
Oehlm
an

Blanc

Companion
eBook
Available

Trim: 7.5 x 9.25 spine = 0.875" 392 page count 444ppi

The “Build Once” Approach
for Mobile App Development

 COMPANION eBOOK SEE LAST PAGE FOR DETAILS ON $10 eBOOK VERSION

US $44.99

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

ISBN 978-1-4302-2629-1

9 781430 226291

54499

this print for content only—size & color not accurate

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 C

SPOT MATTE

Developing applications for Android and other mobile devices using web
technologies is now well within reach. When the capabilities of HTML5

are combined with CSS3 and JavaScript, web application developers have an
opportunity to develop compelling mobile applications using familiar tools.
Not only is it possible to build mobile web apps that feel as good as native
apps, but also to write an application once and have it run a variety of differ-
ent devices.

Pro Android Web Apps teaches developers already familiar with web appli-
cation development how to code and structure a web app for use on the
Android mobile platform.

• Learn how to structure mobile web apps through real-world application
examples.

• Discover what cloud platforms such as Google App Engine have to offer
Android web apps.

• Get a real picture of the status of HTML5 on Android and other mobile
devices.

• Understand how to use native bridging frameworks such as PhoneGap
to device-level features.

• Explore the different UI frameworks that are available for building
mobile web apps.

• Learn how to include mapping and leverage Location-Based Services in
mobile web apps.

• Enable social integration with your Android web.

After reading Pro Android Web Apps, you will have a greater understanding
of not only the world of web apps on Android, but also how to leverage
additional tools. Through the practical samples in the book, you will gain
solid exposure of where the opportunities and challenges lie when building
mobile apps the web way.

ISBN 978-1-4302-3276-6

9 781430 232766

54499

Pro
Android Web Apps

Develop for Android Using HTML5, CSS3 & JavaScript
Damon Oehlman | Sébastien Blanc

Android W
eb Apps

Pro

iv

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

 iii

Contents at a Glance

■Contents .. v

■About the Authors ... x

■About the Technical Reviewer .. xi

■Acknowledgments ... xii

■Introduction .. xiii

■Chapter 1: Getting Started ... 1

■Chapter 2: Building a Mobile HTML Entry Form ... 21

■Chapter 3: HTML5 Storage APIs ... 47

■Chapter 4: Constructing a Multipage App ... 65

■Chapter 5: Synchronizing with the Cloud .. 95

■Chapter 6: Competing with Native Apps .. 111

■Chapter 7: Exploring Interactivity ... 129

■Chapter 8: Location-Based Services and Mobile Mapping 161

■Chapter 9: Native Bridging with PhoneGap ... 193

■Chapter 10: Integrating with Social APIs .. 221

■Chapter 11: Mobile UI Frameworks Compared .. 255

■Chapter 12: Polishing and Packaging an App for Release 299

■Chapter 13: The Future of Mobile Computing .. 337

■Appendix: Debugging Android Web Apps .. 351

■Index .. 359

■ CONTENTS

 xiii

Introduction

As we move into a world where mobile devices are becoming the primary mechanism for people
to connect with the Internet, it should come as no surprise that the ability to develop applications
for mobile devices is becoming a sought after skill. We also have very strong vendor competition
in the space, resulting in a marketplace filled with a variety of devices.

We see vendors promoting development tools and marketplaces for their own devices,
attempting to create software ecosystems around their products. For the most part, the strategy is
working too (for some vendors more than others). Developers are using those tools and creating
“native” applications for a particular device, and then having to rebuild large portions of their
applications to target each different device.

For some companies building mobile applications, this is an acceptable approach. It is,
however, one that is entirely unsustainable for the longer term. Consider that each company with
a web product will be expected to provide both a desktop web application and suitable mobile
clients for multiple devices in the next few years (if not months). Then consider the number of
software developers - people like you and me, that there are in the world. Do we have the
required resources to meet this demand? I would venture not. There must be a better way. And
there is.

Building mobile web apps is this better way. It is an approach to mobile app development
that when done right, will have you rewriting a lot less code to target the variety of devices that
exist in the marketplace. This book focuses on writing mobile web apps for Android, but in reality
many of the concepts can be easily ported across to other mobile devices (which is the whole
point).

What’s a Mobile Web App?
A mobile web app is an application that is built with the core client web technologies of HTML,
CSS, and JavaScript, and is specifically designed for mobile devices. Helping mobile web apps get
a bit of attention are the trends toward HTML5 and CSS3—the latest “versions” of two of the
technologies. We explore both HTML5 and CSS3 in detail in the book, along with a lot of
JavaScript.

JavaScript is the language that many developers love to hate. Some don’t even regard it as a
programming language at all. However, JavaScript is here for the long haul, and is likely to be one
of the most in demand skillsets for the next five years.

Which Technologies Are Used in This Book?
In the book, we work through lots (and lots) of JavaScript code. There’s obviously quite a bit of
HTML and CSS there too, but JavaScript really is the language of mobile web app development.

If you haven’t worked with JavaScript in the past, we don’t completely drop you in at the
deep end, but we would recommend getting hold of some learning materials, as this isn’t a

■ INTRODUCTION

xiv

JavaScript fundamentals book. We also make extensive use of the excellent jQuery JavaScript
library to make life generally easier during development. If that is something that is new to you,
we recommend having a jQuery tutorial or two handy as well. If you have experience with
Prototype, MooTools, or another of jQuery’s “competitors,” then you should be able to adapt the
sample code in the book with relative ease.

In terms of mobile web apps (and other JavaScript-rich web apps), learning how to structure
your applications for readability and maintainability is important. This is one of the reasons that
we have chosen to work through a couple of small application-sized projects in the book rather
than small code-snippets showing particular functionality. This will allow you to become familiar
with the different technical aspects of mobile web app development, and also gain an
understanding of how you might effectively put a real-world mobile web application together.

If you are already familiar with web application development, this book should make the
transition to mobile web app development simple. If, however, you are coming from a mobile
application development perspective, and are looking to explore the web app approach, having
those extra learning materials will make a big difference.

What’s in This Book
This book is structured around two application samples that will teach you the various aspects of
mobile web app development. Chapters 2–6 deal with the first mini application of a simple “To
Do List”, and Chapters 8–12 guide you through the beginnings of building a simple location-
aware game.

In and around these two “main meals” we have three “snack” chapters. Chapter 1 is focused
on getting you up and running with the basic concepts for writing Android web apps. Chapter 7 is
a short look at working with interactivity and the HTML5 canvas. And finally, Chapter 13 takes a
look at some of the things that might be coming our way in the world of mobile apps.

1

1

 Chapter

Getting Started
Welcome to the wonderful world of web app development for Android. Over the course

of the book we will walk through the process of building mobile web apps. While

targeted primarily at Android, most (if not all) of the code will work just as well on

Chrome OS. Actually, the reusability of the application code will go beyond Chrome

OS—the code from this book should be able to run on any device that provides a

WebKit-based browser. If you aren’t familiar with WebKit or Chrome OS at this stage,

don’t worry—you will be by the end of the book.

In this chapter, we will go through a few topics at a high level so you can start building

applications as quickly as possible:

 An overview of the platform capabilities of Android

 Which of those capabilities we can access through the web browser

(either by default or by using bridging frameworks such as PhoneGap)

 Configuring a development environment for coding the samples in this

book and your own applications

 An overview of the tools that come with the Android development kit,

and some supporting tools to assist you in building web apps

Understanding Android Platform Capabilities
The Android operating system (OS) was designed as a generic OS for mobile devices

(including smartphones and tablet PCs). The plan was that Android would serve multiple

device manufacturers as their device OS, which the manufacturers could then customize

and build upon. For the most part this vision has been realized, and a number of

manufacturers have built devices that ship with Android installed and have also become

part of the Open Handset Alliance (http://openhandsetalliance.com).

Android, however, is not the only mobile OS available, and this means that a native

Android application would have to be rewritten to support another (non-Android) mobile

device. This leads to having to manage the ongoing development of mobile applications

for each of the platforms that you wish to support. While the large companies of the

1

http://openhandsetalliance.com

CHAPTER 1: Getting Started 2

world can afford to do this, it can be difficult for a smaller organization or startup. Here

in lies the attraction of developing mobile web apps—write the application code once

and have it work on multiple devices.

This section of the book will outline the current features of the Android OS, and if

relevant whether you can access that functionality when building web applications.

For those who would prefer a summary of the system capabilities and what you can

actually access via the browser or a bridging framework, then head straight to Table 1–

2, toward the end of this section.

BRIDGING FRAMEWORKS

A bridging framework provides developers a technique for building web applications that can be deployed
to mobile devices. The framework also provides access to portions of the native device capabilities (such
as the accelerometer and camera) through a wrapper (usually JavaScript) to the native API.

During the course of the book, we will work through some examples that use PhoneGap
(http://phonegap.com) to bridge to some of this native functionality. While PhoneGap was one of the
first, there are many more bridging frameworks available. In this book, though, we focus on PhoneGap, as
it provides a simple and lightweight approach for wrapping a mobile web application for native
deployment.

For more information on the various mobile web app frameworks, I have written a couple of different blog
posts on the topic. In particular, the following post has some great comments from contributors on the
projects that help to show their areas of strength: http://distractable.net/coding/iphone-
android-web-application-frameworks.

While I would have loved to talk more about each in this book, the focus here is on building mobile web
applications. From my perspective, these are applications that can be deployed to the Web and accessed
via a device’s browser. The addition of a bridging framework should be an optional extra rather than a
requirement. Given this particular use case, PhoneGap is a clear winner.

Device Connectivity
While as consumers we are all probably starting to take the connectivity options of our

own mobile devices for granted, it’s important not to do this as a mobile developer (web

app or native). If mobile applications are built assuming that a connection to the Web is

always available, then this limits the usefulness of an application when connectivity is

limited—which is more often than you might think.

Understanding that your application will have varying levels of connectivity at different

times is very important for creating an application that gives a satisfying user experience

at all times.

In very simple terms, a mobile device can have three levels of connectivity from a web

perspective:

http://phonegap.com
http://distractable.net/coding/iphone-android-web-application-frameworks
http://distractable.net/coding/iphone-android-web-application-frameworks
http://distractable.net/coding/iphone-android-web-application-frameworks

CHAPTER 1: Getting Started 3

 A high-bandwidth connection (e.g., WiFi)

 A lower-bandwidth connection (e.g., 3G)

 Limited or no connectivity (offline)

At present, when building a pure web app, you can really only detect whether

you have connectivity or not (without actually attempting downloads or the like

to test connection speed). This is different from building native Android

applications, as these applications can access native APIs that provide

information regarding the device’s current connection type and quality.

In Chapter 5, we will investigate features in the HTML5 API for enabling your

applications to work well offline, and in Chapter 9 we’ll explore examples using

bridging frameworks to access some of the native connectivity detection.

Touch
One of the features that helped the current breed of mobile devices break away from the

old is the touch interface. Depending on the version of Android, at a native level you will

either have access to multitouch events or just single-touch events. Web apps, on the

other hand, only allow access to single-touch events at this stage.

NOTE: Not having multitouch event support for web apps certainly gives native applications an
edge when it comes to application UI implementation. This will almost certainly change in the
future, but for some time we will likely have a situation where some Android devices support

multitouch for web apps and others don’t.

It will be important at least for the next couple of years to always code primarily for single-touch,
and offer improved functionality (time permitting) for those devices that support multitouch

events in the web browser.

We will start exploring touch events in some depth in Chapter 7.

Geolocation
The Android OS supports geographical location detection through various different

implementations, including GPS (Global Positioning System) and cell-tower

triangulation, and additionally Internet services that use techniques such as IP sniffing to

determine location. At a native API level, geolocation is implemented in the

android.location package (see

http://developer.android.com/reference/android/location/package-summary.html),

and most bridging frameworks expose this functionality from the native API.

Since HTML5 is gaining acceptance and has been partially implemented (full

implementation will come once the specification is finalized in the next couple of years),

http://developer.android.com/reference/android/location/package-summary.html

CHAPTER 1: Getting Started 4

we can also access location information directly in the browser, without the need for a

bridging framework. This is done by using the HTML5 Geolocation API

(www.w3.org/TR/geolocation-API). For more information on the HTML5 Geolocation API,

see Chapter 6.

Hardware Sensors
One of the coolest things about modern smartphones is that they come equipped with a

range of hardware sensors, and as technology becomes more pervasive this is only

going to increase. One of the most widespread sensors currently is the three-axis
accelerometer, which allows developers to write software that tracks user interaction in

innovative ways. The list of hardware sensors that the Android OS can currently interact

with goes beyond the accelerometer, however, and a quick visit to the current hardware

sensor API reference for native development reveals an impressive list of sensors that

are already supported in the native API (see

http://developer.android.com/reference/android/hardware/Sensor.html). Table 1–1

lists the various sensors and provides information on whether access to the sensor is

currently supported with the bridging framework PhoneGap. If you are not familiar with

one of the sensors listed, then Wikipedia has some excellent information – simply search

on the sensor name. Note that while the Android SDK (software development kit)

supports a number of hardware sensors, most are not accessible via mobile web apps

(yet).

Table 1–1. Sensors Supported by the Android SDK

Sensor PhoneGap Support

Accelerometer Yes

Gyroscope No

Light No

Magnetic field No

Orientation Yes

Pressure No

Proximity No

Temperature Yes

One of the most compelling arguments to go with native development over web

development is to gain access to the vast array of sensors that will continue to be added

to mobile devices as technology progresses. While definitely a valid argument, building a

web app in conjunction with a bridging framework can allow you to access some of the

more commonly used and available sensors.

http://www.w3.org/TR/geolocation-API
http://developer.android.com/reference/android/hardware/Sensor.html

CHAPTER 1: Getting Started 5

Additionally, PhoneGap is an open source framework, and the ability to write plug-ins is

provided (although hard to find good information on), so it’s definitely possible to access

additional sensors.

Local Databases and Storage
Mobile devices have for a long time supported local storage in one form or another, but

in more recent times we have started to see standardized techniques (and technology

selection) for implementing storage. Certainly at a native API level, Android implements

support for SQLite (http://sqlite.org) through the android.database.sqlite package

(see http://developer.android.com/reference/android/database/sqlite/package-
summary.html).

SQLite is quickly becoming the de facto standard for embedded databases, and this is

true when it comes to implementing local storage and databases for web technologies.

Having access to a lightweight database such as SQLite on the client makes it possible

to create applications that can both store and cache location copies of information that

might normally be stored on a remote server.

Two new, in-progress HTML5 standards provide mechanisms for persisting data without

needing to interact with any external services apart from JavaScript. These new APIs,

HTML5 Web Storage (http://dev.w3.org/html5/webstorage) and Web SQL Database

(http://dev.w3.org/html5/webdatabase), provide some excellent tools to help make

your applications work in offline situations. We explore these APIs in some depth in

Chapter 3.

Camera Support
Before touch became one of the primary sought-after features for mobile devices,

having a reasonable camera was certainly something that influenced a purchase

decision. This is reflected in the variety of native applications that actually make use of

the camera. At a native level, access to the camera is implemented through the

android.hardware.Camera class (see

http://developer.android.com/reference/android/hardware/Camera.html); however, it

is not yet accessible in the browser—but the HTML Media Capture specification is in

progress (see www.w3.org/TR/capture-api).

Until such time that the specification is finalized, however, bridging frameworks can

provide web applications access to the camera and picture library on the device.

Messaging and Push Notifications
In Android 2.2, a service called Cloud to Device Messaging (C2DM)
(http://code.google.com/android/c2dm/index.html) has been implemented at the

native level. This service allows native developers to register their applications for what

http://sqlite.org
http://developer.android.com/reference/android/database/sqlite/package-summary.html
http://developer.android.com/reference/android/database/sqlite/package-summary.html
http://developer.android.com/reference/android/database/sqlite/package-summary.html
http://dev.w3.org/html5/webstorage
http://dev.w3.org/html5/webdatabase
http://developer.android.com/reference/android/hardware/Camera.html
http://www.w3.org/TR/capture-api
http://code.google.com/android/c2dm/index.html

CHAPTER 1: Getting Started 6

are commonly known as push notifications, whereby a mobile user will be notified when

something is new or has changed.

It will be some time before push notifications are implemented in browsers, as a working

group has only recently been announced to discuss and provide a recommendation on

this particular area (see www.w3.org/2010/06/notification-charter).

Unfortunately, with C2DM being reasonably new, it will probably be some time before

the bridging frameworks implement this for Android.

WebKit Web Browser
The Android OS implements a WebKit-based browser. WebKit (http://webkit.org) is an

open source browser engine that has reached a notable level of adoption for desktop

and mobile browsers alike. The WebKit engine powers many popular browsers like

Chrome and Safari on the desktop, and mobile Safari and the native Android browser in

mobile (to name a few). This alone is a great reason to build web applications for mobile

rather than native applications. As both Android and the iPhone implement a native

WebKit browser (Mobile Safari is WebKit at its core), you can target both devices very

simply if you consider WebKit as your common denominator.

Why is having WebKit in common so important? Given HTML5 and CSS3 are both still

emerging specifications, it will probably be a couple of years before web standards are

concrete and mobile browsers all behave in a consistent way. For now, having WebKit

as a common element between the two dominant consumer smartphone platforms is a

huge advantage. As developers, we can build applications that make use of the

components of HTML5 that are starting to stabilize (and are thus being implemented in

more progressive browser engines, such as WebKit), and actually have a good chance

of making those applications work on both an Android handset and an iPhone. Try doing

that with either native Android Java code or iPhone Objective-C code.

NOTE: Adoption of WebKit as the “mobile browser of choice” appears to be gaining momentum.
Research In Motion (RIM), the company responsible for BlackBerry, has adopted WebKit and
HTML5 in its new BlackBerry Torch. This is good news for mobile web application developers,
and I believe shows the future is in cross-platform web development rather than the current

trend of native development.

Process Management
Process management is handled similarly on Android and iOS devices since Apple’s

release of iOS 4; however, prior to that there was a fairly significant difference between

the way Android and iPhone applications behaved when a user “exited” them. On the

iPhone, once you left an application, it essentially stopped running—which meant there

really wasn’t any ability to do anything in the background. On Android, however, if a user

http://www.w3.org/2010/06/notification-charter
http://webkit.org

CHAPTER 1: Getting Started 7

left an application (including a web application) without quitting, it would continue to

execute in the background.

To validate this, we ran the following code on an Android handset to ensure that

requests were still coming through while the application (in this case the browser) was

not the active application.

<html>
<body>
<script type="text/javascript">
setInterval(function() {
 var image = new Image();
 image.src = "images/" + new Date().getTime() + ".png";
}, 1000);
</script>
</body>
</html>

Using the JavaScript setInterval call in this context means that an image request (for

an image that doesn’t exist) is issued every second. When the code runs, that image

request is made to the web server every second (or thereabouts) regardless of whether

the web browser is the active application or not. Additionally, as the browser on Android

supports multiple windows being open at once, the request will continue to execute

even if the browser is active but a different window is selected as the current window.

Having this kind of background processing ability provides developers some excellent

opportunities. It is, however, important to make sure our applications are built in such a

way that when in the background, applications aren’t downloading unnecessary

information or consuming excessive battery power.

Android OS Feature Summary
Table 1–2 shows a matrix of device features, the Android version from which they are

supported, and whether they can be accessed in the browser. In some cases the browser

support column uses the term bridge. This refers to the use of bridging frameworks (such

as PhoneGap, Rhodes, etc.) to expose native device functionality to the browser.

Table 1–2. Android OS Features and Browser Accessibility Matrix

Device Feature OS Version Support Browser Access

Connectivity detection 1.5 Bridge

Geolocation (GPS) 1.5 Yes

Hardware sensors 1.5 Bridge*

Touch screen and touch events 1.5 Partial

Local storage and databases 1.5 Yes

Messaging/notifications 2.2 No

Camera 1.5 Bridge

CHAPTER 1: Getting Started 8

Preparing the Development Environment
Now that you have a high-level understanding of what you can do on the Android

platform with regard to web apps, let’s move on to getting our development

environment set up so we can start developing applications in the next chapter.

There are multiple approaches that can be taken when putting together an effective

development environment for mobile web apps on Android. The basic components of

the setup outlined in this section are a text editor, a web server, and an Android

emulator (or handset). You could, however, choose to use an IDE like Eclipse instead

(see http://eclipse.org).

Eclipse is an IDE that is tailored for Java development, and the Android team offers

native Android development tools for Eclipse. If you are working with both web and

native Android development, you may prefer to continue with the Eclipse environment—

and if this is the case, there is nothing in this book that will preclude you from doing so.

NOTE: While there are many merits to using a full-featured IDE for web development, I personally
prefer using lightweight and separate tools. Using a standalone web server and accessing the
content from your device’s browser will allow you to more easily test multiple devices

simultaneously without the overhead that might be imposed by using tools provided within the IDE.

Additionally, if I decide to focus on another mobile device as a primary development target, I can
continue to use the same tool set to develop for that platform. I anticipate that we will see two or

three dominant players and a long trail of perhaps ten-plus platforms in the mobile space, so

having an approach that works across devices is definitely appealing.

Text Editors and Working Directories
Any text editor that you are comfortable using will serve you more than adequately when

writing web apps for Android. If you really aren’t sure which text editor you want to use,

then Wikipedia (as usual) has an excellent comparison list (see

http://en.wikipedia.org/wiki/Comparison_of_text_editors).

With your trusty text editor now beside you, it’s time to set up the directory that you are

going to work from as you progress through this book. The actual location of the

directory is completely up to you, but I would recommend building a folder structure

similar to the following, as this will assist you in working through the examples:

 PROJECT_WORKING_DIR

 css

 img

 js

 snippets

http://eclipse.org
http://en.wikipedia.org/wiki/Comparison_of_text_editors

CHAPTER 1: Getting Started 9

Reusable CSS, image, and JavaScript resources will be stored in the css, img, and js

folders, respectively. As we progress through the book, we will build folders for each

chapter under the snippets directory for that chapter.

Web Server
Having a web server serving your application code as you develop it really helps

streamline your development process. Throughout the book we will be working primarily

with client-side technologies, so our requirements for a web server are quite lightweight.

This means pretty much any web server will do the job, so if you already have a web

server that you wish to work with, that is absolutely fine.

For those who don’t, however, we will quickly walk through getting a lightweight web

server called Mongoose running on Windows, Mac OS, and Linux. Mongoose is

extremely simple to get running; just follow the installation guide for your platform as

described following (there may be some differences depending on your individual

configuration).

Mongoose on Windows
Firstly, download the Mongoose standalone executable (mongoose-2.8.exe at the time of

writing) from the project downloads page: http://code.google.com/p/mongoose/
downloads/list.

There is an installer package available, but installing Mongoose as a service won’t be as

simple as using the standalone executable. Once the file has been downloaded, put the

executable file somewhere on your path (recommended but not required), and then skip

to the “Running Mongoose” section of this chapter.

Mongoose on Mac OS
The simplest way to install Mongoose on Mac OS is by using MacPorts

(www.macports.org). If you don’t already have MacPorts installed, install it now by

following the simple instructions provided on the MacPorts web site.

With MacPorts installed, to install Mongoose run the following command:

sudo port install mongoose

If MacPorts is installed correctly, this should download, build, and install Mongoose,

after which it should be ready for your immediate use. Proceed to the “Running

Mongoose” section of this chapter.

Mongoose on Linux
With Mongoose being so lightweight, it is actually very simple to build Mongoose from

source on most Linux systems. The following instructions are for systems running

http://code.google.com/p/mongoose/
http://www.macports.org

CHAPTER 1: Getting Started 10

Ubuntu, but only minor modifications will be required to adapt this to another Linux

system.

Firstly, download the Mongoose source from wget
http://mongoose.googlecode.com/files/mongoose-2.8.tgz.

Next uncompress the downloaded archive file:

tar xvzf mongoose-2.8.tgz

Change directory to the Mongoose source directory:

cd mongoose

And then run make targeting Linux:

make linux

You will now be able to run Mongoose using the full path of the Mongoose executable. If

you would prefer to be able to run Mongoose without specifying the full path, then copy

the Mongoose executable into a path such as /usr/local/bin:

sudo cp mongoose /usr/local/bin/

That’s it—you can now run Mongoose.

Running Mongoose
Running Mongoose is refreshingly simple. Configuration defaults are sensible, so

running mongoose from the command line produces a web server that runs and serves

that folder as the web root.

Additionally, Mongoose will bind to all of the IP addresses assigned to your computer,

which means that you will be able to browse from other devices on your network using

the IP address (or one of the IP addresses) of the machine you are running Mongoose

from.

Let’s try running Mongoose now. Open up a command prompt/terminal window and

then change directory to PROJECT_WORKING_DIR, which you set up in the previous step. If

Mongoose is located on your path, you will be able to run mongoose from the command

line; and if not, then you will need to run it using its absolute path. Either way, once you

have run the command (no command-line options required), you should then be able to

browse to http://localhost:8080/ and see the directory file list of the folders you set

up earlier (as shown in Figure 1–1).

http://mongoose.googlecode.com/files/mongoose-2.8.tgz
http://localhost:8080/

CHAPTER 1: Getting Started 11

Figure 1–1. With Mongoose running, you should see a directory list of folders created earlier.

Alternative Approaches
You can also copy files across to an emulated SD card image and load them from the

image by using the file://sdcard/<filelocation> syntax. If you are interested in more

information on how to create SD card images and copy files to and from them, I

recommend checking out the information at the following URL:

http://developer.android.com/guide/developing/tools/emulator.html#sdcard.

Emulator
To test the samples, you will either need an Android handset or the Android emulator

that comes bundled with the SDK. If you don’t already have the SDK, you can download

it from http://developer.android.com/sdk. Follow the instructions on the Android site,

with the exception of installing Eclipse and the ADT plug-in (unless you already have it

installed and are comfortable using it). Once you have the Android SDK installed, the

emulator and associated tools can be found in the tools directory of the SDK installation

directory.

file://sdcard/
http://developer.android.com/guide/developing/tools/emulator.html#sdcard
http://developer.android.com/sdk

CHAPTER 1: Getting Started 12

Creating an Android Virtual Device
Creating an Android Virtual Device (AVD) is straightforward when using the GUI tools

that are provided as part of the Android SDK. First, locate the android executable and

run it. The location of the executable will depend on the SDK installation path, but

essentially you are looking for the file android (android.exe on Windows) within the

tools folder of the SDK installation directory. This will launch the Android SDK and AVD

Manager application, which is shown in Figure 1–2.

Figure 1–2. The Android SDK and AVD Manager

Here we will create a device for running our samples. Nothing too fancy is required, just

the standard emulator running with version 2.1 of the SDK or greater. Press the Add

button to start creating the image. Once you have done this, you should see a screen

similar to the one shown in Figure 1–3.

CHAPTER 1: Getting Started 13

Figure 1–3. Creating a new AVD for the emulator

You need to provide at least three pieces of information when creating a new AVD file:

 The name of the device (no spaces are allowed). Here we are creating

a device called “android_web_apps.” This is the name that is used

when launching the emulator from the command line.

 The target Android API we are developing for. At the time of writing,

both Android OS versions 2.1 and 2.2 have the highest levels of

market penetration, with 1.5 and 1.6 now in the minority (see
http://developer.android.com/resources/dashboard/platform-
versions.html). For the examples in the book, we will primarily work

with a version 2.1 emulator. By using a version 2.1 emulator rather

than a version 2.2 emulator, we can make sure our code will work on

both versions of the OS—but it is still important to test on as many

versions of the OS as possible.

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

CHAPTER 1: Getting Started 14

 The size of the SD card. You can also specify an existing SD card

image if you want to, but that’s not required for running through the

samples in the book. I’d recommend just specifying a size of 50MB or

thereabouts.

Other information, such as the skin value (somewhat synonymous with screen resolution),

will be automatically populated based on the API version selection, but you can tweak

these options if desired. All of the samples in the book have been designed with a

standard mobile device screen size of 320 480, so I’d recommend working with that.

NOTE: Some of the examples in the book illustrate the difference between standard dpi (dots per
inch) and high dpi, and how that will impact your applications. For these samples, you will need
an AVD that is configured with a higher screen resolution than standard. When configuring this
device, select a resolution such as WVGA800 (or similar) to emulate a device with a high device

dpi.

Starting the Emulator
Once the AVD has been created, you can then start the device by pressing the start

button, which is displayed to the right of the device images. You will be prompted with a

couple of options (as shown in Figure 1–4), but in general selecting the defaults is fine

(although wiping user data can sometimes be very useful for getting back to a clean

slate).

Figure 1–4. Launching a new virtual device for our emulator using the AVD Manager

CHAPTER 1: Getting Started 15

Once the emulator has started, a screen similar to Figure 1–5 will be displayed,

indicating that the Android emulator is starting.

Figure 1–5. The Android emulator starting—a good time to get some coffee

Be aware that the emulator does take quite a long time to load, so once you’ve got it

loaded, try to avoid closing it. When it’s finally loaded, you will see an Android home

screen like the one shown in Figure 1–6.

CHAPTER 1: Getting Started 16

Figure 1–6. The Android emulator has loaded successfully; open the browser to get started.

From the home screen, run the browser and you will be able to access the local web

server that you configured previously.

Hello World
Before we get into the working through the specifics of mobile web applications and

sites in the next chapter, let’s make sure our development environment is set up

correctly with a very simple Hello World example.

First we will create a very simple HTML file that we will use to validate that we can view

our development files in the mobile browser on our Android device:

<html>
<style type="text/css">
body {
 font: 4em Arial;
}
</style>
<body>
Hello World
</body>
</html>

CHAPTER 1: Getting Started 17

Save the preceding code sample to a file named helloworld.html, and then access the

directory in which that file is stored from your terminal or command prompt. Run

Mongoose (either using the absolute installation path or just mongoose, depending on

how you installed it and your path configuration) from that location.

Figure 1–7 shows a screenshot of some example command-line output you will see if

Mongoose has been run correctly.

Figure 1–7. Mongoose web server example output showing the port and directory that content is being served
from.

While Mongoose will inform you of the port it is running on, you will also need to find the

IP address of your machine so that you’re able to browse the server from both the

emulator and an actual Android device connected to your local network via WiFi. One of

the simplest ways to determine your IP address is through the use of the ifconfig or

ipconfig commands on Mac OS/Linux and Windows, respectively. If you are unfamiliar

with the technique then the following links may be of assistance:

PC: www.wikihow.com/Find-the-IP-Address-of-Your-PC

Mac: www.wikihow.com/Find-Your-IP-Address-on-a-Mac

Linux: linux-ip.net/html/tools-ifconfig.html

Armed with the knowledge of your IP address, you will now be able to view your test

page in the emulator (or your Android device). Figure 1–8 shows example screen

captures from the Android browser, showing both browsing to the helloworld.html file

that we created and what is displayed in the browser as a result.

http://www.wikihow.com/Find-the-IP-Address-of-Your-PC
http://www.wikihow.com/Find-Your-IP-Address-on-a-Mac

CHAPTER 1: Getting Started 18

NOTE: While you may be accustomed to using localhost (or 127.0.0.1) when browsing a
development webserver when operating on your own machine, when you are working with an
Android emulator (or device) you will need to access the webserver via the IP of your machine on

your local network. Mongoose is very helpful in this regard and will happily serve web pages

from any IP (including 127.0.0.1) that is associated with your machine.

Figure 1–8. Browsing to our Hello World example demonstrates that our development setup is working.

Now that you have successfully created a Hello World example, it is time to move on to

actually learning what makes a web application or site mobile. This is the topic for the

next chapter.

CHAPTER 1: Getting Started 19

NOTE: To keep things simple, in this example we ran Mongoose from the same directory that the
helloworld.html file was stored in. For the remainder of the examples, we will be working in
a slightly more complicated directory structure to ensure that we can reuse certain files between

chapters. For instance, in the example source code repository on GitHub
(http://github.com/sidelab/prowebapps-code), this file is stored in the following
location: /snippets/01/helloworld.html.

This is the kind of directory structure that will be used for the rest of the book, with each
chapter’s code samples being stored within a directory under the snippets directory. Some
larger examples, such as the geospatial game covered in Chapters 9 through 11, will use a

variation on this structure, but this is the general rule.

In future examples, Mongoose will be run from the directory above snippets. This in turn
means that the path you will use to browse the majority of future examples will match the

following pattern: http://YOURIP:8080/snippets/CHAPTER/SAMPLE.html.

Summary
This chapter covered the basic capabilities of an Android device and what can be

achieved in web apps as opposed to native apps. This included looking at what is

available via standard browser support, as well as through using bridging frameworks to

extend native functionality to a web browser embedded in a native application.

We also walked through the very simple requirements for running a development

environment for building Android web apps. Additionally, we took a preliminary look at

some of the tools that will help you debug your code as you work through the samples

in this book and later you create your own applications.

In the next chapter, we will look at some of the simple techniques that are used to create

mobile-friendly web pages and the foundation pieces of a mobile web app. We’ll begin

with some simple standalone examples, but quickly move on to working through a

practical example: building a simple to-do list application. We will continue to explore

and build this in Chapters 3 and 4 also.

http://github.com/sidelab/prowebapps-code
http://YOURIP:8080/snippets/CHAPTER/SAMPLE.html

21

21

 Chapter

Building a Mobile HTML
Entry Form
Creating a simple, mobile-friendly web page is very easy. By the end of this chapter, you

will know not only how to build a mobile web page and form, but understand how to

apply some simple CSS (including some CSS3) to give a web form a very similar feel

and experience to what you would find in a native application.

The samples in this chapter and subsequent chapters work towards creating a simple

to-do list web application optimized for Android. Building mobile web applications has a

heavy focus on JavaScript in addition to HTML and CSS. So, in addition to

understanding mobile web app development techniques, understanding how to

structure JavaScript-heavy applications will be explored.

HTML for the Mobile Web
HTML for the mobile web is much the same as it is for the desktop—just with smaller

screen sizes (in most cases at this stage). Additionally, there is an increased focus on

optimizing for performance given the reduced bandwidth that a mobile device has

access to when browsing via a mobile broadband connection.

The focus in this chapter is on the techniques and tools required to make the jump into

mobile web app development, primarily from an application presentation perspective.

Mobile-Ready Web Pages
Building mobile-ready web pages is quite simple, and only requires the addition of some

extra information to tell the mobile browser to recognize the page as “mobile ready.”

Let’s start this chapter by having a look at a simple web page.

We will first have a look at a mobile browser without the appropriate tweaks applied.

This will give you an understanding of why you need to optimize your web pages for

mobile if you want people to be able to use them effectively. This is especially important

2

CHAPTER 2: Building a Mobile HTML Entry Form 22

if you are building applications that people may compare side by side with an Android

application that has been constructed using a native user interface (UI).

Our test web page is a simple page that consists of nothing more than a heading and a

paragraph of text (lorem ipsum paragraph condensed):

<html>
<head>
 <title>Simple Mobile Web Page</title>
</head>
<body>
 <h1>Welcome</h1>
 <p>Lorem ipsum dolor sit amet ... </p>
</body>
</html>

Figure 2–1 shows how the preceding HTML appears in the Android browser.

Figure 2–1. Our simple web page with no mobile readiness applied

While the browser has successfully rendered the page, there are a few things that it

hasn’t done well:

 The text on the page is quite small; this is because the browser has

assumed that it has been built for a desktop screen resolution and has

thus applied some scaling to ensure the page will fit properly.

 Because the browser believes the page is designed for desktop

display, it is permitting zoom and xy-axis scroll operations on the

page.

CHAPTER 2: Building a Mobile HTML Entry Form 23

 The URL bar for the browser is displayed, and while this isn’t a

problem now, when we get into more complicated applications, it

would be nice to know how we can get the Android browser to hide

the URL bar.

Now that you know a few things that you want your mobile browser to do (or not to do)

when displaying the page, let’s have a look at what is required to get there.

Introducing the viewport Meta Tag
The HTML viewport meta tag was introduced by Apple for use in Mobile Safari on the

iPhone, and is used to tell the mobile browser exactly what it is seeing. Without a

viewport meta tag, the browser will assume it is looking at a web page that is built for

desktop browsing and thus scale the display down to fit. An example viewport meta tag

definition is as follows:

<meta name="viewport" content="width=device-width; user-scalable=0;" />

In this particular instance, we are telling the browser that we wish to have the page

displayed at the screen width of the device, and that the user should not be permitted to

zoom in and out on the viewport. Zooming in and out on the display is generally pretty

handy when looking at a site that hasn’t been optimized for mobile; however, when

viewing a mobile-ready page, it’s not generally required, and can sometimes be a

hindrance to other functionality that you want to offer in your app.

NOTE: While the viewport meta tag is something you would expect to be part of the HTML5
specification, this is not the case at this stage However, both WebKit and Mozilla browsers are
actively using the tag, and will be working with the W3C to have it incorporated as part of the

specification.

While this viewport meta tag is sufficient for telling the WebKit browser on Android how

you would like the page sized, other mobile devices may require some extra information

to configure the display properly. To help with constructing a viewport meta tag that will

work on the majority of mobile devices, I’ve included a quick reference table. Table 2–1

outlines the various parameters you can include in the content section of the meta tag

and a brief explanation of each.

CHAPTER 2: Building a Mobile HTML Entry Form 24

Table 2–1. viewport Meta Tag Parameters and Their Effects

Parameter Overview Valid Values

Standard viewport Meta Tag Parameters

width Specifies the width of the viewport.

This can be a specific value in pixels

(not recommended) or keywords that

describe the required display width.

device-width: The screen width of

the device.

A numerical value for the absolute

width of the viewport.

height Specifies the height of the viewport. device-height: The screen height of

the device.

A numerical value for the absolute

height of the viewport.

user-scalable Specifies whether the user is

permitted to adjust the scaling of the

screen.

1, yes, or true: User scaling is

permitted.

0, no, or false: User scaling is not

allowed.

initial-scale Specifies the initial scaling value for

the display.

A value that indicates the scaling that

will be applied when the page is

initially loaded. A value of 1.0

indicates that 1 viewport pixel

equates to 1 screen pixel.

minimum-scale Specifies the minimum scaling that

can be applied to the display.

A value in the range of 0 to 10.0.

maximum-scale Specifies the maximum scaling that

can be applied to the display.

A value in the range of 0 to 10.0.

Android-Specific Meta Tag Parameters

target-
densitydpi

Informs the device exactly what

screen density the current web

page/application was designed for.

device-dpi: Sets the viewport dpi

density to match the dpi density of

the device.*

high-dpi, medium-dpi, or low-dpi.

A value in the range of 70 to 400

specifying the specific pixel density

of the device.

* dpi (dots per inch) is a measure of screen pixels per inch (DPI stands for Dots Per Inch). The
Android platform caters for devices of varying pixel densities and broadly categorizes those into
high, medium, and low.

CHAPTER 2: Building a Mobile HTML Entry Form 25

NOTE: It’s worth reading the article “A pixel is not a pixel is not a pixel,” by John Gruber, which
explores the issue of increasing screen densities on mobile devices and the impact this will have
for web developers as we move forward (see

www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html).

Considering these extra configuration parameters, the following viewport meta tag

declaration offers the some extra robustness for cross-platform device compatibility:

<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;" />

For the moment, we will not specify a target-densitydpi, but I’ll introduce this setting

later when discussing the HTML5 canvas so you can understand its effect on a display.

With the preceding viewport meta tag applied, our page will now be displayed in a more

readable fashion; additionally, the zoom controls have been removed, as shown in

Figure 2–2.

Figure 2–2. A simple page with the viewport meta tag applied

Autohiding the URL Bar
Given that the goal of this book is to provide you with the techniques required to

successfully build a web app that will compete with a native app, having a URL bar

visible in your app isn’t going to help with convincing people. Depending on the

http://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html

CHAPTER 2: Building a Mobile HTML Entry Form 26

direction you take for deploying your application (remember it is possible to deploy

mobile web apps as native applications using tools like PhoneGap1) you will be able to

hide the URL bar automatically, or you may have to implement some workarounds to get

it to hide effectively.

In the case where you are building an application that will be deployed online and

primarily accessed through the mobile browser, a workaround is going to be required.

Currently, the most effective workaround is to tell the browser to scroll to the top of the

screen once it has finished loading the page. This works because the vertical scrolling

behavior for the browser when viewing web pages is to first scroll off the URL bar, and

then through the rest of the content. So, executing window.scrollTo(0, 1) when the

window has finished loading will do the trick. For now, we will just add it to the body
onload tag like so:

<body onload="window.scrollTo(0, 1);">

NOTE: Successfully implementing this technique requires the page height value to be at least as
large as the display size of the screen. This is generally best achieved by telling the body tag
that it has a min-height in the stylesheets for your web app. For an example, have a look at

the CSS implemented in the “Adding Some Style” section later in the chapter.

Adding Form Elements
In terms of the actual HTML code, HTML form elements are the same for mobile devices

as they are for desktop browsers. It’s just the interaction with those controls that

changes for a mobile device, and thankfully Android takes care of all that for you. This is

not that surprising given that a HTML form element is simply an instruction to the

browser saying, “Put native control here.”

For the sake of simplicity, we will initially set a “task” in our to-do list application to have

three properties:

 Name

 Description

 Due date (and time)

We now need to create a very simple form that will allow a user to supply those details.

The following HTML code (which is again very simple) creates such a form:

<h1>Create Task</h1>
<form>
 <div>
 <label for="taskname">Task Name:</label>

 <input type="text" name="task[name]" id="taskname" />

1 http://phonegap.com/

http://phonegap.com/

CHAPTER 2: Building a Mobile HTML Entry Form 27

 </div>

 <div>
 <label for="taskdesc">Task Description</label>

 <textarea name="task[description]" rows="5"></textarea>
 </div>

 <div>
 <label for="taskdue">Task Due:</label>

 <input type="text" name="task[due]" id="taskdue" />
 </div>
 <input type="submit" name="Save" />
</form>

Figure 2–3 shows the preceding HTML rendered in the browser of the Android simulator.

Figure 2–3. Rendered output from simple HTML for a Create Task form

As you can see in the figure, using vanilla HTML to generate a form isn’t really going to

have the appeal required to convince people to use Android web apps over a natively

built app. We are definitely going to have to do something about this.

Adding Some Style
The easiest way to apply a native feel to form controls for most mobile platforms is not

to apply any style to the control at all (very Zen sounding, isn’t it?). Rather, we will tell

the control just to leave the styling to us, and we will apply some CSS styles to some

surrounding HTML elements.

CHAPTER 2: Building a Mobile HTML Entry Form 28

In this next example, we are going to need some surrounding HTML elements that will

have CSS styles applied to improve the look and feel of the form. While we probably

could work with the div elements we created previously, let’s move to using an

unordered list (ul), as this will provide us more options for further styling later on.

Replace the form code from before with something that looks like this:

<form id="taskentry" onsubmit="return false;">

 <input type="text" name="task[name]" id="taskname" placeholder="Task Name"/>
 <textarea name="task[description]" id="taskdesc" placeholder="Description"
rows="5"></textarea>
 <input type="text" name="task[due]" id="taskdue" placeholder="Task Due" />
 <li class="naked"><input type="submit" name="Save" />

</form>

This HTML generates output that is displayed in Figure 2–4.

Figure 2–4. Updated layout using HTML5 placeholders

In addition to restructuring the form to use a list, we have also removed the label
elements and replaced them by using the HTML5 placeholder attribute for the input

fields and text area. This provides a simple (and limited-screen-real-estate-friendly)

mechanism for giving the user cues for what is required in each form field.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2: Building a Mobile HTML Entry Form 29

HTML5 ALERT: You may be wondering why HTML5 is sneaking in so soon. What happened to
writing some JavaScript and applying some CSS to achieve that placeholder trick the way we
used to do for desktop web applications? The reason is that the placeholder attribute, while

simple, demonstrates some of the useful features that have been added to HTML5 to make a

web developer’s life easier.

