixer and the TextView in the main layout,
then registers an OnColorChangedListener with the ColorMixer. That listener,

25

Crafting Your Own Views

in turn, puts the value of the color in the TextView, so the user can see the
hex value of the color along with the shade itself in the swatch.

26

CHAPTER 3

More Fun With ListViews

One of the most important widgets in your tool belt is the ListView. Some
activities are purely a ListView, to allow the user to sift through a few
choices...or perhaps a few thousand. We already saw in The Busy Coder's
Guide to Android Development how to create "fancy ListViews", where you
have complete control over the list rows themselves. In this chapter, we will
cover some additional techniques you can use to make your ListView
widgets be pleasant for your users to work with.

We start with a look at how to have a ListView with more than one distinct
type of row, section headers in this case. We then move ahead to look at
how to have header and footer rows that are in the ListView but are not part
of your actual adapter. We then spend a pair of sections discussing the list
selector – that orange bar that appears as you navigate a ListView with the
D-pad or trackball – and how to control its behavior.

Giant Economy-Size Dividers

You may have noticed that the preference UI has what behaves a lot like a
ListView, but with a curious characteristic: not everything is selectable:

27

More Fun With ListViews

Figure 6. A PreferenceScreen UI

You may have thought that this required some custom widget, or some
fancy on-the-fly View handling, to achieve this effect.

If so, you would have been wrong.

It turns out that any ListView can exhibit this behavior. In this section, we
will see how this is achieved and a reusable framework for creating such a
ListView.

Choosing What Is Selectable

There are two methods in the Adapter hierarchy that let you control what is
and is not selectable in a ListView:

• areAllItemsSelectable() should return true for ordinary ListView
widgets and false for ListView widgets where some items in the
Adapter are selectable and others are not

• isEnabled(), given a position, should return true if the item at that
position should be selectable and false otherwise

28

More Fun With ListViews

Given these two, it is "merely" a matter of overriding your chosen Adapter
class and implementing these two methods as appropriate to get the visual
effect you desire.

As one might expect, this is not quite as easy as it may sound.

For example, suppose you have a database of books, and you want to
present a list of book titles for the user to choose from. Furthermore,
suppose you have arranged for the books to be in alphabetical order within
each major book style (Fiction, Non-Fiction, etc.), courtesy of a well-crafted
ORDER BY clause on your query. And suppose you want to have headings, like
on the preferences screen, for those book styles.

If you simply take the Cursor from that query and hand it to a
SimpleCursorAdapter, the two methods cited above will be implemented as
the default, saying every row is selectable. And, since every row is a book,
that is what you want...for the books.

To get the headings in place, your Adapter needs to mix the headings in
with the books (so they all appear in the proper sequence), return a custom
View for each (so headings look different than the books), and implement
the two methods that control whether the headings or books are selectable.
There is no easy way to do this from a simple query.

Instead, you need to be a bit more creative, and wrap your
SimpleCursorAdapter in something that can intelligently inject the section
headings.

Introducing MergeAdapter

CommonsWare – the publishers of this book – have released a number of
open source reusable Android libraries, collectively called the
CommonsWare Android Components (CWAC, pronounced "quack").
Several of these will come into play for adding headings to a list, primarily
MergeAdapter. You can get the source code to MergeAdapter from its GitHub
repository.

29

https://github.com/commonsguy/cwac-merge
https://github.com/commonsguy/cwac-merge

More Fun With ListViews

MergeAdapter takes a collection of ListAdapter objects and other View widgets
and consolidates them into a single master ListAdapter that can be poured
into a ListView. You supply the contents – MergeAdapter handles the
ListAdapter interface to make them all appear to be a single contiguous list.

In the case of ListView with section headings, we can use MergeAdapter to
alternate between headings (each a View) and the rows inside each heading
(e.g., a CursorAdapter wrapping content culled from a database).

Lists via Merges

The pattern to use MergeAdapter for sectioned lists is fairly simple:

• Create one Adapter for each section. For example, in the book
scenario described above, you might have one SimpleCursorAdapter
for each book style (one for Fiction, one for Non-Fiction, etc.).

• Create heading Views for each heading (e.g., a custom-styled
TextView)

• Create a MergeAdapter and sequentially add each heading and
content Adapter in turn

• Put the container Adapter in the ListView, and everything flows from
there

You will see this implemented in the MergeAdapter sample project, which
is another riff on the "list of lorem ipsum words" sample you see scattered
throughout the Busy Coder books.

The layout for the screen is just a ListView, because the activity –
MergeAdapterDemo – is just a ListActivity:

<?xml version="1.0" encoding="utf-8"?>
<ListView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
/>

30

https://github.com/commonsguy/cwac-merge/tree/master/demo
https://github.com/commonsguy/cwac-merge/tree/master/demo

More Fun With ListViews

Our activity's onCreate() method wraps our list of nonsense words in an
ArrayAdapter three times, first with the original list and twice on randomly
shuffled editions of the list. It pops each of those into the MergeAdapter with
heading views in between (one a Button, one a TextView):

package com.commonsware.cwac.merge.demo;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListAdapter;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import com.commonsware.cwac.merge.MergeAdapter;

public class MergeAdapterDemo extends ListActivity {
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 private MergeAdapter adapter=null;
 private ArrayAdapter<String> arrayAdapter=null;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 adapter=new MergeAdapter();
 arrayAdapter=buildFirstList();
 adapter.addAdapter(arrayAdapter);
 adapter.addView(buildButton(), true);
 adapter.addAdapter(buildSecondList());
 adapter.addView(buildLabel());
 adapter.addAdapter(buildSecondList());

 setListAdapter(adapter);

31

More Fun With ListViews

 }

 @Override
 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 Log.d("MergeAdapterDemo", String.valueOf(position));
 }

 private ArrayAdapter<String> buildFirstList() {
 return(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 new
ArrayList<String>(Arrays.asList(items))));
 }

 private View buildButton() {
 Button result=new Button(this);

 result.setText("Add Capitalized Words");
 result.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 for (String item : items) {
 arrayAdapter.add(item.toUpperCase());
 }
 }
 });

 return(result);
 }

 private View buildLabel() {
 TextView result=new TextView(this);

 result.setText("Hello, world!");

 return(result);
 }

 private ListAdapter buildSecondList() {
 ArrayList<String> list=new ArrayList<String>(Arrays.asList(items));

 Collections.shuffle(list);

 return(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 list));
 }
}

The result is much as you might expect:

32

More Fun With ListViews

Figure 7. A ListView using a MergeAdapter, showing two lists and an
intervening header

Here, the headers are simple bits of text with an appropriate style applied.
Your section headers, of course, can be as complex as you like.

How MergeAdapter Does It

MergeAdapter is a surprisingly lengthy class, given its simple premise: stitch
together several ListAdapter objects to appear to the outside world as a
single contiguous ListAdapter. This section will not cover all aspects of
MergeAdapter, but here are some of the highlights.

Managing Adapters

MergeAdapter maintains an ArrayList of ListAdapter objects that represent
the contents, and there is an addAdapter() method that adds a ListAdapter
to that ArrayList.

33

More Fun With ListViews

MergeAdapter also supports adding an individual View, via a few flavors of
addView() and addViews() methods. It does this via the simple expedient of
creating a ListAdapter out of those widget(s) and adding that ListAdapter to
the ArrayList. Specifically, MergeAdapter uses another CWAC component,
SackOfViewsAdapter, to handle that chore. SackOfViewsAdapter is a
ListAdapter that holds onto an ArrayList of View objects, one per row. This
allows MergeAdapter to deal with everything in terms of ListAdapter objects.

You can take a look at SackOfViewsAdapter through its GitHub repository.

Supporting the Adapter Interface

MergeAdapter supports the ListAdapter interface, by extending BaseAdapter.
That being said, there are still about a dozen methods that MergeAdapter
needs to implement to supply its custom ListAdapter logic.

Most of those are a simple matter of iteration. For example, here is the
implementation of getViewTypeCount():

@Override
public int getViewTypeCount() {
 int total=0;

 for (ListAdapter piece : pieces) {
 total+=piece.getViewTypeCount();
 }

 return(Math.max(total, 1)); // needed for setListAdapter() before content
add'
}

The number of View types from the MergeAdapter is the sum of the number
of View types from each of its member ListAdapter objects, or 1, whichever is
higher.

Some of these require a bit more smarts in the iteration, such as
getItemViewType():

@Override
public int getItemViewType(int position) {

34

https://github.com/commonsguy/cwac-sacklist

More Fun With ListViews

 int typeOffset=0;
 int result=-1;

 for (ListAdapter piece : pieces) {
 int size=piece.getCount();

 if (position<size) {
 result=typeOffset+piece.getItemViewType(position);
 break;
 }

 position-=size;
 typeOffset+=piece.getViewTypeCount();
 }

 return(result);
}

Here, we need to walk through the ListAdapter objects in sequence until we
come to the one that has the desired position. Along the way, we add up
how many View type "slots" were used by previous adapters. The View type
slot for our desired position is the View type of that row within its
ListAdapter, offset by the number of slots already consumed by previous
adapters. This keeps us in the range of 0 to getViewTypeCount().

To deal with things being disabled, such as some headers, MergeAdapter
returns false from areAllItemsEnabled(). It then delegates isItemEnabled()
to its adapter:

@Override
public boolean isEnabled(int position) {
 for (ListAdapter piece : pieces) {
 int size=piece.getCount();

 if (position<size) {
 return(piece.isEnabled(position));
 }

 position-=size;
 }

 return(false);
}

The rest of the methods on ListAdapter are implemented in similar fashion.

35

More Fun With ListViews

From Head To Toe

Perhaps you do not need section headers scattered throughout your list. If
you only need extra "fake rows" at the beginning or end of your list, you can
use header and footer views.

ListView supports addHeaderView() and addFooterView() methods that allow
you to add View objects to the beginning and end of the list, respectively.
These View objects otherwise behave like regular rows, in that they are part
of the scrolled area and will scroll off the screen if the list is long enough. If
you want fixed headers or footers, rather than put them in the ListView
itself, put them outside the ListView, perhaps using a LinearLayout.

To demonstrate header and footer views, take a peek at
ListView/HeaderFooter, particularly the HeaderFooterDemo class:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.os.Handler;
import android.os.SystemClock;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicBoolean;

public class HeaderFooterDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

36

More Fun With ListViews

 private long startTime=SystemClock.uptimeMillis();
 private Handler handler=new Handler();
 private AtomicBoolean areWeDeadYet=new AtomicBoolean(false);

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 getListView().addHeaderView(buildHeader());
 getListView().addFooterView(buildFooter());
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 areWeDeadYet.set(true);
 }

 private View buildHeader() {
 Button btn=new Button(this);

 btn.setText("Randomize!");
 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 List<String> list=Arrays.asList(items);

 Collections.shuffle(list);

 setListAdapter(new ArrayAdapter<String>(HeaderFooterDemo.this,
 android.R.layout.simple_list_item_1,
 list));
 }
 });

 return(btn);
 }

 private View buildFooter() {
 TextView txt=new TextView(this);

 updateFooter(txt);

 return(txt);
 }

 private void updateFooter(final TextView txt) {
 long runtime=(SystemClock.uptimeMillis()-startTime)/1000;

 txt.setText(String.valueOf(runtime)+" seconds since activity launched");

37

More Fun With ListViews

 if (!areWeDeadYet.get()) {
 handler.postDelayed(new Runnable() {
 public void run() {

 updateFooter(txt);
 }
 }, 1000);
 }
 }
}

Here, we add a header View built via buildHeader(), returning a Button that,
when clicked, will shuffle the contents of the list. We also add a footer View
built via buildFooter(), returning a TextView that shows how long the
activity has been running, updated every second. The list itself is the ever-
popular list of lorem ipsum words.

When initially displayed, the header is visible but the footer is not, because
the list is too long:

Figure 8. A ListView with a header view shown

38

More Fun With ListViews

If you scroll downward, the header will slide off the top, and eventually the
footer will scroll into view:

Figure 9. A ListView with a footer view shown

Note that the same effect can be achieved with a MergeAdapter. MergeAdapter
offers somewhat greater flexibility, at the cost of requiring an external
library.

Control Your Selection

The stock Android UI for a selected ListView row is fairly simplistic: it
highlights the row in orange...and nothing more. You can control the
Drawable used for selection via the android:listSelector and
android:drawSelectorOnTop attributes on the ListView element in your
layout. However, even those simply apply some generic look to the selected
row.

39

More Fun With ListViews

It may be you want to do something more elaborate for a selected row, such
as changing the row around to expose more information. Maybe you have
thumbnail photos but only display the photo on the selected row. Or
perhaps you want to show some sort of secondary line of text, like a
person's instant messenger status, only on the selected row. Or, there may
be times you want a more subtle indication of the selected item than having
the whole row show up in some neon color. The stock Android UI for
highlighting a selection will not do any of this for you.

That just means you have to do it yourself. The good news is, it is not very
difficult.

Create a Unified Row View

The simplest way to accomplish this is for each row View to have all of the
widgets you want for the selected-row perspective, but with the "extra stuff"
flagged as invisible at the outset. That way, rows initially look "normal"
when put into the list – all you need to do is toggle the invisible widgets to
visible when a row gets selected and toggle them back to invisible when a
row is de-selected.

For example, in the ListView/Selector project, you will find a row.xml
layout representing a row in a list:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <View
 android:id="@+id/bar"
 android:background="#FFFFFF00"
 android:layout_width="5px"
 android:layout_height="fill_parent"
 android:visibility="invisible"
 />
 <TextView
 android:id="@+id/label"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:textSize="10pt"

40

More Fun With ListViews

 android:paddingTop="2px"
 android:paddingBottom="2px"
 android:paddingLeft="5px"
 />
</LinearLayout>

There is a TextView representing the bulk of the row. Before it, though, on
the left, is a plain View named bar. The background of the View is set to
yellow (android:background = "#FFFFFF00") and the width to 5px. More
importantly, it is set to be invisible (android:visibility = "invisible").
Hence, when the row is put into a ListView, the yellow bar is not seen...until
we make the bar visible.

Configure the List, Get Control on Selection

Next, we need to set up a ListView and arrange to be notified when rows are
selected and de-selected. That is merely a matter of calling
setOnItemSelectedListener() for the ListView, providing a listener to be
notified on a selection change. You can see that in the context of a
ListActivity in our SelectorDemo class:

package com.commonsware.android.listview;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.content.res.ColorStateList;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class SelectorDemo extends ListActivity {
 private static ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

41

More Fun With ListViews

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new SelectorAdapter(this));
 getListView().setOnItemSelectedListener(listener);
 }

 class SelectorAdapter extends ArrayAdapter {
 SelectorAdapter(Context ctxt) {
 super(ctxt, R.layout.row, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 SelectorWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row,
 parent, false);
 wrapper=new SelectorWrapper(convertView);
 wrapper.getLabel().setTextColor(allWhite);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(SelectorWrapper)convertView.getTag();
 }

 wrapper.getLabel().setText(items[position]);

 return(convertView);
 }
 }

 class SelectorWrapper {
 View row=null;
 TextView label=null;
 View bar=null;

 SelectorWrapper(View row) {
 this.row=row;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)row.findViewById(R.id.label);
 }

 return(label);
 }

 View getBar() {

42

More Fun With ListViews

 if (bar==null) {
 bar=row.findViewById(R.id.bar);
 }

 return(bar);
 }
 }

 AdapterView.OnItemSelectedListener listener=new
AdapterView.OnItemSelectedListener() {
 View lastRow=null;

 public void onItemSelected(AdapterView<?> parent,
 View view, int position,
 long id) {
 if (lastRow!=null) {
 SelectorWrapper wrapper=(SelectorWrapper)lastRow.getTag();

 wrapper.getBar().setVisibility(View.INVISIBLE);
 }

 SelectorWrapper wrapper=(SelectorWrapper)view.getTag();

 wrapper.getBar().setVisibility(View.VISIBLE);
 lastRow=view;
 }

 public void onNothingSelected(AdapterView<?> parent) {
 if (lastRow!=null) {
 SelectorWrapper wrapper=(SelectorWrapper)lastRow.getTag();

 wrapper.getBar().setVisibility(View.INVISIBLE);
 lastRow=null;
 }
 }
 };
}

SelectorDemo sets up a SelectorAdapter, which follow the view-wrapper
pattern established in The Busy Coder's Guide to Android Development.
Each row is created from the layout shown earlier, with a SelectorWrapper
providing access to both the TextView (for setting the text in a row) and the
bar View.

Change the Row

Our AdapterView.OnItemSelectedListener instance keeps track of the last
selected row (lastRow). When the selection changes to another row in

43

More Fun With ListViews

onItemSelected(), we make the bar from the last selected row invisible,
before we make the bar visible on the newly-selected row. In
onNothingSelected(), we make the bar invisible and make our last selected
row be null.

The net effect is that as the selection changes, we toggle the bar off and on
as needed to indicate which is the selected row.

In the layout for the activity's ListView, we turn off the regular highlighting:

<?xml version="1.0" encoding="utf-8"?>
<ListView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:listSelector="#00000000"
/>

The result is we are controlling the highlight, in the form of the yellow bar:

Figure 10. A ListView with a custom-drawn selector icon

44

More Fun With ListViews

Obviously, what we do to highlight a row could be much more elaborate
than what is demonstrated here. At the same time, it needs to be fairly
quick to execute, lest the list appear to be too sluggish.

Stating Your Selection

In the previous section, we removed the default ListView selection bar and
implemented our own in Java code. That works, but there is another option:
defining a custom selection bar Drawable resource.

In the chapter on custom Drawable resources, we introduced the
StateListDrawable. This is an XML-defined resource that declares different
Drawable resources to use when the StateListDrawable is in different states.

The standard ListView selector is, itself, a StateListDrawable, one that looks
like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<selector xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:state_window_focused="false"
 android:drawable="@color/transparent" />

 <!-- Even though these two point to the same resource, have two states so the
drawable will invalidate itself when coming out of pressed state. -->
 <item android:state_focused="true" android:state_enabled="false"
 android:state_pressed="true"
 android:drawable="@drawable/list_selector_background_disabled" />
 <item android:state_focused="true" android:state_enabled="false"
 android:drawable="@drawable/list_selector_background_disabled" />

45

More Fun With ListViews

 <item android:state_focused="true" android:state_pressed="true"
 android:drawable="@drawable/list_selector_background_transition" />
 <item android:state_focused="false" android:state_pressed="true"
 android:drawable="@drawable/list_selector_background_transition" />

 <item android:state_focused="true"
 android:drawable="@drawable/list_selector_background_focus" />

</selector>

Now, the most common reason people seem to want to change the selector
is that they hate the orange bar. Perhaps it clashes with their application's
color scheme, or they are allergic to citrus fruits, or something.

The android:state_focused="true" rule at the bottom of that XML is the one
that defines the actual selection bar, in terms of what is seen when the user
navigates with the D-pad or trackball. It points to a nine-patch PNG file,
with different copies for different screen densities (one in res/drawable-
hdpi/, etc.).

Hence, another approach to changing the selection bar is to:

1. Copy the above XML (found in
res/drawable/list_selector_background.xml in your SDK) into your
project

2. Copy the various other Drawable resources pointed to by that XML
into your project

3. Modify the nine-patch images as needed to change the colors

4. Reference the local copy of the StateListDrawable in the
android:listSelector attribute

46

CHAPTER 4

Creating Drawables

Drawable resources come in all shapes and sizes, and not just in terms of
pixel dimensions. While many Drawable resources will be PNG or JPEG files,
you can easily create other resources that supply other sorts of Drawable
objects to your application. In this chapter, we will examine a few of these
that may prove useful as you try to make your application look its best.

First, we look at using shape XML files to create gradient effects that can be
resized to accommodate different contents. We then examine
StateListDrawable and how it can be used for button backgrounds, tab
icons, map icons, and the like. We wrap by looking at nine-patch bitmaps,
for places where a shape file will not work but that the image still needs to
be resized, such as a Button background.

Traversing Along a Gradient

Gradients have long been used to add "something a little extra" to a user
interface, whether it is Microsoft adding them to Office's title bars in the
late 1990's or the seemingly endless number of gradient buttons adorning
"Web 2.0" sites.

And now, you can have gradients in your Android applications as well.

The easiest way to create a gradient is to use an XML file to describe the
gradient. By placing the file in res/drawable/, it can be referenced as a

47

Creating Drawables

Drawable resource, no different than any other such resource, like a PNG
file.

For example, here is a gradient Drawable resource, active_row.xml, from the
Drawable/Gradient sample project:

<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">
 <gradient
 android:startColor="#44FFFF00"
 android:endColor="#FFFFFF00"
 android:angle="270"
 />
 <padding
 android:top="2px"
 android:bottom="2px"
 />
 <corners android:radius="6px" />
</shape>

A gradient is applied to the more general-purpose <shape> element, in this
case, a rectangle. The gradient is defined as having a start and end color – in
this case, the gradient is an increasing amount of yellow, with only the
alpha channel varying to control how much the background blends in. The
color is applied in a direction determined by the number of degrees
specified by the android:angle attribute, with 270 representing "down" (start
color at the top, end color at the bottom).

As with any other XML-defined shape, you can control various aspects of
the way the shape is drawn. In this case, we put some padding around the
drawable and round off the corners of the rectangle.

To use this Drawable in Java code, you can reference it as
R.drawable.active_row. One possible use of a gradient is in custom ListView
row selection, as shown in Drawable/GradientDemo:

package com.commonsware.android.drawable;

import android.app.ListActivity;
import android.content.Context;
import android.os.Bundle;
import android.content.res.ColorStateList;
import android.view.View;

48

Creating Drawables

import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;

public class GradientDemo extends ListActivity {
 private static ColorStateList allWhite=ColorStateList.valueOf(0xFFFFFFFF);
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new GradientAdapter(this));
 getListView().setOnItemSelectedListener(listener);
 }

 class GradientAdapter extends ArrayAdapter {
 GradientAdapter(Context ctxt) {
 super(ctxt, R.layout.row, items);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 GradientWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row,
 parent, false);
 wrapper=new GradientWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(GradientWrapper)convertView.getTag();
 }

 wrapper.getLabel().setText(items[position]);

 return(convertView);
 }
 }

 class GradientWrapper {

49

Creating Drawables

 View row=null;
 TextView label=null;

 GradientWrapper(View row) {
 this.row=row;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)row.findViewById(R.id.label);
 }

 return(label);
 }
 }

 AdapterView.OnItemSelectedListener listener=new
AdapterView.OnItemSelectedListener() {
 View lastRow=null;

 public void onItemSelected(AdapterView<?> parent,
 View view, int position,
 long id) {
 if (lastRow!=null) {
 lastRow.setBackgroundColor(0x00000000);
 }

 view.setBackgroundResource(R.drawable.active_row);
 lastRow=view;
 }

 public void onNothingSelected(AdapterView<?> parent) {
 if (lastRow!=null) {
 lastRow.setBackgroundColor(0x00000000);
 lastRow=null;
 }
 }
 };
}

In an earlier chapter, we showed how you can get control and customize
how a selected row appears in a ListView. This time, we apply the gradient
rounded rectangle as the background of the row. We could have
accomplished this via appropriate choices for android:listSelector and
android:drawSelectorOnTop as well.

The result is a selection bar implementing the gradient:

50

Creating Drawables

Figure 11. The GradientDemo sample application

Note that because the list background is black, the yellow is mixed with
black on the top end of the gradient. If the list background were white, the
top end of the gradient would be yellow mixed with white, as determined
by the alpha channel specified on the gradient's top color.

State Law

Gradients and other shapes are not the only types of Drawable resource you
can define using XML. One, the StateListDrawable, is key if you want to
have different images when widgets are in different states.

Take for example the humble Button. Somewhere along the line, you have
probably tried setting the background of the Button to a different color,
perhaps via the android:background attribute in layout XML. If you have not
tried this before, give it a shot now.

51

Creating Drawables

When you replace the Button background with a color, the Button
becomes...well...flat. There is no defined border. There is no visual response
when you click the Button. There is no orange highlight if you select the
Button with the D-pad or trackball.

This is because what makes a Button visually be a Button is its background.
Your new background is a flat color, which will be used no matter what is
going on with the Button itself. The original background, however, was a
StateListDrawable, one that looks something like this:

<?xml version="1.0" encoding="utf-8"?>
<!-- Copyright (C) 2008 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<selector xmlns:android="http://schemas.android.com/apk/res/android">
<item android:state_window_focused="false" android:state_enabled="true"
 android:drawable="@drawable/btn_default_normal" />
<item android:state_window_focused="false" android:state_enabled="false"
 android:drawable="@drawable/btn_default_normal_disable" />
 <item android:state_pressed="true"
 android:drawable="@drawable/btn_default_pressed" />
 <item android:state_focused="true" android:state_enabled="true"
 android:drawable="@drawable/btn_default_selected" />
 <item android:state_enabled="true"
 android:drawable="@drawable/btn_default_normal" />
 <item android:state_focused="true"
 android:drawable="@drawable/btn_default_normal_disable_focused" />
 <item
 android:drawable="@drawable/btn_default_normal_disable" />
</selector>

The XML has a <selector> root element, indicating this is a
StateListDrawable. The <item> elements inside the root describe what
Drawable resource should be used if the StateListDrawable is being used in
some state. For example, if the "window" (think activity or dialog) does not

52

Creating Drawables

have the focus (android:state_window_focused="false") and the Button is
enabled (android:state_enabled="true"), then we use the
@drawable/btn_default_normal Drawable resource. That resource, as it turns
out, is a nine-patch PNG file, described later in this chapter.

Android applies each rule in turn, top-down, to find the Drawable to use for
a given state of the StateListDrawable. The last rule has no android:state_*
attributes, meaning it is the overall default image to use if none of the other
rules match.

So, if you want to change the background of a Button, you need to:

1. Copy the above resource, found in your Android SDK as
res/drawable/btn_default.xml, into your project

2. Copy each of the Button state nine-patch images into your project

3. Modify whichever of those nine-patch images you want, to affect
the visual change you seek

4. If need be, tweak the states and images defined in the
StateListDrawable XML you copied

5. Reference the local StateListDrawable as the background for your
Button

You can also use this technique for tab icons – the currently-selected tab
will use the image defined as android:state_selected="true", while the
other tabs will use images with android:state_selected="false".

We will see StateListDrawable used later in this book, in the chapter on
maps, showing you how you can have different icons in an overlay for
normal and selected states of an overlay item.

A Stitch In Time Saves Nine

As you read through the Android documentation, you no doubt ran into
references to "nine-patch" or "9-patch" and wondered what Android had to

53

Creating Drawables

do with quilting. Rest assured, you will not need to take up needlework to
be an effective Android developer.

If, however, you are looking to create backgrounds for resizable widgets,
like a Button, you will probably need to work with nine-patch images.

As the Android documentation states, a nine-patch is "a PNG image in
which you define stretchable sections that Android will resize to fit the
object at display time to accommodate variable sized sections, such as text
strings". By using a specially-created PNG file, Android can avoid trying to
use vector-based formats (e.g., SVG) and their associated overhead when
trying to create a background at runtime. Yet, at the same time, Android
can still resize the background to handle whatever you want to put inside of
it, such as the text of a Button.

In this section, we will cover some of the basics of nine-patch graphics,
including how to customize and apply them to your own Android layouts.

The Name and the Border

Nine-patch graphics are PNG files whose names end in .9.png. This means
they can be edited using normal graphics tools, but Android knows to apply
nine-patch rules to their use.

What makes a nine-patch graphic different than an ordinary PNG is a one-
pixel-wide border surrounding the image. When drawn, Android will
remove that border, showing only the stretched rendition of what lies
inside the border. The border is used as a control channel, providing
instructions to Android for how to deal with stretching the image to fit its
contents.

54

http://www.qnm.com/articles/feature64/

Creating Drawables

Padding and the Box

Along the right and bottom sides, you can draw one-pixel-wide black lines
to indicate the "padding box". Android will stretch the image such that the
contents of the widget will fit inside that padding box.

For example, suppose we are using a nine-patch as the background of a
Button. When you set the text to appear in the button (e.g., "Hello, world!"),
Android will compute the size of that text, in terms of width and height in
pixels. Then, it will stretch the nine-patch image such that the text will
reside inside the padding box. What lies outside the padding box forms the
border of the button, typically a rounded rectangle of some form.

Figure 12. The padding box, as shown by a set of control lines to the right and
bottom of the stretchable image

Stretch Zones

To tell Android where on the image to actually do the stretching, draw one-
pixel-wide black lines on the top and left sides of the image. Android will
scale the graphic only in those areas – areas outside the stretch zones are
not stretched.

55

Creating Drawables

Perhaps the most common pattern is the center-stretch, where the middle
portions of the image on both axes are considered stretchable, but the
edges are not:

Figure 13. The stretch zones, as shown by a set of control lines to the right
and bottom of the stretchable image

Here, the stretch zones will be stretched just enough for the contents to fit
in the padding box. The edges of the graphic are left unstretched.

Some additional rules to bear in mind:

• If you have multiple discrete stretch zones along an axis (e.g., two
zones separated by whitespace), Android will stretch both of them
but keep them in their current proportions. So, if the first zone is
twice as wide as the second zone in the original graphic, the first
zone will be twice as wide as the second zone in the stretched
graphic.

• If you leave out the control lines for the padding box, it is assumed
that the padding box and the stretch zones are one and the same.

56

Creating Drawables

Tooling

To experiment with nine-patch images, you may wish to use the draw9patch
program, found in the tools/ directory of your SDK installation:

Figure 14. The draw9patch tool

While a regular graphics editor would allow you to draw any color on any
pixel, draw9patch limits you to drawing or erasing pixels in the control area.
If you attempt to draw inside the main image area itself, you will be
blocked.

On the right, you will see samples of the image in various stretched sizes, so
you can see the impact as you change the stretchable zones and padding
box.

While this is convenient for working with the nine-patch nature of the
image, you will still need some other graphics editor to create or modify the
body of the image itself. For example, the image shown above, from the
Drawable/NinePatch project, is a modified version of a nine-patch graphic

57

Creating Drawables

from the SDK's ApiDemos, where the GIMP was used to add the neon green
stripe across the bottom portion of the image.

Using Nine-Patch Images

Nine-patch images are most commonly used as backgrounds, as illustrated
by the following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1"
 >
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Horizontal:"
 />
 <SeekBar android:id="@+id/horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical"
 android:text="Vertical:"
 />
 <SeekBar android:id="@+id/vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 </TableLayout>

58

Creating Drawables

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/resize"
 android:layout_width="64px"
 android:layout_height="64px"
 android:text="Hi!"
 android:textSize="5pt"
 android:background="@drawable/button"
 />
 </LinearLayout>
</LinearLayout>

Here, we have two SeekBar widgets, labeled for the horizontal and vertical
axes, plus a Button set up with our nine-patch graphic as its background
(android:background = "@drawable/button").

The NinePatchDemo activity then uses the two SeekBar widgets to let the user
control how large the button should be drawn on-screen, starting from an
initial size of 48px square:

package com.commonsware.android.drawable;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;
import android.widget.SeekBar;

public class NinePatchDemo extends Activity {
 SeekBar horizontal=null;
 SeekBar vertical=null;
 View thingToResize=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 thingToResize=findViewById(R.id.resize);

 horizontal=(SeekBar)findViewById(R.id.horizontal);
 vertical=(SeekBar)findViewById(R.id.vertical);

 horizontal.setMax(176); // 240 less 64 starting size
 vertical.setMax(176); // keep it square @ max

59

Creating Drawables

 horizontal.setOnSeekBarChangeListener(h);
 vertical.setOnSeekBarChangeListener(v);
 }

 SeekBar.OnSeekBarChangeListener h=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(64+progress,
 old.height);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };

 SeekBar.OnSeekBarChangeListener v=new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar seekBar,
 int progress,
 boolean fromTouch) {
 ViewGroup.LayoutParams old=thingToResize.getLayoutParams();
 ViewGroup.LayoutParams current=new LinearLayout.LayoutParams(old.width,
 64+progress);

 thingToResize.setLayoutParams(current);
 }

 public void onStartTrackingTouch(SeekBar seekBar) {
 // unused
 }

 public void onStopTrackingTouch(SeekBar seekBar) {
 // unused
 }
 };
}

The result is an application that can be used much like the right pane of
draw9patch, to see how the nine-patch graphic looks on an actual device or
emulator in various sizes:

60

Creating Drawables

Figure 15. The NinePatch sample project, in its initial state

Figure 16. The NinePatch sample project, after making it bigger horizontally

61

Creating Drawables

Figure 17. The NinePatch sample application, after making it bigger in both
dimensions

62

CHAPTER 5

Home Screen App Widgets

One of the oft-requested features added in Android 1.5 was the ability to
add live elements to the home screen. Called "app widgets", these can be
added by users via a long-tap on the home screen and choosing an
appropriate widget from the available roster. Android ships with a few app
widgets, such as a music player, but developers can add their own – in this
chapter, we will see how this is done.

For the purposes of this book, "app widgets" will refer to these items that go
on the home screen. Other uses of the term "widget" will be reserved for
the UI widgets, subclasses of View, usually found in the android.widget Java
package.

In this chapter, we briefly touch on the security ramifications of app
widgets, before continuing on to discuss how Android offers a secure app
widget framework. We then go through all the steps of creating a basic app
widget. Next, we discuss how to deal with multiple instances of your app
widget, the app widget lifecycle, alternative models for updating app
widgets, and how to offer multiple layouts for your app widget (perhaps
based on device characteristics). We wrap with some notes about hosting
your own app widgets in your own home screen implementation.

63

Home Screen App Widgets

East is East, and West is West...

Part of the reason it took as long as it did for app widgets to become
available is security.

Android's security model is based heavily on Linux user, file, and process
security. Each application is (normally) associated with a unique user ID.
All of its files are owned by that user, and its process(es) run as that user.
This prevents one application from modifying the files of another or
otherwise injecting their own code into another running process.

In particular, the core Android team wanted to find a way that would allow
app widgets to be displayed by the home screen application, yet have their
content come from another application. It would be dangerous for the
home screen to run arbitrary code itself or somehow allow its UI to be
directly manipulated by another process.

The app widget architecture, therefore, is set up to keep the home screen
application independent from any code that puts app widgets on that home
screen, so bugs in one cannot harm the other.

The Big Picture for a Small App Widget

The way Android pulls off this bit of security is through the use of
RemoteViews.

The application component that supplies the UI for an app widget is not an
Activity, but rather a BroadcastReceiver (often in tandem with a Service).
The BroadcastReceiver, in turn, does not inflate a normal View hierarchy,
like an Activity would, but instead inflates a layout into a RemoteViews
object.

RemoteViews encapsulates a limited edition of normal widgets, in such a
fashion that the RemoteViews can be "easily" transported across process
boundaries. You configure the RemoteViews via your BroadcastReceiver and
make those RemoteViews available to Android. Android in turn delivers the

64

Home Screen App Widgets

RemoteViews to the app widget host (usually the home screen), which
renders them to the screen itself.

This architectural choice has many impacts:

1. You do not have access to the full range of widgets and containers.
You can use FrameLayout, LinearLayout, and RelativeLayout for
containers, and AnalogClock, Button, Chronometer, ImageButton,
ImageView, ProgressBar, and TextView for widgets.

2. The only user input you can get is clicks of the Button and
ImageButton widgets. In particular, there is no EditText for text
input.

3. Because the app widgets are rendered in another process, you
cannot simply register an OnClickListener to get button clicks;
rather, you tell RemoteViews a PendingIntent to invoke when a given
button is clicked.

4. You do not hold onto the RemoteViews and reuse them yourself.
Rather, the pattern appears to be that you create and send out a
brand-new RemoteViews whenever you want to change the contents
of the app widget. This, coupled with having to transport the
RemoteViews across process boundaries, means that updating the app
widget is rather expensive in terms of CPU time, memory, and
battery life.

5. Because the component handling the updates is a
BroadcastReceiver, you have to be quick (lest you take too long and
Android consider you to have timed out), you cannot use
background threads, and your component itself is lost once the
request has been completed. Hence, if your update might take a
while, you will probably want to have the BroadcastReceiver start a
Service and have the Service do the long-running task and eventual
app widget update.

Crafting App Widgets

This will become somewhat easier to understand in the context of some
sample code. In the AppWidget/PairOfDice project, you will find an app

65

Home Screen App Widgets

widget that displays a roll of a pair of dice. Clicking on the app widget re-
rolls, in case you want a better result.

The Manifest

First, we need to register our BroadcastReceiver implementation in our
AndroidManifest.xml file, along with a few extra features:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.appwidget.dice" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="8"/>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <receiver android:name=".AppWidget" android:label="@string/app_name"
android:icon="@drawable/cw">
 <intent-filter>
 <action
android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
android:resource="@xml/widget_provider"/>
 </receiver>
 </application>
</manifest>

Here we have just a <receiver>. Of note:

• Our <receiver> has android:label and android:icon attributes, which
are not normally needed on BroadcastReceiver declarations.
However, in this case, those are used for the entry that goes in the
menu of available widgets to add to the home screen. Hence, you
will probably want to supply values for both of those, and use
appropriate resources in case you want translations for other
languages.

• Our <receiver> has an <intent-filter> for the
android.appwidget.action.APPWIDGET_UPDATE action. This means we
will get control whenever Android wants us to update the content of
our app widget. There may be other actions we want to monitor –
more on this in a later section.

66

Home Screen App Widgets

• Our <receiver> also has a <meta-data> element, indicating that its
android.appwidget.provider details can be found in the
res/xml/widget_provider.xml file. This metadata is described in the
next section.

The Metadata

Next, we need to define the app widget provider metadata. This has to
reside at the location indicated in the manifest – in this case, in
res/xml/widget_provider.xml:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="144dip"
 android:minHeight="72dip"
 android:updatePeriodMillis="900000"
 android:initialLayout="@layout/widget"
/>

Here, we provide four pieces of information:

• The minimum width and height of the app widget (android:minWidth
and android:minHeight). These are approximate – the app widget
host (e.g., home screen) will tend to convert these values into "cells"
based upon the overall layout of the UI where the app widgets will
reside. However, they should be no smaller than the minimums
cited here. Also, ideally, you use dip instead of px for the
dimensions, so the number of cells will remain constant regardless
of screen density.

• The frequency in which Android should request an update of the
widget's contents (android:updatePeriodMillis). This is expressed in
terms of milliseconds, so a value of 3600000 is a 60-minute update
cycle. Note that the minimum value for this attribute is 30 minutes
– values less than that will be "rounded up" to 30 minutes. Hence
our 15-minute (900000 millisecond) request will actually result in an
update every 30 minutes.

• The initial layout to use for the app widget, for the time between
when the user requests the app widget and when onUpdate() of our
AppWidgetProvider gets control.

67

Home Screen App Widgets

The Layout

Eventually, you are going to need a layout that describes what the app
widget looks like. So long as you stick to the widget and container classes
noted above, this layout can otherwise look like any other layout in your
project.

For example, here is the layout for the PairOfDice app widget:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/background"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/widget_frame"
 >
 <ImageView android:id="@+id/left_die"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:src="@drawable/die_5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="7dip"
 />
 <ImageView android:id="@+id/right_die"
 android:layout_centerVertical="true"
 android:layout_alignParentRight="true"
 android:src="@drawable/die_2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginRight="7dip"
 />
</RelativeLayout>

All we have is a pair of ImageView widgets (one for each die), inside of a
RelativeLayout. The RelativeLayout has a background, specified as a nine-
patch PNG file. This allows the RelativeLayout to have guaranteed contrast
with whatever wallpaper is behind it, so the user can tell the actual app
widget bounds.

68

Home Screen App Widgets

The BroadcastReceiver

Next, we need a BroadcastReceiver that can get control when Android wants
us to update our RemoteViews for our app widget. To simplify this, Android
supplies an AppWidgetProvider class we can extend, instead of the normal
BroadcastReceiver. This simply looks at the received Intent and calls out to
an appropriate lifecycle method based on the requested action.

The one method that invariably needs to be implemented on the provider
is onUpdate(). Other lifecycle methods may be of interest and are discussed
later in this chapter.

For example, here is the onUpdate() implementation of the
AppWidgetProvider for PairOfDice:

package com.commonsware.android.appwidget.dice;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.widget.RemoteViews;

public class AppWidget extends AppWidgetProvider {
 private static final int[] IMAGES={R.drawable.die_1,R.drawable.die_2,
 R.drawable.die_3,R.drawable.die_4,
 R.drawable.die_5,R.drawable.die_6};

 @Override
 public void onUpdate(Context ctxt, AppWidgetManager mgr,
 int[] appWidgetIds) {
 ComponentName me=new ComponentName(ctxt, AppWidget.class);

 mgr.updateAppWidget(me, buildUpdate(ctxt, appWidgetIds));
 }

 private RemoteViews buildUpdate(Context ctxt, int[] appWidgetIds) {
 RemoteViews updateViews=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget);

 Intent i=new Intent(ctxt, AppWidget.class);

 i.setAction(AppWidgetManager.ACTION_APPWIDGET_UPDATE);
 i.putExtra(AppWidgetManager.EXTRA_APPWIDGET_IDS, appWidgetIds);

69

Home Screen App Widgets

 PendingIntent pi=PendingIntent.getBroadcast(ctxt, 0 , i,
 PendingIntent.FLAG_UPDATE_CURRENT)
;

 updateViews.setImageViewResource(R.id.left_die,
 IMAGES[(int)(Math.random()*6)]);
 updateViews.setOnClickPendingIntent(R.id.left_die, pi);
 updateViews.setImageViewResource(R.id.right_die,
 IMAGES[(int)(Math.random()*6)]);
 updateViews.setOnClickPendingIntent(R.id.right_die, pi);
 updateViews.setOnClickPendingIntent(R.id.background, pi);

 return(updateViews);
 }
}

To update the RemoteViews for our app widget, we need to build those
RemoteViews (delegated to a buildUpdate() helper method) and tell an
AppWidgetManager to update the widget via updateAppWidget(). In this case,
we use a version of updateAppWidget() that takes a ComponentName as the
identifier of the widget to be updated. Note that this means that we will
update all instances of this app widget presently in use – the concept of
multiple app widget instances is covered in greater detail later in this
chapter.

Working with RemoteViews is a bit like trying to tie your shoes while wearing
mittens – it may be possible, but it is a bit clumsy. In this case, rather than
using methods like findViewById() and then calling methods on individual
widgets, we need to call methods on RemoteViews itself, providing the
identifier of the widget we wish to modify. This is so our requests for
changes can be serialized for transport to the home screen process. It does,
however, mean that our view-updating code looks a fair bit different than it
would if this were the main View of an activity or row of a ListView.

To create the RemoteViews, we use a constructor that takes our package
name and the identifier of our layout. This gives us a RemoteViews that
contains all of the widgets we declared in that layout, just as if we inflated
the layout using a LayoutInflater. The difference, of course, is that we have
a RemoteViews object, not a View, as the result.

We then use methods like:

70

Home Screen App Widgets

• setImageViewResource() to set the image for each of our ImageView
widgets, in this case a randomly chosen die face (using graphics
created from a set of SVG files from the OpenClipArt site)

• setOnClickPendingIntent() to provide a PendingIntent that should
get fired off when a die, or the overall app widget background, is
clicked

We then supply that RemoteViews to the AppWidgetManager, which pushes the
RemoteViews structure to the home screen, which renders our new app
widget UI.

The Result

If you compile and install all of this, you will have a new widget entry
available when you long-tap on the home screen background:

Figure 18. The roster of available widgets

71

http://www.openclipart.org/search/?query=dice

Home Screen App Widgets

When you choose Pair of Dice, the app widget will appear on the home
screen:

Figure 19. The Pair of Dice app widget, in action

To re-roll, just tap anywhere on the app widget.

Another and Another

As indicated above, you can have multiple instances of the same app widget
outstanding at any one time. For example, one might have multiple picture
frames, or multiple "show-me-the-latest-RSS-entry" app widgets, one per
feed. You will distinguish between these in your code via the identifier
supplied in the relevant AppWidgetProvider callbacks (e.g., onUpdate()).

If you want to support separate app widget instances, you will need to store
your state on a per-app-widget-identifier basis. You will also need to use an
appropriate version of updateAppWidget() on AppWidgetManager when you

72

Home Screen App Widgets

update the app widgets, one that takes app widget identifiers as the first
parameter, so you update the proper app widget instances.

Conversely, there is nothing requiring you to support multiple instances as
independent entities. For example, if you add more than one PairOfDice app
widget to your home screen, nothing blows up – they just show the same
roll. That is because PairOfDice uses a version of updateAppWidget() that
does not take any app widget IDs, and therefore updates all app widgets
simultaneously.

App Widgets: Their Life and Times

There are three other lifecycle methods that AppWidgetProvider offers that
you may be interested in:

• onEnabled() will be called when the first widget instance is created
for this particular widget provider, so if there is anything you need
to do once for all supported widgets, you can implement that logic
here

• onDeleted() will be called when a widget instance is removed from
the home screen, in case there is any data you need to clean up
specific to that instance

• onDisabled() will be called when the last widget instance for this
provider is removed from the home screen, so you can clean up
anything related to all such widgets

Note, however, that there is a bug in Android 1.5, where onDeleted() will not
be properly called. You will need to implement onReceive() and watch for
the ACTION_APPWIDGET_DELETED action in the received Intent and call
onDeleted() yourself. This has since been fixed, and if you are not
supporting Android 1.5, you will not need to worry about this problem.

Controlling Your (App Widget's) Destiny

As PairOfDice illustrates, you are not limited to updating your app widget
only based on the timetable specified in your metadata. That timetable is

73

Home Screen App Widgets

useful if you can get by with a fixed schedule. However, there are cases in
which that will not work very well:

• If you want the user to be able to configure the polling period (the
metadata is baked into your APK and therefore cannot be modified
at runtime)

• If you want the app widget to be updated based on external factors,
such as a change in location

The recipe shown in PairOfDice will let you use AlarmManager (described in
another chapter) or proximity alerts or whatever to trigger updates. All you
need to do is:

• Arrange for something to broadcast an Intent that will be picked up
by the BroadcastReceiver you are using for your app widget provider

• Have the provider process that Intent directly or pass it along to a
Service (such as an IntentService)

Also, note that the updatePeriodMillis setting not only tells the app widget
to update every so often, it will even wake up the phone if it is asleep so the
widget can perform its update. On the plus side, this means you can easily
keep your widgets up to date regardless of the state of the device. On the
minus side, this will tend to drain the battery, particularly if the period is
too fast. If you want to avoid this wakeup behavior, set updatePeriodMillis
to 0 and use AlarmManager to control the timing and behavior of your widget
updates.

Note that if there are multiple instances of your app widget on the user's
home screen, they will all update approximately simultaneously if you are
using updatePeriodMillis. If you elect to set up your own update schedule,
you can control which app widgets get updated when, if you choose.

Change Your Look

If you have been doing most of your development via the Android
emulator, you are used to all "devices" having a common look and feel, in

74

Home Screen App Widgets

terms of the home screen, lock screen, and so forth. This is the so-called
"Google Experience" look, and many actual Android devices have it.

However, some devices have their own presentation layers. HTC has
"Sense", seen on the HTC Hero and HTC Tattoo, among other devices.
Motorola has MOTOBLUR, seen on the Motorola CLIQ and DEXT. Other
device manufacturers, like Sony Ericsson, Samsung, and LG, have followed
suit, as will others in the future. These presentation layers replace the home
screen and lock screen, among other things. Moreover, they usually come
with their own suite of app widgets with their own look and feel. Your app
widget may look fine on a Google Experience home screen, but the look
might clash when viewed on a Sense or MOTOBLUR device.

Fortunately, there are ways around this. You can set your app widget's look
on the fly at runtime, to choose the layout that will look the best on that
particular device.

The first step is to create an app widget layout that is initially invisible
(res/layout/invisible.xml):

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:visibility="invisible"
 >
</RelativeLayout>

This layout is then the one you would reference from your app widget
metadata, to be used when the app widget is first created:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="292dip"
 android:minHeight="72dip"
 android:updatePeriodMillis="900000"
 android:configure="com.commonsware.android.appwidget.TWPrefs"
 android:initialLayout="@layout/invisible"
/>

75

Home Screen App Widgets

This ensures that when your app widget is initially added, you do not get
the "Problem loading widget" placeholder, yet you also do not choose one
layout versus another – it is simply invisible for a brief moment.

Then, in your AppWidgetProvider (or attached IntentService), you can make
the choice of what layout to inflate as part of your RemoteViews. Rather than
using the invisible one, you can choose one based on the device or other
characteristics. The biggest challenge is that there is no good way to
determine what presentation layer, if any, is in use on a device. For the time
being, you will need to use the various fields in the android.os.Build class to
"sniff" on the device model and make a decision that way.

One Size May Not Fit All

It may be that you want to offer multiple app widget sizes to your users.
Some might only want a small app widget. Some might really like what you
have to offer and want to give you more home screen space to work in.

The good news: this is easy to do.

The bad news: it requires you, in effect, to have one app widget per size.

The size of an app widget is determined by the app widget metadata XML
file. That XML file is tied to a <receiver> element in the manifest
representing one app widget. Hence, to have multiple sizes, you need
multiple metadata files and multiple <receiver> elements.

This also means your app widgets will show up multiple times in the app
widget selection list, when the user goes to add an app widget to their
home screen. Hence, supporting many sizes will become annoying to the
user, if they perceive you are "spamming" the app widget list. Try to keep
the number of app widget sizes to a reasonable number (say, one or two
sizes).

76

Home Screen App Widgets

Advanced App Widgets on Android 3.x

Android 3.0 introduced a few new capabilities for app widgets, to make
them more interactive and more powerful than before. The documentation
lags a bit, though, so determining how to use these features takes a bit of
exploring. Fortunately for you, the author did some of that exploring on
your behalf, to save you some trouble.

New Widgets for App Widgets

In addition to the classic widgets available for use in app widgets and
RemoteViews, five more were added for Android 3.0:

• GridView

• ListView

• StackView

• ViewFlipper

• AdapterViewFlipper

Three of these (GridView, ListView, ViewFlipper) are widgets that existed in
Android since the outset. StackView is a new widget to provide a "stack of
cards" UI:

77

Home Screen App Widgets

Figure 20. The Google Books app widget, showing a StackView

AdapterViewFlipper works like a ViewFlipper, allowing you to toggle between
various children with only one visible at a time. However, whereas with
ViewFlipper all children are fully-instantiated View objects held by the
ViewFlipper parent, AdapterViewFlipper uses the Adapter model, so only a
small number of actual View objects are held in memory, no matter how
many potential children there are.

With the exception of ViewFlipper, the other four all require the use of an
Adapter. This might seem odd, as there is no way to provide an Adapter to a
RemoteViews. That is true, but Android 3.0 added new ways for Adapter-like
communication between the app widget host (e.g., home screen) and your
application. We will take an in-depth look at that in an upcoming section.

Preview Images

App widgets can now have preview images attached. Preview images are
drawable resources representing a preview of what the app widget might
look like on the screen. On tablets, this will be used as part of an app widget
gallery, replacing the simple context menu presentation you see on Android
1.x and 2.x phones:

78

Home Screen App Widgets

Figure 21. The XOOM tablet's app widget gallery

To create the preview image itself, the Android 3.0 emulator contains a
Widget Preview application that lets you run an app widget in its own
container, outside of the home screen:

Figure 22. The Widget Preview application, showing a preview of the Analog
Clock app widget

79

Home Screen App Widgets

From here, you can take a snapshot and save it to external storage, copy it
to your project's res/drawable-nodpi/ directory (indicating that there is no
intrinsic density assumed for this image), and reference it in your app
widget metadata via an android:previewImage attribute. We will see an
example of such an attribute in the next section.

Adapter-Based App Widgets

In an activity, if you put a ListView or GridView into your layout, you will
also need to hand it an Adapter, providing the actual row or cell View objects
that make up the contents of those selection widgets.

In an app widget, this becomes a bit more complicated. The host of the app
widget does not have any Adapter class of yours. Hence, just as we have to
send the contents of the app widget's UI via a RemoteViews, we will need to
provide the rows or cells via RemoteViews as well. Android, starting with API
Level 11, has a RemoteViewsService and RemoteViewsFactory that you can use
for this purpose. Let's take a look, in the form of the AppWidget/LoremWidget
sample project, which will put a ListView of 25 nonsense words into an app
widget.

The AppWidgetProvider

At its core, our AppWidgetProvider (named WidgetProvider, in a stunning
display of creativity) still needs to create and configure a RemoteViews object
with the app widget UI, then use updateAppWidget() to push that RemoteViews
to the host via the AppWidgetManager. However, for an app widget that
involves an AdapterView, like ListView, there are two more key steps:

1. You have to tell the RemoteViews the identity of a RemoteViewsService
that will help fill the role that the Adapter would in an activity

2. You have to provide the RemoteViews with a "template" PendingIntent
to be used when the user taps on a row or cell in the AdapterView, to
replace the onListItemClick() or similar method you might have
used in an activity

80

Home Screen App Widgets

For example, here is WidgetProvider for our nonsense-word app widget:

package com.commonsware.android.appwidget.lorem;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.Context;
import android.content.Intent;
import android.content.ComponentName;
import android.net.Uri;
import android.widget.RemoteViews;

public class WidgetProvider extends AppWidgetProvider {
 public static String EXTRA_WORD=
 "com.commonsware.android.appwidget.lorem.WORD";

 @Override
 public void onUpdate(Context ctxt, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) {
 for (int i=0; i<appWidgetIds.length; i++) {
 Intent svcIntent=new Intent(ctxt, WidgetService.class);

 svcIntent.putExtra(AppWidgetManager.EXTRA_APPWIDGET_ID, appWidgetIds[i]);
 svcIntent.setData(Uri.parse(svcIntent.toUri(Intent.URI_INTENT_SCHEME)));

 RemoteViews widget=new RemoteViews(ctxt.getPackageName(),
 R.layout.widget);

 widget.setRemoteAdapter(appWidgetIds[i], R.id.words,
 svcIntent);

 Intent clickIntent=new Intent(ctxt, LoremActivity.class);
 PendingIntent clickPI=PendingIntent
 .getActivity(ctxt, 0,
 clickIntent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 widget.setPendingIntentTemplate(R.id.words, clickPI);

 appWidgetManager.updateAppWidget(appWidgetIds[i], widget);
 }

 super.onUpdate(ctxt, appWidgetManager, appWidgetIds);
 }
}

The call to setRemoteAdapter() is where we point the RemoteViews to our
RemoteViewsService for our AdapterView widget. The main rules for the Intent
used to identify the RemoteViewsService are:

81

Home Screen App Widgets

• The service must be identified by its data (Uri), so even if you create
the Intent via the Context-and-Class constructor, you will need to
convert that into a Uri via toUri(Intent.URI_INTENT_SCHEME) and set
that as the Uri for the Intent. Why? While your application has
access to your RemoteViewService Class object, the app widget host
will not, and so we need something that will work across process
boundaries. You could elect to add your own <intent-filter> to the
RemoteViewsService and use an Intent based on that, but that would
make your service more publicly visible than you might want.

• Any extras that you package on the Intent – such as the app widget
ID in this case – will be on the Intent that is delivered to the
RemoteViewsService when it is invoked by the app widget host.

The call to setPendingIntentTemplate() is where we provide a PendingIntent
that will be used as the template for all row or cell clicks. As we will see in a
bit, the underlying Intent in the PendingIntent will have more data added to
it by our RemoteViewsFactory.

In all other respects, our WidgetProvider is unremarkable compared to other
app widgets. It will need to be registered in the manifest as a <provider>, as
with any other app widget.

The RemoteViewsService

Android supplies a RemoteViewsService class that you will need to extend,
and this class is the one you must register with the RemoteViews for an
AdapterView widget. For example, here is WidgetService (once again, a highly
creative name) from the LoremWidget project:

package com.commonsware.android.appwidget.lorem;

import android.content.Intent;
import android.widget.RemoteViewsService;

public class WidgetService extends RemoteViewsService {
 @Override
 public RemoteViewsFactory onGetViewFactory(Intent intent) {
 return(new LoremViewsFactory(this.getApplicationContext(),
 intent));

82

Home Screen App Widgets

 }
}

As you can see, this service is practically trivial. You have to override one
method, onGetViewFactory(), which will return the RemoteViewsFactory to
use for supplying rows or cells for the AdapterView. You are passed in an
Intent, the one used in the setRemoteAdapter() call. Hence, if you have more
than one AdapterView widget in your app widget, you could elect to have
two RemoteViewsService implementations, or one that discriminates
between the two widgets via something in the Intent (e.g., custom action
string). In our case, we only have one AdapterView, so we create an instance
of a LoremViewFactory and return it. Google demonstrates using
getApplicationContext() here to supply the Context object to
RemoteViewsFactory, instead of using the Service as a Context – it is unclear
at this time why this is.

Another thing different about the RemoteViewsService is how it is registered
in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.appwidget.lorem"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name="LoremActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.NoDisplay" />
 <receiver android:name="WidgetProvider"
 android:label="@string/app_name"
 android:icon="@drawable/cw">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE"/>
 </intent-filter>
 <meta-data
 android:name="android.appwidget.provider"
 android:resource="@xml/widget_provider"/>
 </receiver>
 <service android:name="WidgetService"
 android:permission="android.permission.BIND_REMOTEVIEWS"/>
 </application>
</manifest>

Note the use of android:permission, specifying that whoever sends an Intent
to WidgetService must hold the BIND_REMOTEVIEWS permission. This can only

83

Home Screen App Widgets

be held by the operating system. This is a security measure, so arbitrary
applications cannot find out about your service and attempt to spoof being
the OS and cause you to supply them with RemoteViews for the rows, as this
might leak private data.

The RemoteViewsFactory

A RemoteViewsFactory interface implementation looks and feels a lot like an
Adapter. In fact, one could imagine that the Android developer community
might create CursorRemoteViewsFactory and ArrayRemoteViewsFactory and
such to further simplify writing these classes.

For example, here is LoremViewsFactory, the one used by the LoremWidget
project:

package com.commonsware.android.appwidget.lorem;

import android.appwidget.AppWidgetManager;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.widget.RemoteViews;
import android.widget.RemoteViewsService;

public class LoremViewsFactory implements RemoteViewsService.RemoteViewsFactory
{
 private static final String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 private Context ctxt=null;
 private int appWidgetId;

 public LoremViewsFactory(Context ctxt, Intent intent) {
 this.ctxt=ctxt;
 appWidgetId=intent.getIntExtra(AppWidgetManager.EXTRA_APPWIDGET_ID,
 AppWidgetManager.INVALID_APPWIDGET_ID);
 }

 @Override
 public void onCreate() {

84

Home Screen App Widgets

 // no-op
 }

 @Override
 public void onDestroy() {
 // no-op
 }

 @Override
 public int getCount() {
 return(items.length);
 }

 @Override
 public RemoteViews getViewAt(int position) {
 RemoteViews row=new RemoteViews(ctxt.getPackageName(),
 R.layout.row);

 row.setTextViewText(android.R.id.text1, items[position]);

 Intent i=new Intent();
 Bundle extras=new Bundle();

 extras.putString(WidgetProvider.EXTRA_WORD, items[position]);
 i.putExtras(extras);
 row.setOnClickFillInIntent(android.R.id.text1, i);

 return(row);
 }

 @Override
 public RemoteViews getLoadingView() {
 return(null);
 }

 @Override
 public int getViewTypeCount() {
 return(1);
 }

 @Override
 public long getItemId(int position) {
 return(position);
 }

 @Override
 public boolean hasStableIds() {
 return(true);
 }

 @Override
 public void onDataSetChanged() {
 // no-op

85

Home Screen App Widgets

 }
}

You need to implement a handful of methods that have the same roles in a
RemoteViewsFactory as they do in an Adapter, including:

• getCount()

• getViewTypeCount()

• getItemId()

• hasStableIds()

In addition, you have onCreate() and onDestroy() methods that you must
implement, even if they do nothing, to satisfy the interface.

You will need to implement getLoadingView(), which will return a
RemoteViews to use as a placeholder while the app widget host is getting the
real contents for the app widget. If you return null, Android will use a
default placeholder.

The bulk of your work will go in getViewAt(). This serves the same role as
getView() does for an Adapter, in that it returns the row or cell View for a
given position in your data set. However:

• You have to return a RemoteViews, instead of a View, just as you have
to use RemoteViews for the main content of the app widget in your
AppWidgetProvider

• There is no recycling, so you do not get a View (or RemoteViews) back
to somehow repopulate, meaning you will create a new RemoteViews
every time

The impact of the latter is that you do not want to put large data sets into
an app widget, as scrolling may get sluggish, just as you do not want to
implement an Adapter without recycling unused View objects.

In LoremViewsFactory, the getViewAt() implementation creates a RemoteViews
for a custom row layout, cribbed from one in the Android SDK:

86

Home Screen App Widgets

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/text1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:gravity="center_vertical"
 android:paddingLeft="6dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
/>

Then, getViewAt() pours in a word from the static String[] of nonsense
words into that RemoteViews for the TextView inside it. It also creates an
Intent and puts the nonsense word in as an EXTRA_WORD extra, then provides
that Intent to setOnClickFillInIntent(). The contents of the "fill-in" Intent
are merged into the "template" PendingIntent from
setPendingIntentTemplate(), and the resulting PendingIntent is what is
invoked when the user taps on an item in the AdapterView. The fully-
configured RemoteViews is then returned.

The Rest of the Story

The app widget metadata needs no changes related to Adapter-based app
widget contents. However, LoremWidget does add the android:previewImage
attribute:

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:minWidth="146dip"
 android:minHeight="146dip"
 android:updatePeriodMillis="0"
 android:initialLayout="@layout/widget"
 android:autoAdvanceViewId="@+id/words"
 android:previewImage="@drawable/preview"
/>

This points to the res/drawable-nodpi/preview.png file that represents a
"widgetshot" of the app widget in isolation, obtained from the Widget
Preview application:

87

Home Screen App Widgets

Figure 23. The preview of LoremWidget

When the user taps on an item in the list, our PendingIntent is set to bring
up LoremActivity. This activity has
android:theme="@android:style/Theme.NoDisplay" set in the manifest,
meaning that it will not have its own user interface. Rather, it will extra our
EXTRA_WORD out of the Intent used to launch the activity and display it in a
Toast before finishing:

package com.commonsware.android.appwidget.lorem;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Toast;

public class LoremActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 super.onCreate(state);

 String word=getIntent().getStringExtra(WidgetProvider.EXTRA_WORD);

 if (word==null) {
 word="We did not get a word!";
 }

 Toast.makeText(this, word, Toast.LENGTH_LONG).show();

 finish();
 }
}

88

Home Screen App Widgets

The Results

When you compile and install the application, nothing new shows up in the
home screen launcher, because we have no activity defined to respond to
ACTION_MAIN and CATEGORY_HOME. This would be unusual for an application
distributed through the Android Market, as users often get confused if they
install something and then do not know how to start it. However, for the
purposes of this example, we should be fine, as readers of programming
books never get confused about such things.

However, if you bring up the app widget gallery (e.g., long-tap on the home
screen of a Motorola XOOM), you will see LoremWidget there, complete with
preview image. You can drag it into one of the home screen panes and
position it. When done, the app widget appears as expected:

Figure 24. A XOOM home screen, showing the LoremWidget on the left

The ListView is live and can be scrolled. Tapping an entry brings up the
corresponding Toast:

89

Home Screen App Widgets

Figure 25. A XOOM home screen, showing the LoremWidget on the left

The above image illustrates that a Toast is not a great UI choice on a tablet,
given the relative size of the Toast compared to the screen. Users will be far
more likely to miss the Toast than ever before.

Being a Good Host

In addition to creating your own app widgets, it is possible to host app
widgets. This is mostly aimed for those creating alternative home screen
applications, so they can take advantage of the same app widget framework
and all the app widgets being built for it.

This is not very well documented at this juncture, but it apparently involves
the AppWidgetHost and AppWidgetHostView classes. The latter is a View and so
should be able to reside in an app widget host's UI like any other ordinary
widget.

90

CHAPTER 6

Interactive Maps

You probably have learned about basic operations with Google Maps
elsewhere, perhaps in The Busy Coder's Guide to Android Development. As
you may recall, after going through a fair amount of hassle to obtain and
manage an API key, you need to put a MapView in a layout used by a
MapActivity. Then, between the MapView and its MapController, you can
manage what gets displayed on the map and, to a lesser extent, get user
input from the map. Notably, you can add overlays that display things on
top of the map that are tied to geographic coordinates (GeoPoint objects), so
Android can keep the overlays in sync with the map contents as the user
pans and zooms.

This chapter will get into some more involved topics in the use of MapView,
such as displaying pop-up panels when the user taps on overlay items.