With the placeholder attribute and the new layout, we are halfway to having a pretty

nice-looking form. Let’s have a look at some CSS that will get us the rest of the way

there. Now we just need to add some CSS to style the HTML elements. This is probably

a good time to start building our todolist.css file, which will be used by a number of

the pages in our app.

body {
 margin: 0px;
 min-height: 480px;
 font-family: Arial;
}

form ul {
 margin: 0px;
 padding: 6px;
 list-style-type: none;
}

form ul li {
 margin: 0 0 4px 0;
 -webkit-border-radius: 4px;
 border: 1px solid #666666;
 padding: 4px;
}

form ul li.naked {
 -webkit-border-radius: 0px;
 border: 0;
 padding: 0;
}

input, textarea {
 -webkit-appearance: none;
 border: 0;
 width: 99%;
}

input[type=submit] {
 border: 1px solid white;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#F8F8F8), color-stop(1.0, #AAAAAA));
 -webkit-border-radius: 6px;
 -webkit-box-shadow: 0 0 4px #333333;
 width: 100%;
 padding: 6px;
}

CHAPTER 2: Building a Mobile HTML Entry Form 30

This stylesheet can now be included in your form code, with the following HTML tag

placed in the head section of the page:

<link rel="stylesheet" media="screen" href="todolist.css" />

Notice that some nonstandard CSS definitions that have been included in the code

(shown in bold in the preceding code snippet). I will discuss these in more detail in the

following section.

NOTE: These kinds of CSS definitions will be used throughout the book. They represent early
WebKit implementations of CSS3 (the next generation of CSS) that are often used in conjunction
with HTML5 to achieve some nice visual effects. HTML5 and CSS3 are very complementary
technologies, and their combined use is really the enabler for mobile web apps to compete with

native mobile apps.

Figure 2–5 shows the browser output displayed after the preceding CSS is applied to

our adjusted HTML.

Figure 2–5. The updated form layout with CSS applied

Form Styles with a Splash of CSS3
About 75 percent of the preceding CSS is a mix of CSS1 and CSS2, which has been

around now for some time. However, there is also a smattering of CSS3, and most of

this is quite new. This stylesheet includes some WebKit-specific CSS3 definitions that

CHAPTER 2: Building a Mobile HTML Entry Form 31

enable us to make our form look very nice without requiring the use of external image

resources.

NOTE: The CSS3 specification (like the HTML5 specification) is not yet finalized. For this reason,
the CSS3 definitions here are implemented using the proprietary -webkit prefix (for the WebKit

browser family, other browsers will implement their own proprietary prefix). This indicates that
the folks at WebKit are confident that these sections of the CSS3 spec will make the final cut.
Once the CSS3 specification is locked down, then the -webkit prefix will be dropped and

replaced by the standard name.

As an example, -webkit-box-shadow will simply become box-shadow. This is definitely
worth keeping in mind when building your mobile application—especially given that there is

nothing stopping someone from installing a different mobile browser on their Android device. If
you want your web app to display in browsers other than WebKit, try to use proprietary CSS3
extensions for eye candy only. Either that or include definitions for the other browser-rendering

engines that you want to support in the style definitions also.

Let’s have a brief look through the CSS3 extensions used in this example (more detail is

provided in the Appendix of the book).

appearance (-webkit-appearance)
This CSS3 property is used to tell the browser what type of native of control we would

like to be displayed. There are many different control types that can be specified. For

this example and many other instances, it is simplest just to set the appearance to none

and to apply the look and feel through surrounding elements.

border-radius (-webkit-border-radius)
The border-radius property provides a very simple and nice way of applying a border to

your HTML elements. In addition to being able to specify the corner radius for all corners

of your element with this property, you can specify specific and different radii for each

individual corner using the following properties:

 border-bottom-left-radius

 border-bottom-right-radius

 border-top-left-radius

 border-top-right-radius

A radius property will take either one parameter that specifies the overall corner radius,

or two parameters, specifying the horizontal radius and vertical radius for the corner(s),

respectively.

CHAPTER 2: Building a Mobile HTML Entry Form 32

box-shadow (-webkit-box-shadow)
The box-shadow property is used to apply a shadow to HTML elements without requiring

external image resources—very nice. The property takes four parameters that allow you

to specify how the shadow should appear:

 Horizontal offset: This defines where the shadow should be positioned

relative to the control in the horizontal direction. Positive values

position the shadow to the right of the control, and negative values

position it to the left.

 Vertical offset: This works like the horizontal offset, but on the vertical

axis. Positive values position the shadow below, and negative values

position it above.

 Blur radius: This specifies the radius for the blur effect. Basically,

bigger numbers mean a larger shadow that fades out gradually;

smaller numbers mean a smaller, crisper shadow.

 Shadow color: This specifies the color of the shadow—pretty self

explanatory, really. Most commonly, you’ll be using shades of gray

here, but colors can be used to create glow effects.

gradient fill style (-webkit-gradient)
So far, we’ve used shadows and rounded corners in our form; now we’ll take a look at

using gradients, which can help capture the visual appeal of many current mobile apps.

Gradients in CSS3 are not implemented as a CSS3 property, but rather as a fill style—

and they are very powerful and quite configurable. I’m sure there are whole chapters

dedicated to gradients in a CSS3 book, so I won’t attempt to cover all the detail here.

Essentially, there are two types of gradients: linear and radial. This chapter’s example

uses a linear gradient, so I’ll cover that here. Specifying a linear gradient requires a

minimum of five parameters (to actually make a gradient effect occur), but more can be

used to specify additional color stops.

 Gradient type: This is the type of gradient you are going to display—

linear or radial.

 Point 1: This is the starting point of the gradient. It’s a pair of space-

separated values that specifies the position. We used names in our

example (left top and left bottom), but additionally numeric values (in

the range of 0.0 to 1.0) or percentages can be used.

 Point 2: This is the ending point of the gradient.

CHAPTER 2: Building a Mobile HTML Entry Form 33

 Stop 1: This is the starting color stop. Defining a color stop is done

using the color-stop function. The function takes two arguments. The

first specifies the relative position between point 1 and point 2 at

which the color is used. You can use numbers or percentages to

define the position. If using numbers, 0.0 equates to “at point 1” and

1.0 equates to “at point 2.” Using percentages, 0.0 is equivalent to 0

percent and 1.0 is equivalent to 100 percent. The second argument is

used to define the color that will be used at the specified position.

 Stop 2: This is the next color stop. To create a gradient effect, only

two stops are required, but more can be specified.

This should start to make more sense when you look at the example in the preceding

code sample. If it doesn’t, however, then I’d suggest that you just flip to the reference

section and have a look at some gradient samples.

Improving the Page Title Appearance
Now that the form is looking a little more presentable, that run-of-the-mill h1 tag for a

title is looking a little out of place. Let’s see what we can do to improve the presentation.

We’ll have a look at a couple of options. First, we’ll apply a vanilla styling that looks

similar to what you might see as a subsection title in a native Android app. Second, we’ll

use some of the CSS3 styles that we played with previously to dress it up a bit.

The two different CSS classes we are going to experiment with follow—just add them to

the end of the todolist.css stylesheet, and depending on the look you would like for

the application, apply one and delete the other.

h1.simple {
 font-size: 0.9em;
 padding: 4px;
 background: #333333;
 color: #AAAAAA;
 border-bottom: 2px solid #AAAAAA;
 margin: 0 0 4px 0;
}

h1.fancy {
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#666666), color-stop(0.5, #3A3A3A), color-stop(0.5, #222222), color-stop(1.0, #000000));
 -webkit-box-shadow: 0 2px 1px #AAAAAA;
 -webkit-border-bottom-left-radius: 6px;
 -webkit-border-bottom-right-radius: 6px;
 font-size: 1.1em;
 color: white;
 padding: 10px 8px;
 margin: 0 6px 6px 6px;
 text-align: center;
}

Once these styles are applied to the h1 tag (by setting the class attribute of the tag),

you’ll get the results displayed in Figure 2–6.

CHAPTER 2: Building a Mobile HTML Entry Form 34

Figure 2–6. Two header styles compared

Coding for Different Screen Sizes
Devices powered by the Android OS can come with in a variety of screen sizes, which

means that we really want to build our forms and apps to be able to adjust their

appearance to make the best use of the available screen real estate. In most cases, this

is done best by using relative dimension specifications (i.e., percentages) rather than

specific, absolute values (i.e., pixels).

While this might be enough to ensure that a form looks presentable for all screen sizes,

it certainly won't guarantee that it's going to look good. For these situations, we need to

provide customized stylesheets for the varying device sizes. This is surprisingly simple,

and can be done by specifying the appropriate device widths in the media attribute of

the link tag. For instance, the following code would include the stylesheet

smallscreen.css for devices with a width of 480 pixels and the stylesheet

largescreen.css for larger screen sizes.

<link media="only screen and (max-device-width: 480px)" href="smallscreen.css" type=
"text/css" rel="stylesheet" />
<link media="only screen and (min-device-width: 481px)" href="largescreen.css" type=
"text/css" rel="stylesheet" />

CHAPTER 2: Building a Mobile HTML Entry Form 35

TIP: I would recommend using three stylesheets (instead of two, as just shown) when it comes
to writing anything more than a simple app. If you can effectively separate your CSS styles into
those that apply regardless of screen size and those that are dependent on screen size, you will

have an easier time managing your code in the long run.

Using this approach, the preceding example would have a core stylesheet (say,
allscreens.css) that is brought into the HTML document without the device width rules in the

link tag. All CSS that is not dependent on screen size would be moved to this file, and the

smallscreen.css and largescreen.css files would only contain the size-specific rules.

Handling Device Orientation Changes
In addition to handling differing screen sizes, our apps will likely have to respond to the

user changing the orientation of the device. Up until now, we have been designing for

our applications being used in portrait mode. While the form we have built will play

nicely in landscape mode (as demonstrated in Figure 2–7), it is important to know when

the orientation changes, as particular applications you write might need some special

treatment.

Figure 2–7. Using relative position makes working with different orientations simple.

To demonstrate the techniques for dealing with screen orientation changes, let’s create

a simple page that will provide some feedback as to when orientation changes are

occurring.

We will now look at some example code that implements an orientation detection

routine that works on both current and previous versions of Android. Additionally, we’ll

bring in jQuery here so we can do things a little more concisely. If you aren’t already

familiar with jQuery, it is probably worth quickly running through a jQuery tutorial (an

extensive list of tutorials can be found at http://docs.jquery.com/Tutorials), or else

the JavaScript that is used in this exercise will appear a little confusing.

http://docs.jquery.com/Tutorials

CHAPTER 2: Building a Mobile HTML Entry Form 36

First is the page HTML:

<html>
<head>
 <title>Orientation Checker</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0;" />
 <link rel="stylesheet" media="screen" href="orientation-monitor.css" />
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="orientation-monitor.js"></script>
</head>
<body>
 <h1 class="simple">Orientation Monitor</h1>
 <ul class="details">
 <li class="header">Event Details
 <label>Type:</label>
 <li class="header">Window Details
 <label>Width:</label>
 <label>Height:</label>
 <label>Orientation:</label>
 <li class="header">Detection Results
 <label>Orientation:</label>
 <label>Rotation Class:</label>

</body>
</html>

NOTE: I haven’t included the CSS here for this example, as it isn’t the point of the exercise. You
can, however, review the full source at the following URL:

http://sidelab.com/code/pawa/snippets/02/orientation-monitor.css

Next is the content of the orientation-monitor.js file:

$(document).ready(function() {
 var canDetect = "onorientationchange" in window;
 var orientationTimer = 0;

 var ROTATION_CLASSES = {
 "0": "none",
 "90": "right",
 "-90": "left",
 "180": "flipped"
 };

 $(window).bind(canDetect ? "orientationchange" : "resize", function(evt) {
 clearTimeout(orientationTimer);
 orientationTimer = setTimeout(function() {
 // display the event type and window details
 $("#event-type").html(evt.type);
 $("#window-orientation").html(window.orientation);
 $("#window-width").html(window.innerWidth);
 $("#window-height").html(window.innerHeight);

 // given we can only really rely on width and height at this stage,

http://sidelab.com/code/pawa/snippets/02/orientation-monitor.css

CHAPTER 2: Building a Mobile HTML Entry Form 37

 // calculate the orientation based on aspect ratio
 var aspectRatio = 1;
 if (window.innerHeight !== 0) {
 aspectRatio = window.innerWidth / window.innerHeight;
 } // if

 // determine the orientation based on aspect ratio
 var orientation = aspectRatio <= 1 ? "portrait" : "landscape";

 // if the event type is an orientation change event, we can rely on
 // the orientation angle
 var rotationText = null;
 if (evt.type == "orientationchange") {
 rotationText = ROTATION_CLASSES[window.orientation.toString()];
 } // if

 // display the details we have determined from the display
 $("#orientation").html(orientation);
 $("#rotation-class").html(rotationText);
 }, 500);
 });
});

Once you have implemented the code, a simulator or device will display a screen similar

to what is shown in Figure 2–8.

Figure 2–8. The orientation monitor displaying information for a landscape orientation.

Let’s take a walkthrough of the meaningful parts of the preceding code. Firstly, we make

a determination as to whether the version of WebKit that the Android device we are

using supports the orientationchange event:

var canDetect = "onorientationchange" in window;

Then we use the jQuery bind method to attach ourselves to the relevant event—based

on the previous detection. Here I use the ternary (or elvis) operator to save some

keystrokes. (I apologize if you aren’t a fan of Elvis, but I am, so expect to see more of

him.)

CHAPTER 2: Building a Mobile HTML Entry Form 38

$(window).bind(canDetect ? "orientationchange" : "resize", function(evt) {
 ...
});

Next, we’ll do something pretty subtle, but very important. As orientationchange and

resize events can occur quite rapidly, we need to wait until things have settled down

before actually attempting to handle the event. In this case, I am using the JavaScript

setTimeout and clearTimeout functions to clear and reset a timer that will run once the

event queue has stabilized.

var orientationTimer = 0;
clearTimeout(orientationTimer);
orientationTimer = setTimeout(function() {
 ...
});

This wraps up the preparatory work that is required to properly capture appropriate

events for detecting orientation changes. Let’s now have a look at what is required to

interpret the information we are receiving.

First, let’s work out the screen aspect ratio, and from there determine whether the

screen is being displayed in portrait or landscape mode:

var aspectRatio = 1;
if (window.innerHeight !== 0) {
 aspectRatio = window.innerWidth / window.innerHeight;
} // if

// determine the orientation based on aspect ratio
var orientation = aspectRatio <= 1 ? "portrait" : "landscape";

As I mention in the comments in the full code sample, the preceding code is really the

only reliable way at the moment to write detection code that is going to work for most

devices. In my testing, an Android device that did not support the orientationchange
event still reported results for the window.orientation value, but always returned 0,

regardless of the device’s actual orientation.

Based on the aspect ratio of the display, we can infer the orientation of the screen. We

can go a little further with the next section of code to get a value-add for those devices

that do actually provide us accurate orientation information:

var ROTATION_CLASSES = {
 "0": "none",
 "90": "right",
 "-90": "left",
 "180": "flipped"
};

var rotationText = null;
if (evt.type == "orientationchange") {
 rotationText = ROTATION_CLASSES[window.orientation.toString()];
} // if

In this code, we first look to see if the event was an orientationchange event. If so, then

we take the window.orientation integer value, convert it to a string, and then map it to

an array value that we will use in conjunction with CSS classes at a later stage.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2: Building a Mobile HTML Entry Form 39

NOTE: As a platform, Android is continuing to evolve and the particular code may have differing
effects on different versions of the Android OS. One of the common criticisms of the Android
platform relates to the fragmented OS versions available across devices.

To that end, the preceding code worked for Android 1.6, 2.1, and 2.2 in the emulator, but failed
to behave correctly on an Android 2.1 device. This is something that is going to prove challenging
for Android developers (including web app developers) until Google works with the device

manufacturers to ensure Android OS releases are distributed to consumers.

Until that time, it is very important to perform thorough device testing with your apps and be

aware of any limitations that particular OS versions may have.

What this code produces for us is essentially two string values that we can utilize for

effectively applying stylesheets (or individual styles) for our mobile web apps.

Once we have done this, it’s a very simple matter to tweak the code so that we can use

it in future exercises. Essentially, we need to remove the feedback elements from the

code (where jQuery is being used to update spans for our example app), and use the

jQuery trigger function to fire a new event:

$(window).trigger("reorient", [orientation, rotationText]);

Once this is done, you should be able to tweak your code to update the detected

orientation display elements by using jQuery bind to handle “reorient” events. If you run

into trouble, just have a look at the final exercise JavaScript code on GitHub:

http://sidelab.com/code/pawa/snippets/02/orientation-monitor.js

BUILDING A TOOL SET: We are starting to build up our tool set of reusable code that will be
used in later examples. While I won’t cover the detail of how this is being done, you can have a
look at the library at any time. Like the exercise code, the library is available for review at the
URL :

http://sidelab.com/code/pawa/js/prowebapps.js

Adding Form Validation
Now that we have the form looking presentable, we need to add some form validation to

make sure we are getting accurate data so that we can actually start saving new tasks in

the next chapter.

We will continue using jQuery from this point forward, which will give us access to some

excellent validation plug-ins that will save us from having to write validation routines

from the ground up. Before we get to integrating that validation plug-in, however, let’s

http://sidelab.com/code/pawa/snippets/02/orientation-monitor.js
http://sidelab.com/code/pawa/js/prowebapps.js

CHAPTER 2: Building a Mobile HTML Entry Form 40

consider how we are going to provide validation feedback in our application, as that is

something we are not going to be able to just use as is.

I know it’s been mentioned before, but we need to again consider limited screen real

estate. Additionally, if you have come from a desktop web application background, you

will also have to come to terms with not having hover tips and associated mouseover-

type functionality in your mobile web apps.

So we need an effective way of communicating validation errors that doesn’t take up

excessive screen space, but provides the user enough detail to fix the problems with the

data they have entered.

We will explore one option for providing that feedback by looking at an example.

Providing Feedback with Limited Screen Space
The approach we are going to take in this application is to first indicate any field that has

a problem with the data that has been provided with a visual cue that something is

awry—nothing new here. While a common practice for web applications would also be

to provide an overall summary of the validation errors that have been encountered for

the entire form, we will not be able to incorporate this given the limited screen real-

estate. As an alternative, let’s look at ways that we can leverage the power of jQuery to

alter the page at runtime and display those errors when a user enters a particular field.

Given that we haven’t actually hooked up the jQuery validation plug-in yet, we’ll just use

mock JavaScript to simulate some failed tests to check that our display behaves in the

desired fashion.

First, let’s add some basic style information to the todolist.css file for invalid fields:

input.invalid, textarea.invalid {
 background: url(exclamation.png) no-repeat 2px 2px;
 padding-left: 22px;
}

#errors {
 margin: 8px 6px 2px 6px;
 padding: 6px 14px;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#cc0000), color-stop(0.7, #770022));
 -webkit-border-radius: 4px;
 color: white;
 display: none;
}

CHAPTER 2: Building a Mobile HTML Entry Form 41

NOTE: I’ve included an external image resource to draw attention to the invalid field. This is
definitely one way to do things, and is great for what we are doing currently. Later in the book I
will discuss how you can actually embed image data directly into your stylesheets to reduce the

number of HTTP requests required by your app.

Oh, and you may notice that I’ve used another gradient. It might be time to start admitting I have

a problem with gradient addiction.

With a way to see that a field is invalid, let’s implement some code to trigger the display

of validation errors:

var errors = {};

function displayErrors() {
 // initialize variables
 var haveErrors = false;

 // remove the invalid class for all inputs
 $(":input.invalid").removeClass("invalid");

 // iterate through the fields specified in the errors array
 for (var fieldName in errors) {
 haveErrors = true;
 $("input[name='" + fieldName + "']").addClass("invalid");
 } // for

 // if we have errors, then add a message to the errors div
 $("#errors")
 .html(haveErrors ? "Errors were found." : "")
 .css("display", haveErrors ? "block" : "none");
} // displayErrors

$(document).ready(function() {
 $("#taskentry").bind("submit", function() {
 errors = {
 "task[name]": ["Task name is required"],
 "task[due]": ["Due date is invalid"]
 }; //

 displayErrors();
 return false;
 });
});

This code is the start of our todolist.js file, which we will build up to contain the

application logic for our web app. Right now, there isn’t much to it, but by the end of

Chapter 4, this will be quite a substantial amount of code. For now, the code simply

binds to the submit event of the task entry form and provides the skeleton of a

displayErrors function. If you click the Submit button on the web form, you should now

see something similar to Figure 2–9.

CHAPTER 2: Building a Mobile HTML Entry Form 42

Figure 2–9. The Create Task form simulating an error condition

Let’s move on to providing the user additional information when they focus back on a

field in the form. If you play around in the emulator or on an actual Android device, you

may notice that the screen positioning of elements when the onscreen keyboard is

displayed is going to make it difficult to choose a suitable location to provide the

additional validation feedback. If you haven’t yet experienced this firsthand, then just

take a moment to throw a few extra dummy input fields in the Create Task form and

experiment with the interface.

Figure 2–10 highlights the dramatic reduction of available screen real estate when the

keyboard is displayed.

CHAPTER 2: Building a Mobile HTML Entry Form 43

Figure 2–10. When the onscreen keyboard is displayed, the available display height is roughly halved.

From my own investigations and experience, I have found that using the screen real

estate above a control is a little more reliable than below (given that scrolling is limited

by the height of the current HTML document). To provide the detailed feedback, let’s

add some additional JavaScript to our todolist.js file. We’ll start with adding an

additional function that will be used to display any errors for a form element that is

passed to it:

function displayFieldErrors(field) {
 var messages = errors[field.name];
 if (messages && (messages.length > 0)) {
 // find an existing error detail section for the field
 var errorDetail = $("#errordetail_" + field.id).get(0);

 // if it doesn't exist, then create it
 if (! errorDetail) {
 $(field).before("<ul class='errors-inline' id='errordetail_" + field.id +
"'>");
 errorDetail = $("#errordetail_" + field.id).get(0);
 } // if

 // add the various error messages to the div
 for (var ii = 0; ii < messages.length; ii++) {
 $(errorDetail).html('').append("" + messages[ii] + "");
 } // for
 } // if
} // displayFieldErrors

This code is then triggered by attaching to the focus handler of the control—the

following code demonstrates how to do that when the document is loaded:

CHAPTER 2: Building a Mobile HTML Entry Form 44

$(document).ready(function() {
 $(":input").focus(function(evt) {
 displayFieldErrors(this);
 }).blur(function(evt) {
 $("#errordetail_" + this.id).remove();
 });
 ...
});

Now we just need add an additional style definition so the inline errors are displayed

differently from other ul elements:

ul.errors-inline li {
 border: 0px;
 color: red;
 padding: 0px;
}

Once that has been implemented, errors should display above an input field when it

receives focus, as per Figure 2–11.

Figure 2–11. Detailed error messages are now displayed above an entry field when it receives focus.

That’s pretty much it in terms of providing error feedback; from here all that is required is

to include the jQuery validation plug-in and let it do the hard work of validating data.

Setting up the jQuery validation plug-in requires the following steps:

1. Importing the jquery.validate.js library into our HTML code

2. Adding some validation information to the class declarations of input fields that

we want to validate

CHAPTER 2: Building a Mobile HTML Entry Form 45

3. Calling a customized version of the validate method for our form to override the

default jQuery validation plug-in behavior to what we created previously

Let’s start with the tweaks to the HTML:

<html>
<head>
 <title>Simple Mobile Web Page</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0;" />
 <link rel="stylesheet" media="screen" href="todolist.css" />
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/jquery.validate.js"></script>
 <script type="text/javascript" src="../../js/prowebapps.js"></script>
 <script type="text/javascript" src="todolist.js"></script>
</head>
<body>
 <h1 class="fancy">Create Task</h1>
 <div id="errors"></div>
 <form id="taskentry">

 <input type="text" class="required" name="task[name]" id="taskname"
placeholder="Task Name"/>

 <textarea name="task[description]" id="taskdesc" placeholder="Description"
rows="5"></textarea>

 <input type="text" class="required date" name="task[due]" id="taskdue"
placeholder="Task Due" />
 <li class="naked"><input type="submit" name="Save" />

 </form>
</body>
</html>

That takes care of steps 1 and 2; now we just need to replace the mock validation code

(the jQuery bind for the submit and the associated callback) with the following code:

$("#taskentry").validate({
 submitHandler: function(form) {
 // TO BE COMPLETED IN THE NEXT CHAPTER
 },
 showErrors: function(errorMap, errorList) {
 // initialize an empty errors map
 errors = {};

 // iterate through the jQuery validation error map, and convert to something we
can use
 for (var elementName in errorMap) {
 if (! errors[elementName]) {
 errors[elementName] = [];
 } // if

 errors[elementName].push(errorMap[elementName]);
 } // for

 // now display the errors

CHAPTER 2: Building a Mobile HTML Entry Form 46

 displayErrors();
 }
});

Once this is done, the application should behave exactly as before, but rather than

displaying our mock errors it will display error messages that have been produced from

the jQuery.validate plug-in.

Summary
This chapter should have familiarized you with the basic requirements of building a

mobile web app. It included a look at the viewport meta tag, and explored some of the

CSS3 styles that can be used in Android’s WebKit browser to create a clean user

interface. It also covered some of the extra things to be considered when creating web

apps for mobile devices, including device orientation changes and the extra constraints

applied when designing an app given limited screen real estate. Finally, we made use

the jQuery validate plug-in to bring robust forms validation into our application without

having to write it from the ground up.

In the next chapter, we will look at saving our data using the various client-side storage

mechanisms that are provided as part of HTML5. This will involve starting to get a bit

more serious with our code, and as a result, I’ll be moving to using the JavaScript

module pattern in the code samples. Employing the module pattern will provide us the

solid foundation required to build more complicated applications in JavaScript, so while

it takes a bit of getting used to, it’s well with the effort.

47

47

 Chapter

HTML5 Storage APIs
In the last chapter, we looked at creating a simple mobile web page and a simple Create

Task form for our to-do list application. In this chapter, we will look at options for being

able to store data locally on the device. HTML5 introduces a couple of APIs that permit

this kind of client-side storage.

Previously when writing a web app, if you needed to save data to a database, you would

need to use a server-side script (PHP, Python, Ruby, etc.) to do this for you. Some

emerging elements of the HTML5 API offer a client-side alternative for this, and

investigating these and how to effectively use them will be the primary focus of this

chapter.

Essentially, three different types of client-side storage mechanisms are being

implemented as part of the HTML5 specification:

 Web storage: Often referred to as HTML5 local storage, this is a client-

side mechanism for storing key/value pairs. It’s simple, but very

powerful (see http://w3.org/TR/webstorage/).

 Web SQL database: This provides access to a SQLite-like database,

which is a client-side alternative to a traditional RDBMS that you might

find on a server (see http://w3.org/TR/webdatabase/).

 Indexed database: A draft specification that has been proposed by the

W3C to replace the currently implemented Web SQL database

specification, geared towards providing a “database of records

holding simple values and hierarchical objects” (see

http://w3.org/TR/IndexedDB/).

In this chapter, we will be focusing on the first two storage APIs listed above, providing

both an overview and sample code for both.

Although the Indexed DB API has been put forward by the W3C to replace the Web SQL

database, currently no versions of Android have shipped with support for the

specification. For this reason, we have focused on the two that you can implement and

use right now—Web Storage and Web SQL database.

3

http://w3.org/TR/webstorage/
http://w3.org/TR/webdatabase/
http://w3.org/TR/IndexedDB/

CHAPTER 3: HTML5 Storage APIs 48

It is our firm belief that WebKit browsers (as used natively on Android) will continue to

support the Web SQL database for some time to come so you should feel comfortable

using that specification even though the W3C have indicated that they will not be

creating any further revisions to the standard.

The Web Storage API
Both the localStorage and sessionStorage objects implement the Storage interface,

and this provides the following methods:

getItem

setItem

removeItem

clear

These four methods capture pretty much the entire functionality of the Storage API, and

while they appear simple, they open up some great opportunities. The magic lies in the

fact that you can save any object into Storage. You just provide a key to access the

value later, and away you go.

In a simple case, you might simply save a string or other simple type values into storage.

Consider the following code:

localStorage.setItem(“preferences-bgcolor”, “#333333”);
localStorage.setItem(“preferences- textcolor”, “#FFFFFF”);

This creates two values in localStorage for tracking application preferences for a

background and text color. You could, however, achieve the same result by just storing

a single object in localStorage with the following code:

localStorage.setItem(“preferences”, {
 bgcolor: “#333333”,
 textcolor: “#FFFFFF”
});

You can retrieve your preferences object by using a simple call to getItem:

var preferences = localStorage.getItem(“preferences”);

You should then be able to access the background color and text color preferences

from the preferences object. Let’s try that now. Just show an alert to display the

background color:

alert(preferences.bgcolor);

Um, well, that’s embarrassing. Depending on the implementation of the Web Storage

API browsers are using at the time you are reading this book, you may well find that the

preceding call just shows you a message as per the JavaScript alert displayed in Figure

3–1.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: HTML5 Storage APIs 49

Figure 3–1. Accessing objects in localStorage may not yield the expected/documented results.

What does that mean for you right now? Can you only store simple values in

localStorage and sessionStorage? Yes . . . but you can always use JSON (JavaScript

Object Notation) to serialize your objects first and then save them as strings. This is

definitely worth investigating, so the first exercise of this chapter relates to that.

NOTE: If you haven’t encountered a situation like this previously, then welcome to the world of
the early technology adopter—things change. We discussed this earlier, but here is a firsthand
example in which the browser builders believed part of the HTML5 spec had stabilized enough
for implementation, when in actual fact there were still some tweaks on the way. This is all part

of the fun, and we are likely to come across more examples of this through the course of the
book.

If you do come across something that doesn’t work as expected, or something in the book isn’t in

line with the current HTML5 spec, then please provide some feedback online:

www.apress.com.

Saving Objects to Web Storage Using JSON
We will now investigate saving JavaScript objects to Web Storage using JSON. JSON

provides an elegant and efficient method of storing JavaScript object data as a plain text

string. Once in string format, the data can then be sent to external services or saved as

http://www.apress.com

CHAPTER 3: HTML5 Storage APIs 50

per the samples here. Before you begin saving objects in JSON format, however, you

are going to need Douglas Crockford’s json2.js library for serializing/deserializing

objects to JSON strings. This library is available at the following location:

http://json.org/json2.js.

You can download that file into your top-level js directory so you can use it for other

exercises later on.

NOTE: Doug Crockford has included an alert in the first line of the json2.js file to discourage
people from using the library via a direct link to his site. You will need to remove this line before

running code samples from the exercise. If you forget, though, everything will work; you’ll just
have to click through an annoying alert each time you run an exercise using JSON. We’re fairly

confident that by the end of the book that first line will be removed.

Let’s create a simple page that will set up the environment for us to run our tests:

<html>
<head>
 <title>Web Storage Tester</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0;" />
 <link rel="stylesheet" media="screen" href="../../css/snippets.css" />
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/json2.js"></script>
 <script type="text/javascript" src="../../js/prowebapps.js"></script>
 <script type="text/javascript" src="webstorage-test.js"></script>
</head>
<body>
 <h1 class="fancy">Web Storage JSON Wrapper</h1>
 <ul id="items">
 <li class="header">Items in Storage (tap to remove)

 <ul id="newitem">
 <li class="header">New Item
 <li class="bordered"><input type="text" id="newtitle" placeholder="Title"
/>

 <ul id="actions">
 <button id="add">Add</button>
 <button id="clear">Clear</button>

</body>
<html>

In the preceding code, there are four general items to take note of:

 Inclusion of the generic snippets stylesheet (css/snippets.css). As

outlined in Chapter 1, this stylesheet forms part of the reusable code

components that we will use and expand on over the course of the

book. Full source of the stylesheet is viewable at the following URL:

http://sidelab.com/code/pawa/css/snippets.css.

http://json.org/json2.js
http://sidelab.com/code/pawa/css/snippets.css

CHAPTER 3: HTML5 Storage APIs 51

 Inclusion of json2.js so we can access JSON serialization and

parsing.

 Inclusion of the prowebapps.js library. We will add some handy

wrappers for saving to localStorage/sessionStorage, which will provide

automatic serialization/deserialization of objects using JSON.

 Inclusion of webstorage-test.js, which will include the JavaScript

code for this exercise.

Let’s get on with coding. First, we’ll add those storage wrapper functions to the

prowebapps.js library. This is done by adding a Storage submodule to our existing

PROWEBAPPS module:

var module = {
 Storage: (function() {
 function getStorageScope(scope) {
 if (scope && (scope == "session")) {
 return sessionStorage;
 } // if

 return localStorage;
 } // getStorageTarget

 return {
 get: function(key, scope) {
 // get the storage target
 var value = getStorageScope(scope).getItem(key);

 // if the value looks like serialized JSON, parse it
 return (/^(\{|\[).*(\}|\])$/).test(value) ? JSON.parse(value) : value;
 },

 set: function(key, value, scope) {
 // if the value is an object, then stringify using JSON
 var serializable = jQuery.isArray(value) || jQuery.isPlainObject(value);
 var storeValue = serializable ? JSON.stringify(value) : value;

 // save the value
 getStorageScope(scope).setItem(key, storeValue);
 },

 remove: function(key, scope) {
 getStorageScope(scope).removeItem(key);
 }
 };
 })()

 ...
};

While we won’t go into a detailed explanation of the preceding code, those of you who

are interested will be able to see that we wrap the getItem and setItem methods of the

HTML5 Storage interface into get and set static methods on the PROWEBAPPS.Storage

module. We use some jQuery utility functions and regular expressions to determine if we

need to use JSON to store/retrieve the data, and if so, then we do.

CHAPTER 3: HTML5 Storage APIs 52

More important than how the preceding code works (which is relatively simple once you

break it down) is how we will be able to use it. Basically, we now have three functions

that permit more complex value storage at our disposal for interacting with the HTML5

Web Storage functionality:

 PROWEBAPPS.Storage.get(key, scope)

 key is a string value used to identify the entry.

 scope can be optionally specified as "session" (i.e., as a string) if

you want to store to session storage instead of local storage.

 PROWEBAPPS.Storage.set(key, value, scope)

 As per the get method, the key is a string value to identify the

entry.

 value is the data that we wish to save to Web Storage. (This can

be a simple value, array, object, etc.). Arrays and objects are

serialized using JSON and then stored as strings.

 scope (optional) specifies whether the key value will be saved to

session or local storage. Passing no value to this parameter

means that the value will be saved to local storage.

 PROWEBAPPS.Storage.remove(key, scope)

 key is a string value used to specify the entry that will be

removed from storage.

 The scope parameter (if supplied) will specify whether session or

local storage should be used. If no value is supplied, then

local storage is used by default.

Now that we have this functionality at our disposal, let’s have a look at storing simple

JavaScript objects and arrays using our PROWEBAPPS.Storage functions. We’ll do this by

creating our webstorage-test.js file, which will be used to power this little storage test

application:

$(document).ready(function() {
 // read the data from local storage for the items
 var items = PROWEBAPPS.Storage.get("listitems");
 var loadTicks = new Date().getTime();

 function displayItems() {
 loadTicks = new Date().getTime();

 $("#items li[class!='header']").remove();
 if (items) {
 // create list items to display the current items
 for (var ii = 0; ii < items.length; ii++) {
 var itemAge = Math.floor((loadTicks - items[ii].created) / 1000);
 $("#items").append("" + items[ii].title + " (created " + itemAge +
"s ago)");
 } // for
 }

CHAPTER 3: HTML5 Storage APIs 53

 else {
 $("#items").append("No items");

 // initialize the items array
 items = [];
 } // if..else
 } // displayItems

 // button click handlers go here
 displayItems();
});

The preceding code is very simple and is designed to retrieve an array of items

(listitems) from localStorage and display them on the screen. With the code as it was

before (without add or clear functionality defined), loading the page generates HTML

output, as displayed in Figure 3–2.

Figure 3–2. The Web Storage test application page

As there are no items currently in storage (the PROWEBAPPS.Storage.get function

currently returns null), we display “No items” on the screen. Let’s implement the add

and clear button click handlers to populate and save the array:

$("#add").click(function() {
 items.push({
 title: $("#newtitle").val(),
 created: new Date().getTime()
 });

 // save the items
 PROWEBAPPS.Storage.set("listitems", items);
 displayItems();

CHAPTER 3: HTML5 Storage APIs 54

});

$("#clear").click(function() {
 items = null;
 PROWEBAPPS.Storage.remove("listitems");
 displayItems();
});

Once again, this is very simple code. In the case of the add handler, we push a new

object onto the array using the title of the item and the current date time (represented in

milliseconds), save the items to storage, and then refresh the display.

The clear handler is even simpler. We reset the items variable state back to null,

remove listitems from local storage, and then update the display.

Local vs. Session Storage
As shown in the code previously, there is no difference between using localStorage and

sessionStorage—not in terms of the actual interaction at least. In fact, the only real

difference is the length of time the data is actually stored and what the data considers to

be its owner.

In the case of local storage, the data is persistent and will not be removed unless it’s

requested to be removed by the user (e.g., by using the browser settings).

In the case of session storage, the data lasts only as long as the browsing context

(which is usually terminated when the browser window closes). Additionally, browsers

will maintain separate sessionStorage objects for separate windows or tabs; local

storage, on the other hand, will be shared between windows and tabs.

NOTE: In doing some detailed analysis of how multiple windows/tabs interact with Web Storage,
it became clear that the implementation of the PROWEBAPPS.Storage module currently
contains a flaw. It is currently possible for two windows to overwrite each other’s changes in

localStorage. In sessionStorage, however, there are never collisions.

For both localStorage and sessionStorage, data is stored on a per-origin basis. An origin

refers to the site from which the page was loaded, and basically means that site B will

not be able to access client-side data created by site A (which makes sense).

The Web SQL Database
Now that we have worked with the Web Storage API, it’s appropriate that we get

acquainted with Web Storage’s cousin—the Web SQL Database. Given the more

complicated nature of this storage API, we will cover it briefly here and then run through

more concrete examples when we build our GeoMiner application later in the book.

CHAPTER 3: HTML5 Storage APIs 55

The implementation of the Web SQL Database feels very much like interacting with a

typical Ajax handler (the SQL aside), as interactions with the API are primarily

asynchronous operations. Web workers (which only have sparse support on mobile

browsers at the time of writing) also have access to a synchronous implementation—

which is appropriate given their threaded execution context.

At a high level, we can summarize the HTML5 Web SQL Database implementation in

about three methods:

 openDatabase: Used to open/create a database. This method takes five

arguments:

 databaseId: The ID of the database.

 version: A string identifying the version of the database. This can

be used to implement particular version-update scripts (more

information on this is provided in Chapter 4).

 description: A human-readable description of the database.

 estimatedSize: The estimated size of the database (in bytes).

 creationCallback: A callback that will be executed once the

database has been opened/created (not implemented in all

browsers).

 transaction/readTransaction: Used to open a transaction for the

execution of one or more SQL statements. The transaction method is

used for INSERT/UPDATE/DELETE operations, and the readTransaction is

used for SELECT statements. This method only accepts one argument:

 callback: The callback function that will be called when the

transaction has been opened. When the callback is executed, it

passes in a single argument for the transaction instance.

 executeSql: Used to run an SQL statement within a transaction. This

method takes four arguments:

 sqlText: The SQL statement to execute against the database.

 sqlParameters: An array of values for the parameters included in

sqlText statement. Parameters are specified in the SQL using a

question mark (?).

 completionCallback: A function callback that will be invoked

when the SQL statement has been successfully executed. In the

case of a SELECT statement, results will be returned as a second

argument in the callback. A transaction argument is returned as

the first argument in all cases if the callback is specified.

 errorCallback: A callback that will be invoked if there are issues

with the SQL statement or database.

CHAPTER 3: HTML5 Storage APIs 56

While we won’t go through the code in detail here, if you are interested in

working through how our previous example of saving objects would look using

the Web SQL Database instead of Web Storage, we have provided an example

implementation at the following location:

http://sidelab.com/code/pawa/snippets/03/webstorage-test-webdb.js.

Given the amount of material there is to cover, we will focus on implementing a local

database reading and writing using the Web SQL Database API. This will be covered in

the next example.

Saving To-Do List Items with a Client-Side Database
In this exercise, we will use the Web SQL Database API to save to-do list items to a

client-side database for later use. We will work with the methods outlined previously to

do this.

Begin by creating a submodule called TODOLIST.Storage in your JavaScript application

code. This module will be responsible for handling interaction with the database for the

application. It is important to encapsulate this functionality, as it gives you the option to

use an alternative storage mechanism (e.g., the Web Storage API) at a later date without

affecting the rest of the application code.

The following code should be added to the module definition in the todolist.js file

(remember to include a comma if this isn’t the last member of the module array):

Storage: (function() {
 // open/create a database for the application (expected size ~ 100K)
 var db = openDatabase("todolist", "1.0", "To Do List Database", 100 * 1024);

 // check that we have the required tables created
 db.transaction(function(transaction) {
 transaction.executeSql(
 "CREATE TABLE IF NOT EXISTS task(" +
 " name TEXT NOT NULL, " +
 " description TEXT, " +
 " due DATETIME);");
 });

 return {
 saveTask: function(task, callback) {
 db.transaction(function(transaction) {
 transaction.executeSql(
 "INSERT INTO task(name, description, due) VALUES (?, ?, ?);",
 [task.name, task.description, task.due]
);
 });
 }
 };
})()

At this stage, TODOLIST.Storage has only two functions:

http://sidelab.com/code/pawa/snippets/03/webstorage-test-webdb.js

CHAPTER 3: HTML5 Storage APIs 57

 To create/open a client-side database called todolist, and to ensure

that the required task table exists, creating it if required

 To save a to-do list item into the task table

We then create what might be called a DTO (data transfer object) or POJO (plain-old

Java object) in other languages to capture the details of a to-do list item. In future

exercises, we will refer to these as POJOs, since the acronym works almost as well for

JavaScript as it does for Java.

As per the preceding Storage code, Task is added to the module definition of

todolist.js:

Task: function(params) {
 params = jQuery.extend({
 name: "",
 description: "",
 due: null
 }, params);

 // initialize self
 var self = {
 id: null,
 name: params.name,
 description: params.description,
 due: params.due ? new Date(params.due) : null
 };

 return self;
}

NOTE: While we have a preference for using POJOs to capture details about an object in our
application, this isn’t always the best way to go. You can see in the preceding case that Task

adds very little extra value in this early stage. Personally, we find that architecting an application
in this way provides some benefits once it reaches a certain size and complexity, but can feel
like a waste of time initially.

When it comes to actually saving Task, we’ll provide an alternative implementation that will

work without the POJO if that is your preference.

One final piece of supporting code is required and, if you have worked with jQuery and

web apps before, you have probably built something like this yourself previously. To

save yourself from writing the same code time and time again to extract form values

from a form and map them into an object, you can use something like the following code

to make that process more streamlined (given that you are able to use consistent

naming for form fields, object properties, etc.).

The following code should be added to the module definition for the prowebapps.js file

(remember, a trailing comma may be required depending on where you add the code in

the module):

CHAPTER 3: HTML5 Storage APIs 58

getFormValues: function(form) {
 var values = {};

 // iterate through the form values using jQuery
 jQuery(form).find(":input").each(function() {
 // get the name of the field
 var fieldName = this.name.replace(/^.*\[(\w+)\]$/, "$1");

 // set the value for the field
 values[fieldName] = this.value;
 });

 return values;
}

Now that all the building blocks are in place, let’s go back and change the submit

handler that was left blank when we finished Chapter 2 so that it contains some code

that will actually save the to-do list item:

$("#taskentry").validate({
 submitHandler: function(form) {
 // get the values from the form in hashmap
 var formValues = PROWEBAPPS.getFormValues(form);

 // create a new item to save to the database
 var item = new TODOLIST.Task(formValues);

 // now create a new task
 TODOLIST.Storage.saveTask(item);
 },
 showErrors: function(errorMap, errorList) {
 // code from chapter 02
 }
});

Saving a new to-do item is now a simple three-step process:

1. Getting the values of the fields in the form as a JavaScript key/value pair array

2. Creating a new item from those form values

3. Asking the Storage module to save the item for us

Running this code on an Android handset or emulator is quite unsatisfying, as we

haven’t built our interface for displaying items yet. To get some confidence that this is

actually working, let’s have a look in Chrome, using the Chrome developer tools. As

outlined in Chapter 1, a WebKit-based desktop browser is an invaluable tool when it

comes to debugging mobile apps—my personal preference is Chrome.

So, we provide the form some data. As shown in Figure 3–3, I am going to give myself a

to-do of mowing the lawn before the end of 2011 (it’s not one of my strong points).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3: HTML5 Storage APIs 59

Figure 3–3. The Create Task form with sample data displayed in Chrome

On submitting the form, the data passes the validation checks that we set up in the last

chapter and thus proceeds to save the data according to the logic that we set up in the

submit handler. Having a look in the Storage tab in the developer tools, we can see that

our data was indeed saved to the local database. Figure 3–4 shows the Chrome

developer tools.

CHAPTER 3: HTML5 Storage APIs 60

Figure 3–4. The new task is saved, and can be seen using the Storage inspector in the Chrome developer tools.

As promised, if you are not a fan of using POJOs and the like to encapsulate data

moving around in your application, the submit handler code can be modified to the

following:

$("#taskentry").validate({
 submitHandler: function(form) {
 // get the values from the form in hashmap
 var formValues = PROWEBAPPS.getFormValues(form);

 // now create a new to-do list item
 TODOLIST.Storage.saveTask(formValues);
 },
 showErrors: function(errorMap, errorList) {
 // code from chapter 02
 }
});

As it stands with the code in the Storage module, the date is saved as entered. Figure 3–

5 shows that the database holds a value identical to what was entered, which indicates

that this value is probably saved as a string.

CHAPTER 3: HTML5 Storage APIs 61

Figure 3–5. The results of not converting a string to a Date object before inserting it into the database

You can see the second entry has been added as is. In reality, this is also the case for

the first entry too, as what is displayed here is simply the toString representation for a

JavaScript Date object (as we converted the form value to a Date in the Task POJO).

CAUTION: The preceding behavior is interesting, given that we explicitly defined the due field as
a DATETIME type in our CREATE TABLE statement. While this won’t cause any real issues in our
application here, we think it is worth noting that with current implementations of the SQL Web

Database you may need to test your data on read operations in addition to writes, as you may not
be able to trust that the data in the database is of the type you expect.

To confirm this behavior, try tweaking the code to see if you can actually push a string value into

the due field. You will find that you can. This appears to be consistent with the way SQLite
handles DATETIME columns. For more information, check out the following URL on the SQLite

site: www.sqlite.org/datatype3.html.

http://www.sqlite.org/datatype3.html

CHAPTER 3: HTML5 Storage APIs 62

Database Versioning and Upgrades
The HTML5 implementation of the Web SQL Database has already been quite well

thought through, and provides a mechanism to apply version changes to our client-side

databases when a new version of our application is deployed. This involves the use of

the changeVersion method on an opened database. The method allows you to specify

the old version, the new version, and a transaction callback to execute, in order to apply

any updates required to move from one version to the next. Additionally, optional error

and success callbacks can be supplied to monitor and respond to those particular

response conditions.

For instance, in the next chapter we are going to add some functionality to our to-do list

application to allow a user to mark items as complete. This is obviously a good idea, but

the database is clearly lacking a place to store a completed flag or date. Time to fix that

and create version 1.1 of our database.

The following code shows how we can replace our original openDatabase call in the

TODOLIST.Storage module with one that can handle opening either version 1.1 or version

1.0 of the database, and upgrade version 1.0 appropriately:

var db = null;

try {
 db = openDatabase("todolist", "1.1", "To Do List Database", 100 * 1024);

 // check that we have the required tables created
 db.transaction(function(transaction) {
 transaction.executeSql(
 "CREATE TABLE IF NOT EXISTS task(" +
 " name TEXT NOT NULL, " +
 " description TEXT, " +
 " due DATETIME, " +
 " completed DATETIME);");
 });
}
catch (e) {
 db = openDatabase("todolist", "1.0", "To Do List Database", 100 * 1024);

 // check that we have the required tables created
 db.transaction(function(transaction) {
 transaction.executeSql(
 "CREATE TABLE IF NOT EXISTS task(" +
 " name TEXT NOT NULL, " +
 " description TEXT, " +
 " due DATETIME);");
 });

 db.changeVersion("1.0", "1.1", function(transaction) {
 transaction.executeSql("ALTER TABLE item ADD completed DATETIME;");
 });
}

We’ll be honest here and say that we’re not huge fans of this implementation. It works,

but we wonder how scalable it is when you are rolling out your 13th application update

CHAPTER 3: HTML5 Storage APIs 63

and corresponding database change. (Of course, one database change per app update

would be very bad planning, but you get our point.)

Summary
We have explored two powerful mechanisms for storing data on the client side in this

chapter. While not one of the shiniest toys in the HTML5 bag of tricks, it’s certainly one

of the game changers. Being able to store different types of data on the client side is

going to create many opportunities for mobile web apps over the next few years.

In addition to the actual mechanics of Web Storage and the Web SQL Database, we

also investigated ways of effectively encapsulating that and other functionality in web

apps using the JavaScript module pattern. You can probably tell how important we think

it is for building serious apps using JavaScript, but we promise we’ll back off a little in

the following chapters.

In the next chapter, we will finish our to-do list application by adding a view to display

our to-do list items, and also a way to mark them as complete. At this point, we will go

beyond single-page examples into a multiple-view/screen application. We will

investigate ways to build this kind of functionality as well as briefly explore libraries that

offer this functionality already.

65

65

 Chapter

Constructing a Multipage
App
Now that we have the ability to save tasks in our to-do list application, it’s time to build

our display screen and add the ability to complete tasks. This will bring our to-do list

application to the point that it can actually be used for creating, viewing, and completing

tasks.

With data now being saved to the client-side database, let’s create a display screen so

that we can keep track of all those things we have to do (sigh). We are going to be

working toward building a display that shows the next five things that need to be done

(in due date) order.

Once we have done this, we will be at a point where our to-do list application has

multiple screens. While we could implement these using separate HTML pages, that

would result in page loads that aren’t required. This is best avoided, so we will

implement some functionality that you will find in the likes of jQTouch

(http://jqtouch.com) and iUI (http://code.google.com/p/iui) for creating a single

HTML document that contains multiple application screens.

Single HTML File, Multiple App Pages
Before we get into building our main to-do list application page, let’s work through

adding some additional styles to our proui.css file to handle setting up divs for display

and also showing a simple application menu at the base of the screen.

Firstly, let’s look at what is required to correctly display only one page when the

application page loads:

div.view {
 display: none;
 padding: 0 6px;
}

div#main {

4

http://jqtouch.com
http://code.google.com/p/iui

CHAPTER 4: Constructing a Multipage App 66

 display: block;
}

This simple CSS sets all div elements with the class view to be hidden by default. The

second style declaration simply says that, if we have a div with an ID of main, that

should override the view class and display the block.

<div id="main" class="view">
 <h1>To Do List</h1>
 <p>Application Main Page</p>
</div>
<div id="add" class="view">
 <h1>Create Task</h1>
 <p>Add Form Goes Here</p>
</div>

The preceding HTML fragment would generate a display with a title bar showing “To Do

List” and the text “Application Main Page.” On page load, there would be no visibility of

either the “Create Task” header or the “Add Form Goes Here” text.

Additionally, let’s just make a simple change to the existing proui.css stylesheet styles

to display the h1.fancy style if an h1 tag is contained within a div of class view:

h1.fancy, div.view h1 {
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#666666), color-stop(0.5, #3A3A3A), color-stop(0.5, #222222), color-stop(1.0, #000000));
 -webkit-box-shadow: 0 2px 1px #AAAAAA;
 -webkit-border-bottom-left-radius: 6px;
 -webkit-border-bottom-right-radius: 6px;
 font-size: 1.1em;
 color: white;
 padding: 10px 8px;
 margin: 0 0 6px 0;
 text-align: center;
}

In the to-do list application, we will create a bottom menu bar that will contain the action

links that are relevant for the current view. This will meet the requirements of both items

1 and 2, and is consistent with native applications on Android.

NOTE: We will be using the same screen real estate and UI styling to meet both of the preceding
requirements for Android. If you have experience with other mobile platforms, however, then you
will know these user interactions are often done differently depending on the platform. In that
case, the location of action and back buttons will vary.

Choosing an appropriate formatting style that is going to suit the majority of devices is difficult,
which is why using a third-party UI suite is highly recommended. Unfortunately, at this time,
most UI frameworks are geared toward an iPhone look and feel, and building an Android web app

that feels like an iPhone app isn’t really what we are after here.

We will get started by having a look at some CSS styling to create such an action bar:

CHAPTER 4: Constructing a Multipage App 67

ul#menu {
 position: fixed;
 bottom: 0px;
 margin: 0;
 padding: 5px;
 list-style-type: none;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#666666), color-stop(0.5, #3A3A3A), color-stop(0.5, #222222), color-stop(1.0,
#000000));;
 width: 100%;
}

ul#menu li {
 margin: 0;
 float: left;
 padding: 4px 10px 0 0;
}

ul#menu li a {
 color: white;
 font-weight: bold;
}

This CSS, when applied with the following menu list (inserted into the HTML just before

our previous view declarations), will generate a display as per the one in Figure 4–1.

<ul id="menu">
 Add

Figure 4–1. Our application main view with an action menu bar

CHAPTER 4: Constructing a Multipage App 68

While the preceding HTML fragment demonstrates how to construct the menu for

display to the screen, it is not something that you would or should manually construct in

HTML. Instead, we need an intelligent way to tell our application what the valid menu

items for each screen are, and, additionally, what action should be taken for any given

menu item.

Creating a View Manager
There are a variety of different approaches that could be used to prevent our having to

write static HTML over and over again. For instance, we could use CSS classes as per

the jQuery validation plug-in that was used in the previous chapter, and then build some

JavaScript code to read the information out of the CSS classes and configure our

application. In this particular case, however, we are going to write a ViewManager

submodule for our prowebapps.js file that we will configure from our application

JavaScript file.

The outline of the PROWEBAPPS.ViewManager module is shown here:

ViewManager: (function() {
 var views = {};
 var activeView = null;

 function switchView(oldView, newView) {
 // will switch views here
 } // switchView

 var subModule = {
 activate: function(viewId) {
 // save the old view
 var oldView = activeView;

 // if a view id has been specified, but doesn't exist in the views, check
for a div
 if (viewId && (! views[viewId]) && (jQuery("#" + viewId).get(0))) {
 subModule.define({
 id: viewId
 });
 } // if

 // update the active view
 activeView = viewId ? views[viewId] : null;

 // update the associated ui elements
 switchView(oldView, activeView);
 },

 getActiveView: function() {
 return activeView ? jQuery("#" + activeView.id) : null;
 },

 define: function(args) {
 args = jQuery.extend({
 id: '',
 actions: []

CHAPTER 4: Constructing a Multipage App 69

 }, args);

 // if the id is specified, add the view to the list of defined views
 if (args.id) {
 views[args.id] = args;
 } // if
 }
 };

 return subModule;
})();

An application would then call PROWEBAPPS.ViewManager.define to define a new view

with its associated actions (we’ll see an example soon). The static function define allows

us to register new views with the view manager, and activate sets the module variable

activeView to match the specified view. We then make a call to switchView to update

the UI elements based on the change in active view.

Expanding on the switchView stub, we implement the following private functions to

implement changing the view:

function getViewActions(view) {
 var html = "";
 for (var ii = 0; view && (ii < view.actions.length); ii++) {
 html += "" + view.actions[ii].getAnchor() + "";
 } // for

 return html;
} // getViewActions

function getAction(view, actionId) {
 // extract the id portion from the action id
 actionId = actionId.replace(/^action_(\d+)$/i, "$1");

 // find the specified view in the active view and execute it
 for (var ii = 0; ii < view.actions.length; ii++) {
 if (view.actions[ii].id == actionId) {
 return view.actions[ii];
 } // if
 } // for

 return null;
} // getAction

function switchView(oldView, newView) {
 var ii, menu = jQuery("#menu").get(0);

 // switch the views using jQuery
 oldView ? jQuery("#" + oldView.id).hide() : null;
 newView ? jQuery("#" + newView.id).show().trigger("activated") : null;

 // if we have a menu, then update the actions
 if (menu) {
 // clear the menu and create list items and anchors as required
 jQuery(menu).html(getViewActions(activeView));

 // attach a click handler to each of the anchors now in the menu

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4: Constructing a Multipage App 70

 jQuery(menu).find("a").click(function(evt) {
 var action = getAction(activeView, this.id);
 if (action) {
 action.execute();
 evt.preventDefault();
 } // if
 });
 } // if
} // switchView

At this stage, the private switchView function has two purposes:

 To hide the current view if active, and show the new view. Also notice

the call to the jQuery trigger method on the new element. We will be

making use of that later in this chapter.

 To check for the presence of a #menu element. If it exists, populate it

appropriately with links to the relevant actions for the active view.

Once the menu has been built, the jQuery click function is used to

handle finding and executing the action when a link is clicked.

Implementing View Actions
With the ViewManager functional, it is now just a matter of building some actions that the

ViewManager can make use of. We can then integrate this new functionality into our to-

do list app.

We will start with the PROWEBAPPS.ViewAction class:

 ViewAction: function(args) {
 args = jQuery.extend({
 label: "",
 run: null
 }, args);

 var self = {
 id: actionCounter++,

 getAnchor: function() {
 return "" + args.label + "";
 },

 execute: function() {
 if (args.run) {
 args.run.apply(this, arguments);
 } // if
 }
 };

 return self;
}

This is a base class that knows how to display itself as an anchor tag, using the

getAnchor method, and also has an execute method for executing the action.

Additionally, note the reference to a variable called actionCounter that is being assigned

CHAPTER 4: Constructing a Multipage App 71

to the id member of a new ViewAction object. This variable is defined within the scope

of the PROWEBAPPS main module as such:

PROWEBAPPS = (function() {
 var actionCounter = 0;
 ...
})();

The variable will exist and maintain state for the life of the page/application, so we can

use it as a counter for the actions and it will generate unique IDs for the anchors that are

created. At no time, however, is the variable into global scope. This is one of the big

attractions of using something like the module pattern in JavaScript code.

Let’s now create a PROWEBAPPS.ChangeViewAction class that actually does something

when it’s executed:

ChangeViewAction: function(args) {
 // if the target is not defined, then raise an error
 if (! args.target) {
 throw new Error("Unable to create a ChangeViewAction without a target
specified.");
 } // if

 // prep the label to equal the target if not defined
 if (! args.label) {
 args.label = args.target;
 } // if

 return new module.ViewAction(jQuery.extend({
 run: function() {
 module.ViewManager.activate(args.target);
 }
 }, args));
}

At first glance the preceding code is a little confusing, but let’s step through it and

understand what is happening:

1. We first check to see that a target has been defined for the simple args object

that has been passed to the class constructor; if not, an exception is raised.

2. If a label hasn’t been defined in the constructor args, we assign the target value to

the label to prevent displaying an empty anchor tag.

3. If all is well, we then create a new PROWEBAPPS.ViewAction and supply a run

function handler. When the new ViewAction is subsequently executed, this

function will be executed.

TODOLIST = (function() {
 // define the module
 var module = {
 ...
 };

 // define the main view
 PROWEBAPPS.ViewManager.define({

CHAPTER 4: Constructing a Multipage App 72

 id: "main",
 actions: [
 new PROWEBAPPS.ChangeViewAction({
 target: "add",
 label: "Add"
 })
]
 });

 return module;
})();

And voila! We are rewarded with a display that looks exactly like Figure 4–2. We guess

this could be a little disheartening, but remember the following:

 It actually does something now.

 We are beginning to build up a pretty useful toolkit in the

prowebapps.js file that will definitely make our lives easier—eventually.

Figure 4–2. Clicking the Add link actually does something now.

Note that we didn’t define the “add” view, but the view still switched successfully. This

is thanks to some code in the ViewManager.activate function that checks to see if a

view actually does exist, regardless of whether it was explicitly defined or not.

CHAPTER 4: Constructing a Multipage App 73

Building the Application’s Main Screen
Now that we have built some application code that will allow us to build more than just a

simple application, we are ready to start building those separate screens. Let’s start by

building the main screen of our application.

For both the main screen and the to-do list task display, we’ll begin by putting together

a screen mockup (I’m a big fan of Inkscape [www.inkscape.org] for this kind of thing),

and then building the display to match that layout. Figure 4–3 shows the mockup for the

to-do list application home page.

Figure 4–3. To-do list application home page mockup

The layout of the home screen is designed to be very simple. Rather than showing the

complete lists of tasks, just the most important task is shown—in an attempt to stop us

from getting distracted (trust me, I’m very distractable). Readers of the Lifehacker blog

(http://lifehacker.com) may well be familiar with the technique.

The HTML for a static replacement for the main div is listed here:

<div id="main" class="view">
 <h1>To Do List</h1>
 <div class="task">
 <h3>Task: Mow the Lawn</h3>
 <p class="task-description">Task description goes here</p>
 <p class="task-due">
 <label>DUE IN:</label>
 5 days
 </p>
 <ul class="task-actions">

http://www.inkscape.org]
http://lifehacker.com

CHAPTER 4: Constructing a Multipage App 74

 <li class="right">COMPLETE TASK
 START WORKING

 </div>
 <ul class="buttons">
 Show All Tasks
 Add New

</div>

Notice here that we have a number of HTML elements that will end up displaying the

actual task details once the application logic is written. For now, placeholder values are

included.

Without any CSS to style this HTML (see Figure 4–4), the view looks pretty ordinary, so

we add the following styles to the todolist.css file for the formatting of the task box,

name, description, and so on:

div.task {
 margin: 8px 4px;
}

div.task h3 {
 border: 1px solid #ff6600;
 background: #ff7f2a;
 color: white;
 -webkit-border-top-left-radius: 5px;
 -webkit-border-top-right-radius: 5px;
 margin: 0;
 padding: 8px;
 font-size: 0.8em;
}

div.task p {
 margin: 0;
 background: #e6e6e6;
 border-left: 1px solid #b3b3b3;
 border-right: 1px solid #b3b3b3;
 padding: 8px;
}

p.task-due label {
 font-weight: bold;
 width: 70px;
 float: left;
}

CHAPTER 4: Constructing a Multipage App 75

Figure 4–4. The main screen of our app is showing a distinct lack of style.

Add the following for formatting the task actions that are displayed beneath the task

details:

ul.task-actions {
 background: #b3b3b3;
 border: 1px solid #b3b3b3;
 color: white;
 padding: 8px;
 -webkit-border-bottom-left-radius: 5px;
 -webkit-border-bottom-right-radius: 5px;
 margin: 0;
 list-style-type: none;
}

ul.task-actions li a {
 color: white;
 text-decoration: none;
 font-weight: bold;
 font-size: 0.8em;
}

ul.task-actions li.right {
 padding: 4px 0 0 0;
}

Finally, we add a definition for elements matching the right class to float right:

.right {
 float: right;
}

CHAPTER 4: Constructing a Multipage App 76

While the task details area of the screen now looks like the mockup, there is still some

work to do to show buttons instead of links—as shown in Figure 4–5. This is achieved

by adding the following CSS to the proui.css file:

ul.buttons {
 margin: 4px 0 0 0;
 padding: 0;
 list-style-type: none;
}

ul.buttons li {
 margin: 4px 4px 10px 4px;
}

ul.buttons li a {
 display: block;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#b3b3b3), color-stop(0.4, #666666), color-stop(1.0, #333333));
 color: white;
 text-decoration: none;
 padding: 8px;
 text-align: center;
 -webkit-box-shadow: 0 2px 2px #333333;
 -webkit-border-radius: 6px;
}

Figure 4–5. Task elements styled

With all the styles applied, this generates a static HTML screen, as shown in Figure 4–6.

It’s definitely starting to look the part.

CHAPTER 4: Constructing a Multipage App 77

Figure 4–6. The static HTML equivalent to our home screen mockup

Tweaking ViewManager Functionality
Now that the display is ready, we can continue and update the application logic to make

the home screen behave the way it should.

Let’s start by getting rid of the Add link displayed in the global menu, which is displayed

here because we have a view definition for the main view from our previous examples.

The functionality is still useful, but not required on the Show All Tasks screen, so we’ll

modify the view definition by simply replacing main with alltasks for the view ID.

 // define the all tasks view
 PROWEBAPPS.ViewManager.define({
 id: "alltasks",
 actions: [
 new PROWEBAPPS.ChangeViewAction({
 target: "add",
 label: "Add"
 })
]
 });

We’ll also add some additional code to prowebapps.js to have the ViewManager

submodule automatically add switching view handling to this and future button lists:

ViewManager: (function() {
 ...

 jQuery(document).ready(function() {

CHAPTER 4: Constructing a Multipage App 78

 jQuery("a.changeview").each(function() {
 jQuery(this).click(function(evt) {
 subModule.activate(this.href.replace(/^.*\#(.*)$/, "$1"));
 evt.preventDefault();
 }); // click
 });
 });

 return subModule;
})()

If you are not familiar with the jQuery each method, it calls the supplied callback for each

element that matches the specified selector. At this stage, the callback will be fired twice

(once for each of the buttons in the list), and a click event will be attached to the

matching anchor. The handler for the click event calls the ViewManager.activate method

to change to that view. We additionally call preventDefault on the event object to

prevent the browser from attempting to navigate to the referenced named anchor. This

stops the screen from scrolling back up to the top, which would reveal the URL bar

(which is not what we want).

Home Screen Storage Requirements
From here we will write the code required to read the actual task data back out of the

local database we created in the previous chapter. This is going to involve adding some

additional methods to our storage wrapper. Once we have created the required methods

for reading task data, we will add a method that will enable us to mark a task as

complete.

NOTE: Given some of the data typing we experienced in the previous chapter, we are going to
have to implement things a little differently here. Normally, we would ask the SQL database to

sort the tasks by their due date for us, but, as we are actually dealing with strings, that isn’t

going to be possible. There are ways you can use SQLite to do this, but it is quite complicated.

First, add a getTasks private function to the TODOLIST.Storage module:

function getTasks(callback, extraClauses) {
 db.transaction(function(transaction) {
 transaction.executeSql(
 "SELECT rowid as id, * FROM task " + (extraClauses ? extraClauses : ""),
 [],
 function (transaction, results) {
 // initialize an array to hold the tasks
 var tasks = [];

 // read each of the rows from the db, and create tasks
 for (var ii = 0; ii < results.rows.length; ii++) {
 tasks.push(new module.Task(results.rows.item(ii)));
 } // for

 callback(tasks);

CHAPTER 4: Constructing a Multipage App 79

 }
);
 });
} // getTasks

This function requests all the data stored in the task table of the database and

populates an array with Task objects. This array is then passed through in the getTasks
function call. The method is also written so that it accepts an optional parameter,

extraClauses, which allows the function to add extra SQL clauses to the SELECT
statement. This could include WHERE statements (as per the code following) or

additionally ORDER BY statements that would then help to sort the tasks in a particular

order.

CAUTION: The reference here to results.rows.item(index) is not consistent with the
current draft of the Web SQL database specification. It is, however, the behavior that is
implemented in most browsers presently. While we would have expected that browsers would

change to match the specification, the move by the W3C to deprecate the specification will

probably mean that the functionality will remain as is.

Let’s add some methods to the Storage module that will allow those using the module to

access the saved tasks:

Storage: (function() {
 ...

 var subModule = {
 getIncompleteTasks: function(callback) {
 getTasks(callback, "WHERE completed IS NULL");
 },

 getTasksInPriorityOrder: function(callback) {
 subModule.getIncompleteTasks(function(tasks) {
 callback(tasks.sort(function(taskA, taskB) {
 return taskA.due - taskB.due;
 }));
 });
 },

 getMostImportantTask: function(callback) {
 subModule.getTasksInPriorityOrder(function(tasks) {
 callback(tasks.length > 0 ? tasks[0] : null);
 });
 },

 ...
 };

 return subModule;
})()

Here we have added three methods:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4: Constructing a Multipage App 80

 getIncompleteTasks: Used to return tasks that have not been marked

as complete. Notice that we make use of the extraClauses parameter

of the getTasks function to restrict the result set.

 getTasksInPriorityOrder: Used to return incomplete tasks in due date

order. Note the use of the JavaScript Array.sort method here to sort

the results. While we would normally implement this using an ORDER BY

statement in our SQL call, some of the datetime mismatches make it

simpler (but probably less efficient) to implement in JavaScript.

 getMostImportantTask: Used to return the first of our tasks from the

getTasksInPriorityOrder method.

We now need to modify the saveTask method to allow us to update existing tasks, in

addition to creating new tasks.

Additionally, the saveTask method is modified to support both creating new tasks and

updating existing tasks:

saveTask: function(task, callback) {
 db.transaction(function(transaction) {
 // if the task id is not assigned, then insert
 if (! task.id) {
 transaction.executeSql(
 "INSERT INTO task(name, description, due) VALUES (?, ?, ?);",
 [task.name, task.description, task.due],
 function(tx) {
 transaction.executeSql(
 "SELECT MAX(rowid) AS id from task",
 [],
 function (tx, results) {
 task.id = results.rows.item(0).id;
 if (callback) {
 callback();
 } // if
 }
);
 }
);
 }
 // otherwise, update
 else {
 transaction.executeSql(
 "UPDATE task " +
 "SET name = ?, description = ?, due = ?, completed = ? " +
 "WHERE rowid = ?;",
 [task.name, task.description, task.due, task.completed, task.id],
 function (tx) {
 if (callback) {
 callback();
 } // if
 }
);
 } // if..else
 });
}

CHAPTER 4: Constructing a Multipage App 81

NOTE: If you haven’t been working with JavaScript callbacks for long, it will take a little while to
get used to the asynchronous behavior here. In very simple terms, we need to move away from
linear thinking. Instead of thinking, “A occurs, then B occurs, and then C occurs,” we should

think, “A occurs, we initiate B, C occurs, B’s ready, so it completes.” It definitely takes some

getting used to.

We are almost at the point where we can actually replace some of those placeholder

values on the main screen with real data. Before we do that, though, let’s quickly tweak

our Task class to include a getDaysDue method to report the number of days until the

task is due. We’ll also add a complete method that will allow us to mark the task as

complete:

Task: function(params) {
 params = jQuery.extend({
 id: null,
 name: "",
 description: "",
 due: null
 }, params);

 // initialize self
 var self = {
 id: params.id,
 name: params.name,
 description: params.description,
 due: params.due ? new Date(params.due) : null,
 completed: null,

 complete: function() {
 self.completed = new Date();
 },

 getDaysDue: function() {
 return Math.floor((self.due - new Date()) / MILLISECONDS_TO_DAYS);
 }
 };

 return self;
}

The MILLISECONDS_TO_DAYS constant is defined privately in the TODOLIST module:

TODOLIST = (function() {
 var MILLISECONDS_TO_DAYS = 86400000;

 ...
});

CHAPTER 4: Constructing a Multipage App 82

Wiring Up the Home Screen
With the required methods added to the TODOLIST.Storage module, and a UI to display

our task information, we are now ready to start bringing those pieces together.

Thankfully, this is made simple given jQuery’s event system and the trigger call we

implemented earlier. Essentially, we need to bind to listen for the activated event, and

then do something in response to that event occurring. We will implement the bind

handler and code that is called as a result in three places. First, we modify the

document.ready event listener to attach event handlers to various views (just the main

view at this stage) and then activate the main view on load of the application:

$(document).ready(function() {
 ...

 // bind activation handlers
 $("#main").bind("activated", TODOLIST.activateMain);

 // initialize the main view
 PROWEBAPPS.ViewManager.activate("main");
});

Next, we implement the TODOLIST.activateMain module function that is invoked when

the activated event is received for the #main element:

activateMain: function() {
 TODOLIST.Storage.getMostImportantTask(function(task) {
 if (task) {
 // the no tasks message may be displayed, so remove it
 jQuery("#main .notasks").remove();

 // update the task details
 showTaskDetails("#main .task", task);

 // attach a click handler to the complete task button
 jQuery("#main .task-complete").unbind().click(function() {
 jQuery("#main .task").slideUp();

 // mark the task as complete
 task.complete();

 // save the task back to storage
 TODOLIST.Storage.saveTask(task, module.activateMain);
 });
 }
 else {
 jQuery("#main .notasks").remove();
 jQuery("#main .task").slideUp().after("<p class='notasks'>You have no tasks
to complete</p>");
 }
 });
}

You can see in the preceding code that we make the call to our

TODOLIST.Storage.getMostImportantTask function and pass through a callback to

receive the most important task that has been found in the database. Based on whether

CHAPTER 4: Constructing a Multipage App 83

a task was found or not (the database could be empty), we then either update the

contents of the main task or hide the contents and let the user know there are no tasks

to complete.

The code also attaches an event handler to the Complete Task link (note the jQuery

unbind to prevent multiple event calls) to handle completing the task. Thanks to the work

we have put into the Storage module, wiring up the completion handler takes minimal

code.

Both in this code sample and the one following, a couple of CSS classes are used. You

can decide how you want them to look and add something to the application stylesheet

(todolist.css) according to your tastes.

Finally, we create a private function, showTaskDetails, to do the work of updating an

HTML div designed for displaying task details with the actual values:

function showTaskDetails(selector, task) {
 var container = jQuery(selector),
 daysDue = task.getDaysDue();

 // update the relevant task details
 container.find(".task-name").html(task.name);
 container.find(".task-description").html(task.description);

 if (daysDue < 0) {
 container.find(".task-daysleft")
 .html("OVERDUE BY " + Math.abs(daysDue) + " DAYS").addClass("overdue");
 }
 else {
 container.find(".task-daysleft")
 .html(daysDue + " days").removeClass("overdue");
 } // if..else
} // showTaskDetails

This yields the various displays, as shown in Figure 4–7 (depending on your data).

CHAPTER 4: Constructing a Multipage App 84

Figure 4–7. The main screen display based on data that is available

Congratulations, the main page of the application is now complete. This, combined with

the task-adding functionality that we explored in previous chapters, allows us to create

tasks and keep track of important ones. We will need to build the show-all-tasks screen

as well so that we can access the other tasks.

Before we do that, though, it’s time we take a little break and have you cut some code

(see Exercise 4–1).

EXERCISE 4–1: INTEGRATING THE ADD FORM AS AN EXTRA SCREEN

You now have the required pieces to take the code we created in the last chapter in the create-task-
form.html file and integrate it into the todolist.html file. Additionally, with only a small amount of
JavaScript, you should be able to return the user to the application main screen once they have
successfully created a new task.

There are a few things we haven’t created yet (such as having a back action automatically added), but we
will be completing that in the next section, and this will automatically be made available in your Add view.

CHAPTER 4: Constructing a Multipage App 85

Building the All Tasks Screen
Once again, we will start with a mockup of the screen (displayed in Figure 4–8). The

screen, as you might expect, shows a list of all the outstanding tasks, with the due date.

Figure 4–8. Design mockup of the to-do list main screen

Based on what’s displayed in the preceding mockup, we are pretty much covered in

terms of our Storage methods, as we can both get tasks in priority order and complete

tasks. This, then, is simply going to be a UI and wiring exercise.

It would be great if the back button were automatically displayed for any screen that

isn’t the main screen of the application. It will be worth adding some additional code to

the PROWEBAPPS.ViewManager module to provide us with that functionality.

It’s time to implement the UI. This will involve the following:

1. Implementing the basic HTML layout in the todolist.html file.

2. On activation of this screen, reading the current items from the database and

generating a list of those items.

3. Handling a user tapping on an individual item. This will show the details (and the

complete task link) for that item, hiding the previously selected item. Some nice

jQuery transitions (slideUp, slideDown) will look good here.

4. Finally, handling a user marking a task as complete. This will be an exercise for

you.

CHAPTER 4: Constructing a Multipage App 86

First is the HTML layout. There isn’t much required here as most of the display for this

screen will be dynamically generated using JavaScript:

<div id="alltasks" class="view">
 <h1 class="fancy">All Tasks</h1>
 <ul id="tasklist">

</div>

From here we move on to reading the current items from the database and populating

the display. This involves some application code to handle activation of the #alltasks

div. We create the handler method in the TODOLIST module (we put it right after the

activateMain function added before):

activateAllTasks: function() {
 TODOLIST.Storage.getTasksInPriorityOrder(function(tasks) {
 // update the current tasks
 currentTasks = tasks;

 populateTaskList();

 // refresh the task list display
 jQuery("ul#tasklist li").click(function() {
 toggleDetailsDisplay(this);
 });

 jQuery("ul#tasklist a.task-complete").click(function() {
 // complete the task
 alert("complete the task");
 });
 });
}

You can see that this code updates a variable called currentTasks, and then calls a

function called populateTaskList, and finally attaches event handling to the newly

created list items (assuming there are tasks). If a list item is clicked, the

toggleDetailsDisplay function is called to display the description and complete button

for that task.

The currentTasks variable should be created in the TODOLIST module scope so that any

code that would like to access this variable can do so:

TODOLIST = (function() {
 ...

 // define an array that will hold the current tasks
 var currentTasks = [];

 // define the module
 var module = {
 ...
 };

 return module;
})();

CHAPTER 4: Constructing a Multipage App 87

We then create our populateTaskList function as a private function in the TODOLIST

module scope:

function populateTaskList() {
 function pad(n) {
 return n<10 ? '0'+n : n;
 }

 var listHtml = "",
 monthNames = ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP",
"OCT", "NOV", "DEC"];

 // iterate through the current tasks
 for (var ii = 0; ii < currentTasks.length; ii++) {
 var dueDateHtml =
 "<ul class='calendar right'>" +
 "<li class='day'>" + pad(currentTasks[ii].due.getDate()) + "" +
 "<li class='month'>" + monthNames[currentTasks[ii].due.getMonth()] +
"" +
 "<li class='year'>" + currentTasks[ii].due.getFullYear() + "" +
 "";

 // add the list item for the task
 listHtml += "<li id='task_" + currentTasks[ii].id + "'>" + dueDateHtml +
 "<div class='task-header'>" + currentTasks[ii].name + "</div>" +
 "<div class='task-details'>" +
 currentTasks[ii].description + "
" +
 "COMPLETE TASK " +
 "</div>" +
 "";
 } // for

 jQuery("ul#tasklist").html(listHtml);
} // populateTaskList

The preceding code populates the ul#tasklist with the HTML required to display both

the task name, due date, description, and complete task link. Let’s take a peek at how

that looks. With a couple of tasks in the database, it renders a display like the one

shown in Figure 4–9.

CHAPTER 4: Constructing a Multipage App 88

Figure 4–9. The All Tasks display with no style applied. What did we do before CSS?

It’s pretty obvious that the screen needs to have some style applied, and it’s probably

appropriate that we do that now before implementing any more JavaScript (otherwise

we won’t be able to tell when something is selected). The following CSS will give us a

result similar to the mockup:

ul#tasklist {
 margin: 0;
 padding: 0;
 list-style-type: none;
}

ul#tasklist > li {
 padding: 0;
 margin: 0;
 clear: both;
 background: #ececec;
}

ul#tasklist > li:nth-child(2n) {
 background: #cccccc;
}

ul#tasklist .task-header {
 padding: 19px 0px 17px 10px;
}

ul#tasklist .task-details {
 clear: both;
 background: #333333;

CHAPTER 4: Constructing a Multipage App 89

 color: white;
 padding: 8px;
 display: none;
}

ul#tasklist .task-details a {
 color: white;
 text-decoration: none;
 font: bold 0.8em Arial;
}

While most of this is common CSS, note the bold CSS3 selector for the list items within

#tasklist. This selector matches every second list item in the task list, and thus an

alternative background color is applied. There are quite a few additional CSS selectors

available in the CSS3 selectors specification (www.w3.org/TR/css3-
selectors/#selectors), so it’s well worth keeping an eye on what’s going on in that

space. While we won’t go through them in detail here, we would definitely encourage

you to visit the link at the W3C site and experiment with them in your own applications.

We also apply some extra styles to make our date look like a nice little calendar:

ul.calendar {
 -webkit-border-radius: 4px;
 -webkit-box-shadow: 0 0 2px #333333;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#F8F8F8), color-stop(1.0, #AAAAAA));
 margin: 6px 6px 6px 0;
 padding: 0 6px;
 list-style-type: none;
}

ul.calendar li {
 margin: 0;
 padding: 0;
 text-align: center;
 font-weight: bold;
 font-size: 0.7em;
}

ul.calendar li.day {
 font-size: 0.85em;
 padding: 1px 0 0 0;
}

With the stylesheet applied, our screen should look something like the one in Figure 4–

10.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.w3.org/TR/css3-selectors/#selectors
http://www.w3.org/TR/css3-selectors/#selectors

CHAPTER 4: Constructing a Multipage App 90

Figure 4–10. With some CSS applied, it’s starting to look the part.

So we are almost there. We just need to go back and add the required JavaScript to

toggle the display of the task description and complete the task link:

function toggleDetailsDisplay(listItem) {
 // slide up any active task details panes
 jQuery(".task-details").slideUp();

 // if the current item is selected, implement a toggle
 if (activeItem == listItem) {
 activeItem = null;
 return;
 }

 // in the current list item, toggle the display of the details pane
 jQuery(listItem).find(".task-details").slideDown();

 // update the active item
 activeItem = listItem;
} // toggleDetailsDisplay

CHAPTER 4: Constructing a Multipage App 91

EXERCISE 4–2: FINISHING OFF THE ALL TASKS SCREEN

We’re going to go on ahead and implement those extensions to the PROWEBAPPS.ViewManager module
to support automatically adding a Back link for screens other than the application main screen. If you
wouldn’t mind finishing off the All Tasks screen, that would be fantastic.

From here, all that really needs to be done is to implement the complete-task functionality—but that
should be pretty simple given we did it on the main screen. You could also add some additional CSS to
show that a task is overdue (as per the mockup).

Implementing the View Stack
If you haven’t noticed already, it’s pretty frustrating that, when we hit a particular screen

in our application, the only way to get back to the previous screen is to refresh the page.

This isn’t going to cut it, so it’s time to do something about it.

The first thing that is required will be to implement some kind of view or screen stack.

We need a mechanism that will allow us to keep track of which screens have preceded

this one. The best place to implement this functionality will be in the switchView private

function in the PROWEBAPPS.ViewManager module. Let’s modify that function now:

function switchView(oldView, newView) {
 var ii, menu = jQuery("#menu").get(0);

 // if the old view is assigned, then push it onto the stack
 updateViewStack(oldView, newView);

 ...
} // switchView

As you can see, we have added a call to a new function called updateViewStack passing

through the old and the new view. The implementation of updateViewStack is quite

simple, and is used to determine whether our movement from the oldView to the

newView should change the state of the stack.

function updateViewStack(oldView, newView) {
 // first let's determine if we should push onto the stack
 var shouldPush = oldView && (
 (viewStack.length === 0) ||
 (newView && (viewStack[viewStack.length - 1].id != newView.id))
);

 // if we should push onto the stack, then do so, otherwise pop
 if (shouldPush) {
 viewStack.push(oldView);

 // if the back action does not exist yet, then create it
 if (! backAction) {
 backAction = new module.ViewAction({
 label: "Back",
 run: function() {

CHAPTER 4: Constructing a Multipage App 92

 subModule.activate(viewStack[viewStack.length - 1].id);
 }
 });
 } // if
 }
 else if (oldView && newView && (viewStack.length > 0)) {
 viewStack.pop();
 } // if..else
} // updateViewStack

In the preceding code, the shouldPush variable is initialized based on the presence of

having being passed an oldView, and the view stack being either empty or having the

last item in the stack being something other than the newView we are transitioning to. If

we are transitioning back to the view that is the most recent view that was pushed to the

stack, then it will be popped off as a result.

With the view stack in place, the back action can be used to take the user back to

screens that they were on previously without needing to be told in each and every case

what that screen was. This in turn is going to save a lot of effort coding in the long term.

NOTE: The backAction ViewAction is initialized in the preceding function as opposed to
variable definitions of the module (which you can see towards the top of the module definition).

This is not because I am a massive lazy-loading fan (not creating variables until they are
needed), but, rather, it is because of the way I have implemented the module pattern.

In JavaScript, a variable cannot be referenced until the definition of that variable is complete—

which is fair enough. If we try to reference the ViewAction class of the PROWEBAPPS module
(using module.ViewAction), it fails. If we create it later, once the definition is complete,
everything’s fine.

If you encounter this situation, it may be worth considering refactoring your code to define
modules/classes that are required in a module definition as a separate, private module/class and

then including it in the exported module by using a simple assignment.

To make use of our newly created stack, we are going to need to modify the

getViewActions and getAction private functions in the ViewManager module. Here is a

section of the ViewManager module that highlights the required changes:

ViewManager: (function() {
 var views = {},
 activeView = null,
 viewStack = [],
 backAction = null;

 function getViewActions(view) {
 var html = "";
 for (var ii = 0; view && (ii < view.actions.length); ii++) {
 html += "" + view.actions[ii].getAnchor() + "";
 } // for

CHAPTER 4: Constructing a Multipage App 93

 // if the view stack is active, then add a back action
 if (viewStack.length > 0) {
 html += "" + backAction.getAnchor() + "";
 } // if

 return html;
 } // getViewActions

 function getAction(view, actionId) {
 // extract the id portion from the action id
 actionId = actionId.replace(/^action_(\d+)$/i, "$1");

 if (backAction && (backAction.id == actionId)) {
 return backAction;
 } // if

 // find the specified view in the active view and execute it
 for (var ii = 0; ii < view.actions.length; ii++) {
 if (view.actions[ii].id == actionId) {
 return view.actions[ii];
 } // if
 } // for

 return null;
 } // getAction

 ...
})()

You can see that two additional variables have been added for the viewStack and the

backAction. Additionally, the getViewActions and getAction functions are modified to

properly handle the back action behavior. In the case of getViewActions, the function

checks whether the viewStack contains any items, and, if it does, includes the

backAction in the actions that will be displayed for the current view. The changes to the

getAction method provide the function with a mechanism for providing the backAction

handler even though it hasn’t been explicitly defined.

One final piece of the puzzle remains. We require a method in the

PROWEBAPPS.ViewManager module that will allow us to initiate going back manually:

ViewManager: (function() {
 ...

 var subModule = {
 ...

 back: function() {
 if (backAction) {
 backAction.execute();
 } // if
 },

 ...
 };

 return subModule;
})()

CHAPTER 4: Constructing a Multipage App 94

This method will be called in instances where you have completed a screen and need to

return the user to the previous screen. For instance, we need to change the function call

PROWEBAPPS.ViewManager.activate("main") to PROWEBAPPS.ViewManager.back() in our

submit handler for the task entry form to make sure the application flows correctly.

And with that, we are done. More can be done to the application itself to polish it up, but

there are good bones to work with here. There are a number of possible extensions that

could be made to the application to enhance it from this point, so please feel free to try

anything that interests you.

Summary
In this chapter, we explored one way of implementing a view manager useful for building

a multipage web app that operates correctly on an Android device. This included looking

at different ways of navigating through an application and implementing some

intelligence to create appropriate navigation controls.

We also finished having a look at the Web SQL Database API by implementing the code

required to retrieve items from our database and display them in the app.

By now, you should be relatively comfortable with the JavaScript module pattern, and

be able to implement it in your own applications if you choose to.

In the next chapter, we will go through how we can synchronize the data in our To Do

List with an online data store. This will enable us to create other clients (such as a

desktop web application) that can view the data we are collecting in our mobile app.