The examples in this chapter are based on the original Maps/NooYawk
example from The Busy Coder's Guide to Android Development. That
example does two things: it displays overlay items for four New York City
landmarks, and it makes a mockery of Brooklyn accents (via the unusual
spelling of the project name). If you have access to The Busy Coder's Guide
to Android Development, you may wish to review that chapter and the
original example before reading further here.

We start by demonstrating how you can convert from latitude and
longitude to screen coordinates on the current map. We then investigate
what it takes to layer things on top of the map, such as a persistent pop-up

91

Interactive Maps

panel instead of using a transient Toast to display something in response to
a tap. Next, we look at how to have custom icons per item in an
ItemizedOverlay, rather than having everything the overlay look the same.
We wrap up with coverage of how to load up the contents of an
ItemizedOverlay asynchronously, in case that might take a while and should
not be done on the main application thread.

Get to the Point

By default, it appears that, when the user taps on one of your OverlayItem
icons in an ItemizedOverlay, all you find out is which OverlayItem it is,
courtesy of an index into your collection of items. However, Android does
provide means to find out where that item is, both in real space and on the
screen.

Getting the Latitude and Longitude

You supplied the latitude and longitude – in the form of a GeoPoint – when
you created the OverlayItem in the first place. Not surprisingly, you can get
that back via a getPoint() method on OverlayItem. So, in an onTap() method,
you can do this to get the GeoPoint:

@Override
protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();

 // other good stuff here

 return(true);
}

Getting the Screen Position

If you wanted to find the screen coordinates for that GeoPoint, you might be
tempted to find out where the map is centered (via getCenter() on MapView)
and how big the map is in terms of screen size (getWidth(), getHeight() on

92

Interactive Maps

MapView) and geographic area (getLatitudeSpan(), getLongitudeSpan() on
MapView), and do all sorts of calculations.

Good news! You do not have to do any of that.

Instead, you can get a Projection object from the MapView via
getProjection(). This object can do the conversions for you, such as
toPixels() to convert a GeoPoint into a screen Point for the X/Y position.

For example, take a look at the onTap() implementation from the NooYawk
class in the Maps/NooYawkRedux sample project:

@Override
protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();
 Point pt=map.getProjection().toPixels(geo, null);

 String message=String.format("Lat: %f | Lon: %f\nX: %d | Y %d",
 geo.getLatitudeE6()/1000000.0,
 geo.getLongitudeE6()/1000000.0,
 pt.x, pt.y);

 Toast.makeText(NooYawk.this,
 message,
 Toast.LENGTH_LONG).show();

 return(true);
}

Here, we get the GeoPoint (as in the previous section), get the Point (via
toPixels()), and use those to customize a message for use with our Toast.

Note that our Toast message has an embedded newline (\n), so it is split
over two lines:

93

Interactive Maps

Figure 26. The NooYawkRedux application, showing the Toast with GeoPoint
and Point data

Not-So-Tiny Bubbles

Of course, just because somebody taps on an item in your ItemizedOverlay,
nothing really happens, other than letting you know of the tap. If you want
something visual to occur – like the Toast displayed in the
Maps/NooYawkRedux project – you have to do it yourself. And while a Toast is
easy to implement, it tends not to be terribly useful in many cases.

A more likely reaction is to pop up some sort of bubble or panel on the
screen, providing more details about the item that was tapped upon. That
bubble might be display-only or fully interactive, perhaps leading to
another activity for information beyond what the panel can hold.

While the techniques in this section will be couched in terms of pop-up
panels over a MapView, the same basic concepts can be used just about
anywhere in Android.

94

Interactive Maps

Options for Pop-up Panels

A pop-up panel is simply a View (typically a ViewGroup with contents, like a
RelativeLayout containing widgets) that appears over the MapView on
demand. To make one View appear over another, you need to use a common
container that supports that sort of "Z-axis" ordering. The best one for that
is RelativeLayout: children later in the roster of children of the
RelativeLayout will appear over top of children that are earlier in the roster.
So, if you have a RelativeLayout parent, with a full-screen MapView child
followed by another ViewGroup child, that latter ViewGroup will appear to
float over the MapView. In fact, with the use of a translucent background, you
can even see the map peeking through the ViewGroup.

Given that, here are two main strategies for implementing pop-up panels.

One approach is to have the panel be part of the activity's layout from the
beginning, but use a visibility of GONE to have it not be visible. In this case,
you would define the panel in the main layout XML file, set
android:visibility="gone", and use setVisibility() on that panel at
runtime to hide and show it. This works well, particularly if the panel itself
is not changing much, just becoming visible and gone.

The other approach is to inflate the panel at runtime and dynamically add
and remove it as a child of the RelativeLayout. This works well if there are
many possible panels, perhaps dependent on the type of thing represented
by an OverlayItem (e.g., restaurant versus hotel versus used car dealership).

In this section, we will examine the latter approach, as shown in the
Maps/EvenNooerYawk sample project.

Defining a Panel Layout

The new version of NooYawk is designed to display panels when the user taps
on items in the map, replacing the original Toast.

95

Interactive Maps

To do this, first, we need the actual content of a panel, as found in
res/layout/popup.xml:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1,3"
 android:background="@drawable/popup_frame">
 <TableRow>
 <TextView
 android:text="Lat:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/latitude" />
 <TextView
 android:text="Lon:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/longitude" />
 </TableRow>
 <TableRow>
 <TextView
 android:text="X:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/x" />
 <TextView
 android:text="Y:"
 android:layout_marginRight="10dip"
 />
 <TextView android:id="@+id/y"/>
 </TableRow>
</TableLayout>

Here, we have a TableLayout containing our four pieces of data (latitude,
longitude, X, and Y), with a translucent gray background (courtesy of a
nine-patch graphic image).

The intent is that we will inflate instances of this class when needed. And,
as we will see, we will only need one in this example, though it is possible
that other applications might need more.

96

Interactive Maps

Creating a PopupPanel Class

To manage our panel, NooYawk has an inner class named PopupPanel. It takes
the resource ID of the layout as a parameter, so it could be used to manage
several different types of panels, not just the one we are using here.

Its constructor inflates the layout file (using the map's parent – the
RelativeLayout – as the basis for inflation rules) and also hooks up a click
listener to a hide() method (described below):

PopupPanel(int layout) {
 ViewGroup parent=(ViewGroup)map.getParent();

 popup=getLayoutInflater().inflate(layout, parent, false);

 popup.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 hide();
 }
 });
}

PopupPanel also tracks an isVisible data member, reflecting whether or not
the panel is presently on the screen.

Showing and Hiding the Panel

When it comes time to show the panel, either it is already being shown, or
it is not. The former would occur if the user tapped on one item in the
overlay, then tapped another right away. The latter would occur, for
example, for the first tap.

In either case, we need to determine where to position the panel. Having
the panel obscure what was tapped upon would be poor form. So,
PopupPanel will put the panel either towards the top or bottom of the map,
depending on where the user tapped – if they tapped in the top half of the
map, the panel will go on the bottom. Rather than have the panel abut the
edges of the map directly, PopupPanel also adds some margins – this is also
important for making sure the panel and the Google logo on the map do
not interfere.

97

Interactive Maps

If the panel is visible, PopupPanel calls hide() to remove it, then adds the
panel's View as a child of the RelativeLayout with a
RelativeLayout.LayoutParams that incorporates the aforementioned rules:

void show(boolean alignTop) {
 RelativeLayout.LayoutParams lp=new RelativeLayout.LayoutParams(
 RelativeLayout.LayoutParams.WRAP_CONTENT,
 RelativeLayout.LayoutParams.WRAP_CONTENT
);

 if (alignTop) {
 lp.addRule(RelativeLayout.ALIGN_PARENT_TOP);
 lp.setMargins(0, 20, 0, 0);
 }
 else {
 lp.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM);
 lp.setMargins(0, 0, 0, 60);
 }

 hide();

 ((ViewGroup)map.getParent()).addView(popup, lp);
 isVisible=true;
}

void hide() {

The hide() method, in turn, removes the panel from the RelativeLayout:

void hide() {
 if (isVisible) {
 isVisible=false;
 ((ViewGroup)popup.getParent()).removeView(popup);
 }
}

PopupPanel also has a getView() method, so the overlay can get at the panel
View in order to fill in the pieces of data at runtime:

View getView() {
 return(popup);
}

98

Interactive Maps

Tying It Into the Overlay

To use the panel, NooYawk creates an instance of one as a data member of the
ItemizedOverlay class:

private PopupPanel panel=new PopupPanel(R.layout.popup);

Then, in the new onTap() method, the overlay gets the View, populates it,
and shows it, indicating whether it should appear towards the top or
bottom of the screen:

@Override
protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();
 Point pt=map.getProjection().toPixels(geo, null);

 View view=panel.getView();

 ((TextView)view.findViewById(R.id.latitude))
 .setText(String.valueOf(geo.getLatitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.longitude))
 .setText(String.valueOf(geo.getLongitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.x))
 .setText(String.valueOf(pt.x));
 ((TextView)view.findViewById(R.id.y))
 .setText(String.valueOf(pt.y));

 panel.show(pt.y*2>map.getHeight());

 return(true);
}

Here is the complete implementation of NooYawk from Maps/EvenNooerYawk,
including the revised overlay class and the new PopupPanel class:

package com.commonsware.android.maps;

import android.app.Activity;
import android.graphics.Canvas;
import android.graphics.Point;
import android.graphics.drawable.Drawable;
import android.os.Bundle;
import android.view.KeyEvent;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;

99

Interactive Maps

import android.widget.RelativeLayout;
import android.widget.TextView;
import android.widget.Toast;
import com.google.android.maps.GeoPoint;
import com.google.android.maps.ItemizedOverlay;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;
import com.google.android.maps.MapView.LayoutParams;
import com.google.android.maps.MyLocationOverlay;
import com.google.android.maps.OverlayItem;
import java.util.ArrayList;
import java.util.List;

public class NooYawk extends MapActivity {
 private MapView map=null;
 private MyLocationOverlay me=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map=(MapView)findViewById(R.id.map);

 map.getController().setCenter(getPoint(40.76793169992044,
 -73.98180484771729));
 map.getController().setZoom(17);
 map.setBuiltInZoomControls(true);

 Drawable marker=getResources().getDrawable(R.drawable.marker);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

 map.getOverlays().add(new SitesOverlay(marker));

 me=new MyLocationOverlay(this, map);
 map.getOverlays().add(me);
 }

 @Override
 public void onResume() {
 super.onResume();

 me.enableCompass();
 }

 @Override
 public void onPause() {
 super.onPause();

 me.disableCompass();
 }

100

Interactive Maps

 @Override
 protected boolean isRouteDisplayed() {
 return(false);
 }

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

 private GeoPoint getPoint(double lat, double lon) {
 return(new GeoPoint((int)(lat*1000000.0),
 (int)(lon*1000000.0)));
 }

 private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> items=new ArrayList<OverlayItem>();
 private Drawable marker=null;
 private PopupPanel panel=new PopupPanel(R.layout.popup);

 public SitesOverlay(Drawable marker) {
 super(marker);
 this.marker=marker;

 items.add(new OverlayItem(getPoint(40.748963847316034,
 -73.96807193756104),
 "UN", "United Nations"));
 items.add(new OverlayItem(getPoint(40.76866299974387,
 -73.98268461227417),
 "Lincoln Center",
 "Home of Jazz at Lincoln Center"));
 items.add(new OverlayItem(getPoint(40.765136435316755,
 -73.97989511489868),
 "Carnegie Hall",
 "Where you go with practice, practice, practice"));
 items.add(new OverlayItem(getPoint(40.70686417491799,
 -74.01572942733765),
 "The Downtown Club",
 "Original home of the Heisman Trophy"));

 populate();
 }

 @Override

101

Interactive Maps

 protected OverlayItem createItem(int i) {
 return(items.get(i));
 }

 @Override
 public void draw(Canvas canvas, MapView mapView,
 boolean shadow) {
 super.draw(canvas, mapView, shadow);

 boundCenterBottom(marker);
 }

 @Override
 protected boolean onTap(int i) {
 OverlayItem item=getItem(i);
 GeoPoint geo=item.getPoint();
 Point pt=map.getProjection().toPixels(geo, null);

 View view=panel.getView();

 ((TextView)view.findViewById(R.id.latitude))
 .setText(String.valueOf(geo.getLatitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.longitude))
 .setText(String.valueOf(geo.getLongitudeE6()/1000000.0));
 ((TextView)view.findViewById(R.id.x))
 .setText(String.valueOf(pt.x));
 ((TextView)view.findViewById(R.id.y))
 .setText(String.valueOf(pt.y));

 panel.show(pt.y*2>map.getHeight());

 return(true);
 }

 @Override
 public int size() {
 return(items.size());
 }
 }

 class PopupPanel {
 View popup;
 boolean isVisible=false;

 PopupPanel(int layout) {
 ViewGroup parent=(ViewGroup)map.getParent();

 popup=getLayoutInflater().inflate(layout, parent, false);

 popup.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 hide();
 }
 });

102

Interactive Maps

 }

 View getView() {
 return(popup);
 }

 void show(boolean alignTop) {
 RelativeLayout.LayoutParams lp=new RelativeLayout.LayoutParams(
 RelativeLayout.LayoutParams.WRAP_CONTENT,
 RelativeLayout.LayoutParams.WRAP_CONTENT
);

 if (alignTop) {
 lp.addRule(RelativeLayout.ALIGN_PARENT_TOP);
 lp.setMargins(0, 20, 0, 0);
 }
 else {
 lp.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM);
 lp.setMargins(0, 0, 0, 60);
 }

 hide();

 ((ViewGroup)map.getParent()).addView(popup, lp);
 isVisible=true;
 }

 void hide() {
 if (isVisible) {
 isVisible=false;
 ((ViewGroup)popup.getParent()).removeView(popup);
 }
 }
 }
}

The resulting panel looks like this when it is towards the bottom of the
screen:

103

Interactive Maps

Figure 27. The EvenNooerYawk application, showing the PopupPanel towards
the bottom

...and like this when it is towards the top:

104

Interactive Maps

Figure 28. The EvenNooerYawk application, showing the PopupPanel towards
the top

Sign, Sign, Everywhere a Sign

Our examples for Manhattan have treated each of the four locations as
being the same – they are all represented by the same sort of marker. That
is the natural approach to creating an ItemizedOverlay, since it takes the
marker Drawable as a constructor parameter.

It is not the only option, though.

Selected States

One flaw in our current one-Drawable-for-everyone approach is that you
cannot tell which item was selected by the user, either by tapping on it or
by using the D-pad (or trackball or whatever). A simple PNG icon will look
the same as it will in every other state.

105

Interactive Maps

However, back in the chapter on Drawable techniques, we saw the
StateListDrawable and its accompanying XML resource format. We can use
one of those here, to specify a separate icon for selected and regular states.

In the Maps/ILuvNooYawk sample, we change up the icons used for our four
OverlayItem objects. Specifically, in the next section, we will see how to
associate a distinct Drawable for each item. Those Drawable resources will
actually be StateListDrawable objects, using XML such as:

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:state_selected="true"
 android:drawable="@drawable/blue_sel_marker"
 />
 <item
 android:drawable="@drawable/blue_marker"
 />
</selector>

This indicates that we should use one PNG in the default state and a
different PNG (one with a yellow highlight) when the OverlayItem is
selected.

Per-Item Drawables

To use a different Drawable per OverlayItem, we need to create a custom
OverlayItem class. Normally, you can skip this, and just use OverlayItem
directly. But, OverlayItem has no means to change its Drawable used for the
marker, so we have to extend it and override getMarker() to handle a
custom Drawable.

Here is one possible implementation of a CustomItem class:

class CustomItem extends OverlayItem {
 Drawable marker=null;

 CustomItem(GeoPoint pt, String name, String snippet,
 Drawable marker) {
 super(pt, name, snippet);

 this.marker=marker;
 }

106

Interactive Maps

 @Override
 public Drawable getMarker(int stateBitset) {
 setState(marker, stateBitset);

 return(marker);
 }
}

This class takes the Drawable to use as a constructor parameter, holds onto
it, and returns it in the getMarker() method. However, in getMarker(), we
also need to call setState() – if we are using StateListDrawable resources,
the call to setState() will cause the Drawable to adopt the appropriate state
(e.g., selected).

Of course, we need to prep and feed a Drawable to each of the CustomItem
objects. In the case of ILuvNooYawk, when our SitesOverlay creates its items,
it uses a getMarker() method to access each item's Drawable:

private Drawable getMarker(int resource) {
 Drawable marker=getResources().getDrawable(resource);

 marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());
 boundCenter(marker);

 return(marker);
}

Here, we get the Drawable resources, set its bounds (for use with hit testing
on taps), and use boundCenter() to control the way the shadow falls. For
icons like the original push pin used by NooYawk, boundCenterBottom() will
cause the icon and its shadow to make it seem like the icon is rising up off
the face of the map. For icons like ILuvNooYawk uses, boundCenter() will cause
the icon and shadow to make it seem like the icon is hovering flat over top
of the map.

Changing Drawables Dynamically

It is also possible to change the Drawable used by a item at runtime, beyond
simply changing it from normal to selected state. For example, ILuvNooYawk

107

Interactive Maps

allows you to press the H key and toggle the selected item from its normal
icon to a heart:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_H) {
 sites.toggleHeart();

 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

To make this work, our SitesOverlay needs to implement toggleHeart():

void toggleHeart() {
 CustomItem focus=getFocus();

 if (focus!=null) {
 focus.toggleHeart();
 }

 map.invalidate();
}

Here, we just find the selected item and delegate toggleHeart() to it. This,
of course, assumes both that CustomItem has a toggleHeart()
implementation and knows what heart to use.

So, rather than the simple CustomItem shown above, we need a more
elaborate implementation:

class CustomItem extends OverlayItem {
 Drawable marker=null;
 boolean isHeart=false;
 Drawable heart=null;

 CustomItem(GeoPoint pt, String name, String snippet,

108

Interactive Maps

 Drawable marker, Drawable heart) {
 super(pt, name, snippet);

 this.marker=marker;
 this.heart=heart;
 }

 @Override
 public Drawable getMarker(int stateBitset) {
 Drawable result=(isHeart ? heart : marker);

 setState(result, stateBitset);

 return(result);
 }

 void toggleHeart() {
 isHeart=!isHeart;
 }
}

Here, the CustomItem gets its own icon and the heart icon in the constructor,
and toggleHeart() just toggles between them. The key is that we
invalidate() the MapView in the SitesOverlay implementation of
toggleHeart() – that causes the map, and its overlay items, to be redrawn,
causing the icon Drawable to change on the screen.

This means that while we start with custom icons per item:

109

Interactive Maps

Figure 29. The ILuvNooYawk application, showing custom icons per item

...we can change those by clicking on an item and pressing the H key:

110

Interactive Maps

Figure 30. The ILuvNooYawk application, showing one item's icon toggled to a
heart (and selected)

Note that getMarker() on an OverlayItem gets called very frequently – every
time the map is panned or zoomed, the markers are re-requested. As such,
it is important that getMarker() be as efficient as possible, particularly if you
have a lot of items in your overlay.

In A New York Minute. Or Hopefully a Bit
Faster.

In the case of NooYawk, we have all our data points for the overlay items up
front – they are hard-wired into the code. This is not going to be the case in
most applications. Instead, the application will need to load the items out
of a database or a Web service.

In the case of a database, assuming a modest number of items, the
difference between having the items hard-wired in code or in the database
is slight. Yes, the actual implementation will be substantially different, but

111

Interactive Maps

you can query the database and build up your ItemizedOverlay all in one
shot, when the map is slated to appear on-screen.

Where things get interesting is when you need to use a Web service or
similar slow operation to get the data.

Where things get even more interesting is when you want that data to
change after it was already loaded – on a timer, on user input, etc. For
example, it may be that you have hundreds of thousands of data points,
only a tiny fraction of which will be visible on the map at any time. If the
user elects to visit a different portion of the map, you need to dump the old
overlay items and grab a new set.

In either case, you can use an AsyncTask to populate your ItemizedOverlay
and add it to the map once the data is ready. You can see this in
Maps/NooYawkAsync, where we kick off an OverlayTask in the NooYawk
implementation of onCreate():

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map=(MapView)findViewById(R.id.map);

 map.getController().setCenter(getPoint(40.76793169992044,
 -73.98180484771729));
 map.getController().setZoom(17);
 map.setBuiltInZoomControls(true);

 me=new MyLocationOverlay(this, map);
 map.getOverlays().add(me);

 new OverlayTask().execute();
}

...and then use that to load the data in the background, in this case using a
sleep() call to simulate real work:

class OverlayTask extends AsyncTask<Void, Void, Void> {
 @Override
 public void onPreExecute() {
 if (sites!=null) {

112

Interactive Maps

 map.getOverlays().remove(sites);
 map.invalidate();
 sites=null;
 }
 }

 @Override
 public Void doInBackground(Void... unused) {
 SystemClock.sleep(5000); // simulated work

 sites=new SitesOverlay();

 return(null);
 }

 @Override
 public void onPostExecute(Void unused) {
 map.getOverlays().add(sites);
 map.invalidate();
 }
}

As with changing an item's Drawable on the fly, you need to invalidate() the
map to make sure it draws the overlay and its items.

In this case, we also hook up the R key to simulate a manual refresh of the
data. This just invokes another OverlayTask, which removes the old overlay
and creates a fresh one:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_H) {
 sites.toggleHeart();

 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_R) {
 new OverlayTask().execute();

 return(true);
 }

113

Interactive Maps

 return(super.onKeyDown(keyCode, event));
 }

A Little Touch of Noo Yawk

As all of these examples have demonstrated, users can tap on maps,
particularly on OverlayItem icons, to indicate something of interest.

Sometimes, though, what they really want to do is move one of those items.

For example:

• They might want to reposition an endpoint for a route for which
you are providing turn-by-turn directions

• They might want to fine-tune a waypoint on a set of walking or
cycling tour stops they are designing using your app, adjusting its
location by a bit

• They might want to change the corner points on a polygon they are
creating on your map, to designate postal zones or township
boundaries or whatever

Courtesy of an assist from Greg Milette, we can show you how this is done,
via the Maps/NooYawkTouch project.

Touch Events

Simple touch events are...well...fairly simple.

In an ItemizedOverlay, you can override the onTouchEvent() method, to be
notified of touch operations. Any event you pass to the superclass will be
handled as normal, such as item taps or pan-and-zoom operations.
However, you can intercept events that you would prefer to handle yourself.
Your onTouchEvent() method will be passed a MotionEvent object (the actual
event) and the MapView.

114

Interactive Maps

There are three touch events of relevance for repositioning items on a map,
distinguished by their action (getAction() on the MotionEvent):

1. MotionEvent.ACTION_DOWN, when a finger is placed onto the
touchscreen

2. MotionEvent.ACTION_MOVE, when the finger is slid across the
touchscreen

3. MotionEvent.ACTION_UP, when the finger is lifted off of the
touchscreen

The MotionEvent also gives you the screen coordinates of where the touch
event occurred, via getX() and getY().

To manage a drag operation, therefore, we need to:

• Watch for an ACTION_DOWN event, identify the item that was touched,
and kick off the drag

• Watch for ACTION_MOVE events while we are in "drag mode" and move
the item to the new position

• Watch for an ACTION_UP event and stop the drag operation,
positioning the item in its final resting place

Here is the implementation of onTouchEvent() for the NooYawkTouch version
of SitesOverlay:

@Override
public boolean onTouchEvent(MotionEvent event, MapView mapView) {
 final int action=event.getAction();
 final int x=(int)event.getX();
 final int y=(int)event.getY();
 boolean result=false;

 if (action==MotionEvent.ACTION_DOWN) {
 for (OverlayItem item : items) {
 Point p=new Point(0,0);

 map.getProjection().toPixels(item.getPoint(), p);

 if (hitTest(item, marker, x-p.x, y-p.y)) {
 result=true;
 inDrag=item;

115

Interactive Maps

 items.remove(inDrag);
 populate();

 xDragTouchOffset=0;
 yDragTouchOffset=0;

 setDragImagePosition(p.x, p.y);
 dragImage.setVisibility(View.VISIBLE);

 xDragTouchOffset=x-p.x;
 yDragTouchOffset=y-p.y;

 break;
 }
 }
 }
 else if (action==MotionEvent.ACTION_MOVE && inDrag!=null) {
 setDragImagePosition(x, y);
 result=true;
 }
 else if (action==MotionEvent.ACTION_UP && inDrag!=null) {
 dragImage.setVisibility(View.GONE);

 GeoPoint pt=map.getProjection().fromPixels(x-xDragTouchOffset,
 y-yDragTouchOffset);
 OverlayItem toDrop=new OverlayItem(pt, inDrag.getTitle(),
 inDrag.getSnippet());

 items.add(toDrop);
 populate();

 inDrag=null;
 result=true;
 }

 return(result || super.onTouchEvent(event, mapView));
}

We will look at the three major branches of this code in the sections that
follow.

Finding an Item

ItemizedOverlay offers a convenient hitTest() method, to determine if a
touch event (or anything else with a screen coordinate) is "close" to a
specific OverlayItem. The hitTest() method returns a simple boolean
indicating if the touch event was a hit on the item. Hence, to find out if a
given ACTION_DOWN event was on an item, we can simply iterate over all

116

Interactive Maps

items, passing each to hitTest(), and breaking out of the loop if we get a
hit. If we make it through the whole loop with hitTest() returning false
each time, the user tapped someplace away from any items.

The only catch is that hitTest() works in the item's frame of reference.
Rather than passing a screen coordinate relative to the corner of the screen
(as is returned by getX() and getY() on MotionEvent), we have to pass a
coordinate relative to the item's on-screen location. Fortunately, Android
provides some utility methods to assist with this as well.

So, let's take a closer look at our ACTION_DOWN handling in onTouchEvent():

if (action==MotionEvent.ACTION_DOWN) {
 for (OverlayItem item : items) {
 Point p=new Point(0,0);

 map.getProjection().toPixels(item.getPoint(), p);

 if (hitTest(item, marker, x-p.x, y-p.y)) {
 result=true;
 inDrag=item;
 items.remove(inDrag);
 populate();

 xDragTouchOffset=0;
 yDragTouchOffset=0;

 setDragImagePosition(p.x, p.y);
 dragImage.setVisibility(View.VISIBLE);

 xDragTouchOffset=x-p.x;
 yDragTouchOffset=y-p.y;

 break;
 }
 }
}

When we get an ACTION_DOWN event, we iterate over the items in our
ItemizedOverlay. For each, we determine the item's screen coordinates using
the toPixels() method on a Projection, converting the latitude and
longitude of the item.

To convert our touch event (x, y) coordinates to be relative to the item, we
simply have to subtract the coordinates of the item from our event's

117

Interactive Maps

coordinates. That can then be fed into the hitTest() method, which will
return true or false depending on whether this item is near the touch
location.

Of course, identifying the item the user chose to drag is only the first step.

Dragging the Item

A drag-and-drop operation usually involves whatever the user is dragging
to appear to move across the screen in concert with the user's finger,
mouse, or other pointing device. In the case of our ItemizedOverlay, this
means we want to show the steady progression of the item across the
screen, so long as the user has their finger continuously sliding on the
screen.

To do that, we will:

• Hide the item in the overlay when the user touches it (ACTION_DOWN)

• Draw the icon for the item above the map while the user is dragging
it (ACTION_MOVE)

• Put the item back in the overlay – at the right geographic
coordinates – when the user lifts their finger (ACTION_UP)

Hiding an overlay item is simply a matter of removing it from the
ItemizedOverlay and calling populate() again:

result=true;
inDrag=item;
items.remove(inDrag);
populate();

To render our icon during the drag operation, we can add an ImageView to
our layout, as a later child of the RelativeLayout holding the MapView, so the
image appears to float over the map:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"

118

Interactive Maps

 android:layout_height="fill_parent">
 <com.google.android.maps.MapView android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="00yHj0k7_7vxbuQ9zwyXI4bNMJrAjYrJ9KKHgbQ"
 android:clickable="true"
 />
 <ImageView android:id="@+id/drag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/marker"
 android:visibility="gone"
 />
</RelativeLayout>

Then, after we remove the item from the overlay, we take the formerly-
hidden ImageView, make it visible, and position it based on where the item
had been a moment ago on the screen. This requires a pair of offset values:

• We need to know where in the image the point of our push-pin is
(xDragImageOffset, yDragImageOffset)

• We need to know where, relative to the image, the user put their
finger (xDragTouchOffset, yDragTouchOffset)

The values for xDragImageOffset and yDragImageOffset do not change, so
long as we are using the same icon. Hence, we can calculate these once, up
in our SitesOverlay constructor:

xDragImageOffset=dragImage.getDrawable().getIntrinsicWidth()/2;
yDragImageOffset=dragImage.getDrawable().getIntrinsicHeight();

The values for xDragTouchOffset and yDragTouchOffset are based on where
the item is and where the finger touched the screen. We wind up with:

xDragTouchOffset=0;
yDragTouchOffset=0;

setDragImagePosition(p.x, p.y);
dragImage.setVisibility(View.VISIBLE);

xDragTouchOffset=x-p.x;
yDragTouchOffset=y-p.y;

119

Interactive Maps

This relies on some calculations in a setDragImagePosition() method on
SitesOverlay:

private void setDragImagePosition(int x, int y) {
 RelativeLayout.LayoutParams lp=
 (RelativeLayout.LayoutParams)dragImage.getLayoutParams();

 lp.setMargins(x-xDragImageOffset-xDragTouchOffset,
 y-yDragImageOffset-yDragTouchOffset, 0, 0);
 dragImage.setLayoutParams(lp);
}

Whenever we receive an ACTION_MOVE while we are dragging an item, we
simply reposition our ImageView to the new location, using the pre-
computed offsets:

else if (action==MotionEvent.ACTION_MOVE && inDrag!=null) {
 setDragImagePosition(x, y);
 result=true;
}

Finally, when the user lifts their finger and we get an ACTION_UP (while we
are dragging an item), we can hide the ImageView, convert the final screen
coordinate back into latitude and longitude, and put our item back in the
ItemizedOverlay at that position:

else if (action==MotionEvent.ACTION_UP && inDrag!=null) {
 dragImage.setVisibility(View.GONE);

 GeoPoint pt=map.getProjection().fromPixels(x-xDragTouchOffset,
 y-yDragTouchOffset);
 OverlayItem toDrop=new OverlayItem(pt, inDrag.getTitle(),
 inDrag.getSnippet());

 items.add(toDrop);
 populate();

 inDrag=null;
 result=true;
}

Note that this sample only supports dragging via a single finger – in other
words, it does not support multi-touch operations.

120

CHAPTER 7

Creating Custom Dialogs and
Preferences

Android ships with a number of dialog classes for specific circumstances,
like DatePickerDialog and ProgressDialog. Similarly, Android comes with a
smattering of Preference classes for your PreferenceActivity, to accept text
or selections from lists and so on.

However, there is plenty of room for improvement in both areas. As such,
you may find the need to create your own custom dialog or preference
class. This chapter will show you how that is done.

We start off by looking at creating a custom AlertDialog, not by using
AlertDialog.Builder (as shown in The Busy Coder's Guide to Android
Development), but via a custom subclass. Then, we show how to create your
own dialog-style Preference, where tapping on the preference pops up a
dialog to allow the user to customize the preference value.

Your Dialog, Chocolate-Covered

For your own application, the simplest way to create a custom AlertDialog
is to use AlertDialog.Builder. You do not need to create any special subclass
– just call methods on the Builder, then show() the resulting dialog.

121

Creating Custom Dialogs and Preferences

However, if you want to create a reusable AlertDialog, this may become
problematic. For example, where would this code to create the custom
AlertDialog reside?

So, in some cases, you may wish to extend AlertDialog and supply the
dialog's contents that way, which is how TimePickerDialog and others are
implemented. Unfortunately, this technique is not well documented. This
section will illustrate how to create such an AlertDialog subclass, as
determined by looking at how the core Android team did it for their own
dialogs.

The sample code is ColorMixerDialog, a dialog wrapping around the
ColorMixer widget shown in a previous chapter. The implementation of
ColorMixerDialog can be found in the CWAC-ColorMixer GitHub repository,
as it is part of the CommonsWare Android Components.

Using this dialog works much like using DatePickerDialog or
TimePickerDialog. You create an instance of ColorMixerDialog, supplying the
initial color to show and a listener object to be notified of color changes.
Then, call show() on the dialog. If the user makes a change and accepts the
dialog, your listener will be informed.

122

http://github.com/commonsguy/cwac-colormixer

Creating Custom Dialogs and Preferences

Figure 31. The ColorMixerDialog

Basic AlertDialog Setup

The ColorMixerDialog class is actually delightfully short, since all of the
actual color mixing is handled by the ColorMixer widget:

package com.commonsware.cwac.colormixer;

import android.app.AlertDialog;
import android.content.Context;
import android.content.DialogInterface;
import android.os.Bundle;
import com.commonsware.cwac.parcel.ParcelHelper;

public class ColorMixerDialog extends AlertDialog
 implements DialogInterface.OnClickListener {
 static private final String COLOR="c";
 private ColorMixer mixer=null;
 private int initialColor;
 private ColorMixer.OnColorChangedListener onSet=null;

 public ColorMixerDialog(Context ctxt,
 int initialColor,

123

Creating Custom Dialogs and Preferences

 ColorMixer.OnColorChangedListener onSet) {
 super(ctxt);

 this.initialColor=initialColor;
 this.onSet=onSet;

 ParcelHelper parcel=new ParcelHelper("cwac-colormixer", ctxt);

 mixer=new ColorMixer(ctxt);
 mixer.setColor(initialColor);

 setView(mixer);
 setButton(ctxt.getText(parcel.getIdentifier("set", "string")),
 this);
 setButton2(ctxt.getText(parcel.getIdentifier("cancel", "string")),
 (DialogInterface.OnClickListener)null);
}

 @Override
 public void onClick(DialogInterface dialog, int which) {
 if (initialColor!=mixer.getColor()) {
 onSet.onColorChange(mixer.getColor());
 }
 }

 @Override
 public Bundle onSaveInstanceState() {
 Bundle state=super.onSaveInstanceState();

 state.putInt(COLOR, mixer.getColor());

 return(state);
 }

 @Override
 public void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 mixer.setColor(state.getInt(COLOR));
 }
}

We simply extend the AlertDialog class and implement a constructor of our
own design. In this case, we take in three parameters:

• A Context (typically an Activity), needed for the superclass

• The initial color to use for the dialog, such as if the user is editing a
color they chose before

• A ColorMixer.OnColorChangedListener object, just like ColorMixer
uses, to notify the dialog creator when the color is changed

124

Creating Custom Dialogs and Preferences

We then create a ColorMixer and call setView() to make that be the main
content of the dialog. We also call setButton() and setButton2() to specify a
"Set" and "Cancel" button for the dialog. The latter just dismisses the
dialog, so we need no event handler. The former we route back to the
ColorMixerDialog itself, which implements the
DialogInterface.OnClickListener interface.

This class is part of a parcel, designed to be reused by many projects.
Hence, we cannot simply reference standard resources via the R. syntax –
rather, we use a ParcelHelper to find out the right resource IDs on the fly at
runtime. More information on why this is needed can be found in the
chapter on reusable components.

Handling Color Changes

When the user clicks the "Set" button, we want to notify the application
about the color change...if the color actually changed. This is akin to
DatePickerDialog and TimePickerDialog only notifying you of date or times if
the user clicks Set and actually changed the values.

The ColorMixerDialog tracks the initial color via the initialColor data
member. In the onClick() method – required by
DialogInterface.OnClickListener – we see if the mixer has a different color
than the initialColor, and if so, we call the supplied
ColorMixer.OnColorChangedListener callback object:

@Override
public void onClick(DialogInterface dialog, int which) {
 if (initialColor!=mixer.getColor()) {
 onSet.onColorChange(mixer.getColor());
 }
}

State Management

Dialogs use onSaveInstanceState() and onRestoreInstanceState(), just like
activities do. That way, if the screen is rotated, or if the hosting activity is

125

Creating Custom Dialogs and Preferences

being evicted from RAM when it is not in the foreground, the dialog can
save its state, then get it back later as needed.

The biggest difference with onSaveInstanceState() for a dialog is that the
Bundle of state data is not passed into the method. Rather, you get the
Bundle by chaining to the superclass, then adding your data to the Bundle it
returned, before returning it yourself:

@Override
public Bundle onSaveInstanceState() {
 Bundle state=super.onSaveInstanceState();

 state.putInt(COLOR, mixer.getColor());

 return(state);
}

The onRestoreInstanceState() pattern is much closer to the implementation
you would find in an Activity, where the Bundle with the state data to
restore is passed in as a parameter:

@Override
public void onRestoreInstanceState(Bundle state) {
 super.onRestoreInstanceState(state);

 mixer.setColor(state.getInt(COLOR));
}

Preferring Your Own Preferences, Preferably

The Android Settings application, built using the Preference system, has
lots of custom Preference classes. You too can create your own Preference
classes, to collect things like dates, numbers, or colors. Once again, though,
the process of creating such classes is not well documented. This section
reviews one recipe for making a Preference – specifically, a subclass of
DialogPreference – based on the implementation of other Preference classes
in Android.

The result is ColorPreference, a Preference that uses the ColorMixer widget.
As with the ColorMixerDialog from the previous section, the ColorPreference

126

Creating Custom Dialogs and Preferences

is from the CommonsWare Android Components, and its source code can
be found in the CWAC-ColorMixer GitHub repository.

One might think that ColorPreference, as a subclass of DialogPreference,
might use ColorMixerDialog. However, that is not the way it works, as you
will see.

The Constructors

A Preference is much like a custom View, in that there are a variety of
constructors, some taking an AttributeSet (for the preference properties),
and some taking a default style. In the case of ColorPreference, we need to
get the string resources to use for the names of the buttons in the dialog
box, providing them to DialogPreference via setPositiveButtonText() and
setNegativeButtonText(). Hence, we have two constructors chain to the
most complicated constructor, and have it chain to the superclass plus
obtain the string resource. Since ColorPreference is part of a parcel, it uses
the parcel system to look up the string resource – a custom Preference that
would be just part of a project could just use getString() directly.

public ColorPreference(Context ctxt) {
 this(ctxt, null);
 }

 public ColorPreference(Context ctxt, AttributeSet attrs) {
 this(ctxt, attrs, 0);
 }

 public ColorPreference(Context ctxt, AttributeSet attrs, int defStyle) {
 super(ctxt, attrs, defStyle);

 ParcelHelper parcel=new ParcelHelper("cwac-colormixer", ctxt);

 setPositiveButtonText(ctxt.getText(parcel.getIdentifier("set", "string")));
setNegativeButtonText(ctxt.getText(parcel.getIdentifier("cancel", "string")));
}

Creating the View

The DialogPreference class handles the pop-up dialog that appears when
the preference is clicked upon by the user. Subclasses get to provide the

127

http://github.com/commonsguy/cwac-colormixer

Creating Custom Dialogs and Preferences

View that goes inside the dialog. This is handled a bit reminiscent of a
CursorAdapter, in that there are two separate methods to be overridden:

1. onCreateDialogView() works like newView() of CursorAdapter,
returning a View that should go in the dialog

2. onBindDialogView() works like bindView() of CursorAdapter, where
the custom Preference is supposed to configure the View for the
current preference value

In the case of ColorPreference, we use a ColorMixer for the View:

@Override
protected View onCreateDialogView() {
 mixer=new ColorMixer(getContext());

 return(mixer);
}

Then, in onBindDialogView(), we set the mixer's color to be lastColor, a
private data member:

 @Override
protected void onBindDialogView(View v) {

 super.onBindDialogView(v);

 mixer.setColor(lastColor);
}

We will see later in this section where lastColor comes from – for the
moment, take it on faith that it holds the user's chosen color, or a default
value.

Dealing with Preference Values

Of course, the whole point behind a Preference is to allow the user to set
some value that the application will then use later on. Dealing with values
is a bit tricky with DialogPreference, but not too bad.

128

Creating Custom Dialogs and Preferences

Getting the Default Value

The preference XML format has an android:defaultValue attribute, which
holds the default value to be used by the preference. Of course, the actual
data type of the value will differ widely – an EditTextPreference might
expect a String, while ColorPreference needs a color value.

Hence, you need to implement onGetDefaultValue(). This is passed a
TypedArray – similar to how a custom View uses a TypedArray for getting at its
custom attributes in an XML layout file. It is also passed an index number
into the array representing android:defaultValue. The custom Preference
needs to return an Object representing its interpretation of the default
value.

In the case of ColorPreference, we simply get an integer out of the
TypedArray, representing the color value, with an overall default value of
0xFFA4C639 (a.k.a., Android green):

@Override
protected Object onGetDefaultValue(TypedArray a, int index) {
 return(a.getInt(index, 0xFFA4C639));
}

Setting the Initial Value

When the user clicks on the preference, the DialogPreference supplies the
last-known preference value to its subclass, or the default value if this
preference has not been set by the user to date.

The way this works is that the custom Preference needs to override
onSetInitialValue(). This is passed in a boolean flag (restoreValue)
indicating whether or not the user set the value of the preference before. It
is also passed the Object returned by onGetDefaultValue(). Typically, a
custom Preference will look at the flag and choose to either use the default
value or load the already-set preference value.

129

Creating Custom Dialogs and Preferences

To get the existing value, Preference defines a set of type-specific getter
methods – getPersistedInt(), getPersistedString(), etc. So, ColorPreference
uses getPersistedInt() to get the saved color value:

@Override
protected void onSetInitialValue(boolean restoreValue, Object defaultValue) {
 lastColor=(restoreValue ? getPersistedInt(lastColor) : (Integer)defaultValue);
}

Here, onSetInitialValue() stores that value in lastColor – which then winds
up being used by onBindDialogView() to tell the ColorMixer what color to
show.

Closing the Dialog

When the user closes the dialog, it is time to persist the chosen color from
the ColorMixer. This is handled by the onDialogClosed() callback method on
your custom Preference:

@Override
protected void onDialogClosed(boolean positiveResult) {
 super.onDialogClosed(positiveResult);

 if (positiveResult) {
 if (callChangeListener(mixer.getColor())) {
 lastColor=mixer.getColor();
 persistInt(lastColor);
 }
 }
}

The passed-in boolean indicates if the user accepted or dismissed the
dialog, so you can elect to skip saving anything if the user dismissed the
dialog. The other DialogPreference implementations also call
callChangeListener(), which is somewhat ill-documented. Assuming both
the flag and callChangeListener() are true, the Preference should save its
value to the persistent store via persistInt(), persistString(), or kin.

130

Creating Custom Dialogs and Preferences

Using the Preference

Given all of that, using the custom Preference class in an application is
almost anti-climactic. You simply add it to your preference XML, with a
fully-qualified class name:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <com.commonsware.cwac.colormixer.ColorPreference
 android:key="favoriteColor"
 android:defaultValue="0xFFA4C639"
 android:title="Your Favorite Color"
 android:summary="Blue. No yel-- Auuuuuuuugh!" />
</PreferenceScreen>

At this point, it behaves no differently than does any other Preference type.
Since ColorPreference stores the value as an integer, your code would use
getInt() on the SharedPreferences to retrieve the value when needed.

The user sees an ordinary preference entry in the PreferenceActivity:

Figure 32. A PreferenceActivity, showing the ColorPreference

131

Creating Custom Dialogs and Preferences

When tapped, it brings up the mixer:

Figure 33. The ColorMixer in a custom DialogPreference

Choosing a color and pressing the BACK button persists the color value as a
preference.

132

PART II – Advanced Media

CHAPTER 8

Animating Widgets

Android is full of things that move. You can swipe left and right on the
home screen to view other panels of the desktop. You can drag icons around
on the home screen. You can drag down the notifications area or drag up
the applications drawer. And that is just on one screen!

Of course, it would be nice to employ such animations in your own
application. While this chapter will not cover full-fledged drag-and-drop,
we will cover some of the basic animations and how to apply them to your
existing widgets.

After an overview of the role of the animation framework, we go in-depth
to animate the movement of a widget across the screen. We then look at
alpha animations, for fading widgets in and out. We then see how you can
get control during the lifecycle of an animation, how to control the
acceleration of animations, and how to group animations together for
parallel execution. Finally, we see how the same framework can now be
used to control the animation for the switching of activities.

It's Not Just For Toons Anymore

Android has a package of classes (android.view.animation) dedicated to
animating the movement and behavior of widgets.

135

Animating Widgets

They center around an Animation base class that describes what is to be
done. Built-in animations exist to move a widget (TranslateAnimation),
change the transparency of a widget (AlphaAnimation), revolving a widget
(RotateAnimation), and resizing a widget (ScaleAnimation). There is even a
way to aggregate animations together into a composite Animation called an
AnimationSet. Later sections in this chapter will examine the use of several
of these animations.

Given that you have an animation, to apply it, you have two main options:

• You may be using a container that supports animating its contents,
such as a ViewFlipper or TextSwitcher. These are typically subclasses
of ViewAnimator and let you define the "in" and "out" animations to
apply. For example, with a ViewFlipper, you can specify how it flips
between Views in terms of what animation is used to animate "out"
the currently-visible View and what animation is used to animate
"in" the replacement View. Examples of this sort of animation can be
found in The Busy Coder's Guide to Android Development.

• You can simply tell any View to startAnimation(), given the Animation
to apply to itself. This is the technique we will be seeing used in the
examples in this chapter.

A Quirky Translation

Animation takes some getting used to. Frequently, it takes a fair bit of
experimentation to get it all working as you wish. This is particularly true of
TranslateAnimation, as not everything about it is intuitive, even to authors
of Android books.

Mechanics of Translation

The simple constructor for TranslateAnimation takes four parameters
describing how the widget should move: the before and after X offsets from
the current position, and the before and after Y offsets from the current
position. The Android documentation refers to these as fromXDelta,
toXDelta, fromYDelta, and toYDelta.

136

Animating Widgets

In Android's pixel-space, an (X,Y) coordinate of (0,0) represents the upper-
left corner of the screen. Hence, if toXDelta is greater than fromXDelta, the
widget will move to the right, if toYDelta is greater than fromYDelta, the
widget will move down, and so on.

Imagining a Sliding Panel

Some Android applications employ a sliding panel, one that is off-screen
most of the time but can be called up by the user (e.g., via a menu) when
desired. When anchored at the bottom of the screen, the effect is akin to
the Android menu system, with a container that slides up from the bottom
and slides down and out when being removed. However, while menus are
limited to menu choices, Android's animation framework lets one create a
sliding panel containing whatever widgets you might want.

One way to implement such a panel is to have a container (e.g., a
LinearLayout) whose contents are absent (GONE) when the panel is closed
and is present (VISIBLE) when the drawer is open. If we simply toggled
setVisibility() using the aforementioned values, though, the panel would
wink open and closed immediately, without any sort of animation. So,
instead, we want to:

• Make the panel visible and animate it up from the bottom of the
screen when we open the panel

• Animate it down to the bottom of the screen and make the panel
gone when we close the panel

The Aftermath

This brings up a key point with respect to TranslateAnimation: the
animation temporarily moves the widget, but if you want the widget to stay
where it is when the animation is over, you have to handle that yourself.
Otherwise, the widget will snap back to its original position when the
animation completes.

137

Animating Widgets

In the case of the panel opening, we handle that via the transition from GONE
to VISIBLE. Technically speaking, the panel is always "open", in that we are
not, in the end, changing its position. But when the body of the panel is
GONE, it takes up no space on the screen; when we make it VISIBLE, it takes
up whatever space it is supposed to.

Later in this chapter, we will cover how to use animation listeners to
accomplish this end for closing the panel.

Introducing SlidingPanel

With all that said, turn your attention to the Animation/SlidingPanel project
and, in particular, the SlidingPanel class.

This class implements a layout that works as a panel, anchored to the
bottom of the screen. A toggle() method can be called by the activity to
hide or show the panel. The panel itself is a LinearLayout, so you can put
whatever contents you want in there.

We use two flavors of TranslateAnimation, one for opening the panel and
one for closing it.

Here is the opening animation:

anim=new TranslateAnimation(0.0f, 0.0f,
 getHeight(),
 0.0f);

Our fromXDelta and toXDelta are both 0, since we are not shifting the panel's
position along the horizontal axis. Our fromYDelta is the panel's height
according to its layout parameters (representing how big we want the panel
to be), because we want the panel to start the animation at the bottom of
the screen; our toYDelta is 0 because we want the panel to be at its "natural"
open position at the end of the animation.

Conversely, here is the closing animation:

138

Animating Widgets

anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 getHeight());

It has the same basic structure, except the Y values are reversed, since we
want the panel to start open and animate to a closed position.

The result is a container that can be closed:

Figure 34. The SlidingPanel sample application, with the panel closed

...or open, in this case toggled via a menu choice in the SlidingPanelDemo
activity:

139

Animating Widgets

Figure 35. The SlidingPanel sample application, with the panel open

Using the Animation

When setting up an animation, you also need to indicate how long the
animation should take. This is done by calling setDuration() on the
animation, providing the desired length of time in milliseconds.

When we are ready with the animation, we simply call startAnimation() on
the SlidingPanel itself, causing it to move as specified by the
TranslateAnimation instance.

Fading To Black. Or Some Other Color.

AlphaAnimation allows you to fade a widget in or out by making it less or
more transparent. The greater the transparency, the more the widget
appears to be "fading".

140

Animating Widgets

Alpha Numbers

You may be used to alpha channels, when used in #AARRGGBB color notation,
or perhaps when working with alpha-capable image formats like PNG.

Similarly, AlphaAnimation allows you to change the alpha channel for an
entire widget, from fully-solid to fully-transparent.

In Android, a float value of 1.0 indicates a fully-solid widget, while a value
of 0.0 indicates a fully-transparent widget. Values in between, of course,
represent various amounts of transparency.

Hence, it is common for an AlphaAnimation to either start at 1.0 and
smoothly change the alpha to 0.0 (a fade) or vice versa.

Animations in XML

With TranslateAnimation, we showed how to construct the animation in
Java source code. One can also create animation resources, which define the
animations using XML. This is similar to the process for defining layouts,
albeit much simpler.

For example, there is a second animation project, Animation/SlidingPanelEx,
which demonstrates a panel that fades out as it is closed. In there, you will
find a res/anim/ directory, which is where animation resources should
reside. In there, you will find fade.xml:

<?xml version="1.0" encoding="utf-8"?>
<alpha xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromAlpha="1.0"
 android:toAlpha="0.0" />

The name of the root element indicates the type of animation (in this case,
alpha for an AlphaAnimation). The attributes specify the characteristics of
the animation, in this case a fade from 1.0 to 0.0 on the alpha channel.

This XML is the same as calling new AlphaAnimation(1.0f,0.0f) in Java.

141

Animating Widgets

Using XML Animations

To make use of XML-defined animations, you need to inflate them, much as
you might inflate a View or Menu resource. This is accomplished by using the
loadAnimation() static method on the AnimationUtils class, seen here in our
SlidingPanel constructor:

public SlidingPanel(final Context ctxt, AttributeSet attrs) {
 super(ctxt, attrs);

 TypedArray a=ctxt.obtainStyledAttributes(attrs,
 R.styleable.SlidingPanel,
 0, 0);

 speed=a.getInt(R.styleable.SlidingPanel_speed, 300);

 a.recycle();

 fadeOut=AnimationUtils.loadAnimation(ctxt, R.anim.fade);
}

Here, we are loading our fade animation, given a Context. This is being put
into an Animation variable, so we neither know nor care that this particular
XML that we are loading defines an AlphaAnimation instead of, say, a
RotateAnimation.

When It's All Said And Done

Sometimes, you need to take action when an animation completes.

For example, when we close the panel, we want to use a
TranslationAnimation to slide it down from the open position to
closed...then keep it closed. With the system used in SlidingPanel, keeping
the panel closed is a matter of calling setVisibility() on the contents with
GONE.

However, you cannot do that when the animation begins; otherwise, the
panel is gone by the time you try to animate its motion.

142

Animating Widgets

Instead, you need to arrange to have it be gone when the animation ends.
To do that, you use a animation listener.

An animation listener is simply an instance of the AnimationListener
interface, provided to an animation via setAnimationListener(). The listener
will be invoked when the animation starts, ends, or repeats (the latter
courtesy of CycleInterpolator, discussed later in this chapter). You can put
logic in the onAnimationEnd() callback in the listener to take action when the
animation finishes.

For example, here is the AnimationListener for SlidingPanel:

Animation.AnimationListener collapseListener=new Animation.AnimationListener() {
 public void onAnimationEnd(Animation animation) {
 setVisibility(View.GONE);
 }

 public void onAnimationRepeat(Animation animation) {
 // not needed
 }

 public void onAnimationStart(Animation animation) {
 // not needed
 }
};

All we do is set the ImageButton's image to be the upward-pointing arrow
and setting our content's visibility to be GONE, thereby closing the panel.

Loose Fill

You will see attributes, available on Animation, named android:fillEnabled
and android:fillAfter. Reading those, you may think that you can dispense
with the AnimationListener and just use those to arrange to have your
widget wind up being "permanently" in the state represented by the end of
the animation. All you would have to do is set each of those to true in your
animation XML (or the equivalent in Java), and you would be set.

At least for TranslateAnimation, you would be mistaken.

143

Animating Widgets

It actually will look like it works – the animated widgets will be drawn in
their new location. However, if those widgets are clickable, the will not be
clicked in their new location, but rather in their old one. This, of course, is
not terribly useful.

Hence, even though it is annoying, you will want to use the
AnimationListener techniques described in this chapter.

Hit The Accelerator

In addition to the Animation classes themselves, Android also provides a set
of Interpolator classes. These provide instructions for how an animation is
supposed to behave during its operating period.

For example, the AccelerateInterpolator indicates that, during the duration
of an animation, the rate of change of the animation should begin slowly
and accelerate until the end. When applied to a TranslateAnimation, for
example, the sliding movement will start out slowly and pick up speed until
the movement is complete.

There are several implementations of the Interpolator interface besides
AccelerateInterpolator, including:

• AccelerateDecelerateInterpolator, which starts slowly, picks up
speed in the middle, and slows down again at the end

• DecelerateInterpolator, which starts quickly and slows down
towards the end

• LinearInterpolator, the default, which indicates the animation
should proceed smoothly from start to finish

• CycleInterpolator, which repeats an animation for a number of
cycles, following the AccelerateDecelerateInterpolator pattern
(slow, then fast, then slow)

144

Animating Widgets

To apply an interpolator to an animation, simply call setInterpolator() on
the animation with the Interpolator instance, such as the following line
from SlidingPanel:

anim.setInterpolator(new AccelerateInterpolator(1.0f));

You can also specify one of the stock interpolators via the
android:interpolator attribute in your animation XML file.

Android 1.6 added some new interpolators. Notable are BounceInterpolator
(which gives a bouncing effect as the animation nears the end) and
OvershootInterpolator (which goes beyond the end of the animation range,
then returns to the endpoint).

Animate. Set. Match.

For the Animation/SlidingPanelEx project, though, we want the panel to
slide open, but also fade when it slides closed. This implies two animations
working at the same time (a fade and a slide). Android supports this via the
AnimationSet class.

An AnimationSet is itself an Animation implementation. Following the
composite design pattern, it simply cascades the major Animation events to
each of the animations in the set.

To create a set, just create an AnimationSet instance, add the animations,
and configure the set. For example, here is the logic from the SlidingPanel
implementation in Animation/SlidingPanelEx:

public void toggle() {
 TranslateAnimation anim=null;
 AnimationSet set=new AnimationSet(true);

 isOpen=!isOpen;

 if (isOpen) {
 setVisibility(View.VISIBLE);
 anim=new TranslateAnimation(0.0f, 0.0f,
 getHeight(),

145

Animating Widgets

 0.0f);
 }
 else {
 anim=new TranslateAnimation(0.0f, 0.0f, 0.0f,
 getHeight());
 anim.setAnimationListener(collapseListener);
 set.addAnimation(fadeOut);
 }

 set.addAnimation(anim);
 set.setDuration(speed);
 set.setInterpolator(new AccelerateInterpolator(1.0f));
 startAnimation(set);
}

If the panel is to be opened, we make the contents visible (so we can
animate the motion upwards), and create a TranslateAnimation for the
upward movement. If the panel is to be closed, we create a
TranslateAnimation for the downward movement, but also add a pre-defined
AlphaAnimation (fadeOut) to an AnimationSet. In either case, we add the
TranslateAnimation to the set, give the set a duration and interpolator, and
run the animation.

Active Animations

Starting with Android 1.5, users could indicate if they wanted to have inter-
activity animations: a slide-in/slide-out effect as they switched from activity
to activity. However, at that time, they could merely toggle this setting on
or off, and applications had no control over these animations whatsoever.

Starting in Android 2.0, though, developers have a bit more control.
Specifically:

• Developers can call overridePendingTransition() on an Activity,
typically after calling startActivity() to launch another activity or
finish() to close up the current activity. The
overridePendingTransition() indicates an in/out animation pair that
should be applied as control passes from this activity to the next
one, whether that one is being started (startActivity()) or is the
one previous on the stack (finish()).

146

Animating Widgets

• Developers can start an activity via an Intent containing the
FLAG_ACTIVITY_NO_ANIMATION flag. As the name suggests, this flag
requests that animations on the transitions involving this activity be
suppressed.

These are prioritized as follows:

1. Any call to overridePendingTransition() is always taken into account

2. Lacking that, FLAG_ACTIVITY_NO_ANIMATION will be taken into account

3. In the normal case, where neither of the two are used, whatever the
user's preference, via the Settings application, is applied

147

CHAPTER 9

Using the Camera

Most Android devices will have a camera, since they are fairly
commonplace on mobile devices these days. You, as an Android developer,
can take advantage of the camera, for everything from snapping tourist
photos to scanning barcodes. For simple operations, the APIs needed to use
the camera are fairly straight-forward, requiring a bit of boilerplate code
plus your own unique application logic.

What is a problem is using the camera with the emulator. The emulator
does not emulate a camera, nor is there a convenient way to pretend there
are pictures via DDMS or similar tools. For the purposes of this chapter, it is
assumed you have access to an actual Android-powered hardware device
and can use it for development purposes.

First, we examine how to set up an activity showing a preview of the
camera's output, much like the LCD viewfinder on a dedicated digital
camera. We then extend that example to actually take and store a picture.
After a brief discussion of auto-focus, we wrap with material on other
parameters you may be able to set to control the actual picture being taken.

Sneaking a Peek

First, it is fairly common for a camera-using application to support a
preview mode, to show the user what the camera sees. This will help make

149

Using the Camera

sure the camera is lined up on the subject properly, whether there is
sufficient lighting, etc.

So, let us take a look at how to create an application that shows such a live
preview. The code snippets shown in this section are pulled from the
Camera/Preview sample project.

The Permission and the Feature

First, you need permission to use the camera. That way, when end users
install your application off of the Internet, they will be notified that you
intend to use the camera, so they can determine if they deem that
appropriate for your application.

You simply need the CAMERA permission in your AndroidManifest.xml file,
along with whatever other permissions your application logic might
require. Here is the manifest from the Camera/Preview sample project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.camera" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <supports-screens android:largeScreens="false" android:normalScreens="true"
android:smallScreens="false"/>
 <uses-feature android:name="android.hardware.camera"/>
 <uses-permission android:name="android.permission.CAMERA"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".PreviewDemo" android:label="@string/app_name"
android:configChanges="keyboardHidden|orientation"
android:screenOrientation="landscape"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

The manifest also contains a <uses-feature> element, declaring that we
need a camera on the device. This will not block installation of this
application on a camera-less device, but it will cause the Android Market to

150

Using the Camera

filter out this app when viewed on camera-less devices. Other markets
could conceivably do the same thing.

Also note a few other things about our PreviewDemo activity as registered in
this manifest:

• We use android:configChanges = "keyboardHidden|orientation" to
ensure we control what happens when the keyboard is hidden or
exposed, rather than have Android rotate the screen for us

• We use android:screenOrientation = "landscape" to tell Android we
are always in landscape mode. This is necessary because of a bit of a
bug in the camera preview logic, such that it works best in
landscape mode.

• We use android:theme =

"@android:style/Theme.NoTitleBar.Fullscreen" to get rid of the title
bar and status bar, so the preview is truly full-screen (e.g., 480x320
on an HVGA device).

The SurfaceView

Next, you need a layout supporting a SurfaceView. SurfaceView is used as a
raw canvas for displaying all sorts of graphics outside of the realm of your
ordinary widgets. In this case, Android knows how to display a live look at
what the camera sees on a SurfaceView, to serve as a preview pane.

For example, here is a full-screen SurfaceView layout as used by the
PreviewDemo activity:

<?xml version="1.0" encoding="utf-8"?>
<android.view.SurfaceView
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/preview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
</android.view.SurfaceView>

151

Using the Camera

The Camera

The biggest step, of course, is telling Android to use the camera service and
tie a camera to the SurfaceView to show the actual preview. We will also
eventually need the camera service to take real pictures, as will be
described in the next section.

There are three major components to getting picture preview working:

1. The SurfaceView, as defined in our layout

2. A SurfaceHolder, which is a means of controlling behavior of the
SurfaceView, such as its size, or being notified when the surface
changes, such as when the preview is started

3. A Camera, obtained from the open() static method on the Camera class

To wire these together, we first need to:

• Get the SurfaceHolder for our SurfaceView via getHolder()

• Register a SurfaceHolder.Callback with the SurfaceHolder, so we are
notified when the SurfaceView is ready or changes

• Tell the SurfaceView (via the SurfaceHolder) that it has the
SURFACE_TYPE_PUSH_BUFFERS type (setType()) – this indicates
something in the system will be updating the SurfaceView and
providing the bitmap data to display

This gives us a configured SurfaceView (shown below), but we still need to
tie in the Camera.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 preview=(SurfaceView)findViewById(R.id.preview);
 previewHolder=preview.getHolder();
 previewHolder.addCallback(surfaceCallback);
 previewHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
}

152

Using the Camera

We get our Camera in onResume(), using the original Camera open() method to
retrieve the default camera for the device:

@Override
public void onResume() {
 super.onResume();

 camera=Camera.open();
}

A Camera object has a setPreviewDisplay() method that takes a SurfaceHolder
and, as you might expect, arranges for the camera preview to be displayed
on the associated SurfaceView. However, the SurfaceView may not be ready
immediately after being changed into SURFACE_TYPE_PUSH_BUFFERS mode. So,
while the SurfaceView setup work could be done in onCreate(), you should
wait until the SurfaceHolder.Callback has its surfaceCreated() method
called, then register the Camera:

public void surfaceCreated(SurfaceHolder holder) {
 try {
 camera.setPreviewDisplay(previewHolder);
 }
 catch (Throwable t) {
 Log.e("PreviewDemo-surfaceCallback",
 "Exception in setPreviewDisplay()", t);
 Toast
 .makeText(PreviewDemo.this, t.getMessage(), Toast.LENGTH_LONG)
 .show();
 }
}

Next, once the SurfaceView is set up and sized by Android, we need to pass
configuration data to the Camera, so it knows how big to draw the preview.
Since the preview pane is not a fixed size – it might vary based on hardware
– we cannot safely pre-determine the size. It is simplest to wait for our
SurfaceHolder.Callback to have its surfaceChanged() method called, when
we are told the size of the surface.

At this point, though, we have a problem. The SurfaceView may be of an
arbitrary size, depending on the device. However, not all devices support
arbitrary-sized previews. Hence, we need to do the following:

153

Using the Camera

1. Get a Camera.Parameters object, by calling getParameters() on the
Camera

2. Call getSupportedPreviewSizes() to determine what preview sizes are
available

3. Choose one of those sizes...somehow...

In our case, the determination of which preview size to use is implemented
in a getBestPreviewSize() method:

private Camera.Size getBestPreviewSize(int width, int height,
 Camera.Parameters parameters) {
 Camera.Size result=null;

 for (Camera.Size size : parameters.getSupportedPreviewSizes()) {
 if (size.width<=width && size.height<=height) {
 if (result==null) {
 result=size;
 }
 else {
 int resultDelta=width-result.width+height-result.height;
 int newDelta=width-size.width+height-size.height;

 if (newDelta<resultDelta) {
 result=size;
 }
 }
 }
 }

 return(result);
}

Here, we use a fairly crude algorithm: we choose the largest preview size
that is smaller than our actual SurfaceView, where "largest" is the one that is
closest on the X and Y axes. "Closest" is determined by the sum of the
difference between the SurfaceView's actual size and the preview's requested
size.