95

95

 Chapter

Synchronizing with the
Cloud
In this chapter, we will explore using a variety of hosted (or cloud) services that are

available to us for synchronizing our tasks from our to-do list with online storage.

Although offline storage is a very handy and powerful feature, we cannot deny the fact

we are in a connected world. Data should be shared and made available online. To

achieve this, all the data we are collecting locally has to be synchronized with an online

solution.

What you will learn in this chapter is how to use leading-edge technologies, such as

NoSQL cloud-hosted solutions, which are storage systems that don’t rely on the classic

relational form, and instead provide a new way to deal with storing data. We currently

have a lot of solutions that encapsulate the complexity of these new technologies for

you and let you focus on the core development of your application.

But that’s not all—using an online storage framework provides a way of hosting your

mobile web application in the cloud, making your application available for the entire

world. While native applications live inside a device, mobile web applications need to be

hosted. That is, their pages are served from a remote location—a server that

communicates with the mobile native browser. While you could host your applications

on one of the many classic web-hosting providers that are available, in this chapter we

look at a powerful and affordable alternative cloud-hosting solution. This solution will

permit you to host both your storage mechanism and the application itself.

Exploring Online Storage Options
At present, the options for synchronizing locally stored data with centralized storage in

the cloud are somewhat limited. This situation is slowly changing, though, and in the

future we may well be spoiled for choice. For the purposes of this chapter, however, our

primary need is something that works well from the client side, and in particular with

JavaScript; for that reason, JSON (JavaScript Object Notation) will be the format we’ll

5

CHAPTER 5: Synchronizing with the Cloud 96

use to both transmit and store the data. JSON is also useful because it’s the most

common data interchange format (besides XML) in web-based architectures in which

the client side relies heavily on JavaScript. Let’s take a look at the requirements for a

suitable online data synchronization store that will ensure that our offline data will be

mirrored on the Web (and thus accessible to other people).

Online Synchronization Store Requirements
What exactly are we looking for in an online storage solution? A solution that would

serve us well for a general synchronization solution will require the following features:

 Avoiding a complex and somewhat old-school three-tier architecture

(front end, back end, and database)

 Some flavor of user authentication

 A supporting JavaScript library that makes synchronizing data stored

on the device a snap

Additionally, given that we want to focus on giving users of our application the best

experience possible, our online storage solution shouldn’t take another whole

person/team to create or maintain. It should be both simple and scalable.

Bearing the requirement of simplicity in mind, we will explore the features just outlined in

a little more depth.

Avoiding a Three-Tier Architecture
Classic web applications are based on three-tier architecture, made up of:

 A front-end layer, containing the HTML pages, styles, and other assets

 A back-end layer, hosted by an application server (such as Tomcat or

JBoss for enterprise Java solutions, or IIS for .NET applications)

 A database provider, such as MySQL, Oracle, or Microsoft SQL Server

This kind of architecture requires mastering at least three different kinds of development

skills: front-end, server-side, and database skills. This is far beyond the scope of this

book, as we want to put the focus on building web applications—especially on the front-

end aspects. Furthermore, modern frameworks allow us to abstract much of this

formerly problematic business logic and storage.

User Authentication
Our mobile application as we have built it now works very well for a user running it from

a single device. Having all the information contained within storage on a single device,

however, is not a great solution. If instead that information is going to be stored on the

CHAPTER 5: Synchronizing with the Cloud 97

Internet somewhere, we need some identity information attached to it so we can retrieve

it from a second or third device.

Because we are building a web-based application, not a native application, we are not

able to use the unique IMEI (International Mobile Equipment Identity) number of the

device, or any other low-level information. This is because mobile web browsers have no

access to this information. Fortunately, there are many options available on the web side

to manage your identity. That identity could be many things—an OpenID (see

http://openid.net), a Google account, or a Twitter account, to name but a few. It

should, however, not be a new account that people have to create for this particular

application and then again for another application, as this does not constitute a reusable

(and thus efficient) solution.

A JavaScript Synchronization Library
Ideally, we are looking for a solution that can take our locally stored data and do some

convention-based synchronization processing to push our data in the cloud. Once this

data is online, we would then be able to use it from a desktop application, or maybe a

tablet running either Android or Chrome.

At this stage, offerings in this space are especially hard to find, as cross-platform web apps

are pretty new on most people’s radars. Another option is to write your own synchronization

library. This shouldn’t be too difficult, as our needs are quite simple, and you have already

seen in the previous chapter how to communicate with an offline database.

Possible Synchronization Solutions
One solution that does a good job of covering our needs is jsonengine (see

http://code.google.com/p/jsonengine). The following are some of its most valuable

features:

 It runs on Google App Engine (a cloud-based solution).

 It requires no back-end scripting.

 It provides identity management using the Google account mechanism

and OpenID.

 Besides being a data storage solution, it’s also possible to host and

serve the application code from within jsonengine itself.

As the name suggests, jsonengine uses the JSON format to store its data. This is useful,

since our application is heavily based on JavaScript, and it’s easy to manipulate JSON

objects using the JSON2 library.

Additionally, jsonengine provides a robust mechanism for inserting data via a REST
(http://en.wikipedia.org/wiki/Representational_State_Transfer) API. The API

endpoints provide the ability to read, insert, update, and delete data using standard

HTTP methods (GET, POST, PUT and DELETE respectively).

http://openid.net
http://code.google.com/p/jsonengine
http://en.wikipedia.org/wiki/Representational_State_Transfer

CHAPTER 5: Synchronizing with the Cloud 98

Getting Started with Google App Engine
A jsonengine instance is best hosted on Google App Engine

(http://appengine.google.com/), which deserves a short introduction. Google App

Engine is Google’s cloud-computing technology. It virtualizes web applications across

multiple servers and data centers. In simple terms, that means that your application is

not running in one single physical place (like a data center in Silicon Valley), but is

replicated all around the world using Google’s impressive data center coverage.

Google App Engine is a Platform-as-a-Service (PaaS) solution, and differs from the other

cloud-computing services (such as Amazon Web Services). The main difference is that

Google App Engine provides a complete set of services and tools based on conventions

rather than configuration, which allows applications to be deployed very quickly. Another

advantage of Google App Engine is its pricing model—it’s free up to a certain level of

used resources.

NOTE: PaaS is like any other type of hosting service, except that, instead of providing you with a
blank, “wildcard” server, it offers a predefined set of services and hardware solutions. It
encapsulates a lot of complexity and configuration tweaks for you. The catch is that you’ll have

less freedom, and you’ll have to follow the solution provider’s guidelines.

So, before you can use jsonengine, you have to set up Google App Engine. The first

thing you have to do is download the Google App Engine framework, so you can test

and deploy your application locally before putting it into the cloud. Google App Engine

proposes two different kinds of framework:

 A Python-based SDK

 A Java-based SDK

As jsonengine is based on Java, we are going to use the Java-based version. Don’t

worry if you don’t have any knowledge about Java—it won’t be necessary. We simply

need to deploy jsonengine, so you won’t have to do anything to configure or implement

it.

Let’s start by installing Google App Engine. First, download the binaries, which you can

find here:

http://code.google.com/appengine/downloads.html

Then follow the installation instructions here:

http://code.google.com/appengine/docs/java/gettingstarted/installing.html

An additional useful guide for installing the App Engine SDK can be found on the

jsonengine site:

http://code.google.com/p/jsonengine/wiki/HowToInstall

http://appengine.google.com/
http://code.google.com/appengine/downloads.html
http://code.google.com/appengine/docs/java/gettingstarted/installing.html
http://code.google.com/p/jsonengine/wiki/HowToInstall

CHAPTER 5: Synchronizing with the Cloud 99

Deploying jsonengine Locally
Deploying a jsonengine instance is very easy: just download the provided WAR archive

and deploy it using the following Google App Engine command:

dev_appserver location/to/you/war/folder

This will start the Google App Engine server locally, open your favorite browser, and go

to http://localhost:8080/samples/bbs.html. You should now be able to see the

jsonengine’s sample application.

That’s all! Now that you have an up-and-running, ultra-scalable online storage solution,

we can go back to our to-do application to start implementing the synchronization

process.

Since jsonengine is a web application, not just a storage solution, it can serve web

content, making it ideal for the mobile web application we’re building. All the code we’ve

implemented (HTML, JavaScript, and CSS) can be hosted inside jsonengine’s instance.

Take a look at the jsonengine’s distribution. It has a war folder containing a classic web

application structure (CSS, JS, etc.). If you have all your resources inside the right

folders, with a single command from the App Engine SDK, you can actually deploy your

application—which is pretty neat. When you deploy your application, the war folder is

packaged in a WAR archive. (A WAR archive is simply the enterprise version of a JAR

(Java archive format); it functions just like a ZIP file.)

Let’s perform a quick test to ensure that jsonengine does indeed serve web assets in

addition to JSON data. Take the sample code from Chapter 4 and paste it in your war
folder. This should result in the following folder structure:

JSONEngine—
|- war—
 |- css—
 |- proui.css
 |- js
 |- jquery-1.4.2.min.js
 |- jquery.validate.js
 |- json2.js
 |- prowebapps.js
 |- snippets—
 |- 04—
 |- todolist.html
 |- todolist.css
 |- todolist.js

Browse to http://localhost:8080/snippets/04/todolist.html, and you will see your

application running.

Since we’re building a mobile web application, you should also try it on the Android

emulator. As discussed in Chapter 1, the Android emulator is unable to communicate

with a webserver on your machine via the localhost address. As such, we will need to

instruct the AppEngine development server to bind to other network addresses on our

machine (by default, the Google App Engine local server binds to the localhost address).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://localhost:8080/samples/bbs.html
http://localhost:8080/snippets/04/todolist.html

CHAPTER 5: Synchronizing with the Cloud 100

Fortunately, though, the dev_appserver command comes with an option parameter to

make the server listen on all the IPs (0.0.0.0) of your local machine.

Stop your server and restart it by adding the following parameter –a 0.0.0.0 right after

your command and before the path to your war folder. Once you have done this, you will

be able to access the application from the emulator or mobile device by using the IP of

your local machine.

NOTE: If you have Mongoose running in the background, the AppEngine development server will
not be able to bind to the alternative address. In this case, simply close down the Mongoose

server and then start the AppEngine dev server again.

At the end of this chapter, you’ll see how to deploy the application on the cloud; it’s not

very complicated and it can be done in one single command. The deployed online

application will have the exact same behavior as on your local server—there is nothing

to configure and it’s definitively a huge time-saver.

Choosing a Suitable Synchronization Mode
Ideally, data synchronization is bidirectional, which means that, for example, system A

creates/updates records that will be reflected on system B, which can also

update/create data. However, that brings a lot of data integrity issues. For example,

what if system A is updating a record that system B is deleting? With a legacy storage

system like Oracle or MySQL, you can use locks, rollbacks, and other similar features to

deal with these kinds of issues. But now we are using a quite different and innovative

approach, and to keep things on a reasonable easy level we will choose a simple but still

powerful synchronization mode.

We will use a one-way synchronization, in which the offline database will be the master

and the online storage will be the slave. That means that each new record will always be

stored initially in the offline database, and will be synchronized with the online storage

only after the user decides to do so. Inserting new records directly into jsonengine will

be impossible.

To illustrate this, let’s imagine the following use case: our to-do web application has

become popular and is being used by a famous scientist who’s collecting data in the

middle of the jungle. All day long, the data is stored offline, but, when the scientist

returns to his headquarters at the end of the day, he wants to share his collected

information with the other scientists working in the main office in Amsterdam. His

colleagues have read-only permissions, but there are also batch processes that will

output very interesting statistics for all scientists around the world.

CHAPTER 5: Synchronizing with the Cloud 101

Sending Your Offline Data to jsonengine
As jsonengine expects input in JSON format, we have to convert our offline SQL data to

JSON format. The global flow is quite simple:

1. Select all the offline records.

2. Parse them to JSON format.

3. Send them to jsonengine.

Selecting all the database records is something we have already done before, so we can

copy and paste an existing function, clean it up, add some JSON conversion goodness,

and finally send the data to our online storage service, as follows:

function synchronizeOnline(callback) {
 db.transaction(function(transaction) {
 transaction.executeSql(
 "SELECT rowid as id, * FROM task ",
 [],
 function (transaction, results) {
 var tasksSynchronized = 0;

 // initialise an array to hold the tasks
 // read each of the rows from the db, and create tasks
 for (var ii = 0; ii < results.rows.length; ii++) {
 var task = new module.Task(results.rows.item(ii)),
 taskJson = JSON.stringify(task);

 $.post("/_je/tasks", {_doc:taskJson,_docId:task.id}, function() {
 // once the post has completed, increment the counter
 tasksSynchronized += 1;

 // and check to see if we have finished the sync operation
 if (callback && (tasksSynchronized === results.rows.length)) {
 callback(tasksSynchronized, true);
 } // if
 });
 } // for

 // fire the callback and provide information on the number
 // of tasks that were updated
 if (callback) {
 callback(results.rows.length, false);
 } // if
 }
);
 });
}

Let’s focus on the for loop, where the interesting stuff happens. Firstly, we use the

JSON library to serialize a Task object that we have retrieved from the database to a

JSON string. Next, we use the jQuery post function to send that serialized data (using a

POST request) to jsonengine for storage.

CHAPTER 5: Synchronizing with the Cloud 102

You can see that our post call takes three arguments:

 The first argument is the url that we are making the POST request to.

In this case, our storage URL is the same as our application; we just

prefix it with _je (for “JSON storage”)—this is simply a jsonengine

convention.

 Our next argument contains the data that we are sending through the

jsonengine. For jsonengine to be able to save our data effectively, it

needs two things:

 A document (_doc)—this is the data that is going to be stored.

 A document id (_docId)—the unique key of our document that we

are storing. As jsonengine is smart enough to detect whether the

provided _docId already exists, and will either create a new

record or update the existing record.

 Finally, we supply a success callback for the post function and this is

called once the request has been successfully completed.

What is happening here? First, we’re using jQuery’s post function. This is one of

jQuery’s most powerful functions when we have to deal with network communication.

This function will perform a HTTP POST request, and of course we pass an array of

parameters: ("/_je/tasks", {_doc:taskJson,_docId:task.id}, success callback).

The first parameter is the URL to which we are posting our request. In this case, our

storage URL will be the same as our application; we just prefix it with _js (for “JSON

storage”)—this is simply a jsonengine convention.

The second parameter, {_doc:taskJson,_docId:task.id}, is more jsonengine specific.

It’s a nested parameter’s map. _doc defines the name of our storage record, and it can

be compared to a database table name. The value we provide is the freshly JSON-

converted string; in jsonengine terms, it’s called the JSON document. Then, _docId

represents the unique key of our record. As you can see, we are using the index of our

for loop because it’s the same index as the ID of each of the offline task’s entries.

NOTE: Where does jsonengine store the submitted JSON strings? It’s using Google App Engine’s

data store. As Google’s online storage solution, Google App Engine takes care of all the
distribution, replication, and load balancing of data. In fact, jsonengine is just an abstraction layer

above the data store to perform the storage of JSON documents transparently.

CHAPTER 5: Synchronizing with the Cloud 103

Updating the User Interface for Online
Synchronization
We have now enhanced our custom library with a function to synchronize the offline

data with an online storage solution, but in order to test it we need to add some user

interaction. Therefore, we have to work on our user interface layer and see how we can

bind a back-end function to a visually interactive action. Let’s add a button called

“Synchronize” to the main screen:

<ul class="buttons">
 Show All Tasks
 Add New
 <li class="changeview">Synchronize

Now we have to bind the click event to our new synchronizeOnline() function:

activateMain: function() {
 TODOLIST.Storage.getMostImportantTask(function(task) {
 if (task) {
 // the no tasks message may be displayed, so remove it
 jQuery("#main .notasks").remove();

 // update the task details
 showTaskDetails("#main .task", task);

 // attach a click handler to the complete task button
 jQuery("#main .task-complete").unbind().click(function() {
 jQuery("#main .task").slideUp();

 // mark the task as complete
 task.complete();

 // save the task back to storage
 TODOLIST.Storage.saveTask(task, module.activateMain);
 });

 jQuery("#main .synchronize").unbind().click(function() {
 TODOLIST.Storage.synchronizeTasks();
 });
 }
 else {
 jQuery("#main .notasks").remove();
 jQuery("#main .task").slideUp().after("<p class='notasks'>You have no tasks
to complete</p>");
 }
 });
}

Then we simply expose the synchronizeOnline function through the Storage

submodule as the synchronizeTasks function:

CHAPTER 5: Synchronizing with the Cloud 104

Storage: (function() {
 ...

 var subModule = {
 ...
 synchronizeTasks: synchronizeOnline,
 ...
 };

 return subModule;
})()

Refresh your application, and you will see your updated user interface, as shown in

Figure 5–1.

Figure 5–1. Adding a Synchronize button

We can now just click the Synchronize button, and all the offline data will be flushed into

a modern and ultra-scalable JSON storage system! That’s nice, but so far we don’t have

any feedback about this process—it happens all under the hood. To remedy that, let’s

display an info banner once the synchronization process is done.

First, we add an "info" div element just before the button stack:

...
<div id="info"></div>
<ul class="buttons">
Show All Tasks
 Add New
 <li class="changeview">synchronize

CHAPTER 5: Synchronizing with the Cloud 105

Then add some styling for this div:

#info {
 margin: 8px 6px 2px 6px;
 padding: 6px 14px;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#71D90F), color-stop(0.7, #529E0B));
 -webkit-border-radius: 4px;
 color: white;
 display: none;
}

Notice the display:none attribute, which ensures that the div won’t be visible until we

explicitly want it to be displayed.

To display the notification message, let’s make a change to our activateMain function

to show some information once the synchronization process has been initiated:

activateMain: function() {
 TODOLIST.Storage.getMostImportantTask(function(task) {
 if (task) {
 ...

 jQuery("#main .synchronize").unbind().click(function() {
 TODOLIST.Storage.synchronizeTasks(function(updateCount) {
 $("#info")
 .html("Completed : " + updateCount + " task(s) have been
synchronized !")
 .show();
 });
 });
 }
 ...
 });
}

All we’re doing here is updating the info div HTML. Now, when the synchronization

process completes, the info banner will be displayed, as shown in Figure 5–2.

CHAPTER 5: Synchronizing with the Cloud 106

Figure 5–2. Visual synchronization feedback

Now that we’re sure our synchronization process is working, we need a client interface

that will read the data from our online storage solution.

Making a Desktop Interface
One of the benefits of building a web-based application is that you can easily provide

access to your data in different web-based formats—for example, tablet devices and

more standard desktop browsers. First, let’s focus on the latter and see how we can

connect our storage solution to a “regular” desktop web application.

Creating a desktop interface from an existing mobile interface is far simpler than trying

to create a mobile interface from an existing desktop web application. To see evidence

of this, look at the way the various mobile application interfaces have affected the user

interfaces of their various big brothers. The recent revisions to the Twitter web interface

are an example of how mobile user interface paradigms can affect desktop interfaces to

create a better user experience (see http://twitter.com).

As we have one-way synchronization only, the desktop application will be read-only

(and, because building a desktop interface is not really in the scope of this book, we’ll

keep it minimal). If we go back to the example of our scientist collecting data, consider

the desktop application as a reporting tool for his colleagues all around the world who

want to keep informed about his latest findings.

What you’ll learn in this section is that building a mobile web application relying on

robust and standard web technologies allows you to extend its features to other web-

http://twitter.com

CHAPTER 5: Synchronizing with the Cloud 107

based engines, and especially to a desktop web interface, like the browser you use on

your laptop or desktop system.

The first thing we have to do is to retrieve the data we stored on our cloud-based

storage solution.

Querying a jsonengine Instance
You’ve already seen how easy it is to insert data using the REST API. Likewise, making a

query will also be done through the REST API, using the HTTP GET method. First, we

have to create a new HTML page—let’s call it todolist-readonly.html.

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Tasks page</title>
<link rel="stylesheet" media="screen" href="todolist-readonly.css" />
<script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
<script type="text/javascript">
// get all the posts and show them
$(function() {
 $.get("/_je/tasks", { sort: "_createdAt.desc" }, function (result) {
 var rowsHtml = '';

 for (var ii = 0; ii < result.length; ii++) {
 rowsHtml += '<tr>' +
 '<td>' + result[ii].name + '</td>' +
 '<td>' + result[ii].description + '</td>' +
 '<td>' + result[ii].due + '</td>' +
 '</tr>';
 } // for

 $('#taskTable tbody').html(rowsHtml);
 });
});
</script>
</head>
<body>
<h1>Current tasks stored in jsonengine</h1>
<table id="taskTable">
 <thead>
 <tr>
 <th>Name</th>
 <th>Description</th>
 <th>Due</th>
 </tr>
 </thead>
 <tbody />
</table>
</body>
</html>

http://www.w3.org/TR/html4/loose.dtd

CHAPTER 5: Synchronizing with the Cloud 108

The interesting part here is the JavaScript function that is called when the page is

loaded. We are using jQuery’s get function—the syntax is almost the same as the post

function, but we are now passing sorting parameters. The result is an array of JSON

documents. A JSON document is a JSON string representation of a Task instance. We

just have to iterate through the array and update a HTML table to add a new row.

In this particular instance, we are first collecting all the new rows in a string and then

replacing the body of the table (tbody) using a single call using the jQuery html function.

While we could just as easily have appended each row as we found it, we increase the

speed of our application by trying to do updates to the HTML as few times as possible.

While it’s not something that you would notice in a small page like this, it is a good habit

to get into.

With the HTML page complete, we will also add some very basic styling to the

todolist-readonly.css stylesheet:

table, td {
 border: 1px solid #666666;
 width: 100%;
}

td {
 width:33%;
 padding: 2px;
}

Then navigate to your freshly made page, and you should see something like Figure 5–3.

Figure 5–3. The desktop application showing the synchronized tasks

CHAPTER 5: Synchronizing with the Cloud 109

As you can see, all the data inside the offline database is now available online—at least

on the server, that is; we haven’t yet uploaded our application to the cloud. Before doing

that, we have to add some security to the storage solution; if we leave it as it is,

everybody will have access to the desktop web page. Fortunately, jsonengine comes

with a security admin page where you can set the access level for your storage

documents, as shown in Figure 5–4.

Figure 5–4. The jsonengine security admin page

Here, we can add our JSON “tasks” document and set the read level to “protected,” so

that users will only be able to view the data if they are connected with their Google or

OpenID accounts.

Deploying Your Application on the Cloud
OK, it’s time to go live so that the whole world will be able to use your mobile

application. But first you will need a Google account (or Gmail account). Once you have

that, you can access Google App Engine by logging in at

https://appengine.google.com. From there, you can create a new application, and

choose an application identifier—which will also be the URL to access your app—and a

title. Before you upload our application, you must be sure that the application identifier

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

https://appengine.google.com

CHAPTER 5: Synchronizing with the Cloud 110

matches the one that is defined in your local application. To do this, open the war/web-
ing/appengine-web.xml file and check this line:

<application>jsonengine</application>

Replace jsonengine with the application ID you chose just before. Now you’re ready to

deploy your application—go to the bin folder of your Google App Engine SDK and type

the following command (on Windows):

appcfg.cmd update location/to/you/war/folder

On the Mac and Linux, type the following:

appcfg.sh update location/to/you/war/folder

Enter your Google username and password at the prompts. If the upload process is

successful, you will see the message “Update completed successfully.” That’s it! Our

application is in the cloud—navigate to your page: http://my-app-
id.appspot.com/snippets/05/todolist-readonly.html.

Summary
We have achieved some interesting things so far: we have a mobile web application with

powerful features that can store data offline and synchronize it with an online

environment. Synchronizing offline data for a mobile app with a powerful online storage

mechanism is a very new and innovative concept.

What we need now are some features to compete with native applications. In the next

chapter, we’ll add some tasty user interface elements and deal with offline conditions.

http://my-app-id.appspot.com/snippets/05/todolist-readonly.html
http://my-app-id.appspot.com/snippets/05/todolist-readonly.html
http://my-app-id.appspot.com/snippets/05/todolist-readonly.html

111

111

 Chapter

Competing with Native
Apps
It’s quite impressive that we can produce powerful and scalable mobile web

applications just using HTML, CSS, and JavaScript. However, so far we haven’t

achieved the look and feel that we would with a native application. Also, if our Internet

connection goes down, our application will probably stop working, despite the fact that

we’re using a local database.

In this chapter, you will learn how to go a step further in polishing your web app, first by

adding user interface enhancements. We’ll use CSS3’s amazing animation and transition

capabilities, and we’ll also use robust and popular JavaScript libraries. Next, we’ll add

geolocation and offline support using the latest HTML5 specifications and the Chrome

browser. At the end of this chapter, we will have a fully standalone application that will

be very similar to a native application.

Adding Lightweight Animations and Native-Like
Layouts
One of the big differences between native and web applications is that web applications

often lack the great-looking user interfaces that native apps can offer. The good news is

that technologies like HTML5, CSS3, and JavaScript can now offer solutions that

compete with native technologies—for example, providing native browser animation

features and ensuring that specific visual elements have a fixed position, such as a top

bar menu.

One of these new technologies, CSS3, adds a lot of improvements, including shadows,

rotations, and gradients. But for this part we will focus on two very interesting features:

CSS transitions and CSS animations.

6

CHAPTER 6: Competing with Native Apps 112

Adding a Simple Loading Spinner
In the previous chapter, we implemented an online synchronization function. The only

visual feedback we had was an info banner telling us the process was successful. But

what about during the process itself? For example, if we have thousands of records to

synchronize, it will take some time before this process is done. In this case, it would be

nice to have some visual feedback during the synchronization, like a loading spinner.

In the old-fashioned way, you would use a semitransparent animated GIF and control it

with some JavaScript. The downside of this approach is that it requires an extra

resource with a limited number of frames (to keep the image size as small as possible),

which reduces the smoothness of the animation; and, because the image is

semitransparent with its hardcoded foreground and background color, you also add a

dependency to the application’s color chart. If you decide to change the background

color of your application, you also have to generate your animated GIF again.

For these reasons, we won’t use an image; instead, we’ll “draw” and animate the

spinner using CSS3 animations and transitions. The spinner will consist of 12 bars

rotating around an axis and fading out. Let’s first define the main spinner style:

div.spinner {
 position: absolute;
 top: 50%;
 left:70%;
 margin: -100px 0 0 -100px;
 height: 54px;
 width: 54px;
 text-indent: 250px;
 white-space: nowrap;
 overflow: hidde;
}

Then we define the inner div style. Here, we set the common styles that will be shared

by all the bars. Basically, we create a bar by styling a div, playing with the corner radius

and shadow properties. We also attach an animation to a bar—a fade animation that will

be defined later.

div.spinner div {
 width: 12%;
 height: 26%;
 background: #000;
 position: absolute;
 left: 50%;
 top: 50%;
 opacity: 0;
 -webkit-animation: fade 1s linear infinite;
 -webkit-border-radius: 50px;
 -webkit-box-shadow: 0 0 3px rgba(0,0,0,0.2);
 }

Finally, we define the 12 bars that will be used in the animation, increasing the rotation

angle for each of them by 30 degrees using the –webkit-transform:rotate attribute. The

fade effect, combined with a different start delay using the –webkit-animation-delay

attribute for each bar, will create the illusion of a rotation effect.

CHAPTER 6: Competing with Native Apps 113

div.spinner div.bar1 {
 -webkit-transform:rotate(0deg) translate(0, -142%);
 -webkit-animation-delay: 0s;
 }
div.spinner div.bar2 {
 -webkit-transform:rotate(30deg) translate(0, -142%);
 -webkit-animation-delay: 0.9176s;
 }

[..]
div.spinner div.bar12 {
 -webkit-transform:rotate(330deg) translate(0, -142%);
 -webkit-animation-delay: -0.0833s;
 }

We also define our fade animation:

@-webkit-keyframes fade {
 from {opacity: 1;}
 to {opacity: 0.25;}
 }

Before we try out the spinner, let’s introduce some new CSS3 selectors:

 -webkit-animation: Defines the name of your animation, which will be

declared in a separate style block starting with @-webkit-keyframes.

Notice the values that follow the name of the animation: we have a

duration value, a transition-timing function that defines how the

animation should proceed over the duration (here we are using a linear

function, but there are a lot of different options—ease-in, ease-out,

etc.), and finally a value defining the animation’s frequency (the

animation will run infinitely in our case).

 -webkit-transform: Can transform any HTML element. Its possible

values are translate, rotate, and scale. Notice that you can chain

transform values like we did in the previous code sample—we first

rotate the div and translate it to the upper-left corner to make it rotate

around an axis.

 -webkit-animation-delay-count: Defines the delay before your

animation starts. This is useful when you want to chain a lot of

different animations, like our 12 bars.

NOTE: A linear transition function will time your animation equally over the duration you provide;
for example, if you are moving an image by 200 pixels with a duration of 2 seconds, after 1
second your image will have moved by 100 pixels. But maybe there are situations where you

want to have another type of timing, like rotating an image very slowly in the beginning and

finishing with a fast rotation.

To be able to test our loading spinner, we have to add a div containing all the bars’ divs

on the main page:

CHAPTER 6: Competing with Native Apps 114

<div id="spinner">
 <div class="bar1"></div>
 <div class="bar2"></div>
 <div class="bar3"></div>
 <div class="bar4"></div>
 <div class="bar5"></div>
 <div class="bar6"></div>
 <div class="bar7"></div>
 <div class="bar8"></div>
 <div class="bar9"></div>
 <div class="bar10"></div>
 <div class="bar11"></div>
 <div class="bar12"></div>
</div>

Refresh your application and you will see the loading spinner, as shown in Figure 6–1.

Figure 6–1. Displaying a loading spinner on the main view

This is a good first step, but we only want to see the spinner when we are

synchronizing—not all the time, even if it’s a beautiful spinner. It should appear at the

moment we press the Synchronize button and disappear when we show the info banner

displaying that the process was successful. To do this, we update the main spinner style

with display:none; and we control the container visibility with some JavaScript.

The best place to hook in is probably the synchronizeOnline function; we set the

visibility of the spinner container to true when entering the function and revert it to false

just before we exit the function:

CHAPTER 6: Competing with Native Apps 115

function synchronizeOnline () {
 $(“spinner”). .show();
 [...]
 $(“spinner”). .hide();
}

That’s all we have to do. Notice the handy jQuery’s hide and show functions, which

encapsulate some CSS manipulation for us.

Adding Scrollable Content
As our tasks list continues to grow, it will end up not fitting on the screen anymore. Of

course, the browser will natively insert a vertical scrollbar, but, when you scroll down,

your top bar containing the title will disappear. Remember, we are competing with native

apps, and this kind of behavior is not exactly what we are hoping for.

Fortunately, there is a JavaScript library that will help us fix this visual problem: iScroll

(http://cubiq.org/iscroll). This piece of JavaScript can make a particular container

scrollable. Once your script is imported into your page, you just have to declare a

scrollable instance variable: myScroll = new iScroll('scroller');.

Let’s see how we can integrate this in our application. The only part where we need this

is in the All Tasks screen, so let’s see how we can refactor this element:

<div id="alltasks" class="view">
 <h1 class="fancy">All Tasks</h1>
 <div id="wrapper">
 <div id="scroller">
 <ul id="tasklist">
 </div>
 <div>
</div>

Notice here that the scrollable div is wrapped by another div that will have a fixed size.

Here is the CSS of the wrapper div:

#wrapper {
 position:relative;
 z-index:1;
 width:auto;
 overflow:hidden;
}

You may wonder why we are not setting the height, since the wrapping container must

have a fixed height. That’s because we will set the height programmatically, ensuring it

will be correct whatever the screen size is. That brings us to the JavaScript part—we

just have to fire up an iScroll instance and set the height. We put that in the ready

function because it has to be initialized when the page loads.

$(document).ready(function() {
 [..]
 myScroll = new iScroll('scroller', {desktopCompatibility:true});
 var wrapperH = window.innerHeight - 35;
 document.getElementById('wrapper').style.height = wrapperH;
});

http://cubiq.org/iscroll

CHAPTER 6: Competing with Native Apps 116

Be sure you have enough tasks in your application and browse to All Tasks view, as

shown in Figure 6–2; you should now be able to scroll your tasks without the title bar

scrolling along.

Figure 6–2. Adding a scrollable div with fixed header and footer

Sprucing Up the Action Bar
We are getting pretty close to a native application look and feel, but the action bar at the

bottom could be a bit nicer, and should also be present on the start page; that will

reinforce the feeling that we are staying on the same page whatever we do.

Let’s start by adding the action bar on the main page by tweaking the ViewManager:

// define the alltasks view
 PROWEBAPPS.ViewManager.define({
 id: "main",
 actions: [
 new PROWEBAPPS.ChangeViewAction({
 target: "alltasks",
 label: "All tasks",
 className: "alltasks"
 }),
 new PROWEBAPPS.ChangeViewAction({
 target: "add",
 label: "Add",
 className: "add"
 }),
 new PROWEBAPPS.ViewAction({
 target: "synchronize",
 label: "Synchronize",

CHAPTER 6: Competing with Native Apps 117

 className: "synchronize"
 })
]
 });

The refactoring is pretty simple: the action bar is rendered when the action stack is not

null; also, instead of defining an action stack for the alltasks view, we define an action

stack for the main view. Notice that the synchronize action is using ViewAction, not

ChangeViewAction, because we don’t want to switch to another view when we activate

this action. As you can see, we also introduce a new property—className. Here it’s only

relevant for the synchronize action because the click handler function is bound to the

element’s class name.

The action bar is not rendered on the main view; we can remove all the buttons as they

have moved to the action bar. The actions are rendered now like old-fashioned web

links; we can easily style them so that they appear as buttons.

ul#menu li a {
 display: block;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#b3b3b3), color-stop(0.4, #666666), color-stop(1.0, #333333));;
 color: white;
 text-decoration: none;
 padding: 8px;
 text-align: center;
 -webkit-box-shadow: 0 2px 2px #333333;
 -webkit-border-radius: 6px;
}

Refresh your page and you should see our native-like application, as shown in Figure 6–3.

Figure 6–3. Restyling the action bar

CHAPTER 6: Competing with Native Apps 118

Making Your Application Location-Aware
One of the things that make mobile applications unique is that they can detect and make

use of your current physical location. One of the most famous applications that use this

information is foursquare, an app that allows people to “check into” particular places

and share this information with others.

For a long time, these kinds of features were only possible with native applications,

which had access to lower-level hardware such as the GPS sensor. Again, W3C’s

HTML5 team came up with a revolutionary proposal by allowing the browser to access

the GPS of your device and expose it through a JavaScript library. In other words,

mobile web applications can now be location-aware, thus bridging a huge gap between

native and web-based applications. This topic will be central to the discussion in this

chapter.

NOTE: For a long time, mobile web applications didn’t have access to low-level hardware, such
as the camera or the GPS sensor. However, things are changing—the browser is a native

application and has access to low-level hardware APIs, and can expose them to web applications
by providing extra JavaScript functions. For the moment, only a few low-level APIs are exposed
(e.g., Geolocation and DeviceOrientation events) Camera and contact list access are still

unavailable, but with the growing popularity of mobile web applications, it’s likely that such

access will be added in the future.

The W3C Geolocation API Specification
The entry point of the W3C Geolocation API is a simple JavaScript function with its

callback function:

 navigator.geolocation.getCurrentPosition(showMap);

 function showMap(position) {
 // handle position variable
 }

This will be sufficient to retrieve our current location; the callback function showMap takes

a position parameter that contains all the information we need to make our application

location-aware. Tables 6–1 and 6–2 outline the Position object and its associated

Coordinates object.

Table 6–1. The Position Object

Property Name Type

coords Coordinates

timestamp DOMTimestamp

CHAPTER 6: Competing with Native Apps 119

Table 6–2. The Coordinates Object

Property Name Type

longitude double

latitude double

altitude double

accuracy double

altitudeAccuracy double

heading double

speed double

That may seem like a lot of information, but for now we are really interested in only two

attributes: longitude and latitude, which will be enough to determine our geolocation

and eventually display it on a map. So, position.coords.longitude and

position.coords.latitude are the properties we want to handle.

Let’s take advantage of the local storage feature discussed previously, and store our

position on the browser side when we start our application so we will be able to access

this information whenever we want. First, we have to retrieve our location—let’s do that

inside the ready function and store the location in the callback function:

$(document).ready(function() {
 [..]
 navigator.geolocation.getCurrentPosition(

function storePosition(position) {

localStorage.setItem('longitude',position.coords.longitude);

localStorage.setItem('latitude',position.coords.latitude);
 $("#geolocation")

.html("Your position : " + position.coords.latitude +
","+ position.coords.longitude)

.css("display","block");
 });
});

Notice that at the end of the function we manipulate the geolocation DOM element; this

will be an information banner displayed on the main screen that shows our current

position. So we also add a geolocation div element on the main screen:

<div id="geolocation"> </div>

Next, we apply some styling:

#geolocation {
 margin: 8px 6px 2px 6px;
 padding: 6px 14px;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6: Competing with Native Apps 120

 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0,
#71D90F), color-stop(0.7, #529E0B));
 -webkit-border-radius: 4px;
 color: white;
 display: none;
}

Start your application, and a pop-up will ask permission to share your location. After

accepting, you should see the screen shown in Figure 6–4.

Figure 6–4. Displaying your geolocation

Now that we are sure our location has been retrieved and stored offline, we can enhance

our Task object with the new data. This will be very simple—we just have to change the

structure of our Task table by adding two columns: longitude and latitude. And once

we save a new task, we just have to retrieve the geoinformation from our local storage.

Let’s start by updating our database structure:

// open/create a database for the application (expected size ~ 100K)
 var db = null;

 try {
 db = openDatabase("todolist", "1.2", "To Do List Database", 100 * 1024);

 // check that we have the required tables created
 db.transaction(function(transaction) {
 transaction.executeSql(
 "CREATE TABLE IF NOT EXISTS task(" +
 " name TEXT NOT NULL, " +
 " description TEXT, " +
 " due DATETIME, " +
 " completed DATETIME, " +

CHAPTER 6: Competing with Native Apps 121

 " longitude
REAL, " +
 " latitude
REAL";");
 });
 }
 catch (e) {
 db = openDatabase("todolist", "1.1", "To Do List Database", 100 * 1024);

 // check that we have the required tables created
 db.transaction(function(transaction) {
 transaction.executeSql(
 "CREATE TABLE IF NOT EXISTS task(" +
 " name TEXT NOT NULL, " +
 " description TEXT, " +
 " due DATETIME, " +
 " completed DATETIME);");
 });

 db.changeVersion("1.1", "1.2", function(transaction) {
 transaction.executeSql("ALTER TABLE task ADD longitude REAL;");
 transaction.executeSql("ALTER
TABLE task ADD latitude REAL;");
 });
 }

This should remind you of what we did in Chapter 3 to update an existing database.

Here we try to open the updated database with its two new columns. If it fails, we can

fall back in the catch section and manually alter the existing database.

Next, we refactor our saveTask function:

saveTask: function(task, callback) {
 db.transaction(function(transaction) {
 // if the task id is not assigned, then insert
 if (! task.id) {
 transaction.executeSql(
 "INSERT INTO task(name, description, due,longitude,latitude)
VALUES (?, ?, ?, ?, ?);",
 [task.name, task.description,
task.due,parseFloat(localStorage["longitude"]),parseFloat(localStorage["latitude"])],
 function(tx) {
 transaction.executeSql(
 "SELECT MAX(rowid) AS id from task",
 [],
 function (tx, results) {
 task.id = results.rows.item(0).id;
 if (callback) {
 callback();
 } // if
 }
);
 }
);
 }
 // otherwise, update
 else {
 transaction.executeSql(

CHAPTER 6: Competing with Native Apps 122

 "UPDATE task " +
 "SET name = ?, description = ?, due = ?, completed = ?,
longitude = ?, latitude = ? " +
 "WHERE rowid = ?;",
 [task.name, task.description, task.due, task.completed,
parseFloat(localStorage["longitude"]),parseFloat(localStorage["latitude"]), task.id],
 function (tx) {
 if (callback) {
 callback();
 } // if
 }
);
 } // if..else
 });
 }

Our application is now totally location-aware; each task is bound to a location. In the

next chapters, you will see how to combine this information with maps and process your

location against other locations.

Running Your Application Offline
With all of the design work we’ve done, it would be hard for the average user to tell

whether our application is native or web-based. However, there is still one big

difference: cut off your Internet connection (or put your device in airplane mode) and

refresh your application, and you’ll probably get a “page not found” error. What we need

now is a way of running our application offline!

Again, the new HTML5 standard will come to the rescue with its offline application
cache. This new HTML5 feature will cache for us on the client side all the static

resources: HTML, images, CSS, and JavaScript. The next time the user navigates to

your application, the browser will use its cache instead of retrieving the files from the

server, regardless of the connection status.

The Offline Cache Manifest File
How does it work? Offline caching relies on the cache manifest file that is hosted on the

web server. It’s a simple text file document containing all the resources that have to be

cached. The first important thing is the content type of this file. It has to be served with

the MIME type text/cache-manifest. So, let’s see how we can configure Google App

Engine (discussed in the previous chapter) to set the right MIME type for our cache file.

Extra MIME types definition are specified in the web.xml file that you will find under your

war/web-inf folder:

<?xml version="1.0" encoding="utf-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
 [...]
 <mime-mapping>
 <extension>manifest</extension>
 <mime-type>text/cache-manifest</mime-type>
 </mime-mapping>
</web-app>

http://java.sun.com/xml/ns/javaee

CHAPTER 6: Competing with Native Apps 123

By adding these parameters, Google App Engine will take care of setting the right

content type for files with a manifest extension. Now that the server is configured, it’s

time to create our cache manifest file. Create an empty text file called cache.manifest

that starts with this line: CACHE MANIFEST. We will place this file at the root of the web

application (i.e., directly under the war folder).

The next step is to list all the resources we want to cache—for us that will be the

following:

 snippets/06/todolist.html

 snippets/06/css/proui.css

 snippets/06todolist.css

 js/jquery-1.4.2.min.js

 js/jquery.validate.js

 js/prowebapps.js

 snippets/06/iscroll.js

 snippets/06/todolist.js

These are all the static resources we need to run the application; we just have to add

them to the cache manifest file (all except the todolist.html file, which will be cached

implicitly):

CACHE MANIFEST
css/proui.css
snippets/06/todolist.css
js/jquery-1.4.2.min.js
js/jquery.validate.js
js/prowebapps.js
snippets/06/iscroll.js
snippets/06/todolist.js

The paths are relative to the location of the manifest file, but you could also use the

absolute paths. Now we finally have to declare the manifest file in our application, which

we do by adding an attribute inside the HTML tag of the application page:

<html manifest=”cache.manifest”>

That’s it! The application is ready to be cached the next time we will access it (online, of

course). To check out that the files are correctly cached, we will use Chrome’s web

console:

Creating Application Cache with manifest http://localhost:8080/cache.manifest
Application Cache Checking event
Application Cache Downloading event
Application Cache Progress event (0 of 7) http://localhost:8080/snippets/06/todolist.css
Application Cache Progress event (1 of 7) http://localhost:8080/js/jquery-1.4.2.min.js
Application Cache Progress event (2 of 7) http://localhost:8080/js/prowebapps.js
Application Cache Progress event (3 of 7) http://localhost:8080/snippets/06/todolist.js
Application Cache Progress event (4 of 7) http://localhost:8080/js/jquery.validate.js
Application Cache Progress event (5 of 7) http://localhost:8080/snippets/06/iscroll.js
Application Cache Progress event (6 of 7) http://localhost:8080/css/proui.css

http://localhost:8080/cache.manifest
http://localhost:8080/snippets/06/todolist.css
http://localhost:8080/js/jquery-1.4.2.min.js
http://localhost:8080/js/prowebapps.js
http://localhost:8080/snippets/06/todolist.js
http://localhost:8080/js/jquery.validate.js
http://localhost:8080/snippets/06/iscroll.js
http://localhost:8080/css/proui.css

CHAPTER 6: Competing with Native Apps 124

Application Cache Progress event (7 of 7)
Application Cache Cached event

If you turn off your Internet connection now, the application will still work because the

browser will retrieve the files from the local cache instead of the server. Going back to

our scientist example from Chapter 5, the scientist will now be able to use his

application everywhere he wants, even if he plans collecting data on the moon!

But what happens if a resource file is modified? The offline cache mechanism uses a

byte-to-byte comparison between the remote and cached manifest, so any change will

be detected.

Exploring Hidden Offline-Caching Features
The offline-caching file also provides two other useful features: keywords NETWORK and

FALLBACK. NETWORK can define resources that will always skip the cached resources and

will always try to retrieve them from the server. FALLBACK comes in handy when you want

to supply an alternative cached resource to a resource that always has to be retrieved

online when your connection is down.

To illustrate this feature, let’s imagine that we want an icon showing whether we are

online or offline, as in Figure 6–5.

Figure 6–5. The “online” and “offline” icons

We update our cache.manifest file as follows:

CACHE MANIFEST
css/proui.css
snippets/06/todolist.css
js/jquery-1.4.2.min.js
js/jquery.validate.js
js/prowebapps.js
snippets/06/iscroll.js
snippets/06/todolist.js
FALLBACK:
online.png offline.png

Here we are saying that online.png should never be cached; however, if we don’t have

a connection, we provide a fallback file, offline.png, defined by the FALLBACK keyword.

(Note the trailing : for both keywords, which is required.) Let’s try it out and add this

icon to our application. Regarding the cache manifest file, we just have to reference the

Check icon in our page; showing the X icon will be handled by the caching mechanism.

Add the icon to the main view :

<div id="main" class="view">
 <h1>To Do List</h1>

 [...]
 </div>

CHAPTER 6: Competing with Native Apps 125

Refresh your application and you should see something similar to Figure 6–6.

Figure 6–6. Application in online mode

Turn off your Internet connection and refresh your page, and you should see something

like Figure 6–7.

Figure 6–7. Application in offline mode

CHAPTER 6: Competing with Native Apps 126

Detecting Your Connection Status
Beyond its caching capabilities, HTML5’s offline-caching feature can provide some extra

utilities to deal with offline mode. But these usually involve some more advanced use

cases where offline caching will not be enough. For instance, when you are offline, the

synchronize function is quite useless, and it would be better if you could hide the

Synchronize button in this case.

Let’s see how we could implement that. First, we must be able to detect whether we’re

online or not when we start the application. This may sound quite simple, but is actually

more complicated than it seems. HTML5 has specified a feature that enables a web

application to check the connection status: navigator.online, which should return a

Boolean value. Unfortunately, Chrome doesn’t support this feature yet, and we have to

use a workaround to simulate this behavior.

NOTE: The HTML5 specification defines that the browser should be able to detect its connection
status by using the JavaScript function navigator.online. This function returns a Boolean
value that can be used to used to change your application behavior for offline vs. online

scenarios.

Unfortunately, this feature is still not supported on the current Android browsers—but it will be in
the next release. Even better, though, the browser that ships with Android 2.2 Froyo gives you

more details about your connection type and speed. That gives you the option to adapt your
resources depending on your bandwidth. For more details, see

http://davidbcalhoun.com/2010/using-navigator-connection-android.

What we are going to do is make an HTTP request to a site, and, if we don’t receive an

answer after a configurable timeout, we can consider that we are offline. For some

strange reasons, Ajax’s jQuery function doesn’t trigger a timeout event or an error event

when you have no connection—for these reasons, we have to work around this by using

jQuery’s Timers plug-in; after tweaking it a bit, we should end up with something like

this:

$('#synhcronize').oneTime(3000, function(){
 $('#synhcronize').css("display","block");
});

$.ajax({ url:'http://query.yahooapis.com/v1/public/yql?"+
 "q=select%20*%20from%20html%20where%20url%3D%22"+
 encodeURIComponent(url)+
 "%22&format=xml'&callback=?',
 dataType: 'jsonp',
 timeout: 3000,
 complete: function() {
 $('#messages').stopTime();
 }
});

http://davidbcalhoun.com/2010/using-navigator-connection-android
http://query.yahooapis.com/v1/public/yql?"+

CHAPTER 6: Competing with Native Apps 127

We start by binding a timer to the Synchronize button. After three seconds, it will call the

function defined inline. This function masks the button after determining that there is no

connection available.

At the same time, we fire a simple YQL query (developer.yahoo.com/YQL) using an Ajax

call, and, if the call is completed and successful, then we stop the timer and the button

will stay visible.

Summary
You saw in this chapter that the look and feel of web-based applications can, in fact,

compete with native applications. CSS3 and HTML5 are really beginning to break new

ground in these areas. In this chapter, you learned how to enhance the user interface by

adding animations and complex layouts, and you also learned how to deal with

situations where no connection is available by implementing mechanisms that make

web applications behave like native ones.

In the next chapter, we’ll focus on one of the features just introduced: working with

location information—commonly called location-based services.

129

129

 Chapter

Exploring Interactivity
In previous chapters, we explored building an Android web app similar to any desktop

web app. Our experience of mobile development so far has been catering for a smaller

display and taking advantage of some of the HTML5 API features implemented in mobile

WebKit.

In this chapter, we will take a slight break from building complete mobile web apps and

explore interactivity through touch events and the HTML5 canvas. Throughout the

chapter, we will look at:

 Touch events and where they are both similar to and different from

mouse events for desktop browsers

 HTML5 canvas drawing and animation, including some simple best

practices when working with canvas and animation

 Some more advanced animation techniques, such as how to produce

more realistic animation through various techniques

 Some of the current things to watch out for when working with the

canvas on Android, which also includes differences in the way the

canvas behaves between different versions of the Android OS

Introduction to the HTML5 Canvas
The HTML5 canvas is an extremely cool addition to the tools that you have at your

disposal for building web applications in general. The canvas element provides web

developers a way to integrate a custom drawing area into their HTML layouts. This can

be particularly useful and gives developers the ability to do more with their pages,

whether that be adding some interactivity or displaying a graph.

While not all browsers include support for the canvas tag, Android’s WebKit browser

does. This gives us the opportunity to explore using it in our applications, and possibly

even writing simple games for Android purely using web technologies. While Flash

(www.adobe.com/products/flashplayer) is normally the tool of choice for writing simple

games for the Web, the HTML5 canvas and JavaScript do provide a compelling

7

http://www.adobe.com/products/flashplayer

CHAPTER 7: Exploring Interactivity 130

alternative. And with cross-platform mobile support for Flash currently limited, this

makes the canvas worth investigating.

We will do that now by first having a look at some of the simple operations that can be

completed using the canvas.

In this first example, we will use the canvas to simply draw a line from the top-left corner

of the display to the bottom right. First is the simplecanvas.html file:

<html>
<head>
 <title>Simple Canvas Demo</title>
 <meta name="viewport" content="width=device-width; user-scalable=0;" />
 <link rel="stylesheet" href="../../css/proui.css" />
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/prowebapps.js"></script>
 <script type="text/javascript" src="simplecanvas.js"></script>
</head>
<body>
 <canvas id="simple"></canvas>
</body>
</html>

Nothing much to talk about here, apart from the presence of the canvas tag, which by

itself does absolutely nothing. It’s time to look at the simplecanvas.js file that goes

along with our HTML:

(function() {
 var canvas = null,
 context = null;

 function resetCanvas() {
 canvas = document.getElementById("simple");

 // set the canvas height to the window height and width
 canvas.width = window.innerWidth;
 canvas.height = window.innerHeight;

 // get a reference to our drawing context
 context = canvas.getContext("2d");

 // now draw the line
 drawLine();
 } // resetContext

 function drawLine() {
 context.beginPath();
 context.moveTo(0, 0);
 context.lineTo(canvas.width, canvas.height);
 context.stroke();
 } // drawLine

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);

3

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Exploring Interactivity 131

 resetCanvas();
 });
})();

Even here, there really isn’t anything very complicated going on. Once you strip away

the additional code to handle window resizing and so forth, the code does three things

to draw the line:

 It gets a reference to the canvas and sizes the canvas to match the

window size. This is done when we capture a window resize event or

the device orientation changes (thanks to our previous work in Chapter

1).

 It gets a reference to the 2d context of the canvas. To achieve this, we

use the getContext method of a canvas object.

 It draws the line. This involves flagging to the canvas that we are going

to draw a path with the beginPath method. We then use the moveTo

method to move to the top-left corner (moving draws nothing), and

then follow that with the drawTo method to draw to the bottom-right

corner. Finally, we tell the canvas to draw a line along the path we

defined, using the stroke method.

The result is displayed in Figure 7–1.

Figure 7–1. The canvas used to draw a diagonal line in the Android browser

CHAPTER 7: Exploring Interactivity 132

Drawing Interactively to the Canvas
Now that we at least know how to create a simple canvas, let’s look at how we can do

that interactively to create some unique mobile web apps. While jumping in and working

with touch events would be great, it’s worth taking a little time to investigate how this is

done using mouse events first—given that this is probably more familiar to us.

Once we have the interactivity built using mouse events in a desktop browser, we will

then explore how similar functionality would be implemented using touch events. By

working with mouse events in the first instance and then moving to touch events, we will

gain an understanding of some important differences between mobile interactivity and

desktop interactivity.

Interactivity: The Way of the Mouse
Start by copying the previous simplecanvas.html file to a new HTML file called

mousecanvas.html, and change the script tag to reference mousecanvas.js instead of

simplecanvas.js.

Next, let’s create our mousecanvas.js file. We’ll start with the simplecanvas.js file as a

base and make modifications so that we are drawing in response to the mouse events

rather than once when the document loads.

(function() {
 var canvas = null,
 context = null,
 buttonDown = 0;

 function resetCanvas() {
 canvas = document.getElementById("simple");

 // set the canvas height to the window height and width
 canvas.width = window.innerWidth;
 canvas.height = window.innerHeight;

 // get a reference to our drawing context
 context = canvas.getContext("2d");
 } // resetContext

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 document.body.addEventListener("mousedown", function(evt) {
 if (buttonDown === 0) {
 context.moveTo(evt.pageX, evt.pageY);
 } // if

 ++buttonDown;
 }, false);

CHAPTER 7: Exploring Interactivity 133

 document.body.addEventListener("mousemove", function(evt) {
 if (buttonDown > 0) {
 context.lineTo(evt.pageX, evt.pageY);
 context.stroke();
 } // if
 }, false);

 document.body.addEventListener("mouseup", function(evt) {
 --buttonDown;
 }, false);
 });
})();

To test this code, run it using an HTML5-compatible desktop browser. As mentioned in

previous chapters, Chrome is a good choice, as it is based on WebKit and has some

excellent tools support. Figure 7–2 shows a sample drawing after mouse interaction.

NOTE: You may be wondering why we are running code in a desktop browser when this is a
book on mobile development. Well, in the preceding example, we are working with mouse
events, so a desktop browser is required. Additionally, as you begin to work more with mobile
web app development, you will find desktop browsers are an important part of your development

process. There is little or no development tools support on mobile browsers at this stage, so it’s
important not to forget your desktop-based WebKit browser as an important part of your

development tool set.

CHAPTER 7: Exploring Interactivity 134

Figure 7–2. Using mouse events and the HTML5 canvas allows tragic artists to express themselves.

While the preceding code works well enough in a browser, it does absolutely nothing

useful on an Android device—unless of course you consider being able to scroll the title

bar that we hid back into view useful.

Interactivity: The Way of Touch
In transitioning to using touch events, let’s first take a look at the event-naming

conventions, as displayed in Table 7–1.

Table 7–1. How Touch Events Relate to Respective Mouse Events

Interaction Style Start Event “Continue” Event End Event

Mouse mousedown mouseover mouseup

Touch touchdown touchmove touchup

CHAPTER 7: Exploring Interactivity 135

The naming of these functions gives us a clue to the differences between working with

touch and mouse events. Both mouse and touch events have “down” and “up” events

to signify that interaction has started and ended, respectively.

The primary difference, however, is between the mouseover and touchmove events. A

touch event has no concept of hovering, and thus we have no touchover event, so it is

replaced with the touchmove event, signifying that a touch event has started and the

touch points are changing. This is an important point to note, as familiar web concepts

such as “hover states” have no effect on mobile devices, so it’s important to consider

alternative mechanisms to provide feedback to your app users.

We will now create our touchcanvas.html and touchcanvas.js files. As per the mouse

canvas example, the HTML file is very simple, so just make a copy of the previous

mousecanvas.html file and tweak the references.

Our touchcanvas.js file is more or less a replacement of the mouse event handlers with

the relevant touch event handlers:

(function() {
 var canvas = null,
 context = null;

 function resetCanvas() {
 canvas = document.getElementById("simple");

 // set the canvas height to the window height and width
 canvas.width = window.innerWidth;
 canvas.height = window.innerHeight;

 // get a reference to our drawing context
 context = canvas.getContext("2d");
 } // resetContext

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 document.body.addEventListener("touchstart", function(evt) {
 context.beginPath();
 context.moveTo(evt.touches[0].pageX, evt.touches[0].pageY);

 evt.preventDefault();
 }, false);

 document.body.addEventListener("touchmove", function(evt) {
 context.lineTo(evt.touches[0].pageX, evt.touches[0].pageY);
 context.stroke();
 }, false);

 document.body.addEventListener("touchend", function(evt) {
 }, false);
 });
})();

CHAPTER 7: Exploring Interactivity 136

With the preceding code implemented, you should be able to draw using touch on your

Android device and simulate touch events in the emulator. Figure 7–3 shows an

example.

Figure 7–3. More advanced drawings are possible given the intuitive nature of the touch interface.

The primary differences between this code and the mousecanvas.js file are:

 With mouse events, mouse button information is included to signify

whether the left, right, or other button was pressed. When it comes to

touch events, we have no concept of varying buttons, and as such

there is no need to monitor button states. Given this situation, the

touchstart handler has no code to do this, and the touchend event

handler does nothing and could quite simply be removed.

 References to evt.pageX and evt.pageY are replaced with references

to the touches array of the event object. In our example, we reference

evt.touches[0].pageX and evt.touches[0].pageY to get the screen

coordinates of the first touch.

 The touchstart handler makes a call to the preventDefault method of

the event object to tell the browser not to take any further action with

this event. Without this call, the browser will initiate scrolling on the

window; this is not desirable behavior, as it would interfere with our

attempts to draw in the canvas area.

With the touch canvas example complete, you should now have a basic understanding

of how to use both the HTML5 canvas and touch interactivity to create some simple

interactive mobile web apps. Time now to take this further.

CHAPTER 7: Exploring Interactivity 137

NOTE: In the last few chapters, we have been exploring components of the emerging HTML5
spec. As such, it might be natural to expect that touch is part of that specification; however, it
isn’t.

A separate W3C working group has been set up for standardizing touch interaction, so over time
we would expect the way we implement touch interfaces to change slightly as the different
organizations working with touch interfaces come to agree on a standard implementation.

If you are interested, the URL for the working group is

www.w3.org/2010/07/touchinterface-charter.html.

Implementing Canvas Animation
This next section is focused on exploring animation using the HTML5 canvas and how

simply that can be implemented. We will have a look at a couple of different examples of

animation using the canvas, using a mix of animation using both simple drawings and

images. In each of these examples, simple touch events will be used to drive the

samples.

In addition to the animations, we will also explore the impact that device DPI (or dots-

per-inch) has on working with images in the canvas. This is probably one of the more

frustrating parts of using HTML5 on Android, as its effects differ between different

versions of the operating system; however, we will look into some strategies for working

around the problem.

Creating an Animation Loop
If you’ve worked with JavaScript in the past, you will be familiar with both the

setTimeout and setInterval functions. These functions allow a block of JavaScript to

execute after n milliseconds or every n milliseconds, respectively. In the case of

animation, we want a recurring event, so we will be using the setInterval method.

Again, for this example, we only need the barest of HTML files, so create a new HTML

file called drops.html and a corresponding JavaScript file (you know the drill). We will

work through a few animation examples in this chapter, and each example will be

structured in a similar manner to the example that follows. Our first animation example

implements a simple animation loop that simulates raindrops in the browser.

Here is the initial code for drops.js:

(function() {
 var canvas = null,
 context = null,
 drops = [];

 function resetCanvas() {

http://www.w3.org/2010/07/touchinterface-charter.html

CHAPTER 7: Exploring Interactivity 138

 ...
 } // resetContext

 function animate() {
 ...
 } // animate

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 document.body.addEventListener("touchstart", function(evt) {
 // add the new drop
 drops.push({
 size: 2,
 maxSize: 20 + (Math.random() * 50),
 x: evt.touches[0].pageX,
 y: evt.touches[0].pageY
 });

 // prevent screen scrolling
 evt.preventDefault();
 }, false);

 setInterval(animate, 40);
 });
})();

The code is structured in a similar fashion to previous examples, with the resetCanvas

function used to handle both initialization and resizing the canvas appropriately.

We have implemented the touchstart handler to add new “drops” to our drops array,

defining an initial size and a randomly generated maximum size, and capturing the x and

y coordinates of the touch position.

We then have the animation loop, which is implemented in the animate function and

created by using the setInterval call. We have defined a delay of 40 milliseconds,

which equates to approximately 25 frames of animation per second.

Drawing a Frame of Animation
Before we have a look at the actual animate function implementation, first we will have a

look at the things that we should do in a single pass of drawing our animation. To try to

explain this clearly, we have broken the process down into six simple steps:

1. Save the canvas context. Saving the canvas context saves information about the

current canvas state, which can be restored later. This is particularly important

when you are writing code that you want to integrate with other canvas-drawing

code. Without saving and restoring canvas state, it would be quite possible to

effect the other draw code that is making similar changes.

CHAPTER 7: Exploring Interactivity 139

2. Clear the background. The first step in drawing an animation frame usually

involves clearing the background from what has been drawn in the previous

frame. As you become more comfortable with drawing to the canvas, however,

you may want to limit doing this to squeeze more performance out of your

animations. For what we are doing here, though, clearing the background is ideal.

3. Adjust canvas parameters. Before drawing to the canvas, you may want to change

parameters such as stroke or fill style, and also colors.

4. Draw the animation frame. Draw the animation frame using the various canvas

methods provided. We’ll look at an example shortly that touches on a few

elements of this, but, for further information, the Mozilla Developer Center Canvas

Tutorial is an excellent resource

(https://developer.mozilla.org/en/Canvas_tutorial).

5. Perform animation loop logic. It is likely that, to effect any kind of animation, you

will need to update variable values, perform calculations, and so on. Generally,

within the animation loop is an effective place to perform this kind of logic.

6. Restore the canvas state. Once the animation loop has been completed, restore

the canvas state to prevent modifications that have been made to the canvas

within the loop (such as changes to fill or stroke style) being used in other parts of

the application.

NOTE: While some would suggest that saving and restoring the canvas state is optional
depending on your implementation, our advice would be to implement the logic at least in the

first instance, as it is the best chance you have of making your code reusable within another
application. If for some reason (such as performance optimization) it becomes necessary to

remove the state-saving and restoring steps, then do so with care.

A Working Example
With an understanding of the steps that are required in a single pass of the animate

function, let’s now have a look at the code:

function animate() {
 context.save();
 try {
 // clear the drawing surface
 context.clearRect(0, 0, canvas.width, canvas.height);

 // set a stroke style
 context.strokeStyle = "rgba(68, 221, 255, 0.5)";
 context.lineWidth = 4;

 // iterate through the drops and draw them to the canvas
 var ii = 0;

https://developer.mozilla.org/en/Canvas_tutorial

CHAPTER 7: Exploring Interactivity 140

 while (ii < drops.length) {
 // draw the drop
 context.beginPath();
 context.arc(drops[ii].x, drops[ii].y, drops[ii].size, 0, 2 * Math.PI,
false);
 context.stroke();

 // increase the size of the drop
 drops[ii].size += 2;

 // if the drop has exceeded its max size, then remove it
 if (drops[ii].size > drops[ii].maxSize) {
 drops.splice(ii, 1);
 }
 // otherwise, on to the next drop
 else {
 ii++;
 } // if..else
 } // while
 }
 finally {
 context.restore();
 } // try..finally
} // animate

The code in the animate function creates an animation that will produce a result similar

to that shown in Figure 7–4.

Figure 7–4. A snapshot of the animation created by our drops.js file

Looking at the preceding code, we can see that all of the items that were outlined

previously have been covered:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Exploring Interactivity 141

 The context.save method is called to save the canvas state as per

step 1. We then open a try..finally block to implement steps 2

through 5.

 The first call in the inner block is then calling the context.clearRect

method to clear the canvas background. This covers step 2 in our

process, but, as mentioned earlier, in some cases you may want to

remove this to optimize performance.

 We then move to step 3, which is adjusting the canvas parameter for

drawing the display. In our sample, we are adjusting the strokeStyle

and lineWidth parameters of the canvas context. Additionally, note

our use of the CSS3 rgba function to specify the strokeStyle (see

www.w3.org/TR/css3-color/#rgba-color for more info on the rgba

function). The rgba function allows us to provide the red, green, blue,

and finally alpha values for the color of the stroke (or fill). This provides

us with the ability to create semitransparent lines and fill, which can

provide some visually appealing effects.

 Then step 4—we draw. In the case of our example, steps 4 and 5 are

very much intermingled, which is probably something that will occur in

many implementations. Our draw code here is simply drawing circles

for each of the drops on the display, but you will probably notice that a

simple circle function is nowhere in sight. Instead, we use paths. At

first glance, this is a little disconcerting—but don’t worry, you will get

used to using paths, and we cover this in a little more detail soon.

 Step 5 then follows; as mentioned, this is mixed fairly tightly with step

4, as we are both drawing and updating multiple drops when we are

drawing a single frame of animation. In our code, the size of the drop

is increased, and, if it reaches a certain size, then it is removed from

the drops that we will draw.

 Finally, we break out of the try block in the try..finally loop and

execute the finally section. The finally section always executes,

and in this case it restores the canvas state as per step 6.

A Quick Overview of Canvas Paths
You will notice as you work with the canvas that it is a fairly low-level API. Different

people have different opinions on this, and, while the HTML5 standard is far from locked

down, it is likely that it will remain this way.

One example of the low-level nature of the canvas involves the extensive use of paths

rather than higher-level abstractions (such as circles, ellipses, etc.). As shown in the

previous code sample, drawing a circle involved the following code:

context.beginPath();
context.arc(drops[ii].x, drops[ii].y, drops[ii].size, 0, 2 * Math.PI, false);
context.stroke();

http://www.w3.org/TR/css3-color/#rgba-color

CHAPTER 7: Exploring Interactivity 142

This is a good example of how paths are used:

1. We tell the canvas context that we are starting to work with a path by calling the

beginPath method.

2. We then perform the relevant path-drawing operations to create the shape(s) we

require. In the preceding example, we use the arc method to draw a circle, but we

could also use the lineTo or rect methods to draw lines and rectangles also.

3. Once all the path-drawing operations have been completed, either the stroke or

fill methods of the canvas context are called to draw or fill the specified path.

While it takes a bit of getting used to, having access to low-level path operations allows

for very flexible implementations in your code. It isn’t for everyone, though, and

JavaScript libraries such as fabric.js (see http://github.com/kangax/fabric.js) can

definitely simplify the process of working with the canvas if you are interested.

NOTE: As previously mentioned, this chapter is meant to serve as an introduction to what can be
achieved using the HTML5 canvas, and we suspect that you could write an entire book on the
topic. As such, it takes significantly more than a small section of the book to explain path
operations in any depth. For further information and a solid tutorial on the topic, we would once

again recommend the Mozilla resources on the topic:

https://developer.mozilla.org/en/Canvas_tutorial/Drawing_shapes.

Now armed with a basic understanding of an animation loop and how you can use the

HTML5 canvas and touch to create simple interactive web apps, we’ll have a look at

some more complicated examples.

Drawing Images: Accounting for Device DPI
Over the next few examples, our goal will be to show a car animating across the screen.

At the same time, we will be exploring the impact of device DPI on various versions of

the Android OS, and some strategies that can be used to deal with this.

To get started, once again create an HTML file to contain the application, but with a

minor difference this time:

<html>
<head>
 <title>Simple Car Animation</title>
 <meta name="viewport" content="target-densitydpi=device-dpi; width=device-width;
user-scalable=0;" />
 <link rel="stylesheet" href="../../css/proui.css" />
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/prowebapps.js"></script>
 <script type="text/javascript" src="car.js"></script>
</head>
<body>
 <canvas id="main"></canvas>

http://github.com/kangax/fabric.js
https://developer.mozilla.org/en/Canvas_tutorial/Drawing_shapes

CHAPTER 7: Exploring Interactivity 143

</body>
</html>

In Chapter 2, we looked at the various values that can be specified in the viewport meta

tag. Here is an example where setting the target-densitydpi actually makes a

difference to what is displayed in the browser. Figure 7–5 illustrates the difference

between specifying and not specifying the target-densitydpi setting when using a high

DPI device.

Figure 7–5. The difference between including and not including the target-densitydpi (on the left, there is no
setting; on the right, it is included)

Since a target-densitydpi setting has not been included in the viewport meta tag, the

emulator has automatically scaled up the image. This isn’t really what is desired, as this

can make the car start to look a little pixelated.

Once the device is instructed to use the device-dpi, it no longer scales, and the quality

of the image is improved. There is still more work to do regarding device pixel ratios in

our JavaScript, but that’s a start.

Speaking of JavaScript, here is our car.js file:

(function() {
 var canvas = null,
 context = null,
 car = null,
 carX = 0,
 endPos = null;

 function resetCanvas() {

CHAPTER 7: Exploring Interactivity 144

 ...
 } // resetContext

 function animate() {
 context.save();
 try {
 if (endPos && car && car.complete) {
 // clear the drawing surface
 context.clearRect(0, 0, canvas.width, canvas.height);

 // draw the car
 context.drawImage(car, carX - car.width, endPos.y - car.height);

 // draw an indicator to highlight the difference between the car and
 context.beginPath();
 context.arc(carX, endPos.y, 5, 0, Math.PI * 2, false);
 context.fill();

 // increment the car x
 carX += 3;

 // if the car x is greater than the end pos, then remove it
 if (carX > endPos.x) {
 endPos = null;
 } // if
 } // if
 }
 finally {
 context.restore();
 } // try..finally
 } // animate

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 document.body.addEventListener("touchstart", function(evt) {
 endPos = {
 x: evt.touches[0].pageX,
 y: evt.touches[0].pageY
 };

 carX = 0;

 // prevent screen scrolling
 evt.preventDefault();
 }, false);

 // load our car image
 car = new Image();
 car.src = "car.png";

 setInterval(animate, 40);
 });
})();

CHAPTER 7: Exploring Interactivity 145

In the first version of this file, we included a marker to help us understand the impact of

device DPI when rendering images. To gain an understanding of how this works, run an

emulator using an Android OS 2.1 AVD image with a high-resolution screen DPI skin

(something like WVGA800—see Chapter 1 for details on how to do this). This will allow

us to compare positioning in an emulator running in medium DPI vs. high DPI mode.

NOTE: You may be wondering why a specific version of the Android emulator is required to
demonstrate the difference between a standard resolution and a high-resolution display. This is
due to some differences in behavior between different versions of the Android OS, and it is

explained in more detail soon.

Figures 7–6 and 7–7 illustrate the difference between the two device pixel ratios and the

impact on drawing images.

Figure 7–6. A device pixel ratio of 1 means that both our marker and image are drawn at the position of the
touch.

CHAPTER 7: Exploring Interactivity 146

Figure 7–7. A device pixel ratio of 1.5 shows that images require adjustment. Guidelines have been added.

Not surprisingly, the position at which the screen was touched and the end position of

the car differ by a factor of 1.5, while the marker is drawn right where it’s meant to be.

For this reason, when we are drawing images to the canvas, we will need to apply some

scaling to ensure that those images appear in the correct location.

The following code demonstrates the adjustments required to display the image in the

correct location:

// draw the car
context.drawImage(car,
 (carX / window.devicePixelRatio) - car.width,
 (endPos.y / window.devicePixelRatio) - car.height);

// draw an indicator to highlight the difference between the car and
context.beginPath();
context.arc(carX, endPos.y, 5, 0, Math.PI * 2, false);
context.fill();

With this code modification made, the car image is drawn in the correct location and

appears at a position in line with the marker.

CHAPTER 7: Exploring Interactivity 147

NOTE: For the moment, if you are targeting 2.1 as an application platform we would recommend
that you look at including appropriate windowDevicePixel ratio tweaks (plus some browser
detection code). If you feel comfortable targeting 2.2 and above only, then you are able to let the

Android browser deal with things rather than have to account for this behavior yourself.

Additionally, if you are working on an Android 2.2 development platform, then adjust the sample
code in this chapter, removing any instance that we divide by the

window.devicePixelRatio.

A Tale of Three Androids
One of the primary criticisms of Android to date has been around the fragmentation of

the OS versions that are “in the wild.” This a problem primarily because different

versions of the OS may do something different from another version—yielding

unexpected results. While this can be frustrating to work with as a developer, it is worth

persevering, as you are ultimately writing code that will work (with minor modification) on

any mobile device with a WebKit browser.

We find ourselves in that situation when we compare the techniques required to position

images in high DPI devices for versions of Android up to and including 2.1 with those

required for versions 2.2 and beyond. Figure 7–8 illustrates the difference in image

positioning when compensating for devicePixelRatio the same way across three

different versions of the Android OS. In each of the images, the touch start position was

the center of the screen, but you can see the resulting image position in 2.2 no longer

requires the compensation applied for previous versions.

CHAPTER 7: Exploring Interactivity 148

Figure 7–8. Android 1.6, 2.1, and 2.2 (shown from left to right) compensate for device DPI differently.

In reality, Android OS version 2.2 (code-named Froyo) implements the functionality

correctly. This is great, as having to compensate for devicePixelRatio in JavaScript

once an appropriate viewport meta tag is supplied definitely feels like double handling.

With the need to support more versions of Android than just 2.2, though, we need to

implement a method of detection that will provide information on how the current device

is rendering images to the canvas. This information can then be used to determine

whether we need to apply adjustments in the code.

NOTE: Ideally, we would have loved to include the code to demonstrate effective detection in this
chapter. Unfortunately, however, neither simple browser detection

(www.quirksmode.org/js/detect.html) nor feature detection
(https://developer.mozilla.org/en/Browser_Feature_Detection) techniques are
effective at determining whether our offsets should be applied. We have started a GitHub fork of

the excellent Modernizr project (www.modernizr.com) to look at providing suitable detection for
this situation. So, if you are looking to work with the HTML5 canvas on Android, we would
recommend checking out the following repository:

http://github.com/sidelab/Modernizr.

Once suitable detection has been implemented, details on how to implement the technique will

be described on the project wiki: http://github.com/sidelab/Modernizr/wiki.

http://www.quirksmode.org/js/detect.html
https://developer.mozilla.org/en/Browser_Feature_Detection
http://www.modernizr.com
http://github.com/sidelab/Modernizr
http://github.com/sidelab/Modernizr/wiki

CHAPTER 7: Exploring Interactivity 149

Advanced Animation Techniques
Our previous animation examples have been a good introduction to implementing

simple animation with the HTML5 canvas, but the animations obviously weren’t smooth.

In this section, we will investigate techniques that will help to make the animation

smoother and more believable.

Creating Realistic Movement in Animations
In both of the previous examples, we implemented very primitive techniques for

animating our display. For instance, the car animation loop simply incremented the x

position of the car by 3 pixels each time the function was called. Did anyone think that

looked believable? No, we didn’t think so. Let’s fix that first of all.

To do this, we will use easing to smooth the start or end of the animation (or both). For

instance, applying some appropriate easing to our animation would make the car appear

to accelerate up to speed or brake to a stop.

As this isn’t a book specifically focused on animation, we won’t go into depth on what is

involved in creating an easing effect nor attempt to write code from the ground up.

Rather, we will use some of Robert Penner’s existing easing equations (see

www.robertpenner.com/easing) to create a more realistic effect of motion for our car.

These equations were first written for Flash, but have a look in the source of many of the

JavaScript libraries that implement easing animation and you will find a reference to

Robert’s excellent work.

It’s likely we will make use of these easing equations again, so let’s add them to our

prowebapps.js file:

PROWEBAPPS = (function() {
 ...

 var module = {
 ...

 Easing: (function() {
 var subModule = {
 Linear: function(t, b, c, d) {
 return c*t/d + b;
 },

 Sine: {
 In: function(t, b, c, d) {
 return -c * Math.cos(t/d * (Math.PI/2)) + c + b;
 },

 Out: function(t, b, c, d) {
 return c * Math.sin(t/d * (Math.PI/2)) + b;
 },

 InOut: function(t, b, c, d) {
 return -c/2 * (Math.cos(Math.PI*t/d) - 1) + b;

7

http://www.robertpenner.com/easing

CHAPTER 7: Exploring Interactivity 150

 }
 }
 };

 return subModule;
 })(),

 ...
 };

 ...

 return module;
})();

In the preceding code, we added two of the many easing functions available in Penner’s

work. Each of these easing functions takes four parameters:

t: The elapsed time for the animation

b: The beginning value, or the value we are easing from

c: The change value, or the difference between the end value and the

start

d: The duration of the animation

So, by way of example, the following would tell us what the value should be if we were

easing from 0 to 500, 600 milliseconds in, for a 2-second animation:

newValue = PROWEBAPPS.Easing.Linear(600, 0, 500, 2000);

And if we were easing from 1100 to 1700 at the same point in time:

newValue = PROWEBAPPS.Easing.Linear(600, 1100, 600, 2000);

If that doesn’t make complete sense yet, don’t worry—it will by the time we have a few

examples down. Let’s integrate the easing code into our car animation sample. We

would suggest creating a separate JavaScript file so that you can do a side-by-side

comparison.

Here’s the sample code for car-easing.js:

(function() {
 var ANIMATION_DURATION = 1000;

 var canvas = null,
 context = null,
 car = null,
 endPos = null,
 animationStart = 0;

 function resetCanvas() {
 ...
 } // resetContext

 function animate() {
 context.save();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7: Exploring Interactivity 151

 try {
 if (endPos && car && car.complete) {
 // determine the elapsed time
 var elapsedTime = new Date().getTime() - animationStart,
 carX = PROWEBAPPS.Easing.Linear(
 elapsedTime,
 0,
 endPos.x,
 ANIMATION_DURATION) - car.width;

 // clear the drawing surface
 context.clearRect(0, 0, canvas.width, canvas.height);

 // draw the car
 context.drawImage(car, carX, endPos.y - car.height);

 // if the car x is greater than the end pos, then remove it
 if (elapsedTime > ANIMATION_DURATION) {
 endPos = null;
 } // if
 } // if
 }
 finally {
 context.restore();
 } // try..finally
 } // animate

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 document.body.addEventListener("touchstart", function(evt) {
 endPos = {
 x: evt.touches[0].pageX / window.devicePixelRatio,
 y: evt.touches[0].pageY / window.devicePixelRatio
 };

 // capture the animation start tick count
 animationStart = new Date().getTime();

 // prevent screen scrolling
 evt.preventDefault();
 }, false);

 // load our car image
 car = new Image();
 car.src = "car.png";

 setInterval(animate, 40);
 });
})();

We’ll quickly go through the notable sections of this code:

CHAPTER 7: Exploring Interactivity 152

 The “constant” ANIMATION_DURATION is used to set the time that the

animation will run for.

 Each time the animate function is called, and when the animation is

first triggered (in the touchstart event handler), we use a call to new
Date().getTime() to determine the current time in milliseconds. In the

context of the animate function, we use that figure to determine how

much time has elapsed since the animation started.

 The calculation of the carX variable has changed to use the

PROWEBAPPS.Easing.Linear function. This variable can now be

declared locally in that function. The Linear easing function doesn’t

actually perform any easing. Once we have validated our

modifications, we will drop in the Sine easing functions to replace the

Linear easing.

 Determining that the animation has reached its final value is now done

based on a comparison between elapsedTime and the animation

duration. This is done as some easing functions return higher values

than the destination on the way to the end value (sounds confusing,

but you’ll see).

Running this sample should display the car animating, but still show an animation that

doesn’t look any smoother—the car still stops very abruptly. Let’s fix that now. Replace

the reference to PROWEBAPPS.Easing.Linear with PROWEBAPPS.Easing.Sine.Out, and you

should see the car image slow down as it approaches the x coordinate of your touch

start point.

NOTE: The majority of Penner’s easing equations come in three variants: In, Out, and InOut. The
In variant will apply the easing at the beginning of the animation, and, in the case of our car, this
means it will start slow and then speed up. Easing out means that values will have easing

applied as the animation approaches its final value, which is exactly what we want with our
car—for it to slow to a stop. An InOut easing function applies easing at both the start and end of
the animation. We’d recommend playing around with the different variants to get a feel for how

they work.

CHAPTER 7: Exploring Interactivity 153

ADDING AN ADDITIONAL EASING FUNCTION TO PROWEBAPPS

As mentioned previously, we really only implemented one of Penner’s easing functions for our animation,
and there are many more useful easing functions in his library. It is a reasonably simple exercise to take
another of his existing samples from ActionScript and port it to JavaScript and into the prowebapps.js
file. One that would look good with the car animation (and a personal favorite of mine) would be the “Back
Out” easing function.

The Back Out easing function is a good pick for this particular situation as the effect is to slightly overshoot
the actual animation end point, and then slowly reverse back to the target point. In the case of a car, this
looks quite believable. We don’t think you’ll be disappointed with whichever additional easing function(s)
you may choose. Trust us, it’s hard to stop applying easing to your animations once you start.

Canvas Transformations and Animation
It is impressive how powerful the HTML5 canvas is, and what can be achieved with it

using minimal code can definitely give you a buzz. In this next section, we will introduce

some transformation operations that we can use to provide additional animation to our

car.

Before we get into that, though, we’ll have a look at a simple example to get an overview

of how transformations operate. There are a number of different transformation

operations that are available to you when using the canvas; however, since this isn’t a

book on the HTML5 canvas specifically, we will only touch on two operations that we

require to expand on our sample:

 translate: The translate method shifts the origin of the canvas to the

specified position. By default, the origin (0,0) of the canvas refers to

the top-left corner, but that can be changed using the translate

method.

 rotate: The rotate method rotates the canvas around the origin. Used

in combination with the translate method, it can do some very cool

things.

NOTE: Once you start using transformation operations, you won’t want to have to reverse
changes to the context state all the time. This is why we recommended getting into the habit of

using the save and restore methods of the canvas, as they will prevent you from having to
keep track of the various transformations and state changes you make.

For more information on canvas transformations and the importance of the save and restore

methods, we highly recommend the Mozilla Developer Center’s information on the topic, at

https://developer.mozilla.org/en/Canvas_tutorial/Transformations.

https://developer.mozilla.org/en/Canvas_tutorial/Transformations

CHAPTER 7: Exploring Interactivity 154

Let’s take a look at what we can do with translate and rotate methods in a simple

example. Create another HTML file for this example, rotation.html, and base it on one

of our earlier examples. Then create a rotation.js file and include that in the HTML:

(function() {
 var canvas = null,
 context = null,
 angle = 0;

 function resetCanvas() {
 ...
 } // resetContext

 function animate() {
 context.save();
 try {
 // clear the drawing surface
 context.clearRect(0, 0, canvas.width, canvas.height);

 // set the origin of the context to the center of the canvas
 context.translate(canvas.width * 0.5, canvas.height * 0.5);

 // rotate the canvas around the origin (canvas center)
 context.rotate(angle);

 // draw a rectangle at the specified position
 context.fillStyle = "#FF0000";
 context.fillRect(-30, -30, 60, 60);

 // increment the angle
 angle += 0.05 * Math.PI;
 }
 finally {
 context.restore();
 } // try..finally
 } // animate

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 setInterval(animate, 40);
 });
})();

While transformations can sound difficult, the preceding is very simple code and should

produce a result similar that displayed in Figure 7–9.

CHAPTER 7: Exploring Interactivity 155

Figure 7–9. A rotating animation can be created simply by using various canvas transformation operations.

Just quickly, we will walk through the code from this implementation of the animate

function:

1. The translate method is called shortly after the canvas is cleared, and we set the

origin of the canvas to the center of the canvas.

2. The rotate method is then called, passing in the angle of rotation (in radians) that

should be applied.

3. Next, a canvas fillStyle is specified, and the fillRect method is called to draw

a solid-red square at the center of the canvas.

4. The value of the angle variable is then incremented for the next time the square is

drawn.

When working with transformations on the canvas, it is important to remember a few

things:

 The translate method shifts the origin of the canvas, which means

that both of your subsequent transformation operations and any draw

operations are now made relative to the point you translated to.

 Calling context.save() prior to performing the translation, and then

using context.restore() after, will help to make using transformations

manageable. Although not always appropriate, having the origin shift

back to a constant point after transformation operations will make your

draw code easier to manage and keep track of.

CHAPTER 7: Exploring Interactivity 156

Transformations and Our Car Animation
Getting back to our car animation, we’re sure you can think of a way that we might be

able to use rotation to make our animation more believable again. That’s right, let’s

make those wheels turn. Obviously, we will require a separate wheel image to be able to

apply the rotation to it, and not the rest of the car. Luckily, we have one.

Create a new HTML file for this demo, called wheelie.html, and a corresponding

wheelie.js file for the code:

(function() {
 var ANIMATION_DURATION = 3000;

 var canvas = null,
 context = null,
 car = null,
 wheel = null,
 endPos = null,
 endAngle = 0,
 wheelOffset = 0,
 animationStart = 0;

 function resetCanvas() {
 ...
 } // resetContext

 function drawWheel(x, y, rotation) {
 if (wheel && wheel.complete) {
 context.save();
 try {
 // translate and rotate around the wheel center
 context.translate(x, y);
 context.rotate(rotation);

 // draw the wheel image (taking into account the wheel image size)
 context.drawImage(wheel, -wheelOffset, -wheelOffset);
 }
 finally {
 context.restore();
 } // try..finally

 } // if
 } // drawWheel

 function animate() {
 context.save();
 try {
 if (endPos && car && car.complete) {
 // determine the elapsed time
 var elapsedTime = new Date().getTime() - animationStart,
 carX = PROWEBAPPS.Easing.Back.Out(
 elapsedTime,
 0,
 endPos.x,
 ANIMATION_DURATION) - car.width,
 wheelAngle = PROWEBAPPS.Easing.Back.Out(

CHAPTER 7: Exploring Interactivity 157

 elapsedTime,
 0,
 endAngle,
 ANIMATION_DURATION);

 // clear the drawing surface
 context.clearRect(0, 0, canvas.width, canvas.height);

 // draw the car
 context.drawImage(car, carX, endPos.y - car.height);

 // draw the wheels at the appropriate position
 drawWheel(carX + 17, endPos.y - 10, wheelAngle);
 drawWheel(carX + 99, endPos.y - 10, wheelAngle);

 // if the car x is greater than the end pos, then remove it
 if (elapsedTime > ANIMATION_DURATION) {
 endPos = null;
 } // if
 } // if
 }
 finally {
 context.restore();
 } // try..finally
 } // animate

 function startCar(destX, destY) {
 endPos = {
 x: destX,
 y: destY
 };

 // calculate the end angle based on the end x position
 endAngle = (endPos.x / window.innerWidth) * 8 * Math.PI;

 // capture the animation start tick count
 animationStart = new Date().getTime();
 } // startCar

 $(window).bind("resize", resetCanvas).bind("reorient", resetCanvas);

 $(document).ready(function() {
 window.scrollTo(0, 1);
 resetCanvas();

 document.body.addEventListener("touchstart", function(evt) {
 startCar(
 evt.touches[0].pageX / window.devicePixelRatio,
 evt.touches[0].pageY / window.devicePixelRatio);

 // prevent screen scrolling
 evt.preventDefault();
 }, false);

 // load our car image
 car = new Image();
 car.src = "car.png";

CHAPTER 7: Exploring Interactivity 158

 wheel = new Image();
 wheel.src = "wheel.png";
 wheel.onload = function() {
 wheelOffset = wheel.width * 0.5;
 };

 setInterval(animate, 20);
 });
})();

The result is shown in Figure 7–10. Walking through the functionality of this code, we

can see the following significant details:

 We add a drawWheel function that is responsible for rotating the

canvas around a particular point and then drawing the wheel image so

that it is centered on that point. We use the same technique that we

used in the earlier rotation sample—we translate the origin of the

canvas to the center point where the wheel was drawn, apply the

rotation, and then call drawImage to draw the wheel image at the

appropriate position.