Then, we can pour that information into a Camera.Parameters object, update
the Camera with those parameters, and have the Camera show the preview
images via startPreview():

public void surfaceChanged(SurfaceHolder holder,
 int format, int width,

154

Using the Camera

 int height) {
 Camera.Parameters parameters=camera.getParameters();
 Camera.Size size=getBestPreviewSize(width, height,
 parameters);

 if (size!=null) {
 parameters.setPreviewSize(size.width, size.height);
 camera.setParameters(parameters);
 camera.startPreview();
 inPreview=true;
 }
}

Eventually, the preview needs to stop. More importantly, we need to let go
of the Camera in onPause(), so while our activity is not in the foreground, we
do not tie up the camera, preventing other applications from using it. So,
we keep track of whether preview is turned on yet via the inPreview flag,
and in onPause() we stop the preview (if needed), release() the Camera, set
the data member to null (to incrementally increase the speed of garbage
collection), and reset the inPreview flag to false:

@Override
public void onPause() {
 if (inPreview) {
 camera.stopPreview();
 }

 camera.release();
 camera=null;
 inPreview=false;

 super.onPause();
}

If you compile and run the Camera/Preview sample application, you will see,
on-screen, what the camera sees.

Image Is Everything

Showing the preview imagery is nice and all, but it is probably more
important to actually take a picture now and again. The previews show the
user what the camera sees, but we still need to let our application know
what the camera sees at particular points in time.

155

Using the Camera

In principle, this is easy. Where things get a bit complicated comes with
ensuring the application (and device as a whole) has decent performance,
not slowing down to process the pictures. Also, to make this even more fun,
we will use the front-facing camera if one is available; otherwise, we will use
the device's default camera.

The code snippets shown in this section are pulled from the Camera/Picture
sample project, which builds upon the Camera/Preview sample shown in the
previous section.

Asking for a Camera. Maybe.

We can include a second <uses-feature> element in our manifest, asking
not only for a camera, but specifically for a front-facing camera:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.camera" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="5" android:targetSdkVersion="6"/>
 <supports-screens android:largeScreens="false" android:normalScreens="true"
android:smallScreens="false"/>
 <uses-feature android:name="android.hardware.camera"/>
 <uses-feature android:name="android.hardware.camera.front"
android:required="false"/>
 <uses-permission android:name="android.permission.CAMERA"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name=".PictureDemo" android:label="@string/app_name"
android:configChanges="keyboardHidden|orientation"
android:screenOrientation="landscape"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

However, since we do not absolutely need a front-facing camera, we use
android:required="false". Again, <uses-feature> is mostly a hint for the
Android Market and related tools.

156

Using the Camera

Getting the Camera

If we want to use the front-facing camera, we have three possible scenarios:

1. We are on an Android 2.3+ device that has a front-facing camera

2. We are on an Android 2.3+ device that does not have a front-facing
camera

3. We are on a device running Android 2.2 or older, before Android
had standardized ways to access the front-facing camera

While in principle we could use some manufacturer-specific techniques to
get to the front-facing camera on Android 2.1 or 2.2, that is beyond the
scope of this chapter, and should be a moot point by the end of 2011 as
those older Android versions start to fade into the distance.

Since we are writing version-specific code, we need to take steps to make
sure our Android 2.3 logic is not run on, say, an Android 2.2 device. Hence,
we are going to use the version-specific wrapper pattern.

The CameraFinder

We need an abstraction around finding a suitable camera, given hardware
characteristics and OS version. The version-specific wrapper pattern calls
for an abstract class, for which we will create concrete subclasses for each
OS version we need to support. The abstract class should also provide
access to an appropriate instance of the version-specific concrete subclass,
so our main code can work purely with the abstraction.

With that in mind, take a peek at CameraFinder:

package com.commonsware.android.camera;

import android.hardware.Camera;
import android.os.Build;

abstract class CameraFinder {
 abstract Camera open();
 static CameraFinder INSTANCE=buildFinder();

157

Using the Camera

 private static CameraFinder buildFinder() {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.GINGERBREAD) {
 return(new FFCFinder());
 }

 return(new ClassicFinder());
 }
}

The public interface to CameraFinder is pretty simple: a single open()
method, that should return a suitable Camera object. To get the right finder,
though, we use an INSTANCE singleton, initialized when CameraFinder is
loaded into the virtual machine. At that point, we see if we are on
GINGERBREAD or higher versions of Android, and use that to choose an
appropriate subclass.

Now, our onResume() method can use CameraFinder instead of directly
opening a Camera:

@Override
public void onResume() {
 super.onResume();

 camera=CameraFinder.INSTANCE.open();
}

The rest of our application code can be blissfully ignorant about where this
Camera comes from, courtesy of Android's abstracted camera interface.

Of course, we need to implement those two concrete subclasses, FFCFinder
(for finding a front-facing camera on Android 2.3 or higher) and
ClassicFinder (for older versions of Android).

The ClassicFinder

Since older versions of Android had no standard support for front-facing
cameras, we can simply have ClassicFinder delegate the open() method to
the Camera class:

158

Using the Camera

package com.commonsware.android.camera;

import android.hardware.Camera;

class ClassicFinder extends CameraFinder {
 Camera open() {
 return(Camera.open());
 }
}

If we wanted to support manufacturer-specific ways to access a front-facing
camera, and if those mechanisms would create a Camera object, we could
implement that logic here as well, in all likelihood.

The FFCFinder

One would have hoped that Android 2.3 would have a convenience method
on Camera, such as openFrontFacing(), to get a Camera object on the front-
facing camera if it exists on the device.

Alas, such a method was not supplied.

Instead, we have to iterate over all cameras on the device
(getNumberOfCameras()), get the Camera.CameraInfo for each
(getCameraInfo()), and see if the camera index in question points to a front-
facing camera:

package com.commonsware.android.camera;

import android.hardware.Camera;

class FFCFinder extends CameraFinder {
 Camera open() {
 Camera.CameraInfo info=new Camera.CameraInfo();

 for (int i=0;i<Camera.getNumberOfCameras();i++) {
 Camera.getCameraInfo(i, info);

 if (info.facing==Camera.CameraInfo.CAMERA_FACING_FRONT) {
 return(Camera.open(i));
 }
 }

 return(Camera.open());

159

Using the Camera

 }
}

If it does , we open that specific camera via the open() method taking a
camera index as a parameter. If we make it through the full list without
finding a front-facing camera, we shrug our virtual shoulders and default to
the default camera via open().

Asking for a Format

We need to tell the Camera what sort of picture to take when we decide to
take a picture. That is merely a matter of calling setPictureFormat() on the
Camera.Parameters object when we configure our Camera, using the value JPEG
to indicate that we want a simple JPEG image:

public void surfaceChanged(SurfaceHolder holder,
 int format, int width,
 int height) {
 Camera.Parameters parameters=camera.getParameters();
 Camera.Size size=getBestPreviewSize(width, height,
 parameters);

 if (size!=null) {
 parameters.setPreviewSize(size.width, size.height);
 parameters.setPictureFormat(PixelFormat.JPEG);

 camera.setParameters(parameters);
 camera.startPreview();
 inPreview=true;
 }
}

Taking a Picture

Somehow, your application will need to indicate when a picture should be
taken. That could be via widgets on the UI, though in our samples here, the
preview is full-screen.

An alternative is to use the camera hardware button. Like every hardware
button other than the HOME button, we can find out when the camera
button is clicked via onKeyDown():

160

Using the Camera

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode==KeyEvent.KEYCODE_CAMERA ||
 keyCode==KeyEvent.KEYCODE_SEARCH) {
 if (inPreview) {
 camera.takePicture(null, null, photoCallback);
 inPreview=false;
 }

 return(true);
 }

Since many devices do not have a hardware camera button, we also watch
for KEYCODE_SEARCH for the dedicated search key, which is available on all
compatible Android phones (but not tablets) as of the time of this writing.
You could similarly watch for a D-pad center button click or whatever you
wish. Given that tablets will not necessarily have hardware buttons, an on-
screen button is a better choice.

Once it is time to take a picture, all you need to do is tell the Camera to
takePicture(). The takePicture() method takes three parameters, all
callback-style objects:

1. A "shutter" callback (Camera.ShutterCallback), which is notified
when the picture has been captured by the hardware but the data is
not yet available – you might use this to play a "camera click" sound

2. Callbacks to receive the image data, either in raw format or JPEG
format

Since we requested JPEG output, and because we do not want to fuss with a
shutter click, PictureDemo only passes in the third parameter to
takePicture(), as is shown in the above listing.

The Camera.PictureCallback (photoCallback) needs to implement
onPictureTaken(), which provides the picture data as a byte[], plus the
Camera object that took the picture. At this point, it is safe to start up the
preview again.

Plus, of course, it would be nice to do something with that byte array.

161

Using the Camera

The catch is that the byte array is going to be large. Writing that to flash, or
sending it over the network, or doing just about anything with the data, will
be slow. Slow is fine...so long as it is not on the UI thread.

That means we need to do a little more work.

Using AsyncTask

In theory, we could just fork a background thread to save off the image data
or do whatever it is we wanted done with it. However, we could wind up
with several such threads, particularly if we are sending the image over the
Internet and do not have a fast connection to our destination server.

Android 1.5 offers a work queue model, in the form of AsyncTask. AsyncTask
manages a thread pool and work queue – all we need to do is hand it the
work to be done.

So, we can create an AsyncTask implementation, called SavePhotoTask, as
follows:

class SavePhotoTask extends AsyncTask<byte[], String, String> {
 @Override
 protected String doInBackground(byte[]... jpeg) {
 File photo=new File(Environment.getExternalStorageDirectory(),
 "photo.jpg");

 if (photo.exists()) {
 photo.delete();
 }

 try {
 FileOutputStream fos=new FileOutputStream(photo.getPath());

 fos.write(jpeg[0]);
 fos.close();
 }
 catch (java.io.IOException e) {
 Log.e("PictureDemo", "Exception in photoCallback", e);
 }

 return(null);
 }
}

162

Using the Camera

Our doInBackground() implementation gets the byte array we received from
Android. The byte array is simply the JPEG itself, so the data could be
written to a file, transformed, sent to a Web service, converted into a
BitmapDrawable for display on the screen or whatever.

In the case of PictureDemo, we take the simple approach of writing the JPEG
file as photo.jpg in the root of the SD card. The byte array itself will be
garbage collected once we are done saving it, so there is no explicit "free"
operation we need to do to release that memory.

Finally, we arrange for our PhotoCallback to execute our SavePhotoTask:

Camera.PictureCallback photoCallback=new Camera.PictureCallback() {
 public void onPictureTaken(byte[] data, Camera camera) {
 new SavePhotoTask().execute(data);
 camera.startPreview();
 inPreview=true;
 }
};

Maintaining Your Focus

Android devices may support auto-focus. As with the camera itself, auto-
focus is a device-specific capability and may not be available on all devices.

If you need auto-focus in your application, you will first need to add another
<uses-feature> element to your manifest, to declare your interest in auto-
focus:

<uses-feature android:name="android.hardware.camera.autofocus" />

Next, you need to determine when to apply auto-focus. For devices with a
dedicated camera hardware button, that button might support a "half-
press" that raises a KEYCODE_FOCUS KeyEvent. The T-Mobile G1 offers this, for
example.

Then, to trigger auto-focus itself in your code, call autoFocus() on the Camera
object. You will need to supply a callback object that will be notified when

163

Using the Camera

the focus operation is complete, so you know it is safe to take a picture, for
example. If a device does not support auto-focus, the callback object will be
notified anyway, so you can always rely upon the callback being notified
when the camera is as focused as it will ever be.

Note that if you can take advantage of auto-focus but do not absolutely
need it, there is an android:required attribute you can add to your <uses-
feature> element – setting that to false means your application can use
auto-focus methods but will still install on devices that lack an auto-focus
camera (e.g., HTC Tattoo). Note that android:required is not presently
documented, though that appears to be a documentation bug. To find out if
auto-focus is available on a given device, call getFocusMode() on your
Camera.Parameters object to see if it returns FOCUS_MODE_FIXED, in which case
auto-focus is unavailable.

All the Bells and Whistles

Starting with Android 2.0, the Camera.Parameters object offers a wide range
of settings that you can control over how a picture gets taken, much more
than merely the size and file type. Settings you can manage include:

• Anti-banding effects

• Color effects (e.g., "negative" or inverse image, sepia-tone image)

• Flash settings (on? off? always on? anti-red-eye mode?)

• Focus mode (fixed? macro? infinity?)

• JPEG quality levels, for both the image and the thumbnail
representation of the image

• White balance levels

For all of these, and others, not only can you get the current setting and
change it, but you can also obtain a list of the available settings, perhaps to
populate a ListView or selection dialog for the user.

You can now also supply GPS data to the camera, which will encode that
information into the EXIF data of the JPEG image.

164

CHAPTER 10

Playing Media

Pretty much every phone claiming to be a "smartphone" has the ability to at
least play back music, if not video. Even many more ordinary phones are
full-fledged MP3 players, in addition to offering ringtones and whatnot.

Not surprisingly, Android has multimedia support for you, as a developer,
to build your own games, media players, and so on.

We start with basic coverage of where you can obtain the media that you
want to play back. Then, we cover how to use MediaPlayer for playing back
audio files, such as an Ogg Vorbis clip. We then look at the use of VideoView
for playing back video files, and MediaPlayer and SurfaceView for playing
back streaming video. We wrap with brief coverage of other audio playback
APIs in Android.

Get Your Media On

In Android, you have five different places you can pull media clips from –
one of these will hopefully fit your needs:

1. You can package audio clips as raw resources (res/raw in your
project), so they are bundled with your application. The benefit is
that you're guaranteed the clips will be there; the downside is that
they cannot be replaced without upgrading the application.

165

Playing Media

2. You can package audio clips as assets (assets/ in your project) and
reference them via file:///android_asset/ URLs in a Uri. The
benefit over raw resources is that this location works with APIs that
expect Uri parameters instead of resource IDs. The downside –
assets are only replaceable when the application is upgraded –
remains.

3. You can store media in an application-local directory, such as
content you download off the Internet. Your media may or may not
be there, and your storage space isn't infinite, but you can replace
the media as needed.

4. You can store media – or make use of media that the user has stored
herself – that is on an SD card. There is likely more storage space on
the card than there is on the device, and you can replace the media
as needed, but other applications have access to the SD card as well.

5. You can, in some cases, stream media off the Internet, bypassing
any local storage, as with the StreamFurious application

For the T-Mobile G1, the recommended approach for anything of significant
size is to put it on the SD card, as there is very little on-board flash memory
for file storage.

Making Noise

If you want to play back music, particularly material in MP3 format, you
will want to use the MediaPlayer class. With it, you can feed it an audio clip,
start/stop/pause playback, and get notified on key events, such as when the
clip is ready to be played or is done playing.

You have three ways to set up a MediaPlayer and tell it what audio clip to
play:

1. If the clip is a raw resource, use MediaPlayer.create() and provide
the resource ID of the clip

2. If you have a Uri to the clip, use the Uri-flavored version of
MediaPlayer.create()

166

http://www.streamfurious.com/

Playing Media

3. If you have a string path to the clip, just create a MediaPlayer using
the default constructor, then call setDataSource() with the path to
the clip

Next, you need to call prepare() or prepareAsync(). Both will set up the clip
to be ready to play, such as fetching the first few seconds off the file or
stream. The prepare() method is synchronous; as soon as it returns, the clip
is ready to play. The prepareAsync() method is asynchronous – more on
how to use this version later.

Once the clip is prepared, start() begins playback, pause() pauses playback
(with start() picking up playback where pause() paused), and stop() ends
playback. One caveat: you cannot simply call start() again on the
MediaPlayer once you have called stop() – we'll cover a workaround a bit
later in this section.

To see this in action, take a look at the Media/Audio sample project. The
layout is pretty trivial, with three buttons and labels for play, pause, and
stop:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/play"
 android:src="@drawable/play"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 android:enabled="false"
 />
 <TextView
 android:text="Play"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"

167

Playing Media

 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/pause"
 android:src="@drawable/pause"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 />
 <TextView
 android:text="Pause"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="4px"
 >
 <ImageButton android:id="@+id/stop"
 android:src="@drawable/stop"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:paddingRight="4px"
 />
 <TextView
 android:text="Stop"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:layout_gravity="center_vertical"
 android:textAppearance="?android:attr/textAppearanceLarge"
 />
 </LinearLayout>
</LinearLayout>

The Java, of course, is where things get interesting:

public class AudioDemo extends Activity
 implements MediaPlayer.OnCompletionListener {

 private ImageButton play;

168

Playing Media

 private ImageButton pause;
 private ImageButton stop;
 private MediaPlayer mp;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 play=(ImageButton)findViewById(R.id.play);
 pause=(ImageButton)findViewById(R.id.pause);
 stop=(ImageButton)findViewById(R.id.stop);

 play.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 play();
 }
 });

 pause.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 pause();
 }
 });

 stop.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 stop();
 }
 });

 setup();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 if (stop.isEnabled()) {
 stop();
 }
 }

 public void onCompletion(MediaPlayer mp) {
 stop();
 }

 private void play() {
 mp.start();

 play.setEnabled(false);
 pause.setEnabled(true);
 stop.setEnabled(true);
 }

169

Playing Media

 private void stop() {
 mp.stop();
 pause.setEnabled(false);
 stop.setEnabled(false);

 try {
 mp.prepare();
 mp.seekTo(0);
 play.setEnabled(true);
 }
 catch (Throwable t) {
 goBlooey(t);
 }
 }

 private void pause() {
 mp.pause();

 play.setEnabled(true);
 pause.setEnabled(false);
 stop.setEnabled(true);
 }

 private void loadClip() {
 try {
 mp=MediaPlayer.create(this, R.raw.clip);
 mp.setOnCompletionListener(this);
 }
 catch (Throwable t) {
 goBlooey(t);
 }
 }

 private void setup() {
 loadClip();
 play.setEnabled(true);
 pause.setEnabled(false);
 stop.setEnabled(false);
 }

 private void goBlooey(Throwable t) {
 AlertDialog.Builder builder=new AlertDialog.Builder(this);

 builder
 .setTitle("Exception!")
 .setMessage(t.toString())
 .setPositiveButton("OK", null)
 .show();
 }
}

170

Playing Media

In onCreate(), we wire up the three buttons to appropriate callbacks, then
call setup(). In setup(), we create our MediaPlayer, set to play a clip we
package in the project as a raw resource. We also configure the activity
itself as the completion listener, so we find out when the clip is over. Note
that, since we use the static create() method on MediaPlayer, we have
already implicitly called prepare(), so we do not need to call that separately
ourselves.

The buttons simply work the MediaPlayer and toggle each others' states, via
appropriately-named callbacks. So, play() starts MediaPlayer playback,
pause() pauses playback, and stop() stops playback and resets our
MediaPlayer to play again. The stop() callback is also used for when the
audio clip completes of its own accord.

To reset the MediaPlayer, the stop() callback calls prepare() on the existing
MediaPlayer to enable it to be played again and seekTo() to move the
playback point to the beginning. If we were using an external file as our
media source, it would be better to call prepareAsync().

The UI is nothing special, but we are more interested in the audio in this
sample, anyway:

171

Playing Media

Figure 36. The AudioDemo sample application

Moving Pictures

In addition to perhaps using MediaPlayer, video clips get their own widget,
the VideoView. Put it in a layout, feed it an MP4 video clip, and you get
playback! We will see using MediaPlayer for video in the next section.

For example, take a look at this layout, from the Media/Video sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <VideoView
 android:id="@+id/video"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

172

Playing Media

The layout is simply a full-screen video player. Whether it will use the full
screen will be dependent on the video clip, its aspect ratio, and whether you
have the device (or emulator) in portrait or landscape mode.

Wiring up the Java is almost as simple:

public class VideoDemo extends Activity {
 private VideoView video;
 private MediaController ctlr;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 getWindow().setFormat(PixelFormat.TRANSLUCENT);
 setContentView(R.layout.main);

 File clip=new File(Environment.getExternalStorageDirectory(),
 "test.mp4");

 if (clip.exists()) {
 video=(VideoView)findViewById(R.id.video);
 video.setVideoPath(clip.getAbsolutePath());

 ctlr=new MediaController(this);
 ctlr.setMediaPlayer(video);
 video.setMediaController(ctlr);
 video.requestFocus();
 video.start();
 }
 }
}

Here, we:

• Confirm that our video file exists on external storage

• Tell the VideoView which file to play

• Create a MediaController pop-up panel and cross-connect it to the
VideoView

• Give the VideoView the focus and start playback

The biggest trick with VideoView is getting a video clip onto the device.
While VideoView does support some streaming video, the requirements on
the MP4 file are fairly stringent. If you want to be able to play a wider array

173

Playing Media

of video clips, you need to have them on the device, preferably on an SD
card.

The crude VideoDemo class assumes there is an MP4 file named test.mp4 in
the root of external storage on your device or emulator. Once there, the
Java code shown above will give you a working video player:

Figure 37. The VideoDemo sample application, showing a Creative Commons-
licensed video clip

Tapping on the video will pop up the playback controls:

174

Playing Media

Figure 38. The VideoDemo sample application, with the media controls
displayed

The video will scale based on space, as shown in this rotated view of the
emulator (<Ctrl>-<F12>):

Figure 39. The VideoDemo sample application, in landscape mode, with the
video clip scaled to fit

NOTE: playing video on the Android emulator may work for you, but it is
not terribly likely. Video playback requires graphic acceleration to work
well, and the emulator does not have graphics acceleration – regardless of

175

Playing Media

the capabilities of the actual machine the emulator runs on. Hence, if you
try playing back video in the emulator, expect problems. If you are serious
about doing Android development with video playback, you definitely need
to acquire a piece of Android hardware.

Pictures in the Stream

VideoView is nice, but you get a bit more control if you use MediaPlayer. It is
somewhat more involved to set up, though, in part because it involves a
SurfaceView, introduced in the chapter on the camera.

The sample code for this project is released as a separate open source
project, called vidtry, as it allows you to try video clips, with an emphasis
on streaming video. You can find the complete source code to vidtry out on
Github. You may want to have the full source code with you when
reviewing this section, as it is a bit more extensive than most.

At its core, vidtry simply plays back video, much like the example of
VideoView in the preceding section:

Figure 40. The vidtry sample application, showing a video from the 2009
Google I/O Conference

However, vidtry also supports streaming video and custom pop-up control
panels:

176

http://github.com/commonsguy/vidtry/tree/master

Playing Media

Figure 41. The vidtry sample application, showing pop-up panels overlaying
the video

Rules for Streaming

Streaming video with Android is a dicey proposition. If you are in control of
the media being streamed, getting it to work is eminently possible. If you
are trying to stream existing media not designed for use with Android, as
they say in the United States, "your mileage may vary".

This section focuses on HTTP streaming, as that is what most people would
be in position to serve up. RTSP streaming should also be available, but
there are far fewer RTSP servers than Web servers.

Here are some guidelines for serving HTTP streaming video to Android:

1. The media in question needs to be "safe for streaming". For MP4
files, for example, the rule is "the moov atom must appear before
the mdat atom". That may happen as a result of how you create the
MP4 files. If not, you may need to use tools to add "hints" to the
MP4 file to achieve this atom ordering. For example, on Linux, you
can use MP4Box -hint to accomplish this, where MP4Box can be found
in the gpac package for Ubuntu.

2. There used to be a rule that the height and width each had to be
divisible by 16. It is unclear if that is still a rule or merely an
optimization at this point.

177

Playing Media

3. If you have the space to store multiple editions of the video for
serving, consider creating ones for commonplace sizes, such as one
designed to work on a 480x320 landscape screen. The less work the
device has to do to scale the image, the better battery life will be.

Establishing the Surface

Setting up a SurfaceView for video playback works much the same way as
setting up a SurfaceView for the camera preview. You create the SurfaceView
and get its corresponding SurfaceHolder, then start using the surface once
the surface has been prepared.

For example, here is where we set up a SurfaceView in vidtry, in the Player
activity's onCreate() method:

surface=(TappableSurfaceView)findViewById(R.id.surface);
surface.addTapListener(onTap);
holder=surface.getHolder();
holder.addCallback(this);
holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

Note that we are using a TappableSurfaceView. This is a custom subclass of
SurfaceView that supports touch events – more on this in a later section.
Outside of touch behavior, though, TappableSurfaceView works identically
to a regular SurfaceView.

So, we get the surface out of our layout, add a listener for touch events, get
its SurfaceHolder, tell the SurfaceHolder to keep the Player informed of the
surface's own lifecycle, and set the type of the surface to be
SURFACE_TYPE_PUSH_BUFFERS (meaning lower level code gets to write directly
to the surface). That, plus the regular view creation process, will trigger the
SurfaceView to be constructed and made available for use.

178

Playing Media

Floating Panels

The SurfaceView is set up to take up whatever space it needs to play back
the video. Typically, this will involve filling one of the two axes, depending
on the aspect ratio of the video and the device's display.

Full-screen video playback is fairly normal for an application like this.
However, what may not be obvious is how to handle pop-up control panels,
where controls for pausing playback and such appear to float over top of
the video.

There are three components of the technique for making that work:

1. In layouts, anything later in the container (e.g., later in the XML
listing of the layout file) appears higher in the Z-axis. That means if
you define the SurfaceView first, and other widgets later, those other
widgets will appear to float over top of the video.

2. Since you control the visibility of any widget, you can arrange to
have those floating widgets be invisible (or gone) normally, and
only show up when the user requests, perhaps as a result of a screen
tap.

3. If you have several controls that you want grouped in a translucent
panel, just put them in one container (e.g., RelativeLayout) and set
the background color of that container to be a translucent value
(e.g., #40808080 for a translucent light gray).

For example, here is the layout that drives the Player activity
(res/layout/main.xml):

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.commonsware.android.vidtry.TappableSurfaceView
 android:id="@+id/surface"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center">
 </com.commonsware.android.vidtry.TappableSurfaceView>
 <RelativeLayout

179

Playing Media

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:id="@+id/top_panel"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:background="#40808080"
 android:visibility="visible"
 android:layout_alignParentTop="true"
 >
 <AutoCompleteTextView android:id="@+id/address"
 android:layout_width="0px"
 android:layout_weight="1"
 android:layout_height="wrap_content"
 android:completionThreshold="1"
 />
 <Button android:id="@+id/go"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/go"
 android:enabled="false"
 />
 </LinearLayout>
 <LinearLayout
 android:id="@+id/bottom_panel"
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:orientation="horizontal"
 android:background="#40808080"
 android:visibility="gone"
 android:layout_alignParentBottom="true"
 >
 <ProgressBar android:id="@+id/timeline"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="0px"
 android:layout_weight="1"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:paddingLeft="2px"
 />
 <ImageButton android:id="@+id/media"
 style="@style/MediaButton"
 android:layout_height="wrap_content"
 android:layout_width="wrap_content"
 android:src="@drawable/ic_media_pause"
 android:enabled="false"
 />
 </LinearLayout>
 </RelativeLayout>
</FrameLayout>

180

Playing Media

You will see that, in addition to our TappableSurfaceView, the layout has a
pair of LinearLayout widgets with the aforementioned background color.
One, on the top, contains an AutoCompleteTextView to be used for entering
URLs of videos to watch, plus a button to trigger playback of that video.
The other contains a ProgressBar that will serve as the video playback
timeline, plus a button to pause or resume playback. The bottom panel is
set to have android:visibility = "gone", so only the top panel will be visible
when you first run the application.

Playing Video

When the user types in a URL and clicks the "go" button, we call
playVideo() on our Player:

private void playVideo(String url) {
 try {
 media.setEnabled(false);

 if (player==null) {
 player=new MediaPlayer();
 player.setScreenOnWhilePlaying(true);
 }
 else {
 player.stop();
 player.reset();
 }

 player.setDataSource(url);
 player.setDisplay(holder);
 player.setAudioStreamType(AudioManager.STREAM_MUSIC);
 player.setOnPreparedListener(this);
 player.prepareAsync();
// player.setOnBufferingUpdateListener(this);
 player.setOnCompletionListener(this);
 }
 catch (Throwable t) {
 Log.e(TAG, "Exception in media prep", t);
 goBlooey(t);
 }
 }

Here, we do several things of significance:

• We either create a new MediaPlayer (if this is the first video we have
played) or stop() and reset() the existing player

181

Playing Media

• We tell the MediaPlayer to load the user-supplied URL into our
SurfaceView (via its SurfaceHolder)

• We tell the MediaPlayer to let us know when the video is prepared
and has finished playback

• We tell the MediaPlayer to prepareAsync(), which will begin
streaming down the initial portion of the video file

Note that we also call setScreenOnWhilePlaying() – this will keep the screen
lock from taking over while video is actually playing back.

After a few moments, MediaPlayer should have downloaded enough
information to begin actually playing the video. At that point, it will call us
back via the onPrepared() in the Player, as is required by the
MediaPlayer.OnPreparedListener interface we are implementing and used in
setOnPreparedListener().

public void onPrepared(MediaPlayer mediaplayer) {
 width=player.getVideoWidth();
 height=player.getVideoHeight();

 if (width!=0 && height!=0) {
 holder.setFixedSize(width, height);
 timeline.setProgress(0);
 timeline.setMax(player.getDuration());
 player.start();
 }

 media.setEnabled(true);
}

Here, we:

• Get the height and width of the video file from the MediaPlayer

• Tell the SurfaceView to use the same height and width – it will
automatically determine appropriate scaling if the video is larger
than the screen size

• Reset the timeline ProgressBar to 0 and set its maximum to be the
duration of the video clip, as reported by the MediaPlayer

• Start actual playback of the video

182

Playing Media

Note that Android is very finicky about its streaming video. A video that
might work fine on one device will not work well on another. If you are
going to be developing applications that rely upon streaming video, it is
best if you obtain 2-3 devices, with different screen sizes and from different
manufacturers, and test your videos on those devices to ensure they will
work.

Touchable Controls

We still have not done much about those two panels. One, containing the
URL field and button, is still visible. The other, containing the timeline and
play/pause button, is gone. It would be nice if both would be gone while
the video is playing, yet still be retrievable when the user wants them.

The panels are set to "automatically" hide after a period of inactivity. That is
accomplished by:

• Tracking the lastActionTime on any user input event (lastActionTime
= SystemClock.elapsedRealtime()), so we know when the user last
did something

• Use postDelayed() to set up a one-per-second check to see if enough
time has elapsed since lastActionTime, at which point bottom panel
is hidden

• The back button is used to close the top panel, when it is displayed

Bringing the panels up again is handled via touch events on our
SurfaceView, implemented in a TappableSurfaceView class:

package com.commonsware.android.vidtry;

import android.content.Context;
import android.view.GestureDetector;
import android.view.GestureDetector.SimpleOnGestureListener;
import android.view.MotionEvent;
import android.view.SurfaceView;
import android.util.AttributeSet;
import java.util.ArrayList;

public class TappableSurfaceView extends SurfaceView {
 private ArrayList<TapListener> listeners=new ArrayList<TapListener>();

183

Playing Media

 private GestureDetector gesture=null;

 public TappableSurfaceView(Context context,
 AttributeSet attrs) {
 super(context, attrs);
 }

 public boolean onTouchEvent(MotionEvent event) {
 if (event.getAction()==MotionEvent.ACTION_UP) {
 gestureListener.onSingleTapUp(event);
 }

 return(true);
 }

 public void addTapListener(TapListener l) {
 listeners.add(l);
 }

 public void removeTapListener(TapListener l) {
 listeners.remove(l);
 }

 private GestureDetector.SimpleOnGestureListener gestureListener=
 new GestureDetector.SimpleOnGestureListener() {
 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 for (TapListener l : listeners) {
 l.onTap(e);
 }

 return(true);
 }
 };

 public interface TapListener {
 void onTap(MotionEvent event);
 }
}

This crude touch interface watches for single taps on the screen, relaying
those to a roster of supplied "tap listeners", which will do something on
those taps.

The Player activity registers an onTap listener that displays either the top or
bottom panel depending on which half of the screen the user tapped upon:

private TappableSurfaceView.TapListener onTap=
 new TappableSurfaceView.TapListener() {
 public void onTap(MotionEvent event) {

184

Playing Media

 lastActionTime=SystemClock.elapsedRealtime();

 if (event.getY()<surface.getHeight()/2) {
 topPanel.setVisibility(View.VISIBLE);
 }
 else {
 bottomPanel.setVisibility(View.VISIBLE);
 }
 }
};

More coverage of touch interfaces will be added in another chapter in a
future edition of this book.

The same once-a-second postDelayed() loop also updates our timeline,
reflecting how much of the video has been played back:

private Runnable onEverySecond=new Runnable() {
 public void run() {
 if (lastActionTime>0 &&
 SystemClock.elapsedRealtime()-lastActionTime>3000) {
 clearPanels(false);
 }

 if (player!=null) {
 timeline.setProgress(player.getCurrentPosition());
 }

 if (!isPaused) {
 surface.postDelayed(onEverySecond, 1000);
 }
 }
};

Other Ways to Make Noise

While MediaPlayer is the primary audio playback option, particularly for
content along the lines of MP3 files, there are other alternatives if you are
looking to build other sorts of applications, notably games and custom
forms of streaming audio.

185

Playing Media

SoundPool

The SoundPool class's claim to fame is the ability to overlay multiple sounds,
and do so in a prioritized fashion, so your application can just ask for
sounds to be played and SoundPool deals with each sound starting, stopping,
and blending while playing.

This may make more sense with an example.

Suppose you are creating a first-person shooter. Such a game may have
several sounds going on at any one time:

• The sound of the wind whistling amongst the trees on the
battlefield

• The sound of the surf crashing against the beach in the landing
zone

• The sound of booted feet crunching on the sand

• The sound of the character's own panting as the character runs on
the beach

• The sound of orders being barked by a sergeant positioned behind
the character

• The sound of machine gun fire aimed at the character and the
character's squad mates

• The sound of explosions from the gun batteries of the battleship
providing suppression fire

And so on.

In principle, SoundPool can blend all of those together into a single audio
stream for output. Your game might set up the wind and surf as constant
background sounds, toggle the feet and panting on and off based on the
character's movement, randomly add the barked orders, and tie the gunfire
based on actual game play.

186

Playing Media

In reality, your average smartphone will lack the CPU power to handle all of
that audio without harming the frame rate of the game. So, to keep the
frame rate up, you tell SoundPool to play at most two streams at once. This
means that when nothing else is happening in the game, you will hear the
wind and surf, but during the actual battle, those sounds get dropped out –
the user might never even miss them – so the game speed remains good.

AudioTrack

The lowest-level Java API for playing back audio is AudioTrack. It has two
main roles:

• Its primary role is to support streaming audio, where the streams
come in some format other than what MediaPlayer handles. While
MediaPlayer can handle RTSP, for example, it does not offer SIP. If
you want to create a SIP client (perhaps for a VOIP or Web
conferencing application), you will need to convert the incoming
data stream to PCM format, then hand the stream off to an
AudioTrack instance for playback.

• It can also be used for "static" (versus streamed) bits of sound that
you have pre-decoded to PCM format and want to play back with as
little latency as possible. For example, you might use this for a game
for in-game sounds (beeps, bullets, or "boing"s). By pre-decoding
the data to PCM and caching that result, then using AudioTrack for
playback, you will use the least amount of overhead, minimizing
CPU impact on game play and on battery life.

ToneGenerator

If you want your phone to sound like...well...a phone, you can use
ToneGenerator to have it play back dual-tone multi-frequency (DTMF)
tones. In other words, you can simulate the sounds played by a regular
"touch-tone" phone in response to button presses. This is used by the
Android dialer, for example, to play back the tones when users dial the
phone using the on-screen keypad, as an audio reinforcement.

187

http://en.wikipedia.org/wiki/Dtmf

Playing Media

Note that these will play through the phone's earpiece, speaker, or attached
headset. They do not play through the outbound call stream. In principle,
you might be able to get ToneGenerator to play tones through the speaker
loud enough to be picked up by the microphone, but this probably is not a
recommended practice.

188

PART III – Advanced System

CHAPTER 11

Handling System Events

If you have ever looked at the list of available Intent actions in the SDK
documentation for the Intent class, you will see that there are lots of
possible actions.

There are even actions that are not listed in that spot in the documentation,
but are scattered throughout the rest of the SDK documentation.

The vast majority of these you will never raise yourself. Instead, they are
broadcast by Android, to signify certain system events that have occurred
and that you might want to take note of, if they affect the operation of your
application.

This chapter examines a few of these, to give you the sense of what is
possible and how to make use of these sorts of events.

Get Moving, First Thing

A popular request is to have a service get control when the device is
powered on.

This is doable but somewhat dangerous, in that too many on-boot requests
slow down the device startup and may make things sluggish for the user.
Moreover, the more services that are running all the time, the worse the
device performance will be.

191

Handling System Events

A better pattern is to get control on boot to arrange for a service to do
something periodically using the AlarmManager or via other system events. In
this section, we will examine the on-boot portion of the problem – in the
next chapter, we will investigate AlarmManager and how it can keep services
active yet not necessarily resident in memory all the time.

The Permission

In order to be notified when the device has completed is system boot
process, you will need to request the RECEIVE_BOOT_COMPLETED permission.
Without this, even if you arrange to receive the boot broadcast Intent, it
will not be dispatched to your receiver.

As the Android documentation describes it:

Though holding this permission does not have any security
implications, it can have a negative impact on the user
experience by increasing the amount of time it takes the
system to start and allowing applications to have themselves
running without the user being aware of them. As such, you
must explicitly declare your use of this facility to make that
visible to the user.

The Receiver Element

There are two ways you can receive a broadcast Intent. One is to use
registerReceiver() from an existing Activity, Service, or ContentProvider.
The other is to register your interest in the Intent in the manifest in the
form of a <receiver> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.sysevents.boot" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" android:targetSdkVersion="6"/>
 <supports-screens android:largeScreens="false" android:normalScreens="true"
android:smallScreens="false"/>

192

Handling System Events

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <receiver android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>
 </application>
</manifest>

The above AndroidManifest.xml, from the SystemEvents/OnBoot sample
project, shows that we have registered a broadcast receiver named
OnBootReceiver, set to be given control when the
android.intent.action.BOOT_COMPLETED Intent is broadcast.

In this case, we have no choice but to implement our receiver this way – by
the time any of our other components (e.g., an Activity) were to get control
and be able to call registerReceiver(), the BOOT_COMPLETED Intent will be
long gone.

The Receiver Implementation

Now that we have told Android that we would like to be notified when the
boot has completed, and given that we have been granted permission to do
so by the user, we now need to actually do something to receive the Intent.
This is a simple matter of creating a BroadcastReceiver, such as seen in the
OnBootCompleted implementation shown below:

package com.commonsware.android.sysevents.boot;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class OnBootReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Log.d("OnBootReceiver", "Hi, Mom!");
 }
}

193

Handling System Events

A BroadcastReceiver is not a Context, and so it gets passed a suitable Context
object in onReceive() to use for accessing resources and the like. The
onReceive() method also is passed the Intent that caused our
BroadcastReceiver to be created, in case there are "extras" we need to pull
out (none in this case).

In onReceive(), we can do whatever we want, subject to some limitations:

1. We are not a Context, like an Activity, so we cannot modify a UI or
anything such as that

2. If we want to do anything significant, it is better to delegate that
logic to a service that we start from here (e.g., calling startService()
on the supplied Context) rather than actually doing it here, since
BroadcastReceiver implementations need to be fast

3. We cannot start any background threads, directly or indirectly,
since the BroadcastReceiver gets discarded as soon as onReceive()
returns

In this case, we simply log the fact that we got control. In the next chapter,
we will see what else we can do at boot time, to ensure one of our services
gets control later on as needed.

To test this, install it on an emulator (or device), shut down the emulator,
then restart it.

I Sense a Connection Between Us...

Generally speaking, Android applications do not care what sort of Internet
connection is being used – 3G, GPRS, WiFi, lots of trained carrier pigeons,
or whatever. So long as there is an Internet connection, the application is
happy.

Sometimes, though, you may specifically want WiFi. This would be true if
your application is bandwidth-intensive and you want to ensure that,
should WiFi stop being available, you cut back on your work so as not to

194

http://www.faqs.org/rfcs/rfc1149.html

Handling System Events

consume too much 3G/GPRS bandwidth, which is usually subject to some
sort of cap or metering.

There is an android.net.wifi.WIFI_STATE_CHANGED Intent that will be
broadcast, as the name suggests, whenever the state of the WiFi connection
changes. You can arrange to receive this broadcast and take appropriate
steps within your application.

This Intent requires no special permission, unlike the BOOT_COMPLETED Intent
from the previous section. Hence, all you need to do is register a
BroadcastReceiver for android.net.wifi.WIFI_STATE_CHANGED, either via
registerReceiver(), or via the <receiver> element in AndroidManifest.xml,
such as the one shown below, from the SystemEvents/OnWiFiChange sample
project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.sysevents.wifi" android:versionCode="1"
android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <receiver android:name=".OnWiFiChangeReceiver">
 <intent-filter>
 <action android:name="android.net.wifi.WIFI_STATE_CHANGED"/>
 </intent-filter>
 </receiver>
 </application>
</manifest>

All we do in the manifest is tell Android to create an OnWiFiChangeReceiver
object when a android.net.wifi.WIFI_STATE_CHANGED Intent is broadcast, so
the receiver can do something useful.

In the case of OnWiFiChangeReceiver, it examines the value of the
EXTRA_WIFI_STATE "extra" in the supplied Intent and logs an appropriate
message:

package com.commonsware.android.sysevents.wifi;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.net.wifi.WifiManager;

195

Handling System Events

import android.util.Log;

public class OnWiFiChangeReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 int state=intent.getIntExtra(WifiManager.EXTRA_WIFI_STATE, -1);
 String msg=null;

 switch (state) {
 case WifiManager.WIFI_STATE_DISABLED:
 msg="is disabled";
 break;

 case WifiManager.WIFI_STATE_DISABLING:
 msg="is disabling";
 break;

 case WifiManager.WIFI_STATE_ENABLED:
 msg="is enabled";
 break;

 case WifiManager.WIFI_STATE_ENABLING:
 msg="is enabling";
 break;

 case WifiManager.WIFI_STATE_UNKNOWN :
 msg="has an error";
 break;

 default:
 msg="is acting strangely";
 break;
 }

 if (msg!=null) {
 Log.d("OnWiFiChanged", "WiFi "+msg);
 }
 }
}

The EXTRA_WIFI_STATE "extra" tells you what the state has become (e.g., we
are now disabling or are now disabled), so you can take appropriate steps in
your application.

Note that, to test this, you will need an actual Android device, as the
emulator does not specifically support simulating WiFi connections.

196

Handling System Events

Feeling Drained

One theme with system events is to use them to help make your users
happier by reducing your impacts on the device while the device is not in a
great state. In the preceding section, we saw how you could find out when
WiFi was disabled, so you might not use as much bandwidth when on
3G/GPRS. However, not every application uses so much bandwidth as to
make this optimization worthwhile.

However, most applications are impacted by battery life. Dead batteries run
no apps.

So whether you are implementing a battery monitor or simply want to
discontinue background operations when the battery gets low, you may
wish to find out how the battery is doing.

There is an ACTION_BATTERY_CHANGED Intent that gets broadcast as the battery
status changes, both in terms of charge (e.g., 80% charged) and charging
(e.g., the device is now plugged into AC power). You simply need to register
to receive this Intent when it is broadcast, then take appropriate steps.

One of the limitations of ACTION_BATTERY_CHANGED is that you have to use
registerReceiver() to set up a BroadcastReceiver to get this Intent when
broadcast. You cannot use a manifest-declared receiver as shown in the
preceding two sections.

In SystemEvents/OnBattery, you will find a layout containing a ProgressBar, a
TextView, and an ImageView, to serve as a battery monitor:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/bar"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

197

Handling System Events

 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView android:id="@+id/level"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:textSize="16pt"
 />
 <ImageView android:id="@+id/status"
 android:layout_width="0px"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 />
 </LinearLayout>
</LinearLayout>

This layout is used by a BatteryMonitor activity, which registers to receive
the ACTION_BATTERY_CHANGED Intent in onResume() and unregisters in
onPause():

package com.commonsware.android.sysevents.battery;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.os.BatteryManager;
import android.widget.ProgressBar;
import android.widget.ImageView;
import android.widget.TextView;

public class BatteryMonitor extends Activity {
 private ProgressBar bar=null;
 private ImageView status=null;
 private TextView level=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bar=(ProgressBar)findViewById(R.id.bar);
 status=(ImageView)findViewById(R.id.status);
 level=(TextView)findViewById(R.id.level);
 }

 @Override

198

Handling System Events

 public void onResume() {
 super.onResume();

 registerReceiver(onBatteryChanged,
 new IntentFilter(Intent.ACTION_BATTERY_CHANGED));
 }

 @Override
 public void onPause() {
 super.onPause();

 unregisterReceiver(onBatteryChanged);
 }

 BroadcastReceiver onBatteryChanged=new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 int pct=100*intent.getIntExtra("level", 1)/intent.getIntExtra("scale", 1);

 bar.setProgress(pct);
 level.setText(String.valueOf(pct));

 switch(intent.getIntExtra("status", -1)) {
 case BatteryManager.BATTERY_STATUS_CHARGING:
 status.setImageResource(R.drawable.charging);
 break;

 case BatteryManager.BATTERY_STATUS_FULL:
 int plugged=intent.getIntExtra("plugged", -1);

 if (plugged==BatteryManager.BATTERY_PLUGGED_AC ||
 plugged==BatteryManager.BATTERY_PLUGGED_USB) {
 status.setImageResource(R.drawable.full);
 }
 else {
 status.setImageResource(R.drawable.unplugged);
 }
 break;

 default:
 status.setImageResource(R.drawable.unplugged);
 break;
 }
 }
 };
}

The key to ACTION_BATTERY_CHANGED is in the "extras". Many "extras" are
packaged in the Intent, to describe the current state of the battery, such as
the following constants defined on the BatteryManager class:

• EXTRA_HEALTH, which should generally be BATTERY_HEALTH_GOOD

199

Handling System Events

• EXTRA_LEVEL, which is the proportion of battery life remaining as an
integer, specified on the scale described by the scale "extra"

• EXTRA_PLUGGED, which will indicate if the device is plugged into AC
power (BATTERY_PLUGGED_AC) or USB power (BATTERY_PLUGGED_USB)

• EXTRA_SCALE, which indicates the maximum possible value of level
(e.g., 100, indicating that level is a percentage of charge remaining)

• EXTRA_STATUS, which will tell you if the battery is charging
(BATTERY_STATUS_CHARGING), full (BATTERY_STATUS_FULL), or discharging
(BATTERY_STATUS_DISCHARGING)

• EXTRA_TECHNOLOGY, which indicates what sort of battery is installed
(e.g., "Li-Ion")

• EXTRA_TEMPERATURE, which tells you how warm the battery is, in
tenths of a degree Celsius (e.g., 213 is 21.3 degrees Celsius)

• EXTRA_VOLTAGE, indicating the current voltage being delivered by the
battery, in millivolts

In the case of BatteryMonitor, when we receive an ACTION_BATTERY_CHANGED
Intent, we do three things:

1. We compute the percentage of battery life remaining, by dividing
the level by the scale

2. We update the ProgressBar and TextView to display the battery life as
a percentage

3. We display an icon, with the icon selection depending on whether
we are charging (status is BATTERY_STATUS_CHARGING), full but on the
charger (status is BATTERY_STATUS_FULL and plugged is
BATTERY_PLUGGED_AC or BATTERY_PLUGGED_USB), or are not plugged in

This only really works on a device, where you can plug and unplug it, plus
get a varying charge level:

200

Handling System Events

Figure 42. The BatteryMonitor application

Sticky Intents and the Battery

Android has a notion of "sticky broadcast Intents". Normally, a broadcast
Intent will be delivered to interested parties and then discarded. A sticky
broadcast Intent is delivered to interested parties and retained until the
next matching Intent is broadcast. Applications can call registerReceiver()
with an IntentFilter that matches the sticky broadcast, but with a null
BroadcastReceiver, and get the sticky Intent back as a result of the
registerReceiver() call.

This may sound confusing. Let's look at this in the context of the battery.

Earlier in this section, you saw how to register for ACTION_BATTERY_CHANGED to
get information about the battery delivered to you. You can also, though,
get the latest battery information without registering a receiver. Just create
an IntentFilter to match ACTION_BATTERY_CHANGED (as shown above) and call
registerReceiver() with that filter and a null BroadcastReceiver. The Intent

201

Handling System Events

you get back from registerReceiver() is the last ACTION_BATTERY_CHANGED
Intent that was broadcast, with the same extras. Hence, you can use this to
get the current (or near-current) battery status, rather than having to
bother registering an actual BroadcastReceiver.

Other Power Triggers

If you are only interested in knowing when the device has been attached to,
or detached from, a source of external power, there are different broadcast
Intent actions you can monitor: ACTION_POWER_CONNECTED and
ACTION_POWER_DISCONNECTED. These are only broadcast when the power source
changes, not just every time the battery changes charge level. Hence, these
will be more efficient, as your code will be invoked less frequently. Better
still, you can use manifest-registered broadcast receivers for these,
bypassing the limits the system puts on ACTION_BATTERY_CHANGED.

202

CHAPTER 12

Advanced Service Patterns

In The Busy Coder's Guide to Android Development, we covered how to
create and consume services and covered some basic service patterns.
However, services can certainly do more than what is covered in those
introductory patterns. In this chapter, we will examine some more powerful
options for services, including remote services and using services in the role
of "cron jobs" or "scheduled tasks".

Remote Services

By default, services are used within the application that publishes them.
However, it is possible to expose services for other applications to take
advantage of. These are basically inter-process editions of the binding
pattern and command patterns outlined in The Busy Coder's Guide to
Android Development.

We start with an explanation of the inter-process communication (IPC)
mechanism offered in Android for allowing services to work with clients in
other applications. Then, we move onto the steps to allow a client to
connect to a remote service, before describing how to turn an ordinary
service into a remote one. We then look at how one can implement a
callback system to allow services, through IPC, to pass information back to
clients. After noting the possibility of binder errors, we wrap by examining
other ways to get results from remote services, back to clients, without
going through binding.

203

Advanced Service Patterns

When IPC Attacks!

Services will tend to offer IPC as a means of interacting with activities or
other Android components. Each service declares what methods it is
making available over IPC; those methods are then available for other
components to call, with Android handling all the messy details involved
with making method calls across component or process boundaries.

The guts of this, from the standpoint of the developer, is expressed in AIDL:
the Android Interface Description Language. If you have used IPC
mechanisms like COM, CORBA, or the like, you will recognize the notion of
IDL. AIDL describes the public IPC interface, and Android supplies tools to
build the client and server side of that interface.

With that in mind, let's take a look at AIDL and IPC.

Write the AIDL

IDLs are frequently written in a "language-neutral" syntax. AIDL, on the
other hand, looks a lot like a Java interface. For example, here is some
AIDL:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

As with a Java interface, you declare a package at the top. As with a Java
interface, the methods are wrapped in an interface declaration (interface
IScript { ... }). And, as with a Java interface, you list the methods you are
making available.

The differences, though, are critical.

First, not every Java type can be used as a parameter. Your choices are:

204

Advanced Service Patterns

• Primitive values (int, float, double, boolean, etc.)

• String and CharSequence

• List and Map (from java.util)

• Any other AIDL-defined interfaces

• Any Java classes that implement the Parcelable interface, which is
Android's flavor of serialization

In the case of the latter two categories, you need to include import
statements referencing the names of the classes or interfaces that you are
using (e.g., import com.commonsware.android.ISomething). This is true even if
these classes are in your own package – you have to import them anyway.

Next, parameters can be classified as in, out, or inout. Values that are out or
inout can be changed by the service and those changes will be propagated
back to the client. Primitives (e.g., int) can only be in; we included in for
the AIDL for enable() just for illustration purposes.

Also, you cannot throw any exceptions. You will need to catch all
exceptions in your code, deal with them, and return failure indications
some other way (e.g., error code return values).

Name your AIDL files with the .aidl extension and place them in the
proper directory based on the package name.

When you build your project, either via an IDE or via Ant, the aidl utility
from the Android SDK will translate your AIDL into a server stub and a
client proxy.

Implement the Interface

Given the AIDL-created server stub, now you need to implement the
service, either directly in the stub, or by routing the stub implementation to
other methods you have already written.

205

Advanced Service Patterns

The mechanics of this are fairly straightforward:

• Create a private instance of the AIDL-generated .Stub class (e.g.,
IScript.Stub)

• Implement methods matching up with each of the methods you
placed in the AIDL

• Return this private instance from your onBind() method in the
Service subclass

Note that AIDL IPC calls are synchronous, and so the caller is blocked until
the IPC method returns. Hence, your services need to be quick about their
work.

We will see examples of service stubs later in this chapter.

A Consumer Economy

Of course, we need to have a client for AIDL-defined services, lest these
services feel lonely.

Bound for Success

To use an AIDL-defined service, you first need to create an instance of your
own ServiceConnection class. ServiceConnection, as the name suggests,
represents your connection to the service for the purposes of making IPC
calls.

Your ServiceConnection subclass needs to implement two methods:

1. onServiceConnected(), which is called once your activity is bound to
the service

2. onServiceDisconnected(), which is called if your connection ends
normally, such as you unbinding your activity from the service

206

Advanced Service Patterns

Each of those methods receives a ComponentName, which simply identifies the
service you connected to. More importantly, onServiceConnected() receives
an IBinder instance, which is your gateway to the IPC interface. You will
want to convert the IBinder into an instance of your AIDL interface class, so
you can use IPC as if you were calling regular methods on a regular Java
class (IScript.Stub.asInterface(binder)).

To actually hook your activity to the service, call bindService() on the
activity:

bindService(new Intent("com.commonsware.android.advservice.IScript"),
 svcConn, Context.BIND_AUTO_CREATE);

The bindService() method takes three parameters:

1. An Intent representing the service you wish to invoke

2. Your ServiceConnection instance

3. A set of flags – most times, you will want to pass in
BIND_AUTO_CREATE, which will start up the service if it is not already
running

After your bindService() call, your onServiceConnected() callback in the
ServiceConnection will eventually be invoked, at which time your
connection is ready for use.

Request for Service

Once your service interface object is ready
(IScript.Stub.asInterface(binder)), you can start calling methods on it as
you need to. In fact, if you disabled some widgets awaiting the connection,
now is a fine time to re-enable them.

However, you will want to trap two exceptions. One is DeadObjectException
– if this is raised, your service connection terminated unexpectedly. In this
case, you should unwind your use of the service, perhaps by calling
onServiceDisconnected() manually, as shown above. The other is
RemoteException, which is a more general-purpose exception indicating a

207

Advanced Service Patterns

cross-process communications problem. Again, you should probably cease
your use of the service.

Getting Unbound

When you are done with the IPC interface, call unbindService(), passing in
the ServiceConnection. Eventually, your connection's
onServiceDisconnected() callback will be invoked, at which point you should
null out your interface object, disable relevant widgets, or otherwise flag
yourself as no longer being able to use the service.

You can always reconnect to the service, via bindService(), if you need to
use it again.

Service From Afar

Everything from the preceding two sections could be used by local services.
In fact, that prose originally appeared in The Busy Coder's Guide to Android
Development specifically in the context of local services. However, AIDL
adds a fair bit of overhead, which is not necessary with local services. After
all, AIDL is designed to marshal its parameters and transport them across
process boundaries, which is why there are so many quirky rules about
what you can and cannot pass as parameters to your AIDL-defined APIs.

So, given our AIDL description, let us examine some implementations,
specifically for remote services.

Our sample applications – shown in the AdvServices/RemoteService and
AdvServices/RemoteClient sample projects – convert our Beanshell demo
from The Busy Coder's Guide to Android Development into a remote service.
If you actually wanted to use scripting in an Android application, with
scripts loaded off of the Internet, isolating their execution into a service
might not be a bad idea. In the service, those scripts are sandboxed, only
able to access files and APIs available to that service. The scripts cannot
access your own application's databases, for example. If the script-executing

208

Advanced Service Patterns

service is kept tightly controlled, it minimizes the mischief a rogue script
could possibly do.

Service Names

To bind to a service's AIDL-defined API, you need to craft an Intent that can
identify the service in question. In the case of a local service, that Intent can
use the local approach of directly referencing the service class.

Obviously, that is not possible in a remote service case, where the service
class is not in the same process, and may not even be known by name to
the client.

When you define a service to be used by remote, you need to add an intent-
filter element to your service declaration in the manifest, indicating how
you want that service to be referred to by clients. The manifest for
RemoteService is shown below:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.advservice" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" android:targetSdkVersion="6"/>
 <supports-screens android:largeScreens="false" android:normalScreens="true"
android:smallScreens="false"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <service android:name=".BshService">
 <intent-filter>
 <action android:name="com.commonsware.android.advservice.IScript"/>
 </intent-filter>
 </service>
 </application>
</manifest>

Here, we say that the service can be identified by the name
com.commonsware.android.advservice.IScript. So long as the client uses this
name to identify the service, it can bind to that service's API.

In this case, the name is not an implementation, but the AIDL API, as you
will see below. In effect, this means that so long as some service exists on

209

Advanced Service Patterns

the device that implements this API, the client will be able to bind to
something.

The Service

Beyond the manifest, the service implementation is not too unusual. There
is the AIDL interface, IScript:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScript {
 void executeScript(String script);
}

And there is the actual service class itself, BshService:

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script) {
 executeScriptImpl(script);
 }
 };
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate() {
 super.onCreate();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);

210

Advanced Service Patterns

 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 }

 private void executeScriptImpl(String script) {
 try {
 i.eval(script);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }
}

If you have seen the service and Beanshell samples in The Busy Coder's
Guide to Android Development then this implementation will seem familiar.
The biggest thing to note is that the service returns no result and handles
any errors locally. Hence, the client will not get any response back from the
script – the script will just run. In a real implementation, this would be silly,
and we will work to rectify this later in this chapter.

Also note that, in this implementation, the script is executed directly by the
service on the calling thread. One might think this is not a problem, since
the service is in its own process and, therefore, cannot possibly be using the
client's UI thread. However, AIDL IPC calls are synchronous, so the client
will still block waiting for the script to be executed. This too will be
corrected later in this chapter.

The Client

The client – BshServiceDemo out of AdvServices/RemoteClient – is a fairly
straight-forward mashup of the service and Beanshell clients, with two
twists:

package com.commonsware.android.advservice.client;

import android.app.Activity;
import android.app.AlertDialog;
import android.content.ComponentName;
import android.content.Context;

211

Advanced Service Patterns

import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import com.commonsware.android.advservice.IScript;

public class BshServiceDemo extends Activity {
 private IScript service=null;
 private ServiceConnection svcConn=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder binder) {
 service=IScript.Stub.asInterface(binder);
 }

 public void onServiceDisconnected(ComponentName className) {
 service=null;
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src);
 }
 catch (android.os.RemoteException e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
 });

 bindService(new Intent("com.commonsware.android.advservice.IScript"),
 svcConn, Context.BIND_AUTO_CREATE);
 }

212

Advanced Service Patterns

 @Override
 public void onDestroy() {
 super.onDestroy();

 unbindService(svcConn);
 }
}

One twist is that the client needs its own copy of IScript.aidl. After all, it is
a totally separate application, and therefore does not share source code
with the service. In a production environment, we might craft and
distribute a JAR file that contains the IScript classes, so both client and
service can work off the same definition (see the upcoming chapter on
reusable components). For now, we will just have a copy of the AIDL.

Then, the bindService() call uses a slightly different Intent, one that
references the name the service is registered under, and that is the glue that
allows the client to find the matching service.

If you compile both applications and upload them to the device, then start
up the client, you can enter in Beanshell code and have it be executed by
the service. Note, though, that you cannot perform UI operations (e.g., raise
a Toast) from the service. If you choose some script that is long-running,
you will see that the Go! button is blocked until the script is complete:

213

Advanced Service Patterns

Figure 43. The BshServiceDemo application, running a long script

Servicing the Service

The preceding section outlined two flaws in the implementation of the
Beanshell remote service:

1. The client received no results from the script execution

2. The client blocked waiting for the script to complete

If we were not worried about the blocking-call issue, we could simply have
the executeScript() exported API return some sort of result (e.g., toString()
on the result of the Beanshell eval() call). However, that would not solve
the fact that calls to service APIs are synchronous even for remote services.

Another approach would be to pass some sort of callback object with
executeScript(), such that the server could run the script asynchronously
and invoke the callback on success or failure. This, though, implies that
there is some way to have the activity export an API to the service.

214

Advanced Service Patterns

Fortunately, this is eminently doable, as you will see in this section, and the
accompanying samples (AdvServices/RemoteServiceEx and
AdvServices/RemoteClientEx).

Callbacks via AIDL

AIDL does not have any concept of direction. It just knows interfaces and
stub implementations. In the preceding example, we used AIDL to have the
service flesh out the stub implementation and have the client access the
service via the AIDL-defined interface. However, there is nothing magic
about services implementing and clients accessing – it is equally possible to
reverse matters and have the client implement something the service uses
via an interface.

So, for example, we could create an IScriptResult.aidl file:

package com.commonsware.android.advservice;

// Declare the interface.
interface IScriptResult {
 void success(String result);
 void failure(String error);
}

Then, we can augment IScript itself, to pass an IScriptResult with
executeScript():

package com.commonsware.android.advservice;

import com.commonsware.android.advservice.IScriptResult;

// Declare the interface.
interface IScript {
 void executeScript(String script, IScriptResult cb);
}

Notice that we need to specifically import IScriptResult, just like we might
import some "regular" Java interface. And, as before, we need to make sure
the client and the server are working off of the same AIDL definitions, so
these two AIDL files need to be replicated across each project.

215

Advanced Service Patterns

But other than that one little twist, this is all that is required, at the AIDL
level, to have the client pass a callback object to the service: define the
AIDL for the callback and add it as a parameter to some service API call.

Of course, there is a little more work to do on the client and server side to
make use of this callback object.

Revising the Client

On the client, we need to implement an IScriptResult. On success(), we
can do something like raise a Toast; on failure(), we can perhaps show an
AlertDialog.

The catch is that we cannot be certain we are being called on the UI thread
in our callback object.

So, the safest way to do that is to make the callback object use something
like runOnUiThread() to ensure the results are displayed on the UI thread:

private final IScriptResult.Stub callback=new IScriptResult.Stub() {
 public void success(final String result) {
 runOnUiThread(new Runnable() {
 public void run() {
 successImpl(result);
 }
 });
 }

 public void failure(final String error) {
 runOnUiThread(new Runnable() {
 public void run() {
 failureImpl(error);
 }
 });
 }
};

private void successImpl(String result) {
 Toast
 .makeText(BshServiceDemo.this, result, Toast.LENGTH_LONG)
 .show();
}

private void failureImpl(String error) {

216

Advanced Service Patterns

 AlertDialog.Builder builder=
 new AlertDialog.Builder(BshServiceDemo.this);

 builder
 .setTitle("Exception!")
 .setMessage(error)
 .setPositiveButton("OK", null)
 .show();
}

And, of course, we need to update our call to executeScript() to pass the
callback object to the remote service:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 service.executeScript(src, callback);
 }
 catch (android.os.RemoteException e) {
 failureImpl(e.toString());
 }
 }
 });

 bindService(new Intent("com.commonsware.android.advservice.IScript"),
 svcConn, Context.BIND_AUTO_CREATE);
}

Revising the Service

The service also needs changing, to both execute the scripts asynchronously
and use the supplied callback object for the end results of the script's
execution.

BshService from AdvServices/RemoteServiceEx uses the LinkedBlockingQueue
pattern to manage a background thread. An ExecuteScriptJob wraps up the
script and callback; when the job is eventually processed, it uses the

217

Advanced Service Patterns

callback to supply the results of the eval() (on success) or the message of
the Exception (on failure):

package com.commonsware.android.advservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import java.util.concurrent.LinkedBlockingQueue;
import bsh.Interpreter;

public class BshService extends Service {
 private final IScript.Stub binder=new IScript.Stub() {
 public void executeScript(String script, IScriptResult cb) {
 executeScriptImpl(script, cb);
 }
 };
 private Interpreter i=new Interpreter();
 private LinkedBlockingQueue<Job> q=new LinkedBlockingQueue<Job>();

 @Override
 public void onCreate() {
 super.onCreate();

 new Thread(qProcessor).start();

 try {
 i.set("context", this);
 }
 catch (bsh.EvalError e) {
 Log.e("BshService", "Error executing script", e);
 }
 }

 @Override
 public IBinder onBind(Intent intent) {
 return(binder);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();

 q.add(new KillJob());
 }

 private void executeScriptImpl(String script,
 IScriptResult cb) {
 q.add(new ExecuteScriptJob(script, cb));
 }

 Runnable qProcessor=new Runnable() {

218

Advanced Service Patterns

 public void run() {
 while (true) {
 try {
 Job j=q.take();

 if (j.stopThread()) {
 break;
 }
 else {
 j.process();
 }
 }
 catch (InterruptedException e) {
 break;
 }
 }
 }
 };

 class Job {
 boolean stopThread() {
 return(false);
 }

 void process() {
 // no-op
 }
 }

 class KillJob extends Job {
 @Override
 boolean stopThread() {
 return(true);
 }
 }

 class ExecuteScriptJob extends Job {
 IScriptResult cb;
 String script;

 ExecuteScriptJob(String script, IScriptResult cb) {
 this.script=script;
 this.cb=cb;
 }

 void process() {
 try {
 cb.success(i.eval(script).toString());
 }
 catch (Throwable e) {
 Log.e("BshService", "Error executing script", e);

 try {
 cb.failure(e.getMessage());

219

Advanced Service Patterns

 }
 catch (Throwable t) {
 Log.e("BshService",
 "Error returning exception to client",
 t);
 }
 }
 }
 }
}

Notice that the service's own API just needs the IScriptResult parameter,
which can be passed around and used like any other Java object. The fact
that it happens to cause calls to be made synchronously back to the remote
client is invisible to the service.