 Inside the animate function, we calculate the angle that we should

rotate the wheel by. We do this by applying the same tween function

that we are using to animate the x position of the car image. This

means that the wheels move in sync with the car. The example uses

the PROWEBAPPS.Easing.Back.Out, but, if you chose not to implement

any additional easing equations, you can obtain the required source

code from the GitHub repository, at
http://github.com/sidelab/prowebapps-
code/blob/master/js/prowebapps.js. Alternatively, feel free to use one

of the easing equations implemented earlier if that is preferred.

 The drawWheel function is called twice in the animate function—once

for each wheel.

 In startCar (which is essentially the functionality that used to be

contained within the touchstart handler), a variable called endAngle is

initialized. This variable is used in the wheel-easing calculation, and is

set relative to the distance of the x position that we are sending the car

to. By calculating this value relative to the end position of the car, the

wheels move at a speed appropriate for the distance that the car has

to move.

 Finally, the wheel image is loaded after the car image. For the wheel

image load, we attach an onload handler so the wheelOffset can be

calculated for an accurate wheel-imaging position in the drawWheel

function.

http://github.com/sidelab/prowebapps-code/blob/master/js/prowebapps.js
http://github.com/sidelab/prowebapps-code/blob/master/js/prowebapps.js
http://github.com/sidelab/prowebapps-code/blob/master/js/prowebapps.js

CHAPTER 7: Exploring Interactivity 159

Figure 7–10. Animating the wheels provides a convincing animation.

NOTE: As per previous notes regarding strange behavior in Android 2.1 and canvas drawing, the
rotated wheel does not appear correctly for that version. Every other version of Android is fine.

While we have shown you some techniques on how to combat the oddities of 2.1 in your
application code, if it is possible, then it would be wise to recommend users use Android 2.2 or
greater for any web applications that make use of the HTML5 canvas.

The adoption of Android 2.2 is accelerating, and since we initially wrote the contents of this
chapter (at which time 2.1 was the dominant version) 2.1 now runs second in usage to 2.2 (as at
January 4, 2011 Android 2.2 is installed on 51.8 percent of devices, and 2.1 is now at 35.2

percent). You can keep an eye on Android OS version distribution ratio at the following url:
http://developer.android.com/resources/dashboard/platform-versions.html.

While we considered removing the content on the “tweaks” that were required to deal with the

inadequacies of 2.1, we felt that content still offered value to those of you who might have to
deal with 2.1 during your mobile web application development. If you are in that group, then our

thoughts are with you—good luck.

http://developer.android.com/resources/dashboard/platform-versions.html

CHAPTER 7: Exploring Interactivity 160

Summary
In this chapter, we covered a lot of material and samples focused on the HTML5 canvas,

and looked at how we can use a combination of touch events and animation to create

some interactive demos. Hopefully, by exploring some of the functionality that is

available with the HTML5 canvas, you have seen some potential for using this

interactivity in your own applications or simple mobile games.

We will work with the canvas again before the end of the book, but in the next chapter

we will start to explore mobile mapping and location-based services. This will provide a

basis for building a mobile game that uses elements of mapping, interactivity, and

geolocation. There is a lot to learn, but it’s going to be a lot of fun doing it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

161

161

 Chapter

Location-Based Services
and Mobile Mapping
The focus of the next four chapters will be on location-based services and building a

geosocial game utilizing data from the geosocial network Gowalla (http://gowalla.com).

If the terms location-based service and geosocial network mean little to you now (or if

you’ve never heard of Gowalla), don’t worry—they will be explained very soon.

As far as coding in this chapter, we will be looking at a couple of different mobile-

friendly mapping APIs (Google Maps and Tile5) and how to render a simple map using

them. We will then go deeper into the Google Maps API and look at how to display

markers and interact with the map. While it would be great to do this with both Google

and Tile5, we really need to focus on a single solution to get through all the content.

Additionally, Google presently provides one of the most robust mapping solutions for

mobile, so it makes sense to use its API in this book.

Location-Based Services
The term location-based service is generally used to define an information service that

provides data based on geographical position (see

http://en.wikipedia.org/wiki/Location-based_service for more information).

Location-based services have risen in popularity recently and will continue to do so as

more consumers acquire location-aware mobile devices.

One excellent example of using a location-based service is searching for an ATM

(automated teller machine) that is close to your current location. Figure 8–1 shows an

example of the native Google Maps application on Android showing that kind of

information.

8

http://gowalla.com
http://en.wikipedia.org/wiki/Location-based_service

CHAPTER 8: Location-Based Services and Mobile Mapping 162

Figure 8–1. Google Maps providing nearby ATM locations is one example of a location-based service.

Another example is an application called Urbanspoon (www.urbanspoon.com), which

offers information on restaurants, including user reviews. A mobile screen capture from

the Urbanspoon application “Near Me” feature is shown in Figure 8–2.

Figure 8–2. Urbanspoon offers restaurant suggestions for nearby locations, complete with user ratings.

http://www.urbanspoon.com

CHAPTER 8: Location-Based Services and Mobile Mapping 163

An interesting point about the Urbanspoon application is that, while the application is

deployed as a native app, both of the results screens shown here were pulled down

from the Web and embedded into the native application using a WebView (see

http://developer.android.com/reference/android/webkit/WebView.html). This is a

similar technique to what we will be looking at in the next chapter using PhoneGap (see

http://phonegap.com), and is an excellent way to deploy an application to the Android

marketplace while still using web technologies for building most of the application.

There are many more examples of location-based applications available both on the

Web and in the Android marketplace.

Geosocial Networking
Geosocial networks (see http://en.wikipedia.org/wiki/Geosocial_networking for

more info) have started to evolve over the last couple of years; they’re essentially a result

of the combination of location-based services and social networks (see

http://en.wikipedia.org/wiki/Social_network for more on social networks). The

current geosocial networks have far fewer participants than the leading social networks,

but with the rollout of Facebook Places (www.facebook.com/places) geosocial networking

is starting to hit the online mainstream.

Geosocial networking currently revolves around the concept of check-ins. A check-in is

basically where a user tells the geosocial network that they are at a particular place,

spot, or venue (different geosocial networks use different terminology). In addition to

registering that they are at a particular place, a user can also perform other actions that

are associated with the venue. Depending on the social network, tips, tasks, or photos

can be left by a user for others on the geosocial network to see.

A very interesting part of geosocial networks is the way in which the real world and

virtual world interact. For instance, most social networks give rewards to users for

regular check-ins or for having the most check-ins for a particular place (Foursquare

calls the person with the most check-ins the mayor). Some businesses that have

registered as places in the geosocial networks can then use those geosocial rewards to

provide discounts to regular customers. This in turn incentivizes geosocial network users

to regularly visit and check into venues, and also to participate in the geosocial network.

Figure 8–3 shows the screen captures from two major geosocial networks: Foursquare

and Gowalla.

http://developer.android.com/reference/android/webkit/WebView.html
http://phonegap.com
http://en.wikipedia.org/wiki/Geosocial_networking
http://en.wikipedia.org/wiki/Social_network
http://www.facebook.com/places

CHAPTER 8: Location-Based Services and Mobile Mapping 164

Figure 8–3. Foursquare and Gowalla are two of the larger geosocial networks.

A core concept in geosocial networks is that the locations (places, spots, or venues) are

user contributed. For instance, if while using Foursquare you went to a new restaurant

and wanted to check in there, but couldn’t find it in the list of places, you could create it,

which would allow both you and others to check in at that location. Using this technique,

a geosocial network with an active community can quickly gather a large list of places.

Hopefully that provides some background information on both location-based services

and geosocial networking. Let’s now get back to coding using some maps.

Mobile Mapping
While there are quite a few different JavaScript mapping APIs available, very few of

those have been optimized for (or even work on) mobile devices. At the time of writing,

the primary thing that is lacking in most of the existing mapping APIs is touch support

for mobile devices. Thankfully, this is not the case with the Google Maps API, so we will

be able to run through some sample code using that API.

In this section, we will have a look at implementing mobile maps for both Google Maps

and a fairly new HTML5 mapping API called Tile5 (www.tile5.org). For both APIs, we will

walk through the process of displaying a simple map, and then we will go on with the

Google API to work through some samples in more detail.

http://www.tile5.org

CHAPTER 8: Location-Based Services and Mobile Mapping 165

Displaying a Map with Google Maps
Getting started with Google Maps is very simple. The following code sample (adapted

from the Google Maps V3 JavaScript Tutorial, at

http://code.google.com/apis/maps/documentation/javascript/tutorial.html)

demonstrates just how easy it is:

<!DOCTYPE html>
<html>
<head>
 <title>Simple Google Map | Pro Web Apps</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0;" />
 <link rel="stylesheet" media="screen" href="../../css/proui.css" />
 <style type="text/css">
 html { height: 100% }
 body { height: 100%; margin: 0px; padding: 0px }
 </style>
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/prowebapps.js"></script>
 <script type="text/javascript"
src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript">
 function initMap() {
 // set the map size to be window height less the header
 $("#map_canvas").height($(window).height() - $("#main h1").outerHeight() - 20);

 // initialize the map initial position to near Sydney Australia
 var latlng = new google.maps.LatLng(-34.397, 150.644);

 // configure the default options
 var myOptions = {
 zoom: 8,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // create the map, attaching it to the map_canvas element
 var map = new google.maps.Map(
 document.getElementById("map_canvas"),
 myOptions);
 }
 </script>
</head>
<body onload="initMap()">
 <ul id="menu">

 <div id="main" class="view">
 <h1>Google Map Test</h1>
 <div id="map_canvas"></div>
 </div>
</body>
</html>

http://code.google.com/apis/maps/documentation/javascript/tutorial.html
http://maps.google.com/maps/api/js?sensor=false"></

CHAPTER 8: Location-Based Services and Mobile Mapping 166

The preceding code sample demonstrates just how little JavaScript is required to get a

simple map displayed in a web app. Essentially, it is a three-step process:

1. Include the Google Maps API in your web application. The required script is

located at http://maps.google.com/maps/api/js, and takes a sensor parameter.

In the sample, we passed through a value of false for the sensor parameter, but, if

we had detected the user’s location using the Geolocation API as we did in

Chapter 6, we would have needed to pass this value through as true.

2. Define a function to initialize the map. This function’s primary purpose is to create

a new instance of a google.maps.Map class. The constructor takes two arguments:

first, the div that will contain the map once the map is created; and, second, an

object of options that influence the map initialization. In the preceding sample, the

map was instructed to go to zoom level 8, positioned at a latitude and longitude

near Sydney, Australia, and showing the map with a “Road Map” style.

3. Finally, hook the function (initMap) up to the onload event of the document body.

Once that is all done (and combined with our standard boilerplate template), a screen

similar to Figure 8–4 will be displayed.

Figure 8–4. Displaying a mobile-friendly Google map is a simple exercise.

http://maps.google.com/maps/api/js

CHAPTER 8: Location-Based Services and Mobile Mapping 167

Tile5: An Alternative HTML5 Mapping API
While in most cases the Google Maps API is the best choice for your application, there

are times where it just isn’t an option—perhaps due to licensing restrictions (you may

want to display advertising other than Google ads) or a particular client’s needs. One

example of this would be a client that wants to use its own mapping server for maps—

it’s more common than you might think.

Tile5 (http://tile5.org) is an open source JavaScript library being developed to

provide a mobile device-friendly mapping solution that can support multiple map

providers. Presently, the majority of mapping APIs tie you to a particular map provider

(OpenLayers—http://openlayers.org—is a notable exception on the desktop). For

some users, this restriction is completely acceptable, while other users regularly need to

work with different mapping services, and having to change between APIs can be quite

frustrating. This is where Tile5 on mobile, and OpenLayers on the desktop, come into

their own.

As Tile5 is targeted at modern smartphone devices (at the time of writing, Android

support is in progress but not yet stable), it is able to make extensive use of HTML5.

While, at this stage, the use of HTML5 only provides an experience comparable with

other non-HTML5 mapping APIs, we are likely to see hardware-accelerated HTML5

canvas implementations soon, and that is going to make things very exciting.

The following code sample shows the equivalent code required to display a simple map

using Tile5 in a similar fashion to the previous example using Google Maps. For this

example, Tile5 connects to the CloudMade (http://cloudmade.com) mapping servers,

which serve image tiles generated from OpenStreetMap data. If you aren’t already

familiar with the OpenStreetMap (http://openstreetmap.org) initiative, then it’s definitely

worth taking a look at. In their own words, it is “a free editable map of the whole world.”

Essentially, as users we have the ability to add and update information on the map. In

the same way that Wikipedia is an encyclopedia that is maintained by people all over the

world, OpenStreetMap is a street map and atlas with many maintainers.

<!DOCTYPE html>
<html>
<head>
 <title>Simple Tile5 Map | Pro Web Apps</title>
 <meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-
scale=1.0; user-scalable=0;" />
 <link rel="stylesheet" media="screen" href="../../css/proui.css" />
 <style type="text/css">
 html { height: 100% }
 body { height: 100%; margin: 0px; padding: 0px }
 </style>
 <script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/prowebapps.js"></script>
 <script type="text/javascript"
src="http://www.tile5.org/jsapi/0.9.1/tile5.js"></script>
 <script type="text/javascript"
src="http://www.tile5.org/jsapi/0.9.1/tile5.osm.js"></script>

http://tile5.org
http://openlayers.org%E2%80%94is
http://cloudmade.com
http://openstreetmap.org
http://www.tile5.org/jsapi/0.9.1/tile5.js"></
http://www.tile5.org/jsapi/0.9.1/tile5.osm.js"></

CHAPTER 8: Location-Based Services and Mobile Mapping 168

 <script type="text/javascript"
src="http://www.tile5.org/jsapi/0.9.1/tile5.cloudmade.js"></script>
 <script type="text/javascript">
 function initMap() {
 // set the map size to be window height less the header
 $("#map_canvas")
 .attr('height', ($(window).height() - $("#main h1").outerHeight() - 20))
 .attr('width', $(window).width() - 15);

 var map = new T5.Map({
 container: 'map_canvas',
 provider: new T5.Geo.Cloudmade.MapProvider({
 apikey: "13077497529148b0a40f1bf71728d125"
 })
 });

 map.gotoPosition(new T5.Geo.Position(-34.397, 150.644), 8);
 }
 </script>
</head>
<body onload="initMap()">
 <ul id="menu">

 <div id="main" class="view">
 <h1>Tile5 Map Test</h1>
 <canvas id="map_canvas"></canvas>
 </div>
</body>
</html>

The implementation of this sample is very similar to the previous Google Maps example:

1. The Tile5 library files are included from the Tile5 site. First, the core tile5.js

library is included, and this provides the generic functionality for mapping. We

then include two additional files, tile5.osm.js and tile5.cloudmade.js, which

provide the code required to talk to CloudMade and other OpenStreetMap-based

services.

2. A function is defined to initialize the map. In Tile5, this involves first creating a

T5.Map instance and informing it of the HTML5 canvas element that it will attach

to, and also informing the provider that will be used to supply the map tiles. Once

a map instance is created, the gotoPosition method is called, instructing Tile5 to

draw a map at a particular latitude and longitude for a zoom level.

3. As per the Google example, the initMap function is called in response to the body

onload event.

This generates a screen like the one shown in Figure 8–5.

http://www.tile5.org/jsapi/0.9.1/tile5.cloudmade.js"></

CHAPTER 8: Location-Based Services and Mobile Mapping 169

Figure 8–5. The Tile5 mapping API provides an HTML5-based mobile mapping solution.

While Tile5 is showing a lot of promise, it still hasn’t reached a point where Android

support has been fully implemented and tested. Even though HTML5 has been used,

there are still certain nuances that require tweaking to ensure the library behaves well on

both iOS and Android; and up until now the primary focus has been iOS compatibility.

For this reason, the application that we will build over the next few chapters will be built

using Google’s more mature API. As the Tile5 library matures, however, it is likely to

provide one of the best alternatives to Google Maps for Android web apps.

NOTE: The Tile5 library is a product being actively developed by Sidelab (www.sidelab.com).
As I (Damon Oehlman) am the founder of Sidelab in addition to one of the authors of this book, I

think it’s only fair to be open as to my involvement.

Adding Markers to a Google Map
One of the main reasons that you will have for implementing a map is to draw attention

to nearby locations. Earlier in the chapter, we considered the specific example of

showing nearby ATMs on a map, and in this and other situations placing graphical

markers are an excellent way of communicating this.

The code to add a marker to the map is also very simple, as demonstrated in the

following code sample. With the following code, simply replace the initMap function in

the previous sample with the updated function contents:

http://www.sidelab.com

CHAPTER 8: Location-Based Services and Mobile Mapping 170

<script type="text/javascript">
function initMap() {
 // set the map size to be window height less the header
 $("#map_canvas").height($(window).height() - $("#main h1").outerHeight() - 20);

 // initialize the map initial position to Sydney Australia
 var latlng = new google.maps.LatLng(-34.397, 150.644);

 // configure the default options
 var myOptions = {
 zoom: 8,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // create the map, attaching it to the map_canvas element
 var map = new google.maps.Map(
 document.getElementById("map_canvas"),
 myOptions);

 // create a new marker to and display it on the map
 var marker = new google.maps.Marker({
 position: latlng,
 map: map
 });

 // capture touch click events for the created marker
 google.maps.event.addListener(marker, 'click', function() {
 alert('marker clicked');
 });
}
</script>

The preceding code performs two functions:

1. First, a new marker is defined by creating an instance of a google.maps.Marker
class. This is initialized by providing both the position of the marker and the map

the marker will be added to. Once created, the marker will appear on the map.

2. Next, we add an event listener to respond to click events for that marker. In the

preceding samples, we simply displayed an alert to confirm that the event had

fired.

Once this has been completed, screens similar to the ones shown in Figure 8–6 will be

displayed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Location-Based Services and Mobile Mapping 171

Figure 8–6. Adding a marker to the Google map draws attention to a location.

We’ll next have a look at something more intelligent than just showing an alert when the

marker is clicked.

Showing Marker Detail
If you have had experience building desktop web applications and sites that incorporate

Google Maps, then you will probably already be thinking ahead to displaying an info

window for the marker. While this is very simple to do, it isn’t a typically good fit for

mobile maps, as demonstrated in Figure 8–7.

CHAPTER 8: Location-Based Services and Mobile Mapping 172

Figure 8–7. While great for desktop mapping apps, the info window isn’t well suited to mobile web apps.

While not required, if you are interested in seeing the results for yourself, here is the

code that corresponds to the screenshot displayed in Figure 8–7:

function initMap() {
 // set the map size to be window height less the header
 $("#map_canvas").height($(window).height() - $("#main h1").outerHeight() - 20);

 // initialize the map initial position to Sydney Australia
 var latlng = new google.maps.LatLng(-34.397, 150.644);

 // configure the default options
 var myOptions = {
 zoom: 8,
 center: latlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // create the map, attaching it to the map_canvas element
 var map = new google.maps.Map(
 document.getElementById("map_canvas"),
 myOptions);

 // create a new marker to and display it on the map
 var marker = new google.maps.Marker({
 position: latlng,
 map: map
 });

 // create a simple info window
 var infowindow = new google.maps.InfoWindow({

CHAPTER 8: Location-Based Services and Mobile Mapping 173

 content: 'Demo info window'
 });

 // capture touch click events for the created marker
 google.maps.event.addListener(marker, 'click', function() {
 infowindow.open(map,marker);
 });
}

While it is all well and good to talk about how not to display marker detail, obviously this

doesn’t help us build a mobile web app that includes mobile mapping. So let’s have a

look at some alternative possibilities:

 We could take the user to a detail page for that marker as soon as it’s

tapped.

 We could try to create a smaller custom info window that takes up less

screen real estate and doesn’t require a Close button—the window

would automatically close when another pin has been tapped.

 We could rework the interface to display marker detail at either the top

or the bottom of the display, and perhaps provide a More Details

button to take the user to the full detail page for the marker.

Given these options, the third one is probably the best, so we will go with that option

and see what can be done to restructure the interface and provide a foundation to move

forward with our application build.

A Mobile-Optimized Mapping UI
In this next section, we will work through the process of creating a UI for mapping that is

optimized for a mobile device. All the building blocks that we require are supplied in the

Google Maps toolbox. It’s just a case of being a little more selective with what we use

than we might ordinarily be with a desktop application.

A Mapping UI Mockup
Before we get into the code for our mobile mapping UI, we will begin by putting together

a UI mockup, as we did for our to-do list application in Chapter 4. This is displayed in

Figure 8–8.

CHAPTER 8: Location-Based Services and Mobile Mapping 174

Figure 8–8. A mockup of our optimized UI for mobile mapping

There are six primary components to the interface:

1. The application title bar. We have gone back to the simple title style for this

application as it is better suited to work with a full-screen map, and we really

don’t want to waste pixels with such limited screen real estate.

2. The currently selected marker title. This bar is displayed when a marker is tapped,

and shows the title of the tapped marker. The active marker is shown in element

4. Depending on the application, tapping the actual marker title could be used to

take the user to a detailed information page for the selected marker. In this case,

the title should probably be underlined to indicate that it is also a link.

3. Marker change selection navigation controls. These navigation controls are

included to provide an alternative mechanism for navigating through the markers.

Instead of having to tap individual markers, the navigation controls can be used to

move through the markers and change the active marker selection.

4. The active marker. This is the marker that was most recently tapped or that has

been navigated to with the navigation controls.

5. An inactive marker. Inactive markers are displayed in gray, while the active marker

is displayed in blue.

CHAPTER 8: Location-Based Services and Mobile Mapping 175

6. The zoom controls. These are provided by the Google Maps API for Android, as

Android does not support multitouch events in the web browser at present. If you

were to load the display on an iPhone, the zoom controls would not be displayed;

however, other devices with a similar single-touch limitation would be likely to

display the controls also.

No work will be required on our part to have these zoom controls display, but it is

important to remember that they are displayed at the base of the map, and thus that

part of the screen is accounted for.

NOTE: The preceding UI has been designed with fingers in mind. When designing a mobile UI, it
is important to remember that your users will not be using the pixel-accurate selection of a
mouse cursor. Rather, they will be using their fingers, which at their most accurate probably

have a contact surface of about 10 pixels. If, as in the preceding mapping interface, it is possible
that tappable elements will be in close proximity to one another (the markers in our case), think

about providing alternative UI mechanisms to avoid causing your users frustration.

Coding a Boilerplate Mobile Mapping UI
With a clear understanding of the application UI that we want to create, let’s now take a

look at the code that is required to pull the interface together.

First, here’s the HTML code that is required:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="mapapp.css" />
<script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="mapapp.js"></script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false">
</script>
<script type="text/javascript">
function initialize() {
 var latlng = new google.maps.LatLng(-34.397, 150.644);

 MAPAPP.init(latlng, 8);
 MAPAPP.addMarker(latlng, 'Test Marker', 'Some test content');
} // initialize
</script>
</head>
<body onload="initialize()">
<h1 class="simple floating">Mapping App Boilerplate</h1>
<div id="map_canvas" style="width:100%; height:100%"></div>
<div id="marker-nav">

 Test Text

</div>

http://maps.google.com/maps/api/js?sensor=false

CHAPTER 8: Location-Based Services and Mobile Mapping 176

<div id="marker-detail" class="child-screen">
 <div class='content'>Some Test Content</div>
 <button class='close'>Close</button>
</div>
</body>
</html>

The preceding HTML is simply a modified version of the HTML that we used before to

demonstrate a simple Google Maps interface. We have, however, moved the inline CSS

and JavaScript into separate files and wrapped the JavaScript in a module called

MAPAPP. This means the previous body of the initialize function is now largely

encapsulated within the MAPAPP.init function. In this case, the initialize function

simply initializes the map at the specified position (and zoom level) and then adds a

simple test marker.

To get the actual page displaying in a similar way to our mockup (Figure 8–8), we also

need to create a mapapp.css stylesheet that will contain our required CSS rules:

/* apply the standard css recommended in GMaps tutorial */
html {
 height: 100%
}

body {
 height: 100%;
 margin: 0px;
 padding: 0px;
 overflow: hidden;
 font-family: Arial;
}

#map_canvas {
 height: 100%
}

/* title styles */
h1.simple {
 font-size: 0.9em;
 padding: 8px 4px 4px 8px;
 background: #333333;
 color: #AAAAAA;
 border-bottom: 2px solid #AAAAAA;
 margin: 0 0 4px 0;
}

h1.floating {
 position: absolute;
 width: 100%;
 z-index: 100;
}

/* marker navigation bar */
#marker-nav {
 /* set general color and style */
 background: rgba(33, 69, 123, 0.8);
 color: white;

CHAPTER 8: Location-Based Services and Mobile Mapping 177

 font-weight: bold;
 text-shadow: 1px 1px 1px rgba(50, 50, 50, 0.85);
 text-align: center;

 /* initialize positioning and layout */
 position: absolute;
 top: 20px;
 z-index: 90;
 width: 90%;
 margin: 0 2%;
 padding: 18px 3% 10px;

 /* add the 'mandatory' border radius */
 border: 2px solid rgba(255, 255, 255, 0.2);
 -webkit-border-radius: 12px;
}

/* marker navigation elements styling */
#marker-nav img.left {
 float: left;
 -webkit-transform: rotate(180deg);
}

#marker-nav img.right {
 float: right;
}

#marker-nav img.disabled {
 opacity: 0.25;
}

#marker-nav span.has-detail {
 text-decoration: underline;
}

The preceding code can essentially be broken down into four sections:

1. First, we have the recommended core CSS from the basic Google Maps Hello

World tutorial. This code sets the containing elements and the map container to

fill the device screen. Note that additional CSS instruction has been added here

(overflow: hidden) to assist with displaying detail views later in the chapter. By

applying the overflow: hidden CSS, we can hide elements offscreen and not

have scrollbars show for the window.

2. Next, we provide some CSS that instructs an h1 header element with the class of

simple to be rendered using an absolute position and appear with the look and

feel of the simple header style that we defined back in Chapter 2. Note also that a

z-index CSS rule has been specified to instruct the h1 element to display above

the map. Without this instruction, the header would not be visible.

CHAPTER 8: Location-Based Services and Mobile Mapping 178

3. We then apply some look-and-feel styling for the #marker-nav element. Once

again, absolute positioning is used to ensure that the navigation bar plays nicely

with the Google map, which is set to occupy the entire screen. Note the use of

percentage positioning in the width, padding, and margin CSS rules. Using

percentages here provides the best possible chance of our mapapp template

working with varying screen sizes.

4. Finally, we have some CSS rules for displaying the navigation buttons and having

them align correctly inside the navigation menu. Additionally, here we see the

webkit-transform CSS3 rule being used (as in Chapter 6 for the loading spinner)

to enable us to reuse the same basic navigation arrow image but display it rotated

180 degrees.

All that is required to complete the display is to incorporate the very simple JavaScript

Google Maps display logic from earlier into its own file, mapapp.js, and wrap this using

the JavaScript module pattern so we can build a larger application on it.

MAPAPP = (function() {
 // initialize constants
 var DEFAULT_ZOOM = 8;

 // initialize variables
 var map = null,
 markers = [];

 function addMarker(position, title, content) {
 // create a new marker to and display it on the map
 var marker = new google.maps.Marker({
 position: position,
 map: map,
 title: title
 });

 // add the marker to the array of markers
 markers.push(marker);

 // capture touch click events for the created marker
 google.maps.event.addListener(marker, 'click', function() {
 // update the navbar title using jQuery
 $('#marker-nav .marker-title').html(marker.getTitle());
 });
 } // addMarker

 var module = {
 addMarker: addMarker,

 init: function(position, zoomLevel) {
 // define the required options
 var myOptions = {
 zoom: zoomLevel ? zoomLevel : DEFAULT_ZOOM,
 center: position,
 mapTypeControl: false,
 streetViewControl: false,
 mapTypeId: google.maps.MapTypeId.ROADMAP

CHAPTER 8: Location-Based Services and Mobile Mapping 179

 };

 // initialize the map
 map = new google.maps.Map(
 document.getElementById("map_canvas"),
 myOptions);
 }
 };

 return module;
})();

In the preceding code, we separate the previously combined functionality into two

functions: APPMAP.init and APPMAP.addMarker. This will give us an excellent base from

which to implement the extended functionality in the next section (adding multiple

markers and viewing marker detail).

With that last piece of the initial boilerplate code in place, an interface similar to the one

displayed in Figure 8–9 should be displayed. The only real difference between the

preceding JavaScript and the earlier samples is that this one uses jQuery to update the

navbar title with the title of the marker in response to the marker being clicked.

Figure 8–9. With everything going to plan, our actual layout will be displayed much like our mockup.

CHAPTER 8: Location-Based Services and Mobile Mapping 180

Implementing UI Navigation in the Boilerplate
With the interface laid out as required, we will now flesh out other parts of our

application interface. First, we will make some simple modifications to the HTML to

include a child view div that will provide us with the ability to select a marker, tap the

marker title, and get more information on that location.

The modifications to the mapapp.html are as follows:

<!DOCTYPE html>
<html>
...
<div id="marker-nav">

 Test Text

</div>
<div id="marker-detail" class="child-screen">
 <div class='content'>Some Test Content</div>
 <button class='close'>Close</button>
</div>
</body>
</html>

The marker-detail div is added just before the end of the body tag, and just after the

marker-nav div that we created earlier. Making these changes to the HTML will break

the map display, and the following additional CSS rules are required to bring everything

back to displaying correctly. Add the following CSS to the end of the mapapp.css file:

div.child-screen {
 background: rgba(255, 255, 255, 0.75);
 width: 100%;
 height: 100%;
 left: 100%;
 top: 0px;
 position: absolute;
 z-index: 91;
}

div.child-screen .content {
 margin: 50px 10px 0;
}

div.child-screen button.close {
 height: 30px;
 position: absolute;
 bottom: 10px;
 left: 10px;
 right: 10px;
 display: block;
}

Notice that the CSS rules specify that a div of class child-screen will be displayed with

absolute positioning and have a height and width of 100%. This means that these div
elements, like the map, will take up the entire screen when displayed. What stops this

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Location-Based Services and Mobile Mapping 181

screen from displaying when the HTML is first rendered is the absolute left position

specified at 100% (shown in bold).

This works in conjunction with the overflow: hidden CSS from the previous code to

hide the div off the right side of the map until we need it.

When we require the child-screen div to display, we dynamically set the left position of

the div to 0px. In terms of visual styling, we apply a background fill using the rgba CSS

function to display a slightly transparent white background. This provides a nice visual

effect, in which the map is still slightly visible under the child screen that has been

activated. The z-index of 91 places it above the HTML elements on the map screen, but

beneath the h1 title.

Finally, make the following modifications to the mapapp.js file to properly activate the

navigation flow:

MAPAPP = (function() {
 // initialize constants
 var DEFAULT_ZOOM = 8;

 // initialize variables
 var map = null,
 mainScreen = true,
 markers = [],
 markerContent = {};

 ...

 function activateMarker(marker) {
 // update the navbar title using jQuery
 $('#marker-nav .marker-title')
 .html(marker.getTitle())
 .removeClass('has-detail')
 .unbind('click');

 // if content has been provided, then add the has-detail
 // class to adjust the display to be "link-like" and
 // attach the click event handler
 var content = markerContent[marker.getTitle()];
 if (content) {
 $('#marker-nav .marker-title')
 .addClass('has-detail')
 .click(function() {
 $('#marker-detail .content').html(content);
 showScreen('marker-detail');
 });
 } // if
 } // activateMarker

 function addMarker(position, title, content) {
 // create a new marker to and display it on the map
 var marker = new google.maps.Marker({
 position: position,
 map: map,
 title: title
 });

CHAPTER 8: Location-Based Services and Mobile Mapping 182

 // save the marker content
 markerContent[title] = content;

 // add the marker to the array of markers
 markers.push(marker);

 // if the first marker, activate automatically
 if (markers.length === 1) {
 activateMarker(marker, content);
 } // if

 // capture touch click events for the created marker
 google.maps.event.addListener(marker, 'click', function() {
 // activate the clicked marker
 activateMarker(marker);
 });
 } // addMarker

 function initScreen() {
 // watch for location hash changes
 setInterval(watchHash, 10);

 // next attach a click handler to all close buttons
 $('button.close').click(showScreen);
 } // initScreen

 function showScreen(screenId) {
 mainScreen = typeof screenId !== 'string';
 if (typeof screenId === 'string') {
 $('#' + screenId).css('left', '0px');

 // update the location hash to marker detail
 window.location.hash = screenId;
 }
 else {
 $('div.child-screen').css('left', '100%');
 window.location.hash = '';
 } // if..else

 scrollTo(0, 1);
 } // showScreen

 function watchHash() {
 // this function monitors the location hash for a reset to empty
 if ((! mainScreen) && (window.location.hash === '')) {
 showScreen();
 } // if
 } // watchHash

 var module = {
 addMarker: addMarker,

 init: function(position, zoomLevel) {
 ...

 // initialize the screen

CHAPTER 8: Location-Based Services and Mobile Mapping 183

 initScreen();
 }
 };

 return module;
})();

In the preceding code, the showScreen function does most of the legwork. When it is

passed a string parameter (which it checks for using the JavaScript typeof operator), it

uses jQuery to bring that HTML element into view by adjusting its left position. This

works in conjunction with the previously defined CSS to bring in and hide separate

views in the main application viewing area. To the end user, this provides a similar

experience to what we coded in the earlier to-do list application. In this case, however,

we are using absolute positioning based on the presence and requirements of the map

component.

Another notable part of the code is the watchHash function, which is called at regular

intervals (courtesy of the JavaScript setInterval function). The purpose of the function

is to monitor the window.location.hash property and keep the application UI in sync.

This means that the user will be able to use the back button on the browser, in addition

to the Close button, which is placed in a child view to navigate back to the main screen.

Finally, we update the addMarker function to save the marker content into the

markerContent object for each of the marker titles, and also call a new function

(activateMarker) when a marker is clicked—rather than simply updating the title. At first

glance, the activateMarker code may appear a little complicated, but it’s reasonably

simple once you break it down:

1. First, HTML elements with the marker-title class are updated with the title of the

marker (retrieved using the marker.getTitle method). At the same time, the has-
detail class is removed, and we unbind the click event handler, as the marker

may not actually have any content and therefore no detail screen. The has-detail

class was defined in the previous section’s boilerplate CSS to simply show an

underline under the text, thereby simulating a link.

2. Second, if the marker has content associated, then we add the has-detail class

and bind a click handler to the marker title. Now, when the user clicks the marker

title, they will be taken to the marker-detail screen and shown the HTML content

that was specified for the marker.

With these modifications complete, we will be able to navigate to our placeholder child

view by clicking the marker title that will be displayed underlined in the navigation bar.

Figure 8–10 illustrates this.

CHAPTER 8: Location-Based Services and Mobile Mapping 184

NOTE: You might be wondering why we are reimplementing functionality that we have already
covered in our previous to-do list application. This is because the navigation code we
implemented as part of our to-do list application doesn’t work well with the recommended

Google Maps layout. Rather than attempt to retrofit the code to suit the Google Maps code, it was
a simpler exercise to create a separate mapping application boilerplate.

As mentioned earlier in the book, the mobile web app space is crying out for a mature, mobile

JavaScript framework that will take care of some of the grunt work that is involved with writing a
mobile web app.

There are already some good contenders out there, but Android and other mobile device support

isn’t very extensive yet. My money is definitely on jQuery Mobile in the long run. This will

hopefully be released shortly before this book, but not at the time of writing unfortunately.

Figure 8–10. We are now able to navigate to a subscreen by clicking the marker title in the nav bar.

Selecting Markers with the Navigation Bar
In this next section, we will populate the mapping display with a number of markers, and

look at tweaking the boilerplate mapping app code to allow us to select between

markers using the navigation bar in addition to tapping the map.

CHAPTER 8: Location-Based Services and Mobile Mapping 185

Setting Up the Markers and Showing Custom Icons
This will require us to add a few additional markers to the test boilerplate HTML code

(mapapp.html) to ensure that the functionality works, so let’s do that now. Replace the

contents of the initialize function in the page with the following script:

function initialize() {
 var latlng = new google.maps.LatLng(-33.866, 151.209);

 MAPAPP.init(latlng, 13);
 MAPAPP.addMarker(latlng, 'Sydney', 'Sydney Australia');
 MAPAPP.addMarker(new google.maps.LatLng(-33.859, 151.209), 'The Rocks');
 MAPAPP.addMarker(new google.maps.LatLng(-33.857, 151.215), 'Sydney Opera House');
 MAPAPP.addMarker(new google.maps.LatLng(-33.861, 151.211), 'Circular Quay');
} // initialize

This will add a total of four markers to the display. Without adding any additional code,

this will create a display similar to the one shown in Figure 8–11.

Figure 8–11. Four markers are displayed, two of which are in close proximity.

It’s now time to implement some icons for the markers rather than using the default

indicators. This will allow us to use two separate icons and indicate to the user which of

the markers is the currently selected marker. The two marker image files are pin-
active.png and pin-inactive.png, and these can be downloaded from the img directory

of the prowebapps-code repository (http://github.com/sidelab/prowebapps-code) on

GitHub.

http://github.com/sidelab/prowebapps-code

CHAPTER 8: Location-Based Services and Mobile Mapping 186

The following code shows the modifications that are required to the addMarker and

activateMarker functions to enable the use of a custom icon. When the first marker is

added, this marker is automatically activated.

function activateMarker(marker, content) {
 // iterate through the markers and set to the inactive image
 for (var ii = 0; ii < markers.length; ii++) {
 markers[ii].setIcon('../../img/pin-inactive.png');
 } // for

 // update the specified marker's icon to the active image
 marker.setIcon('../../img/pin-active.png');

 ...
} // activateMarker

function addMarker(position, title, content) {
 // create a new marker to and display it on the map
 var marker = new google.maps.Marker({
 position: position,
 map: map,
 title: title,
 icon: '../../img/pin-inactive.png'
 });

 // add the marker to the array of markers
 markers.push(marker);

 // if the first marker, activate automatically
 if (markers.length === 1) {
 activateMarker(marker, content);
 } // if
 ...
} // addMarker

With the preceding code modifications in place, it is now possible to distinguish

between the currently selected marker and inactive markers. We will now be able to

implement navigating through the markers in the next section. The map display should

appear as shown in Figure 8–12.

CHAPTER 8: Location-Based Services and Mobile Mapping 187

Figure 8–12. When the map is first displayed, the Sydney marker is active, but others can be selected by tapping.

Implementing the Tapless Marker Selection
Now that it is possible to distinguish between an active marker and an inactive one, it is

time to implement the navigation controls to allow us to navigate through the markers

without having to tap individual markers.

There isn’t too much to this next section, as it is just a matter of keeping track of the

activated marker’s position in the marker array and updating the navigation controls

accordingly. To do this, however, we will first need a utility function that will tell us a

marker’s position in the marker array. The following code defines a getMarkerIndex

function that should be included in the mapapp.js code just before the initScreen

function.

function getMarkerIndex(marker) {
 for (var ii = 0; ii < markers.length; ii++) {
 if (markers[ii] === marker) {
 return ii;
 } // if
 } // for

 return -1;
} // getMarkerIndex

We then implement an updateMarkerNav function that will update the navigation button

state. The ideal location for this function in the mapapp.js is just above the existing

watchHash function.

function updateMarkerNav(markerIndex) {

CHAPTER 8: Location-Based Services and Mobile Mapping 188

 // find the marker nav element
 var markerNav = $('#marker-nav');

 // reset the disabled state for the images and unbind click events
 markerNav.find('img')
 .addClass('disabled')
 .unbind('click');

 // if we have more markers at the end of the array, then update
 // the marker state
 if (markerIndex < markers.length - 1) {
 markerNav.find('img.right')
 .removeClass('disabled')
 .click(function() {
 activateMarker(markers[markerIndex + 1]);
 });
 } // if

 if (markerIndex > 0) {
 markerNav.find('img.left')
 .removeClass('disabled')
 .click(function() {
 activateMarker(markers[markerIndex - 1]);
 });
 } // if
} // updateMarkerNav

As per the earlier activateMarker function, the first thing the updateMarkerNav function

does is reset the navigation buttons to the default state: disabled and with no click event

handling.

Then, based on the value of markerIndex passed to the function, the navigation buttons

are selectively enabled and click events bound. This will allow users of the application to

navigate through markers without having to tap each one. We are not quite there yet,

though, as our present logic is a little flawed in the addMarker function. Figure 8–13

shows the display after adding the four markers.

CHAPTER 8: Location-Based Services and Mobile Mapping 189

Figure 8–13. Something isn’t right here—we have our four pins but no navigation button. What gives?

It turns out that navigation controls are displayed in response to the marker being

activated, and previously this was triggered when our marker was detected as the only

marker in the list. While this was fine before, we are now configuring UI elements based

on the number of markers, so this will have to be dealt with slightly differently.

While there are a number of ways that we could solve this particular problem, erring on

the side of simplicity is probably best. In this case, we can simply add another exported

function (called updateDisplay) to the MAPAPP module:

MAPAPP = (function() {
 ...

 var module = {
 ...

 updateDisplay: function() {
 // if we have at least one marker in the list, then
 // initialize the first marker
 if (markers.length > 0) {
 activateMarker(markers[0]);
 } // if
 }
 };

 return module;
})();

With this new function in place, we can then remove the following lines from the

addMarker function:

CHAPTER 8: Location-Based Services and Mobile Mapping 190

// if the first marker, activate automatically
if (markers.length === 1) {
 activateMarker(marker, content);
} // if

Finally, we add the MAPAPP.updateDisplay() call into the initialize function in

mapapp.html:

function initialize() {
 var latlng = new google.maps.LatLng(-33.866, 151.209);

 MAPAPP.init(latlng, 13);
 MAPAPP.addMarker(latlng, 'Sydney', 'Sydney Australia');
 MAPAPP.addMarker(new google.maps.LatLng(-33.859, 151.209), 'The Rocks');
 MAPAPP.addMarker(new google.maps.LatLng(-33.857, 151.215), 'Sydney Opera House');
 MAPAPP.addMarker(new google.maps.LatLng(-33.861, 151.211), 'Circular Quay');

 // update the map display
 MAPAPP.updateDisplay();
} // initialize

Now we have quite a functional set of boilerplate files that we can use to build a mobile

web-mapping application using Google Maps. However, before we move on to building

our geosocial app in the next chapter, there is one final tweak that should be made to

polish things up slightly.

Applying Sorting to Ensure Intuitive Marker Navigation
Presently, the order in which the markers are navigated is the order they were added to

the list. To someone using the app, this would likely appear fairly random and not very

intuitive. So, before we move on, let’s get those markers in some kind of logical sort

order—ideally top to bottom and left to right.

First of all, we will create a sortMarkers function that can take the markers and sort

them in order of northwestern-most position to southeastern-most position. Ideally, this

function should be just before the updateMarkerNav function, but this is not critical.

function sortMarkers() {
 // sort the markers from top to bottom, left to right
 // remembering that latitudes are less the further south we go
 markers.sort(function(markerA, markerB) {
 // get the position of marker A and the position of marker B
 var posA = markerA.getPosition(),
 posB = markerB.getPosition();

 var result = posB.lat() - posA.lat();
 if (result === 0) {
 result = posA.lng() - posB.lng();
 } // if

 return result;
 });
} // sortMarkers

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8: Location-Based Services and Mobile Mapping 191

The preceding code makes use of the built-in JavaScript sort function (see
(https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/sor
t). When using the sort function, you simply provide a comparison callback to the sort

function that takes two parameters.

This callback will then be executed with members of the array until the array is sorted

according to the required order. To affect this sort order, simply return a value less than

0 if item A should occur earlier in the list than item B, and a value greater than 0 if the

reverse is true. If the items are equivalent, simply return 0.

With the sort function complete, we just need to modify the MAPAPP.updateDisplay

function to incorporate the sorting:

MAPAPP = (function() {
 ...

 var module = {
 ...

 updateDisplay: function() {
 // get the first marker
 var firstMarker = markers.length > 0 ? markers[0] : null;

 // sort the markers
 sortMarkers();

 // if we have at least one marker in the list, then
 // initialize the first marker
 if (firstMarker) {
 activateMarker(firstMarker);
 } // if
 }
 };

 return module;
})();

Essentially, the function is modified to first save the first marker in the array (as this is

assumed to be the most important marker and should probably be the first selected)

and then sort the markers. If an initial marker is saved, then this marker is activated.

Figure 8–14 shows the display after implementing the sort code and modified

MAPAPP.updateDisplay function.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array/sort

CHAPTER 8: Location-Based Services and Mobile Mapping 192

Figure 8–14. The mapping interface after sort logic has been applied. Sydney is still activated, but is now the last
marker in the list based on its latitude and longitude.

This brings us to the end of the boilerplate mapping application code. Essentially, the

three files (mapapp.html, mapapp.css, and mapapp.js) can now be taken and used as a

template for a mapping application that uses the Google Maps API.

Summary
This chapter covered a lot of material in the areas of mapping and location-based

services. We looked at two different mapping APIs that are currently available, and

looked in some depth at how to create a web-mapping application that uses the Google

APIs and feels good in the Android browser.

Like most mobile web app development, this has involved being selective about the

tools that we used and applying some different usability principles than might be used

for building a desktop web application.

In the next chapter, we will take this boilerplate code and use it as the basis for our

geosocial app. In addition to working through parts of the application, you will also get

an introduction to PhoneGap as we wrap the web app in native code. By the end of the

build, we’ll have a product that can be deployed to the Android marketplace.

193

193

 Chapter

Native Bridging with
PhoneGap
In the previous chapter, we looked at working with mobile maps in preparation for

writing our geosocial game. In this chapter, we will have a look at PhoneGap

(http://phonegap.com) as a tool to assist us in deploying our web applications as native

apps. This will give us the ability to deploy our applications to the Android marketplace,

while letting us continue to build the core of the application using web technologies.

We will investigate some very good reasons that we might want to do this in the next

section. First, it will allow our geosocial game to give native applications a run for their

money, and it will make it difficult for consumers to distinguish between a native app

and a web application deployed as native.

Essentially, we are going to be learning how to have our cake and eat it too—which in

our opinion is always a good thing.

Introducing Bridging Frameworks
PhoneGap is a framework/tool for packaging a mobile web application for native

distribution. Additionally, frameworks like PhoneGap provide capabilities for pure web

applications to access functionality of the mobile device. This is achieved by the native

wrapper application providing a bridge to the web application, and in the case of

PhoneGap this is done using a JavaScript library (on the surface at least).

PhoneGap is just one of many bridging frameworks. While the term bridging framework

isn’t in wide usage at present, it does represent very well what they are designed to do.

At its core, PhoneGap is the purest of these frameworks, offering just the bare bones

required to access the native features, without making any suppositions about other

parts of your application build.

Another bridging framework that is well worth a look is a product from Rhomobile called

Rhodes (http://rhomobile.com/products/rhodes). Rhodes provides an application

9

http://phonegap.com
http://rhomobile.com/products/rhodes

CHAPTER 9: Native Bridging with PhoneGap 194

stack designed for building data-driven mobile web applications. If you are a user or fan

of Rails (http://rubyonrails.org), then you are likely to find a comfortable fit with

Rhodes.

One last framework that has gained quite a bit of attention (but wouldn’t actually class

as a bridging framework) is a product called Appcelerator Titanium

(www.appcelerator.com). The Appcelerator approach is quite different from both

PhoneGap and Rhodes. Rather than building an application that wraps a mobile web UI

with a simple native wrapper application, Appcelerator builds a native app from

JavaScript code. As more web-enabled mobile devices gain market share, this

approach may show some limitations; however, it is worth a look all the same.

In terms of where to start with all of these different options, PhoneGap is an excellent

choice—which is why we are using it in the book. There isn’t much that you can’t do

with PhoneGap, and you always have the choice of what you will mix and match with it.

Most other solutions won’t give you the same scope to explore.

When to Use PhoneGap
There are two basic situations that would justify the use of a bridging framework such as

PhoneGap:

 When a mobile web application that you are writing needs access to

device functionality not currently exposed through an implemented

web API. A good example is accessing either the accelerometer or the

camera.

 When you want to package the application for native distribution in the

Android marketplace (or equivalent device app store). With the various

mobile application stores being common places for people to look for

their applications, this is something always worth considering.

The second of these situations is probably the more common. One of the advantages of

developing using PhoneGap (instead of another bridging framework) is that, even if this

hasn’t been considered when first writing a mobile web app, it is very simple to package

an application with PhoneGap at a later stage.

Downloading PhoneGap
At the time of writing, the current stable release of PhoneGap is 0.9.3, which can be

downloaded by going to the following URL and obtaining the release archive:

www.phonegap.com/download.

Once you have downloaded the ZIP file, extract it and place it where you normally keep

your developer tools. The distribution contains a number of folders with template

projects designed to help you to build and deploy mobile applications for a variety of

platforms using PhoneGap. The files for Android are sensibly located in the Android

directory.

http://rubyonrails.org
http://www.appcelerator.com
http://www.phonegap.com/download

CHAPTER 9: Native Bridging with PhoneGap 195

 phonegap-0.9.3.jar: This is a Java archive containing the compiled

classes that are used to make PhoneGap function on Android. If you’re

interested in how pieces of PhoneGap work (and you’re comfortable

reading Java source code), then you can have a look at the phonegap-
android project on GitHub (http://github.com/phonegap/phonegap-
android). This is purely optional, though, as it is not required to build

applications using PhoneGap.

 phonegap-0.9.3.js: This is the JavaScript file that provides the

JavaScript stubs that manage the communication between the web

application and the native wrapper. We’ll take a look at some of the

functionality offered by this JavaScript library later in the chapter.

 Sample: This is a sample project directory. We will use it as a base for

creating our application using PhoneGap, and in the next section we’ll

look at the internals of the sample to gain an understanding of the

capabilities of the PhoneGap framework.

A Sample PhoneGap Application
Now that we’ve downloaded PhoneGap, let’s create a copy of the sample application

and get an understanding of what can be done using PhoneGap. In the directory that

you are using for the samples in this book, create a directory called bridges. Then copy

the Sample directory from the Android directory located within the PhoneGap download

to that new directory.

This will provide us with a skeleton PhoneGap native Android project in the

bridges/Sample folder. The directory structure for this skeleton project is displayed in

Figure 9–1.

http://github.com/phonegap/phonegap-android
http://github.com/phonegap/phonegap-android

CHAPTER 9: Native Bridging with PhoneGap 196

Figure 9–1. The Sample PhoneGap application folder has everything you need to get started.

While we won’t go into detail on all the various files and folders in our Sample directory,

as most pertain to the native wrapper application, there are some that deserve further

explanation:

 AndroidManifest.xml: This file is used by the native Android

application in a number of ways, including specifying what kind of

device permissions are required by the application and what classes

are used to run the application.

 assets/www/: This directory contains the HTML, CSS, and JavaScript

files that are included in the WebView of the PhoneGap native wrapper

(see
http://developer.android.com/reference/android/webkit/WebView.h
tml for more about WebViews). In particular, notice the phonegap.js

file here. This file needs to be included in your web pages to properly

access PhoneGap’s bridging functionality. We will look at this in more

detail soon.

 libs/phonegap-0.9.3.jar: This is the Java library that is used to build

the native application. Without it, your application won’t work (or

build).

http://developer.android.com/reference/android/webkit/WebView.h

CHAPTER 9: Native Bridging with PhoneGap 197

 res/: This directory contains the various resources that are used by

the native application. When it comes time to deploy your application,

you will need to replace icon.png files in a few places under this

directory so you aren’t using the default PhoneGap icon.

 src/*: This directory contains the application source files that are used

to create the native executable for the wrapper application.

 build.xml: For building the native wrapper application, the Android

SDK uses a Java build system called Ant to build projects from the

command line (see http://ant.apache.org). This build.xml file is

essentially an instruction file that tells the Java SDK how to build an

application.

That’s pretty much it. While the other files are important and required to build the native

wrapper, we really don’t need to know what they do—our primary concern is with the

web files that are embedded in the native app. Additionally, for the moment we will play

with the sample application as is, but will work through which of the files in the sample

application need to be changed when building an application of our own.

Building the Sample Application
Now that we have the sample application directory created, the next thing to do is work

out how to build and run the native application in the Android emulator.

NOTE: As mentioned previously, Ant is used by the Android SDK to build native applications. If
you don’t already have Ant installed on your system, then you will need to obtain and install it

before you can go further in this chapter. Instructions for installing Ant on various systems are

available at http://ant.apache.org/manual/install.html.

With Ant installed and available on your system path, in a terminal window or at

command prompt, change directory to the newly created sample directory, and execute

ant with no command-line parameters to see the list of valid build targets. Figure 9–2

shows output generated from running the command.

http://ant.apache.org
http://ant.apache.org/manual/install.html

CHAPTER 9: Native Bridging with PhoneGap 198

Figure 9–2. Attempting to build the sample project fails, as the path to the Android SDK is not yet known.

Hmmm, that can’t be right—we should have seen a more meaningful message than that.

While the sample project is quite complete in terms of everything required to create a

PhoneGap project, it doesn’t know the location of the Android SDK, and as a result the

Ant build fails. This can be rectified by using the android command-line tool (one of the

core tools in the Android SDK; it was introduced in Chapter 1) to generate a

local.properties file for the build.

Simply run the following from the command line, with the copied sample directory as the

current directory:

 android update project -p ./

This creates a local.properties file for the project that contains a single property,

sdk.dir. This tells Ant where it can find the Android SDK, and consequently the required

build tools to build the sample application.

Attempting to run Ant again once the local.properties file has been created will

generate output similar to that shown in Figure 9–3.

CHAPTER 9: Native Bridging with PhoneGap 199

Figure 9–3. Running Ant with no command-line options provides information on how to build, and also validates
that the build process is working correctly.

Now that Ant is configured and working correctly, we can build our app. While a number

of options are displayed, for the moment the following are of most interest:

 debug: The Ant debug target is used to build the application and sign it

with a debug key. Once the application is built with the debug key, it

can then be installed in the emulator (or a device configured for

development) and therefore run.

 install: The install target is used to copy the compiled executable

to the emulator or device.

 uninstall: Using the uninstall target in Ant will allow us to remove

the application from either the emulator or the device. This can be very

helpful, as removing an application from a device otherwise takes

quite a bit of mucking around.

Now it’s time to build the app. First, you will need an emulator or device connected for

the install target to be able to run successfully. Run the following command from the

command line to check that you have an emulator or device that the app can be

installed to successfully:

CHAPTER 9: Native Bridging with PhoneGap 200

adb devices

The adb command (which stands for Android Debug Bridge) is one of the tools installed

with the Android SDK. This particular command provides information on the Android

emulators and devices that are currently connected. Any Android device that is currently

connected can then be interfaced with using a variety of developer tools. For more

information regarding debugging Android web apps, see Appendix A.

If you have a valid emulator running, then you should see output similar to Figure 9–4. If

not, then you will need to start an emulator instance or attach an Android device via

USB.

Figure 9–4. If an emulator is running (or a device is attached), then it will be shown by running “adb devices.”

An emulator can be started by following the instructions outlined in Chapter 1.

Alternatively, you can run the following command:

emulator @android_web_apps

The emulator executable is used to start the Android emulator directly from the

command line. You specify which of the Android Virtual Device (AVD) images to use by

providing a single parameter that has the ID of the AVD image with an @ symbol

preceding it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Native Bridging with PhoneGap 201

TIP: While it is not mandatory to include the ANDROID_SDK/tools directory in your system
path, it’s definitely worthwhile. Being able to access the adb and emulator commands without
having to specify a full path will definitely save a lot of time. If you haven’t already done so, then

we’d recommend you do that now.

Given that you now (if you didn’t already) have an Android emulator running or a device

connected, you can run the build process to create a native Android application from the

sample PhoneGap project and see how that looks.

Run the following from the command line, with the created sample directory as the

current directory:

ant debug install

This will instruct Ant to execute both the debug and install targets in the build.xml file. If

the build process completes successfully, you will see the magic words “BUILD

SUCCESSFUL” (see Figure 9–5), and at this point you should be able to locate and run

the sample PhoneGap application in your emulator.

Figure 9–5. Successful completion of the build and installation of the PhoneGap wrapper application

CHAPTER 9: Native Bridging with PhoneGap 202

If you see a message saying “BUILD FAILED,” then unfortunately something has not

gone to plan. In most cases, this will be related to the build process not being able to

deploy the sample application to the emulator or device. Retrace your steps and

recheck the output of the adb devices command; you need to see a device listed in the

output of this command, and its status should be shown as “device.” If the emulator is

running but it is either not listed or is marked as “offline,” then close and restart the

emulator and try again.

Once the application is installed, you will be able to run the application. Note that this

does not happen automatically; rather, you need to locate and launch the app as you

would any other Android application. Figure 9–6 shows an example of the sample

application successfully installed.

Figure 9–6. If the build process has gone to plan, the sample application will be shown in the application menu.

CHAPTER 9: Native Bridging with PhoneGap 203

NOTE: With the release of the Android 2.3 SDK (Gingerbread) in early December 2010, a bug was
introduced that prevents PhoneGap applications executing for this version of Android (previous
versions are unaffected). At the time of writing, this bug is being monitored in the Android issue

tracker at the following URL:
http://code.google.com/p/android/issues/detail?id=12987.

If you are looking to build and release an Android web application that ships natively using

PhoneGap, then this is a very important issue to keep track of. Unfortunately, there is no way of
working around this particular bug if deploying your web app with a native wrapper is a priority
for you, so we would recommend starring the issue in the issue tracker if it is not resolved by the

time you read this chapter.

Let’s now have a look at the application. Figure 9–7 shows a screen capture of the

sample PhoneGap application.

Figure 9–7. The PhoneGap sample application is running. I wonder what those buttons do?

With the application now running, we will dive in and have a look at some of the code

behind the sample. This will give you an understanding of the kinds of things that you

can do using PhoneGap that aren’t possible in a standalone web application.

http://code.google.com/p/android/issues/detail?id=12987

CHAPTER 9: Native Bridging with PhoneGap 204

NOTE: Investigating and working with the PhoneGap sample application is best done if you
actually have an Android device. This is because the sample works with device-level features (as
you would expect) and the behavior of these is pretty limited in the emulator.

You will still be able to look at the code using the emulator, and we will look at alternative ways
to monitor the device-level communication, but nothing beats holding your Android phone and

having device-level features working from a web application.

Investigating the Sample Application
While dissecting the entire sample is probably overkill, it’s worth having a look at the

way PhoneGap does a few things. First, we will have a look at how PhoneGap

communicates with the device’s accelerometer.

Accelerometer Data Capture
As discussed in Chapter 1, PhoneGap provides support for bridging to a number of the

device sensors. The accelerometer is one of the more interesting sensors, as it can be

used to create some fairly novel interactions for games and other interactive

applications.

The code generated in the PhoneGap sample application for monitoring the

accelerometer is shown here:

var accelerationWatch = false;

var toggleAccel = function() {
 if (accelerationWatch) {
 navigator.accelerometer.clearWatch(accelerationWatch);
 updateAcceleration({
 x : "",
 y : "",
 z : ""
 });
 accelerationWatch = false;
 } else {
 accelerationWatch = true;
 var options = new Object();
 options.frequency = 1000;
 accelerationWatch = navigator.accelerometer.watchAcceleration(
 updateAcceleration, function(ex) {
 navigator.accelerometer.clearWatch(accel_watch_id);
 alert("accel fail (" + ex.name + ": " + ex.message + ")");
 }, options);
 }
};

function updateAcceleration(a) {
 document.getElementById('x').innerHTML = roundNumber(a.x);

CHAPTER 9: Native Bridging with PhoneGap 205

 document.getElementById('y').innerHTML = roundNumber(a.y);
 document.getElementById('z').innerHTML = roundNumber(a.z);
}

The preceding code defines a function called toggleAccel, which is called in the onclick

event of the Toggle Accelerometer button (shown in Figure 9–7). As you can see, the

code is reasonably trivial, and data is retrieved from the accelerometer by the JavaScript

code making a call to the accelerometer.watchAcceleration method, which has been

attached to the global navigator object.

The method takes three parameters:

 The first parameter is for a success callback; it is called when an

accelerometer reading has been obtained from the device. When

executed, the callback function is passed a single object parameter

that has values in the x, y, and z attributes. In the sample application,

these values are simply updated on the display via the

updateAcceleration function.

 The second parameter is for a failure callback, and this is triggered if

PhoneGap receives an error while attempting to obtain accelerometer

data.

 The third and final parameter specifies options that can be used to

influence the retrieval of the accelerometer data. In the sample

application, we can see that the frequency of reporting data is set to

1000 milliseconds through the frequency option.

We can also see that, if we call the toggleAccel function a second time (when the

accelerometer is being monitored), monitoring the accelerometer is cancelled via the

accelerometer.clearWatch function.

Camera and Photo Library
Another useful bridging feature of PhoneGap is the ability to grab a photo from the

device. Photos can be imported into the application either from the camera directly or

from the user’s photo library on the device. The code snippet in the PhoneGap sample is

shown here:

function show_pic() {
 var viewport = document.getElementById('viewport');
 viewport.style.display = "";
 navigator.camera.getPicture(dump_pic, fail, { quality: 50 });
}

function dump_pic(data) {
 var viewport = document.getElementById('viewport');
 console.log(data);
 viewport.style.display = "";
 viewport.style.position = "absolute";
 viewport.style.top = "10px";
 viewport.style.left = "10px";
 document.getElementById("test_img").src = "data:image/jpeg;base64," + data;

CHAPTER 9: Native Bridging with PhoneGap 206

}

function fail(fail) {
 alert(fail);
}

The show_pic function in the preceding code is called when the Get Picture button

(shown in Figure 9–8) in the sample interface is clicked. To view this button in the

emulator or standard DPI device, you will need to scroll down the page.

Figure 9–8. Scroll down the sample interface to reveal the extra demo buttons.

Using PhoneGap to retrieve a picture involves calling the camera.getPicture method,

which is once again attached to the navigator object. As you can probably see,

getPicture uses a method signature similar to watchAcceleration, which is used to

monitor the accelerometer:

 The first parameter takes a success callback, and this will be called in

the case that an image is back from the device.

 The second parameter takes a failure callback, which is called when

no image is returned. This includes the situation where the user

cancels taking the picture.

 The third and final parameter takes options that affect the behavior of

the getPicture method. There are three different named options that

can be specified for the options object:

CHAPTER 9: Native Bridging with PhoneGap 207

 quality (default: 80): A numeric value in the range of 1 to 100

that specifies the quality of the image that should be returned.

While you may be thinking that you should just set the image

quality to 100 so you get the very best image, images with

quality values above 90 or so can get large very quickly. It is

recommended that the default setting be used.

 destinationType (default: DATA_URL): An enumerated value for

how the image data should be returned. The two valid JavaScript

values that can be specified for this option are

Camera.DestinationType.DATA_URL and

Camera.DestinationType.FILE_URI. (A comparison between data

URLs and file URIs [uniform resource identifiers] can be found in

the following note.)

 sourceType (default: CAMERA): For Android, this can be specified

as one of two values. One is Camera.Picturesourcetype.CAMERA,
which specifies retrieving a new image from the camera, and the

other is Camera.PictureSourceType.PHOTOLIBRARY, which

specifies retrieving an image from the photo library on the

device.

With that in mind, if we wanted to retrieve an image from our Android device’s photo

library rather than the camera, and then wanted to return the file URI for the selected

image, the following code would do the trick:

navigator.camera.getPicture(successHandler, failureHandler, {
 quality: 50,
 destinationType: Camera.DestinationType.FILE_URI,
 sourceType: Camera.PictureSourceType.PHOTOLIBRARY
 });

The result of calling the preceding code would yield a display similar to that shown in

Figure 9–9.

CHAPTER 9: Native Bridging with PhoneGap 208

Figure 9–9. PhoneGap can be used to retrieve photos from the photo library as well as the camera.

NOTE: Previously, we made reference to the use of data and file URIs. Typically, images in HTML
are loaded from either a file or an HTTP URI string—for example,

file://resources/test.jpg and http://test.com/test.jpg are examples of a file
and an HTTP URI, respectively. While these are the most common ways to load an image (or
other resources) into an HTML document, they are not the only way to do so.

Data URIs offer an alternative to referencing an external resource, and are able to encapsulate
the actual data that should be displayed. Data URIs can be particularly useful when developing
mobile web apps, as resource data can be included within HTML or CSS, or even copied to local

storage for caching purposes. This in turn reduces the number of remote requests that need to
be made to display a page, which can go a long way toward speeding up a mobile web
application.

For more information on the data URI format, the Mozilla Developer Center offers a nice

explanation (see https://developer.mozilla.org/en/The_data_URL_scheme).

file://resources/test.jpg
http://test.com/test.jpg
https://developer.mozilla.org/en/The_data_URL_scheme

CHAPTER 9: Native Bridging with PhoneGap 209

Notification Events
The last example from the PhoneGap sample project that we will work through involves

how it exposes functions that allow you to make the phone beep or vibrate. It’s

reasonably trivial, and the code to make it work is and nice and simple too. Let’s take a

look:

var beep = function(){
 navigator.notification.beep(2);
}

var vibrate = function(){
 navigator.notification.vibrate(0);
}

Hooray for simplicity! In the preceding code, PhoneGap attaches a notification object

to the global navigator object, and this provides a number of methods. The two that we

are accessing here are beep and vibrate.

The beep method takes a single parameter that specifies the number of times that we

would like the phone to beep. The vibrate method also takes a single parameter;

however, in this instance we are specifying the length of time (in milliseconds) that we

would like to phone to vibrate for. While this example is quite trivial, we should not

discount the usefulness of being able to perform these kinds of operations using the

device. When coupled with the ability to track a user’s position and run applications in

the background, there are some pretty useful things that we can implement in our

applications—especially if we happen to be writing a geosocial game. We will start to

look at our game in the next chapter.

A Simple PhoneGap Mapping App
In the last chapter, we worked through a number of examples involving mapping. Let’s

now look at how we take our final sample from the chapter and embed that in a

PhoneGap native wrapper.

As we already have a sample project that has been configured to build correctly, let’s

copy that directory and create a new project called MapTest.

Tweaking the Sample PhoneGap Project
While the sample project does provide us all the basic building blocks that we need to

build our application, there are some things we need to do if we want to actually build a

production application on it.

Ideally, this would involve all references to “Sample” being replaced with something more

meaningful. This is actually a little trickier than you might expect, but, if you have worked

with native Android applications in the past, you should be comfortable with the process.

If you haven’t, don’t worry—we’ll walk you through what is required step by step.

CHAPTER 9: Native Bridging with PhoneGap 210

First, we need to change the name of the native executable that is created during the

build process. This is done using the android command-line tools—it’s similar to what

we did earlier when generating our local.properties file. Run the following command

from the maptest directory:

android update project -n maptest -p ./

Running this command should produce output similar to that displayed in Figure 9–10.

Figure 9–10. Renaming the sample project to “maptest” is done using the android command-line tool.

This will update build.xml, and means that our application will now be built as maptest-
debug.apk instead of sample-debug.apk when built in debug mode (ant debug). All other

references to “Sample” remain intact, though, so we need to continue on our mission.

Next up is updating the application title to “MapTest.” Making this change means that

our application will be shown on the device with the title of “MapTest” in the application

menu, rather than “Sample.”

To make this change, locate the strings.xml file in the res/values directory in your

MapTest project, and then modify the reference of “Sample” to “MapTest.”

The following is what the file should look like after you have made your changes, with

the bold text highlighting the change:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9: Native Bridging with PhoneGap 211

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MapTest</string>
 <string name="go">Snap</string>
</resources>

At this point, you should be able to build and install the application to the emulator and

have it show up as “MapTest” rather than “Sample.” So let’s try that now. As we did

earlier when we were working with the sample application, we’ll use Ant to build and

install the application to the emulator or device:

ant debug install

If you have completed the previous steps successfully, you should be able to see a

MapTest application now installed in the emulator. An example screen capture is shown

in Figure 9–11.

Figure 9–11. After making some simple updates, our MapTest application is visible in the emulator—but we
aren’t finished yet.

Tidying Up: Renaming Classes
We could now quite happily carry on and embed our mapping application into the

PhoneGap application without making further changes. Given that we are going to be

building applications that we want to deploy to the Android marketplace, it’s probably

worth looking at what is needed to remove additional references to “Sample” from the

PhoneGap sample project.

CHAPTER 9: Native Bridging with PhoneGap 212

There aren’t too many places we have to do this, but it’s worth pointing out that this is a

little more complicated than what we did in our previous steps. So, if you would prefer to

tackle this once you are actually building a production application instead, you are quite

welcome to do so.

First, we need to change the class com.phonegap.Sample.Sample to something that

makes sense for our application. Depending on the tools you are using, this process can

be as simple as pressing a Refactor button and letting the IDE work it out. However, as

we are building web apps and our primary tool is a text editor, we will need to make the

change in a few more places. So let’s begin:

1. Update the com/phonegap/Sample directory structure to match something more in

line with what we are building. Something like com/prowebapps/maptest is a good

choice.

2. Next, rename the sample.java file MapTest.java, as this better represents the

application we are building.

3. Finally, you will need to update the contents of the Java file, and change the

com.phonegap.sample and sample references to com.prowebapps.maptest and

MapTest, respectively.

The following is a sample of what the MapTest.java file might look like after you have

completed the necessary changes:

package com.prowebapps.maptest;

import android.app.Activity;
import android.os.Bundle;
import com.phonegap.*;

public class MapTest extends DroidGap
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 super.loadUrl("file:///android_asset/www/index.html");
 }
}

Once the Java source file has been modified, we are halfway there. Now we just need to

update the AndroidManifest.xml file in the project root directory to reflect the changes

we have made. Once again, this involves modifying the com.phonegap.Sample reference

to com.prowebapps.maptest and the Sample reference to MapTest.

The following is an example of what the AndroidManifest.xml file would look like after

the changes. Once again, the modified sections are marked in bold.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.prowebapps.maptest" android:versionName="1.1"
android:versionCode="1">
 <supports-screens

file:///android_asset/www/index.html
http://schemas.android.com/apk/res/android

CHAPTER 9: Native Bridging with PhoneGap 213

 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:resizeable="true"
 android:anyDensity="true"
 />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.VIBRATE" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
 <uses-permission android:name="android.permission.READ_PHONE_STATE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
 <uses-permission android:name="android.permission.RECORD_AUDIO" />
 <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application android:icon="@drawable/icon" android:label="@string/app_name"
 android:debuggable="true">
 <activity android:name=".MapTest"
 android:label="@string/app_name"
android:configChanges="orientation|keyboardHidden">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="2" />
</manifest>

That should do it. To make sure you haven’t made any typos, rebuild the application and

attempt to run it in the emulator. If you made an error somewhere along the way, then a

screen like Figure 9–12 will be displayed.

CHAPTER 9: Native Bridging with PhoneGap 214

Figure 9–12. Typos can occur while renaming classes in the sample project, resulting in application crashes.

If you do see an error while trying to load your application, then double-check that the

activity name in the AndroidManifest.xml file matches the name you gave to the main

application class, bearing in mind case-sensitivity.

This brings us to the point where things are structured correctly for building our test

mapping application. When deploying a production application, there are still a few

additional things to cover (such as updating the application icon to something other than

the default), but we will cover those in Chapter 11.

For now, let’s continue to focus on getting some existing HTML code into our PhoneGap

wrapper.

Transferring Existing Code into a PhoneGap App
In the last chapter, we put a fair bit of effort into our boilerplate mapping application, so

we will use those files in the new MapTest project as well.

We will work through the process of embedding the application step by step here:

1. Copy the mapapp.html, mapapp.css, and mapapp.js files from the snippets

directory into the assets/www folder of our new MapTest project.

2. Copy the entire img directory that accompanies the mapapp.html file to the

assets/www folder also. This will result in the four images being stored in the

assets/www/img directory.

s

CHAPTER 9: Native Bridging with PhoneGap 215

3. Copy jquery-1.4.2.min.js from the shared js library of our sample code into the

assets/www folder also.

4. Delete the existing index.html and master.css files from the assets/www folder,

but leave phonegap.js, as it will be required to enable the bridging calls.

5. Rename the mapapp.html file to index.html so it becomes the file that is opened

with the native application is launched. At this point, the folder structure of the

assets/www folder should look like Figure 9–13. If your folder structure matches,

then continue on and make the modifications to the index.html file to reference

the updated file locations. These are outlined in the final two steps.

NOTE: While we have been very good at referencing and reusing libraries such as jQuery from a
central location for the examples in the book so far, once we start working with a PhoneGap
project, we aren’t able to do that anymore.

We will instead have to copy these shared resources into the assets/www folder; otherwise,

they will not be transferred as part of the native bundle. When working with larger projects, we
would additionally recommend implementing some kind of build script to handle transferring the
required resources into your bridge application. This will make it simpler to work on a central

code base that is able to be deployed directly to the Web and also through native wrappers like
PhoneGap.

For more information on build tools, we recommend looking at Apache Ant

(http://ant.apache.org) given the Android platform is Java based; however, if you are

looking for build alternatives, then Rake (www.rubyrake.org) is also worth a look.

http://ant.apache.org
http://www.rubyrake.org

CHAPTER 9: Native Bridging with PhoneGap 216

Figure 9–13. The structure of the assets/www folder in the MapTest PhoneGap project

6. Make some tweaks to the new index.html and mapapp.js files so that they

reference the files stored within the assets/www folder and nothing above that. The

only modification that is required is changing the path of the jQuery library to

reference the one stored in the assets/www folder instead of the shared location

we have been using.

7. Include phonegap.js in the main HTML file so we can use the bridging functions

provided by PhoneGap.

The modifications to the updated index.html file (previously mapapp.html) are shown

here:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="mapapp.css" />
<script type="text/javascript" src="jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="mapapp.js"></script>
<script type="text/javascript" src="phonegap.js"></script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false">
</script>
<script type="text/javascript">
function initialize() {

http://maps.google.com/maps/api/js?sensor=false

CHAPTER 9: Native Bridging with PhoneGap 217

 var latlng = new google.maps.LatLng(-33.866, 151.209);

 MAPAPP.init(latlng, 13);
 MAPAPP.addMarker(latlng, 'Sydney', 'Sydney Australia');
 MAPAPP.addMarker(new google.maps.LatLng(-33.859, 151.209), 'The Rocks');
 MAPAPP.addMarker(new google.maps.LatLng(-33.857, 151.215), 'Sydney Opera House');
 MAPAPP.addMarker(new google.maps.LatLng(-33.861, 151.211), 'Circular Quay');

 // update the map display
 MAPAPP.updateDisplay();
} // initialize
</script>
</head>
<body onload="initialize()">
<h1 class="simple floating">Mapping App Boilerplate</h1>
<div id="map_canvas" style="width:100%; height:100%"></div>
<div id="marker-nav">

 Test Text

</div>
<div id="marker-detail" class="child-screen">
 <div class='content'>Some Test Content</div>
 <button class='close'>Close</button>
</div>
</body>
</html>

As you can see, although we went through a number of steps to copy the files across,

only very simple changes are required to the HTML. Our web application is now all

wrapped up in PhoneGap and can be deployed as a native application. This is done by

once again building the application (using Ant) to redeploy the application to the

emulator.

A screen capture from the emulator running our native MapTest application is shown in

Figure 9–14.

CHAPTER 9: Native Bridging with PhoneGap 218

Figure 9–14. Our boilerplate mapping application wrapped up as a PhoneGap native application

If you get a different result and the map does not display as expected, then try running

the following command and look for possible JavaScript errors:

adb logcat

For instance, Figure 9–15 shows some example output when the jQuery JavaScript

included in the index.html file isn’t updated correctly.

CHAPTER 9: Native Bridging with PhoneGap 219

Figure 9–15. For locating JavaScript errors, adb logcat is invaluable.

As mentioned earlier, Appendix A contains more information on debugging Android web

apps (and JavaScript) in general, so, if things aren’t going to plan, it’s well worth a look.

Summary
In this chapter, we looked at PhoneGap and explored the capabilities it offers.

Additionally, we walked you through the changes that need to be made to correctly

structure the sample application provided with a PhoneGap release for distribution at a

later stage.

Finally, we took the boilerplate mapping application that we built in the previous chapter

and examined what was required to package that code in a PhoneGap wrapper.

In the next chapter, we will start putting together the building blocks that we have

worked through in the previous two chapters, and actually get into putting some code

together for our geosocial game, Moundz.

221

221

 Chapter

Integrating with Social
APIs
Now that we’ve put many of the foundations in place, we can start putting together our

geosocial game application. In this chapter, we’ll build a game called Moundz. Moundz

is a geosocial game that piggybacks off existing geosocial networks such as Foursquare

and Gowalla. The general concept is that geosocial check-ins of people around the

world become resources. These resources are then collected and redeployed in a quest

for virtual world domination. In Moundz, players help to build ant mounds that become

their strongholds, from which they can launch an assault on enemy territory. Only the

strong and diligent will survive.

Interested? Well, let’s get started.

Connecting to Web APIs
One of the best things you can do as an application developer is consider what other

existing web applications you can hook into to service some of the needs of your app.

This will not only save a significant amount of development required to build your

application, but will likely provide you access to an established group of users that are

actively using another application.

For instance, in Moundz we are going to need some kind of geographically located

resources that people playing the game can “mine” to build their “bases.” Rather than

building our own database of locations, we are much better served by tapping into an

existing application that provides that kind of data already.

As it turns out, geosocial networks like Gowalla and Foursquare have exactly the kind of

information we need, and they both provide an API that exposes their data. Like most

things in life, though, it’s not quite that easy. The majority of APIs that have been built

usually offer integration via XML and sometimes JSON, but, when you are building an

application that is going to be “mashed up” at the client, you often need something

called JSONP support. The next section gives an overview as to why.

10

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10: Integrating with Social APIs 222

What Is JSONP?
Essentially, JSONP is a workaround to a problem we will look at throughout this section.

It involves a clever technique that web developers started using to get around what is

known as the same-origin policy (http://en.wikipedia.org/wiki/Same_origin_policy),

which is enforced in web browsers. With the same-origin policy in place, JavaScript

code running in a browser is prevented from making an XMLHttpRequest

(http://en.wikipedia.org/wiki/XMLHttpRequest) to a URL that is different from the

domain the script is running from. Therefore, if you attempt to access an application’s

API from a client-side script running on a separate domain, the browser will step in and

prevent it from happening.

To illustrate the problem, we will work through a small example. For example, consider

the following code, which accesses the public Twitter API (see http://dev.twitter.com

for more information) and displays the tweets on the page.

<html>
<script src="../../js/jquery-1.4.2.min.js"></script>
<script>
function showData(data) {
 var tweetItems = '';

 if (! data) {
 tweetItems = 'Could not retrieve tweets.';
 }
 else {
 for (var ii = 0; ii < data.length; ii++) {
 tweetItems += '' + data[ii].text + '';
 } // for
 }

 $('#tweets').html(tweetItems);
} // showData

$(document).ready(function() {
 // make the request to the geonames server
 $.ajax({
 url: 'http://api.twitter.com/1/statuses/public_timeline.json',
 dataType: 'json',
 success: showData
 });
});
</script>
<body>
 <ul id="tweets">

</body>
</html>

The sample itself is simple enough—we make a request to the endpoint for the Twitter

public timeline and then parse the response, filling the #tweets element with the tweets

retrieved.

http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/XMLHttpRequest
http://dev.twitter.com
http://api.twitter.com/1/statuses/public_timeline.json

CHAPTER 10: Integrating with Social APIs 223

Let’s run that now. So that you can easily look at what’s going on in the background, we

recommend working through this sample in your desktop browser. (We will be using

Chrome.) Figure 10–1 shows the output generated from attempting to access the Twitter

API using JSON from our local web server.

Figure 10–1. Attempting to access the Twitter JSON API from our local web server yields no results.

Unfortunately, Figure 10–1 really doesn’t give us much idea as to what is going on—

except for the fact that our error-handling code is working correctly. So it’s time to dig in

a little. For this sample, we will be using the WebKit Inspector (see Appendix A for more

details on debugging tools) to have a look behind the scenes. If you are using Chrome,

try looking in the View Developer menu for the developer tools. Other browsers offer

similar tools, so feel free to use your preferred toolset here.

Figure 10–2 shows the network view from the Chrome developer tools.

CHAPTER 10: Integrating with Social APIs 224

Figure 10–2. The network view of the Chrome developer tools shows us where the problem exists.

The network view in the developer tools confirms that the browser has indeed blocked

the cross-domain request in accordance with the same-origin policy.

This is where a JSONP workaround comes into play. JSONP works within the bounds of

the same-origin policy, using rules that permit script includes from other domains. So,

whereas a standard JSON request occurs via the XMLHttpRequest mechanism, a

JSONP request is inserted and run as a script tag. This may sound a little confusing

and take some time to get your head around if you haven’t come across JSONP before.

Well, let’s update our Twitter sample to use JSONP and see if we can gain an

understanding of what’s going on.

<html>
<script src="../../js/jquery-1.4.2.min.js"></script>
<script>
function showData(data) {
 var tweetItems = '';

 if (! data) {
 tweetItems = 'Count not retrieve tweets.';
 }
 else {
 for (var ii = 0; ii < data.length; ii++) {
 tweetItems += '' + data[ii].text + '';
 } // for

CHAPTER 10: Integrating with Social APIs 225

 }

 $('#tweets').html(tweetItems);
} // showData

$(document).ready(function() {
 // make the request to the geonames server
 $.ajax({
 url: 'http://api.twitter.com/1/statuses/public_timeline.json',
 dataType: 'jsonp',
 success: showData
 });
});
</script>
<body>
 <ul id="tweets">

</body>
</html>

The preceding code shows the modification required to have our test application

communicate via JSONP rather than JSON. You can see here that jQuery does an

excellent job of abstracting the complexity of JSONP away from us behind its $.ajax

function. Figure 10–3 shows an example of the output generated by the modified sample.

Figure 10–3. Using JSONP, we can now retrieve the tweets of the world via the Twitter public timeline.

http://api.twitter.com/1/statuses/public_timeline.json

CHAPTER 10: Integrating with Social APIs 226

Now that we have looked at how simple it is to have jQuery issue a JSONP request for

us, let’s take a quick look at what is going on behind the scenes. To achieve this, we will

make a copy of our twitter-test.html file and replace the previous showData function

with the following code:

function showData(data) {
 var tweetItems = '';

 for (var ii = 0; ii < document.scripts.length; ii++) {
 var script = document.scripts[ii];

 if (script.src) {
 tweetItems += '' + script.src + '';
 } // if
 } // for

 $('#tweets').html(tweetItems);
} // showData

So, rather than outputting the text of the tweets to the HTML, we are now writing out the

source file location of any scripts that are currently included in the page. Figure 10–4

shows an example of what is displayed.

Figure 10–4. Scripts that have been included in an HTML page reveal something of the nature of JSONP.

CHAPTER 10: Integrating with Social APIs 227

Ah, there we go—our call to Twitter has been included as a separate script in our page,

but this doesn’t explain how we get the data back into our application. For that, we need

to dig a little further. Figure 10–5 shows an example of the output that Twitter is

generating when we call the script shown on this page.

Figure 10–5. Example output of the Twitter API when called using JSONP

Things are starting to make sense now—the included script passes data back through a

function call. However, this is not a function that we have defined, but rather a function

that has been created by jQuery with the specific purpose of receiving the data from the

JSONP call. Once the jQuery function has received the data, it simply passes that

information along to the callback that we provided when we made our $.ajax call.

NOTE: In general, you are probably better off using a JavaScript library such as jQuery to handle
your JSONP calls, given the steps that are involved in getting it working. While we have covered
some of what goes on behind the scenes here, it is far from an exhaustive list of the work that
needs to be done. For further information, the following blog post provides a lightweight script

that shows how JSONP works, and also provides an alternative to some of the more heavyweight
implementations in jQuery and the like:
www.nonobtrusive.com/2010/05/20/lightweight-jsonp-without-any-3rd-party-

libraries.

CHAPTER 10: Integrating with Social APIs 228

Dealing with APIs That Lack JSONP Support
In the instances where an API does not provide JSONP access, what are the options?

This is a pretty important question in our case, as at the time of writing neither Gowalla

nor Foursquare supports JSONP-style calls in its API.

We will briefly look at three different options that will provide us access to web services

that do not provide JSONP-style access.

Writing a Server-Side Proxy
Before JSONP became a popular option for writing client-side “mashups,” developers

would traditionally write their own set of web services that would proxy the remote

services. These web services would be deployed to the same domain that would serve

the application, and this would mean no calls violated the same-origin policy. The

implementation of such a solution will vary depending on the language you are working

with, and the implementation details are beyond the scope of this book, but there is a lot

of good information out there if this is something that you require.

Another alternative to writing your own server-side proxy, given that JSONP is now

available to you, is to use a third-party service to wrap web services that provide only a

JSON implementation with JSONP. A couple of good examples of this are the following:

 http://jsonpify.heroku.com

 http://jsonproxy.appspot.com

Both services have source code available and are hosted in cloud-hosting services, so

you can modify them to suit your own specific requirements.

Yahoo Query Language
Yahoo Query Language (YQL) is fantastic; there really aren’t enough nice things that can

be said about it. It is essentially a very robust and generic proxy that can be used to

request data from varying sources and return it in a standardized XML or JSON (with

JSONP support) format.

Interacting with YQL is done through the use of an SQL-like syntax, which is where the

QL part of the name comes from. Figure 10–6 shows a screenshot of the developer

console, which is one of the core tools of the YQL suite. The console can be found at

http://developer.yahoo.com/yql/console.

http://jsonpify.heroku.com
http://jsonproxy.appspot.com
http://developer.yahoo.com/yql/console

CHAPTER 10: Integrating with Social APIs 229

Figure 10–6. The developer console is a great place to begin to understand the possibilities of YQL.

One of the really nice things about YQL is its use of data tables. These data tables

provide YQL information on how to interact and obtain information from various services

around the Web. When you first load the YQL console, you will probably see around 160

data tables initially available, and these relate mostly to tables that interface with other

Yahoo! services. By accessing the community tables (which you can do by selecting the

Show Community Tables link on the right), you gain access to almost 1,000 different

tables that you can interact with, and both Foursquare and Gowalla tables are included

in this set.