The net result is that the client can call the service and get its results
without tying up the client's UI thread.

You may be wondering why we do not simply use an AsyncTask. The reason
is that remote service methods exposed by AIDL are not invoked on the
main application thread – one of the few places in Android where Android
calls your code from a background thread. An AsyncTask expects to be
created on the main application thread.

The Bind That Fails

Sometimes, a call to bindService() will fail for some reason. The most
common cause will be an invalid Intent – for example, you might be trying
to bind to a Service that you failed to register in the manifest. The
bindService() method returns a boolean value indicating whether or not
there was an immediate problem, so you can take appropriate steps.

For local services, this is usually just a coding problem. For remote services,
though, it could be that the service you are trying to work with has not
been installed on the device. You have two approaches for dealing with this:

1. You can watch for bindService() to return false and assume that
means the service is not installed

220

Advanced Service Patterns

2. You can use introspection to see if the service is indeed installed
before you even try calling bindService()

We will look at introspection techniques later in this book.

If the Binding Is Too Tight

Sometimes, binding is more than you really need.

Sending data to a remote service is easy, even without binding. Just package
some data in Intent extras and use that Intent in a startService() call. The
remote service can grab those extras and operate on that data. This works
best with an IntentService, which does three things to assist with this
pattern:

1. It passes the Intents, with their extras, to your code in
onHandleIntent() on a background thread, so you can take as long as
you want to process them

2. It queues up Intents, so if another one arrives while you are working
on a previous one, there is no problem

3. It automatically shuts down the service when there is no more work
to be done

The biggest issue is getting results back to the client. There is no possibility
of a callback if there is no binding.

Fortunately, Android offers some alternatives that work nicely with this
approach.

Private Broadcasts

The concept of a "private broadcast" may seem like an oxymoron, but it is
something available to you in Android.

221

Advanced Service Patterns

Sending a broadcast Intent is fairly easy – create the Intent and call
sendBroadcast(). However, by default, any application could field a
BroadcastReceiver to watch for your broadcast. This may or may not
concern you.

If you feel that "spies" could be troublesome, you can call setPackage() on
your Intent, to limit the distribution of the broadcast. With setPackage(),
only components in the named application will be able to receive the
broadcast. You can even arrange to send the name of the package via an
extra to the remote service, so the service does not need to know the name
of the package in advance.

Pending Results

Another way for a remote service to send data back to your activity is via
createPendingResult(). This is a method on Activity that gives you a
PendingIntent set up to trigger onActivityResult() in your activity. In
essence, this is the underpinnings behind startActivityForResult() and
setResult(). You create the PendingIntent with createPendingResult() and
pass it in an Intent extra to the remote service. The remote service can call
send() on the PendingIntent, supplying an Intent with return data, just like
setResult() would do in an activity started via startActivityForResult(). In
your activity's onActivityResult(), you would get and inspect the returned
Intent.

This works nicely for activities, but this mechanism does not work for other
components. Hence, you cannot use this technique for one service calling
another remote service, for example.

BshService, Revisited

Let us take a closer look at those two techniques, as implemented in
AdvServices/RemoteClientUnbound and AdvServices/RemoteServiceUnbound.
These versions of the Beanshell sample are designed to demonstrate both
private broadcasts and pending results.

222

Advanced Service Patterns

AlarmManager: Making the Services Run On
Time

A common question when doing Android development is "where do I set
up cron jobs?"

The cron utility – popular in Linux – is a way of scheduling work to be done
periodically. You teach cron what to run and when to run it (e.g., weekdays
at noon), and cron takes care of the rest. Since Android has a Linux kernel
at its heart, one might think that cron might literally be available.

While cron itself is not, Android does have a system service named
AlarmManager which fills a similar role. You give it a PendingIntent and a time
(and optionally a period for repeating) and it will fire off the Intent as
needed. By this mechanism, you can get a similar effect to cron.

There is one small catch, though: Android is designed to run on mobile
devices, particularly ones powered by all-too-tiny batteries. If you want
your periodic tasks to be run even if the device is "asleep", you will need to
take a fair number of extra steps, mostly stemming around the concept of
the WakeLock.

The WakefulIntentService Pattern

Most times, if you are bothering to get control on a periodic basis, you will
want to do so even when the device is asleep. For example, if you are
writing an email client, you will want to go get new emails even if the device
is asleep, so the user has all of the emails immediately upon the next time
the device wakes up. You might even want to raise a Notification based
upon the arrived emails.

Alarms that wake up the device are possible, but tricky, so we will examine
AlarmManager in the context of this scenario. And, to make that work, we are
going to use the WakefulIntentService – another of the CommonsWare
Android Components, available as open source for you to use. In particular,
we will be looking at the demo project from the WakefulIntentService

223

Advanced Service Patterns

GitHub project, in addition to the implementation of WakefulIntentService
itself.

Note that to use WakefulIntentService you will need the WAKE_LOCK
permission in your application.

Step #1: Register Your Alarms

AlarmManager has one big difference between it and cron – AlarmManager
resets itself on a reboot. While cron just starts up the previously-arranged
jobs, AlarmManager starts with a clean slate, forcing all applications to re-
register their alarms.

Hence, the first step to creating a cron workalike is to arrange to get control
when the device boots. After all, the cron daemon starts on boot as well,
and we have no other way of ensuring that our background tasks start firing
after a phone is reset.

We saw how to do that in a previous chapter – set up an
RECEIVE_BOOT_COMPLETED BroadcastReceiver, with appropriate permissions.
Here, for example, is the AndroidManifest.xml from SystemServices/Alarm:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.cwac.wakeful.demo" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" android:targetSdkVersion="6"/>
 <supports-screens android:largeScreens="false" android:normalScreens="true"
android:smallScreens="false"/>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <application android:label="@string/app_name">
 <receiver android:name=".OnBootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>
 <receiver android:name=".OnAlarmReceiver">
 </receiver>
 <service android:name=".AppService">
 </service>

224

https://github.com/commonsguy/cwac-wakeful

Advanced Service Patterns

 </application>
</manifest>

We ask for an OnBootReceiver to get control when the device starts up, and it
is in OnBootReceiver that we schedule our recurring alarm:

package com.commonsware.cwac.wakeful.demo;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.os.SystemClock;
import android.util.Log;

public class OnBootReceiver extends BroadcastReceiver {
 private static final int PERIOD=300000; // 5 minutes

 @Override
 public void onReceive(Context context, Intent intent) {
 AlarmManager
mgr=(AlarmManager)context.getSystemService(Context.ALARM_SERVICE);
 Intent i=new Intent(context, OnAlarmReceiver.class);
 PendingIntent pi=PendingIntent.getBroadcast(context, 0,
 i, 0);

 mgr.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 SystemClock.elapsedRealtime()+60000,
 PERIOD,
 pi);
 }
}

We get the AlarmManager via getSystemService(), create an Intent referencing
another BroadcastReceiver (OnAlarmReceiver), wrap that Intent in a
PendingIntent, and tell the AlarmManager to set up a repeating alarm via
setRepeating(). By saying we want a ELAPSED_REALTIME_WAKEUP alarm, we
indicate that we want the alarm to wake up the device (even if it is asleep)
and to express all times using the time base used by
SystemClock.elapsedRealtime(). In this case, our alarm is set to go off every
five minutes.

This will cause the AlarmManager to raise our Intent after one minute (60000
milliseconds), and every five minutes thereafter.

225

Advanced Service Patterns

Step #2: Get Control and Pass Control

Since we used a getBroadcast() PendingIntent, our OnAlarmReceiver will get
control periodically. All that class does is pass control to our service
(AppService) by way of the sendWakefulWork() static method on the
WakefulIntentService class:

package com.commonsware.cwac.wakeful.demo;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;
import com.commonsware.cwac.wakeful.WakefulIntentService;

public class OnAlarmReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 WakefulIntentService.sendWakefulWork(context, AppService.class);
 }
}

If we needed to pass more data along, there is another flavor of
sendWakefulWork() that takes an Intent, instead of just a class object.

AlarmManager guarantees that the device will stay awake long enough for
onReceive() of OnAlarmReceiver to execute. After that, AlarmManager
guarantees nothing. It is up to WakefulIntentService to keep the device
awake, and we will see how later in this chapter.

Step #3: Do Your Wakeful Work

Our AppService will get control in a method named doWakefulWork(). The
doWakefulWork() method has similar semantics to the onHandleIntent() of a
regular IntentService – we get control in a background thread, and the
service will shut down once the method returns if there is no other
outstanding work. The difference is that WakefulIntentService will keep the
device awake while doWakefulWork() is doing its work.

In this case, AppService just logs a line to a file on external storage, proving
that we woke up:

226

Advanced Service Patterns

package com.commonsware.cwac.wakeful.demo;

import android.content.Intent;
import android.os.Environment;
import android.util.Log;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Date;
import com.commonsware.cwac.wakeful.WakefulIntentService;

public class AppService extends WakefulIntentService {
 public AppService() {
 super("AppService");
 }

 @Override
 protected void doWakefulWork(Intent intent) {
 File log=new File(Environment.getExternalStorageDirectory(),
 "AlarmLog.txt");

 try {
 BufferedWriter out=new BufferedWriter(new
FileWriter(log.getAbsolutePath(),
 log.exists()));

 out.write(new Date().toString());
 out.write("\n");
 out.close();
 }
 catch (IOException e) {
 Log.e("AppService", "Exception appending to log file", e);
 }
 }
}

And that's it. Those three steps – plus WakefulIntentService – is all you need
to get control on a periodic basis to do work, waking up the phone as
needed.

If you do not need to wake up the phone, you can use an alarm type that
leaves off the _WAKEUP part, and you can skip the WakefulIntentService, using
a regular IntentService instead. Otherwise, the recipe is the same.

227

Advanced Service Patterns

The How and Why of WakefulIntentService

Now, let us take a look "under the covers" to see how WakefulIntentService
does its thing and understand a bit more why it is needed.

Concept of WakeLocks

Most of the time in Android, you are developing code that will run while
the user is actually using the device. Activities, for example, only really
make sense when the device is fully awake and the user is tapping on the
screen or keyboard.

Particularly with scheduled background tasks, though, you need to bear in
mind that the device will eventually "go to sleep". In full sleep mode, the
display, main CPU, and keyboard are all powered off, to maximize battery
life. Only on a low-level system event, like an incoming phone call, will
anything wake up.

Another thing that will partially wake up the phone is an Intent raised by
the AlarmManager. So long as broadcast receivers are processing that Intent,
the AlarmManager ensures the CPU will be running (though the screen and
keyboard are still off). Once the broadcast receivers are done, the
AlarmManager lets the device go back to sleep.

You can achieve the same effect in your code via a WakeLock, obtained via the
PowerManager system service. When you acquire a "partial WakeLock"
(PARTIAL_WAKE_LOCK), you prevent the CPU from going back to sleep until
you release said WakeLock. By proper use of a partial WakeLock, you can ensure
the CPU will not get shut off while you are trying to do background work,
while still allowing the device to sleep most of the time, in between alarm
events.

However, using a WakeLock is a bit tricky, particularly when responding to
an alarm Intent, as we will see in the next few sections.

228

Advanced Service Patterns

The WakeLock Problem

For a _WAKEUP alarm, the AlarmManager will arrange for the device to stay
awake, via a WakeLock, for as long as the BroadcastReceiver's onReceive()
method is executing. For some situations, that may be all that is needed.
However, onReceive() is called on the main application thread, and Android
will kill off the receiver if it takes too long.

Your natural inclination in this case is to have the BroadcastReceiver
arrange for a Service to do the long-running work on a background thread,
since BroadcastReceiver objects should not be starting their own threads.
Perhaps you would use an IntentService, which packages up this "start a
Service to do some work in the background" pattern. And, given the
preceding section, you might try acquiring a partial WakeLock at the
beginning of the work and release it at the end of the work, so the CPU will
keep running while your IntentService does its thing.

This strategy will work...some of the time.

The problem is that there is a gap in WakeLock coverage, as depicted in the
following diagram:

Figure 44. The WakeLock gap

229

Advanced Service Patterns

The BroadcastReceiver will call startService() to send work to the
IntentService, but that service will not start up until after onReceive() ends.
As a result, there is a window of time between the end of onReceive() and
when your IntentService can acquire its own WakeLock. During that window,
the device might fall back asleep. Sometimes it will, sometimes it will not.

What you need to do, instead, is arrange for overlapping WakeLock instances.
You need to acquire a WakeLock in your BroadcastReceiver, during the
onReceive() execution, and hold onto that WakeLock until the work is
completed by the IntentService:

Figure 45. The WakeLock overlap

Then you are assured that the device will stay awake as long as the work
remains to be done.

WakefulIntentService and WakeLocks

By now, you have noticed that the WakefulIntentService recipe does not
have you manage your own WakeLock. That is because WakefulIntentService
handles it for you. The reason why WakefulIntentService exists is to manage
that WakeLock, because WakeLocks suffer from one major problem: they are
not Parcelable, and therefore cannot be passed in an Intent extra. Hence,
for our BroadcastReceiver and our WakefulIntentService to use the same
WakeLock, they have to be shared via a static data member...which is icky.

230

Advanced Service Patterns

WakefulIntentService is designed to hide this icky part from you, so you do
not have to worry about it.

But, to understand how WakefulIntentService works, we need to look at the
icky part.

Either flavor of sendWakefulWork() on WakefulIntentService eventually
routes to a getLock() method:

private static final String
LOCK_NAME_STATIC="com.commonsware.cwac.wakeful.WakefulIntentService";
private static PowerManager.WakeLock lockStatic=null;

synchronized private static PowerManager.WakeLock getLock(Context context) {
 if (lockStatic==null) {
 PowerManager
mgr=(PowerManager)context.getSystemService(Context.POWER_SERVICE);

 lockStatic=mgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
 LOCK_NAME_STATIC);
 lockStatic.setReferenceCounted(true);
 }

 return(lockStatic);
}

public static void sendWakefulWork(Context ctxt, Intent i) {
 getLock(ctxt).acquire();
 ctxt.startService(i);
}

public static void sendWakefulWork(Context ctxt, Class clsService) {
 sendWakefulWork(ctxt, new Intent(ctxt, clsService));
}

The getLock() implementation lazy-creates our WakeLock by getting the
PowerManager, creating a new partial WakeLock, and setting it to be reference
counted (meaning if it is acquired several times, it takes a corresponding
number of release() calls to truly release the lock). If we have already
retrieved the WakeLock in a previous invocation, we reuse the same lock.

Back in OnAlarmReceiver, up until this point, the CPU was running because
AlarmManager held a partial WakeLock. Now, the CPU is running because both
AlarmManager and WakefulIntentService hold a partial WakeLock.

231

Advanced Service Patterns

Then, sendWakefulWork() starts up our service and exits. Since this is the
only thing onReceive() was doing in OnAlarmReceiver, onReceive() exits.
Notably, OnAlarmReceiver does not release the WakeLock it acquired. This is
important, as we need to ensure that the service can get its work done while
the CPU is running. Had we released the WakeLock before returning, it is
possible that the device would fall back asleep before our service had a
chance to acquire a fresh WakeLock. This is one of the keys of using WakeLock
successfully – as needed, use overlapping WakeLock instances to ensure
constant coverage as you pass from component to component.

Now, our service will start up and be able to do something, while the CPU is
running due to our acquired WakeLock.

So, WakefulIntentService will now get control, under an active WakeLock.
Since it is an IntentService subclass, onHandleIntent() is called. Here, we
just route control to the subclass' implementation of an abstract
doWakefulWork() method, ensuring that we release the WakeLock when the
work is done, even if a RuntimeException is raised:

@Override
final protected void onHandleIntent(Intent intent) {
 try {
 doWakefulWork(intent);
 }
 finally {
 getLock(this).release();
 }
}

As a result, each piece of work that gets sent to the WakefulIntentService
will acquire a WakeLock via sendWakefulWork() and will release that WakeLock
when doWakefulWork() ends. Once that WakeLock is fully released, the device
can fall back asleep.

Background Data Setting

Users can check or uncheck a checkbox in the Settings application that
indicates if they want applications to use the Internet in the background.
Services employing AlarmManager should honor this setting.

232

Advanced Service Patterns

To find out whether background data is allowed, use the
ConnectivityManager system service and call getBackgroundDataSetting(). For
example, your alarm-triggered BroadcastReceiver could check this before
bothering to arrange for the IntentService (or WakefulIntentService) to do
work.

You can also register a BroadcastReceiver to watch for the
ACTION_BACKGROUND_DATA_SETTING_CHANGED broadcast, also defined on
ConnectivityManager. For example, you could elect to completely cancel your
alarm if the background data setting is flipped to false.

The "Everlasting Service" Anti-Pattern

One anti-pattern that is all too prevalent in Android is the "everlasting
service". Such a service is started via startService() and never stops – the
component starting it does not stop it and it does not stop itself via
stopSelf().

Why is this an anti-pattern?

• The service takes up memory all of the time. This is bad in its own
right if the service is not continuously delivering sufficient value to
be worth the memory.

• Users, fearing services that sap their device's CPU or RAM, may
attack the service with so-called "task killer" applications or may
terminate the service via the Settings app, thereby defeating your
original goal.

• Android itself, due to user frustration with sloppy developers, will
terminate services it deems ill-used, particularly ones that have run
for quite some time.

Occasionally, an everlasting service is the right solution. Take a VOIP client,
for example. A VOIP client usually needs to hold an open socket with the
VOIP server to know about incoming calls. The only way to continuously
watch for incoming calls is to continuously hold open the socket. The only

233

Advanced Service Patterns

component capable of doing that would be a service, so the service would
have to continuously run.

However, in the case of a VOIP client, or a music player, the user is the one
specifically requesting the service to run forever. By using
startForeground(), a service can ensure it will not be stopped due to old age
for cases like this.

As a counter-example, imagine an email client. The client wishes to check
for new email messages periodically. The right solution for this is the
AlarmManager pattern described earlier in this chapter. The anti-pattern
would have a service running constantly, spending most of its time waiting
for the polling period to elapse (e.g., via Thread.sleep()). There is no value
to the user in taking up RAM to watch the clock tick. Such services should
be rewritten to use AlarmManager.

Most of the time, though, it appears that services are simply leaked. That is
one advantage of using AlarmManager and an IntentService – it is difficult to
leak the service, causing it to run indefinitely. In fact, IntentService in
general is a great implementation to use whenever you use the command
pattern, as it ensures that the service will shut down eventually. If you use a
regular service, be sure to shut it down when it is no longer actively
delivering value to the user.

234

CHAPTER 13

Using System Settings and
Services

Android offers a number of system services, usually obtained by
getSystemService() from your Activity, Service, or other Context. These are
your gateway to all sorts of capabilities, from settings to volume to WiFi.
Throughout the course of this book and its companion, we have seen
several of these system services. In this chapter, we will take a look at others
that may be of value to you in building compelling Android applications.

Setting Expectations

If you have an Android device, you probably have spent some time in the
Settings application, tweaking your device to work how you want –
ringtones, WiFi settings, USB debugging, etc. Many of those settings are
also available via Settings class (in the android.provider package), and
particularly the Settings.System and Settings.Secure public inner classes.

Basic Settings

Settings.System allows you to get and, with the WRITE_SETTINGS permission,
alter these settings. As one might expect, there are a series of typed getter
and setter methods on Settings.System, each taking a key as a parameter.
The keys are class constants, such as:

235

http://commonsware.com/Android/

Using System Settings and Services

• INSTALL_NON_MARKET_APPS to control whether you can install
applications on a device from outside of the Android Market

• HAPTIC_MODE_ENABLED to control whether the user receives "haptic
feedback" (vibrations) from things like the MENU button

• ACCELEROMETER_ROTATION to control whether the screen orientation
will change based on the position of the device

The SystemServices/Settings project has a SettingsSetter sample
application that displays a checklist:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

Figure 46. The SettingsSetter application

The checklist itself is filled with a few BooleanSetting objects, which map a
display name with a Settings.System key:

236

Using System Settings and Services

static class BooleanSetting {
 String key;
 String displayName;
 boolean isSecure=false;

 BooleanSetting(String key, String displayName) {
 this(key, displayName, false);
 }

 BooleanSetting(String key, String displayName,
 boolean isSecure) {
 this.key=key;
 this.displayName=displayName;
 this.isSecure=isSecure;
 }

 @Override
 public String toString() {
 return(displayName);
 }

 boolean isChecked(ContentResolver cr) {
 try {
 int value=0;

 if (isSecure) {
 value=Settings.Secure.getInt(cr, key);
 }
 else {
 value=Settings.System.getInt(cr, key);
 }

 return(value!=0);
 }
 catch (Settings.SettingNotFoundException e) {
 Log.e("SettingsSetter", e.getMessage());
 }

 return(false);
 }

 void setChecked(ContentResolver cr, boolean value) {
 try {
 if (isSecure) {
 Settings.Secure.putInt(cr, key, (value ? 1 : 0));
 }
 else {
 Settings.System.putInt(cr, key, (value ? 1 : 0));
 }
 }
 catch (Throwable t) {
 Log.e("SettingsSetter", "Exception in setChecked()", t);
 }

237

Using System Settings and Services

 }
}

Three such settings are put in the list, and as the checkboxes are checked
and unchecked, the values are passed along to the settings themselves:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);
 setListAdapter(new ArrayAdapter(this,
 android.R.layout.simple_list_item_multiple_choi
ce,
 settings));

 ContentResolver cr=getContentResolver();

 for (int i=0;i<settings.size();i++) {
 BooleanSetting s=settings.get(i);

 getListView().setItemChecked(i, s.isChecked(cr));
 }
}

@Override
protected void onListItemClick(ListView l, View v,
 int position, long id) {
 super.onListItemClick(l, v, position, id);

 BooleanSetting s=settings.get(position);

 s.setChecked(getContentResolver(),
 l.isItemChecked(position));
}

The SettingsSetter activity also has an option menu containing four items:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/app"
 android:title="Application"
 android:icon="@drawable/ic_menu_manage" />
 <item android:id="@+id/security"
 android:title="Security"
 android:icon="@drawable/ic_menu_close_clear_cancel" />
 <item android:id="@+id/wireless"
 android:title="Wireless"
 android:icon="@drawable/ic_menu_set_as" />
 <item android:id="@+id/all"

238

Using System Settings and Services

 android:title="All Settings"
 android:icon="@drawable/ic_menu_preferences" />
</menu>

These items correspond to four activity Intent values identified by the
Settings class:

menuActivities.put(R.id.app,
 Settings.ACTION_APPLICATION_SETTINGS);
menuActivities.put(R.id.security,
 Settings.ACTION_SECURITY_SETTINGS);
menuActivities.put(R.id.wireless,
 Settings.ACTION_WIRELESS_SETTINGS);
menuActivities.put(R.id.all,
 Settings.ACTION_SETTINGS);

When an option menu is chosen, the corresponding activity is launched:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 String activity=menuActivities.get(item.getItemId());

 if (activity!=null) {
 startActivity(new Intent(activity));

 return(true);
 }

 return(super.onOptionsItemSelected(item));
}

This way, you have your choice of either directly manipulating the settings
or merely making it easier for users to get to the Android-supplied activity
for manipulating those settings.

Secure Settings

You will notice that if you use the above code and try changing the Android
Market setting, it does not seem to take effect. And, if you look at the
LogCat output, you will see complaints.

Once upon a time, you could modify this setting, and others like it.

239

Using System Settings and Services

Now, though, these settings are ones that Android deems "secure". The
constants have been moved from Settings.System to Settings.Secure,
though the old constants are still there, flagged as deprecated.

These so-called "secure" settings are ones that Android does not allow
applications to change. While theoretically the WRITE_SECURE_SETTINGS
permission resolves this problem, ordinary SDK applications cannot hold
that permission. The only option is to display the official Settings activity
and let the user change the setting.

Can You Hear Me Now? OK, How About Now?

The fancier the device, the more complicated controlling sound volume
becomes.

On a simple MP3 player, there is usually only one volume control. That is
because there is only one source of sound: the music itself, played through
speakers or headphones.

In Android, though, there are several sources of sounds:

• Ringing, to signify an incoming call

• Voice calls

• Alarms, such as those raised by the Alarm Clock application

• System sounds (error beeps, USB connection signal, etc.)

• Music, as might come from the MP3 player

Android allows the user to configure each of these volume levels separately.
Usually, the user does this via the volume rocker buttons on the device, in
the context of whatever sound is being played (e.g., when on a call, the
volume buttons change the voice call volume). Also, there is a screen in the
Android Settings application that allows you to configure various volume
levels.

240

Using System Settings and Services

The AudioService in Android allows you, the developer, to also control these
volume levels, for all five "streams" (i.e., sources of sound). In the
SystemServices/Volume project, we create a Volumizer application that
displays and modifies all five volume levels.

Attaching SeekBars to Volume Streams

The standard widget for allowing choice along a range of integer values is
the SeekBar, a close cousin of the ProgressBar. SeekBar has a thumb that the
user can slide to choose a value between 0 and some maximum that you set.
So, we will use a set of five SeekBar widgets to control our five volume levels.

First, we need to create a layout with a SeekBar per stream:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res/com.commonsware.android.syssvc.v
olume"
 android:stretchColumns="1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableRow
 android:paddingTop="10px"
 android:paddingBottom="20px">
 <TextView android:text="Alarm:" />
 <SeekBar
 android:id="@+id/alarm"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:paddingBottom="20px">
 <TextView android:text="Music:" />
 <SeekBar
 android:id="@+id/music"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:paddingBottom="20px">
 <TextView android:text="Ring:" />
 <SeekBar
 android:id="@+id/ring"
 android:layout_width="fill_parent"

241

Using System Settings and Services

 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow
 android:paddingBottom="20px">
 <TextView android:text="System:" />
 <SeekBar
 android:id="@+id/system"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
 <TableRow>
 <TextView android:text="Voice:" />
 <SeekBar
 android:id="@+id/voice"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </TableRow>
</TableLayout>

Then, we need to wire up each of those bars in the onCreate() for Volumizer,
calling an initBar() method for each of the five bars:

public class Volumizer extends Activity {
 SeekBar alarm=null;
 SeekBar music=null;
 SeekBar ring=null;
 SeekBar system=null;
 SeekBar voice=null;
 AudioManager mgr=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mgr=(AudioManager)getSystemService(Context.AUDIO_SERVICE);

 alarm=(SeekBar)findViewById(R.id.alarm);
 music=(SeekBar)findViewById(R.id.music);
 ring=(SeekBar)findViewById(R.id.ring);
 system=(SeekBar)findViewById(R.id.system);
 voice=(SeekBar)findViewById(R.id.voice);

 initBar(alarm, AudioManager.STREAM_ALARM);
 initBar(music, AudioManager.STREAM_MUSIC);
 initBar(ring, AudioManager.STREAM_RING);
 initBar(system, AudioManager.STREAM_SYSTEM);
 initBar(voice, AudioManager.STREAM_VOICE_CALL);
 }

242

Using System Settings and Services

 private void initBar(SeekBar bar, final int stream) {
 bar.setMax(mgr.getStreamMaxVolume(stream));
 bar.setProgress(mgr.getStreamVolume(stream));

 bar.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener() {
 public void onProgressChanged(SeekBar bar, int progress,
 boolean fromUser) {
 mgr.setStreamVolume(stream, progress,
 AudioManager.FLAG_PLAY_SOUND);
 }

 public void onStartTrackingTouch(SeekBar bar) {
 // no-op
 }

 public void onStopTrackingTouch(SeekBar bar) {
 // no-op
 }
 });
 }
}

In initBar(), we set the appropriate size for the SeekBar bar via setMax(), set
the initial value via setProgress(), and hook up an OnSeekBarChangeListener
to find out when the user slides the bar, so we can set the volume on the
stream via the VolumeManager.

The net result is that when the user slides a SeekBar, it adjusts the stream to
match:

243

Using System Settings and Services

Figure 47. The Volumizer application

Putting Stuff on the Clipboard

Being able to copy and paste is something that mobile device users seem to
want almost as much as their desktop brethren. Most of the time, we think
of this as copying and pasting text, and for a long time that was all that was
possible on Android. Android 3.0 added in new clipboard capabilities for
more rich content, which application developers can choose to support as
well. This section will cover both of these techniques.

Using the Clipboard on Android 1.x/2.x

Android has a ClipboardManager that allows you to interact with the
clipboard manually, in addition to built-in clipboard facilities for users
(e.g., copy/paste context menus on EditText). ClipboardManager, like
AudioManager, is obtained via a call to getSystemService():

ClipboardManager cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

244

Using System Settings and Services

From there, you have three simple methods:

• getText() to retrieve the current clipboard contents

• hasText(), to determine if there are any clipboard contents, so you
can react accordingly (e.g., disable "paste" menus when there is
nothing to paste)

• setText(), to put text on the clipboard

For example, SystemServices/ClipIP is a little application that puts your
current IP address on the clipboard, for pasting into some EditText of an
application. The UI is simply an EditText that you can use to test out the
paste operation:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<EditText
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="Long-tap me to paste!"
 />
</LinearLayout>

The IPClipper activity's onCreate() does the work of putting text onto the
clipboard via setText() and notifying the user via a Toast:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 try {
 String addr=getLocalIPAddress();

 if (addr==null) {
 Toast.makeText(this,
 "IP address not available – are you online?",
 Toast.LENGTH_LONG)
 .show();
 }
 else {
 ClipboardManager cm=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);

245

Using System Settings and Services

 cm.setText(addr);
 Toast.makeText(this, "IP Address clipped!", Toast.LENGTH_SHORT)
 .show();
 }
 }
 catch (Exception e) {
 Log.e("IPClipper", "Exception getting IP address", e);
 Toast.makeText(this,
 "Could not obtain IP address",
 Toast.LENGTH_LONG)
 .show();
 }
}

The work of figuring out what the IP address is can be found in the
getLocalIPAddress() method:

public String getLocalIPAddress() throws SocketException {
 Enumeration<NetworkInterface> nics=NetworkInterface.getNetworkInterfaces();

 while (nics.hasMoreElements()) {
 NetworkInterface intf=nics.nextElement();
 Enumeration<InetAddress> addrs=intf.getInetAddresses();

 while (addrs.hasMoreElements()) {
 InetAddress addr=addrs.nextElement();

 if (!addr.isLoopbackAddress()) {
 return(addr.getHostAddress().toString());
 }
 }
 }

 return(null);
}

This uses the NetworkInterface and InetAddress classes from the java.net
package to loop through all network interfaces and find the first one that
has a non-localhost (loopback) IP address. The emulator will return
10.0.2.15 all of the time; your device will return whatever IP address it has
from WiFi, 3G, etc. If no such address is available, it returns null.

After starting the activity, the user will hopefully see the "successful" Toast:

246

Using System Settings and Services

Figure 48. The IPClipper, shortly after launching

Then, if the user long-taps on the EditText and chooses Paste, the IP
address is added to the EditText contents:

247

Using System Settings and Services

Figure 49. The IPClipper, after the user pastes the IP address into the EditText

Note that the clipboard is system-wide, not merely application-wide. You
can test this by pasting the IP address into the EditText of some other
application.

Advanced Clipboard on Android 3.x

Android 3.0 added in new ways of working with ClipboardManager to clip
things that transcend simple text. In part, this is expected to be used for
advanced copy and paste features between applications. However, this also
forms the foundation for a rich drag-and-drop model within an application.

Copying Rich Data to the Clipboard

In addition to methods like setText() to put a piece of plain text on the
clipboard, ClipboardManager (as of API Level 11) offers setPrimaryClip(),
which allows you to put a ClipData object on the clipboard.

248

Using System Settings and Services

What's a ClipData? In some respects, it is whatever you want. It can hold:

• plain text

• a Uri (e.g., to a piece of music)

• an Intent

The Uri means that you can put anything on the clipboard that can be
referenced by a Uri... and if there is nothing in Android that lets you
reference some data via a Uri, you can invent your own content provider to
handle that chore for you. Furthermore, a single ClipData can actually hold
as many of these as you want, each represented as individual ClipData.Item
objects. As such, the possibilities are endless.

There are static factory methods on ClipData, such as newUri(), that you can
use to create your ClipData objects. In fact, that is what we use in the
SystemServices/ClipMusic sample project and the MusicClipper activity.

MusicClipper has the classic two-big-button layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:onClick="pickMusic"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Play"
 android:onClick="playMusic"
 />
</LinearLayout>

249

Using System Settings and Services

Figure 50. The Music Clipper main screen

In onCreate(), we get our hands on our ClipboardManager system service:

private ClipboardManager clipboard=null;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 clipboard=(ClipboardManager)getSystemService(CLIPBOARD_SERVICE);
}

Tapping the "Pick" button will let you pick a piece of music, courtesy of the
pickMusic() method wired to that Button object:

public void pickMusic(View v) {
 Intent i=new Intent(Intent.ACTION_GET_CONTENT);

 i.setType("audio/*");
 startActivityForResult(i, PICK_REQUEST);
}

Here, we tell Android to let us pick a piece of music from any available
audio MIME type (audio/*). Fortunately, Android has an activity that lets us
do that:

250

Using System Settings and Services

Figure 51. The XOOM tablet's music track picker

We get the result in onActivityResult(), since we used
startActivityForResult() to pick the music. There, we package up the
content:// Uri to the music into a ClipData object and put it on the
clipboard:

@Override
protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 ClipData clip=ClipData.newUri(getContentResolver(),
 "Some music", data.getData());

 clipboard.setPrimaryClip(clip);
 }
 }
}

Pasting Rich Data from the Clipboard

The catch with rich data on the clipboard is that somebody has to know
about the sort of information you are placing on the clipboard. Eventually,
the Android development community will work out common practices in

251

Using System Settings and Services

this area. Right now, though, you can certainly use it within your own
application (e.g., clipping a note and pasting it into another folder).

Since putting ClipData onto the clipboard involves a call to
setPrimaryClip(), it should not be surprising that the reverse operation –
getting a ClipData from the clipboard – uses getPrimaryClip(). However,
since you do not know where this clip came from, you need to validate that
it has what you expect and to let the user know when the clipboard
contents are not something you can leverage.

The "Play" button in our UI is wired to a playMusic() method. This will only
work when we have pasted a Uri ClipData to the clipboard pointing to a
piece of music. Since we cannot be sure that the user has done that, we
have to sniff around:

public void playMusic(View v) {
 ClipData clip=clipboard.getPrimaryClip();

 if (clip==null) {
 Toast.makeText(this, "There is no clip!", Toast.LENGTH_LONG).show();
 }
 else {
 ClipData.Item item=clip.getItemAt(0);
 Uri song=item.getUri();

 if (song!=null &&
 getContentResolver().getType(song).startsWith("audio/")) {
 startActivity(new Intent(Intent.ACTION_VIEW, song));
 }
 else {
 Toast.makeText(this, "There is no song!", Toast.LENGTH_LONG).show();
 }
 }
}

First, there may be nothing on the clipboard, in which case the ClipData
returned by getPrimaryClip() would be null. Or, there may be stuff on the
clipboard, but it may not have a Uri associated with it (getUri() on
ClipData). Even then, the Uri may point to something other than music, so
even if we get a Uri, we need to use a ContentResolver to check the MIME
type (getContentResolver().getType()) and make sure it seems like it is
music (e.g., starts with audio/). Then, and only then, does it make sense to
try to start an ACTION_VIEW activity on that Uri and hope that something

252

Using System Settings and Services

useful happens. Assuming you clipped a piece of music with the "Pick"
button, "Play" will kick off playback of that song.

ClipData and Drag-and-Drop

Android 3.0 also introduced Android's first built-in drag-and-drop
framework. One might expect that this would related entirely to View and
ViewGroup objects and have nothing to do with the clipboard. In reality, the
drag-and-drop framework leverages ClipData to say what it is that is being
dragged and dropped. You call startDrag() on a View, supplying a ClipData
object, along with some objects to help render the "shadow" that is the
visual representation of this drag operation. A View that can receive objects
"dropped" via drag-and-drop needs to register an OnDragListener to receive
drag events as the user slides the shadow over top of the View in question. If
the user lifts their finger, thereby dropping the shadow, the recipient View
will get an ACTION_DROP drag event, and can get the ClipData out of the event.

The Rest of the Gang

There are quite a few system services you can get from getSystemService().
Beyond the ones profiled in this chapter, you have access to:

• AccessibilityManager, for being notified of key system events (e.g.,
activities starting) that might be relayed to users via haptic
feedback, audio prompts, or other non-visual cues

• AccountManager, for working with Android's system of user accounts
and synchronization

• ActivityManager, for getting more information about what processes
and components are presently running on the device

• AlarmManager, for scheduled tasks (a.k.a., "cron jobs"), covered
elsewhere in this book

• ConnectivityManager, for a high-level look as to what sort of network
the device is connected to for data (e.g., WiFi, 3G)

• DevicePolicyManager, for accessing device administration
capabilities, such as wiping the device

253

Using System Settings and Services

• DownloadManager, for downloading large files on behalf of the user,
covered in The Busy Coder's Guide to Android Development

• DropBoxManager, for maintaining your own ring buffers of logging
information akin to LogCat

• InputMethodManager, for working with input method editors

• KeyguardManager, for locking and unlocking the keyguard, where
possible

• LayoutInflater, for inflating layout XML files into Views, covered in
The Busy Coder's Guide to Android Development

• LocationManager, for determining the device's location (e.g., GPS),
covered in The Busy Coder's Guide to Android Development

• NotificationManager, for putting icons in the status bar and
otherwise alerting users to things that have occurred
asynchronously, covered in The Busy Coder's Guide to Android
Development

• PowerManager, for obtaining WakeLock objects and such, covered
elsewhere in this book

• SearchManager, for interacting with the global search system – search
in general is covered elsewhere in this book

• SensorManager, for accessing data about sensors, such as the
accelerometer

• TelephonyManager, for finding out about the state of the phone and
related data (e.g., SIM card details)

• UiModeManager, for dealing with different "UI modes", such as being
docked in a car or desk dock

• Vibrator, for shaking the phone (e.g., haptic feedback)

• WifiManager, for getting more details about the active or available
WiFi networks

• WindowManager, mostly for accessing details about the default display
for the device

254

CHAPTER 14

Content Provider Theory

Android publishes data to you via an abstraction known as a "content
provider". Access to contacts and the call log, for example, are given to you
via a set of content providers. In a few places, Android expects you to
supply a content provider, such as for integrating your own search
suggestions with the Android Quick Search Box. And, content providers are
one way for you to supply data to third party applications, or to consume
information from third party applications. As such, content providers have
the potential to be something you would encounter frequently, even if in
practice they do not seem used much.

Using a Content Provider

Any Uri in Android that begins with the content:// scheme represents a
resource served up by a content provider. Content providers offer data
encapsulation using Uri instances as handles – you neither know nor care
where the data represented by the Uri comes from, so long as it is available
to you when needed. The data could be stored in a SQLite database, or in
flat files, or retrieved off a device, or be stored on some far-off server
accessed over the Internet.

Given a Uri, you may be able to perform basic CRUD (create, read, update,
delete) operations using a content provider. Uri instances can represent
either collections or individual pieces of content. Given a collection Uri, you
may be able to create new pieces of content via insert operations. Given an
instance Uri, you may be able to read data represented by the Uri, update

255

Content Provider Theory

that data, or delete the instance outright. Or, given an Uri, you may be able
to open up a handle to what amounts to a file, that you can read and,
possibly, write to.

These are all phrased as "may" because the content provider system is a
facade. The actual implementation of a content provider dictates what you
can and cannot do, and not all content providers will support all
capabilities.

Pieces of Me

The simplified model of the construction of a content Uri is the scheme, the
namespace of data, and, optionally, the instance identifier, all separated by
slashes in URL-style notation. The scheme of a content Uri is always
content://.

So, a content Uri of content://constants/5 represents the constants instance
with an identifier of 5.

The combination of the scheme and the namespace is known as the “base
Uri” of a content provider, or a set of data supported by a content provider.
In the example above, content://constants is the base Uri for a content
provider that serves up information about “constants” (in this case, physical
constants).

The base Uri can be more complicated. For example, if the base Uri for
contacts were content://contacts/people, the contacts content provider
may serve up other data using other base Uri values.

The base Uri represents a collection of instances. The base Uri combined
with an instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common
discussion, it is simpler to think of them as strings. The Uri.parse() static
method creates a Uri out of the string representation.

256

Content Provider Theory

Getting a Handle

So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to
work with, is to get the base Uri from the content provider itself in code.
For example, CONTENT_URI is the base Uri for contacts represented as people
– this maps to content://contacts/people. If you just need the collection,
this Uri works as-is; if you need an instance and know its identifier, you can
call addId() on the Uri to inject it, so you have a Uri for the instance.

You might also get Uri instances handed to you from other sources, such as
getting Uri handles for contacts via sub-activities responding to ACTION_PICK
intents. In this case, the Uri is truly an opaque handle...unless you decide to
pick it apart using the various getters on the Uri class.

You can also hard-wire literal String objects (e.g.,
"content://contacts/people") and convert them into Uri instances via
Uri.parse(). This is not an ideal solution, as the base Uri values could
conceivably change over time. For example, the contacts content provider's
base Uri is no longer content://contacts/people due to an overhaul of that
subsystem. However, when you integrate with content providers from third
parties, most likely you will not have a choice but to "hard-wire" in the
content Uri based on a string.

The Database-Style API

Of the two flavors of API that a content provider may support, the
database-style API is more prevalent. Using a ContentResolver, you can
perform standard "CRUD" operations (create, read, update, delete) using
what looks like a SQL interface.

Makin' Queries

Given a base Uri, you can run a query to return data out of the content
provider related to that Uri. This has much of the feel of SQL: you specify

257

Content Provider Theory

the “columns” to return, the constraints to determine which “rows” to
return, a sort order, etc. The difference is that this request is being made of
a content provider, not directly of some database (e.g., SQLite).

While you can conduct a query using a ContentResolver, another approach
is the managedQuery() method available to your activity. This method takes
five parameters:

1. The base Uri of the content provider to query, or the instance Uri of
a specific object to query

2. An array of properties (think "columns") from that content provider
that you want returned by the query

3. A constraint statement, functioning like a SQL WHERE clause

4. An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

5. An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data
returned by the query.

This will hopefully make more sense given an example.

Our content provider examples come from the
ContentProvider/ConstantsPlus sample application, specifically the
ConstantsBrowser class. Here, we make a call to our ContentProvider via
managedQuery():

constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

In the call to managedQuery(), we provide:

• The Uri passed into the activity by the caller (CONTENT_URI), in this
case representing the collection of physical constants managed by
the content provider

• A list of properties to retrieve (see code below)

258

Content Provider Theory

• Three null values, indicating that we do not need a constraint clause
(the Uri represents the instance we need), nor parameters for the
constraint, nor a sort order (we should only get one entry back)

private static final String[] PROJECTION = new String[] {
 Provider.Constants._ID, Provider.Constants.TITLE,
 Provider.Constants.VALUE};

The biggest “magic” here is the list of properties. The lineup of what
properties are possible for a given content provider should be provided by
the documentation (or source code) for the content provider itself. In this
case, we define logical values on the Provider content provider
implementation class that represent the various properties (namely, the
unique identifier, the display name or title, and the value of the constant).

Adapting to the Circumstances

Now that we have a Cursor via managedQuery(), we have access to the query
results and can do whatever we want with them. You might, for example,
manually extract data from the Cursor to populate widgets or other objects.

However, if the goal of the query was to return a list from which the user
should choose an item, you probably should consider using
SimpleCursorAdapter. This class bridges between the Cursor and a selection
widget, such as a ListView or Spinner. Pour the Cursor into a
SimpleCursorAdapter, hand the adapter off to the widget, and you are set –
your widget will show the available options.

For example, here is the onCreate() method from
ContentProvider/ConstantsBrowser, which gives the user a list of physical
constants:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

 ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,

259

Content Provider Theory

 new String[] {Provider.Constants.TITLE,
 Provider.Constants.VALUE},
 new int[] {R.id.title, R.id.value});

 setListAdapter(adapter);
 registerForContextMenu(getListView());
}

After executing the managedQuery() and getting the Cursor, ConstantsBrowser
creates a SimpleCursorAdapter with the following parameters:

• The activity (or other Context) creating the adapter; in this case, the
ConstantsBrowser itself

• The identifier for a layout to be used for rendering the list entries
(R.layout.row)

• The cursor (constantsCursor)

• The properties to pull out of the cursor and use for configuring the
list entry View instances (TITLE and VALUE)

• The corresponding identifiers of TextView widgets in the list entry
layout that those properties should go into (R.id.title and
R.id.value)

If you need more control over the views than you can reasonably achieve
with the stock view construction logic, subclass SimpleCursorAdapter and
override getView() to create your own widgets to go into the list, as
demonstrated earlier in this book.

And, of course, you can manually manipulate the Cursor (e.g.,
moveToFirst(), getString()), just like you can with a database Cursor.

Give and Take

Of course, content providers would be astonishingly weak if you couldn't
add or remove data from them, only update what is there. Fortunately,
content providers offer these abilities as well.

260

Content Provider Theory

To insert data into a content provider, you have two options available on
the ContentProvider interface (available through getContentProvider() to
your activity):

1. Use insert() with a collection Uri and a ContentValues structure
describing the initial set of data to put in the row

2. Use bulkInsert() with a collection Uri and an array of ContentValues
structures to populate several rows at once

The insert() method returns a Uri for you to use for future operations on
that new object. The bulkInsert() method returns the number of created
rows; you would need to do a query to get back at the data you just
inserted.

For example, here is a snippet of code from ConstantsBrowser to insert a new
constant into the content provider, given a DialogWrapper that can provide
access to the title and value of the constant:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put(Provider.Constants.TITLE, wrapper.getTitle());
 values.put(Provider.Constants.VALUE, wrapper.getValue());

 getContentResolver().insert(Provider.Constants.CONTENT_URI,
 values);
 constantsCursor.requery();
}

Since we already have an outstanding Cursor for the content provider's
contents, we call requery() on that to update the Cursor's contents. This, in
turn, will update any SimpleCursorAdapter you may have wrapping the
Cursor – and that will update any selection widgets (e.g., ListView) you have
using the adapter.

To delete one or more rows from the content provider, use the delete()
method on ContentResolver. This works akin to a SQL DELETE statement and
takes three parameters:

261

Content Provider Theory

1. A Uri representing the collection (or instance) from which you wish
to delete rows

2. A constraint statement, functioning like a SQL WHERE clause, to
determine which rows should be deleted

3. An optional set of parameters to bind into the constraint clause,
replacing any ? that appear there

The File System-Style API

Sometimes, what you are trying to retrieve does not look like a set of rows
and columns, but rather looks like a file. For example, the MediaStore
content provider manages the index of all music, video, and image files
available on external storage, and you can use MediaStore to open up any
such file you find.

Some content providers, like MediaStore, support both the database-style
and file system-style APIs – you query to find media that matches your
criteria, then can open some file that matches. Other content providers
might only support the file system-style API.

Given a Uri that represents some file managed by the content provider, you
can use openInputStream() and openOutputStream() on a ContentResolver to
access an InputStream or OutputStream, respectively. Note, though, that not
all content providers may support both modes. For example, a content
provider that serves files stored inside the application (e.g., assets in the
APK file), you will not be able to get an OutputStream to modify the content.

Building Content Providers

Building a content provider is probably the most complicated and tedious
task in all of Android development. There are many requirements of a
content provider, in terms of methods to implement and public data
members to supply. And, until you try using it, you have no great way of
telling if you did any of it correctly (versus, say, building an activity and
getting validation errors from the resource compiler).

262

Content Provider Theory

That being said, building a content provider is of huge importance if your
application wishes to make data available to other applications. If your
application is keeping its data solely to itself, you may be able to avoid
creating a content provider, just accessing the data directly from your
activities. But, if you want your data to possibly be used by others – for
example, you are building a feed reader and you want other programs to be
able to access the feeds you are downloading and caching – then a content
provider is right for you.

This chapter shows some sample bits of code from the
ContentProvider/ConstantsPlus application. This is the same basic
application as was first shown back in the chapter on database access in
The Busy Coder's Guide to Android Development, but rewritten to pull the
database logic into a content provider, which is then used by the activity.

First, Some Dissection

As was discussed in the previous chapter, the content Uri is the linchpin
behind accessing data inside a content provider. When using a content
provider, all you really need to know is the provider's base Uri; from there
you can run queries as needed, or construct a Uri to a specific instance if
you know the instance identifier.

When building a content provider, though, you need to know a bit more
about the innards of the content Uri.

A content Uri has two to four pieces, depending on situation:

• It always has a scheme (content://), indicating it is a content Uri
instead of a Uri to a Web resource (http://).

• It always has an authority, which is the first path segment after the
scheme. The authority is a unique string identifying the content
provider that handles the content associated with this Uri.

• It may have a data type path, which is the list of path segments after
the authority and before the instance identifier (if any). The data
type path can be empty, if the content provider only handles one

263

Content Provider Theory

type of content. It can be a single path segment (foo) or a chain of
path segments (foo/bar/goo) as needed to handle whatever data
access scenarios the content provider requires.

• It may have an instance identifier, which is an integer identifying a
specific piece of content. A content Uri without an instance
identifier refers to the collection of content represented by the
authority (and, where provided, the data path).

For example, a content Uri could be as simple as content://sekrits, which
would refer to the collection of content held by whatever content provider
was tied to the sekrits authority (e.g., SecretsProvider). Or, it could be as
complex as content://sekrits/card/pin/17, which would refer to a piece of
content (identified as 17) managed by the sekrits content provider that is
of the data type card/pin.

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the
content your content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify
content on the device. A collection content Uri – or, more accurately, the
combination authority and data type path – should map to a pair of MIME
types. One MIME type will represent the collection; the other will represent
an instance. These map to the Uri patterns above for no-identifier and
identifier, respectively. As you saw earlier in this book, you can fill in a
MIME type into an Intent to route the Intent to the proper activity (e.g.,
ACTION_PICK on a collection MIME type to call up a selection activity to pick
an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where
X is the name of your firm, organization, or project, and Y is a dot-delimited
type name. So, for example, you might use
vnd.tlagency.cursor.dir/sekrits.card.pin as the MIME type for your
collection of secrets.

264

Content Provider Theory

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually
for the same values of X and Y as you used for the collection MIME type
(though that is not strictly required).

Implementing the Database-Style API

Just as an activity and receiver are both Java classes, so is a content
provider. So, the big step in creating a content provider is crafting its Java
class, with a base class of ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing
five methods that, when combined, perform the services that a content
provider is supposed to offer to activities wishing to create, read, update, or
delete content via the database-style API.

Implement onCreate()

As with an activity, the main entry point to a content provider is onCreate().
Here, you can do whatever initialization you want. In particular, here is
where you should lazy-initialize your data store. For example, if you plan on
storing your data in such-and-so directory on an SD card, with an XML file
serving as a "table of contents", you should check and see if that directory
and XML file are there and, if not, create them so the rest of your content
provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause
the data store to shift structure, you should check to see what structure you
have now and adjust it if what you have is out of date.

Implement query()

As one might expect, the query() method is where your content provider
gets details on a query some activity wants to perform. It is up to you to
actually process said query.

265

Content Provider Theory

The query method gets, as parameters:

• A Uri representing the collection or instance being queried

• A String[] representing the list of properties that should be
returned

• A String representing what amounts to a SQL WHERE clause,
constraining which instances should be considered for the query
results

• A String[] representing values to "pour into" the WHERE clause,
replacing any ? found there

• A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make
sense and returning a Cursor that can be used to iterate over and access the
data.

As you can imagine, these parameters are aimed towards people using a
SQLite database for storage. You are welcome to ignore some of these
parameters (e.g., you elect not to try to roll your own SQL WHERE clause
parser), but you need to document that fact so activities only attempt to
query you by instance Uri and not using parameters you elect not to
handle.

Implement insert()

Your insert() method will receive a Uri representing the collection and a
ContentValues structure with the initial data for the new instance. You are
responsible for creating the new instance, filling in the supplied data, and
returning a Uri to the new instance.

Implement update()

Your update() method gets the Uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL
WHERE clause, and a String[] with parameters to use to replace ? found in the

266

Content Provider Theory

WHERE clause. Your responsibility is to identify the instance(s) to be modified
(based on the Uri and WHERE clause), then replace those instances' current
property values with the ones supplied.

This will be annoying, unless you are using SQLite for storage. Then, you
can pretty much pass all the parameters you received to the update() call to
the database, though the update() call will vary slightly depending on
whether you are updating one instance or several.

Implement delete()

As with update(), delete() receives a Uri representing the instance or
collection to work with and a WHERE clause and parameters. If the activity is
deleting a single instance, the Uri should represent that instance and the
WHERE clause may be null. But, the activity might be requesting to delete an
open-ended set of instances, using the WHERE clause to constrain which ones
to delete.

As with update(), though, this is simple if you are using SQLite for database
storage (sense a theme?). You can let it handle the idiosyncrasies of parsing
and applying the WHERE clause – all you have to do is call delete() on the
database.

Implement getType()

The last method you need to implement is getType(). This takes a Uri and
returns the MIME type associated with that Uri. The Uri could be a
collection or an instance Uri; you need to determine which was provided
and return the corresponding MIME type.

Update the Manifest

The glue tying the content provider implementation to the rest of your
application resides in your AndroidManifest.xml file. Simply add a <provider>
element as a child of the <application> element, such as:

267

Content Provider Theory

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.constants">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <provider android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"/>
 <activity android:name=".ConstantsBrowser" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The android:name property is the name of the content provider class, with a
leading dot to indicate it is in the stock namespace for this application's
classes (just like you use with activities).

The android:authorities property should be a semicolon-delimited list of
the authority values supported by the content provider. Recall, from earlier
in this chapter, that each content Uri is made up of a scheme, authority,
data type path, and instance identifier. Each authority from each
CONTENT_URI value should be included in the android:authorities list.

Now, when Android encounters a content Uri, it can sift through the
providers registered through manifests to find a matching authority. That
tells Android which application and class implements the content provider,
and from there Android can bridge between the calling activity and the
content provider being called.

Add Notify-On-Change Support

A feature that your content provider can to its clients is notify-on-change
support. This means that your content provider will let clients know if the
data for a given content Uri changes.

For example, suppose you have created a content provider that retrieves
RSS and Atom feeds from the Internet based on the user's feed

268

Content Provider Theory

subscriptions (via OPML, perhaps). The content provider offers read-only
access to the contents of the feeds, with an eye towards several applications
on the phone using those feeds versus everyone implementing their own
feed poll-fetch-and-cache system. You have also implemented a service that
will get updates to those feeds asynchronously, updating the underlying
data store. Your content provider could alert applications using the feeds
that such-and-so feed was updated, so applications using that specific feed
can refresh and get the latest data.

On the content provider side, to do this, call notifyChange() on your
ContentResolver instance (available in your content provider via
getContext().getContentResolver()). This takes two parameters: the Uri of
the piece of content that changed and the ContentObserver that initiated the
change. In many cases, the latter will be null; a non-null value simply
means that the observer that initiated the change will not be notified of its
own changes.

On the content consumer side, an activity can call
registerContentObserver() on its ContentResolver (via getContentResolver()).
This ties a ContentObserver instance to a supplied Uri – the observer will be
notified whenever notifyChange() is called for that specific Uri. When the
consumer is done with the Uri, unregisterContentObserver() releases the
connection.

Implementing the File System-Style API

If you want consumers of your ContentProvider to be able to call
openInputStream() or openOutputStream() on a Uri, you will need to
implement the openFile() method. This method is optional – if you are not
supporting openInputStream() or openOutputStream(), you do not need to
implement openFile() at all.

The openFile() method returns a curious object called a
ParcelFileDescriptor. Given that, the ContentResolver can obtain the
InputStream or OutputStream that was requested. There are various static
methods on ParcelFileDescriptor to create instances of it, such as an open()

269

Content Provider Theory

method that takes a File object as the first parameter. Note that this works
for both files on external storage and files within your own project's app-
local file storage (e.g., getFilesDir()).

Note that you are welcome to also implement onCreate(), if you wish to do
some initialization when the content provider starts up. Also, you will have
to provide do-nothing implementations of query(), insert(), update(), and
delete(), as those methods are mandatory in ContentProvider subclasses,
even if you do not plan to support them.

Issues with Content Providers

Content providers are not without their issues.

The biggest complaint seems to be the lack of an onDestroy() companion to
the onCreate() method you can implement. Hence, if you open a database
in onCreate(), you close it...never. Sometimes, you can alleviate this by
initializing things on demand and releasing them immediately, such as
opening a database as part of insert() and closing it within the same
method. This does not always work, however – for example, you cannot
close the database you query in query(), since the Cursor you return would
become invalid.

The fact that ContentProvider is effectively a facade means that a consumer
of a ContentProvider has no idea what to expect. It is up to documentation
to explain what Uri values can be used, what columns can be returned, what
query syntax is supported, and so on. And, the fact that it is a facade means
that much of the richness of the SQLite interface is lost, such as GROUP BY.
To top it off, the API supported by ContentProvider is rather limited – if
what you want to share does not look like a database and does not look like
a file, it may be difficult to force it into the ContentProvider API.

However, perhaps the biggest problem is that, by default, content providers
are exported, meaning they can be accessed by other processes (third party
applications or the Android OS). Sometimes this is desired. Sometimes, it is
not. You need to set android:exported to be false on your manifest entry for

270

Content Provider Theory

the content provider if you want to keep the provider private to your
application. This is the inverse of all other components, which are private
by default, unless they have an <intent-filter>.

271

CHAPTER 15

Content Provider
Implementation Patterns

The previous chapter focused on the concepts, classes, and methods behind
content providers. This chapter more closely examines some
implementations of content providers, organized into simple patterns.

The Single-Table Database-Backed Content
Provider

The simplest database-backed content provider is one that only attempts to
expose a single table's worth of data to consumers. The CallLog content
provider works this way, for example.

Step #1: Create a Provider Class

We start off with a custom subclass of ContentProvider, named, cunningly
enough, Provider. Here we need the database-style API methods: query(),
insert(), update(), delete(), and getType().

onCreate()

Here is the onCreate() method for Provider, from the
ContentProvider/ConstantsPlus sample application:

273

Content Provider Implementation Patterns

@Override
public boolean onCreate() {
 db=(new DatabaseHelper(getContext())).getWritableDatabase();

 return((db == null) ? false : true);
}

While that does not seem all that special, the "magic" is in the private
DatabaseHelper object, a fairly conventional SQLiteOpenHelper
implementation:

package com.commonsware.android.constants;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="constants.db";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 Cursor c=db.rawQuery("SELECT name FROM sqlite_master WHERE type='table' AND
name='constants'", null);

 try {
 if (c.getCount()==0) {
 db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY
AUTOINCREMENT, title TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(Provider.Constants.TITLE, "Gravity, Death Star I");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Earth");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_EARTH);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Jupiter");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_JUPITER);
 db.insert("constants", Provider.Constants.TITLE, cv);

274

Content Provider Implementation Patterns

 cv.put(Provider.Constants.TITLE, "Gravity, Mars");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MARS);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Mercury");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Moon");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_MOON);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Neptune");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Pluto");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Saturn");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SATURN);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Sun");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_SUN);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, The Island");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Uranus");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_URANUS);
 db.insert("constants", Provider.Constants.TITLE, cv);

 cv.put(Provider.Constants.TITLE, "Gravity, Venus");
 cv.put(Provider.Constants.VALUE, SensorManager.GRAVITY_VENUS);
 db.insert("constants", Provider.Constants.TITLE, cv);
 }
 }
 finally {
 c.close();
 }
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 android.util.Log.w("Constants", "Upgrading database, which will destroy all
old data");
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

275

Content Provider Implementation Patterns

Note that we are opening the database here and never closing it. That is
because there is no onDestroy() (or equivalent) method in a
ContentProvider. While we might be tempted to open and close the
database on every operation, that will not work, as we cannot close the
database and still hand back a live Cursor from the database. Hence, we
leave it open and assume that the core Android team is somehow making
sure our database is not corrupted when Android shuts down the
ContentProvider.

query()

For SQLite-backed storage providers like this one, the query() method
implementation should be largely boilerplate. Use a SQLiteQueryBuilder to
convert the various parameters into a single SQL statement, then use
query() on the builder to actually invoke the query and give you a Cursor
back. The Cursor is what your query() method then returns.

For example, here is query() from Provider:

@Override
public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

 qb.setTables(getTableName());

 if (!isCollectionUri(url)) {
 qb.appendWhere(getIdColumnName()+"="+url.getPathSegments().get(1));
 }

 String orderBy;

 if (TextUtils.isEmpty(sort)) {
 orderBy=getDefaultSortOrder();
 }
 else {
 orderBy=sort;
 }

 Cursor c=qb.query(db, projection, selection, selectionArgs,
 null, null, orderBy);
 c.setNotificationUri(getContext().getContentResolver(), url);
 return c;
}

276

Content Provider Implementation Patterns

We create a SQLiteQueryBuilder and pour the query details into the builder.
Note that the query could be based around either a collection or an
instance Uri – in the latter case, we need to add the instance ID to the
query. When done, we use the query() method on the builder to get a
Cursor for the results.

The query() implementation, like many of the other methods on Provider,
delegates much of the Provider-specific information to private methods,
such as:

• the name of the table (getTableName())

• whether the Uri is an instance or a collection Uri
(isCollectionUri())

• the name of the primary key column (getIdColumnName())

• the default sort order (getDefaultSortOrder())

insert()

Since this is a SQLite-backed content provider, once again, the
implementation is mostly boilerplate: validate that all required values were
supplied by the activity, merge your own notion of default values with the
supplied data, and call insert() on the database to actually create the
instance.

For example, here is insert() from Provider:

@Override
public Uri insert(Uri url, ContentValues initialValues) {
 long rowID;
 ContentValues values;

 if (initialValues!=null) {
 values=new ContentValues(initialValues);
 }
 else {
 values=new ContentValues();
 }

 if (!isCollectionUri(url)) {
 throw new IllegalArgumentException("Unknown URL " + url);

277

Content Provider Implementation Patterns

 }

 for (String colName : getRequiredColumns()) {
 if (values.containsKey(colName) == false) {
 throw new IllegalArgumentException("Missing column: "+colName);
 }
 }

 populateDefaultValues(values);

 rowID=db.insert(getTableName(), Constants.TITLE, values);

 if (rowID>0) {
 Uri uri=ContentUris.withAppendedId(getContentUri(), rowID);
 getContext().getContentResolver().notifyChange(uri, null);

 return(uri);
 }

 throw new SQLException("Failed to insert row into " + url);
}

The pattern is the same as before: use the provider particulars plus the data
to be inserted to actually do the insertion. Of note:

• You can only insert into a collection Uri, so we validate that by
calling isCollectionUri()

• The provider also knows what columns are required
(getRequiredColumns()), so we iterate over those and confirm our
supplied values cover the requirements

• The provider is also responsible for filling in any default values
(populateDefaultValues()) for columns not supplied in the insert()
call and not automatically handled by the SQLite table definition

update()

Here is update() from Provider:

@Override
public int update(Uri url, ContentValues values,
 String where, String[] whereArgs) {
 int count;

 if (isCollectionUri(url)) {
 count=db.update(getTableName(), values, where, whereArgs);

278

Content Provider Implementation Patterns

 }
 else {
 String segment=url.getPathSegments().get(1);
 count=db
 .update(getTableName(), values, getIdColumnName()+"="
 + segment
 + (!TextUtils.isEmpty(where) ? " AND (" + where
 + ')' : ""), whereArgs);
 }

 getContext().getContentResolver().notifyChange(url, null);

 return(count);
}

In this case, updates can either be to a specific instance or applied across
the entire collection, so we check the Uri (isCollectionUri()) and, if it is an
update for the collection, just perform the update. If we are updating a
single instance, we need to add a constraint to the WHERE clause to only
update for the requested row.

delete()

Similarly, here is delete() from Provider:

@Override
public int delete(Uri url, String where, String[] whereArgs) {
 int count;
 long rowId=0;

 if (isCollectionUri(url)) {
 count=db.delete(getTableName(), where, whereArgs);
 }
 else {
 String segment=url.getPathSegments().get(1);

 rowId=Long.parseLong(segment);
 count=db
 .delete(getTableName(), getIdColumnName()+"="
 + segment
 + (!TextUtils.isEmpty(where) ? " AND (" + where
 + ')' : ""), whereArgs);
 }

 getContext().getContentResolver().notifyChange(url, null);

 return(count);
}

279

Content Provider Implementation Patterns

This is almost a clone of the update() implementation described above –
either delete a subset of the entire collection or delete a single instance (if it
also satisfies the supplied WHERE clause).

getType()

The last method you need to implement is getType(). This takes a Uri and
returns the MIME type associated with that Uri. The Uri could be a
collection or an instance Uri; you need to determine which was provided
and return the corresponding MIME type.

For example, here is getType() from Provider:

@Override
public String getType(Uri url) {
 if (isCollectionUri(url)) {
 return(getCollectionType());
 }

 return(getSingleType());
}

As you can see, most of the logic delegates to private getCollectionType()
and getSingleType() methods:

private String getCollectionType() {
 return("vnd.commonsware.cursor.dir/constant");
}

private String getSingleType() {
 return("vnd.commonsware.cursor.item/constant");
}

Step #2: Supply a Uri

You may wish to add a public static member...somewhere, containing the
Uri for each collection your content provider supports. Typically, this is a
public static final Uri put on the content provider class itself:

280

Content Provider Implementation Patterns

public static final Uri CONTENT_URI
 =Uri.parse("content://com.commonsware.android.constants.Provider/constants")
;

You may wish to use the same namespace for the content Uri that you use
for your Java classes, to reduce the chance of collision with others.

Bear in mind that if you intend for third parties to access your content
provider, they will not have access to this public static data member, as
your class is not in their project. Hence, you will need to publish the string
representation of this Uri that they can hard-wire into their application.

Step #3: Declare the "Columns"

Remember those "columns" you referenced when you were using a content
provider, in the previous chapter? Well, you may wish to publish public
static values for those too for your own content provider.

Specifically, you may want a public static class implementing BaseColumns
that contains your available column names, such as this example from
Provider:

public static final class Constants implements BaseColumns {
 public static final Uri CONTENT_URI
 =Uri.parse("content://com.commonsware.android.constants.Provider/constants
");
 public static final String DEFAULT_SORT_ORDER="title";
 public static final String TITLE="title";
 public static final String VALUE="value";
}

Since we are are using SQLite as a data store, the values for the column
name constants should be the corresponding column name in the table, so
you can just pass the projection (array of columns) to SQLite on a query(),
or pass the ContentValues on an insert() or update().

Note that nothing in here stipulates the types of the properties. They could
be strings, integers, or whatever. The biggest limitation is what a Cursor can
provide access to via its property getters. The fact that there is nothing in

281

Content Provider Implementation Patterns

code that enforces type safety means you should document the property
types well, so people attempting to use your content provider know what
they can expect.

Step #4: Update the Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by
adding a <provider> element as a child of the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.constants">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <provider android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider"/>
 <activity android:name=".ConstantsBrowser" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="true" android:anyDensity="true"/>
</manifest>

The Local-File Content Provider

Implementing a content provider that supports serving up files based on
Uri values is similar, and generally simpler, than creating a content provider
for the database-style API. In this section, we will examine the
ContentProvider/Files sample project. This is a clone of the WebKit/GeoWeb2
project we saw in a previous chapter, but this one serves its files to the
WebView from a ContentProvider, rather than straight out of the project's
assets.

Step #1: Create the Provider Class

Once again, we create a subclass of ContentProvider. This time, though, the
roster of methods we need to worry about is a bit different.

282

Content Provider Implementation Patterns

onCreate()

We have an onCreate() method. In many cases, this would not be needed
for this sort of provider – after all, there is no database to open. In this case,
we use onCreate() to copy the file(s) out of assets into the app-local file
store. In principle, this would allow our application code to modify these
files as the user uses the app (versus the unmodifiable editions in assets/).

@Override
public boolean onCreate() {
 File page=new File(getContext().getFilesDir(), "geoweb2.html");

 if (!page.exists()) {
 AssetManager assets=getContext().getResources().getAssets();

 try {
 copy(assets.open("geoweb2.html"), page);
 copy(assets.open("geoweb.js"),
 new File(getContext().getFilesDir(), "geoweb.js"));
 }
 catch (IOException e) {
 Log.e("FileProvider", "Exception copying from assets", e);

 return(false);
 }
 }

 return(true);
}

This uses a private copy() method that can copy an InputStream from an
asset to a local File:

static private void copy(InputStream in, File dst) throws IOException {
 FileOutputStream out=new FileOutputStream(dst);
 byte[] buf=new byte[1024];
 int len;

 while((len=in.read(buf))>0) {
 out.write(buf, 0, len);
 }

 in.close();
 out.close();
}

283

Content Provider Implementation Patterns

openFile()

We need to implement openFile(), to return a ParcelFileDescriptor
corresponding to the supplied Uri:

@Override
public ParcelFileDescriptor openFile(Uri uri, String mode)
 throws FileNotFoundException {
 File f=new File(getContext().getFilesDir(), uri.getPath());

 if (f.exists()) {
 return(ParcelFileDescriptor.open(f,
 ParcelFileDescriptor.MODE_READ_ONLY));
 }

 throw new FileNotFoundException(uri.getPath());
}

Here, we ignore the supplied mode parameter, treating this as a read-only
file. That is safe in this case, since our only planned use of the provider is to
serve read-only content to a WebView widget. If we wanted read-write access,
we would need to convert the mode to something usable by the open()
method on ParcelFileDescriptor.

getType()

We need to implement getType(), in this case using real MIME types, not
made-up ones. To do that, we have a static HashMap mapping file extensions
to MIME types:

private static final HashMap<String, String> MIME_TYPES=new HashMap<String,
String>();

static {
 MIME_TYPES.put(".html", "text/html");
 MIME_TYPES.put(".js", "application/javascript");
}

Then, getType() walks those to find a match and uses that particular MIME
type:

@Override
public String getType(Uri uri) {

284

Content Provider Implementation Patterns

 String path=uri.toString();

 for (String extension : MIME_TYPES.keySet()) {
 if (path.endsWith(extension)) {
 return(MIME_TYPES.get(extension));
 }
 }

 return(null);
}

All Those Other Ones

In theory, that would be all we need. In practice, other methods are
abstract on ContentProvider and need stub implementations:

@Override
public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 throw new RuntimeException("Operation not supported");
}

@Override
public Uri insert(Uri uri, ContentValues initialValues) {
 throw new RuntimeException("Operation not supported");
}

@Override
public int update(Uri uri, ContentValues values, String where, String[]
whereArgs) {
 throw new RuntimeException("Operation not supported");
}

@Override
public int delete(Uri uri, String where, String[] whereArgs) {
 throw new RuntimeException("Operation not supported");
}

Here, we throw a RuntimeException if any of those methods are called,
indicating that our content provider does not support them.

Step #2: Update the Manifest

Finally, we need to add the provider to the AndroidManifest.xml file, by
adding a <provider> element as a child of the <application> element, as with
any other content provider:

285

Content Provider Implementation Patterns

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.cp.files" android:versionCode="1"
android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" android:targetSdkVersion="8"/>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="FilesCPDemo" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <provider android:name=".FileProvider"
android:authorities="com.commonsware.android.cp.files"
android:exported="false"/>
 </application>
</manifest>

Note, however, that we have android:exported="false" set in our <provider>
element. This means that this content provider is considered local to our
application and cannot be accessed from third-party apps.

Using this Provider

The only difference in the activity between the original asset-based
implementation and the current one is the loadUrl() call on the WebView
widget:

browser.loadUrl(FileProvider.CONTENT_URI+"geoweb2.html");

Here, we use a CONTENT_URI published by FileProvider as the basis for
identifying the file:

public static final Uri
CONTENT_URI=Uri.parse("content://com.commonsware.android.cp.files/");

286

CHAPTER 16

The Contacts Content Provider

One of the more popular stores of data on your average Android device is
the contact list. This is particularly true with Android 2.0 and newer
versions, which track contacts across multiple different "accounts", or
sources of contacts. Some may come from your Google account, while
others might come from Exchange or other services.

This chapter will walk you through some of the basics for accessing the
contacts on the device. Along the way, we will revisit and expand upon our
knowledge of using a ContentProvider.

First, we will review the contacts APIs, past and present. We will then
demonstrate how you can connect to the contacts engine to let users pick
and view contacts...all without your application needing to know much of
how contacts work. We will then show how you can query the contacts
provider to obtain contacts and some of their details, like email addresses
and phone numbers. We wrap by showing how you can invoke a built-in
activity to let the user add a new contact, possibly including some data
supplied by your application.

Introducing You to Your Contacts

Android makes contacts available to you via a complex ContentProvider
framework, so you can access many facets of a contact's data – not just their
name, but addresses, phone numbers, groups, etc. Working with the

287

The Contacts Content Provider

contacts ContentProvider set is simple...only if you have an established
pattern to work with. Otherwise, it may prove somewhat daunting.

ContentProvider Recap

As you may recall from a previous chapter, a ContentProvider is an
abstraction around a data source. Consumers of a ContentProvider can use a
ContentResolver to query, insert, update, or delete data, or use
managedQuery() on an Activity to do a query. In the latter case, the resulting
Cursor is managed, meaning that it will be deactivated when the activity is
stopped, requeried when the activity is later restarted, and closed when the
activity is destroyed.

Content providers use a "projection" to describe the columns to work with.
One ContentProvider may expose many facets of data, which you can think
of as being tables. However, bear in mind that content providers do not
necessarily have to store their content in SQLite, so you will need to
consult the documentation for the content provider to determine query
language syntax, transaction support, and the like.

Organizational Structure

The contacts ContentProvider framework can be found as the set of
ContactsContract classes and interfaces in the android.provider package.
Unfortunately, there is a dizzying array of inner classes to ContactsContract.

Contacts can be broken down into two types: raw and aggregate. Raw
contacts come from a sync provider or are hand-entered by a user.
Aggregate contacts represent the sum of information about an individual
culled from various raw contacts. For example, if your Exchange sync
provider has a contact with an email address of jdoe@foo.com, and your
Facebook sync provider has a contact with an email address of jdoe@foo.com,
Android may recognize that those two raw contacts represent the same
person and therefore combine those in the aggregate contact for the user.
The classes relating to raw contacts usually have Raw somewhere in their
name, and these normally would be used only by custom sync providers.

288

The Contacts Content Provider

The ContactsContract.Contacts and ContactsContract.Data classes represent
the "entry points" for the ContentProvider, allowing you to query and obtain
information on a wide range of different pieces of information. What is
retrievable from these can be found in the various
ContactsContract.CommonDataKinds series of classes. We will see examples of
these operations later in this chapter.

A Look Back at Android 1.6

Prior to Android 2.0, Android had no contact synchronization built in. As a
result, all contacts were in one large pool, whether they were hand-entered
by users or were added via third-party applications. The API used for this is
the Contacts ContentProvider.

In principle, the Contacts ContentProvider should still work, as it is merely
deprecated in Android 2.0.1, not removed. In practice, you may encounter
some issues, since the emulator may not have the same roster of
synchronization providers as does a device, and so there may be differences
in behavior.

Pick a Peck of Pickled People

Let's start by finding a contact. After all, that's what the contacts system is
for.

Contacts, like anything stored in a ContentProvider, is identified by a Uri.
Hence, we need a Uri we can use in the short term, perhaps to read some
data, or perhaps just to open up the contact detail activity for the user.

We could ask for a raw contact, or we could ask for an aggregate contact.
Since most consumers of the contacts ContentProvider will want the
aggregate contact, we will use that.

For example, take a look at Contacts/Pick in the sample applications, as this
shows how to pick a contact from a collection of contacts, then display the

289

The Contacts Content Provider

contact detail activity. This application gives you a really big “Gimme!”
button, which when clicked will launch the contact-selection logic:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Gimme a contact!"
 android:layout_weight="1"
/>

Our first step is to determine the Uri to use to reference the collection of
contacts we want to pick from. In the long term, there should be just one
answer for aggregate contacts:
android.provider.ContactsContract.Contacts.People.CONTENT_URI. However,
that only works for Android 2.0 (SDK level 5) and higher. On older versions
of Android, we need to stick with the original
android.provider.Contacts.CONTENT_URI. To accomplish this, we will use a
pinch of reflection to determine our Uri via a static initializer when our
activity starts:

private static Uri CONTENT_URI=null;

static {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk>=5) {
 try {
 Class clazz=Class.forName("android.provider.ContactsContract$Contacts");

 CONTENT_URI=(Uri)clazz.getField("CONTENT_URI").get(clazz);
 }
 catch (Throwable t) {
 Log.e("PickDemo", "Exception when determining CONTENT_URI", t);
 }
 }
 else {
 CONTENT_URI=Contacts.People.CONTENT_URI;
 }
}

Then, you need to create an Intent for the ACTION_PICK on the chosen Uri,
then start a sub activity (via startActivityForResult()) to allow the user to
pick a piece of content of the specified type:

290

The Contacts Content Provider

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 if (CONTENT_URI==null) {
 Toast
 .makeText(this, "We are experiencing technical difficulties...",
 Toast.LENGTH_LONG)
 .show();
 finish();

 return;
 }

 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK, CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });
}

When that sub-activity completes with RESULT_OK, the ACTION_VIEW is
invoked on the resulting contact Uri, as obtained from the Intent returned
by the pick activity:

@Override
protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 data.getData()));
 }
 }
}

The result: the user chooses a collection, picks a piece of content, and views
it.

291

The Contacts Content Provider

Figure 52. The PickDemo sample application, as initially launched

Figure 53. The same application, after clicking the "Gimme!" button, showing
the list of available people

292

The Contacts Content Provider

Figure 54. A view of a contact, launched by PickDemo after choosing one of the
people from the pick list

Note that the Uri we get from picking the contact is valid in the short term,
but should not be held onto in a persistent fashion (e.g., put in a database).
If you need to try to store a reference to a contact for the long term, you will
need to get a "lookup Uri" on it, to help deal with the fact that the aggregate
contact may shift over time as raw contact information for that person
comes and goes.

Spin Through Your Contacts

The preceding example allows you to work with contacts, yet not actually
have any contact data other than a transient Uri. All else being equal, it is
best to use the contacts system this way, as it means you do not need any
extra permissions that might raise privacy issues.

Of course, all else is rarely equal.

Your alternative, therefore, is to execute queries against the contacts
ContentProvider to get actual contact detail data back, such as names,

293

The Contacts Content Provider

phone numbers, and email addresses. The Contacts/Spinners sample
application will demonstrate this technique.

Contact Permissions

Since contacts are privileged data, you need certain permissions to work
with them. Specifically, you need the READ_CONTACTS permission to query
and examine the ContactsContract content and WRITE_CONTACTS to add,
modify, or remove contacts from the system.

For example, here is the manifest for the Contacts/Spinners sample
application:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.contacts.spinners"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"
 />
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".ContactSpinners"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Pre-Joined Data

While the database underlying the ContactsContract content provider is
private, one can imagine that it has several tables: one for people, one for

294

The Contacts Content Provider

their phone numbers, one for their email addresses, etc. These are tied
together by typical database relations, most likely 1:N, so the phone number
and email address tables would have a foreign key pointing back to the
table containing information about people.

To simplify accessing all of this through the content provider interface,
Android pre-joins queries against some of the tables. For example, you can
query for phone numbers and get the contact name and other data along
with the number – you do not have to do this join operation yourself.

The Sample Activity

The ContactsDemo activity is simply a ListActivity, though it sports a Spinner
to go along with the obligatory ListView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

The activity itself sets up a listener on the Spinner and toggles the list of
information shown in the ListView when the Spinner value changes:

package com.commonsware.android.contacts.spinners;

import android.app.ListActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;

295

The Contacts Content Provider

import android.widget.ListAdapter;
import android.widget.Spinner;

public class ContactSpinners extends ListActivity
 implements AdapterView.OnItemSelectedListener {
 private static String[] options={"Contact Names",
 "Contact Names & Numbers",
 "Contact Names & Email Addresses"};
 private ListAdapter[] listAdapters=new ListAdapter[3];

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 initListAdapters();

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 options);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 setListAdapter(listAdapters[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 // ignore
 }

 private void initListAdapters() {
 listAdapters[0]=ContactsAdapterBridge.INSTANCE.buildNameAdapter(this);
 listAdapters[1]=ContactsAdapterBridge.INSTANCE.buildPhonesAdapter(this);
 listAdapters[2]=ContactsAdapterBridge.INSTANCE.buildEmailAdapter(this);
 }

}

When the activity is first opened, it sets up three Adapter objects, one for
each of three perspectives on the contacts data. The Spinner simply resets
the list to use the Adapter associated with the Spinner value selected.

296

The Contacts Content Provider

Dealing with API Versions

Of course, once again, we have to ponder different API levels.

Querying ContactsContract and querying Contacts is similar, yet different,
both in terms of the Uri each uses for the query and in terms of the
available column names for the resulting projection.

Rather than using reflection, this time we ruthlessly exploit a feature of the
VM: classes are only loaded when first referenced. Hence, we can have a
class that refers to new APIs (ContactsContract) on a device that lacks those
APIs, so long as we do not reference that class.

To accomplish this, we define an abstract base class, ContactsAdapterBridge,
that will have a singleton instance capable of running our queries and
building a ListAdapter for each. Then, we create two concrete subclasses,
one for the old API:

package com.commonsware.android.contacts.spinners;

import android.app.Activity;
import android.database.Cursor;
import android.provider.Contacts;
import android.widget.ListAdapter;
import android.widget.SimpleCursorAdapter;

class OldContactsAdapterBridge extends ContactsAdapterBridge {
 ListAdapter buildNameAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.People._ID,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=a.managedQuery(Contacts.People.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.People.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_1,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME
 },
 new int[] {
 android.R.id.text1
 }));
 }

297

The Contacts Content Provider

 ListAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.Phones._ID,
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 };
 Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,
 PROJECTION, null, null,
 Contacts.Phones.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }

 ListAdapter buildEmailAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.ContactMethods._ID,
 Contacts.ContactMethods.DATA,
 Contacts.PeopleColumns.NAME
 };
 Cursor c=a.managedQuery(Contacts.ContactMethods.CONTENT_EMAIL_URI,
 PROJECTION, null, null,
 Contacts.ContactMethods.DEFAULT_SORT_ORDER);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.PeopleColumns.NAME,
 Contacts.ContactMethods.DATA
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }
}

...and one for the new API:

package com.commonsware.android.contacts.spinners;

import android.app.Activity;
import android.database.Cursor;
import android.provider.ContactsContract.Contacts;

298

The Contacts Content Provider

import android.provider.ContactsContract.CommonDataKinds.Email;
import android.provider.ContactsContract.CommonDataKinds.Phone;
import android.widget.ListAdapter;
import android.widget.SimpleCursorAdapter;

class NewContactsAdapterBridge extends ContactsAdapterBridge {
 ListAdapter buildNameAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 };
 Cursor c=a.managedQuery(Contacts.CONTENT_URI,
 PROJECTION, null, null, null);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_1,
 c,
 new String[] {
 Contacts.DISPLAY_NAME
 },
 new int[] {
 android.R.id.text1
 }));
 }

 ListAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 Phone.NUMBER
 };
 Cursor c=a.managedQuery(Phone.CONTENT_URI,
 PROJECTION, null, null, null);

 return(new SimpleCursorAdapter(a,
 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.DISPLAY_NAME,
 Phone.NUMBER
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }

 ListAdapter buildEmailAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 Email.DATA
 };
 Cursor c=a.managedQuery(Email.CONTENT_URI,
 PROJECTION, null, null, null);

 return(new SimpleCursorAdapter(a,

299

The Contacts Content Provider

 android.R.layout.simple_list_item_2,
 c,
 new String[] {
 Contacts.DISPLAY_NAME,
 Email.DATA
 },
 new int[] {
 android.R.id.text1,
 android.R.id.text2
 }));
 }
}

Our ContactsAdapterBridge class then uses the SDK level to determine
which of those two classes to use as the singleton:

package com.commonsware.android.contacts.spinners;

import android.app.Activity;
import android.os.Build;
import android.widget.ListAdapter;

abstract class ContactsAdapterBridge {
 abstract ListAdapter buildNameAdapter(Activity a);
 abstract ListAdapter buildPhonesAdapter(Activity a);
 abstract ListAdapter buildEmailAdapter(Activity a);

 public static final ContactsAdapterBridge INSTANCE=buildBridge();

 private static ContactsAdapterBridge buildBridge() {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk<5) {
 return(new OldContactsAdapterBridge());
 }

 return(new NewContactsAdapterBridge());
 }
}

Accessing People

The first Adapter shows the names of all of the contacts. Since all the
information we seek is in the contact itself, we can use the CONTENT_URI
provider, retrieve all of the contacts in the default sort order, and pour
them into a SimpleCursorAdapter set up to show each person on its own row:

300

The Contacts Content Provider

Assuming you have some contacts in the database, they will appear when
you first open the ContactsDemo activity, since that is the default perspective:

Figure 55. The ContactsDemo sample application, showing all contacts

301

The Contacts Content Provider

Accessing Phone Numbers

Figure 56. The ContactsDemo sample application, showing all contacts that
have phone numbers

Accessing Email Addresses

Similarly, to get a list of all the email addresses, we can use the CONTENT_URI
content provider. Again, the results are displayed via a two-line
SimpleCursorAdapter:

302

The Contacts Content Provider

Figure 57. The ContactsDemo sample application, showing all contacts with
email addresses

Makin' Contacts

Let's now take a peek at the reverse direction: adding contacts to the
system. This was never particularly easy and now is...well, different.

First, we need to distinguish between sync providers and other apps. Sync
providers are the guts underpinning the accounts system in Android,
bridging some existing source of contact data to the Android device. Hence,
you can have sync providers for Exchange, Facebook, and so forth. These
will need to create raw contacts for newly-added contacts to their backing
stores that are being sync'd to the device for the first time. Creating sync
providers is outside of the scope of this book for now.

It is possible for other applications to create contacts. These, by definition,
will be phone-only contacts, lacking any associated account, no different
than if the user added the contact directly. The recommended approach to
doing this is to collect the data you want, then spawn an activity to let the
user add the contact – this avoids your application needing the

303

The Contacts Content Provider

WRITE_CONTACTS permission and all the privacy/data integrity issues that
creates. In this case, we will stick with the new ContactsContract content
provider, to simplify our code, at the expense of requiring Android 2.0 or
newer.

To that end, take a look at the Contacts/Inserter sample project. It defines a
simple activity with a two-field UI, with one field apiece for the person's
first name and phone number:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="First name:"
 />
 <EditText android:id="@+id/name"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Phone:"
 />
 <EditText android:id="@+id/phone"
 android:inputType="phone"
 />
 </TableRow>
 <Button android:id="@+id/insert" android:text="Insert!" />
</TableLayout>

The trivial UI also sports a button to add the contact:

304

The Contacts Content Provider

Figure 58. The ContactInserter sample application

When the user clicks the button, the activity gets the data and creates an
Intent to be used to launch the add-a-contact activity. This uses the
ACTION_INSERT_OR_EDIT action and a couple of extras from the
ContactsContract.Intents.Insert class:

package com.commonsware.android.inserter;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.Intents.Insert;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class ContactsInserter extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.insert);

 btn.setOnClickListener(onInsert);
 }

305

The Contacts Content Provider

 View.OnClickListener onInsert=new View.OnClickListener() {
 public void onClick(View v) {
 EditText fld=(EditText)findViewById(R.id.name);
 String name=fld.getText().toString();

 fld=(EditText)findViewById(R.id.phone);

 String phone=fld.getText().toString();
 Intent i=new Intent(Intent.ACTION_INSERT_OR_EDIT);

 i.setType(Contacts.CONTENT_ITEM_TYPE);
 i.putExtra(Insert.NAME, name);
 i.putExtra(Insert.PHONE, phone);
 startActivity(i);
 }
 };
}

We also need to set the MIME type on the Intent via setType(), to be
CONTENT_ITEM_TYPE, so Android knows what sort of data we want to actually
insert. Then, we call startActivity() on the resulting Intent. That brings up
an add-or-edit activity:

Figure 59. The add-or-edit-a-contact activity

...where if the user chooses "Create new contact", they are taken to the
ordinary add-a-contact activity, with our data pre-filled in:

306

The Contacts Content Provider

Figure 60. The edit-contact form, showing the data from the ContactInserter
activity

Note that the user could choose an existing contact, rather than creating a
new contact. If they choose an existing contact, the first name of that
contact will be overwritten with the data supplied by the ContactsInserter
activity, and a new phone number will be added from those Intent extras.

307

CHAPTER 17

Searching with SearchManager

One of the firms behind the Open Handset Alliance – Google – has a teeny
weeny Web search service, one you might have heard of in passing. Given
that, it's not surprising that Android has some amount of built-in search
capabilities.

Specifically, Android has "baked in" the notion of searching not only on the
device for data, but over the air to Internet sources of data.

Your applications can participate in the search process, by triggering
searches or perhaps by allowing your application's data to be searched.

Hunting Season

There are two types of search in Android: local and global. Local search
searches within the current application; global search searches the Web via
Google's search engine. You can initiate either type of search in a variety of
ways, including:

• You can call onSearchRequested() from a button or menu choice,
which will initiate a local search (unless you override this method in
your activity)

• You can directly call startSearch() to initiate a local or global
search, including optionally supplying a search string to use as a
starting point

309

Searching with SearchManager

• You can elect to have keyboard entry kick off a search via
setDefaultKeyMode(), for either local search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL)) or global search
(setDefaultKeyMode(DEFAULT_KEYS_SEARCH_GLOBAL))

In either case, the search appears as a set of UI components across the top
of the screen, with a suggestion list (where available) and IME (where
needed).

Figure 61. The Android local search popup, showing the IME and a previous
search

310

Searching with SearchManager

Figure 62. The Android global search popup

Where that search suggestion comes from for your local searches will be
covered later in this chapter.

Search Yourself

Over the long haul, there will be two flavors of search available via the
Android search system:

1. Query-style search, where the user's search string is passed to an
activity which is responsible for conducting the search and
displaying the results

2. Filter-style search, where the user's search string is passed to an
activity on every keypress, and the activity is responsible for
updating a displayed list of matches

Since the latter approach is decidedly under-documented, let's focus on the
first one.

311

Searching with SearchManager

Craft the Search Activity

The first thing you are going to want to do if you want to support query-
style search in your application is to create a search activity. While it might
be possible to have a single activity be both opened from the launcher and
opened from a search, that might prove somewhat confusing to users.
Certainly, for the purposes of learning the techniques, having a separate
activity is cleaner.

The search activity can have any look you want. In fact, other than
watching for queries, a search activity looks, walks, and talks like any other
activity in your system.

All the search activity needs to do differently is check the intents supplied
to onCreate() (via getIntent()) and onNewIntent() to see if one is a search,
and, if so, to do the search and display the results.

For example, let's look at the Search/Lorem sample application. This starts
off as a clone of the list-of-lorem-ipsum-words application originally
encountered in The Busy Coder's Guide to Android Development. Now, we
update it to support searching the list of words for ones containing the
search string.

The main activity and the search activity both share a common layout: a
ListView plus a TextView showing the selected entry:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"

312

Searching with SearchManager

 />
</LinearLayout>

In terms of Java code, most of the guts of the activities are poured into an
abstract LoremBase class:

abstract public class LoremBase extends ListActivity {
 abstract ListAdapter makeMeAnAdapter(Intent intent);

 private static final int LOCAL_SEARCH_ID = Menu.FIRST+1;
 private static final int GLOBAL_SEARCH_ID = Menu.FIRST+2;
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 XmlPullParser xpp=getResources().getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 items.add(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), 4000)
 .show();
 }

 setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL);

 onNewIntent(getIntent());
 }

 @Override
 public void onNewIntent(Intent intent) {
 ListAdapter adapter=makeMeAnAdapter(intent);

 if (adapter==null) {
 finish();
 }
 else {

313

Searching with SearchManager

 setListAdapter(adapter);
 }
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, LOCAL_SEARCH_ID, Menu.NONE, "Local Search")
 .setIcon(android.R.drawable.ic_search_category_default);
 menu.add(Menu.NONE, GLOBAL_SEARCH_ID, Menu.NONE, "Global Search")
 .setIcon(R.drawable.search)
 .setAlphabeticShortcut(SearchManager.MENU_KEY);

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case LOCAL_SEARCH_ID:
 onSearchRequested();
 return(true);

 case GLOBAL_SEARCH_ID:
 startSearch(null, false, null, true);
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }
}

This activity takes care of everything related to showing a list of words, even
loading the words out of the XML resource. What it does not do is come up
with the ListAdapter to put into the ListView – that is delegated to the
subclasses.

The main activity – LoremDemo – just uses a ListAdapter for the whole word
list:

package com.commonsware.android.search;

import android.content.Intent;
import android.widget.ArrayAdapter;
import android.widget.ListAdapter;

314

Searching with SearchManager

public class LoremDemo extends LoremBase {
 @Override
 ListAdapter makeMeAnAdapter(Intent intent) {
 return(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }
}

The search activity, though, does things a bit differently.

First, it inspects the Intent supplied to the abstract makeMeAnAdapter()
method. That Intent comes from either onCreate() or onNewIntent(). If the
intent is an ACTION_SEARCH, then we know this is a search. We can get the
search query and, in the case of this silly demo, spin through the loaded list
of words and find only those containing the search string. That list then
gets wrapped in a ListAdapter and returned for display:

ListAdapter makeMeAnAdapter(Intent intent) {
 ListAdapter adapter=null;

 if (intent.getAction().equals(Intent.ACTION_SEARCH)) {
 String query=intent.getStringExtra(SearchManager.QUERY);
 List<String> results=searchItems(query);

 adapter=new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 results);
 setTitle("LoremSearch for: "+query);
 }

 return(adapter);
}

Update the Manifest

While this implements search, it doesn't tie it into the Android search
system. That requires a few changes to the auto-generated
AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
 <uses-sdk
 android:minSdkVersion="3"
 android:targetSdkVersion="6"

315

Searching with SearchManager

 />
 <supports-screens
 android:largeScreens="false"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="Lorem Ipsum"
 android:icon="@drawable/cw">
 <activity android:name=".LoremDemo" android:label="LoremDemo">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <meta-data android:name="android.app.default_searchable"
 android:value=".LoremSearch" />
 </activity>
 <activity
 android:name=".LoremSearch"
 android:label="LoremSearch"
 android:launchMode="singleTop">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />
 </activity>
 <provider android:name=".LoremSuggestionProvider"
 android:authorities="com.commonsware.android.search.LoremSuggestionP
rovider" />
 </application>
</manifest>

The changes that are needed are:

1. The LoremDemo main activity gets a meta-data element, with an
android:name of android.app.default_searchable and a android:value
of the search implementation class (.LoremSearch)

2. The LoremSearch activity gets an intent filter for
android.intent.action.SEARCH, so search intents will be picked up

3. The LoremSearch activity is set to have android:launchMode =

"singleTop", which means at most one instance of this activity will
be open at any time, so we don't wind up with a whole bunch of
little search activities cluttering up the activity stack

4. Add android:label and android:icon attributes to the application
element – these will influence how your application appears in the
Quick Search Box among other places

316

Searching with SearchManager

5. The LoremSearch activity gets a meta-data element, with an
android:name of android.app.searchable and a android:value of an
XML resource containing more information about the search
facility offered by this activity (@xml/searchable)

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/searchLabel"
 android:hint="@string/searchHint"
 android:searchSuggestAuthority="com.commonsware.android.search.LoremSuggestion
Provider"
 android:searchSuggestSelection=" ? "
 android:searchSettingsDescription="@string/global"
 android:includeInGlobalSearch="true"
/>

That XML resource provides many bits of information, of which only two
are needed for simple search-enabled applications:

1. What name should appear in the search domain button to the left
of the search field, identifying to the user where she is searching
(android:label)

2. What hint text should appear in the search field, to give the user a
clue as to what they should be typing in (android:hint)

The other attributes found in that file, and the other search-related bits
found in the manifest, will be covered later in this chapter.

Searching for Meaning In Randomness

Given all that, search is now available – Android knows your application is
searchable, what search domain to use when searching from the main
activity, and the activity knows how to do the search.

The options menu for this application has both local and global search
options. In the case of local search, we just call onSearchRequested(); in the
case of global search, we call startSearch() with true in the last parameter,
indicating the scope is global.

317

Searching with SearchManager

Figure 63. The Lorem sample application, showing the local search popup

Typing in a letter or two, then clicking Search, will bring up the search
activity and the subset of words containing what you typed, with your
search query in the activity title bar:

318

Searching with SearchManager

Figure 64. The results of searching for 'co' in the Lorem search sample

You can get the same effect if you just start typing in the main activity, since
it is set up for triggering a local search.

May I Make a Suggestion?

When you do a global search, you are given "suggestions" of search words or
phrases that may be what you are searching for, to save you some typing on
a small keyboard:

319

Searching with SearchManager

Figure 65. Search suggestions after typing some letters in global search

Your application, if it chooses, can offer similar suggestions. Not only will
this give you the same sort of drop-down effect as you see with the global
search above, but it also ties neatly into the Quick Search Box, as we will
see later in this chapter.

To provide suggestions, you need to implement a ContentProvider and tie
that provider into the search framework. You have two major choices for
implementing a suggestion provider: use the built-in "recent" suggestion
provider, or create your own from scratch.

SearchRecentSuggestionsProvider

The "recent" suggestions provider gives you a quick and easy way to
remember past searches and offer those as suggestions on future searches.

To use this facility, you must first create a custom subclass of
SearchRecentSuggestionsProvider. Your subclass may be very simple, perhaps

320

Searching with SearchManager

just a two-line constructor with no other methods. However, since Android
does not automatically record recent queries for you, you will also need to
give your search activity a way to record them such that the recent-
suggestions provider can offer them as suggestions in the future.

Below, we have a LoremSuggestionProvider, extending
SearchRecentSuggestionsProvider, that also supplies a "bridge" for the search
activity to record searches:

package com.commonsware.android.search;

import android.content.Context;
import android.content.SearchRecentSuggestionsProvider;
import android.provider.SearchRecentSuggestions;

public class LoremSuggestionProvider
 extends SearchRecentSuggestionsProvider {
 private static String
AUTH="com.commonsware.android.search.LoremSuggestionProvider";

 static SearchRecentSuggestions getBridge(Context ctxt) {
 return(new SearchRecentSuggestions(ctxt, AUTH,
 DATABASE_MODE_QUERIES));
 }

 public LoremSuggestionProvider() {
 super();

 setupSuggestions(AUTH, DATABASE_MODE_QUERIES);
 }
}

The constructor, besides the obligatory chain to the superclass, simply calls
setupSuggestions(). This takes two parameters:

• The authority under which you will register this provider in the
manifest (see below)

• A flag indicating where the suggestions will come from – in this
case, we supply the required DATABASE_MODE_QUERIES flag

Of course, since this is a ContentProvider, you will need to add it to your
manifest:

321

Searching with SearchManager

android:label="LoremSearch"
android:launchMode="singleTop">

The other thing that LoremSuggestionProvider has is a static method that
creates a properly-configured instance of a SearchRecentSuggestions object.
This object knows how to save search queries to the database that the
content provider uses, so they will be served up as future suggestions. It
needs to know the same authority and flag that you provide to
setupSuggestions().

That SearchRecentSuggestions is then used by our LoremSearch class, inside
its searchItems() method that actually examines the list of nonsense words
for matches:

private List<String> searchItems(String query) {
 LoremSuggestionProvider
 .getBridge(this)
 .saveRecentQuery(query, null);

 List<String> results=new ArrayList<String>();

 for (String item : items) {
 if (item.indexOf(query)>-1) {
 results.add(item);
 }
 }

 return(results);
}

In this case, we always record the search, though you can imagine that
some applications might not save searches that are invalid for one reason or
another.

Custom Suggestion Providers

If you want to provide search suggestions based on something else – actual
data, searches conducted by others that you aggregate via a Web service,
etc. – you will need to implement your own ContentProvider that supplies
that information. As with SearchRecentSuggestionsProvider, you will need to
add your ContentProvider to the manifest so that Android knows it exists.

322

Searching with SearchManager

The details for doing this will be covered in a future edition of this book.
For now, you are best served with the Android SearchManager
documentation on the topic.

Integrating Suggestion Providers

Before your suggestions will appear, though, you need to tell Android to use
your ContentProvider as the source of suggestions. There are two attributes
on your searchable XML that make this connection:

• android:searchSuggestAuthority indicates the content authority for
your suggestions – this is the same authority you used for your
ContentProvider

• android:searchSuggestSelection is how the suggestion should be
packaged as a query in the ACTION_SEARCH Intent – unless you have
some reason to do otherwise, " ? " is probably a fine value to use

The result is that when we do our local search, we get the drop-down of
past searches as suggestions:

323

http://developer.android.com/reference/android/app/SearchManager.html#Suggestions

Searching with SearchManager

Figure 66. The Android local search popup, showing the IME and a previous
search

There is also a clearHistory() method on SearchRecentSuggestions that you
can use, perhaps from a menu choice, to clear out the search history, in
case it is cluttered beyond usefulness.

Putting Yourself (Almost) On Par with Google

The Quick Search Box is Android's new term for the search widget at the
top of the home screen. This is the same UI that appears when your
application starts a global search. When you start typing, it shows possible
matches culled from both the device and the Internet. If you choose one of
the suggestions, it takes you to that item – choose a contact, and you visit
the contact in the Contacts application. If you choose a Web search term, or
you just submit whatever you typed in, Android will fire up a Browser
instance showing you search results from Google. The order of suggestions
is adaptive, as Android will attempt to show the user the sorts of things the
user typically searches for (e.g., if the user clicks on contacts a lot in prior
searches, it may prioritize suggested contacts in the suggestion list).

324

Searching with SearchManager

Your application can be tied into the Quick Search Box. However, it is
important to understand that being in the Quick Search Box does not mean
that your content will be searched. Instead, your suggestions provider will
be queried based on what the user has typed in, and those suggestions will
be blended into the overall results.

And, your application will not show up in Quick Search Box suggestions
automatically – the user has to "opt in" to have your results included.

And, until the user demonstrates an interest in your results, your
application's suggestions will be buried at the bottom of the list.

This means that integrating with the Quick Search Box, while still perhaps
valuable, is not exactly what some developers will necessarily have in mind.
That being said, here is how to achieve this integration.

NOTE: there is some flaw in the Android 2.2 emulator that prevents this
from working, though it works fine on Android 2.2 hardware.

Implement a Suggestions Provider

Your first step is to implement a suggestions provider, as described in the
previous section. Again, Android does not search your application, but
rather queries your suggestions provider. If you do not have a suggestions
provider, you will not be part of the Quick Search Box. As we will see
below, this approach means you will need to think about what sort of
suggestion provider to create.

Augment the Metadata

Next, you need to tell Android to tie your application into the Quick Search
Box suggestion list. To do that, you need to add the
android:includeInGlobalSearch attribute to your searchable XML, setting it
to true. You probably also should consider adding the

325

Searching with SearchManager

android:searchSettingsDescription, as this will be shown in the UI for the
user to configure what suggestions the Quick Search Box shows.

Convince the User

Next, the user needs to activate your application to be included in the
Quick Search Box suggestion roster. To do that, the user needs to go into
Settings > Search > Searchable Items and check the checkbox associated
with your application:

Figure 67. The Searchable Items settings screen

Your application's label and the value of android:searchSettingsDescription
are what appears to the left of the checkbox.

You have no way of toggling this on yourself – the user has to do it. You may
wish to mention this in the documentation for your application.

326

Searching with SearchManager

The Results

If you and the user do all of the above, now when the user initiates a search,
your suggestions will be poured into the suggestions list, at the bottom:

Figure 68. The Quick Search Box, showing application-supplied suggestions

On versions of Android prior to 2.2, to actually see your suggestions, the
user also needs to click the arrow to "fold open" the actual suggestions:

327

Searching with SearchManager

Figure 69. The Quick Search Box, showing another placeholder for application-
supplied suggestions

Even here, we do not see the actual suggestion. However, if the user clicks
on that item, your suggestions then take over the list:

328

Searching with SearchManager

Figure 70. The Quick Search Box, showing application-supplied suggestions

Again, Android is not showing actual data from your application – our list
of nonsense words does not contain the value "dol". Instead, Android is
showing suggestions from your suggestion provider based on what the user
typed in. In this case, our application's suggestion provider is based on the
built-in SearchRecentSuggestionsProvider class, meaning the suggestions are
past queries, not actual results.

Hence, what you want to have appear in the Quick Search Box suggestion
list will heavily influence what sort of suggestion provider you wish to
create. While a SearchRecentSuggestionsProvider is simple, what you get in
the Quick Search Box suggestions may not be that useful to users. Instead,
you may wish to create your own custom suggestions provider, providing
suggestions from actual data or other more useful sources, perhaps in
addition to saved searches.

329

CHAPTER 18

Introspection and Integration

Introspection, from a software development standpoint, refers to
inspecting one's environment at runtime to figure out what is possible and
how to integrate disparate components. In Android, this comes in two
main flavors:

1. Sometimes, the introspection is based on a Uri – you get a Uri from
someplace, and to you it is an opaque handle, and you do not
necessarily know what to do with it

2. Sometimes, the introspection is more at the Intent or package level,
where you are trying to figure out if such-and-so application is
installed, or asking Android to give you choices for who can handle
such-and-so Intent, etc.

Android has a fairly rich, somewhat disheveled, and frequently
misunderstood collection of introspection techniques. This chapter
outlines some of those, so you know how to make use of them to enhance
your own applications.

We start with the ways to inject other activities into your own application's
option menus and how, in theory, you could use that to get your activity in
somebody else's option menu. We then cover ACTION_SEND and
createChooser(), showing how you can hook into capabilities without
knowing exactly what all the options are. We then spend a pair of sections
examining PackageManager and how you can use it to peer inside the device
and see what all is installed. We then see how you can implement

331

Introspection and Integration

ACTION_SEND support in your own application, so you can appear as an
option when some other application allows its users to "send" things. Next,
we look at how to get control when the user clicks on certain links in Web
browsers, such as a for a certain MIME type or Web site. We wrap up with a
discussion of how to create application shortcuts that can be dropped onto
a user's home screen.

Would You Like to See the Menu?

Another way to give the user ways to take actions on a piece of content,
without you knowing what actions are possible, is to inject a set of menu
choices into the options menu via addIntentOptions(). This method,
available on Menu, takes an Intent and other parameters and fills in a set of
menu choices on the Menu instance, each representing one possible action.
Choosing one of those menu choices spawns the associated activity.

The canonical example of using addIntentOptions() illustrates another
flavor of having a piece of content and not knowing the actions that can be
taken. Android applications are perfectly capable of adding new actions to
existing content types, so even though you wrote your application and
know what you expect to be done with your content, there may be other
options you are unaware of that are available to users.

For example, imagine the tagging subsystem mentioned in the introduction
to this chapter. It would be very annoying to users if, every time they
wanted to tag a piece of content, they had to go to a separate tagging tool,
then turn around and pick the content they just had been working on (if
that is even technically possible) before associating tags with it. Instead,
they would probably prefer a menu choice in the content's own “home”
activity where they can indicate they want to tag it, which leads them to the
set-a-tag activity and tells that activity what content should get tagged.

To accomplish this, the tagging subsystem should set up an intent filter,
supporting any piece of content, with their own action (e.g., ACTION_TAG)
and a category of CATEGORY_ALTERNATIVE. The category CATEGORY_ALTERNATIVE

332

Introspection and Integration

is the convention for one application adding actions to another
application's content.

If you want to write activities that are aware of possible add-ons like
tagging, you should use addIntentOptions() to add those add-ons' actions to
your options menu, such as the following:

Intent intent = new Intent(null, myContentUri);

intent.addCategory(Intent.ALTERNATIVE_CATEGORY);
menu.addIntentOptions(Menu.ALTERNATIVE, 0,
 new ComponentName(this,
 MyActivity.class),
 null, intent, 0, null);

Here, myContentUri is the content Uri of whatever is being viewed by the
user in this activity, MyActivity is the name of the activity class, and menu is
the menu being modified.

In this case, the Intent we are using to pick actions from requires that
appropriate intent receivers support the CATEGORY_ALTERNATIVE. Then, we
add the options to the menu with addIntentOptions() and the following
parameters:

• The sort position for this set of menu choices, typically set to 0
(appear in the order added to the menu) or ALTERNATIVE (appear
after other menu choices)

• A unique number for this set of menu choices, or 0 if you do not
need a number

• A ComponentName instance representing the activity that is populating
its menu – this is used to filter out the activity's own actions, so the
activity can handle its own actions as it sees fit

• An array of Intent instances that are the “specific” matches – any
actions matching those intents are shown first in the menu before
any other possible actions

• The Intent for which you want the available actions

333

Introspection and Integration

• A set of flags. The only one of likely relevance is represented as
MATCH_DEFAULT_ONLY, which means matching actions must also
implement the DEFAULT_CATEGORY category. If you do not need this,
use a value of 0 for the flags.

• An array of Menu.Item, which will hold the menu items matching the
array of Intent instances supplied as the “specifics”, or null if you do
not need those items (or are not using “specifics”)

Give Users a Choice

Let's suppose you want to send a message. There are many ways you can do
that in standard Android: email (via the Email or Gmail apps) or a text
message. Third-party apps may also have the notion of "sending", such as
alternative email clients (e.g., K9) or Twitter clients (e.g., Twidroid).

You want to allow the user to choose both the means (i.e., the application)
and the destination (i.e., the contact or address) for this message to be sent.

That can be handled very simply in Android:

void sendIt(String theMessage) {
 Intent i=new Intent(Intent.ACTION_SEND);

 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
 i.putExtra(Intent.EXTRA_TEXT, theMessage);

 startActivity(Intent.createChooser(i,
 getString(R.string.share_title)));
}

The magic is in the ACTION_SEND protocol and createChooser().

ACTION_SEND is an activity action that says, "Hey! I want to
send...ummm...something! To...er...somebody! Yeah!". The documentation
for ACTION_SEND describes a series of Intent extras you can attach to the
Intent that provides the actual content of the message, from the message
body (EXTRA_TEXT and EXTRA_STREAM) to the subject line (EXTRA_SUBJECT). You

334

Introspection and Integration

can even supply specific addresses (EXTRA_EMAIL, EXTRA_CC, EXTRA_BCC), if you
know them already.

The createChooser() static method on Intent returns another Intent, one to
a system-provided dialog-themed activity that gives the user a choice of
available activities that can support the desired action. This list is
determined on the fly by introspection, seeing what capabilities exist on the
device. So, one user might get just Email and Messaging, while another user
might get K9, Gmail, Messaging, and Twidroid. Your code stays the same –
Android provides the "glue" that connects your application to these
arbitrary other applications that can handle your request to send the
message.

Asking Around

The addIntentOptions() and createChooser() methods in turn use
queryIntentActivityOptions() for the “heavy lifting” of finding possible
actions. The queryIntentActivityOptions() method is implemented on
PackageManager, which is available to your activity via getPackageManager().

The queryIntentActivityOptions() method takes some of the same
parameters as does addIntentOptions(), notably the caller ComponentName, the
“specifics” array of Intent instances, the overall Intent representing the
actions you are seeking, and the set of flags. It returns a List of Intent
instances matching the stated criteria, with the “specifics” ones first.

If you would like to offer alternative actions to users, but by means other
than addIntentOptions(), you could call queryIntentActivityOptions(), get
the Intent instances, then use them to populate some other user interface
(e.g., a toolbar).

A simpler version of this method, queryIntentActivities(), is used by the
Introspection/Launchalot sample application. This presents a "launcher" –
an activity that starts other activities – but uses a ListView rather than a grid
like the Android default home screen uses.

335

Introspection and Integration

Here is the Java code for Launchalot itself:

package com.commonsware.android.launchalot;

import android.app.ListActivity;
import android.content.ComponentName;
import android.content.Intent;
import android.content.pm.ActivityInfo;
import android.content.pm.PackageManager;
import android.content.pm.ResolveInfo;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

public class Launchalot extends ListActivity {
 AppAdapter adapter=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 PackageManager pm=getPackageManager();
 Intent main=new Intent(Intent.ACTION_MAIN, null);

 main.addCategory(Intent.CATEGORY_LAUNCHER);

 List<ResolveInfo> launchables=pm.queryIntentActivities(main, 0);

 Collections.sort(launchables,
 new ResolveInfo.DisplayNameComparator(pm));

 adapter=new AppAdapter(pm, launchables);
 setListAdapter(adapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 ResolveInfo launchable=adapter.getItem(position);
 ActivityInfo activity=launchable.activityInfo;
 ComponentName name=new ComponentName(activity.applicationInfo.packageName,
 activity.name);
 Intent i=new Intent(Intent.ACTION_MAIN);

 i.addCategory(Intent.CATEGORY_LAUNCHER);
 i.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK |

336

Introspection and Integration

 Intent.FLAG_ACTIVITY_RESET_TASK_IF_NEEDED);
 i.setComponent(name);

 startActivity(i);
 }

 class AppAdapter extends ArrayAdapter<ResolveInfo> {
 private PackageManager pm=null;

 AppAdapter(PackageManager pm, List<ResolveInfo> apps) {
 super(Launchalot.this, R.layout.row, apps);
 this.pm=pm;
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 if (convertView==null) {
 convertView=newView(parent);
 }

 bindView(position, convertView);

 return(convertView);
 }

 private View newView(ViewGroup parent) {
 return(getLayoutInflater().inflate(R.layout.row, parent, false));
 }

 private void bindView(int position, View row) {
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(getItem(position).loadLabel(pm));

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 icon.setImageDrawable(getItem(position).loadIcon(pm));
 }
 }
}

In onCreate(), we:

• Get a PackageManager object via getPackageManager()

• Create an Intent for ACTION_MAIN in CATEGORY_LAUNCHER, which
identifies activities that wish to be considered "launchable"

• Call queryIntentActivities() to get a List of ResolveInfo objects,
each one representing one launchable activity

337

Introspection and Integration

• Sort those ResolveInfo objects via a
ResolveInfo.DisplayNameComparator instance

• Pour them into a custom AppAdapter and set that to be the contents
of our ListView

AppAdapter is an ArrayAdapter subclass that maps the icon and name of the
launchable Activity to a row in the ListView, using a custom row layout.

Finally, in onListItemClick(), we construct an Intent that will launch the
clicked-upon Activity, given the information from the corresponding
ResolveInfo object. Not only do we need to populate the Intent with
ACTION_MAIN and CATEGORY_LAUNCHER, but we also need to set the component
to be the desired Activity. We also set FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_RESET_TASK_IF_NEEDED flags, following Android's own launcher
implementation from the Home sample project. Finally, we call
startActivity() with that Intent, which opens up the activity selected by
the user.

The result is a simple list of launchable activities:

338

Introspection and Integration

Figure 71. The Launchalot sample application

There is also a resolveActivity() method that takes a template Intent, as do
queryIntentActivities() and queryIntentActivityOptions(). However,
resolveActivity() returns the single best match, rather than a list.

Middle Management

The PackageManager class offers much more than merely
queryIntentActivities() and queryIntentActivityOptions(). It is your
gateway to all sorts of analysis of what is installed and available on the
device where your application is installed and available. If you want to be
able to intelligently connect to third-party applications based on whether
or not they are around, PackageManager is what you will want.

Finding Applications and Packages

Packages are what get installed on the device – a package is the in-device
representation of an APK. An application is defined within a package's

339

Introspection and Integration

manifest. Between the two, you can find out all sorts of things about
existing software installed on the device.

Specifically, getInstalledPackages() returns a List of PackageInfo objects,
each of which describes a single package. Here, you can find out:

• The version of the package, in terms of a monotonically increasing
number (versionCode) and the display name (versionName)

• Details about all of the components – activities, services, etc. –
offered by this package

• Details about the permissions the package requires

Similarly, getInstalledApplications() returns a List of ApplicationInfo
objects, each providing data like:

• The user ID that the application will run as

• The path to the application's private data directory

• Whether or not the application is enabled

In addition to those methods, you can call:

• getApplicationIcon() and getApplicationLabel() to get the icon and
display name for an application

• getLaunchIntentForPackage() to get an Intent for something
launchable within a named package

• setApplicationEnabledSetting() to enable or disable an application

Finding Resources

You can access resources from another application, apparently without any
security restrictions. This may be useful if you have multiple applications
and wish to share resources for one reason or another.

The getResourcesForActivity() and getResourcesForApplication() methods
on PackageManager return a Resources object. This is just like the one you get

340

Introspection and Integration

for your own application via getResources() on any Context (e.g., Activity).
However, in this case, you identify what activity or application you wish to
get the Resources from (e.g., supply the application's package name as a
String).

There are also getText() and getXml() methods that dive into the Resources
object for an application and pull out specific String or XmlPullParser
objects. However, these require you to know the resource ID of the
resource to be retrieved, and that may be difficult to manage between
disparate applications.

Finding Components

Not only does Android offer "query" and "resolve" methods to find
activities, but it offers similar methods to find other sorts of Android
components:

• queryBroadcastReceivers()

• queryContentProviders()

• queryIntentServices()

• resolveContentProvider()

• resolveService()

For example, you could use resolveService() to determine if a certain
remote service is available, so you can disable certain UI elements if the
service is not on the device. You could achieve the same end by calling
bindService() and watching for a failure, but that may be later in the
application flow than you would like.

There is also a setComponentEnabledSetting() to toggle a component
(activity, service, etc.) on and off. While this may seem esoteric, there are a
number of possible uses for this method, such as:

• Flagging a launchable activity as disabled in your manifest, then
enabling it programmatically after the user has entered a license
key, achieved some level or standing in a game, or any other criteria

341

Introspection and Integration

• Controlling whether a BroadcastReceiver registered in the manifest
is hooked into the system or not, replicating the level of control you
have with registerReceiver() while still taking advantage of the fact
that a manifest-registered BroadcastReceiver can be started even if
no other component of your application is running

Get In the Loop

Earlier in this chapter, we saw how to request to send a message
somewhere via ACTION_SEND. If you have an application that has an intrinsic
notion of "sending" or "sharing" things, you may wish to advertise that your
application can respond to ACTION_SEND. Then, you automatically integrate
with every Android application ever written that uses ACTION_SEND, without
any additional work on their part.

The key is in the intent filter.

For example, take a look at Introspection/FauxSender. This is a trivial
implementation of an ACTION_SEND responder, in the form of an activity that
just raises a Toast with the message to be "sent'".

Our application will have two activities:

1. The main activity (FauxSender) that supports ACTION_SEND

2. A test activity that sends a message via ACTION_SEND and
createChooser(), so our FauxSender will be an option

The Manifest

First, let's take a peek at the project's AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.fsender" android:versionCode="1"
android:versionName="1.0">
 <uses-permission android:name="android.permission.INTERNET"/>
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>

342

Introspection and Integration

 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="FauxSenderTest"
android:label="@string/test_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name="FauxSender" android:label="@string/app_name"
android:theme="@android:style/Theme.NoDisplay">
 <intent-filter android:label="@string/app_name">
 <action android:name="android.intent.action.SEND"/>
 <data android:mimeType="text/plain"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

The test activity has the normal "please show me in the Launcher"
configurations.

The other activity – FauxSender – has a somewhat more unusual <intent-
filter> element. Here, we state that this activity should respond to any
Intent used to start an activity that:

• References the ACTION_SEND action,

• Has content that is of type text/plain, and

• Appears in the DEFAULT category

That is the "secret sauce" that enables FauxSender to work with ACTION_SEND
Intent objects of the type we aim to support.

The Main Activity

FauxSender is almost trivial:

package com.commonsware.android.fsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;

343

Introspection and Integration

import android.widget.Toast;

public class FauxSender extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 String msg=getIntent().getStringExtra(Intent.EXTRA_TEXT);

 if (TextUtils.isEmpty(msg)) {
 msg=getIntent().getStringExtra(Intent.EXTRA_SUBJECT);
 }

 if (TextUtils.isEmpty(msg)) {
 Toast
 .makeText(this, "No message supplied!", Toast.LENGTH_LONG)
 .show();
 }
 else {
 Toast
 .makeText(this, msg, Toast.LENGTH_LONG)
 .show();
 }

 finish();
 }
}

We check both EXTRA_TEXT and EXTRA_SUBJECT to see if there is a message to
be sent. If not, we raise a Toast to tell the user that something is messed up.
Assuming we have a message, we display a Toast with the text of the
message.

In either case – valid or invalid input – we finish() the activity, without
showing any actual UI. That is because there is nothing really to show,
having delegated all results to the Toast class. Because there is no UI to be
shown, we use the Theme.NoDisplay them in our AndroidManifest.xml entry
for this activity – this suppresses the otherwise-empty activity window from
displaying.

Obviously, a production-grade ACTION_SEND implementation would be more
involved, including probably sending the message (using an IntentService)
over the Internet via some protocol to some destination.

344

Introspection and Integration

The Test Activity

Our test activity – FauxSenderTest – just fires off a pre-defined message
using ACTION_SEND, using the createChooser() technique described earlier in
this chapter:

package com.commonsware.android.fsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.widget.Toast;

public class FauxSenderTest extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 sendIt("This is a test of FauxSender");

 finish();
 }

 void sendIt(String theMessage) {
 Intent i=new Intent(Intent.ACTION_SEND);

 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_SUBJECT, R.string.share_subject);
 i.putExtra(Intent.EXTRA_TEXT, theMessage);

 startActivity(Intent.createChooser(i,
 getString(R.string.share_title)));
 }
}

The Results

Running FauxSender Test will bring up a chooser to pick which means you
want to use to send the message:

345

Introspection and Integration

Figure 72. The ACTION_SEND chooser

If you choose FauxSender, you will get a Toast with the test message:

346

Introspection and Integration

Figure 73. The result of sending via FauxSender

Take the Shortcut

Another way to integrate with Android is to offer custom shortcuts.
Shortcuts are available from the home screen. Whereas app widgets allow
you to draw on the home screen, shortcuts allow you to wrap a custom
Intent with an icon and caption and put that on the home screen. You can
use this to drive users not just to your application's "front door", like the
launcher icon, but to some specific capability within your application, like a
bookmark.

In our case, in the Introspection/QuickSender sample, we will allow users to
create shortcuts that use ACTION_SEND to send a pre-defined message, either
to a specific address or anywhere, as we have seen before in this chapter.

Once again, the key is in the intent filter.

347

Introspection and Integration

Registering a Shortcut Provider

Here is the manifest for QuickSender:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.qsender" android:versionCode="1"
android:versionName="1.0">
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="QuickSender" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.CREATE_SHORTCUT"/>
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Our single activity does not implement a traditional launcher <intent-
filter>. Rather, it has one that watches for a CREATE_SHORTCUT action. This
does two things:

1. It means that our activity will show up in the list of possible
shortcuts a user can configure

2. It means this activity will be the recipient of a CREATE_SHORTCUT
Intent if the user chooses this application from the shortcuts list

Implementing a Shortcut Provider

The job of a shortcut-providing activity is to:

• Create an Intent that will be what the shortcut launches

• Return that Intent and other data to the activity that started the
shortcut provider

• Finally, finish(), so the caller gets control

You can see all of that in the QuickSender implementation:

348

Introspection and Integration

package com.commonsware.android.qsender;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.widget.TextView;

public class QuickSender extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void save(View v) {
 Intent shortcut=new Intent(Intent.ACTION_SEND);
 TextView addr=(TextView)findViewById(R.id.addr);
 TextView subject=(TextView)findViewById(R.id.subject);
 TextView body=(TextView)findViewById(R.id.body);
 TextView name=(TextView)findViewById(R.id.name);

 if (!TextUtils.isEmpty(addr.getText())) {
 shortcut.putExtra(Intent.EXTRA_EMAIL, addr.getText().toString());
 }

 if (!TextUtils.isEmpty(subject.getText())) {
 shortcut.putExtra(Intent.EXTRA_SUBJECT, subject.getText().toString());
 }

 if (!TextUtils.isEmpty(body.getText())) {
 shortcut.putExtra(Intent.EXTRA_TEXT, body.getText().toString());
 }

 shortcut.setType("text/plain");

 Intent result=new Intent();

 result.putExtra(Intent.EXTRA_SHORTCUT_INTENT, shortcut);
 result.putExtra(Intent.EXTRA_SHORTCUT_NAME,
 name.getText().toString());
 result.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,
 Intent.ShortcutIconResource.fromContext(
 this,
 R.drawable.icon));

 setResult(RESULT_OK, result);
 finish();
 }
}

349

Introspection and Integration

The shortcut Intent is the one that will be launched when the user taps the
shortcut icon on the home screen. The result Intent packages up shortcut
plus the icon and caption, where the icon is converted into an
Intent.ShortcutIconResource object. That result Intent is then used with the
setResult() call, to pass that back to whatever called
startActivityForResult() to open up QuickSender. Then, we finish().

At this point, all the information about the shortcut is in the hands of
Android (or, more accurately, the home screen application), which can add
the icon to the home screen.

Using the Shortcuts

To create a custom shortcut using QuickSender, long-tap on the background
of the home screen to bring up the customization options:

Figure 74. The home screen customization options list

Choose Shortcuts, and scroll down to find QuickSender in the list:

350

Introspection and Integration

Figure 75. The available types of shortcuts

Click the QuickSender entry, which will bring up our activity with the form
to define what to send:

351

Introspection and Integration

Figure 76. The QuickSender configuration activity

Fill in the name, either the subject or body, and optionally the address.
Then, click the Create Shortcut button, and you will find your shortcut
sitting on your home screen:

352

Introspection and Integration

Figure 77. The QuickSender-defined shortcut, labeled Shortcut

If you launch that shortcut, and if there is more than one application on the
device set up to handle ACTION_SEND, Android will bring up a special chooser,
to allow you to not only pick how to send the message, but optionally make
that method the default for all future requests:

353

Introspection and Integration

Figure 78. The ACTION_SEND request, as triggered by the shortcut

Depending on what you choose, of course, will dictate how the message
actually gets sent.

Your Own Private URL

You may have noticed that Android supports a market: URL scheme. Web
pages can use such URLs so that, if they are viewed on an Android device's
browser, the user can be transported to an Android Market page, perhaps
for a specific app or a list of apps for a publisher.

Fortunately, that mechanism is not limited to Android's code – you can get
control for various other types of links as well. You do this by adding certain
entries to an activity's <intent-filter> for an ACTION_VIEW Intent.

Manifest Modifications

First, any <intent-filter> designed to respond to browser links will need to
have a <category> element with a name of

354

Introspection and Integration

android.intent.category.BROWSABLE. Just as the LAUNCHER category indicates
an activity that should get an icon in the launcher, the BROWSABLE category
indicates an activity that wishes to respond to browser links.

You will then need to further refine which links you wish to respond to, via
a <data> element. This lets you describe the URL and/or MIME type that
you wish to respond to. For example, here is the AndroidManifest.xml file
from the Introspection/URLHandler project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.urlhandler" android:versionCode="1"
android:versionName="1.0">
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="URLHandler" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 <data android:mimeType="application/pdf"/>
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 <data android:scheme="http" android:host="www.this-so-does-not-
exist.com"/>
 </intent-filter>
 <intent-filter>
 <action android:name="com.commonsware.android.MY_ACTION"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

Here, we have four <intent-filter> elements for our one activity:

1. The first is a standard "put an icon for me in the launcher, please"
filter, with the LAUNCHABLE category

355

Introspection and Integration

2. The second claims that we handle PDF files (MIME type of
application/pdf), and that we will respond to browser links
(BROWSABLE category)

3. The third claims that we will handle any HTTP request (scheme of
"http") for a certain Web site (host of "www.this-so-does-not-
exist.com"), and that we will respond to browser links (BROWSABLE
category)

4. The last is a custom action, for which we will generate a URL that
Android will honor, and that we will respond to browser links
(BROWSABLE category)

Note that the last one also requires the DEFAULT category in order to work.

Creating a Custom URL

Responding to MIME types makes complete sense...if we implement
something designed to handle such a MIME type.

Responding to certain schemes, hosts, paths, or file extensions is certainly
usable, but other than perhaps the file extension approach, it makes your
application a bit fragile. If the site changes domain names (even a sub-
domain) or reorganizes its site with different URL structures, your code will
break.

If the goal is simply for you to be able to trigger your own application from
your own Web pages, though, the safest approach is to use an intent: URL.
These can be generated from an Intent object by calling
toUri(Intent.URI_INTENT_SCHEME) on a properly-configured Intent, then
calling toString() on the resulting Uri.

For example, the intent: URL for the fourth <intent-filter> from above is:

intent:#Intent;action=com.commonsware.android.MY_ACTION;end

This is not an official URL scheme, any more than market: is, but it works
for Android devices. When the Android built-in Browser encounters this

356

Introspection and Integration

URL, it will create an Intent out of the URL-serialized form and call
startActivity() on it, thereby starting your activity.

Reacting to the Link

Your activity can then examine the Intent that launched it to determine
what to do. In particular, you will probably be interested in the Uri
corresponding to the link – this is available via the getData() method. For
example, here is the URLHandler activity for this sample project:

package com.commonsware.android.urlhandler;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;

public class URLHandler extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView uri=(TextView)findViewById(R.id.uri);

 if (Intent.ACTION_MAIN.equals(getIntent().getAction())) {
 String intentUri=(new Intent("com.commonsware.android.MY_ACTION"))
 .toUri(Intent.URI_INTENT_SCHEME)
 .toString();

 uri.setText(intentUri);
 Log.w("URLHandler", intentUri);
 }
 else {
 Uri data=getIntent().getData();

 if (data==null) {
 uri.setText("Got com.commonsware.android.MY_ACTION Intent");
 }
 else {
 uri.setText(getIntent().getData().toString());
 }
 }
 }

 public void visitSample(View v) {

357

Introspection and Integration

 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse("http://commonsware.com/sample")));
 }
}

This activity's layout has a TextView (uri) for showing a Uri and a Button to
launch a page of links, found on the CommonsWare site
(http://commonsware.com/sample). The Button is wired to call visitSample(),
which just calls startActivity() on the aforementioned URL to display it in
the Browser.

When the activity starts up, though, it first loads up the TextView. What
goes in there depends on how the activity was launched:

• If it was launched via the launcher (e.g., the action is MAIN), then we
display in the TextView the intent: URL shown in the previous
section, generated from an Intent object designed to trigger our
fourth <intent-filter>. This also gets dumped to LogCat, and is
how the author got this URL in the first place to put on the sample
Web page of links.

• If it was not launched via the launcher, it was launched from a Web
link. If the Uri from the launching Intent is null, though, that
means the activity was launched via the custom intent: URL (which
only has an action string), so we put a message in the TextView to
match.

• Otherwise, the Uri from the launching Intent will have something
we can use to process the link request. For the PDF file, it will be
the local path to the downloaded PDF, so we can open it. For the
www.this-so-does-not-exist.com URL, it will be the URL itself, so we
can process it our own way.

Note that for the PDF case, clicking the PDF link in the Browser will
download the file in the background, with a Notification indicating when it
is complete. Tapping on the entry in the notification drawer will then
trigger the URLHandler activity.

Also, bear in mind that the device may have multiple handlers for some
URLs. For example, a device with a real PDF viewer will give the user a

358

Introspection and Integration

choice of whether to launch the downloaded PDF in the real view or
URLHandler.

Homing Beacons for Intents

If you are encountering problems with Intent resolution – you create an
Intent for something and try starting an Activity or Service with it, and it
does not work – you can add the FLAG_DEBUG_LOG_RESOLUTION flag to the
Intent. This will dump information to LogCat about how the Intent
resolution occurred, so you can better diagnose what might be going
wrong.

359

CHAPTER 19

Working With SMS

SMS and Android is a frustrating experience.

While Android devices have reasonable SMS capability, much of that is out
of the reach of developers following the official SDK. For various reasons –
some defensible, others less so – there is no officially-supported way to
create an SMS client, receive SMS data messages on specified ports, and so
forth. Eventually, perhaps, this situation will be improved.

This chapter starts with the one thing you can do – send an SMS, either
directly or by invoking the user's choice of SMS client. The chapter ends
with a discussion of the various unsanctioned aspects of SMS that you may
see other developers using, and why you may not want to follow suit.

Sending Out an SOS, Give or Take a Letter

While much of Android's SMS capabilities are not in the SDK, sending an
SMS is. You have two major choices for doing this:

1. Invoke the user's choice of SMS client application, so they can
compose a message, track its progress, and so forth using that tool

2. Send the SMS directly yourself, bypassing any existing client

Which of these is best for you depends on what your desired user
experience is. If you are composing the message totally within your

361

Working With SMS

application, you may want to just send it. However, as we will see, that
comes at a price: an extra permission.

Sending Via the SMS Client

Sending an SMS via the user's choice of SMS client is very similar to the use
of ACTION_SEND described in the previous chapter. You craft an appropriate
Intent, then call startActivity() on that Intent to bring up an SMS client
(or allow the user to choose between clients).

The Intent differs a bit from the ACTION_SEND example:

• You use ACTION_SENDTO, rather than ACTION_SEND

• Your Uri needs to begin with smsto:, followed by the mobile number
you want to send the message to

• Your text message goes in an sms_body extra on the Intent

For example, here is a snippet of code from the SMS/Sender sample project:

Intent sms=new Intent(Intent.ACTION_SENDTO,
 Uri.parse("smsto:"+c.getString(2)));

sms.putExtra("sms_body", msg.getText().toString());

startActivity(sms);

Here, our phone number is coming out of the third column of a Cursor, and
the text message is coming from an EditText – more on how this works later
in this section, when we review the Sender sample more closely.

Sending SMS Directly

If you wish to bypass the UI and send an SMS directly, you can do so
through the SmsManager class, in the android.telephony package. Unlike most
Android classes ending in Manager, you obtain an SmsManager via a static
getDefault() method on the SmsManager class. You can then call
sendTextMessage(), supplying:

362

Working With SMS

• The phone number to send the text message to

• The "service center" address – leave this null unless you know what
you are doing

• The actual text message

• A pair of PendingIntent objects to be executed when the SMS has
been sent and delivered, respectively

If you are concerned that your message may be too long, use
divideMessage() on SmsManager to take your message and split it into
individual pieces. Then, you can use sendMultipartTextMessage() to send the
entire ArrayList of message pieces.

For this to work, your application needs to hold the SEND_SMS permission,
via a child element of your <manifest> element in your AndroidManifest.xml
file:

<uses-permission android:name="android.permission.SEND_SMS" />

For example, here is code from Sender that uses SmsManager to send the same
message that the previous section sent via the user's choice of SMS client:

SmsManager
 .getDefault()
 .sendTextMessage(c.getString(2), null,
 msg.getText().toString(),
 null, null);

Inside the Sender Sample

The Sender example application is fairly straightforward, given the
aforementioned techniques.

The manifest has both the SEND_SMS and READ_CONTACTS permissions, because
we want to allow the user to pick a mobile phone number from their list of
contacts, rather than type one in by hand:

363

Working With SMS

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sms.sender"
 android:installLocation="preferExternal"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.SEND_SMS" />
 <uses-sdk
 android:minSdkVersion="4"
 android:targetSdkVersion="8"
 />
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name="Sender"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

If you noticed the android:installLocation attribute in the root element,
that is to allow this application to be installed onto external storage, such as
an SD card – this will be covered in greater detail in an upcoming chapter.

The layout has a Spinner (for a drop-down of available mobile phone
numbers), a pair of RadioButton widgets (to indicate which way to send the
message), an EditText (for the text message), and a "Send" Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
 <RadioGroup android:id="@+id/means"
 android:orientation="horizontal"

364

Working With SMS

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <RadioButton android:id="@+id/client"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:checked="true"
 android:text="Via Client" />
 <RadioButton android:id="@+id/direct"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Direct" />
 </RadioGroup>
 <EditText
 android:id="@+id/msg"
 android:layout_width="fill_parent"
 android:layout_height="0px"
 android:layout_weight="1"
 android:singleLine="false"
 android:gravity="top|left"
 />
 <Button
 android:id="@+id/send"
 android:text="Send!"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:onClick="sendTheMessage"
 />
</LinearLayout>

Sender uses the same technique for obtaining mobile phone numbers from
our contacts as is seen in the chapter on contacts. To support Android 1.x
and Android 2.x devices, we implement an abstract class and two concrete
implementations, one for the old API and one for the new. The abstract
class then has a static method to get at an instance suitable for the device
the code is running on:

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.os.Build;
import android.widget.SpinnerAdapter;

abstract class ContactsAdapterBridge {
 abstract SpinnerAdapter buildPhonesAdapter(Activity a);

 public static final ContactsAdapterBridge INSTANCE=buildBridge();

 private static ContactsAdapterBridge buildBridge() {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

365

Working With SMS

 if (sdk<5) {
 return(new OldContactsAdapterBridge());
 }

 return(new NewContactsAdapterBridge());
 }
}

The Android 2.x edition uses ContactsContract to find just the mobile
numbers:

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.database.Cursor;
import android.provider.ContactsContract.Contacts;
import android.provider.ContactsContract.CommonDataKinds.Phone;
import android.widget.SpinnerAdapter;
import android.widget.SimpleCursorAdapter;

class NewContactsAdapterBridge extends ContactsAdapterBridge {
 SpinnerAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts._ID,
 Contacts.DISPLAY_NAME,
 Phone.NUMBER
 };
 String[] ARGS={String.valueOf(Phone.TYPE_MOBILE)};
 Cursor c=a.managedQuery(Phone.CONTENT_URI,
 PROJECTION, Phone.TYPE+"=?",
 ARGS, Contacts.DISPLAY_NAME);

 SimpleCursorAdapter adapter=new SimpleCursorAdapter(a,
 android.R.layout.simple_spinner_item,
 c,
 new String[] {
 Contacts.DISPLAY_NAME
 },
 new int[] {
 android.R.id.text1
 });

 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);

 return(adapter);
 }
}

...while the Android 1.x edition uses the older Contacts provider to find the
mobile numbers:

366

Working With SMS

package com.commonsware.android.sms.sender;

import android.app.Activity;
import android.database.Cursor;
import android.provider.Contacts;
import android.widget.SpinnerAdapter;
import android.widget.SimpleCursorAdapter;

class OldContactsAdapterBridge extends ContactsAdapterBridge {
 SpinnerAdapter buildPhonesAdapter(Activity a) {
 String[] PROJECTION=new String[] { Contacts.Phones._ID,
 Contacts.Phones.NAME,
 Contacts.Phones.NUMBER
 };
 String[] ARGS={String.valueOf(Contacts.Phones.TYPE_MOBILE)};
 Cursor c=a.managedQuery(Contacts.Phones.CONTENT_URI,
 PROJECTION,
 Contacts.Phones.TYPE+"=?", ARGS,
 Contacts.Phones.NAME);

 SimpleCursorAdapter adapter=new SimpleCursorAdapter(a,
 android.R.layout.simple_spinner_item,
 c,
 new String[] {
 Contacts.Phones.NAME
 },
 new int[] {
 android.R.id.text1
 });

 adapter.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);

 return(adapter);
 }
}

For more details on how those providers work, please see the chapter on
contacts.

The activity then loads up the Spinner with the appropriate list of contacts.
When the user taps the Send button, the sendTheMessage() method is
invoked (courtesy of the android:onClick attribute in the layout). That
method looks at the radio buttons, sees which one is selected, and routes
the text message accordingly:

package com.commonsware.android.sms.sender;

import android.app.Activity;

367

Working With SMS

import android.app.PendingIntent;
import android.content.Intent;
import android.database.Cursor;
import android.net.Uri;
import android.os.Bundle;
import android.telephony.SmsManager;
import android.view.View;
import android.widget.EditText;
import android.widget.RadioGroup;
import android.widget.Spinner;

public class Sender extends Activity {
 Spinner contacts=null;
 RadioGroup means=null;
 EditText msg=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 contacts=(Spinner)findViewById(R.id.spinner);

 contacts.setAdapter(ContactsAdapterBridge
 .INSTANCE
 .buildPhonesAdapter(this));

 means=(RadioGroup)findViewById(R.id.means);
 msg=(EditText)findViewById(R.id.msg);
 }

 public void sendTheMessage(View v) {
 Cursor c=(Cursor)contacts.getSelectedItem();

 if (means.getCheckedRadioButtonId()==R.id.client) {
 Intent sms=new Intent(Intent.ACTION_SENDTO,
 Uri.parse("smsto:"+c.getString(2)));

 sms.putExtra("sms_body", msg.getText().toString());

 startActivity(sms);
 }
 else {
 SmsManager
 .getDefault()
 .sendTextMessage(c.getString(2), null,
 msg.getText().toString(),
 null, null);
 }
 }
}

368

Working With SMS

You Can't Get There From Here

The Android SDK is vast. It, however, does not cover everything. Many
Android capabilities are not part of the SDK, though they can be accessed
via indirect means. Doing so is dangerous, for two reasons:

1. Things not in the SDK and not part of the Compatibility Definition
Document might well be replaced by device manufacturers. For
example, even though the Android open source project has a stock
SMS client, device manufacturers could replace it. Your application,
therefore, may work on some devices but not others.

2. Things not in the SDK are subject to modification by the core
Android team, and if you fail to react to those modifications (or
cannot react, as the case may be), your application will fail on future
versions of Android.

Developers are strongly encouraged to stick within the limits of the SDK.
That being said, let us take a look at a pair of SMS capabilities that are
beyond the SDK, still get used by developers, and what risks you will
encounter by mirroring their techniques.

Receiving SMS

It is possible for an application to receive an incoming SMS message...if you
are willing to listen on the undocumented
android.provider.Telephony.SMS_RECEIVED broadcast Intent. That is sent by
Android whenever an SMS arrives, and it is up to an application to
implement a BroadcastReceiver to respond to that Intent and do something
with the message. The Android open source project has such an application
– Messaging – and device manufacturers can replace it with something else.

The BroadcastReceiver can then turn around and use the SmsMessage class, in
the android.telephony package, to get at the message itself, through the
following undocumented recipe:

369

http://www.androidguys.com/2009/12/14/code-pollution-reaching-past-the-sdk/
http://android-developers.blogspot.com/2010/05/be-careful-with-content-providers.html
http://source.android.com/compatibility/index.html
http://source.android.com/compatibility/index.html

Working With SMS

• Given the received Intent (intent), call
intent.getExtras().get("pdus") to get an Object[] representing the
raw portions of the message

• For each of those "pdus" objects, call SmsMessage.createFromPdu() to
convert the Object into an SmsMessage – though to make this work,
you need to cast the Object to a byte[] as part of passing it to the
createFromPdu() static method

The resulting SmsMessage object gets you access to the text of the message,
the sending phone number, etc.

The SMS_RECEIVED broadcast Intent is broadcast a bit differently than most
others in Android. It is an "ordered broadcast", meaning the Intent will be
delivered to one BroadcastReceiver at a time. This has two impacts of note:

1. In your receiver's <intent-filter> element, you can have an
android:priority attribute. Higher priority values get access to the
broadcast Intent earlier than will lower priority values. The
standard Messaging application has the default priority
(undocumented, appears to be 0 or 1), so you can arrange to get
access to the SMS before the application does.

2. Your BroadcastReceiver can call abortBroadcast() on itself to prevent
the Intent from being broadcast to other receivers of lower priority.
In effect, this causes your receiver to consume the SMS – the
Messaging application will not receive it.

However, just because the Messaging application has the default priority
does not mean all SMS clients will, and so you cannot reliably intercept
SMS messages this way. That, plus the undocumented nature of all of this,
means that applications you write to receive SMS messages are likely to be
fragile in production, breaking on various devices due to device
manufacturer-installed apps, third-party apps, or changes to Android itself
in the future.

370

Working With SMS

Working With Existing Messages

When perusing the Internet, you will find various blog posts and such
referring to the SMS inbox ContentProvider, represented by the
content://sms/inbox Uri.

This ContentProvider is undocumented and is not part of the Android SDK,
because it is not part of the Android OS.

Rather, this ContentProvider is used by the aforementioned Messaging
application, for storing saved SMS messages. And, as noted, this application
may or may not exist on any given Android device. If a device manufacturer
replaces Messaging with their own application, there may be nothing on
that device that responds to that Uri, or the schemas may be totally
different. Plus, Android may well change or even remove this
ContentProvider in future editions of Android.

For all those reasons, developers should not be relying upon this
ContentProvider.

371

CHAPTER 20

More on the Manifest

If you come to this book from The Busy Coder's Guide to Android
Development, you will already have done a fair number of things with your
project's AndroidManifest.xml file:

• Used it to define components, like activities, services, content
providers, and manifest-registered broadcast receivers

• Used it to declare permissions your application requires, or possibly
to define permissions that other applications need in order to
integrate with your application

• Used it to define what SDK level, screen sizes, and other device
capabilities your application requires

In this chapter, we continue looking at things the manifest offers you,
starting with a discussion of controlling where your application gets
installed on a device, and wrapping up with a bit of information about
activity aliases.

Just Looking For Some Elbow Room

On October 22, 2008, the HTC Dream was released, under the moniker of
"T-Mobile G1", as the first production Android device.

Complaints about the lack of available storage space for applications
probably started on October 23rd.

373

http://en.wikipedia.org/wiki/HTC_Dream

More on the Manifest

The Dream, while a solid first Android device, offered only 70MB of on-
board flash for application storage. This storage had to include:

• The Android application (APK) file

• Any local files or databases the application created, particularly
those deemed unsafe to put on the SD card (e.g., privacy)

• Extra copies of some portions of the APK file, such as the compiled
Dalvik bytecode, which get unpacked on installation for speed of
access

It would not take long for a user to fill up 70MB of space, then have to start
removing some applications to be able to try others.

Users and developers alike could not quite understand why the Dream had
so little space compared to the available iPhone models, and they begged to
at least allow applications to install to the SD card, where there would be
more room. This, however, was not easy to implement in a secure fashion,
and it took until Android 2.2 for the feature to become officially available.

Now that it is available, though, let's see how to use it.

Configuring Your App to Reside on External Storage

Indicating to Android that your application can reside on the SD card is
easy...and necessary, if you want the feature. If you do not tell Android this
is allowed, Android will not install your application to the SD card, nor
allow the user to move the application to the SD card. Hence, once Android
2.2 becomes available on a substantial number of devices, you will be
pressured by your user base to enable this feature, more so if your
application is large.

All you need to do is add an android:installLocation attribute to the root
<manifest> element of your AndroidManifest.xml file. There are three
possible values for this attribute:

374

More on the Manifest

1. internalOnly, the default, meaning that the application cannot be
installed to the SD card

2. preferExternal, meaning the application would like to be installed
on the SD card

3. auto, meaning the application can be installed in either location

If you use preferExternal, then your application will be initially installed on
the SD card in most cases. Android reserves the right to still install your
application on internal storage in cases where that makes too much sense,
such as there not being an SD card installed at the time.

If you use auto, then Android will make the decision as to the installation
location, based on a variety of factors. In effect, this means that auto and
preferExternal are functionally very similar – all you are doing with
preferExternal is giving Android a hint as to your desired installation
destination.

Because Android decides where your application is initially installed, and
because the user has the option to move your application between the SD
card and on-board flash, you cannot assume any given installation spot.
The exception is if you choose internalOnly, in which case Android will
honor your request, at the potential cost of not allowing the installation at
all if there is no more room in on-board flash.

For example, here is the manifest from the SMS/Sender application, profiled
in another chapter, showing the use of preferExternal:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.sms.sender"
 android:installLocation="preferExternal"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.SEND_SMS" />
 <uses-sdk
 android:minSdkVersion="4"
 android:targetSdkVersion="8"
 />
 <supports-screens

375

More on the Manifest

 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="false"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name="Sender"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Since this feature only became available in Android 2.2, to support older
versions of Android, just have your build tools target API level 8 (e.g.,
target=android-8 in default.properties for those of you building via Ant)
while having your minSdkVersion attribute in the manifest state the lowest
Android version your application supports overall. Older versions of
Android will ignore the android:installLocation attribute. So, for example,
in the above manifest, the Sender application supports API level 4 and above
(Android 1.6 and newer), but still can use
android:installLocation="preferExternal", because the build tools are
targeting API level 8.

What the User Sees

For an application that wound up on the SD card, courtesy of your choice of
preferExternal or auto, the user will have an option to move it to the
phone's internal storage. This can be done by choosing the application in
the Manage Applications list in the Settings application, then clicking the
"Move to phone" button:

376

More on the Manifest

Figure 79. An application, installed on the SD card

Conversely, if your application is installed in on-board flash, and it is
movable to external storage, they will be given that option:

377

More on the Manifest

Figure 80. An application, installed on the on-board flash but movable to the
SD card

What the Pirate Sees

Ideally, the pirate sees nothing at all.

One of the major concerns with installing applications to the SD card is
that the SD card is usually formatted FAT32 (vfat), offering no protection
from prying eyes. The concern was that pirates could then just pluck the
APK file off the SD card and distribute it, even for paid apps from the
Android Market.

Apparently, they solved this problem.

To quote the Android developer documentation:

The unique container in which your application is stored is
encrypted with a randomly generated key that can be

378

http://developer.android.com/guide/appendix/install-location.html

More on the Manifest

decrypted only by the device that originally installed it. Thus,
an application installed on an SD card works for only one
device.

Moreover, this "unique container" is not normally mounted when the user
mounts external storage on their host machine. The user mounts
/mnt/sdcard; the "unique container" is /mnt/asec.

What Your App Sees...When the Card is Removed

So far, this has all seemed great for users and developers. Developers need
to add a single attribute to the manifest, and Android 2.2 users gain the
flexibility of where the app gets stored.

Alas, there is a problem, and it is a big one: either the host PC or the device
can have access to the SD card, but not both. As a result, if the user makes
the SD card available to the host PC, by plugging in the USB cable and
mounting the SD card as a drive via a Notification or other means, that SD
card becomes unavailable for running applications.

So, what happens?

• First, your application is terminated forcibly, as if your process was
being closed due to low memory. Notably, your activities and
services will not be called with onDestroy(), and instance state saved
via onSaveInstanceState() is lost.

• Second, your application is unhooked from the system. Users will
not see your application in the launcher, your AlarmManager alarms
will be canceled, and so on.

• When the user makes the SD card available to the phone again,
your application will be hooked back into the system and will be
once again available to the user (for example, your icon will
reappear in the launcher)

The upshot: if your application is simply a collection of activities, otherwise
not terribly connected to Android, the impact on your application is no

379

More on the Manifest

different than if the user reboots the phone, kills your process via a so-
called "task killer" application, etc. If, however, you are doing more than
that, the impacts may be more dramatic.

Perhaps the most dramatic impact, from a user's standpoint, will be if your
application implements app widgets. If the user has your app widget on her
home screen, that app widget will be removed when the SD card becomes
unavailable to the phone. Worse, your app widget cannot be re-added to
the home screen until the phone is rebooted (a limitation that hopefully
will be lifted sometime after Android 2.2).

The user is warned about this happening, at least in general:

Figure 81. Warning when unmounting the SD card

Two broadcast Intents are sent out related to this:

1. ACTION_EXTERNAL_APPLICATIONS_UNAVAILABLE, when the SD card (and
applications installed upon it) become unavailable

380

More on the Manifest

2. ACTION_EXTERNAL_APPLICATIONS_AVAILABLE, when the SD card and its
applications return to normal

Note that the documentation is unclear as to whether your own
application, that had been on the SD card, can receive
ACTION_EXTERNAL_APPLICATIONS_AVAILABLE once the SD card is back in action.
There is an outstanding issue on this topic in the Android issue tracker.

Also note that all of these problems hold true for longer if the user
physically removes the SD card from the device. If, for example, they
replace the card with a different one – such as one with more space – your
application will be largely lost. They will see a note in their applications list
for your application, but the icon will indicate it is on an SD card, and the
only thing they can do is uninstall it:

Figure 82. The Manage Applications list, with an application shown from a
removed SD card

381

http://code.google.com/p/android/issues/detail?id=8485

More on the Manifest

Choosing Whether to Support External Storage

Given the huge problem from the previous section, the question of whether
or not your application should support external storage is far from clear.

As the Android developer documentation states:

Large games are more commonly the types of applications
that should allow installation on external storage, because
games don't typically provide additional services when
inactive. When external storage becomes unavailable and a
game process is killed, there should be no visible effect when
the storage becomes available again and the user restarts the
game (assuming that the game properly saved its state
during the normal Activity lifecycle).

Conversely, if your application implements any of the following features, it
may be best to not support external storage:

• Polling of Web services or other Internet resources via a scheduled
alarm

• Account managers and their corresponding sync adapters, for
custom sources of contact data

• App widgets, as noted in the previous section

• Device administration extensions

• Live folders

• Custom soft keyboards ("input method engines")

• Live wallpapers

• Custom search providers

382

http://developer.android.com/guide/appendix/install-location.html#Should

More on the Manifest

Using an Alias

As was mentioned in the chapter on integration, you can use the
PackageManager class to enable and disable components in your application.
This works at the component level, meaning you can enable and disable
activities, services, content providers, and broadcast receivers. It does not
support enabling or disabling individual <intent-filter> stanzas from a
given component, though.

Why might you want to do this?

• Perhaps you have an activity you want to be available for use, but
not necessarily available in the launcher, depending on user
configuration or unlocking "pro" features or something

• Perhaps you want to add browser support for certain MIME types,
but only if other third-party applications are not already installed
on the device

While you cannot control individual <intent-filter> stanzas directly, you
can have a similar effect via an activity alias.

An activity alias is another manifest element – <activity-alias> – that
provides an alternative set of filters or other component settings for an
already-defined activity. For example, here is the AndroidManifest.xml file
from the Manifest/Alias project:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.alias" android:versionCode="1"
android:versionName="1.0">
 <supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <activity android:name="AliasActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity-alias android:name="ThisIsTheAlias"
android:label="@string/app_name2" android:targetActivity="AliasActivity">
 <intent-filter>

383

More on the Manifest

 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity-alias>
 </application>
</manifest>

Here, we have one <activity> element, with an <intent-filter> to put the
activity in the launcher. We also have an <activity-alias> element...which
puts a second icon in the launcher for the same activity implementation.

An activity alias can be enabled and disabled independently of its
underlying activity. Hence, you can have one activity class have several
independent sets of intent filters and can choose which of those sets are
enabled at any point in time.

For testing purposes, you can also enable and disable these from the
command line. Use the adb shell pm disable command to disable a
component:

adb shell pm disable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

...and the corresponding adb shell pm enable command to enable a
component:

adb shell pm enable
com.commonsware.android.alias/com.commonsware.android.alias.ThisIsTheAlias

In each case, you supply the package of the application
(com.commonsware.android.alias) and the class of the component to enable
or disable (com.commonsware.android.alias.ThisIsTheAlias), separated by a
slash.

384

CHAPTER 21

Device Configuration

This chapter is a bit esoteric for most developers. It covers various places
where Android has configuration-style data and how one can modify it.
This mostly should be of interest to teams responsible for configuring
devices en masse, such as an enterprise or consulting teams supporting an
enterprise.

Some of what is written here, notably the portions involving root access,
have not been tested by the author. This chapter is the result of a research
project, and so while the techniques have been described online as being
used, the author is not presently able to confirm their accuracy.

Also, note that this material may change significantly between Android
releases, and errors may result in permanent damage to a device (e.g.,
somehow leave it in a state where it cannot boot and cannot reset to factory
settings). If you are concerned about these things, do not bother with this
chapter.

However, the rumor that reading this chapter causes hair loss in men is
completely unsubstantiated.

We start by enumerating various places where ordinary Android
applications can modify the device configuration. Then, we look at some
other places where configuration data gets stored that regular Android
applications cannot access, but that device manufacturer-written apps

385

Device Configuration

might. We wrap by a brief discussion of the issues involved in automating
some of this configuration, such as an enterprise deployment of hundreds
or thousands of Android devices.

The Happy Shiny Way

Certainly, some portions of the configuration of a device are available for
applications to manipulate without special privileges or permissions. There
are a few places in the Android SDK where you can modify settings; some of
these are described below.

Settings.System

As described in the chapter on system services, there is a Settings.System
class in the android.provider package that allows you to configure the
device. These range from whether the password is shown when being typed
in on a password-defined EditText to whether "airplane mode" is on (i.e.,
whether all radios are disabled, perhaps in compliance with an airline's
regulations).

You can retrieve these settings via static getter methods on Settings.System
(e.g., getInt(), getFloat()), keyed by public static data members on
Settings.System itself. There are a similar set of setters to modify these
settings. There are methods to get and set a Configuration object, which
allows one to get or set several settings at once, but it does not appear that
Configuration supports the full range of possible settings. Hence, in all
likelih0od, if you wish to automate manipulating these settings, you will
want to create an application to do that...or apply some less public
techniques described below.

WifiManager

It may be that you want to pre-populate a WiFi network on a device, so it is
ready to use with an office wireless network without manual on-screen
configuration. To do that, you can use the WifiManager class, obtained by

386

Device Configuration

calling Context.getSystemService(WIFI_SERVICE) and downcasting the result
to WifiManager.

WifiManager has an addNetwork() method that takes a WifiConfiguration
object as a parameter. The WifiConfiguration object has numerous fields for
describing the network, including the SSID, the pre-shared key for WPA-
PSK, and so on. This method returns an integer ID for the network being
added. Initially, the network is marked as disabled, so most likely you will
want to immediately follow the addNetwork() call with an enableNetwork()
call, supplying the network ID from addNetwork() and true to enable the
network.

The Dark Arts

While you have control over a fair number of settings this way, there are
still others that appear to be unreachable through the standard SDK.
Modifying these areas of the device configuration require techniques that
are not recommended if you can at all avoid them. Contributions to the
Android open source project are welcome, so you might consider writing
something that will allow for device configuration without having to use
undocumented risky steps, while maintaining the security that the Android
project has established.

Settings.Secure

As described in the chapter on system services, prior to Android 1.5, there
were more settings in Settings.System. However, due to perceived abuses
by third-party developers, a number of them were moved into
Settings.Secure. While you can read these settings as before (via static
getter methods), attempts to use the setter methods will result in errors.

If you wish to populate the Settings.Secure values, you have two choices:

1. Create an Android application that has the rights to use those setter
methods. While the exact rules here are unclear, it is possible that
an application signed with the same production signing key as the

387

Device Configuration

firmware will have such rights. Hardware manufacturers, therefore,
should be in position to create such an application.

2. Modify the underlying SQLite database that holds the data. That
database, as of Android 1.5, is
/data/data/com.android.providers.settings/databases/settings.db,
and the secure settings are stored in a table named secure.
However, to either execute SQL statements against this database, or
to replace the database outright, you would need root permissions.
Many devices can be "rooted", though for the publicly documented
hacks, rooting is a permanent process. Hardware manufacturers
may know if there is a way on their devices to temporarily have root
privileges, long enough to run some scripts.

System Properties

At an even lower level are so-called system properties. You can see these by
running adb shell getprop with a device or emulator attached. This
contains everything from the URLs from which to obtain legal agreements
to display on intial sign-on to the location where application-not-
responding (ANR) traces are dumped.

The only known way to modify these settings is to actually modify the init
script (init.rc) for Android itself, adding in setprop commands to override
the system default values. For example, to hardwire in some DNS resolvers,
rather than rely on DHCP, you could add statements like setprop
net.dns1 ... and setprop net.dns2 ... (where the ... are replaced with
dot-notation IP addresses for the servers).

Bear in mind that init.rc might well be replaced when a device is upgraded
to newer versions of Android, so making changes this way may not be
reliable.

388

Device Configuration

Automation, Both Shiny and Dark

If you are trying to modify a single device, and you can stick to SDK-
supported changes, either just use the built-in Settings screens or write a
standard Android application of your own to modify those settings.

Modifying settings on a bunch of devices this way, though, can be tedious.
You would need to install the application, perhaps off of an internet office
Web server, and that would require entering a URL in on the Browser
application to download the APK. After a few installation screens, you
could then run the application, then uninstall it. All of that cannot readily
be automated, and it still does not cover the situations where you wish to
modify settings beyond those supported by the SDK.

For bulk work, it may be simpler, albeit substantially more dangerous, to
automate this process via adb commands. For example, you could create a
SQL script that updates the Settings.System (system table) and
Settings.Secure (secure table) and apply that script to the aforementioned
settings.db via adb shell sqlite3. There should be some similar means to
update the WiFi networks, though where that data is stored is not obvious.
This, of course, requires root access.

389

CHAPTER 22

Push Notifications with C2DM

C2DM – short for "cloud to device messaging" – is Google's new framework
for asynchronously delivering notifications from the Internet ("cloud") to
Android devices. Rather than the device waking up and polling on a regular
basis at the behest of your app, your app can register for notifications and
then wait for them to arrive. C2DM is engineered with power savings in
mind, aiming to minimize the length of time 3G radios are exchanging data.

The proper use of C2DM means better battery life for your users. It can also
reduce the amount of time your code runs, which helps you stay out of sight
of users looking to pounce on background tasks and eradicate them with
task killers.

C2DM is beta technology as of the time of this writing. It is available on an
invitation basis only and is likely to undergo some revisions before it is
widely available. Hence, more so than most chapters in this book, please
bear in mind that the material presented here may well have changed by
the time you get around to using C2DM. Also,note that C2DM is only
available on Android 2.2 and higher. And, if you intend to use the Android
2.2 emulator, you will need to register a Google account on the emulator,
via the Settings application.

391

http://code.google.com/android/c2dm/index.html

Push Notifications with C2DM

Pieces of Push

C2DM has a lot of parts that need to connect together to allow your servers
to asynchronously deliver messages to your Android applications.

The Account

You will need a Google account to represent the server from which the
messages are delivered. The Android client application will register for
messages from this account, and the server will send messages to Google
for delivery using this account.

This account can be a pure Google account (e.g., @gmail.com) or one that
is set up for your own domain using Google Apps. However, it is probably a
good idea to use an account that you will not be using for anything else or
likely to need to change. Considering that this account name will be "baked
into" your Android application (in simple implementations, anyway),
changing it may not be that easy.

During the C2DM beta period, this account is the one you will use on the
C2DM signup form.

The Android App

Obviously, there is your Android app – without this, having a chapter on
C2DM in this book would be rather silly. Your Android application will
need at least one new class, some other additional Java code, and some
manifest modifications to be able to participate in C2DM.

Your Server

Something has to send messages to the Android apps by way of Google.
This is generally called "the server application", though technically it does
not need to run on a server. Whatever it is, it will have a reason to send
data asynchronously to your Android applications, and it will need to have

392

http://code.google.com/android/c2dm/signup.html

Push Notifications with C2DM

the ability to send HTTP requests to Google's servers to actually send that
data.

Google's Server

Your server is not directly communicating with the Android apps. Instead,
you send the messages to Google, who queues them up and will deliver
them as soon as is practical. That may be nearly immediately, but it may
take some time, particularly depending on how the message is configured
and whether the device is on.

Google's On-Device Code

The reason that Android 2.2 is required is that 2.2 is the first release
containing Google's code for managing its side of the C2DM connection. In
effect, Google's on-device code maintains an open socket with its servers.
Messages, when they arrive at the servers, are delivered over this open
socket.

Google's Client Code

Google has created some client-side code to help you manage your C2DM
registrations and messages, handling a lot of the boilerplate logic for you.
As of the time of this writing, that code is part of the chrome2phone sample
application. Google has indicated that it will be pulling that code out into a
separate library, and this chapter demonstrates the use of that code.

Getting From Here to There

So, how does this all work?

First, your Android application will tell Google's on-device code that it
wants to register for messages from your Google account. Using the Google
C2DM client code, this is a single call to a static method on a class – under

393

http://code.google.com/p/chrometophone/
http://code.google.com/p/chrometophone/

Push Notifications with C2DM

the covers, it packages the information in an Intent and sends it to the
Google on-device code.

When the registration occurs, you will be notified by a broadcast Intent,
containing a registration ID. Google's C2DM client code will route that to
an IntentService, where you can do whatever is necessary. A typical thing to
do would be to make a Web service call to your server, supplying the
registration ID, so the server knows how to send messages to your
application on this device.

At this point, given the registration ID, the server is able to send messages
to your app. It will do this by first getting a valid set of authentication
credentials – effectively turning the Google account name and password
into a long-lived authentication token. Then, your server can do an HTTP
POST to the Google C2DM servers, supplying that authentication token,
the registration ID of the app, and whatever data should be passed along.

Once Google's servers receive that POST, your app will receive the message
at the next available opportunity. This could be in a matter of seconds. It
could be in a matter of days, if the user is traveling and has their phone on
"airplane mode". It could be anywhere in between. And, if the user does not
pick up the message within a reasonable period of time, Google may drop
the message.

Assuming the message makes it to the device, it will be routed to you via a
broadcast Intent, perhaps handled by the same IntentService you set up for
registration notices.

Your app can unregister whenever it wishes, to invalidate the registration
ID and stop receiving messages.

Permissions for Push

C2DM uses Android permissions in a somewhat more sophisticated fashion
than do most applications. That sophistication will require you to do a few
things in your manifest above and beyond the norm.

394

Push Notifications with C2DM

First, you will need to request the INTERNET permission. Technically, this is
only required if you are using the Internet (e.g., a Web service) to send the
registration ID to your server. However, that will be a fairly typical pattern.

Next, you will need to request the
com.google.android.c2dm.permission.RECEIVE permission. This allows your
application to receive messages from the C2DM engine that forms the core
of Google's on-device C2DM code.

You also will want to define a custom permission – C2D_MESSAGE, prefixed by
your application's package – and declare that you use that permission. This
will be used to help prevent other applications from spoofing you with fake
C2DM messages.

If you are using the Google C2DM client code, as is shown in the sample
project for this chapter, you will also need to request the WAKE_LOCK
permission, as the C2DM client code uses a WakeLock to help ensure that the
device stays awake long enough for you to handle incoming messages,
much like the WakefulIntentService shown elsewhere in this book.

From the Push/C2DM sample project, here are the permission-related
elements from AndroidManifest.xml corresponding to the preceding points:

 <uses-permission android:name="com.google.android.c2dm.permission.RECEIVE"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>

<supports-screens android:largeScreens="true" android:normalScreens="true"
android:smallScreens="false"/>
 <application android:label="@string/app_name" android:icon="@drawable/cw">

Registering an Interest

Now, let's start taking a closer look at some code, to get C2DM going in an
application. Again, all source code listings are coming from the Push/C2DM
sample project.

395

Push Notifications with C2DM

In a production application, you would probably register for messages from
your server on first run of the app, such as after the user has launched it
from the launcher and clicked through any license agreement you might
have. For the Push/C2DM sample, though, we have you type in your Google
account name in an EditText, then click a Button to perform the
registration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <EditText android:id="@+id/account"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_marginBottom="4dip"
 />
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Register!"
 android:onClick="registerAccount"
 />
</LinearLayout>

Using the Google C2DM client code, all you need to do to register for
messages is call C2DMessaging.register(), supplying a Context (e.g., your
Activity) and the Google account name:

package com.commonsware.android.c2dm;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import com.google.android.c2dm.C2DMessaging;

public class PushEndpointDemo extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void registerAccount(View v) {
 EditText acct=(EditText)findViewById(R.id.account);

 C2DMessaging.register(this, acct.getText().toString());

396

Push Notifications with C2DM

 }
}

To get your registration ID, and to receive messages later on, you will need
to receive the broadcasts sent out by Google's on-device C2DM code. If you
are using Google's C2DM client code, you can do this by implementing a
class named C2DMReceiver, as a subclass of C2DMBaseReceiver:

package com.commonsware.android.c2dm;

import android.content.Context;
import android.content.Intent;
import android.util.Log;
import com.google.android.c2dm.C2DMBaseReceiver;

public class C2DMReceiver extends C2DMBaseReceiver {
 public C2DMReceiver() {
 super("this.is.not@real.biz");
 }

 @Override
 public void onRegistered(Context context, String registrationId) {
 Log.w("C2DMReceiver-onRegistered", registrationId);
 }

 @Override
 public void onUnregistered(Context context) {
 Log.w("C2DMReceiver-onUnregistered", "got here!");
 }

 @Override
 public void onError(Context context, String errorId) {
 Log.w("C2DMReceiver-onError", errorId);
 }

 @Override
 protected void onMessage(Context context, Intent intent) {
 Log.w("C2DMReceiver", intent.getStringExtra("payload"));
 }
}

You must override the onMessage() and onError() methods, as they are
declared abstract in C2DMBaseReceiver. onMessage() will be called when a
message arrives; onError() will be called if there is some problem. Typically,
you will also override onRegistered(), where you will get your registration
ID and can pass that along to your Web service...or just dump it to LogCat,
as shown above. You might also consider overriding onUnregistered(),
which will be called if you call C2DMessaging.unregister() at some point to

397

Push Notifications with C2DM

retract your interest in messages from this Google account. Also,
C2DMBaseReceiver requests that you supply the Google account in the
constructor. The sample application hard-wires in a fake value, because the
real Google account is being supplied via the EditText – your production
code can probably hard-wire in the proper account name. Reportedly, this
is only used for logging purposes at this time.

We will explain a bit more about how you interpret received messages later
in this chapter.

You also need to add a few things to your manifest, above and beyond the
permissions cited in the previous section.

First, you need to add your C2DMReceiver service, just as an ordinary
<service> element, with no <intent-filter> required:

<action android:name="com.google.android.c2dm.intent.RECEIVE"/>

Then, you need to add C2DMBroadcastReceiver, via a <receiver> element, to
your manifest. This class, supplied by the Google C2DM client code, will
receive the C2DM broadcasts and will route them to your C2DMReceiver
class. The <receiver> element is a little unusual:

 </intent-filter>
 <intent-filter>
 <action
android:name="com.google.android.c2dm.intent.REGISTRATION"/>
 <category android:name="com.commonsware.android.c2dm"/>
 </intent-filter>
 </receiver>
 </application>
</manifest>

Specifically:

• The android:name attribute has to specify the full class name,
including package, since this is a class from Google's C2DM client
code, not your own package

• For your protection, you should have the
android:permission="com.google.android.c2dm.permission.SEND"

398

Push Notifications with C2DM

attribute, to require the broadcaster of the Intent to hold that
permission, to further limit the ability for other applications to
spoof messages from your app

• You need <intent-filter> elements for the
com.google.android.c2dm.intent.RECEIVE and
com.google.android.c2dm.intent.REGISTRATION actions, where the
category for those filters is your application's package
(com.commonsware.android.c2dm in this sample) – this ensures that the
broadcasts will only go to your application, not to anyone else's

This is all largely boilerplate, except for the custom category values.

If you do all of that and register a Google account, you will get a registration
ID back. This is a 120 character cryptic string that your server will need to
send messages to this specific app on this specific device.

While this all seems a little bit complicated, the Google C2DM client code
wraps up most of the ugliness – your code could be even more complicated!

Push It Real Good

Your server need to get the registration IDs from instances of your app,
then send messages to those IDs when appropriate. Sending a message is a
matter of doing 1 or 2 HTTP POST requests, and therefore can be
accomplished by any serious server-side programming environment. You
do not even strictly need a server for this – the Push/C2DM sample project will
demonstrate sending a message using the curl command-line HTTP client.

Getting Authenticated

Before you can send a message, you need to authenticate yourself with
Google's C2DM servers. This involves an HTTP POST request, where you
supply your account credentials and get in return an authentication token.
This uses the same basic logic that is used to log into any Google server for

399

http://curl.haxx.se/
http://curl.haxx.se/

Push Notifications with C2DM

any of their exposed APIs, and there are client libraries for Google
authentication available for many programming languages.

Here is the auth.sh script from the Push/C2DM project, showing how to
perform an authentication request using curl:

curl https://www.google.com/accounts/ClientLogin -d Email=$1 -d "Passwd=$2" -d
accountType=GOOGLE -d source=Google-cURL-Example -d service=ac2dm

This script expects two command-line parameters: your Google account
name (e.g., foo@gmail.com) and its password. The curl command supplies
those two values with three others in a request to ClientLogin:

1. The accountType, which is GOOGLE if your account is a plain Google
account or HOSTED if your account comes from one managed by
Google App for your domain

2. The source, which apparently is an arbitrary string identifying what
is making the authentication request

3. The service, which must be ac2dm for this to work

The result will be text response with three long strings, named LID, SID, and
Auth. You will need the Auth value. This is a 160-character string,
representing a token showing that you have been authenticated. This token
will be good for several days, so you do not need to request a fresh Auth
token on each message. Ideally, you do not even store the Google account
information on the server, lest your server be hacked and that account be
put to ill use. Instead, store the Auth token somewhere on the server and
refresh it periodically. Also, a request to send a message will include an
Update-Client-Auth header with a fresh Auth token if the Google C2DM
servers determine that your existing token will expire soon.

Sending a Notification

Given the 120-character registration ID and the 160-character Auth token,
you can now send a message to the app. This involves doing an HTTP POST
to the C2DM servers themselves, as shown in the post.sh curl script:

400

Push Notifications with C2DM

curl --header "Authorization: GoogleLogin auth=$1"
"https://android.apis.google.com/c2dm/send" -d registration_id=$2 -d
"data.payload=$3" -d collapse_key=something

This script expects three command-line parameters:

1. The Auth token

2. The registration ID

3. The "payload" – a simple string that will be sent to the app

The Auth token goes in a GoogleAuth Authorization HTTP header. The
registration ID is supplied as a parameter on the POST request, along with:

• Your specified payload, as a POST parameter named data.payload

• The collapse_key, which will be explained later in this chapter

About the Message

You can pass up to 1,024 characters' worth of data in your message, spread
across one or more values. Each POST parameter prefixed with data. will be
considered part of the message and will be put into the Intent sent to your
C2DMReceiver class as a String extra (minus the data. prefix). Hence, the
sample post.sh script uses data.payload for your message, and the sample
C2DMReceiver implementation retrieves that via the payload Intent extra.
While this sample only shows a single value being sent, you can provide
several data. POST parameters if you wish, so long as they combine to be
under 1,024 characters.

A Controlled Push

Of course, the Push/C2DM sample project is a simplified look at the entire
push notification process. When you start dealing with thousands of users
and thousands of messages, things get a wee bit more complicated. Here
are a couple of control points you should be aware of as you think about
applying these techniques to a production application.

401

Push Notifications with C2DM

Message Parameters

Devices may not be in position to receive messages right away. While the
delay may be temporary, it could be of indefinite duration. Somebody
having their phone turned off, or on "airplane mode", for an extended
period is an obvious example. Even if the phone is on and operating
normally, though, it may be that the socket connection between the device
and the C2DM servers has been interrupted, and the power-optimized on-
device C2DM code may be a bit slow to re-establish the connection. At the
same time, you are going to be sending out messages typically based on
your own schedule, such as in response to external data sources, ignorant of
what is going on with any given device.

Google is not considering C2DM to be a guaranteed store-and-forward
queue system. In particular, Google reserves the right to try to coalesce
messages, in part to reduce storage demands, but also so as not to flood the
device when a connection is re-established.

Key to this is the collapse_key parameter on the message request. If a device
is unavailable, and during that time you send two or more messages with
the same collapse_key, the C2DM servers may elect to only send one of
those messages – typically the last one, though not necessarily. You can use
this to your advantage, to minimize processing you need to do on the
client. For example, if your use of C2DM is to alert your custom email
application that "you've got mail", you can use a consistent collapse_key
with messages telling the client how many unread emails are in their inbox.
That can be used by the client to update a Notification and, eventually,
cajole the user into actually reading her mail.

A related optional parameter you can include in your messages is
delay_while_idle. If you specify this as a POST parameter, that will indicate
to the C2DM servers that, while you want the message to be delivered, it is
not important enough to wake up the device. C2DM will hold onto the
message (or the last one if several are sent with the same collapse_key), but
it will not push it to the device until it knows the device is awake (perhaps
due to another C2DM message for that device lacking this parameter). You

402

Push Notifications with C2DM

can think of this as being akin to choosing an AlarmManager alarm type
lacking the _WAKEUP suffix. The goal is to minimize battery consumption.

Notable Message Responses

When you send a message, you should get a 200 OK response from the
C2DM servers. If everything went well, you will get back a body of the form
id=..., where ... is some unique ID of the message. If, however, you get a
body of Error=..., that means something went wrong.

Some errors, like MissingCollapseKey, will probably be found and fixed
during development. Some errors, like MessageTooBig, are hopefully found
during stress testing. Others, though, may legitimately happen during
normal operations. In particular, here are four to watch for:

1. QuotaExceeded and DeviceQuotaExceeded will be returned if you have
sent too many messages too quickly, either in general
(QuotaExceeded) or to a specific device (DeviceQuotaExceeded). Google
would appreciate it if you would try again later, perhaps using some
sort of exponential back-off algorithm.

2. InvalidRegistration means that the registration ID you supplied is
incorrect. This suggests there is some form of corruption in the
channel by which you got that registration ID to the server.

3. NotRegistered, for a registration ID that used to work, means that
the user has unregistered that ID, and it should no longer be used.
If you get NotRegistered from the beginning, there may be a
problem with your C2DM setup. In particular, during this beta
period, it may mean there are problems with your Google ID that
was added to the beta test whitelist.

The Right Way to Push

Google recommends that you use C2DM not to deliver data, but to deliver a
wakeup call to your application, which then goes and pulls the data. C2DM
is not a guaranteed store-and-forward engine – that, coupled with the
collapse_key concept, means that not every one of your messages will make

403

http://en.wikipedia.org/wiki/Exponential_backoff

Push Notifications with C2DM

it through to the device. If you put "real data" in the C2DM message, that
data may be lost. Also, this means you will (hopefully) never run into the
1,024-byte cap on message length.

You may also need to do push by some means other than C2DM, in all
likelihood. C2DM has two key limitations:

1. It only works on devices running Android 2.2 and higher, which at
the time of this writing is a very small percentage of the market

2. It requires some of the infrastructure that powers the Android
Market, and so may not be available on devices lacking the Market

The first limitation will fall away in time; how much the second limitation
impacts you will be determined by the mix of devices your users are using.
If a significant number are using older or non-Market devices, you will need
some separate solution: polling, WebSockets, etc.

404

PART IV – Scripting Languages

CHAPTER 23

The Role of Scripting
Languages

A scripting language, for the purpose of this book, has two characteristics:

• It is interpreted from source and so does not require any sort of
compilation step

• It cannot (presently) be used to create a full-fledged Android
application without at least some form of custom Java-based stub,
and probably much more than that

In this part of the book, we will look at scripting languages on Android and
what you can accomplish with them, despite any limitations inherent in
their collective definition.

All Grown Up

Interpreted languages have been a part of the programming landscape for
decades. The language most associated with the desktop computer
revolution – BASIC – was originally an interpreted language. However, the
advent of MS-DOS and the IBM PC (and clones) led developers in the
direction of C for "serious programming", for reasons of speed. While
interpreted languages continued to evolve, they tended to be described as
"scripting" languages, used to glue other applications together. Perl,
Python, and the like were not considered "serious" contenders for
application development.

407

The Role of Scripting Languages

The follow-on revolution, for the Internet, changed all of that. Most
interactive Web sites were written as CGI scripts using these "toy"
languages, Perl first and foremost. Even in environments where Perl was
unpopular, such as Windows, Web applications were still written using
scripting languages, such as VBScript in Active Server Pages (ASP). While
some firms developed Web applications using C/C++, scripting languages
ruled the roost. That remains to this day, where you are far more likely to
find people writing Web applications in PHP or Ruby than you will find
them writing in C or C++. The most likely compiled language for Web
development – Java – is still technically an interpreted language, albeit not
usually considered a scripting language.

Nowadays, writing major components of an application using a scripting
language is not terribly surprising. While this is still most common with
Web applications, you can find scripting languages used in the browser
(Javascript), games (Lua), virtual worlds (LSL), and so on. Even though
these languages execute more slowly than there C/C++ counterparts, they
offer much greater flexibility, and faster CPUs make the performance of
scripts less critical.

Following the Script

Scripting languages are not built into Android, beyond the Javascript
interpreter in the WebKit Web browser. Despite this, there is quite a bit of
interest in scripting on Android, and the biggest reasons for this come
down to experience and comfort level.

Your Expertise

Perhaps you have spent your entire career writing Python scripts, or you cut
your teeth on Perl CGI programs, or you have gotten seriously into Ruby
development.

Maybe you used Java in previous jobs and hate it with the fiery passion of a
thousand suns.

408

The Role of Scripting Languages

Regardless of the cause, your expertise may lie outside the traditional
Android realm of Java-based development. Perhaps you would never touch
Android if you had to write in Java, or maybe you feel you would just be
significantly more productive in some other language. How much that
productivity gain is real versus "in your head" is immaterial – if you want to
develop in some other language, you owe it to yourself to try.

Your Users' Expertise

Maybe you are looking to create a program where not only you can write
scripts, but so can your users. This might be a utility, or a game, or rulesets
for email management, or whatever.

In that case, you need:

• Something interpreted, so you can execute what the user types in

• Something embeddable, so your larger application (typically written
in Java, of course) is capable of executing those scripts

• Something your users will be comfortable using for scripting

The last criterion is perhaps the toughest, as non-developers typically have
limited experience in writing scripts in any language, let alone one that
runs on Android. Perhaps the most popular such language is Basic, in the
form of VBA and VBScript on Windows...but there are no interpreters for
those languages for Android at this time.

Crowd-Developing

Perhaps your users will not only be entering scripts for their own benefit,
but for others' benefit as well.

Many platforms have been improved by power users and amateur
developers alike. Browser users gain from those writing GreaseMonkey
scripts. Bloggers benefit from those writing WordPress themes. And so on.

409

The Role of Scripting Languages

To facilitate this sort of work, not only do you need an interpreted,
embeddable, user-familiar scripting environment, but you need some
means for users to publish their scripts and download the scripts of others.
Fortunately, with Android having near-continuous connectivity, your
challenge will lie more on organizing and hosting the scripts, more so than
getting them on and off of devices.

Going Off-Script

Scripting languages on Android have their fair share of issues. It is safe to
say that while Android does not prohibit the use of scripting languages, its
architecture does not exactly go out of its way to make them easy to use,
either.

Security

For a scripting language to do much that is interesting, it is going to need
some amount of privileges. A script cannot access the Internet unless its
process has that right. A script cannot modify the user's contacts unless its
process has that right. And so on.

For scripts you write, so long as those scripts cannot be modified readily by
malware authors, security is whatever you define it to be. If your script-
based application needs Internet access, so be it.

For scripts your users write, things get a bit more challenging, since
permissions cannot be modified on the fly by applications. Many
interpreters will tend to request (or otherwise have access to) permissions
that are broader than any individual user might need, because those
permissions are needed by somebody. However, the risk is still minimal to
the user, so long as they are careful with the scripts they write.

For scripts your users might download, written by others, security becomes
a big problem. If the interpreter has a wide range of permissions,
downloaded scripts can easily host malware that exploits those permissions
for nefarious ends. An interpreter with both Internet access and the right to

410

The Role of Scripting Languages

read the user's contacts means that any script the user might download and
run could copy the user's contact data and send it to spammers or identity
thieves.

Performance

Java, as interpreted by the Dalvik virtual machine, is reasonably fast,
particularly on Android 2.2 and newer versions. C/C++, through the NDK,
is far faster.

Scripting languages are a mixed bag.

Some scripting languages for Android have interpreters that are
implemented in C code. Those interpreters' performance is partly a
function of how well they were written and ported over to the chipsets
Android runs on. However, if those interpreters expose Android APIs to the
language, that can add considerable overhead. For example, the Scripting
Layer for Android (SL4A) makes Android APIs available to scripting
languages via a tiny built-in Java Web server and a Web service API. While
convenient for language integration, converting simple Java calls into Web
service calls slows things down quite a bit.

Some scripting languages have interpreters that themselves are written in
Java and run on the virtual machine. Those are likely to perform worse on
an Android device than when they are run on a desktop or server, simply
because of the performance differences between the standard Java VMs and
the Dalvik VM. However, they will have quicker access to the Java class
libraries that make up much of Android than will C-based interpreters.

Cross-Platform Compatibility

Most of the scripting languages for Android are ports from versions that
run across multiple platforms. This is one of their big benefits – that is
where you and your users may have gained experience with those
languages. However, just as, say, Perl and Python run a bit differently on
Windows than on Linux or OS X, there will be some differences in how

411

The Role of Scripting Languages

those languages run on Android. The Android operating system is not a
traditional Linux environment, and so file paths, environment variables,
available pre-installed programs, and the like will not be the same. Some of
those may, in turn, impact how the scripting languages operate. You may
need to make some modification to any existing scripts for those languages
that you attempt to run on Android.

Maturity...On Android

Some scripting languages that have been ported to Android are rather old,
like Perl and Python. Others are old and somewhat abandoned for
traditional development, like BeanShell. Yet others are fairly new to the
programming scene altogether, like JRuby.

However, none of them have a long track record on Android, simply
because Android itself has not been around very long. This has several
implications:

• There is more likely to be bugs in newer ports of a language than
older ports

• Fewer people will have experience in supporting these languages on
Android (compared to supporting them on Linux, for example)

• The number of production applications built using these languages
on Android is minuscule compared to their use on more traditional
environments

412

CHAPTER 24

The Scripting Layer for Android

When it comes to scripting languages on Android, the first stop should
always be the Scripting Layer for Android (SL4A). Led by Damon Kohler,
this project is rather popular, both among hardcore Android developers
and those people looking to automate a bit more of their Android
experience.

The Role of SL4A

What started as an experiment to get Python and Lua going on Android,
back in late 2008, turned into a more serious endeavor in June 2009, when
the Android Scripting Environment (now called the Scripting Layer for
Android, or SL4A) was announced on the Google Open Source blog and the
Google Code site for it was established. Since then, SL4A has been a magnet
for people interested in getting their favorite language working on Android
or advancing its support.

On-Device Development

Historically, the primary role of SL4A was as a tool to allow people to put
together scripts, often written on the device itself, to take care of various
chores. This appealed to developers who were looking for something
lightweight compared to the Android SDK and Java. For those used to
tinkering with scripts on other mobile Linux platforms (e.g., the Nokia
N800 running Maemo), SL4A promised a similar sort of capability.

413

http://google-opensource.blogspot.com/2009/06/introducing-android-scripting.html
http://code.google.com/p/android-scripting/

The Scripting Layer for Android

Over time, SL4A's scope in this area has grown, including preliminary
support for SL4A scripts packaged as APK files, much like an Android
application written in Java or any of the alternative frameworks described
in this book.

Getting Started with SL4A

SL4A is a bit more difficult to install than is the average Android
application, due to the various interpreters it uses and their respective
sizes. That being said, none of the steps involved with getting SL4A set up
are terribly difficult, and most are just part of the application itself.

Installing SL4A

At the time of this writing, SL4A is not distributed via the Android Market.
Instead, you can download it to your device off of the SL4A Web site.
Perhaps the easiest way to do that is to scan the QR code on the SL4A home
page using Barcode Scanner or a similar utility.

Installing Interpreters

When you first install SL4A, the only available scripting language is for
shell scripts, as that is built into Android itself. If you want to work with
other interpreters, you will need to download those. That is why the base
SL4A download is so small (~200KB) – most of the smarts are separate
downloads, largely due to size.

To add interpreters, launch SL4A from the launcher, then choose View >
Interpreters from the option menu. You will be presented with the
(presently short) list of installed interpreters:

414

http://code.google.com/p/zxing/
http://code.google.com/p/android-scripting/

The Scripting Layer for Android

Figure 83. The initial list of installed SL4A interpreters

Then, to install additional interpreters, choose Add from the option menu.
You will be given a roster of SL4A-compatible interpreters to choose from:

415

The Scripting Layer for Android

Figure 84. The list of available SL4A interpreters

Click on one of the interpreters, and this will trigger the download of an
APK file for that specific interpreter. Slide down the notification drawer
and click on that APK file to continue the installation process. When the
APK itself is installed, open up that interpreter (e.g., click the [Open]
button when the install is done). That will bring up an activity to let you
download the rest of the interpreter binaries:

416

The Scripting Layer for Android

Figure 85. Downloading the Python SL4A interpreter, continued

Click the Install button, and SL4A will download and install the
interpreter's component parts:

417

The Scripting Layer for Android

Figure 86. Downloading the Python SL4A interpreter

This may take one or several downloads, depending on the interpreter.
When done, and after a few progress dialogs' worth of unpacking, the
interpreter will appear in the list of interpreters:

418

The Scripting Layer for Android

Figure 87. The updated list of installed SL4A interpreters

Note that the interpreters will be installed on your device's "external
storage" (typically some flavor of SD card), due to their size. You will find
an SL4A/ directory on that card with the interpreters and scripts.

Running Supplied Scripts

Back on the Scripts activity (e.g., what you see when you launch SL4A from
the launcher), you will be presented with a list of the available scripts.
Initially, these will be ones that shipped with the interpreters, as examples
for how to write SL4A scripts in that language:

419

The Scripting Layer for Android

Figure 88. The list of SL4A scripts

Tapping on any of these scripts will bring up a "quick actions" balloon:

420

The Scripting Layer for Android

Figure 89. Quick actions for the speak.py script

Click the little shell icon to run it, showing its terminal output along the
way:

421

The Scripting Layer for Android

Figure 90. The visual results of running the speak.py SL4A script

Writing SL4A Scripts

While the scripts supplied with the interpreters are...entertaining, they only
scratch the surface of what an SL4A script can accomplish. Of course, to go
beyond what is there, you will need to start writing some scripts.

Editing Options

Since scripts are stored on your SD card (or whatever the "external storage"
is for your device), you can create scripts using some other computer – one
with fancy things like "mice" and "ergonomic keyboards" – and transfer it
over via USB, like you would transfer over an MP3 file. This eases typing,
but it will make for an awkward development cycle, since your computer
and the Android device cannot both have access to the SD card
simultaneously. The mount/unmount process may get a bit annoying. On
the other hand, this is a great way to transfer over a script you obtained
from somebody else.

422

The Scripting Layer for Android

Another option is to edit your scripts on the device. SL4A has a built in
script editor designed for this purpose. Of course, the screen may be a bit
small and the keyboard may be a bit...soft, but this is a great answer for
small scripts.

To add a new script, from the Scripts activity, choose Add from the option
menu. This will bring up a roster of available scripting languages and other
items (e.g., add a folder):

Figure 91. The add-script language selection dialog

(the "Scan Barcode" option gives you an easy route to install a third-party
script, one encoded in a QR code)

Tap the language you want, and you will be taken into the script editor:

423

The Scripting Layer for Android

Figure 92. The script editor

The field at the top is for the script name, and the large text area at the
bottom is for the script itself. A file extension and boilerplate code will be
supplied for you automatically.

In fact, that boilerplate code is rather important, as you will see
momentarily.

To edit an existing script, long-tap on the script in the list and choose Edit
from the context menu.

To save your changes to a new or existing script, choose the Save option
from the script editor option menu. You can also "Save & Run" to test the
script immediately.

424

The Scripting Layer for Android

Calling Into Android

In the real world, Perl knows nothing about Android. Neither does Python,
BeanShell, or most of the other scripting languages available for SL4A. This
would be rather limiting, as most of what you would want a script to do will
have to deal with the device to some level: collect input, get a location, say
some text using speech synthesis, dial the phone, etc.

Fortunately, SL4A has a solution, one of those "so crazy, it just might work"
sorts of solutions: SL4A has a built-in RPC server. While implementing a
server on a smartphone is not something one ordinarily does, it provides an
ingenious bridge from the scripting language to the device itself.

Each scripting language is given a local object proxy that works with the
RPC server. For example, here is a Python script that speaks the current
time:

Figure 93. The script editor, showing the say_time.py script

425

The Scripting Layer for Android

The import android and droid=android.Android() statements establish a
connection between the Python interpreter and the SL4A RPC server. From
that point, the droid object is available for use to access Android
capabilities – in this case, speaking a message.

Python does not strictly realize that it is accessing local functionality. It
simply makes RPC calls, ones that just so happen to be fulfilled on the
device rather than via some remote RPC server accessed over the Internet.

Browsing the API

Therefore, SL4A effectively exposes an API to each of its scripting
languages, via this RPC bridge. While the API is not huge, it accomplishes a
lot and is ever-growing.

If you are editing scripts on the device, you can browse the API by choosing
the API Browser option menu from the script editor. This brings up a list of
available methods on your RPC proxy (e.g., droid) that you can call:

426

The Scripting Layer for Android

Figure 94. The script editor's API browser

Tapping on any item in the list will "unfold" it to provide more details, such
as the parameter list. Long-tapping on an item brings up a context menu
where you can:

• insert a template call to the method into your script at the cursor
position

• "prompt" you for the parameter values for the method, then insert
the completed method call into your script

It is also possible to browse the API in a regular Web browser, if you are
developing scripts off-device.

Running SL4A Scripts

Scripts are only useful if you run them, of course. We have seen two options
for running scripts: tapping on them in the scripts list, or choosing "Save &
Run" from the script editor. Those are not your only options, however.

427

http://code.google.com/p/android-scripting/wiki/ApiReference

The Scripting Layer for Android

Background

If you long-tap on a script in the script list, you will see a context menu
option to "Start in Background". As the name suggests, this kicks off the
script in the background. Rather than seeing the terminal window for the
script, the script just runs. A notification will appear in the status bar, with
the SL4A icon, indicating that the RPC server is in operation and that
script(s) may be running.

Shortcuts

Rather than have to open up SL4A every time, you can set up shortcuts on
your home screen to run individual scripts. Just long-tap on the home
screen background and choose Shortcuts from the context menu, then
Scripts from the available shortcuts. This brings up the scripts list, but this
time, when you choose a script, you are presented with a quick actions
balloon for how to start it: in a terminal or in the background:

Figure 95. Configuring an SL4A shortcut

428

The Scripting Layer for Android

Choose one, and at this point, a shortcut, with the interpreter's icon and
the name of the script, will appear on your home screen. Tapping it runs the
script.

Other Alternatives

Users of Locale – an application designed to trigger events at certain times
or when you get to certain locations – can trigger SL4A scripts in addition
to invoking standard built-in tools.

In addition, there is preliminary support in SL4A for packaging scripts as
APK files for wider distribution.

Potential Issues

As the SL4A Web site indicates, SL4A is "alpha-quality". It is not without
warts. How much those warts are an issue for you, in terms of crafting and
running utility scripts, is up to you.

Security...From Scripts

SL4A itself holds a long list of Android permissions, including:

• The ability to read your contact data

• The ability to call phone numbers and place SMS messages

• Access to your location

• Access to your received SMS/MMS messages

• Bluetooth access

• Internet access

• The ability to write to the SD card

• The ability to record audio and take pictures

• The ability to keep your device awake

429

http://code.google.com/p/android-scripting/wiki/SharingScripts

The Scripting Layer for Android

• The ability to retrieve the list of running applications and restart
other applications

• And so on

Hence, its scripts – via the RPC-based API – can perform all of those
actions. For example, a script you download from a third party could read
all your contacts and send that information to a spammer. Hence, you
should only run scripts that you trust, since SL4A effectively "wires open"
many aspects of Android's standard security protections.

Security...From Other Apps

Originally, the on-device Web service supplying the RPC-based API was
wide open. Any program that could find the port could connect to that Web
service and invoke operations. That would not necessarily be all that
bad...except that the Web service runs in its own process with its own
permissions, and it may have permissions that other applications lack (e.g.,
right to access the Internet or to read contacts). Given that, malware could
use SL4A to do things that it, by itself, could not do, allowing it to sneak
onto more devices.

SL4A now uses a token-based authentication mechanism for using the Web
service, to help close this loophole. In principle, only SL4A scripts should
be able to use the RPC server.

430

CHAPTER 25

JVM Scripting Languages

The Java virtual machine (JVM) is a remarkably flexible engine. While it
was originally developed purely for Java, it has spawned its own family of
languages, just as Microsoft's CIL supports multiple languages for the
Windows platform. Some languages targeting the JVM as a runtime will
work on Android, since the regular Java VM and Android's Dalvik VM are
so similar.

Languages on Languages

Except for the handful of early language interpreters and compilers hand-
constructed in machine code, every programming language is built atop
earlier ones. C and C++ are built atop assembly language. Many other
languages, such as Java itself, are built atop C/C++.

Hence, it should not come as much of a surprise that an environment as
popular as Java has spawned another generation of languages whose
implementations are in Java.

There are a few flavors of these languages. Some, like Scala and Clojure, are
compiled languages whose compilers created JVM bytecodes, no different
than would a Java compiler. These do not strictly qualify as a "scripting
language", however, since they typically compile their source code to
bytecode ahead of time.

431

JVM Scripting Languages

Some Java-based scripting languages use fairly simple interpreters. These
interpreters convert scripting code into parsed representations (frequently
so-called "abstract syntax trees", or ASTs), then execute the scripts from
their parsed forms. Most scripting languages at least start here, and some,
like BeanShell, stick with this implementation.

Other scripting languages try to bridge the gap between a purely
interpreted language and a compiled one like Scala or Clojure. These
languages turn the parsed scripting code into JVM bytecode, effectively
implementing their own just-in-time compiler (JIT). Since many Java
runtimes themselves have a JIT to turn bytecode into machine code
("opcode"), languages with their own JIT can significantly outperform their
purely-interpreted counterparts. JRuby and Rhino are two languages that
have taken this approach.

A Brief History of JVM Scripting

Back in the beginning, the only way to write for the JVM was in Java itself.
However, since writing language interpreters is a common pastime, it did
not take long for people to start implementing interpreters in Java. These
had their niche audiences, but there was only modest interest in the early
days – interpreters made Java applets too large to download, for example.

Things got a bit more interesting in 1999, when IBM released the Bean
Scripting Framework (BSF). This offered a uniform API for scripting
engines, meaning that a hosting Java application could write to the BSF
API, then plug in arbitrary interpreters at runtime. It was even possible,
with a bit of extra work, to allow new interpreters to be downloaded and
used on demand, rather than having to be pre-installed with the
application. BSF also standardized how to inject Java objects into the
scripting engines themselves, for access by the scripts. This allowed scripts
to work with the host application's objects, such as allowing scripts to
manipulate the contents of the jEdit text editor.

This spurred interest in scripting. In addition to some IBM languages (e.g.,
NetREXX) supporting BSF natively, other languages, like BeanShell, created

432

http://beanshell.org/
http://www.ibm.com/software/awdtools/netrexx/
http://jedit.org/
http://www.alphaworks.ibm.com/tech/bsf

JVM Scripting Languages

BSF adapters to allow their languages to participate in the BSF space. On
the consumer side, various Web frameworks started supporting BSF
scripting for dynamic Web content generation, and so forth.

Interest was high enough that Apache took over stewardship of BSF in
2003. Shortly thereafter, Sun and others started work on JSR-223, which
added the javax.script framework to Java 6. The javax.script framework
advanced the BSF concept and standardized it as part of Java itself.

At this point, most JVM scripting languages that are currently maintained
support javax.script integration, and may also support integration with
the older BSF API as well. There is a long list of available javax.script-
compatible scripting languages.

Android does not include javax.script as part of its subset of the Java SE
class library from the Apache Harmony project. This certainly does not
preclude integrating scripting languages into Android applications, but it
does raise the degree of difficulty a bit.

Limitations

Of course, JVM scripting languages do not necessarily work on Android
without issue. There may be some work to get a JVM language going on
Android, above and beyond the challenges for scripting languages in
general on Android.

Android SDK Limits

Android is not Java SE, or Java ME, or even Java EE. While Android has
many standard Java classes, it does not have a class library that matches any
traditional pattern. As such, languages built assuming Java SE, for example,
may have some dependency issues.

For languages where you have access to the source code, removing these
dependencies may be relatively straightforward, particularly if they are

433

https://scripting.dev.java.net/
http://jcp.org/en/jsr/detail?id=223
http://jakarta.apache.org/bsf/

JVM Scripting Languages

ancillary to the operation of the language itself. For example, the language
may come with miniature Swing IDEs, support for scripted servlets, or
other capabilities that are not particularly relevant on Android and can be
excised from the source code.

Wrong Bytecode

Android runs Dalvik bytecode, not Java bytecode. The conversion from Java
bytecode to Dalvik bytecode happens at compile time. However, the
conversion tool is rather finicky – it wants bytecode from Sun/Oracle's Java
1.5 or 1.6, nothing else. This can cause some problems:

• You may encounter a JAR that is old enough to have been compiled
with Java 1.4.2

• You may encounter JARs compiled using other compilers, such as
the GNU Compiler for Java (GCJ), common on Linux distributions

• Eventually, when Java 7 ships, there may be bytecode differences
that preclude Java 7-compiled JARs from working with Android

• Languages that have their own JIT compilers will have problems,
because their JIT compilers will be generating Java bytecodes, not
Dalvik bytecodes, meaning that the JIT facility needs to be rewritten
or disabled

Again, if you have the source code, recompiling on an Android-friendly Java
compiler should be a simple process.

Age

The heyday of some JVM languages is in the past. As such, you may find
that support for some languages will be limited, simply because few people
are still interested in them. Finding people interested in those languages on
Android – the cross-section of two niches – may be even more of a problem.

434

JVM Scripting Languages

SL4A and JVM Languages

SL4A supports three JVM languages today:

• BeanShell

• JRuby

• Rhino (Javascript)

You can use those within your SL4A environment no different than you can
any other scripting language (e.g., Perl, Python, PHP). Hence, if what you
are looking for is to create your own personal scripts, or writing small
applications, SL4A saves you a lot of hassle. If there is a JVM scripting
language you like but is not supported by SL4A, adding support for new
interpreters within SL4A is fairly straightforward, though the APIs may
change as SL4A is undergoing a fairly frequent set of revisions.

Embedding JVM Languages

While SL4A will drive end users towards writing their own scripts or
miniature applications using JVM languages, another use of these
languages is for embedding in a full Android application. Scripting may
accelerate development, if the developers are more comfortable with the
scripted language than with Java. Also, if the scripts are able to be modified
or expanded by users, an ecosystem may emerge for user-contributed
scripts.

Architecture for Embedding

Embedding a scripting language is not something to be undertaken lightly,
even on a desktop or server application. Mobile devices running Android
will have similar issues.

435

JVM Scripting Languages

Asynchronous

One potential problem is that a script may take too long to execute.
Android's architecture assume that work triggered by buttons, menus, and
the like will either happen very quickly or will be done on background
threads. Particularly for user-generated scripts, the script execution time is
unknowable in advance – it might be a few milliseconds, or it might be
several seconds. Hence, any implementation of a scripting extension for an
Android application needs to consider executing all scripts in a background
thread. This, of course, raises its own challenges for reflecting those scripts'
results on-screen, since GUI updates cannot be done on a background
thread.

Security

Scripts in Android inherit the security restrictions of the process that runs
the script. If an application has the right to access the Internet, so will any
scripts run in that application's process. If an application has the right to
read the user's contacts, so will any scripts run in that application's process.
And so on. If the scripts in question are created by the application's
authors, this is not a big deal – the rest of the application has those same
permissions, after all. But, if the application supports user-authored scripts,
it raises the potential of malware hijacking the application to do things that
the malware itself would otherwise lack the rights to do.

Inside the InterpreterService

One way to solve both of those problems is to isolate the scripting language
in a self-contained low-permission APK – "sandboxing" the interpreter so
the scripts it executes are less able to cause harm. This APK could also
arrange to have the interpreter execute its scripts on a background thread.
An even better implementation would allow the embedding application to
decide whether or not the "sandbox" is important – applications with a
controlled source of scripts may not need the extra security or the
implementation headaches it causes.

436

JVM Scripting Languages

With that in mind, let us take a look at the JVM/InterpreterService sample
project, one possible implementation of the strategy described above.

The Interpreter Interface

The InterpreterService can support an arbitrary number of interpreters, via
a common interface. This interface provides a simplified API for having an
interpreter execute a script and return a result:

package com.commonsware.abj.interp;

import android.os.Bundle;

public interface I_Interpreter {
 Bundle executeScript(Bundle input);
}

As you can see, it is very simplified, offering just a single executeScript()
method. That method accepts a Bundle (a key-value store akin to a Java
HashMap) as a parameter – that Bundle will need to contain the script and any
other objects needed to execute the script.

The interpreter will return another Bundle from executeScript(), containing
whatever data it wants the script's requester to have access to.

For example, here is the implementation of EchoInterpreter, which just
returns the same Bundle that was passed in:

package com.commonsware.abj.interp;

import android.os.Bundle;

public class EchoInterpreter implements I_Interpreter {
 public Bundle executeScript(Bundle input) {
 return(input);
 }
}

A somewhat more elaborate sample is the SQLiteInterpreter:

437

JVM Scripting Languages

package com.commonsware.abj.interp;

import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.os.Bundle;
import java.util.ArrayList;

public class SQLiteInterpreter implements I_Interpreter {
 public Bundle executeScript(Bundle input) {
 Bundle result=new Bundle(input);
 String script=input.getString(InterpreterService.SCRIPT);

 if (script!=null) {
 SQLiteDatabase db=SQLiteDatabase.create(null);
 Cursor c=db.rawQuery(script, null);

 c.moveToFirst();

 for (int i=0;i<c.getColumnCount();i++) {
 result.putString(c.getColumnName(i), c.getString(i));
 }

 c.close();
 db.close();
 }

 return(result);
 }
}

This class accepts a script, in the form of a SQLite database query. It
extracts the script from the Bundle, using a pre-defined key
(InterpreterService.SCRIPT):

String script=input.getString(InterpreterService.SCRIPT);

Assuming there is such a script, it creates an empty in-memory database
and executes the SQLite query against that database:

SQLiteDatabase db=SQLiteDatabase.create(null);
Cursor c=db.rawQuery(script, null);

The results come back in the form of a Cursor – itself a key-value store.
SQLiteInterpreter takes those results and pours them into a Bundle to be
returned:

438

JVM Scripting Languages

c.moveToFirst();

for (int i=0;i<c.getColumnCount();i++) {
 result.putString(c.getColumnName(i), c.getString(i));
}

c.close();
db.close();

The Bundle being returned starts from a copy of the input Bundle, so the
script requester can embed in the input Bundle any identifiers it needs to
determine how to handle the results from executing this script.

SQLiteInterpreter is not terribly flexible, but you can use it for simple
numeric and string calculations, such as the following script:

SELECT 1+2 AS result, 'foo' AS other_result, 3*8 AS third_result;

This would return a Bundle containing a key of result with a value of 3, a key
of other_result with a value of foo, and a key of third_result with a value of
24.

Of course, it would be nice to support more compelling interpreters, and
we will examine a pair of those later in this chapter.

Loading Interpreters and Executing Scripts

Of course, having a nice clean interface to the interpreters does nothing in
terms of actually executing them on a background thread, let alone
sandboxing them. The InterpreterService class itself handles that.

InterpreterService is an IntentService, which automatically routes
incoming Intent objects (from calls to startService()) to a background
thread via a call to onHandleIntent(). IntentService will queue up Intent
objects if needed, and IntentService even automatically shuts down if there
is no more work to be done.

Here is the implementation of onHandleIntent() from InterpreterService:

439

JVM Scripting Languages

@Override
protected void onHandleIntent(Intent intent) {
 String action=intent.getAction();
 I_Interpreter interpreter=interpreters.get(action);

 if (interpreter==null) {
 try {
 interpreter=(I_Interpreter)Class.forName(action).newInstance();
 interpreters.put(action, interpreter);
 }
 catch (Throwable t) {
 Log.e("InterpreterService", "Error creating interpreter", t);
 }
 }

 if (interpreter==null) {
 failure(intent, "Could not create interpreter: "+intent.getAction());
 }
 else {
 try {
 success(intent, interpreter.executeScript(intent.getBundleExtra(BUNDLE)));
 }
 catch (Throwable t) {
 Log.e("InterpreterService", "Error executing script", t);

 try {
 failure(intent, t);
 }
 catch (Throwable t2) {
 Log.e("InterpreterService",
 "Error returning exception to client",
 t2);
 }
 }
 }
}

We keep a cache of interpreters, since initializing their engines may take
some time. That cache is keyed by the interpreter's class name, and that
key comes in to the service by way of the action on the Intent that was used
to start the service. In other words, the script requester tells us, by way of
the Intent used in startService(), which interpreter to use.

Those interpreters are created using reflection:

try {
 interpreter=(I_Interpreter)Class.forName(action).newInstance();
 interpreters.put(action, interpreter);
}
catch (Throwable t) {

440

JVM Scripting Languages

 Log.e("InterpreterService", "Error creating interpreter", t);
}

This way, InterpreterService has no compile-time knowledge of any given
interpreter class. Interpreters can come and go, but InterpreterService
remains the same.

Assuming an interpreter was found (either cached or newly created), we
have it execute the script, with the input Bundle coming from an "extra" on
the Intent. Methods named success() and failure() are then responsible
for getting the results to the script requester...as will be seen in the next
section.

Delivering Results

Script requesters can get the results of the script back – in the form of the
interpreter's output Bundle – in one of two ways.

One option is a private broadcast Intent. This is a broadcast Intent where
the broadcast is limited to be delivered only to a specific package, not to
any potential broadcast receiver on the device.

The other option is to supply a PendingIntent that will be sent with the
results. This could be used by an Activity and createPendingIntent() to
have control routed to its onActivityResult() method. Or, an arbitrary
PendingIntent could be created, to start another activity, for example.

The implementations of success() and failure() in InterpreterService
simply build up an Intent containing the results to be delivered:

private void success(Intent intent, Bundle result) {
 Intent data=new Intent();

 data.putExtras(result);
 data.putExtra(RESULT_CODE, SUCCESS);

 send(intent, data);
}

441

JVM Scripting Languages

private void failure(Intent intent, String message) {
 Intent data=new Intent();

 data.putExtra(ERROR, message);
 data.putExtra(RESULT_CODE, FAILURE);

 send(intent, data);
}

private void failure(Intent intent, Throwable t) {
 Intent data=new Intent();

 data.putExtra(ERROR, t.getMessage());
 data.putExtra(TRACE, getStackTrace(t));
 data.putExtra(RESULT_CODE, FAILURE);

 send(intent, data);
}

These, in turn, delegate the actual sending logic to a send() method that
delivers the result Intent via a private broadcast or a PendingIntent, as
indicated by the script requester:

private void send(Intent intent, Intent data) {
 String broadcast=intent.getStringExtra(BROADCAST_ACTION);

 if (broadcast==null) {
 PendingIntent pi=(PendingIntent)intent.getParcelableExtra(PENDING_RESULT);

 if (pi!=null) {
 try {
 pi.send(this, Activity.RESULT_OK, data);
 }
 catch (PendingIntent.CanceledException e) {
 // no-op – client must be gone
 }
 }
 }
 else {
 data.setPackage(intent.getStringExtra(BROADCAST_PACKAGE));
 data.setAction(broadcast);

 sendBroadcast(data);
 }
}

Packaging the InterpreterService

There are three steps for integrating InterpreterService into an application.

442

JVM Scripting Languages

First, you need to decide what APK the InterpreterService goes in – the
main one for the application (no sandbox) or a separate low-permission one
(sandbox).

Second, you need to decide what interpreters you wish to support, writing
I_Interpreter implementations and getting the interpreters' JARs into the
project's libs/ directory.

Third, you need to add the source code for InterpreterService along with a
suitable <service> entry in AndroidManifest.xml. This entry will need to
support <intent-filter> elements for each scripting language you are
supporting, such as:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.abj.interp" android:versionCode="1"
android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/cw">
 <service android:name=".InterpreterService" android:exported="false">
 <intent-filter>
 <action
android:name="com.commonsware.abj.interp.EchoInterpreter"/>
 </intent-filter>
 <intent-filter>
 <action
android:name="com.commonsware.abj.interp.SQLiteInterpreter"/>
 </intent-filter>
 <intent-filter>
 <action
android:name="com.commonsware.abj.interp.BshInterpreter"/>
 </intent-filter>
 <intent-filter>
 <action
android:name="com.commonsware.abj.interp.RhinoInterpreter"/>
 </intent-filter>
 </service>
 </application>
</manifest>

From there, it is a matter of adding in appropriate startService() calls to
your application wherever you want to execute a script, and processing the
results you get back.

443

JVM Scripting Languages

Using the InterpreterService

To use the InterpreterService, you need to first determine which
I_Interpreter engine you are using, as that forms the action for the Intent
to be used with the InterpreterService. Create an Intent with that action,
then add in an InterpreterService.BUNDLE extra for the script and other data
to be supplied to the interpreter. Also, you can add an
InterpreterService.BROADCAST_ACTION, to be used by InterpreterService to
send results back to you via a broadcast Intent. Finally, call startService()
on the Intent, and the results will be delivered to you asynchronously.

For example, here is a test method from the EchoInterpreterTests test case:

package com.commonsware.abj.interp;

import android.os.Bundle;

public class EchoInterpreterTests extends InterpreterTestCase {
 protected String getInterpreterName() {
 return("com.commonsware.abj.interp.EchoInterpreter");
 }

 public void testNoInput() {
 Bundle results=execServiceTest(new Bundle());

 assertNotNull(results);
 assert(results.size()==0);
 }

 public void testWithSomeInputJustForGrins() {
 Bundle input=new Bundle();

 input.putString("this", "is a value");

 Bundle results=execServiceTest(input);

 assertNotNull(results);
 assertEquals(results.getString("this"), "is a value");
 }
}

The echo "interpreter" simply echoes the input Bundle into the output. The
execServiceTest() method is inherited from the InterpreterTestCase base
class:

444

JVM Scripting Languages

package com.commonsware.abj.interp;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.test.AndroidTestCase;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import junit.framework.TestCase;

abstract public class InterpreterTestCase extends AndroidTestCase {
 abstract protected String getInterpreterName();

 private static String ACTION="com.commonsware.abj.interp.InterpreterTestCase";
 private CountDownLatch latch=new CountDownLatch(1);
 private Bundle results=null;

 protected void setUp() throws Exception {
 super.setUp();

 getContext().registerReceiver(onBroadcast, new IntentFilter(ACTION));
 }

 protected void tearDown() {
 getContext().unregisterReceiver(onBroadcast);
 }

 protected Bundle execServiceTest(Bundle input) {
 Intent i=new Intent(getInterpreterName());

 i.putExtra(InterpreterService.BUNDLE, input);
 i.putExtra(InterpreterService.BROADCAST_ACTION, ACTION);

 getContext().startService(i);

 try {
 latch.await(5000, TimeUnit.MILLISECONDS);
 }
 catch (InterruptedException e) {
 // just keep rollin'
 }

 return(results);
 }

 private BroadcastReceiver onBroadcast=new BroadcastReceiver() {
 @Override
 public void onReceive(Context ctxt, Intent i) {
 results=i.getExtras();
 latch.countDown();
 }

445

JVM Scripting Languages

 };
}

The execServiceTest() method uses a CountDownLatch to wait on the
interpreter to do its work before proceeding (or 5000 milliseconds,
whichever comes first). The broadcast Intent containing the results,
registered to watch for com.commonsware.abj.interp.InterpreterTestCase
broadcasts, stuffs the output Bundle in a results data member and drops the
latch, allowing the main test thread to continue.

BeanShell on Android

What if Java itself were a scripting language? What if you could just execute
a snippet of Java code, outside of any class or method? What if you could
still import classes, call static methods on classes, create new objects, as
well?

That was what BeanShell offered, back in its heyday. And, since BeanShell
does not use sophisticated tricks with its interpreter – like JIT compilation
of scripting code – BeanShell is fairly easy to integrate into Android.

What is BeanShell?

BeanShell is Java on Java.

With BeanShell, you can write scripts in loose Java syntax. Here, "loose"
means:

• In addition to writing classes, you can execute Java statements
outside of classes, in a classic imperative or scripting style

• Data types are optional for variables

• Not every language feature is supported, particularly things like
annotations that did not arrive until Java 1.5

• Etc.

446

http://beanshell.org/

JVM Scripting Languages

BeanShell was originally developed in the late 1990's by Pat Niemeyer. It
enjoyed a fair amount of success, even being considered as a standard
interpreter to ship with Java (JSR-274). However, shortly thereafter,
BeanShell lost momentum, and it is no longer being actively maintained.
That being said, it works quite nicely on Android...once a few minor
packaging issues are taken care of.

Getting BeanShell Working on Android

BeanShell has two main problems when it comes to Android:

1. The publicly-downloadable JAR was compiled for Java 1.4.2, and
Android requires Java 5 or newer

2. The source code includes various things, like a Swing-based GUI
and a servlet, that have no real place in an Android app and require
classes that Android lacks

Fortunately, with BeanShell being open source, it is easy enough to
overcome these challenges. You could download the source into an Android
library project, then remove the classes that are not necessary (e.g., the
servlet), and use that library project in your main application. Or, you could
use an Android project for creating a JAR file that was compiled against the
Android class library, so you are certain everything is supported.

However, the easiest answer is to use SL4A's BeanShell JAR, since they have
solved those problems already. The JAR can be found in the SL4A source
code repository, though you will probably need to check out the project
using Mercurial, since JARs cannot readily be downloaded from the Google
Code Web site.

Integrating BeanShell

The BeanShell engine is found in the bsh.Interpreter class. Wrapping one
of these in an I_Interpreter interface, for use with InterpreterService, is
fairly simple:

447

http://code.google.com/p/android-scripting/source/browse/beanshell/bsh-2.0b4.jar
http://code.google.com/p/android-scripting/source/browse/beanshell/bsh-2.0b4.jar
http://jcp.org/en/jsr/detail?id=274

JVM Scripting Languages

package com.commonsware.abj.interp;

import android.os.Bundle;
import bsh.Interpreter;

public class BshInterpreter implements I_Interpreter {
 public Bundle executeScript(Bundle input) {
 Interpreter i=new Interpreter();
 Bundle output=new Bundle(input);
 String script=input.getString(InterpreterService.SCRIPT);

 if (script!=null) {
 try {
 i.set(InterpreterService.BUNDLE, input);
 i.set(InterpreterService.RESULT, output);

 Object eval_result=i.eval(script);

 output.putString("result", eval_result.toString());
 }
 catch (Throwable t) {
 output.putString("error", t.getMessage());
 }
 }

 return(output);
 }
}

BeanShell interpreters are fairly inexpensive objects, so we create a fresh
Interpreter for each script, so one script cannot somehow access results
from prior scripts. After setting up the output Bundle and extracting the
script from the input Bundle, we inject both Bundle objects into BeanShell
itself, where they can be accessed like global variables, named _bundle and
_result.

At this point, we evaluate the script, using the eval() method on the
Interpreter object. If all goes well, we convert the object returned by the
script into a String and tuck it into the output Bundle, alongside anything
else the script may have put into the Bundle. If there is a problem, such as a
syntax error in the script, we put the error message into the output Bundle.

So long as the InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.BshInterpreter action, and so long as we have a
BeanShell JAR in the project's libs/ directory, InterpreterService is now
capable of executing BeanShell scripts as needed.

448

JVM Scripting Languages

For example, here are a couple of test methods from the
BshInterpreterTests test case:

public void testSimpleResult() {
 Bundle input=new Bundle();

 input.putString(InterpreterService.SCRIPT, "1+2");

 Bundle output=execServiceTest(input);

 assertNull(output.getString("error"));
 assert(output.size()==2);
 assertEquals(output.getString("result"), "3");
}

public void testComplexResult() {
 Bundle input=new Bundle();

 input.putString(InterpreterService.SCRIPT, "_result.putInt(\"foo\", 1+2);");

 Bundle output=execServiceTest(input);

 assertNull(output.getString("error"));
 assert(output.size()==3);
 assertEquals(output.getInt("foo"), 3);
}

With our inherited execServiceTest() method handling invoking the
InterpreterService and waiting for responses, we can "simply" put our
script as the InterpreterService.SCRIPT value in the input Bundle, and see
what we get out. The first test script returns a simple value; the second test
script directly calls methods on the output Bundle to return its results.

Rhino on Android

Javascript arrived on the language scene hot on the heels of Java itself. The
name was chosen for marketing purposes more so than for any technical
reason. Java and Javascript had little to do with one another, other than
both adding interactivity to Web browsers. And while Java has largely faded
from mainstream browser usage, Javascript has become more and more of a
force on the browser, and even now on Web servers.

And, along the way, the Mozilla project put Javascript on Java and gave us
Rhino.

449

JVM Scripting Languages

What is Rhino?

If BeanShell is Java in Java, Rhino is Javascript in Java.

As part of Netscape's failed "Javagator" attempt to create a Web browser in
Java, they created a Javascript interpreter for Java, code-named Rhino after
the cover of O'Reilly Media's JavaScript: The Definitive Guide. Eventually,
Rhino was made available to the Mozilla Foundation, which has continued
maintaining it. At the present time, Rhino implements Javascript 1.7, so it
does not support the latest and greatest Javascript capabilities, but it is still
fairly full-featured.

Interest in Rhino has ticked upwards, courtesy of interest in using
Javascript in places other than Web browsers, such as server-side
frameworks. And, of course, it works nicely with Android.

Getting Rhino Working on Android

Similar to BeanShell, Rhino has a few minor source-level incompatibilities
with Android. However, these can be readily pruned out, leaving you with a
still-functional Javascript interpreter. However, once again, it is easiest to
use SL4A's Rhino JAR, since all that work is done for you.

Integrating Rhino

Putting an I_Interpreter facade on Rhino is incrementally more difficult
than it is for BeanShell, but not by that much:

package com.commonsware.abj.interp;

import android.os.Bundle;
import org.mozilla.javascript.*;

public class RhinoInterpreter implements I_Interpreter {
 public Bundle executeScript(Bundle input) {
 String script=input.getString(InterpreterService.SCRIPT);
 Bundle output=new Bundle(input);

 if (script!=null) {

450

http://code.google.com/p/android-scripting/source/browse/rhino/rhino1_7R2.jar
http://oreilly.com/catalog/9780596101992/
http://www.mozilla.org/rhino/

JVM Scripting Languages

 Context ctxt=Context.enter();

 try {
 ctxt.setOptimizationLevel(-1);

 Scriptable scope=ctxt.initStandardObjects();
 Object jsBundle=Context.javaToJS(input, scope);
 ScriptableObject.putProperty(scope, InterpreterService.BUNDLE,
jsBundle);

 jsBundle=Context.javaToJS(output, scope);
 ScriptableObject.putProperty(scope, InterpreterService.RESULT,
jsBundle);
 String result=Context.toString(ctxt.evaluateString(scope, script,
 "<script>", 1,
 null));

 output.putString("result", result);
 }
 finally {
 Context.exit();
 }
 }

 return(output);
 }
}

As with BshInterpreter, RhinoInterpreter sets up the output Bundle and
extracts the script from the input Bundle. Assuming there is a script,
RhinoInterpreter then sets up a Rhino Context object, which is roughly
analogous to the BeanShell Intepreter object. One key difference is that
you need to clean up the Context, by calling a static exit() method on the
Context class, whereas with a BeanShell Interpreter, you just let garbage
collection deal with it.

Rhino has a JIT compiler, one that unfortunately will not work with
Android, since it generates Java bytecode, not Dalvik bytecode. However,
Rhino lets you turn that off, by calling setOptimizationLevel() on the
Context object with a value of -1 (meaning, in effect, disable all
optimizations).

After that, we:

• Create a language scope for our script and inject standard Javascript
global objects into that scope

451

JVM Scripting Languages

• Wrap our two Bundle objects with Javascript proxies via calls to
javaToJS(), then injecting those objects into the scope as _bundle
and _result via putProperty() calls

• Execute the script via a call to evaluateString() on the Context
object, converting the resulting object into a String and pouring it
into the output Bundle

If our InterpreterService has an <intent-filter> for the
com.commonsware.abj.interp.RhinoInterpreter action, and so long as we have
a Rhino JAR in the project's libs/ directory, InterpreterService can now
invoke Javascript.

For example, here are equivalent test methods from RhinoInterpreterTests
to the ones shown above for BshInterpreterTests and BeanShell:

public void testSimpleResult() {
 Bundle input=new Bundle();

 input.putString(InterpreterService.SCRIPT, "1+2");

 Bundle output=execServiceTest(input);

 assertNull(output.getString("error"));
 assert(output.size()==2);
 assertEquals(output.getString("result"), "3");
}

public void testComplexResult() {
 Bundle input=new Bundle();

 input.putString(InterpreterService.SCRIPT, "_result.putInt(\"foo\", 1+2);");

 Bundle output=execServiceTest(input);

 assertNull(output.getString("error"));
 assert(output.size()==3);
 assertEquals(output.getInt("foo"), 3);
}

Other JVM Scripting Languages

As mentioned previously, there are many languages that, themselves, are
implemented in Java and can be ported to Android, with varying degrees of

452

JVM Scripting Languages

difficulty. Many of these languages are fairly esoteric. Some, like JRuby,
have evolved to the point where they transcend a simple "scripting
language" on Android.

However, there are two other languages worth mentioning, as they are
fairly well-known in Java circles: Groovy and Jython.

Groovy

Groovy is perhaps the most popular Java-based language that does not have
its roots in some other previous language (Java, Javascript, Python, etc.).
Designed in some respects to be a "better Java than Java", Groovy gives you
access to Java classes while allowing you to write scripts with dynamic
typing, closures, and so forth. Groovy has an extensive community,
complete with a fair number of Groovy-specific libraries and frameworks,
plus some books on the market.

At the time of this writing, it does not appear that Groovy has been
successfully ported to work on Android, though.

Jython

Jython is an implementation of a Python language interpreter in Java. It has
been around for quite some time, and gives you Python syntax with access
to standard Java classes where needed. While the Jython community is not
as well-organized as that of Groovy, there are plenty of books covering the
use of Jython.

Jython's momentum has flagged a bit in recent months, in part due to Sun's
waning interest in the technology and the departure of Sun employees from
the project. One attempt to get Jython working with Android has been shut
down, with people steered towards SL4A. It is unclear if others will make
subsequent attempts.

453

http://code.google.com/p/jythonroid/
http://www.jython.org/
http://groovy.codehaus.org/

PART V – Advanced Development

CHAPTER 26

Reusable Components

In the world of Java outside of Android, reusable components rule the
roost. Whether they are simple JARs, are tied in via inversion-of-control
(IoC) containers like Spring, or rely on enterprise service buses like Mule,
reusable Java components are a huge portion of the overall Java ecosystem.
Even full-fledged applications, like Eclipse or NetBeans, are frequently
made up of a number of inter-locking components, many of which are
available for others to use in their own applications.

In an ideal world, Android will evolve similarly, particularly given its
reliance upon the Java programming language. This begs the question:
what are the best ways to package code into a reusable component? Or,
perhaps more basic: what are the possibilities for making reusable
components?

Pick Up a JAR

A Java JAR is simplicity incarnate: a ZIP archive of classes compiled to
bytecode. While the JAR as a packaging method is imperfect – dealing with
dependencies can be no fun – it is still a very easy way to bundle Java logic
into a discrete item that can be uploaded, downloaded, installed,
integrated, and used.

Android introduces a seemingly vast number of challenges, though.

457

http://www.netbeans.org/
http://www.eclipse.org/
http://www.mulesource.org/
http://www.springframework.org/

Reusable Components

The JAR Itself

Packaging up a set of Java code into a JAR is very straightforward, even if
that Java code refers to Android APIs. Whether you use the jar command
directly, the <jar> task in an Ant script, or the equivalent in Eclipse, you
just package up the class files as you normally would.

For example, here is an Ant task that creates a JAR for an Android project:

<target name="jar" depends="compile">
 <jar
 destfile="bin/CWAC-MergeAdapter.jar"
 basedir="bin/classes"
 />
</target>

To create a project that targets a JAR file, just create a regular Android
project (e.g., android create project or the Eclipse new-project wizard), but
ignore the options to build an APK. Just compile the code and put it in the
JAR.

Note that the JAR will contain Java class files, meaning Java bytecode. The
reuser of your JAR will put your JAR into their project (e.g., in the libs/
directory), and their project will convert your JAR'd classes into Dalvik
bytecode as part of building their APK.

Resources

The JAR can take care of your Java code. And if all you need is Java code,
reuse via JAR file is extremely easy.

Android code often uses other things outside of Java code, and that is where
the problems crop up. The most prominent of these "other things" are
resources: layouts, bitmaps, menus, preferences, custom view attributes,
etc.

458

Reusable Components

Android projects expect these resources to be in the project's own res/
directory, and there is no facility to get these resources from anywhere else.
That causes some problems.

Packaging and Installing

First, you are going to need to package up the resources you want to ship
and to distribute them along with your JAR. You could try to package them
in the JAR itself, or you could put the JAR and resources into some larger
container, like a ZIP file.

The people reusing your code will need to not only add the JAR to their
projects, but also unpack those shipped resources (in their respective
resource sets) and put them in their projects as well.

Naming

The act of unpacking those resources and putting them in a project leads to
potential naming conflicts. If you have a layout named main.xml and the
project already has a layout named main.xml, somebody loses.

Hence, when you write your reusable code, you will want to adopt a naming
convention that "ensures" all your resource names are going to be unique.
Of course, you have no true way of absolutely ensuring that they will be
unique, but you can substantially increase your odds. One approach is to
prefix all names with something distinctive for your project.

Note that the "names" will be filenames for file-based resources (layouts,
drawables, etc.) and the values of android:name attributes for element-based
resources (strings, dimensions, colors, etc.).

Also note that android:id values do not have to be unique, as Android is
already set up to support the notion of multiple distinct uses of an ID.

459

Reusable Components

ID Lookup

Complicating matters further is that even if your build process generates an
R.java file, the resource identifiers encoded in that file will be different in
your project than in the reuser's project. Hence, you cannot refer to
resources via R. references, like you would in a regular Android application.

If all your resources have simple integer identifiers, you can use the
getIdentifier() method on the Resources class to convert between a string
representation of the resource identifier and the actual identifier itself. This
uses reflection, and so is not fast. You should strongly consider caching
these values to minimize the number of reflection calls.

However, at least one type of resource does not have a simple integer
resource identifier – custom view attributes. R.styleable.foo is an int[],
not an int. getIdentifier() will only work with an integer resource
identifier. Your alternative is to do the reflection directly, or find some
existing code that will handle that for you, so you can get at the int[] that
you need.

Customizing and Overriding

Bear in mind that the reuser of your project may wish to change some
things. Perhaps your bitmaps clash with their desired color scheme.
Perhaps you did not ship string resources in all desired translations.
Perhaps your context menu needs some more items.

There are two ways you can support such modifications. One is to tell the
reusers to modify their copy of the resources they unpacked into their
projects. This has the advantage of not requiring any particular code
changes on your part. However, it may make support more difficult –
perhaps some of the modifications they make accidentally break things,
and you may have a tough time answering questions about a modified code
base.

460

Reusable Components

The alternative is for you to support setters, custom view attributes, or
similar means for reusers to supply their own resource identifiers for you to
use. Where they give you one, use it; where they do not, use the resource
you shipped. This adds to your project's code but may offer a cleaner
customization model for reusers.

Assets

Assets – files in assets/ in an Android project – will have some of the same
issues as do resources:

• You need to package and distribute those assets

• Reusers need to unpack those assets into their projects

• You have to take steps to prevent name collisions (e.g., use a
directory in assets/ likely to be unique to your project)

• Potentially, reusers may want to use a different asset than the one
you shipped

Since assets are accessed by a string name, rather than a generated resource
ID, at least you do not have to worry about that particular issue, as you
would with a raw resource.

Manifest Entries

If your reusable code ships activities, services, content providers, or
broadcast receivers, reusers of your code will need to add entries for your
components in their AndroidManifest.xml file. Similarly, if you require
certain permissions, or certain hardware features, you will have other
manifest entries (e.g., <uses-permission>) that will be needed in a reusing
project's manifest.

You can handle this by supplying a sample manifest and providing
instructions for what pieces of it need to be merged into the reuser's own
manifest.

461

Reusable Components

AIDL Interfaces

If you are shipping a Service in your JAR, and if that Service is supposed to
allow remote access via AIDL, you will need to ship the AIDL file(s) with
the JAR itself. Those files will be needed by consumers of the Service, even
if the developer integrating the JAR itself might not need those files.

This pattern – a JAR containing a remote Service – is probably going to be
unusual. More likely, a remote Service will be packaged as part of an
application in an APK file, rather than via a JAR.

Permissions

Your code may require certain Android permissions in order to succeed,
such as needing WAKE_LOCK to use a WakeLock, or needing INTERNET, or
whatever. Unfortunately, you cannot specify permissions in a JAR file, so
you will need to make sure that reusers of your JAR correctly add the
permissions you require, or find ways to gracefully degrade what you do
when those permissions are missing.

You can see if the hosting project requested your permission by using
checkPermission() on PackageManager:

int result=getPackageManager()
 .checkPermission("android.permission.WAKE_LOCK",
 getPackageName());

if (PackageManager.PERMISSION_DENIED==result) {
 // do something
}

If it did not, what you do is up to the way your API is designed and how you
want to handle such problems:

• You could throw a RuntimeException. Since developers will encounter
this problem during development, this should not harm their
production application.

462

Reusable Components

• You could return false or null or some other "didn't work" return
value from a method. For example, you could design an API that
allows developers to check if a certain feature is available, then
return false from that method.

• You could ignore the problem and let the Android-generated
RuntimeException handle it. However, this may not be as friendly to
your reusers as might throwing your own RuntimeException.

• You could throw a regular checked exception if you prefer (e.g., a
custom PermissionMissingException), though that requires extra
try/catch blocks in the reuser's code for what should only be a
configuration error in their project's manifest.

Other Source Code

You may have Java source beyond the actual reusable classes themselves,
such as sample code demonstrating how to reuse the JAR and related files.
You will need to consider how you wish to distribute this code, as part of
the actual component package (e.g., ZIP) or via separate means (e.g., git
repository).

Your API

Your reusable code should be exposing an API for reusing projects to call.
Most times, if you are packaging code as a JAR, that API will be in the form
of Java classes and methods.

Public versus Non-Public

Those classes and methods will need to be public, as you want the reusing
project to reside in its own Java package, not yours.

This means that your black-box test suite (if you have one) and sample
code (if you offer any) really should be in separate Java packages as well, so
you test and demonstrate the public API. Otherwise, you may accidentally
access package-protected classes and methods.

463

Reusable Components

Flexibility versus Maintainability

As with any body of reusable code, you are going to have to consider how
much you want to actually implement. The more features and options you
provide, the more flexible your reusable code will be for reusers. However,
the more features and options you provide, the more complex your reusable
code becomes, increasing maintainability costs over time.

This is particularly important when it comes to the public API. Ideally, your
public API expands in future releases but does not eliminate or alter the
API that came before it. Otherwise, when you ship an updated JAR, your
reusers' projects will break, making them unhappy with you and your code.

Documentation

If you are expecting people to reuse your code, you are going to have to tell
them how to do that. Usually, these sorts of packages ship documentation
with them, sometimes a clone of what is available online. That way,
developers can choose the local or hosted edition of the documentation as
they wish.

Note that generated documentation (e.g., Javadocs) may still need to be
shipped or otherwise supplied to reusers, if you are not providing the
source code in the package. Without the source code, reusers cannot
regenerate the Javadocs.

Licensing

Your reusable code should be accompanied by adequate licensing
information.

Your License

The first license you should worry about is your own. Is your component
open source? If so, you will want to ship a license file containing those

464

Reusable Components

terms. If your component is not open source, make sure there is a license
agreement shipped with the component that lets the reuser know the terms
of use.

Bear in mind that not all of your code necessarily has to have the same
license. For example, you might have a proprietary license for the
component itself, but have sample code be licensed under Apache License
2.0 for easy copy-and-paste.

Third-Party License Impacts

You may need to include licenses for third party libraries that you have to
ship along with your own JAR. Obviously, those licenses would need to give
you redistribution rights – otherwise, you cannot ship those libraries in the
first place.

Sometimes, the third party licenses will impact your project more directly,
such as:

• Incorporating a GPL library may require your project to be licensed
under the same license

• Adding support for Facebook data may require you to limit your API
or require reusers to supply API access keys, since you probably do
not have rights to redistribute Facebook data

Pros, Cons, and Other Forms of Navel-Gazing

So, which approach should you take? Just a JAR? A BrodcastReceiver? A
service? Or maybe some hybrid of these approaches? Which of these will a
"reuser" (developer reusing your component) find best?

Well, that depends.

There are any number of criteria upon which you can judge those three
core techniques. Below, we examine a few such criteria, in hopes of

465

Reusable Components

illustrating the benefits and the detriments of each approach, so you can
apply the same sort of analysis for the criteria that are important to you.

Richness of API

One criterion is the richness of the API. In other words, how "natural" is it
for somebody to reuse your reusable component? Does it feel like it is
simply part of the Android API or other Java development? Or does the
architecture of the potential component system leave reusers feeling
constrained?

For fine-grained interactions, the JAR is tough to beat. You can publish
whole class libraries this way, without being limited to certain data types or
having to jump through hoops for each method you want to expose. Your
component is just another set of Java classes a reuser can code against, or
integrate into their layouts, or whatever.

A remote service does let you expose a Java API, but you are constrained to
data types that work with AIDL. The Intent "extras" API actually allows a
somewhat richer set of data to be passed along with the request, but it is
more awkward if you need to get responses back.

You might also consider some form of hybrid, putting your own rich Java
API wrapper around the service AIDL or Intent-based IPC scheme. This
gives your reusers the best of both worlds.

Code Duplication

With space at a premium on some devices, minimizing code duplication
may be worth considering. An ordinary JAR, used by several applications,
must be bundled with each of those applications – there is no shared
classpath for common JARs. As a result, one JAR can wind up consuming
several times its "natural" size in actual footprint, if several copies are baked
into several applications.

466

Reusable Components

Conversely, a service – whether accessed via AIDL or by a set of Intents –
can support several applications while only being installed once.

Ease of Initial Deployment

Unfortunately, Android's packaging mechanism runs a bit counter to the
benefits of a single service described in the previous section.

Applications are installed on a per-APK basis. There is no "package
manager" in the sense you see in Linux, or a .msi file like you might see on
Windows, that let's you bundle up several components to be installed at
once.

A remote service intended for use among several applications must be
packaged and deployed as its own application. End users have to know that
they need to not only install the main application but also install any
support services that are not already installed. This can cause a fair amount
of confusion, because end users are used to installing and running
applications, not installing applications and ignoring them (since they are
not meant for direct use). Also, end users are used to installing applications
and having an associated icon appear in their launcher, yet there may not
be a point for a remote service to offer any sort of UI, let alone appear in the
launcher.

Until this issue is rectified in one form or fashion, it will generally be
simpler to deploy a JAR baked into the application reusing it, whether that
JAR exposes a class library or a local service.

Intended Form of Integration

Most of the time, reusable components are meant to be specifically reused
by other developers, who code to an API, whether that API is expressed as a
Java class or an IPC method or an Intent to be raised.

467

Reusable Components

However, Android does offer an introspection engine, allowing one activity
to find other activities that can perform useful operations upon a piece of
content. For example, you might create a PDF file viewer, since none are
built into Android; Android email clients might then be able to use an
Intent to trigger your activity to view a PDF attachment. To make this work,
though, you need to implement a BroadcastReceiver, so you can provide
your functionality to other applications this way. The benefit is that you can
add value to existing applications without those applications specifically
integrating your code.

A Private Library

The "r6" version of the Android SDK introduced the "library project". This
offers a form of reuse, to share a chunk of code between projects. It is
specifically aimed at developers or teams creating multiple applications
from the same code base. Perhaps the most popular occurrence of this
pattern is the "paid/free" application pair: two applications, one offered for
free, one with richer functionality that requires a payment. Via a library
project, the common portions of those two applications can be
consolidated, even if those "common portions" include things like
resources.

The library project support is integrated into Eclipse, though you can create
library projects for use via Ant as well.

Creating a Library Project

An Android library project, in many respects, looks like a regular Android
project. It has source code and resources. It has a manifest. It supports
third-party JAR files (e.g., libs/).

What it does not do, though, is build an APK file. Instead, it represents a
basket of programming assets that the Android build tools know how to
blend in with a regular Android projects.

468

http://developer.android.com/guide/developing/other-ide.html#libraryProject
http://developer.android.com/guide/developing/eclipse-adt.html#libraryProject

Reusable Components

To create a library project in Eclipse, start by creating a normal Android
project. Then, in the project properties window (e.g., right-click on the
project and choose Properties), in the Android area, check the "Is Library"
checkbox. Click [Apply], and you are done.

To create a library project for use with Ant, you can use the android create
lib-project command. This has the net effect of putting an
android.library=true entry in your project's default.properties file.

Using a Library Project

Once you have a library project, you can attach it to a regular Android
project, so the regular Android project has access to everything in the
library.

To do this in Eclipse, go into the project properties window (e.g., right-click
on the project and choose Properties). Click on the Android entry in the list
on the left, then click the [Add] button in the Library area. This will let you
browse to the directory where your library project resides. You can add
multiple libraries and control their ordering with the [Up] and [Down]
buttons, or remove a library with the [Remove] button.

For developing using Ant, you can use android update lib-project

command. This adds an entry like android.library.reference.1=... to your
project's default.properties file, where ... is the relative path to your
library project. You can add several such libraries, controlling their ordering
via the numeric suffix at the end of each property name (e.g., 1 in the
previous example).

Now, if you build the main project, the Android build tools will:

• Include the src/ directories of the main project and all of the
libraries in the source being compiled.

• Include all of the resources of the projects, with the caveat that if
more than one project defines the same resource (e.g.,
res/layout/main.xml), the highest priority project's resource is

469

Reusable Components

included. The main project is top priority, and the priority of the
remainder are determined by their order as defined in Eclipse or
default.properties.

This means you can safely reference R. constants (e.g., R.layout.main) in
your library source code, as at compile time it will use the value from the
main project's generated R class(es).

Limitations of Library Projects

While library projects are useful for code organization and reuse, they do
have their limits, such as:

• As noted above, if more than one project (main plus libraries)
defines the same resource, the higher-priority project's copy gets
used. Generally, that is a good thing, as it means that the main
project can replace resources defined by a library (e.g., change
icons). However, it does mean that two libraries might collide. It is
important to keep your resource names distinct, a concept touched
upon in greater detail later in this chapter.

• While you can define entries in the manifest file for a library, at
present, they do not appear to be used.

• AIDL files defined in a library will not be picked up by the main
project.

• While resources from libraries are put into the main project's APK,
assets defined in a library's assets/ directory are not.

• One library cannot depend on another library. You can either
produce or consume a library, but not both.

Picking Up a Parcel

The author of this book has also started The Android Parcel Project, a set of
conventions and tools to help create reusable Android components. The
goal is to make it just a bit easier to create an Android library project that

470

http://andparcel.com/

Reusable Components

can successfully be reused by third party developers, once distributed in
some form.

Binary-Only Library Projects

Android library projects are designed for distributing source code. That
may or may not be palatable in all cases.

You can create a binary-only library project via the following steps:

1. Create an Android library project, with your source code and such –
this is your master project, from which you will create a version of
the library project for distribution

2. Compile the Java source (e.g., ant compile) and turn it into a JAR file

3. Create a distribution Android library project, with the same
resources as the master library project, but no source code

4. Put the JAR file in the distribution Android library project's libs/
directory

The resulting distribution Android library project will have everything a
main project will need, just without the source code.

Note that if you use resources, you will need to take extra steps with a
binary-only library project to deal with the resource identifiers, a topic
covered in the next section.

Resource Naming Conventions

As mentioned previously, resources in multiple libraries might collide with
one another, particularly for obvious names (e.g., res/layout/main.xml, the
app_name string resource). You need to take steps to help minimize the odds
of this occurring with your reusable component.

471

Reusable Components

Resource Name Prefixes

The simple answer is to append a prefix to the front of all resource names.
Here, "resource names" refers to:

• The filenames of resources where the resource itself is a file (e.g.,
the filename of a layout resource)

• The names of resources where more than one resource resides in an
XML file (e.g., the name attribute of a string resource)

Bear in mind the resource naming limits (letters, numbers, underscores;
cannot start with a number).

Hence, instead of res/layout/main.xml, you might have
res/layout/cwac_touchlist_main.xml.

Ideally, we would use a prefix that is based on package-style naming
conventions, for minimal chance of collision. However,
com_commonsware_cwac_touchlist_main.xml would be painful to type. Also,
since the "collision space" is merely the world of reusable libraries, not the
Android Market, feel free to choose something shorter that is unlikely to be
taken by anyone else.

Also, you do not need to prefix android:id values (e.g., in layout files), as
Android assumes that there may be multiple definitions of those values.

Eventually, the Android Parcel Project will supply a lint-style utility to help
you validate that you are applying a prefix for all required resources.

Runtime Resource ID Lookups

For library projects distributed with full source code, just applying the
prefix to all resources is sufficient.

However, if you are distributing a binary-only library project, you will run
into a problem. Your library-compiled code will use a generated ID that will

472

Reusable Components

differ, in all likelihood, from the ID generated by the main project from the
combined set of resources. Hence, if you simply use
R.layout.cwac_touchlist_main (or the like) in your code, you will wind up
with missing or invalid resources at runtime – the value that the javac
compiler inlined in your class will be the wrong value.

Instead, we need to look up those resource IDs at runtime. There are two
ways to do this:

1. Use the getIdentifier() method on a Resources object, typically
obtained via getResources() on some Context. This uses reflection
under the covers, and since that can be slow, it is a really good idea
to cache the results of these lookups. And, getIdentifier() does not
support all types of identifiers – notably, it does not work with
custom attributes in custom widgets.

2. Use the ParcelHelper class supplied by the Android Parcel Project.

This is distributed in a plain JAR file (CWAC-Parcel.jar), available from a
GitHub repository.

You need to create an instance of ParcelHelper, supplying your prefix and a
Context. Then, when you need a resource ID, you can call methods like:

• getLayoutId()

• getMenuId()

• getDrawableId()

• and so forth

These lookups are a bit expensive, since they involve reflection. Hence,
ParcelHelper caches them on your behalf, to improve performance.

For example, here is some code to initialize a ParcelHelper, then inflate a
layout named main (i.e., res/layout/cwac_colormixer_main.xml):

parcel=new ParcelHelper("cwac-colormixer", getContext());

((Activity)getContext())

473

http://github.com/commonsguy/cwac-parcel
http://github.com/commonsguy/cwac-parcel

Reusable Components

 .getLayoutInflater()
 .inflate(parcel.getLayoutId("main"), this, true);

(note that, for backwards compatibility with a previous edition of the
Android Parcel Project, you can supply a dash in a prefix, which will be
converted to an underscore automatically)

Parcel Distribution

Android library projects designed to be reusable components (parcels) can
just be packaged as ZIP files for distribution, much as Google did with the
License Validation Library. The more immediate question is, what should
be distributed?

• You will need to decide whether to distribute source code or go the
binary-only library project route

• You may wish to consider having some sort of sample project
included in the distribution (e.g., a demo/ subproject referencing the
parent project as a library)

• You should have some sort of license (e.g., LICENSE file with Apache
License 2.0 terms), so developers know the "rules of the game" for
reusing your component

• You may wish to include documentation, or perhaps that can just be
on a Web site

• Be sure to include any dependent JARs (e.g., in the library project's
libs/ directory), or ensure potential reusers know where to get the
JARs your code requires

474

CHAPTER 27

Testing

Presumably, you will want to test your code, beyond just playing around
with it yourself by hand.

To that end, Android includes the JUnit test framework in the SDK, along
with special test classes that will help you build test cases that exercise
Android components, like activities and services. Even better, Android has
"gone the extra mile" and can pre-generate your test harness for you, to
make it easier for you to add in your own tests.

This chapter assumes you have some familiarity with JUnit, though you
certainly do not need to be an expert. You can learn more about JUnit at the
JUnit site, from various books, and from the JUnit Yahoo forum.

You Get What They Give You

From the command line, you use android create project to create a regular
Android project. To create a project designed to test another project – what
we will call a "test project" – you use the android create test-project
command. From Eclipse, you can create a test project using the appropriate
wizard. You will need to tell it which project to test, where you want the
test project to reside, etc.

An Android test project is complete set of Android project artifacts:
manifest, source directories, resources, etc. Much of its structure is

475

http://tech.groups.yahoo.com/group/junit
http://www.junit.org/

Testing

identical to a regular test project. In fact, the generated test project is all
ready to go, other than not having any tests of significance. If you build and
install your main project (onto an emulator or device), then build and
install the test project, you will be able to run unit tests. For example, the
Contacts/Spinners project has a tests/ subdirectory containing a test project
set up to test various facets of the Spinners application.

Android ships with a very rudimentary JUnit runner, called
InstrumentationTestRunner. Since this class resides in the Android
environment (emulator or device), you need to invoke the runner to run
your tests on the emulator or device itself. To do this, you can run the
following command from a console:

adb shell am instrument -w
com.commonsware.android.contacts.spinners.tests/android.test.InstrumentationTest
Runner

In this case, we are instructing Android to run all the available test cases for
the com.commonsware.android.contacts.spinners package, as this chapter uses
some tests implemented on the Contacts/Spinners sample project.

If you were to run this on your own project, substituting in your package
name, with just the auto-generated test files, you should see results akin to:

com.commonsware.android.contacts.spinners.ContactsDemoTest:.
Test results for InstrumentationTestRunner=.
Time: 0.61

OK (1 test)

The first line will differ, based upon your package and the name of your
project's initial activity, but the rest should be the same, showing that a
single test was run, successfully.

Of course, this is only the beginning.

476

Testing

Erecting More Scaffolding

Here is the source code for the test case that Android automatically
generates for you:

package com.commonsware.android.contacts.spinners;

import android.test.ActivityInstrumentationTestCase;

/**
 * This is a simple framework for a test of an Application. See
 * {@link android.test.ApplicationTestCase ApplicationTestCase} for more
information on
 * how to write and extend Application tests.
 * <p/>
 * To run this test, you can type:
 * adb shell am instrument -w \
 * -e class com.commonsware.android.contacts.spinners.ContactsDemoTest \
 *
com.commonsware.android.contacts.spinners.tests/android.test.InstrumentationTest
Runner
 */
public class ContactsDemoTest extends
ActivityInstrumentationTestCase<ContactSpinners> {

public ContactsDemoTest() {
super("com.commonsware.android.contacts.spinners", ContactSpinners.class);
}

}

As you can see, there are no actual test methods. Instead, we have an
ActivityInstrumentationTestCase implementation named ContactsDemoTest.
The class name was generated by adding Test to the end of the main activity
(ContactsDemo) of the project.

In the next section, we will examine ActivityInstrumentationTestCase more
closely and see how you can use it to, as the name suggests, test your
activities.

However, you are welcome to create ordinary JUnit test cases in Android –
after all, this is just JUnit, merely augmented by Android. So, you can create
classes like this:

477

Testing

package com.commonsware.android.contacts.spinners;

import junit.framework.TestCase;

public class SillyTest extends TestCase {
 protected void setUp() throws Exception {
 super.setUp();

 // do initialization here, run on every test method
 }

 protected void tearDown() throws Exception {
 // do termination here, run on every test method

 super.tearDown();
 }

 public void testNonsense() {
 assertTrue(1==1);
 }
}

There is nothing Android-specific in this test case. It is simply standard
JUnit, albeit a bit silly.

You can also create test suites, to bundle up sets of tests for execution.
Here, though, if you want, you can take advantage of a bit of Android
magic: TestSuiteBuilder. TestSuiteBuilder uses reflection to find test cases
that need to be run, as shown below:

package com.commonsware.android.contacts.spinners;

import android.test.suitebuilder.TestSuiteBuilder;
import junit.framework.Test;
import junit.framework.TestSuite;

public class FullSuite extends TestSuite {
 public static Test suite() {
 return(new TestSuiteBuilder(FullSuite.class)
 .includeAllPackagesUnderHere()
 .build());
 }
}

Here, we are telling Android to find all test cases located in FullSuite's
package (com.commonsware.android.contacts.spinners) and all sub-packages,
and to build a TestSuite out of those contents.

478

Testing

A test suite may or may not be necessary for you. The command shown
above to execute tests will execute any test cases it can find for the package
specified on the command line. If you want to limit the scope of a test run,
though, you can use the -e switch to specify a test case or suite to run:

adb shell am instrument -e class
com.commonsware.android.contacts.spinners.ContactsDemoTest -w
com.commonsware.android.contacts.spinners.tests/android.test.InstrumentationTest
Runner

Here, we indicate we only want to run ContactsDemoTest, not all test cases
found in the package.

Testing Real Stuff

While ordinary JUnit tests are certainly helpful, they are still fairly limited,
since much of your application logic may be tied up in activities, services,
and the like.

To that end, Android has a series of TestCase classes you can extend
designed specifically to assist in testing these sorts of components.

ActivityInstrumentationTestCase

The test case created by Android's SDK tools, ContactsDemoTest in our
example, is an ActivityInstrumentationTestCase. This class will run your
activity for you, giving you access to the Activity object itself. You can then:

• Access your widgets

• Invoke public and package-private methods (more on this below)

• Simulate key events

Of course, the automatically-generated ActivityInstrumentationTestCase
does none of that, since it does not know much about your activity. Below
you will find an augmented version of ContactsDemoTest that does a little bit
more:

479

Testing

package com.commonsware.android.contacts.spinners;

import android.test.ActivityInstrumentationTestCase;
import android.widget.ListView;
import android.widget.Spinner;

public class ContactsDemoTest
 extends ActivityInstrumentationTestCase<ContactSpinners> {
 private ListView list=null;
 private Spinner spinner=null;

 public ContactsDemoTest() {
 super("com.commonsware.android.contacts.spinners",
 ContactSpinners.class);
 }

 @Override
 protected void setUp() throws Exception {
 super.setUp();

 ContactSpinners activity=getActivity();

 list=(ListView)activity.findViewById(android.R.id.list);
 spinner=(Spinner)activity.findViewById(R.id.spinner);
 }

 public void testSpinnerCount() {
 assertTrue(spinner.getAdapter().getCount()==3);
 }

 public void testListDefaultCount() {
 assertTrue(list.getAdapter().getCount()>0);
 }
}

Here are the steps to making use of ActivityInstrumentationTestCase:

1. Extend the class to create your own implementation. Since
ActivityInstrumentationTestCase is a generic, you need to supply the
name of the activity being tested (e.g.,
ActivityInstrumentationTestCase<ContactsDemo>).

2. In the constructor, when you chain to the superclass, supply the
name of the package of the activity plus the activity class itself. You
can optionally supply a third parameter, a boolean indicating if the
activity should be launched in touch mode or not.

3. In setUp(), use getActivity() to get your hands on your Activity
object, already typecast to the proper type (e.g., ContactsDemo)

480

Testing

courtesy of our generic. You can also at this time access any widgets,
since the activity is up and running by this point.

4. If needed, clean up stuff in tearDown(), no different than with any
other JUnit test case.

5. Implement test methods to exercise your activity. In this case, we
simply confirm that the Spinner has three items in its drop-down
list and there is at least one contact loaded into the ListView by
default. You could, however, use sendKeys() and the like to simulate
user input.

If you are looking at your emulator or device while this test is running, you
will actually see the activity launched on-screen.
ActivityInstrumentationTestCase creates a true running copy of the activity.
This means you get access to everything you need; on the other hand, it
does mean that the test case runs slowly, since the activity needs to be
created and destroyed for each test method in the test case. If your activity
does a lot on startup and/or shutdown, this may make running your tests a
bit sluggish.

Note that your ActivityInstrumentationTestCase resides in the same package
as the Activity it is testing – ContactsDemoTest and ContactsDemo are both in
com.commonsware.android.contacts.spinners, for example. This allows
ContactsDemoTest to access both public and package-private methods and
data members. ContactsDemoTest still cannot access private methods,
though. This allows ActivityInstrumentationTestCase to behave in a white-
box (or at least gray-box) fashion, inspecting the insides of the tested
activities in addition to testing the public API.

Now, despite the fact that Android's own tools create an
ActivityInstrumentationTestCase subclass for you, that class is officially
deprecated. They advise using ActivityInstrumentationTestCase2 instead,
which offers the same basic functionality, with a few extras, such as being
able to specify the Intent that is used to launch the activity being tested.
This is good for testing search providers, for example.

481

Testing

AndroidTestCase

For tests that only need access to your application resources, you can skip
some of the overhead of ActivityInstrumentationTestCase and use
AndroidTestCase. In AndroidTestCase, you are given a Context and not much
more, so anything you can reach from a Context is testable, but individual
activities or services are not.

While this may seem somewhat useless, bear in mind that a lot of the static
testing of your activities will come in the form of testing the layout: are the
widgets identified properly, are they positioned properly, does the focus
work, etc. As it turns out, none of that actually needs an Activity object –
so long as you can get the inflated View hierarchy, you can perform those
sorts of tests.

For example, here is an AndroidTestCase implementation,
ContactsDemoBaseTest:

package com.commonsware.android.contacts.spinners;

import android.test.AndroidTestCase;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ListView;
import android.widget.Spinner;

public class ContactsDemoBaseTest extends AndroidTestCase {
 private ListView list=null;
 private Spinner spinner=null;
 private ViewGroup root=null;

 @Override
 protected void setUp() throws Exception {
 super.setUp();

 LayoutInflater inflater=LayoutInflater.from(getContext());

 root=(ViewGroup)inflater.inflate(R.layout.main, null);
 root.measure(480, 320);
 root.layout(0, 0, 480, 320);

 list=(ListView)root.findViewById(android.R.id.list);
 spinner=(Spinner)root.findViewById(R.id.spinner);
 }

482

Testing

 public void testExists() {
 assertNotNull(list);
 assertNotNull(spinner);
 }

 public void testRelativePosition() {
 assertTrue(list.getTop()>=spinner.getBottom());
 assertTrue(list.getLeft()==spinner.getLeft());
 assertTrue(list.getRight()==spinner.getRight());
 }
}

Most of the complicated work is performed in setUp():

1. Inflate our layout using a LayoutInflater and the Context supplied
by getContext()

2. Measure and lay out the widgets in the inflated View hierarchy – in
this case, we lay them out on a 480x320 screen

3. Access the individual widgets to be tested

At that point, we can test static information on the widgets, but we cannot
cause them to change very easily (e.g., we cannot simulate keypresses). In
the case of ContactsDemoBaseTest, we simply confirm the widgets exist and
are laid out as expected. We could use FocusFinder to test whether focus
changes from one widget to the next should work as expected. We could
ensure our resources exist under their desired names, test to see if our fonts
exist in our assets, or anything else we can accomplish with just a Context.

Since we are not creating and destroying activities with each test case, these
tests should run substantially faster.

Other Alternatives

Android also offers various other test case base classes designed to assist in
testing Android components, such as:

• ServiceTestCase, used for testing services, as you might expect given
the name

483

Testing

• ActivityUnitTestCase, a TestCase that creates the Activity (like
ActivityInstrumentationTestCase), but does not fully connect it to
the environment, so you can supply a mock Context, a mock
Application, and other mock objects to test out various scenarios

• ApplicationTestCase, for testing custom Application subclasses

Monkeying Around

Independent from the JUnit system is the Monkey.

The Monkey is a test program that simulates random user input. It is
designed for "bash testing", confirming that no matter what the user does,
the application will not crash. The application may have odd results –
random input entered into a Twitter client may, indeed, post that random
input to Twitter. The Monkey does not test to make sure that results of
random input make sense; it only tests to make sure random input does not
blow up the program.

You can run the Monkey by setting up your initial starting point (e.g., the
main activity in your application) on your device or emulator, then running
a command like this:

adb shell monkey -p com.commonsware.android.database -v --throttle 100 600

Working from right to left, we are asking for 600 simulated events,
throttled to run every 100 milliseconds. We want to see a list of the invoked
events (-v) and we want to throw out any event that might cause the
Monkey to leave our application, as determined by the application's
package (-p com.commonsware.android.contacts.spinners).

The Monkey will simulate keypresses (both QWERTY and specialized
hardware keys, like the volume controls), D-pad/trackball moves, and
sliding the keyboard open or closed. Note that the latter may cause your
emulator some confusion, as the emulator itself does not itself actually
rotate, so you may end up with your screen appearing in landscape while

484

Testing

the emulator is still, itself, portrait. Just rotate the emulator a couple of
times (e.g., <Ctrl>-<F12>) to clear up the problem.

For playing with a Monkey, the above command works fine. However, if
you want to regularly test your application this way, you may need some
measure of repeatability. After all, the particular set of input events that
trigger your crash may not come up all that often, and without that
repeatable scenario, it will be difficult to repair the bug, let alone test that
the repair worked.

To deal with this, the Monkey offers the -s switch, where you provide a seed
for the random number generator. By default, the Monkey creates its own
seed, giving totally random results. If you supply the seed, while the
sequence of events is random, it is random for that seed – repeatedly using
the same seed will give you the same events. If you can arrange to detect a
crash and know what seed was used to create that crash, you may well be
able to reproduce the crash.

There are many more Monkey options, to control the mix of event types, to
generate profiling reports as tests are run, and so on. The Monkey
documentation in the SDK's Developer's Guide covers all of that and more.

485

http://developer.android.com/guide/developing/tools/monkey.html
http://developer.android.com/guide/developing/tools/monkey.html

CHAPTER 28

Production Applications

Of course, all of this programming you have done will be a bit silly if you
only have debug applications running on an emulator, or perhaps your own
phone. Somewhere along the line, you may want others to run your
applications as well, perhaps by buying them from you.

This chapter focuses on the steps you will need to take to have your
application be distributed in a production form, through the Android
Market and elsewhere. Much of the focus is on the Android Market because
it is the largest and the one people tend to think about. However, along the
way, we will cover other markets, other forms of distribution, and things
you need to do that are relevant for any form of production distribution.

Market Theory

As noted, the Android Market is the largest and most visible marketplace
for Android applications. It, therefore, will tend to set the tone that other
markets either follow or specifically position themselves against.

The biggest of these is the Android Market "lifestream" model.

When somebody buys an application off of the Android Market, they are
not just buying one edition of one application for one device. Rather, they
are buying all editions of that application for any device they purchase and
register to their Google account.

487

Production Applications

For example, the Android Market supports all of the following scenarios
and more:

• The user buys a phone, buys some applications off of the Market,
and then replaces their phone with another Android device

• The user buys two Android devices (a phone and a larger-screen
media player) and registers both devices to the same Google
account, and therefore can download applications purchased from
one device on both devices

• The user buys some applications off of the Market, uninstalls them
to free up space, then reinstalls them later from the Market without
additional fees

• The user buys some applications off of the Market and gets all of
those applications' updates as free downloads, without additional
fees

This "lifestream" model is great for the user. Whether it is great or bad for
you as a developer depends on your revenue model and how you view your
relationship with your customers. Regardless, it is what it is, and this
"lifestream" concept permeates much of the way you will use the Android
Market.

Making Your Mark

Perhaps the most important step in preparing your application for
production distribution is signing it with a production signing key. While
mistakes here may not be immediately apparent, they can have significant
long-term impacts, particularly when it comes time for you to distribute an
update.

Role of Code Signing

There are many reasons why Android wants you to sign your application
with a production key. Here are perhaps the top three:

488

Production Applications

1. It will help distinguish your production applications from debug
versions of the same applications

2. Multiple applications signed with the same key can access each
other's private files, if they are set up to use a shared user ID in their
manifests

3. You can only update an application if it has a signature from the
same digital certificate

The latter one is the most important for you, if you plan on offering updates
of your application. If you sign version 1.0 of your application with one key,
and you sign version 2.0 of your application with another key, version 2.0
will not install over top version 1.0 – it will fail with a certificate-match
error.

What Happens In Debug Mode

Of course, you may be wondering how you got this far in life without
worrying about keys and certificates and signatures (unless you are using
Google Maps, in which case you experienced a bit of this when you got your
API key).

The Android build process, whether through Ant or Eclipse, creates a
debug key for you automatically. That key is automatically applied when
you create a debug version of your application (e.g., ant debug or ant
install). This all happens behind the scenes, so it is very possible for you to
go through weeks and months of development and not encounter this
problem.

In fact, the most likely place where you might encounter this problem is in
a distributed development environment, such as an open source project.
There, you might have encountered problem #3 from the previous section,
where a debug application compiled by one team member cannot install
over the debug application from another team member, since they do not
share a common debug key. You may have run into similar problems just on
your own if you use multiple development machines (e.g., a desktop in the

489

Production Applications

home office and a notebook for when you are on the road delivering
Android developer training).

So, developing in debug mode is easy. It is mostly when you move to
production that things get a bit more interesting.

Creating a Production Signing Key

To create a production signing key, you will need to use keytool. This comes
with the Java SDK, and so it should be available to you already.

The keytool utility manages the contents of a "keystore", which can contain
one or more keys. Each "keystore" has a password for the store itself, and
keys can also have their own individual passwords. You will need to supply
these passwords later on when signing an application with the key.

Here is an example of running keytool:

Figure 96. Running keytool

The parameters used here are:

• -genkey, to indicate we want to create a new key

• -v, to be verbose about the key creation process

• -keystore, to indicate what keystore we are manipulating (cw-
release.keystore), which will be created if it does not already exist

• -alias, to indicate what human-readable name we want to give the
key (cw-release)

• -keyalg, to indicate what public-key encryption algorithm to be
using for this key (RSA)

• -validity, to indicate how long this key should be valid, where
10,000 days or more is recommended

490

Production Applications

The length of the validity is important. Once your key expires, you can no
longer use it for signing new applications, which means once the key
expires, you cannot update existing Android applications. 10,000 days,
presumably, is beyond the expected lifespan of this signing mechanism.
Also, the Android Market requires your key to be valid beyond October 22,
2033.

If you run the above command, you will be prompted for a number of
pieces of information. If you have ever created an SSL certificate, the
prompts will be familiar:

Figure 97. Results of running keytool

You will note that this is a self-signed certificate – you do not have to
purchase a certificate from Verisign or anyone. These keys are for creating
immutable identity, but are not for creating confirmed identity. In other

491

Production Applications

words, these certificates do not prove you are such-and-so person, but can
prove that the same key signed two different APKs.

In theory, you only need to do the above steps once per business.

Signing with the Production Key

To sign an application with a production key, you must first create an
unsigned version of the APK. By default (e.g., ant debug), you get an APK
signed with the debug key. Instead, specifically build a release version (e.g.,
ant release), which should give you an -unsigned.apk file in your project's
bin/ directory.

Next, to apply the key, you will use the jarsigner tool. Like keytool,
jarsigner comes with the Java SDK, and so you should already have it on
your development machine.

Here is an example of running jarsigner:

Figure 98. Running jarsigner

In this case, the parameters supplied are:

• -verbose, to explain what is going on as the program runs

• -keystore, to indicate where the keystore that contains the
production key resides (~/cw-release.keystore)

• the path to the APK to sign (bin/vidtry-unsigned.apk)

• the alias of the key in the keystore to apply (cw-release)

At this point, jarsigner will prompt you for the keystore's password (and
the key's password if you supplied a distinct password for it to keytool),
then it will apply the signature:

492

Production Applications

Figure 99. Results of running jarsigner

Next, you should test the signature by jarsigner -verify -verbose -certs
on the same APK file, which now has a signature. You will get output akin
to:

 1090 Sat Aug 08 13:56:38 EDT 2009 META-INF/MANIFEST.MF
 1211 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.SF
 946 Sat Aug 08 13:56:38 EDT 2009 META-INF/CW-RELEA.RSA
sm 1683 Sat Aug 08 13:54:46 EDT 2009 res/drawable/btn_media_player.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 743 Sat Aug 08 13:54:46 EDT 2009 res/drawable/btn_media_player_disabled.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1030 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_disabled_selected.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1220 Sat Aug 08 13:54:46 EDT 2009 res/drawable/btn_media_player_pressed.9.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1471 Sat Aug 08 13:54:46 EDT 2009
res/drawable/btn_media_player_selected.9.png

493

Production Applications

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 576 Sat Aug 08 13:54:46 EDT 2009 res/drawable/ic_media_pause.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 938 Sat Aug 08 13:54:46 EDT 2009 res/drawable/ic_media_play.png

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1176 Sat Aug 08 13:54:46 EDT 2009 res/drawable/media_button_background.xml

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2668 Sat Aug 08 13:54:46 EDT 2009 res/layout/main.xml

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 1368 Sat Aug 08 13:54:46 EDT 2009 AndroidManifest.xml

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 2888 Sat Aug 08 13:54:46 EDT 2009 resources.arsc

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

sm 16860 Sat Aug 08 13:54:46 EDT 2009 classes.dex

 X.509, CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
 [certificate is valid from 8/8/09 1:49 PM to 12/24/36 12:49 PM]

 s = signature was verified
 m = entry is listed in manifest
 k = at least one certificate was found in keystore
 i = at least one certificate was found in identity scope

jar verified.

In particular, you want to make sure that the name of the key is what you
expect and is not "Android Debug", which would indicate the APK was
signed with the debug key instead of the production key.

494

Production Applications

At this point, you should also rename the APK, at least to remove the now-
erroneous -unsigned portion of the filename.

Now, you have a production-signed APK, ready for distribution...or,
hopefully, ready for more testing, then distribution.

Two Types of Key Security

There are two facets to securing your production key that you need to think
about:

1. You need to make sure nobody steals your production keystore and
its password. If somebody does, they could publish replacement
versions of your applications – since they are signed with the same
key, Android will assume the replacements are legitimate.

2. You need to make sure you do not lose your production keystore
and its password. Otherwise, even you will be unable to publish
replacement versions of your applications.

For solo developers, the latter scenario is more probable. There already
have been cases where developers had to rebuild their development
machine and wound up with new keys, locking themselves out from
updating their own applications. As with everything involving computers,
having a solid backup regimen is highly recommended.

For teams, the former scenario may be more likely. If more than one person
needs to be able to sign the application, the production keystore will need
to be shared, possibly even stored in the revision control system for the
project. The more people who have access to the keystore, the more likely it
is somebody will wind up doing something evil with it. This is particularly
true for projects with public revision control systems, such as open source
projects – developers might not think of the implications of putting the
production keystore out for people to access.

495

Production Applications

Related Keys

Switching from debug to production keys may have additional
ramifications for your application.

For example, if you are integrating Google Maps, you no doubt obtained a
Maps API key to use with your application. As it turns out, you most likely
got an API that corresponds to your debug signing key. For production, you
will need a different Maps API key, one that corresponds to your
production signing key.

This will likely be a significant pain for you, because the Maps API key goes
in the source code, meaning the source code is now dependent upon how it
is being signed. You may wish to apply some automation to this, such as
building custom Ant tasks that switches between debug and production
Maps API keys in your source code depending on how you are building the
project.

In principle, the same concept may extend to other keys for other Android
development add-ons, though none are known at this time.

Get Ready To Go To Market

While being able to sign your application reliably with a production key is
necessary for publishing a production application, it is not sufficient.
Particularly for the Android Market, there are other things you must do, or
should do, as part of getting ready to release your application.

Versioning

As was described in The Busy Coder's Guide to Android Development, you
need to supply android:versionCode and android:versionName attributes in
your <manifest> element in your AndroidManifest.xml file. The value of
android:versionName is what users and prospective users will see in terms of
the label associated with your application version (e.g., "1.0.1", "System V",

496

Production Applications

"Loquacious Llama"). More important, though, is the value of
android:versionCode, which needs to be an integer increasing with each
release – that is how Android tells whether some edition of your APK is an
upgrade over what the user currently has.

You also need to specify the minSdkVersion of your application:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
 <uses-sdk minSdkVersion="2" />
 ...
</manifest>

Package Name

You also need to make sure that your package name – as denoted by the
package attribute of the root <manifest> element – is going to be unique. If
somebody tries downloading your application onto their device, and some
other application is already installed with that same package name, your
application will fail to install.

Since the manifest's package name also provides the base Java package for
your project, and since you hopefully named your Java packages with
something based off of a domain name you own or something else
demonstrably unique, this should not cause a huge problem.

Also, bear in mind that your package name must be unique across all
applications on the Android Market, should you choose to distribute that
way.

Icon and Label

Your <application> element needs to specify android:icon and android:name
attributes, to supply the name and icon that will be associated with the
application in the My Applications list on the device and related screens.
Your activities will inherit the icon if they do not specify icons of their own.

497

Production Applications

If you have graphic design skills, the Android developer site has guidelines
for creating icons that will match other icons in the system.

Logging

In production, try to minimize unnecessary logging, particularly at low
logging levels (e.g., debug). Remember that even if Android does not
actually log the information, whatever processing is involved in making the
Log.d() call will still be done, unless you arrange to skip the processing
somehow. You could outright delete the extraneous logging calls, or wrap
them in an if() test:

if (!SomeClass.IS_DEVELOPMENT) {
 Log.d(TAG, "This is what happened");
}

Here, IS_DEVELOPMENT is a public static final boolean value, true during
development, false as you work your way to production. Whether you
adjust the definition by hand or by automating the build process is up to
you. But, when IS_DEVELOPMENT is false, any work that would have been
done to build up the actual Log invocation will be skipped, saving CPU
cycles and battery life.

Conversely, error logs become even more important in production.
Sometimes, you have difficult reproducing bugs "in the lab" and only
encounter them on customer devices. Being able to get stack traces from
those devices could make a major difference in your ability to get the bug
fixed rapidly.

First, in addition to your regular exception handlers, consider catching
everything those handlers miss, notably runtime exceptions:

Thread.setDefaultUncaughtExceptionHandler(onBlooey);

This will route all uncaught exceptions to an onBlooey handler:

private Thread.UncaughtExceptionHandler onBlooey=
 new Thread.UncaughtExceptionHandler() {

498

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html

Production Applications

 public void uncaughtException(Thread thread, Throwable ex) {
 Log.e(TAG, "Uncaught exception", ex);
 }
};

There, you can log it, raise a dialog if appropriate, etc.

Then, offer some means to get your logs off the device and to you, via email
or a Web service. Some Android analytics firms, like Flurry, offer exception
stack trace collection as part of their service. There are also open source
projects that support this feature, such as android-remote-stacktrace.

Testing

As always, testing, particularly acceptance testing, is important.

Bear in mind that the act of creating the production signed version of your
application could introduce errors, such as having the wrong Google Maps
API key. Hence, it is important to do user-level testing of your application
after you sign, not just before you sign, in case the act of signing messed
things up. After all, what you are shipping to those users is the production
signed edition – you do not want your users tripping over obvious flaws.

As you head towards production, also consider testing in as many distinct
environments as possible, such as:

• Trying more than one device, particularly if you can get devices with
different display sizes

• If you rely on the Internet, try your application with WiFi, with 3G,
with EDGE/2G, and with the Internet unavailable

• If you rely on GPS, try your application with GPS disabled, GPS
enabled and working, and GPS enabled but not available (e.g.,
underground)

499

http://code.google.com/p/android-remote-stacktrace/
http://flurry.com/

Production Applications

EULA

End-user license agreements – EULAs – are those long bits of legal prose
you are supposed to read and accept before using an application, Web site,
or other protected item. Whether EULAs are enforcible in your jurisdiction
is between you and your qualified legal counsel to determine.

In fact, many developers, particularly of free or open source applications,
specifically elect not to put a EULA in their applications, considering them
annoying, pointless, or otherwise bad.

However, the Android Market developer distribution agreement has one
particular clause that might steer you towards having a EULA:

You agree that if you use the Market to distribute Products,
you will protect the privacy and legal rights of users. If the
users provide you with, or your Product accesses or uses, user
names, passwords, or other login information or personal
information, you must make the users aware that the
information will be available to your Product, and you must
provide legally adequate privacy notice and protection for
those users...But if the user has opted into a separate
agreement with you that allows you or your Product to
store or use personal or sensitive information directly
related to your Product (not including other products
or applications) then the terms of that separate
agreement will govern your use of such information.

(emphasis added)

Hence, if you are concerned about being bound by what Google thinks
appropriate privacy is, you may wish to consider a EULA just to replace
their terms with your own.

Unfortunately, having a EULA on a mobile device is particularly annoying
to users, because EULAs tend to be long and screens tend to be short.

500

Production Applications

Again, please seek professional legal assistance on issues regarding EULAs.

To Market, To Market

And now, the moment you have been waiting for: putting your application
on the Android Market!

Of course, you may have to wait a little bit longer, depending on where you
live, how much you like reading legal agreements, and so on.

Here is what you need to do to get your application on the Market.

Google Checkout

Google Checkout is Google's answer to PayPal. More importantly for
Android developers, as of the time of this writing, it is the sole option for
charging users from the Android Market. Of course, if you are distributing
your applications for free, this is not an issue.

If you do intend to charge, though, you need to go through the process to
get a merchant account with Google Checkout. Basically, this integrates
Google Checkout with a checking account of yours, so purchases can be
deposited in your account as they occur. It also helps to validate you as a
business.

Note that Google Checkout is only available in certain countries. Both you
(as the developer) and your customer needs to be in Checkout-capable
countries for payment to work. This means, among other things, that if you
do not reside in a country supported by Google Checkout, you cannot
charge for applications in the Android Market.

All of this is not free. 30% is taken off the top as a fee to the mobile carriers
who distribute and support the Android Market. Google Checkout may also
charge additional fees, particularly for cross-border purchases, though it is
unclear if that is happening at present.

501

Production Applications

Note that the Android Market also allows users to pay via carrier accounts
for some carriers like T-Mobile and AT&T. This allows users to have their
purchases appear on their mobile phone bill or deducted from their pre-
paid accounts.

Terms and Conditions

As the author is fond of saying: "I am not a lawyer, nor do I play one on TV".

That being said, there are a number of aspects of the Android Market terms
and conditions that you should examine closely to see if they will pose a
problem for you, such as:

• "All fees received by Developers for Products distributed via the
Market must be processed by the Market’s Payment Processor."

• "Products that cannot be previewed by the buyer (such as
applications): You authorize Google to give the buyer a full refund
of the Product price if the buyer requests the refund within 48
hours after purchase."

• "Except in cases when multiple disputes are initiated by a user with
abnormal dispute history, billing disputes received by Payment
Processor for Products sold for less than $10 may be automatically
charged back to the Developer, in addition to any handling fees
charged by the Payment Processor."

• "Users are allowed unlimited reinstalls of each application
distributed via the Market."

• "You agree that you will not engage in any activity with the Market,
including the development or distribution of Products, that
interferes with, disrupts, damages, or accesses in an unauthorized
manner the devices, servers, networks, or other properties or
services of any third party including, but not limited to, Android
Users, Google or any mobile network operator."

• "You may not use customer information obtained from the Market
to sell or distribute Products outside of the Market."

502

http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-distribution-agreement.html

Production Applications

• "You may not use the Market to distribute or make available any
Product whose primary purpose is to facilitate the distribution of
Products outside of the Market."

Some of those terms are in support of the "lifestream" model that the
Android Market employs. Others are not. Whether any of them will cause
you difficulty is for you and qualified legal counsel to determine.

Data Collection

Putting your application on the Market is a matter of signing up for the
Market (and incurring a $25 fee to do so), then uploading and describing
the APKs you wish to distribute. It helps, though, if you determine how you
are going to describe those applications before you find yourself confronted
with the Android Market upload form.

Here is what you will need to provide to Google as part of uploading an
Android Market application:

Images

You must supply two screenshots of your application, in HVGA (480x320),
WVGA800 (800x480) or WVGA854 (854x480) portrait size, as PNG or JPEG
files. These will be scaled down by the Market for display on the device as
thumbnails, and the user can tap the thumbnail to see a larger (but possibly
not quite 1:1 in terms of pixel size) rendition of the screenshot. You can
supply up to eight such screenshots.

You also must supply a "high resolution application icon", at 512x512
resolution. This should be based upon your main activity icon.

You can also supply up to two "promotional graphics", as 180x120 PNG or
JPEG files, and a "feature graphic" at 1024x500 resolution. How these are
used is unclear, but you could use this for a logo, or a zoomed-in fragment
of another screenshot, etc.

503

Production Applications

Your goal behind the screenshots and graphics should be to demonstrate to
the user the polish of your user interface, and perhaps a bit on how they can
use it – though that is probably only going to be obvious if they tap on the
thumbnail to view the full screenshot.

Title

Here, you have 30 characters to name your application. This will be what
prospective customers see in the Android Market application when they
browse for applications, either in a category or via a search.

Since this is your first chance to grab the prospect's attention, try to
maximize your use of these 30 characters. If your application name is short,
consider using a subtitle. For example, if you created an application that
tries to use the vibration motor to create a massager, rather than just
having a title of, say, "Relaxon", consider "Relaxon: Custom Massager" or
"Relaxon: Ease Muscle Tension". Here, you provide the prospect with a
tidbit of additional information beyond a probably opaque name, making it
a bit more likely that they will click your entry and read your description.

Note that you should not put the version number in the title in most cases.
For one, it takes up space you might use for more useful information for
prospects. For another, the application description screen – where the
prospect goes after clicking your title – will already show your version
number as pulled from your application's manifest. It is possible that for a
major release, it would be worth the space to add the version number, but
probably not for incremental updates.

You have the option of supporting multiple languages for your Market
entry. If you go this route, the user will see your entry in their own
language, if you and the Market both support it. If you specified that you
wanted to support multiple languages in the Market, you need to provide a
title in each language. Be careful with this, though – you may not want to
try adding listings in languages that your application itself does not
support, as users may consider that a "bait and switch" tactic (sell it in
German, ship English).

504

Production Applications

Description

In addition to the really short title, you can provide description.
Specifically, you have 4,000 characters to explain to the prospect what it is
that makes your application worth getting.

Your description has two missions:

1. Help people find your application, by containing likely keywords
that users might search on that pertain to your application. For
example, if you are distributing a "calorie counter" application, you
might try to work in words like "weight", "diet", "exercise", "health",
and such into your application description, so it will come up in
search results for those terms.

2. Help convince those who find your application that it is worth
buying.

While search will be limited to the 4,030 combined title and description
characters, you can also leverage a Web site to help convince people to
consider your application. Also, 4,000 characters is quite a bit, so do not
feel that you have to use all of them – write something that people will be
willing to read.

As with the title, if you specified that you wanted to support multiple
languages in the Market, you need to provide a description in each
language.

There is also a separate field for "promo text", up to 80 characters. It is
unclear where this prose will appear inside the Android Market. You can
also supply up to 500 characters' worth of "recent changes" data, an ideal
spot for a roster of new features, bug fixes, and the like you have added to
your current version.

505

Production Applications

Application Type and Category

You may choose where you want your program to be listed among the
available Android Market categories. As with the on-device Android Market
application, you first choose "Applications" or "Games", then choose the
specific category. Note that you can only be in one category...at a time.

It appears that you can elect to re-categorize your application after initial
publication. Hence, you might consider running what marketers call "A/B
testing" – after a month or so, start switching your application to other
likely categories, and track sales on each for a while. Eventually, you will
find the category that yields the most sales. This, of course, assumes your
application could reasonably appear in more than one category.

Pricing

You can either stipulate a price for your application, or have it be free. To
have a price, you need to have a Google Checkout merchant account, as
described above, and that may preclude you from setting a price if
merchant accounts are not available in your country.

Note that you cannot switch from free to non-free, so be sure you want a
free application before choosing to make it be free.

Also note that the price you provide will be in your own national currency
and will show up in that currency for prospective buyers. This causes a bit
of confusion, as many people are not used to dealing with other currencies.

Copy Protection

The Android Market offers copy protection, of at least a minor sort. It
attempts to make it difficult for somebody to copy the game off of one
device and onto another one owned by somebody else. Its effectiveness is
questionable, considering that "rooting" Android devices is commonplace
and "rooted" Android devices can bypass the copy protection with ease.

506

Production Applications

If that were not bad enough, the Android Market copy protection:

• Limits distribution, as users of the ADP1 developer phone cannot
obtain copy protected applications off of the Market

• Had a round of problems early on where upgrades of copy-protected
applications seemed to be unreliable, though complaints about this
seem to have subsided

• Is irreversible: once you make the selection for your application
(copy-protected or not), you are stuck with that decision for all
updates

Since the copy protection system is being discontinued in the near future
(and may already be by the time you read this), please do not use it.

Content Rating

You must supply a content rating, indicating the suitability of your
application for users based on their age. Android offers an all-ages category,
plus pre-teen, teen, and mature. If you select the wrong rating, your
application may be pulled off the Market later. Google has descriptions for
what sorts of features or content would put you in which category.

Locations for Distribution

Independent from your selection of languages is a selection of locations
where your application should be distributed. You can either check specific
countries, or check "All Current and Future Locations" for maximum
coverage. By clicking the name of a country, you may also be able to filter
based upon specific carrier (e.g., in the US, you could distribute to T-Mobile
customers but not Verizon customers).

Many developers are safe with the "All Current and Future Locations"
selection. Here are some reasons you may elect to constrain distribution to
only a subset of locations:

507

http://www.google.com/support/androidmarket/bin/answer.py?hl=en&answer=188189

Production Applications

• You are concerned that your application may violate some nations'
laws, and so you restrict distribution to known safe venues

• You do not wish to pay the additional fee for international sales that
Google Checkout imposes

• You are concerned about your ability to provide the desired level of
technical support on a global basis

• You are concerned that your application may violate some carriers'
terms of service, so you restrict your distribution to carriers you
have relationships with or otherwise deem safe

Just remember that if you do not check "All Current and Future Locations"
that you should check back in your Developer Console periodically to see if
there are new location or carrier options available to you.

Contact Information

You will need to provide a contact name, email address, and phone number.
As the Android Market agreement indicates, this information is made
publicly available. Hence, giving out your home phone number or your
personal email address may not be the best option.

For email addresses, consider getting a dedicated account for your Android
application uses, or at least consider using an alias if your mail provider
offers it.

For phone numbers, consider setting up an inexpensive alternative number,
such as Skype, Google Voice, onSIP, etc. You can either elect to try
answering calls or have them all roll to voicemail, finding out about
messages via email and returning the calls as needed.

Pulling Distribution

If you decide you do not want to have your application published on the
Market, you can unpublish it at any time. Just go to your Android Market
Developer Console, click on the application in question, and click the

508

http://www.google.com/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fwww.onsip.com%2F&ei=qVB_SoLZOMSktgf5iJHdAQ&usg=AFQjCNEGo9jMWwAJr2Kq7EjajNchRLuEGw
http://www.google.com/googlevoice/about.html
http://www.skype.com/allfeatures/onlinenumber/

Production Applications

Unpublish link at the bottom of the page. Your application will be removed
from distribution within minutes.

Note that your application will still remain in the system, just not in the
public Market. So, if the reason for pulling distribution was temporary (e.g.,
major bug needing a fix), you can republish again later, with a new APK as
needed.

Market Filters

Not every application will be visible on every device, even if that device has
the Android Market. Here are some known, expected filters that are in
place:

• Applications written using Android 1.5 or earlier SDKs will not
appear in the Market for QVGA devices, such as the HTC Tattoo.

• Applications that require certain hardware (e.g., camera) will not
appear in the Market for devices that lack that hardware

• Paid applications will not appear in the Market running on a
developer phone (e.g., ADP1, ADP2)

Going Wide

The Android Market is not the only answer for distributing your
applications. For some people, it may not even be the best one. After all:

1. Not all Android devices will have Android Market, particularly
those whose manufacturers are simply using the Android open
source tree rather than signing any sort of deal with Google to get
proprietary applications like Android Market

2. Not all users can use Android Market. For example, owners of the
ADP1 cannot obtain copy-protected applications from the Android
Market

509

Production Applications

3. Not all developers can sell via the Android Market, only those in
select locations, in part due to the dependence upon Google
Checkout

4. Android Market's only current payment option is Google Checkout,
which some consumers will not wish to use, or cannot use because
they lack the payment mechanisms (e.g., credit card) that Google
Checkout requires

5. Android Market's terms and conditions may contain terms that
developers are unwilling to accept

6. Android Market takes 30% off the top from the developer's take,
which some developers may prefer to avoid

7. Some carriers and/or device manufacturers may elect to run their
own markets for control purposes, or to capture more revenue (e.g.,
more than 30%), or to support other languages, or other reasons

8. Considering all the complaints that other firms have gotten with
their one-app-store-to-rule-the-world tactics, it seems to be in
Android's best interests to have a vibrant ecosystem of competing
markets

9. Carriers have already exerted control over the Android Market's
contents, banning tethering applications and such, while
independent markets may not have similar restrictions

As of the time of this writing, the leading independent Android application
markets – AndAppStore, SlideME, Handango, etc. – are all fairly small and
under-marketed compared to the Android Market. However, some carriers
(e.g., Verizon) and device manufacturers (e.g., Motorola) are starting to
include their own markets on devices. These offer guaranteed distribution
that the independent markets cannot.

Click Here To Download

Of course, there is nothing to say you have to use any of these markets. You
are welcome to distribute Android applications yourself, through your Web
site. That might be useful for:

510

http://www.handango.com/catalog/SoftwareCatalogByPlatform.jsp?platformId=80
http://slideme.com/
http://andappstore.com/

Production Applications

• Free applications, in addition to listing them in markets

• Internal distribution within a business, via a company intranet, for
applications not destined for public use

• Implementing your own purchasing system that does not line up
with existing models, such as a subscription-based library of
applications

The minimum you need is to have the Android APK MIME type configured
on your Web server. Then, if somebody clicks on a link to your APK on your
site, Android will know to route the download to the installation engine.
The Android application MIME type is application/vnd.android.package-
archive, and you will need to set that up as appropriate for your Web server.
For example, for nginx, you simply need to add the following as another
entry in your mime.types file:

application/vnd.android.package-archive apk;

511

Keyword Index

Class. ..

AccelerateDecelerateInterpolator.144

AccelerateInterpolator.144

AccessibilityManager.......................................253

AccountManager..253

Activity.19, 64, 124, 126, 146, 192-194, 222, 235,
288, 338, 340, 358, 394, 439, 477, 478, 480, 482

ActivityInstrumentationTestCase..475, 477-480,
482 ActivityInstrumentationTestCase2.479

ActivityManager...253

ActivityUnitTestCase.......................................482

Adapter.28-30, 78-80, 83, 85-87, 296, 300

AdapterView. ...80-82, 86

AdapterView.OnItemSelectedListener.43

AdapterViewFlipper.77, 78

AlarmManager.....74, 192, 223-226, 228, 229, 231,
232, 234, 253, 377, 401 AlertDialog.

..121, 122, 124, 216

AlertDialog.Builder...121

AlphaAnimation.136, 140-142, 146

AnalogClock...65

AndroidTestCase. ..480

Animation. ..136, 142-145

AnimationListener....................................143, 144

AnimationSet.136, 145, 146

AnimationUtils...142

AppAdapter. ...337, 338

Application. ...482

ApplicationInfo..339

ApplicationTestCase..482

AppService. ..226

AppWidgetHost. ...90

AppWidgetHostView..90

AppWidgetManager.70-72, 80

AppWidgetProvider.67, 69, 72, 73, 76, 80, 86

ArrayAdapter. ...31, 338

ArrayList. ...33, 34, 361

ArrayRemoteViewsFactory.83

AsyncTask. ..112, 162, 220

AttributeSet..19-22, 127

513

Keyword Index

AudioManager. ..244

AudioService...241

AudioTrack. ..187

AutoCompleteTextView.181

BaseAdapter. ..34

BaseColumns. ...281

BatteryManager..199

BatteryMonitor.198, 200

BitmapDrawable...163

BooleanSetting...236

BounceInterpolator..145

BroadcastReceiver.64-66, 68, 69, 74, 193-195,
197, 201, 202, 222, 224, 225, 229, 230, 233,
341, 367, 368, 466

BrodcastReceiver. ..463

BshInterpreter. ..449

BshInterpreterTests.446, 450

BshService..210, 217

BshServiceDemo. ..211

Builder. ..121

Bundle. 22, 126, 435-439, 442, 443, 446, 447, 449

Button 31, 38, 47, 51-55, 59, 65, 250, 357, 362, 394

C2DMBaseReceiver.395, 396

C2DMBroadcastReceiver.396

C2DMReceiver. ..395, 396

CallLog..273

Camera....................................152-155, 158-161, 163

Camera.CameraInfo...159

Camera.Parameters.154, 160, 164

Camera.PictureCallback...................................161

Camera.ShutterCallback.161

CameraFinder. ...157, 158

CharSequence. ...205

Chronometer. ..65

Class. ...81

ClassicFinder. ...158

ClipboardManager.244, 248, 250

ClipData.248, 249, 251-253

ClipData.Item. ...249

ColorMixer.13, 14, 16, 18-25, 122-126, 128, 130

ColorMixer.OnColorChangedListener....124, 125

ColorMixerDemo...24, 25

ColorMixerDialog.........................122, 123, 125-127

ColorPreference. ...126-131

ColorWheel. ...14

ComponentName.70, 206, 333, 335

Configuration. ...384

ConnectivityManager...............................233, 253

ConstantsBrowser.258, 260, 261

Contacts. ..289, 297, 364

ContactsAdapterBridge...........................297, 300

ContactsContract.288, 294, 297, 304, 364

ContactsContract.CommonDataKinds.289

ContactsContract.Contacts.289

ContactsContract.Data.289

ContactsContract.Intents.Insert.305

ContactsDemo..................295, 301, 475, 478, 479

ContactsDemoBaseTest...........................480, 481

ContactsDemoTest.475, 477, 479

ContactsInserter. ...307

ContentObserver...269

514

Keyword Index

ContentProvider 192, 258, 261, 265, 269-271, 273,
276, 282, 285, 287-289, 293, 320-323, 369

ContentProvider/ConstantsBrowser..............259

ContentResolver.252, 257, 258, 262, 269, 270,
288

ContentValues...........................261, 266, 267, 281

Context 19, 21, 81, 82, 124, 142, 194, 235, 260,

340,
394, 449, 471, 480-482 CountDownLatch......443

createPendingIntent().439

Cursor. .29, 258-261, 266, 270, 276, 277, 281, 288,
360, 436 CursorAdapter.30, 128

CursorRemoteViewsFactory.83

CustomItem...106-109

CycleInterpolator......................................143, 144

DatabaseHelper. ..274

DatePickerDialog.121, 122, 125

DeadObjectException.207

DecelerateInterpolator.144

DevicePolicyManager.253

DialogInterface.OnClickListener.125

DialogPreference.126-130

DialogWrapper...261

doWakefulWork()..232

DownloadManager. ...254

Drawable13, 19, 39, 45-48, 51, 53, 105-107, 109, 113

Drawable/GradientDemo.................................48

DropBoxManager. ...254

EchoInterpreter. ..435

EchoInterpreterTests.442

EditText.65, 244, 245, 247, 248, 360, 362, 384,
394, 396

EditTextPreference...129

Exception. ...218

ExecuteScriptJob. ...217

FauxSender...341-343, 345

FauxSenderTest..344

FFCFinder. ..158

File. ...270, 283

FileProvider. ..286

FlowLayout. ..14

FocusFinder. ...481

FrameLayout..65

FullSuite. ..476

GeoPoint..91-93

GeoWebOne. ...2

GridView. ...77, 79

HashMap. ...284, 435

HeaderFooterDemo...36

I_Interpreter.440, 441, 445, 448

IBinder..206, 207

ImageButton..18, 65, 143

ImageView.........................65, 68, 70, 118-120, 197

InetAddress..246

InputMethodManager.....................................254

InputStream.262, 270, 283

InstrumentationTestRunner...........................474

Intent. xxii, 69, 73, 74, 81-83, 86, 87, 146, 191-195,
197-199, 201, 202, 207, 213, 220-223, 225, 226, 228,
230, 239, 249, 264, 290, 291, 305-307, 315, 323,
331-335, 337, 338, 340, 342, 343, 347, 349, 353,
355-358, 360, 367, 368, 392, 397, 437-441, 443,
464-466, 479

Intent.ShortcutIconResource.349

IntentFilter. ..201

515

Keyword Index

Intents. ..221

IntentService 74, 76, 221, 226, 227, 229, 230, 232-
234, 344, 392, 437

Intepreter...449

Interpolator. ...144

Interpreter. ..446, 449

InterpreterService.434, 437-441, 445-447, 450

InterpreterTestCase...442

IPClipper. ...245

IScript..210, 213, 215

IScriptResult.215, 216, 220

ItemizedOverlay..92, 94, 99, 105, 112, 114, 116-118,
120 KeyEvent. ..163

KeyguardManager. ..254

Launchalot..335

LayoutInflater.....................................70, 254, 481

LinearInterpolator. ..144

LinearLayout.24, 36, 65, 137, 138, 181

LinkedBlockingQueue.217

List. ..205, 335, 337, 339

ListActivity..30, 41, 295

ListAdapter.30, 33-35, 297, 314, 315

ListView. 27, 28, 30, 36, 39, 41, 44, 45, 48, 50, 70,
77, 79, 80, 89, 164, 259, 261, 295, 312, 314,
335, 337, 338, 479

Locater. ..4

Location. ..4

LocationListener. ...4, 10

LocationManager.4, 254

Log..496

LoremActivity. ...87

LoremBase...313

LoremDemo...314, 316

LoremSearch.316, 317, 322

LoremSuggestionProvider.321, 322

LoremViewFactory. ...82

LoremViewsFactory.83, 86

LoremWidget...82, 83

Map...205

MapActivity. ...91

MapController..91

MapView.91-95, 109, 114, 118

Media/Audio...167

MediaController. ..173

MediaPlayer.....165-167, 171, 172, 176, 181, 182, 185,
187 MediaPlayer.OnPreparedListener.182

MediaStore...262

Menu..142, 332

Menu.Item..334

MergeAdapter...............................29-31, 33-35, 39

MergeAdapterDemo..30

MotionEvent. ..114, 115, 117

MusicClipper. ..249

MyActivity. ...333

NetworkInterface. ...246

NinePatchDemo. ...59

NooYawk.......................93, 95, 97, 99, 107, 111, 112

Notification...223, 377

NotificationManager.254

Object. ..129, 368

Object[]. ...368

516

Keyword Index

onActivityResult(). ..439

OnAlarmReceiver.225, 226, 231, 232

OnBootCompleted. ..193

OnBootReceiver.193, 225

OnClickListener. ...65

OnColorChangedListener.23, 25

OnDragListener. ..253

OnSeekBarChangeListener.............................243

OnWiFiChangeReceiver.195

OutputStream..262, 270

OverlayItem.......................92, 95, 106, 111, 114, 116

OverlayTask...112, 113

OvershootInterpolator.145

PackageInfo..339

PackageManager.331, 335, 337, 339, 340, 381, 460

PairOfDice.68, 69, 73, 74

Parcelable. ..22, 205, 230

ParcelFileDescriptor................................270, 284

ParcelHelper. ...125, 471

PendingIntent......65, 70, 80-82, 86, 87, 222, 223,
225, 226, 361, 439, 440

PermissionMissingException.461

PhotoCallback. ...163

PictureDemo. ...161, 163

Player.178, 179, 181, 182, 184

Point. ..93

PopupPanel. ...97-99

PowerManager.228, 231, 254

Preference. ..121, 126-131

PreferenceActivity.121, 131

PreviewDemo. ...151

ProgressBar....................65, 181, 182, 197, 200, 241

ProgressDialog. ...121

Projection. ...93, 117

Provider......................................259, 273, 276-281

QuickSender.347, 349, 350

RadioButton...362

RelativeLayout...14, 18, 19, 65, 68, 95, 97, 98, 118,
179 RelativeLayout.LayoutParams.98

RemoteException. ...207

RemoteService. ..209

RemoteViews.64, 65, 68, 70, 71, 76-83, 85, 86

RemoteViewService. ..81

RemoteViewsFactory.80, 82, 83, 85

RemoteViewsService.80-83

ResolveInfo. ..337, 338

ResolveInfo.DisplayNameComparator...........337

Resources. ...340, 458, 471

RhinoInterpreter. ..449

RhinoInterpreterTests.....................................450

RotateAnimation.......................................136, 142

RuntimeException.232, 285, 460, 461

SackOfViewsAdapter.34

SavePhotoTask. ...162, 163

ScaleAnimation. ...136

SearchManager...254, 323

SearchRecentSuggestions........................322, 324

SearchRecentSuggestionsProvider..320-322,

329 SecretsProvider...264

SeekBar.14, 16, 20, 23, 59, 241, 243

SelectorAdapter. ..43

517

Keyword Index

SelectorDemo. ..41, 43

SelectorWrapper..43

Sender..360, 361, 363

sendWakefulWork().232

SensorManager. ...254

Service... .64, 65, 74, 192, 206, 220, 229, 235, 358,
460 ServiceConnection.206-208

ServiceTestCase. ...481

Settings. ..235, 239

Settings.Secure.235, 240, 385, 387

Settings.System.........235, 236, 240, 384, 385, 387

SettingsSetter. ..236, 238

SharedPreferences. ...131

SimpleCursorAdapter.. .29, 30, 259-261, 300, 302

SitesOverlay.107-109, 115, 119

SlidingPanel.................................138, 140, 142-145

SlidingPanelDemo. ..139

SmsManager. ..360, 361

SmsMessage. ..367, 368

SoundPool. ..186, 187

Spinner.259, 295, 296, 362, 365, 479

SQLiteInterpreter.435-437

SQLiteOpenHelper. ..274

SQLiteQueryBuilder.276, 277

StackView...77

StateListDrawable.45-47, 51-53, 106, 107

String.129, 205, 257, 266, 340, 446, 449

SurfaceHolder..............................152, 153, 178, 182

SurfaceHolder.Callback.152, 153

SurfaceView.151-154, 165, 176, 178, 179, 182, 183

TableLayout..14, 96

TappableSurfaceView.178, 181, 183

TelephonyManager..254

TestCase. ..477, 482

TestSuite...476

TestSuiteBuilder. ...476

TextSwitcher. ..136

TextView.16, 25, 30, 31, 38, 41, 43, 65, 86, 197,
200, 260, 312, 357 TimePickerDialog.122, 125

Toast....87, 89, 90, 92-94, 213, 216, 245, 246, 343-
345

ToneGenerator. ...187, 188

TranslateAnimation.136-138, 140, 141, 143, 144,
146 TranslationAnimation.142

TypedArray. ...21, 129

UiModeManager..254

Uri. .81, 166, 249, 251, 252, 255-259, 261-264, 266-
270, 277-282, 284, 289-291, 293, 297, 331,
333, 355-357, 360, 369

URLHandler..356-358

Vibrator. ...254

VideoDemo...174

VideoView.165, 172, 173, 176

View 13, 14, 16, 19, 20, 22, 28-30, 34-36, 38, 40, 41,
43, 63, 64, 70, 78, 79, 86, 90, 95, 98, 99,
127-129, 136, 142, 253, 480, 481

ViewAnimator. ...136

ViewFlipper...77, 78, 136

ViewGroup. ..95, 253

VolumeManager. ...243

Volumizer..241, 242

518

Keyword Index

WakefulIntentService.223, 224, 226-228, 230-
233, 393

WakeLock.223, 228-232, 254, 393, 460

WebSettings..1

WebView.1, 2, 4, 8, 10, 282, 284, 286

WebViewClient. ...1

WidgetProvider...80, 82

WidgetService..82, 83

WifiConfiguration. ..385

WifiManager.254, 384, 385

WindowManager...254

XmlPullParser..340

Command.......................................

adb shell pm disable.382

adb shell pm enable...382

android create lib-project...............................467

android create project.456, 473

android create test-project.473

android update lib-project.467

android update project -pxxv

ant compile..469

ant debug...487, 490

ant install. ..487

ant release..490

cron. ..223, 224

curl..397, 398

draw9patch. ...56, 57, 60

git. ...461

jar..456

jarsigner. ..490

javac. ...471

keytool. ..488, 490

lint. ...470

MP4Box -hint. ..177

nginx...509

pdftk *.pdf cat output combined.pdf.xx

Constant. ..

ACTION_PICK.................................257, 264, 290

ACTION_SEARCH. ..315

ACTION_TAG. ...332

ACTION_VIEW..291

ALTERNATIVE. ..333

BIND_AUTO_CREATE.207

CATEGORY_ALTERNATIVE.332, 333

CONTENT_URI...268

DEFAULT_CATEGORY....................................333

DELETE. ...262

MATCH_DEFAULT_ONLY..............................333

ORDER BY. ..258

RESULT_OK. ..291

TITLE..260

WHERE.258, 262, 266, 267, 279, 280

Method. ..

abortBroadcast(). ..368

addAdapter()..33

addFooterView()..36

addHeaderView(). ...36

addId()..257

addIntentOptions().332, 333, 335

519

Keyword Index

addJavascriptInterface()..............................2, 4, 7

addNetwork(). ...385

addView()...34

addViews(). ..34

areAllItemsEnabled().35

areAllItemsSelectable().....................................28

autoFocus()...163

bindService()...............207, 208, 213, 220, 221, 341

bindView()..128

boundCenter()..107

boundCenterBottom().107

buildFooter()..38

buildHeader(). ...38

buildUpdate(). ...70

bulkInsert(). ...261

callChangeListener()..130

checkPermission(). ...460

clearHistory()...324

copy()..283

create()...171

createChooser().331, 334, 335, 342, 344

createFromPdu(). ..368

createPendingResult().....................................222

delete()..............................262, 267, 270, 273, 279

divideMessage(). ..361

doInBackground()..163

doWakefulWork().226, 232

enable(). ...205

enableNetwork()..385

eval(). ...214, 218, 446

evaluateString()...449

execServiceTest().442, 443, 447

executeScript().214, 215, 217, 435

exit()...449

failure(). ..216, 439

findViewById(). ...70

finish().......................................146, 344, 347, 349

getAction(). ...115

getActivity(). ..478

getApplicationContext().82

getApplicationIcon().339

getApplicationLabel().339

getBackgroundDataSetting().233

getBestPreviewSize().154

getBroadcast(). ..226

getCameraInfo()...159

getCenter()...92

getCollectionType()...280

getColor()..21, 22

getContentProvider().......................................261

getContentResolver()......................................269

getContext(). ..481

getCount()..85

getData(). ...356

getDefault(). ..360

getDefaultSortOrder().....................................277

getDrawableId(). ..471

getFilesDir(). ..270

getFloat(). ..384

getFocusMode(). ..164

520

Keyword Index

getHeight(). ...92

getHolder(). ..152

getIdColumnName().277

getIdentifier(). ..458, 471

getInstalledApplications().339

getInstalledPackages().339

getInt(). ..131, 384

getIntent()...312

getItemId()...85

getItemViewType()..34

getLatitudeSpan(). ..93

getLaunchIntentForPackage().340

getLayoutId()..471

getLoadingView()..85

getLocalIPAddress().246

getLock(). ..231

getLongitudeSpan(). ...93

getMarker(). ..106, 107, 111

getMenuId()..471

getNumberOfCameras()..................................159

getPackageManager()...............................335, 337

getParameters()..154

getPersistedInt()...130

getPersistedString(). ..130

getPoint(). ..92

getPrimaryClip(). ...252

getProjection()...93

getRequiredColumns().278

getResources(). ...340, 471

getResourcesForActivity().340

getResourcesForApplication()........................340

getSingleType()..280

getString()...127, 260

getSupportedPreviewSizes().154

getSystemService().225, 235, 244, 253

getTableName(). ..277

getText(). ..245, 340

getType().267, 273, 280, 284

getUri(). ..252

getView(). ..86, 98, 260

getViewAt(). ..86

getViewTypeCount()..............................34, 35, 85

getWidth(). ..92

getX()...115, 117

getXml(). ..340

getY(). ..115, 117

hasStableIds(). ...85

hasText()...245

hide()..97, 98

hitTest(). ..116-118

inflate()...22

initBar(). ...242, 243

insert().261, 270, 273, 277, 278, 281

invalidate(). ..109, 113

isCollectionUri().......................................277-279

isEnabled()...28

isItemEnabled(). ..35

javaToJS(). ..449

loadAnimation()...142

loadUrl(). ..8, 10, 286

521

Keyword Index

makeMeAnAdapter().315

managedQuery()..............................258-260, 288

moveToFirst(). ...260

newUri()...249

newView()...128

notifyChange(). ...269

obtainStyledAttributes().21

onActivityResult().....................................222, 251

onAnimationEnd()...143

onBind()...206

onBindDialogView().128, 130

onClick(). ..125

onCreate(). 31, 85, 112, 153, 171, 178, 242, 245, 250,
259, 265, 270, 273, 283, 312, 315, 337

onCreateDialogView().128

onDeleted(). ...73

onDestroy().85, 270, 276, 377

onDialogClosed(). ..130

onDisabled(). ...73

onEnabled(). ..73

onError(). ...395

onGetDefaultValue()..129

onGetViewFactory(). ...82

onHandleIntent()......................221, 226, 232, 437

onItemSelected(). ..43

onKeyDown(). ..160

onListItemClick().80, 338

onLocationChanged()..10

onMessage(). ..395

onNewIntent(). ..312, 315

onNothingSelected()...44

onPause()...155, 198

onPictureTaken(). ...161

onPrepared(). ...182

onReceive()..................73, 194, 226, 229, 230, 232

onRegistered(). ..395

onRestoreInstanceState().22, 125, 126

onResume().153, 158, 198

onSaveInstanceState().................22, 125, 126, 377

onSearchRequested().309, 317

onServiceConnected().206, 207

onServiceDisconnected().206-208

onSetInitialValue()....................................129, 130

onTap(). ...92, 93, 99

onTouchEvent()....................................114, 115, 117

onUnregistered(). ..395

onUpdate(). ...67, 69, 72

open().152, 153, 158, 270, 284

openFile()...270, 284

openFrontFacing(). ..159

openInputStream().262, 269, 270

openOutputStream().262, 269, 270

overridePendingTransition().146, 147

pause(). ...167, 171

persistInt(). ...130

persistString()...130

pickMusic(). ...250

play(). ...171

playMusic(). ...252

playVideo()..181

populate(). ...118

522

Keyword Index

populateDefaultValues().................................278

postDelayed(). ...183, 185

prepare()...167, 171

prepareAsync().167, 171, 182

putProperty(). ...449

query().266, 270, 273, 276, 277, 281

queryBroadcastReceivers().............................340

queryContentProviders()................................340

queryIntentActivities().335, 337-339

queryIntentActivityOptions().335, 338, 339

queryIntentServices().340

recycle(). ...21

registerContentObserver().269

registerReceiver(). 192, 193, 195, 197, 201, 202, 341

release()..155, 231

requery(). ..261

reset()...181

resolveActivity(). ...338

resolveContentProvider().340

resolveService().340, 341

runOnUiThread(). ...216

searchItems(). ..322

seekTo(). ..171

send(). ..222, 440

sendBroadcast(). ..222

sendKeys(). ..479

sendMultipartTextMessage().361

sendTextMessage(). ...360

sendTheMessage()...365

sendWakefulWork().226, 232

setAnimationListener().143

setApplicationEnabledSetting().....................340

setButton()..125

setButton2()..125

setColor(). ..20, 22

setComponentEnabledSetting().341

setDataSource()..167

setDefaultKeyMode().......................................310

setDragImagePosition().119

setDuration()..140

setImageViewResource().70

setInterpolator(). ...144

setMax(). ..243

setNegativeButtonText()..................................127

setOnClickFillInIntent()...................................86

setOnClickPendingIntent().70

setOnItemSelectedListener().41

setOnPreparedListener().................................182

setOptimizationLevel().449

setPackage(). ..222

setPendingIntentTemplate().......................81, 86

setPictureFormat()...160

setPositiveButtonText().127

setPreviewDisplay(). ..153

setPrimaryClip().248, 252

setProgress(). ...243

setRemoteAdapter().81, 82

setRepeating()..225

setResult(). ...222, 349

setScreenOnWhilePlaying()............................182

523

Keyword Index

setState()...107

setText(). ..245, 248

setType(). ..152, 306

setup()..171

setUp(). ...478, 481

setupSuggestions().321, 322

setView(). ..125

setVisibility().95, 137, 142

show(). ..122

sleep(). ...112

start(). ...167

startActivity().146, 306, 338, 356, 357, 360

startActivityForResult().222, 251, 290, 349

startAnimation().136, 140

startDrag()..253

startForeground(). ...234

startPreview(). ..154

startSearch(). ..309, 317

startService().......194, 221, 230, 233, 437, 438, 441

stop(). ...167, 171, 181

stopSelf(). ...233

success()..216, 439

surfaceChanged(). ..153

surfaceCreated(). ..153

takePicture(). ..161

tearDown(). ...479

toggle()..138

toggleHeart(). ...108, 109

toPixels()..93, 117

toString()...214, 355

unbindService(). ..208

unregisterContentObserver().269

update().267, 270, 273, 278, 280, 281

updateAppWidget().70, 72, 73, 80

visitSample(). ...357

Property. ..

android:authorities. ..268

android:name.268, 316, 317

android:value...316, 317

524

	The Busy Coder's Guide to Advanced Android Development

	Welcome to the Book!
	Prerequisites
	Warescription
	Errata and the Book Bug Bounty
	Source Code
	Creative Commons and the Four-to-Free (42F) Guarantee
	Lifecycle of a CommonsWare Book
	WebView, Inside and Out
	Friends with Benefits
	Turnabout is Fair Play

	Crafting Your Own Views
	Pick Your Poison
	Colors, Mixed How You Like Them
	The Layout
	The Attributes
	The Class
	Seeing It In Use

	More Fun With ListViews
	Giant Economy-Size Dividers
	Choosing What Is Selectable
	Introducing MergeAdapter
	Lists via Merges
	How MergeAdapter Does It

	From Head To Toe
	Control Your Selection
	Create a Unified Row View
	Configure the List, Get Control on Selection
	Change the Row

	Stating Your Selection

	Creating Drawables
	Traversing Along a Gradient
	State Law
	A Stitch In Time Saves Nine
	The Name and the Border
	Padding and the Box
	Stretch Zones
	Tooling
	Using Nine-Patch Images

	Home Screen App Widgets
	East is East, and West is West...
	The Big Picture for a Small App Widget
	Crafting App Widgets
	The Manifest
	The Metadata
	The Layout
	The BroadcastReceiver
	The Result

	Another and Another
	App Widgets: Their Life and Times
	Controlling Your (App Widget's) Destiny
	Change Your Look
	One Size May Not Fit All
	Advanced App Widgets on Android 3.x
	New Widgets for App Widgets
	Preview Images
	Adapter-Based App Widgets

	Being a Good Host

	Interactive Maps
	Get to the Point
	Getting the Latitude and Longitude
	Getting the Screen Position

	Not-So-Tiny Bubbles
	Options for Pop-up Panels
	Defining a Panel Layout
	Creating a PopupPanel Class
	Showing and Hiding the Panel
	Tying It Into the Overlay

	Sign, Sign, Everywhere a Sign
	Selected States
	Per-Item Drawables
	Changing Drawables Dynamically

	In A New York Minute. Or Hopefully a Bit Faster.
	A Little Touch of Noo Yawk
	Touch Events
	Finding an Item
	Dragging the Item

	Creating Custom Dialogs and Preferences
	Your Dialog, Chocolate-Covered
	Basic AlertDialog Setup
	Handling Color Changes
	State Management

	Preferring Your Own Preferences, Preferably
	The Constructors
	Creating the View
	Dealing with Preference Values
	Using the Preference

	Animating Widgets
	It's Not Just For Toons Anymore
	A Quirky Translation
	Mechanics of Translation
	Imagining a Sliding Panel
	The Aftermath
	Introducing SlidingPanel
	Using the Animation

	Fading To Black. Or Some Other Color.
	Alpha Numbers
	Animations in XML
	Using XML Animations

	When It's All Said And Done
	Loose Fill
	Hit The Accelerator
	Animate. Set. Match.
	Active Animations

	Using the Camera
	Sneaking a Peek
	The Permission and the Feature
	The SurfaceView
	The Camera

	Image Is Everything
	Asking for a Camera. Maybe.
	Getting the Camera
	Asking for a Format
	Taking a Picture
	Using AsyncTask

	Maintaining Your Focus
	All the Bells and Whistles

	Playing Media
	Get Your Media On
	Making Noise
	Moving Pictures
	Pictures in the Stream
	Rules for Streaming
	Establishing the Surface
	Floating Panels
	Playing Video
	Touchable Controls

	Other Ways to Make Noise
	SoundPool
	AudioTrack
	ToneGenerator

	Handling System Events
	Get Moving, First Thing
	The Permission
	The Receiver Element
	The Receiver Implementation

	I Sense a Connection Between Us...
	Feeling Drained
	Sticky Intents and the Battery
	Other Power Triggers

	Advanced Service Patterns
	Remote Services
	When IPC Attacks!
	A Consumer Economy
	Service From Afar
	Servicing the Service
	The Bind That Fails
	If the Binding Is Too Tight

	AlarmManager: Making the Services Run On Time
	The WakefulIntentService Pattern
	The How and Why of WakefulIntentService
	Background Data Setting

	The "Everlasting Service" Anti-Pattern

	Using System Settings and Services
	Setting Expectations
	Basic Settings
	Secure Settings

	Can You Hear Me Now? OK, How About Now?
	Attaching SeekBars to Volume Streams

	Putting Stuff on the Clipboard
	Using the Clipboard on Android 1.x/2.x
	Advanced Clipboard on Android 3.x

	The Rest of the Gang

	Content Provider Theory
	Using a Content Provider
	Pieces of Me
	Getting a Handle
	The Database-Style API
	The File System-Style API

	Building Content Providers
	First, Some Dissection
	Next, Some Typing
	Implementing the Database-Style API
	Implementing the File System-Style API

	Issues with Content Providers

	Content Provider Implementation Patterns
	The Single-Table Database-Backed Content Provider
	Step #1: Create a Provider Class
	Step #2: Supply a Uri
	Step #3: Declare the "Columns"
	Step #4: Update the Manifest

	The Local-File Content Provider
	Step #1: Create the Provider Class
	Step #2: Update the Manifest
	Using this Provider

	The Contacts Content Provider
	Introducing You to Your Contacts
	ContentProvider Recap
	Organizational Structure
	A Look Back at Android 1.6

	Pick a Peck of Pickled People
	Spin Through Your Contacts
	Contact Permissions
	Pre-Joined Data
	The Sample Activity
	Dealing with API Versions
	Accessing People
	Accessing Phone Numbers
	Accessing Email Addresses

	Makin' Contacts

	Searching with SearchManager
	Hunting Season
	Search Yourself
	Craft the Search Activity
	Update the Manifest

	Searching for Meaning In Randomness
	May I Make a Suggestion?
	SearchRecentSuggestionsProvider
	Custom Suggestion Providers
	Integrating Suggestion Providers

	Putting Yourself (Almost) On Par with Google
	Implement a Suggestions Provider
	Augment the Metadata
	Convince the User
	The Results

	Introspection and Integration
	Would You Like to See the Menu?
	Give Users a Choice
	Asking Around
	Middle Management
	Finding Applications and Packages
	Finding Resources
	Finding Components

	Get In the Loop
	The Manifest
	The Main Activity
	The Test Activity
	The Results

	Take the Shortcut
	Registering a Shortcut Provider
	Implementing a Shortcut Provider
	Using the Shortcuts

	Your Own Private URL
	Manifest Modifications
	Creating a Custom URL
	Reacting to the Link

	Homing Beacons for Intents

	Working With SMS
	Sending Out an SOS, Give or Take a Letter
	Sending Via the SMS Client
	Sending SMS Directly
	Inside the Sender Sample

	You Can't Get There From Here
	Receiving SMS
	Working With Existing Messages

	More on the Manifest
	Just Looking For Some Elbow Room
	Configuring Your App to Reside on External Storage
	What the User Sees
	What the Pirate Sees
	What Your App Sees...When the Card is Removed
	Choosing Whether to Support External Storage

	Using an Alias

	Device Configuration
	The Happy Shiny Way
	Settings.System
	WifiManager

	The Dark Arts
	Settings.Secure
	System Properties

	Automation, Both Shiny and Dark

	Push Notifications with C2DM
	Pieces of Push
	The Account
	The Android App
	Your Server
	Google's Server
	Google's On-Device Code
	Google's Client Code

	Getting From Here to There
	Permissions for Push
	Registering an Interest
	Push It Real Good
	Getting Authenticated
	Sending a Notification
	About the Message

	A Controlled Push
	Message Parameters
	Notable Message Responses

	The Right Way to Push

	The Role of Scripting Languages
	All Grown Up
	Following the Script
	Your Expertise
	Your Users' Expertise
	Crowd-Developing

	Going Off-Script
	Security
	Performance
	Cross-Platform Compatibility
	Maturity...On Android

	The Scripting Layer for Android
	The Role of SL4A
	On-Device Development

	Getting Started with SL4A
	Installing SL4A
	Installing Interpreters
	Running Supplied Scripts

	Writing SL4A Scripts
	Editing Options
	Calling Into Android
	Browsing the API

	Running SL4A Scripts
	Background
	Shortcuts
	Other Alternatives

	Potential Issues
	Security...From Scripts
	Security...From Other Apps

	JVM Scripting Languages
	Languages on Languages
	A Brief History of JVM Scripting
	Limitations
	Android SDK Limits
	Wrong Bytecode
	Age

	SL4A and JVM Languages
	Embedding JVM Languages
	Architecture for Embedding
	Inside the InterpreterService
	BeanShell on Android
	Rhino on Android

	Other JVM Scripting Languages
	Groovy
	Jython

	Reusable Components
	Pick Up a JAR
	The JAR Itself
	Resources
	Assets
	Manifest Entries
	AIDL Interfaces
	Permissions
	Other Source Code
	Your API
	Documentation
	Licensing

	Pros, Cons, and Other Forms of Navel-Gazing
	Richness of API
	Code Duplication
	Ease of Initial Deployment
	Intended Form of Integration

	A Private Library
	Creating a Library Project
	Using a Library Project
	Limitations of Library Projects

	Picking Up a Parcel
	Binary-Only Library Projects
	Resource Naming Conventions
	Parcel Distribution

	Testing
	You Get What They Give You
	Erecting More Scaffolding
	Testing Real Stuff
	ActivityInstrumentationTestCase
	AndroidTestCase
	Other Alternatives

	Monkeying Around

	Production Applications
	Market Theory
	Making Your Mark
	Role of Code Signing
	What Happens In Debug Mode
	Creating a Production Signing Key
	Signing with the Production Key
	Two Types of Key Security
	Related Keys

	Get Ready To Go To Market
	Versioning
	Package Name
	Icon and Label
	Logging
	Testing
	EULA

	To Market, To Market
	Google Checkout
	Terms and Conditions
	Data Collection
	Pulling Distribution
	Market Filters

	Going Wide
	Click Here To Download