In Foursquare’s case, the following is a YQL query that is designed to interact with its

venues API endpoint:

select *
from foursquare.venues
where geolat="33.7772869"
and geolong="-84.3976068"

In addition to running requests through the console, you can execute YQL through a set

of published web services. In each case, a REST query for the information is displayed

at the bottom of the console interface. This REST query can then be copied and pasted

into your own client-side JavaScript—for instance, directly into a jQuery ajax function

call. We won’t include a sample URL here, as these are fairly unreadable, since they

contain the escaped SQL statement as part of the query. It is fairly simple to recognize

CHAPTER 10: Integrating with Social APIs 230

an application using YQL though (using the developer tools of course), as it will be

routing requests through http://query.yahooapis.com/v1/public/.

While it would be great to go into more depth on YQL, we won’t be using it to solve our

current issue for accessing Foursquare or Gowalla (the reasons for this will be outlined

very soon), so that would be counterproductive. However, it is definitely worth a look

when you have the time, as it can definitely be extremely useful.

PhoneGap Native App
As strange as it may seem, using PhoneGap as a native wrapper actually provides you

some additional advantages beyond what we have been talking about so far. PhoneGap

accesses the HTML, CSS, and JS files for the mobile application using the file URI

scheme (http://en.wikipedia.org/wiki/File_URI_scheme) rather than HTTP (or

HTTPS). In doing this, PhoneGap actually circumvents most of the security restrictions

that are placed on web applications and pages that are loaded from a web server.

This is more of a side effect than a design feature, and it is not something that will be

available in all bridging frameworks. As such, it is recommended that you only use this

workaround when you are sure that you will be deploying your mobile web application

only via PhoneGap.

Introducing the Geominer API
In the previous section, we looked at a number of different strategies for dealing with an

API that doesn’t support JSONP requests. We now have to decide which one we want

to use. Before we do that, let’s consider our available tools and design goals for the

project:

 While the YQL solution is elegant, the preferred geosocial API is

Gowalla (given some excellent API features), and the current YQL

community datatables (www.datatables.org) for Gowalla don’t support

all of the Gowalla API features.

 In Moundz, we will be using Twitter for authenticating users rather than

writing our own login system. We will go into this process in more

detail soon, but for now let’s just say that, at the time of writing,

Twitter does a better job of offering mobile-friendly experiences

through its more established APIs. While it recently released a

JavaScript toolset called Twitter Anywhere

(http://dev.twitter.com/anywhere), login features are still very

desktop oriented.

 Our primary focus in this book is building Android web apps, which

means that, while using PhoneGap would be a suitable workaround,

the deployment of the app as a standalone web application would not

be an option. This is less than ideal.

http://query.yahooapis.com/v1/public/
http://en.wikipedia.org/wiki/File_URI_scheme
http://www.datatables.org
http://dev.twitter.com/anywhere

CHAPTER 10: Integrating with Social APIs 231

Based on these factors, it is probably best for us to implement our own server-side API

that will handle the interaction with other application APIs for us, and provide a single

JSONP-enabled API that both our mobile web application and others could deal with.

Figure 10–7 shows how this API provides some “middleware” for building our geosocial

game.

Figure 10–7. The Moundz API aggregates our multiple external APIs into a single interface.

Given that the title of this book is not Building API Mashups with Google App Engine, we

won’t be going into great depth about the work required on the server side. We will

instead be focusing on how to use the API to build our mobile application on the client

side.

Additionally, rather than build an API that is suited only to the needs of the Moundz

sample application, we will build the Geominer API as generically as possible. This way,

if you feel inspired to write an application similar to Moundz, you should be able to use

the information in these last few chapters of the book and the Geominer API to create

your own masterpiece.

For more information on the Geominer API and an inside look at the source code

showing how it was built, check out the source code on GitHub, at

http://github.com/sidelab/geominer.

Well, that’s enough talk—let’s write some code.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://github.com/sidelab/geominer

CHAPTER 10: Integrating with Social APIs 232

Locating Resources in Moundz
The first step to world domination in Moundz is collecting resources with which to start

to build your ant mound. Your mound is essentially your base, which you will build over

time, and you will need to mine resources from locations around your area and bring

them back to your base. This is where the geosocial network data comes in—it supplies

the base data that the Geominer API uses to feed the game data.

Essentially, the process is as follows:

1. Moundz requests resource data for resources near the current position from the

Geominer API.

2. Geominer passes the request to the Gowalla API and receives a list of Gowalla

“spots” back for the specified position. This includes the total number of check-

ins that have been made for each spot. If you are interested, have a look at the

Gowalla API Explorer (http://gowalla.com/api/explorer)—we are using the list

method of the spots endpoint.

3. Geominer then returns a subset of the information received from Gowalla, with a

value for resources available. This value is equal to the total number of check-ins

for the spot, less any resources already mined from that location since the game

started.

4. Moundz displays the information received.

With that in mind, let’s start putting the skeleton of the Moundz application together and

implement a Nearby Resources screen. We will base the general structure for the

Moundz application on our mapping application boilerplate, so let’s create a new

directory for Moundz and copy the boilerplate files there.

The simplest place to take a copy of the files from will be the directory that we were

working in when implementing our PhoneGap wrapper in the previous chapter. So, copy

the files from /bridges/maptest/assets/www to /moundz. Once you have done this, you

should have a directory structure that looks similar to Figure 10–8.

http://gowalla.com/api/explorer)%E2%80%94

CHAPTER 10: Integrating with Social APIs 233

Figure 10–8. We will use our work from Chapter 9 for the starting point of the Moundz app.

Then just a few tidy-ups are required before we can get into coding our game. First,

rename mapapp.js and mapapp.css to moundz.js and moundz.css, respectively.

Next, change the name of the MAPAPP module to MOUNDZ, as shown in the following code

sample:

MOUNDZ = (function() {
 ...

 var module = {
 ...
 };

 return module;
})();

And finally, make the following updates to the index.html file:

 Remove (or comment out) the script include for phonegap.js, but leave

the actual script there, as we will use it later when we bundle Moundz

as a native app for marketplace distribution.

 Replace references to mapapp.js and mapapp.css with the Moundz

equivalents.

 Replace references to MAPAPP with MOUNDZ.

CHAPTER 10: Integrating with Social APIs 234

Once those changes have been completed, your index.html file should appear similar to

the following sample. The lines that have been modified are shown in bold.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="moundz.css" />
<script type="text/javascript" src="jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="moundz.js"></script>
<!-- <script type="text/javascript" src="phonegap.js"></script> -->
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false">
</script>
<script type="text/javascript">
function initialize() {
 var latlng = new google.maps.LatLng(-33.866, 151.209);

 MOUNDZ.init(latlng, 13);
 MOUNDZ.updateDisplay();
} // initialize
</script>
</head>
<body onload="initialize()">
<h1 class="simple floating">Moundz</h1>
<div id="map_canvas" style="width:100%; height:100%"></div>
<div id="marker-nav">

 Test Text

</div>
<div id="marker-detail" class="child-screen">
 <div class='content'>Some Test Content</div>
 <button class='close'>Close</button>
</div>
</body>
</html>

With the application template complete, we are ready to start putting the elements of

our game together.

Finding Nearby Resources with the Geominer API
Again, the first step is gathering resources with which to build your base. As stated

previously, resources are actually geosocial network check-ins that have been collected

from either Foursquare or Gowalla (depending on the game).

To find nearby resources, we will use the Geominer API resources search in combination

with the Geolocation API that we looked at in Chapter 6. The Geominer resources

search follows the naming convention for all web services in the Geominer suite. The

following is the URL that we will be using for Moundz:

http://api.geominer.net/v1/moundz/resources.

http://maps.google.com/maps/api/js?sensor=false
http://api.geominer.net/v1/moundz/resources

CHAPTER 10: Integrating with Social APIs 235

Each web service in Geominer follows the basic format of

http://api.geominer.net/api-version/appid/webservice/method. The following list

describes the details:

 api-version relates to the version of the Geominer API that we are

using. We are using version 1, so this becomes v1.

 appid refers to the application that is currently accessing the Geominer

services. The Moundz application has been configured to use the

Moundz application ID, so this becomes moundz.

 webservice refers to the particular group of tools that we are using in

the Geominer toolbox. In this case, we are using the resources tools.

 method is used to indicate the particular operation that we are

executing with the tools that we are using. This particular section of

the call can be omitted if we want to access the default operation for

the webservice. In the case of the resources tools, this is a search

operation, which is what we wish to use, so this section can be

omitted.

We will now add some functionality to our MOUNDZ module to enable us to retrieve those

resources through the Geominer API:

MOUNDZ = (function() {
 // initialize constants
 var DEFAULT_ZOOM = 8,
 GEOMINER_MOUNDZ_URL = 'http://api.geominer.net/v1/moundz';

 ...

 function findResources(callback) {
 // get the map center position
 var center = map.getCenter();

 $.ajax({
 url: GEOMINER_MOUNDZ_URL + '/resources',
 dataType: 'jsonp',
 data: {
 lat: center.lat(),
 lng: center.lng()
 },
 success: function(data) {
 processResourceSearch(data);
 if (callback) {
 callback();
 } // if
 }
 });
 } // findResources

 ...

 var module = {

http://api.geominer.net/api-version/appid/webservice/method
http://api.geominer.net/v1/moundz

CHAPTER 10: Integrating with Social APIs 236

 addMarker: addMarker,
 clearMarkers: clearMarkers,

 findResources: findResources,

 ...
 };

 return module;
})();

The preceding code shows the modifications required. We are adding a findResources

function to our MOUNDZ module that will find resources based on the current map center

position. The majority of this function is a jQuery Ajax call using JSONP, as we used

earlier to access the Geonames data when first getting an understanding of JSONP.

When we receive successful results from Geominer, these are passed to the

processResourceSearch function. Let’s have a look at this function and its associated

code now.

function markResources(resourceType, deposits) {
 for (var ii = 0; ii < deposits.length; ii++) {
 // add the marker for the resource deposit
 addMarker(
 new google.maps.LatLng(deposits[ii].lat, deposits[ii].lng),
 deposits[ii].name,
 '<div class="resinfo">' + deposits[ii].total +
 ' resources at this location</div>');
 } // for
} // markResources

function processResourceSearch(data) {
 // clear any existing markers
 clearMarkers();

 // iterate through the resource types and pin
 for (var ii = 0; ii < data.resourceTypes.length; ii++) {
 var resType = data.resourceTypes[ii];

 // mark the resources
 markResources(resType.typeName, resType.deposits);
 } // for
} // processResourceSearch

The two functions in this code are included in the MOUNDZ module as internal functions.

As you saw in the findResources function, processResourceSearch is called when we

have received a successful response from the Geominer API. When this happens,

existing markers are first removed, and then new markers are added for each of the

different resource types that have been retrieved from the API.

In the case of Moundz, we have only one type of resource for the sake of simplicity, but

we have implemented a for loop here to enable us to support additional resource types

with relative ease if that is something that is desired at a later stage.

For each of the resource types, the markResources function is called to display markers

on the map as per the boilerplate mapping application that we explored in Chapter 8.

CHAPTER 10: Integrating with Social APIs 237

All we need to do now is to adjust the index.html file to make the call to the

findResources function of the MOUNDZ module when the page is loaded:

<script type="text/javascript">
function initialize() {
 var latlng = new google.maps.LatLng(-33.866, 151.209);

 MOUNDZ.init(latlng, 17);
 MOUNDZ.findResources(function() {
 MOUNDZ.updateDisplay();
 });
} // initialize
</script>

For the moment, we will leave out the location-detection part just to check that

everything operates correctly. This leaves us having to make only a very simple change

to our initialize function (shown in bold). Additionally, we increase the zoom level to

17 from 13, which is more appropriate given the results we will get back from Geominer

(courtesy of Gowalla in this initial case). Figure 10–9 shows an example of what we

should see if everything has gone according to plan.

Figure 10–9. For Moundz, the Geominer API returns a list of Gowalla spots near the center of the map.

As with our earlier work with the boilerplate mapping application, the resource locations

can be selected either by tapping a marker or by navigating using the left and right

navigation arrows. Additionally, more detail for that location can be displayed by tapping

the title of the location as before. At this stage, we have included some simple debug

information about the number of resources available. Figure 10–10 shows the example

debug information that we have included for the moment.

CHAPTER 10: Integrating with Social APIs 238

Figure 10–10. We will expand the resource information screen to include actions relating to the resource.

Using Geolocation to Track Your Position
Before we move on to including those extra features in the application, let’s make the

modifications required to have the application use our current location instead of the

static testing location that we have been using so far. Chapter 6 gave an introduction to

the Geolocation API and the getCurrentPosition method. However, for Moundz it would

be great if we could track the user’s location rather than just get the location in a single-

shot request.

This is actually very simple, and will involve replacing all of the code that we were using

in the index.html initialize function with a run function in the moundz.js file as per the

following code:

MOUNDZ = (function() {
 ...

 // initialize variables
 var map = null,
 ...
 posWatchId = 0;

 ...

 function run(zoomLevel) {
 // check that the watch hasn't already been set up
 // if it has, then exit, as we don't want two watches...
 if (posWatchId !== 0) {
 return;

CHAPTER 10: Integrating with Social APIs 239

 } // if

 // create the watch
 posWatchId = navigator.geolocation.watchPosition(
 function(position) {
 var pos = new google.maps.LatLng(
 position.coords.latitude,
 position.coords.longitude);

 if (map) {
 map.panTo(pos);
 }
 else {
 module.init(pos, zoomLevel ? zoomLevel : 15);
 } // if..else

 findResources(function() {
 module.updateDisplay();
 });
 },
 null,
 {
 enableHighAccuracy: true
 });
 } // run
 ...

 var module = {
 ...
 run: run,
 ...
 };

 return module;
})();

The run function defined in the preceding code is exposed through the MOUNDZ module

and provides a simple interface for setting up the Geolocation watchPosition method.

The watchPosition method provides a mechanism for us to access the user’s position,

and then to continue to monitor the position for changes. By monitoring the user’s

position, we will be able to update the display as they move around, which is ideal when

building games and other such interactive applications.

NOTE: As mentioned in Chapter 1, there is overhead involved when regularly accessing a
device’s current position. So, while the preceding code is effective at monitoring the user’s
position accurately, it’s important that we provide the ability to turn it off to allow people to
conserve battery life on their mobile device.

Notice that in the preceding code we obtain an ID that relates to the position watch that has been

created, and we will be able to use this later to stop monitoring the location.

CHAPTER 10: Integrating with Social APIs 240

While the watchPosition method differs in the number of times that the callback passed

to it will be executed, the data returned in the callback is identical to the

getCurrentPosition method, which we investigated previously. Basically, the

watchPosition method will be called until the clearWatch method is called, whereas

getCurrentPosition will execute once and once only. For instance, in the preceding

code, the value that we assign to the posWatchId variable could be passed to the

clearWatch function, and we would stop receiving location updates.

Additionally, the error callback and options parameters are the same. In this particular

case, we supply the enableHighAccuracy option as true to indicate to the device that we

would like to use the GPS in the device, rather than just using network triangulation.

In the callback within our run function, we simply map the returned latitude and

longitude into a google.maps.LatLng object, and then pass that to our map as the

position that we wish to use. As our findResources function works with the current

center position of the map, all we have to do is call it once the position changes (and we

have updated the map position to match), and relevant resources will be returned for our

current location.

NOTE: While building location-based services and applications is interesting, testing them can be
a challenge. Often it is a case of writing some code, and then taking a device out into the field to
ensure that the code is behaving as expected. If you find a problem, then it’s back to the desk to
tweak the code. Then you rinse and repeat until everything works as expected.

Android actually offers some better-than-average tool support for building and testing
geolocation-based applications. For more information on how to use the Android debug tools to
simplify your development experience, including how to simulate GPS information and paths,

have a look at the following article:

http://xpmobi.org/tutorials/android-emulator-geolocation-testing.html

The downside, though, is that, without using these tools, the emulator will not return any useful

position information, and you will see a blank screen. So, if you don’t have experience using the
tools, or you don’t have an Android device that you can test with instead, we would recommend

working through the article and then carry on after that.

If you have a working Android device or have simulated geolocation events in the

emulator when running the application, you should now see screens similar to the ones

shown in Figure 10–11. The first of the screen captures shows the permission dialog that

is displayed when the application requests the user’s position, and the second shows

the screen once permission has been granted.

http://xpmobi.org/tutorials/android-emulator-geolocation-testing.html

CHAPTER 10: Integrating with Social APIs 241

Figure 10–11. With geolocation data simulated in the emulator, you should see results similar to the images
above.

With the application now tracking our position and providing information on resources

around us, it’s time to implement some more of the game functionality.

Implementing a User Login
Up until now, nothing in the game has required any knowledge of the user, but we are

getting to the point where the user will probably want to mine some resources to start

building their base.

Additionally, it’s unlikely that we’ll want to allow a user to walk around with a limitless

amount of resources, so we are going to need to implement some limits. While the

Geominer API will take care of most of the work for us, we are going to need to maintain

a session key on the client, which we will include with any requests that need

information on who the current user is.

While the Geominer suite of tools could implement its own username and password

management to meet this need, it’s definitely not the optimal solution. A much better

solution is to integrate with an existing API that many users find themselves using on a

day-to-day basis. As shown previously in Figure 10–7, the Twitter API

(http://dev.twitter.com) has been chosen to meet this need in version 1 of Geominer.

In the future, additional authentication options will most likely be added, including other

social networks such as Facebook and the geosocial networks that actually provide the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://dev.twitter.com

CHAPTER 10: Integrating with Social APIs 242

check-in data. For the moment, though, Twitter provides a good middle ground in terms

of an easy-to-implement solution with a reasonably strong existing user base.

NOTE: You may be wondering why Twitter was chosen as the authentication provider when the
Geominer API presumably already talks to geosocial networks such as Gowalla and Foursquare.

This is a fair question, given that both of those networks offer authentication support through
their APIs. Primarily, this is because those geosocial networks still do not have as large a user
base as Twitter.

Geosocial games like Moundz may interest users outside of the current geosocial networking
users, so it is desirable for people to be able to access the game without needing a user account

on a specific geosocial network. In many respects, Twitter is neutral ground.

We now have a design decision to make: do we ask someone to log in at the point that

authentication is required (i.e., when they start to collect resources), or do we create a

welcome page and ask them to log in right from the start? There are definite merits to

both solutions, and, while many would argue that from a usability perspective it would

be better to leave logging in only until required, for the sake of simplicity we will build a

simple application splash screen with a very clear “Sign in with Twitter” button.

Constructing the Welcome and Login Screen
Creating a welcome screen for our application is a reasonably trivial exercise (as far as

the appearance goes, anyway). First, let’s modify the HTML of the index.html file:

<!DOCTYPE html>
<html>
<head>
...
</head>
<body onload="initialize()">
<div id="splash">
 Welcome to

 <p class="hint">
 Press the 'Sign in with Twitter' button below to get started playing.
 </p>
 </login>
</div>
<div id="app">
...
</div>
</body>
</html>

The modifications to the HTML are simple, with the only real point of note being that the

#splash div has been added as another top-level container alongside the #app div. The

Moundz logo image used on this page can be downloaded from prowebapps GitHub

CHAPTER 10: Integrating with Social APIs 243

repository at the following URL: https://github.com/sidelab/prowebapps-
code/tree/master/moundz/img.

As usual, without any CSS styling applied, the screen is pretty ugly. Figure 10–12 shows

an example of the screen layout without any CSS applied.

Figure 10–12. The welcome screen without any CSS

Let’s sort that situation now by adding the following CSS to the moundz.css file:

/* application window styles */

#app {
 height: 100%;
 width: 100%;
 display: none;
}

/* splash screen styles */

#splash {
 height: 100%;
 width: 80%;
 background: -webkit-gradient(linear, left top, left bottom, from(#c4c8b7),
to(#cddd87));
 padding: 0 10%;
}

#splash > * {
 display: block;
 margin: 0 auto;
 text-align: center;

https://github.com/sidelab/prowebapps-code/tree/master/moundz/img
https://github.com/sidelab/prowebapps-code/tree/master/moundz/img
https://github.com/sidelab/prowebapps-code/tree/master/moundz/img

CHAPTER 10: Integrating with Social APIs 244

}

#splash strong {
 color: hsla(0, 10%, 30%, 0.6);
 font-size: 2.0em;
 text-shadow: hsla(0, 10%, 90%, 0.8) 0 1px 0px;
 padding: 20px 0 0 0;
}

#splash p.hint {
 -webkit-border-radius: 4px;
 background: hsla(0, 10%, 30%, 0.5);
 margin: 5px;
 padding: 10px 15px;
 color: white;
 font-size: 0.80em;
}

#login {
 position: fixed;
 width: 80%;
 bottom: 20px;
}

With this CSS active, the welcome screen is displayed in a much more presentable

fashion, as shown in Figure 10–13.

Figure 10–13. With the CSS applied, we have a more presentable welcome screen.

OK, the welcome page is done. Don’t worry that the actual “Sign in with Twitter” button

is absent—we’ll take care of that soon.

CHAPTER 10: Integrating with Social APIs 245

For the most part, the CSS implemented here has been discussed before, so we won’t

go into any great detail on what has been done to lay out the welcome screen. One

aspect that we haven’t looked at, however, is the use of the hsla color function to

specify coloring for various elements on the page.

The hsla function takes values for hue, saturation, lightness, and alpha, and offers an

alternative to specifying colors using the more common rgba (for red, green, blue, alpha)

function. While we won’t go into great depth about how to use the hsla scheme, there

definitely are some great benefits to using it, so it’s well worth investigating if you have

the time. For more information on the topic, the article at the following URL provides a

great introduction: http://css-tricks.com/yay-for-hsla.

Twitter Anywhere and the Login Process
The process for adding a third-party authentication service to your application is easy in

some respects, but can also be pretty painful in other ways. With mobile web apps

being very much a minority group at the moment, we don’t exactly have solutions that

are tailor-made for our requirements.

The current mechanism for providing authentication services to an API such as Twitter

centers around a standard called OAuth (http://oauth.net). OAuth provides a robust

authentication mechanism that prevents users from having to supply their username and

password to the application using the service. It does, however, come with some

complexity. The process of authenticating via OAuth involves directing your users to the

third-party service, which then asks the user to grant permission to your application.

In the case of Moundz, we will not ask users to provide Moundz with a username and

password, but rather direct them to Twitter. If they are already logged into Twitter, then

they will be asked permission for Moundz to use their Twitter account. If they accept,

then they’ll be logged into Moundz successfully.

Let’s look at implementing that using the Twitter Anywhere JavaScript libraries

(http://dev.twitter.com/anywhere). Following the instructions in the Twitter Anywhere

Getting Started documentation (http://dev.twitter.com/anywhere/begin), the first thing

to do is to create an application. This can be done by visiting the following URL:

http://dev.twitter.com/anywhere/apps/new.

The registration screen is shown in Figure 10–14, and you can see that most of the

details asked for are pretty obvious, with the exception of the callback URL. For this

field, supply the domain that you think you will deploy the application to eventually. The

information is used as part of the authentication process.

NOTE: If you like, you can avoid creating a new application for now, and instead use the existing
Moundz key that has been created to work through the sample code. Then you can create your

own application later.

http://css-tricks.com/yay-for-hsla
http://oauth.net
http://dev.twitter.com/anywhere
http://dev.twitter.com/anywhere/begin
http://dev.twitter.com/anywhere/apps/new

CHAPTER 10: Integrating with Social APIs 246

Figure 10–14. Registering a new application with Twitter is relatively simple, but feel free to use the sample key
and complete the process later.

We now move on to prepping our application for Twitter Anywhere integration. The next

steps are including the required JavaScript library in our index.html page and

instructing the Twitter Anywhere library to create a login button in our designated #login

area.

<!DOCTYPE html>
<html>
<head>
...
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript"
src="http://platform.twitter.com/anywhere.js?id=K7BhAacKov8QoFwEHYRU7Q&v=1">
</script>
<script type="text/javascript">

 twttr.anywhere(function (T) {
 T("#login").connectButton();
 });

</script>
<script type="text/javascript">
function initialize() {
 MOUNDZ.run();

http://maps.google.com/maps/api/js?sensor=true
http://platform.twitter.com/anywhere.js?id=K7BhAacKov8QoFwEHYRU7Q&v=1

CHAPTER 10: Integrating with Social APIs 247

} // initialize
</script>
</head>
<body onload="initialize()">
...
</body>
</html>

The inclusion of the script is shown in bold in the preceding code, using the Moundz

application sample key. This should create a nice login button at the base of the screen

(after a little browser activity). The result is displayed in Figure 10–15.

Figure 10–15. A Connect with Twitter button should appear on the Moundz welcome screen.

To log into your application, click the Connect with Twitter button. At this point, the user

experience of the Twitter Anywhere solution starts to go downhill for mobile devices.

Figure 10–16 shows the resulting login screen at Twitter.

CHAPTER 10: Integrating with Social APIs 248

Figure 10–16. When directed to the Twitter site for login, we receive a desktop login/permission screen.

We’ll want to avoid presenting the user a non-mobile-optimized screen and, while there

is little we can do about it here, we will investigate an alternative approach later in the

chapter.

Once a user has completed the login process (or the permission-granting process, if they’re

already logged in), they will be returned to the application screen. As Twitter Anywhere

opens a new window for the authentication process, this new window will simply be closed.

The Moundz welcome screen should now appear similar to Figure 10–17.

CHAPTER 10: Integrating with Social APIs 249

Figure 10–17. Once you complete the authentication process with Twitter, the login button is replaced with a
“Connected with Twitter” image.

From here, all that is left to do is to bind to event handlers provided in the Twitter

Anywhere API so our web page can respond to the authentication process completing

successfully. Handling these events is covered in detail in the Twitter Anywhere

documentation (http://dev.twitter.com/anywhere/begin#login-signup). While

implementing this would probably be the simplest way to provide the login functionality

for our application, unfortunately it has some drawbacks:

 As demonstrated, the login screen provided by Twitter for our users is

not optimized for mobile, and this provides a poor user experience.

 The generic Twitter Anywhere authentication process requires a

callback URL to complete successfully. While this works well for

mobile web applications that are deployed to a web server, it doesn’t

work for PhoneGap-wrapped mobile applications. These applications

are run from a file-based URL (as discussed earlier in the chapter),

which prevents the Anywhere API from completing its signin process.

While the first issue is cosmetic, the second is a bit of a deal breaker. Not having the option to wrap
an application for native deployment cuts you off from a large portion of your potential application
market. We need an alternative.

http://dev.twitter.com/anywhere/begin#login-signup

CHAPTER 10: Integrating with Social APIs 250

NOTE: You will likely encounter an additional issue if you have a server-side component to your
application that is attempting to manage some application state, which is the case in Moundz.
While transmitting your users’ Twitter IDs to the server to assist with managing that state won’t

expose them to any great risk, this isn’t the most robust solution. Thankfully, the Twitter API
team is already on the case, and has provided a mechanism called Bridge Code for bridging
between the client and server. More information can be found on implementing this in

presentation at the following URL:
http://slideshare.net/themattharris/twitterapi-at-socialapp-workshop-

4829646.

Alternative Twitter Authentication via Geominer
It would have been wonderful if we could have used the Twitter Anywhere API for our

application, but, as we want to package the application for marketplace distribution

using PhoneGap, that is off the table—at least for the moment. In this section, we will

investigate implementing some alternative authentication using some helpful parts of the

Geominer API.

Let’s start by including the Geominer JavaScript library into index.html, replacing the

previous Twitter Anywhere references:

<!DOCTYPE html>
<html>
<head>
...
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript" src="http://api.geominer.net/jsapi/v1/geominer.js">
</script>
<script type="text/javascript">
function initialize() {
 MOUNDZ.init();
} // initialize
</script>
</head>
<body onload="initialize()">
...
</body>
</html>

Next, let’s wire the Geominer initialization the MOUNDZ.init function:

MOUNDZ = (function() {
 ...

 // initialize variables
 var geominer = null,
 ...
 posWatchId = 0;

http://slideshare.net/themattharris/twitterapi-at-socialapp-workshop-4829646
http://slideshare.net/themattharris/twitterapi-at-socialapp-workshop-4829646
http://maps.google.com/maps/api/js?sensor=true
http://api.geominer.net/jsapi/v1/geominer.js

CHAPTER 10: Integrating with Social APIs 251

 ...

 function gotoPosition(position, zoomLevel) {
 // define the required options
 var myOptions = {
 zoom: zoomLevel ? zoomLevel : DEFAULT_ZOOM,
 center: position,
 mapTypeControl: false,
 streetViewControl: false,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 // initialize the map
 map = new google.maps.Map(
 document.getElementById("map_canvas"),
 myOptions);
 } // gotoPosition

 ...

 var module = {
 ...
 init: function(zoomLevel) {
 // initialize the geominer bridge
 geominer = new GEOMINER.Bridge({
 app: 'moundz',
 login: '#login'
 });

 $(geominer).bind('authenticated', function(evt) {
 $('#splash').hide();
 $('#app').show();

 run(zoomLevel);
 });

 // initialize the screen
 initScreen();
 },

 ...
 };

 return module;
})();

We have made a few changes to the MOUNDZ module here, which in addition to wiring in

the Geominer JavaScript API helps to reorganize things a little:

1. The previous contents of the MOUNDZ.init function have been moved to a new

internal function called gotoPosition.

2. A new module variable, geominer, is defined at the beginning of the module.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10: Integrating with Social APIs 252

3. The geominer variable is initialized with a new GEOMINER.Bridge object as part of

the refined init function. At this stage, the bridge is created and two parameters

are specified—the name of the app that we are running now (the Geominer API

has been built to support multiple apps) and the login container that will receive

the login button (as per the Twitter Anywhere initialization).

4. Finally, we use the jQuery bind function to listen for “authenticated” events, which

flag to us that a user has completed the login process. In response to this event,

we will close the welcome screen and display the main application view.

Very little code is actually required to implement the connectivity within the MOUNDZ

module, and this is due to the behind-the-scenes work that the Geominer API is doing

for us. If you are interested, we encourage you to check out the source code for the

Geominer JavaScript API, at http://api.geominer.net/jsapi/v1/geominer.js.

If everything has gone according to plan, we should have a slightly different login

experience now. Figure 10–18 shows the updated login screen, which is quite similar in

appearance to the Twitter Anywhere version.

Figure 10–18. The welcome screen using the Geominer API

While the initial welcome screen looks similar, the process will differ from this point

forward. Figure 10–19 shows the mobile-optimized permissions screen that we receive

while using the established server-side APIs (via Geominer) rather than Twitter

Anywhere.

http://api.geominer.net/jsapi/v1/geominer.js

CHAPTER 10: Integrating with Social APIs 253

Figure 10–19. Using the more established Twitter RESTful API provides a better mobile experience.

Given that we accept the connection to Twitter, we will be returned to our application via

the Geominer API. While this is going on, the client-side Geominer API script that we

included is monitoring the login process, and, once it has determined that the process

has completed successfully, the welcome screen is hidden and the user is taken to the

main application screen as per earlier in the application.

NOTE: One aspect of this solution that is not as elegant as using Twitter Anywhere is that the
application is shown as “Geominer” rather than “Moundz” when we are going through the
authentication process. While future versions of Geominer may use different OAuth parameters to

show the request as coming from an application rather than itself, the current version doesn’t.

If you are looking to build an application that is not a geosocial game, but you are

interested in how we implemented the alternative login mechanism using Geominer,

then it is probably worthwhile to fork the Geominer project on GitHub, which can be

found at the following URL: https://github.com/sidelab/geominer.

Summary
In this chapter, we have looked at some of the challenges around integrating with third-

party APIs that are currently available. Using these APIs is still very important given the

benefits that they bring to applications that work with them; however, at this stage, most

are geared toward server-side integration or native desktop and mobile development. As

https://github.com/sidelab/geominer

CHAPTER 10: Integrating with Social APIs 254

such, we looked at ways to work around the limitations in the current APIs while giving

mobile web apps the opportunity to access those APIs.

We then moved on to looking at how to add authentication into a mobile web

application using Twitter as an authentication service. Once again, while this appears

simple, particular use cases required in mobile web apps can make the standard

integration path less effective. We investigated alternative solutions to counter current

limitations in this regard as well.

In the next chapter, we will use the work we have done in this chapter to allow the

players to interact with the game, now that we have the ability to manage our game

state via some user information. Additionally, we will polish up Moundz and get it ready

for distribution to the Android marketplace by once again making use of PhoneGap.

255

255

 Chapter

Mobile UI Frameworks
Compared
Before we get into the final stages of preparing our application for packaging for the

Android marketplace, it’s worth taking some time to practically compare the various

mobile frameworks that are available right now. During the time it has taken to write this

book, about three new frameworks have come onto the scene, and without doubt there

will be others still.

While it has been important to understand the fundamental building blocks for building

mobile web applications, it is also important to consider what tools and frameworks are

available that make our lives easier.

In this chapter, we will look at some of the mobile UI frameworks that are becoming

popular. We will do this by taking the current Moundz UI and converting it to each of the

frameworks, which should provide a feel for how the various UI frameworks operate and

also how they differ from working with a bare-bones HTML UI.

Mobile UI Frameworks Overview
Getting started with mobile frameworks can be a little overwhelming, and choosing the

right one can feel like a mammoth task. This is definitely compounded by the fact that,

when building an app for the mobile Web, you may focus on building your application

for one device without really knowing what other devices might end up using it

eventually. So, when you choose a framework, you want one that is going to work well

on as many of those devices as possible.

The world of mobile UI web frameworks is moving pretty fast at the moment. When we

started writing this book, only one of the four frameworks that we are covering here

(jQTouch) was even released. Additionally, at the time of writing, Sencha Touch was the

only framework to have reached a stable 1.0 release.

11

CHAPTER 11: Mobile UI Frameworks Compared 256

NOTE: The list of frameworks that we looked at in this book is not exhaustive, and there are
some excellent frameworks in addition to these. If you are interested in other frameworks that
are available, or don’t find a framework to fit your needs in this chapter, then the following URL

may be worth a look: www.xpmobi.org/mobile-ui-frameworks.

Similarities and Differences Between Frameworks
In this chapter, we will be taking a look at Jo, jQTouch, jQuery Mobile, and Sencha

Touch. For each of these frameworks, we will take a simplified version of our Moundz

application and modify it to suit the framework. As mentioned in the chapter

introduction, this will give you a good feel for the differences between each of the

frameworks, and should assist you in choosing a framework that suits you in your future

Android web app projects.

At a conceptual level, each of the frameworks is fairly similar:

 Each provides a mechanism for supporting multiple mobile application

“pages” without the need for reloading these pages from the server.

Given the limited screen real estate on a mobile device, it is normal for

mobile applications to contain twice as many application pages as a

desktop equivalent.

 When you consider the preceding point combined with the higher

latency of mobile broadband, one of the most important things that a

mobile UI framework can provide is an effective way to assist you in

managing high-latency situations.

 Each provides a level of UI customization to help mobile web apps feel

more like native apps. The challenge here is making a web application

feel consistent with the native feel of a multitude of devices.

When it comes to how each of the frameworks is implemented, however, things start to

differ. The biggest difference is around whether a framework uses a markup-based

approach or is more declarative in the way the UI is created. We’ll briefly explore these

two concepts before looking at each of the frameworks individually.

Markup-Based UI Frameworks
In a markup-based UI framework, you commonly define the UI layout using pure HTML

with CSS classes (or alternative attributes in the HTML) that influence the behavior of the

frameworks.

In the cases where CSS is used to control this behavior (jQTouch, for example), the CSS

classes serve to influence the look and feel of the application through stylesheets, and

additionally to provide guidance to the accompanying JavaScript on how to handle

those elements programmatically.

http://www.xpmobi.org/mobile-ui-frameworks

CHAPTER 11: Mobile UI Frameworks Compared 257

When an alternative attribute is used (jQuery Mobile adopts a suite of data attributes—

see www.w3.org/TR/html5/elements.html for more information), these attributes are

postprocessed by the JavaScript, and the appropriate CSS classes are applied (where

required).

Declarative UI Frameworks
Using a declarative UI framework is quite different from the markup-based experience.

Whereas in the markup-based approach you would start first with your HTML (and

possibly CSS), in a declarative framework it’s all about the code. The UI elements are

declared and defined, and programmatically added to the UI.

Finding Your Own Best Fit
The choice between a markup-based or declarative UI framework very much comes

down to personal preference. For this reason, we really will try to avoid making strong

recommendations for one framework over another. If you haven’t done a lot of work with

JavaScript before, then it is likely you will be open to different approaches; in this case,

we would recommend trying a few and seeing what is a better fit for you.

If, however, you have worked with HTML and JavaScript previously, then you might

have a preference one way or another already. In this case, you can focus first on the

two frameworks that match your currently preferred style, and, if you don’t find a good

fit there, you can take a look at the other two.

Given our extensive use of jQuery throughout the book already, it will probably come as

no surprise that beyond this chapter we will continue to work with jQuery Mobile. This

should not be taken as a rubber-stamping of jQuery Mobile as the best framework

looked at here—rather, it is simply the best fit for the exercises in this book. This chapter

is provided primarily to assist you in finding your own best fit.

Setting Up for the Framework Comparison
Before we get started on the challenge, let’s simplify some of the Moundz source code

so we don’t have to go through the Twitter authentication step or location detection

(which can be pretty frustrating in the emulator).

To do this, we will need to make some modifications to the Moundz source files.

Comment out (or remove) the splash screen div element in the index.html file:

<!DOCTYPE html>
<html>
<head>
...
</head>
<body onload="initialize()">
<!--
<div id="splash">
 Welcome to

http://www.w3.org/TR/html5/elements.html

CHAPTER 11: Mobile UI Frameworks Compared 258

 <p class="hint">
 Press the 'Sign in with Twitter' button below to get started playing.
 </p>

</div>
-->
<div id="app">
 ...
</div>
</body>
</html>

Next, we need to make some modifications to the moundz.js file that will make the

process of testing the various mobile frameworks less painful.

Firstly, locate the run function and provide an ability to specify a mock location. This

comes in the form of a second, optional parameter that we can pass to the run function.

When the second parameter is supplied, location detection will be bypassed and that

location will be used instead.

function run(zoomLevel, mockPosition) {
 // check that the watch hasn't already been set up
 // if it has, then exit, as we don't want two watches...
 if (posWatchId !== 0) {
 return;
 } // if

 // if mock position, then use that instead
 if (mockPosition) {
 gotoPosition(mockPosition, zoomLevel ? zoomLevel : 15);
 findResources(function() {
 module.updateDisplay();
 });
 }
 else {
 // create the watch (original non-mock code)
 posWatchId = navigator.geolocation.watchPosition(
 function(position) {
 var pos = new google.maps.LatLng(
 position.coords.latitude,
 position.coords.longitude);

 if (map) {
 map.panTo(pos);
 }
 else {
 gotoPosition(pos, zoomLevel ? zoomLevel : 15);
 } // if..else

 findResources(function() {
 module.updateDisplay();
 });
 },
 null,
 {
 enableHighAccuracy: true

CHAPTER 11: Mobile UI Frameworks Compared 259

 });
 } // if..else
} // run

Next, modify the MOUNDZ.init function and comment out the authenticated event

handler. Additionally, place a call to the run function in the main body of the init

function so the application initializes properly.

MOUNDZ = (function() {
 ...

 var module = {
 ...

 init: function(zoomLevel) {
 // initialize the geominer bridge
 geominer = new GEOMINER.Bridge({
 app: 'moundz',
 login: '#login'
 });

 /*
 $(geominer).bind('authenticated', function(evt) {
 $('#splash').hide();
 $('#app').show();

 run(zoomLevel);
 });
 */

 // initialize the screen
 initScreen();

 // run the application
 run(zoomLevel, new google.maps.LatLng(-33.86, 151.21));
 },

 ...
 };

 return module;
})();

All right, we’re almost there. Finally, make one simple change to the moundz.css file to

have the #app div display on application start by default.

/* application window styles */

#app {
 height: 100%;
 width: 100%;
 /* display: none; */
}

While we may need to modify this CSS later when integrating the various frameworks, it

would be nice to know that the code for our starting point works correctly. If everything

is going to plan, your Moundz application should start up and resemble Figure 11–1.

CHAPTER 11: Mobile UI Frameworks Compared 260

Figure 11–1. The baseline Moundz app, ready for UI framework testing

We now have Moundz at a suitable baseline ready for our framework comparison. Now

make copies of the modified source into four directories—one for each of the

frameworks that we are going to compare. Figure 11–2 shows an example structure.

Figure 11–2. The folder structure for the UI framework comparison—one base directory and one directory for
each of the frameworks

CHAPTER 11: Mobile UI Frameworks Compared 261

This structure will serve you well if you wish to make comparisons against the

frameworks. The completed code for each of the frameworks is available from the

following URL: https://github.com/sidelab/prowebapps-
code/tree/master/frameworks/challenge.

NOTE: If you would prefer to have a quick look at any one of the frameworks rather than work
through each separately, then accessing the code from the GitHub repository can be very useful.
Additionally, it might give you a feel for which of the frameworks you have a preference for, and

you can then have a look at that particular framework in more depth.

Jo
The first framework that we will be having a look at is Jo. Jo follows a declarative style

and offers a lightweight but rich framework for developing mobile applications. The

following list gives some important information about Jo:

Framework: Jo

Style: Declarative

Web site: http://joapp.com

License: Open source (OpenBSD)

Source code: https://github.com/davebalmer/jo

Requirements: None

The following list describes some of Jo’s strengths:

Jo comes with excellent documentation. In fact, the author of Jo (Dave

Balmer; http://twitter.com/balmer) created a specialized

documentation tool (JoDoc) for creating higher-quality JavaScript API

documentation.

Jo is built for a multidevice environment. It has been built for and

tested on a wide variety of devices that support HTML5 and CSS3

(iOS, Android, webOS, and Symbian).

Jo is extremely lightweight with regard to size, and, since Jo has no

dependencies on other JavaScript libraries, your application will

probably be smaller using Jo than any other mobile UI framework.

Jo plays nicely with other JavaScript libraries (including jQuery).

The following are some of its weaknesses:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

https://github.com/sidelab/prowebapps-code/tree/master/frameworks/challenge
https://github.com/sidelab/prowebapps-code/tree/master/frameworks/challenge
https://github.com/sidelab/prowebapps-code/tree/master/frameworks/challenge
http://joapp.com
https://github.com/davebalmer/jo
http://twitter.com/balmer

CHAPTER 11: Mobile UI Frameworks Compared 262

 Its library is not as feature complete as some of the other mobile UI

frameworks (on the other hand, it’s a great open source project to get

involved with if you’re interested in contributing).

 Its UI look and feel is not quite as polished as other frameworks.

Getting Started with Jo
First, we will download a distribution of Jo from the web site (http://joapp.com). At the

time of writing, the latest stable version is 0.3.0, but there may well be a later version by

the time you read this. If that is the case, you should be able to access version 0.3.0

from the downloads area on GitHub (https://github.com/davebalmer/jo/downloads).

Alternatively, you can download a more recent version and just adapt the code to cater

for any changes (usually changes are pretty minor, and Jo has great documentation so it

should be very simple).

Once you have downloaded a distribution of Jo, unzip the archive. You should see a

directory structure similar to that displayed in Figure 11–3.

Figure 11–3. The structure of the Jo distribution

If you would like to see the kind of things that Jo can do, then feel free to open the

test.html file in the samples directory and play with the Kitchen Sink demo.

http://joapp.com
https://github.com/davebalmer/jo/downloads

CHAPTER 11: Mobile UI Frameworks Compared 263

Moving back to Moundz, we need to copy the css and js directories from the Jo

distribution into the Moundz directory we have set up for the framework comparison. As

per earlier instructions, copy these files into the directory created for the Moundz Jo

sample. Figure 11–4 shows a sample of how that directory structure will look.

Figure 11–4. The required Jo resource files are added to the Moundz UI challenge folder.

Finally, before we get stuck into the detail, let’s add the required includes into the

index.html file for Moundz:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<!-- <link rel="stylesheet" media="screen" href="moundz.css" /> -->
<link rel="stylesheet" media="screen" href="css/jo.css" />
<script type="text/javascript" src="jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="js/jo.js"></script>
<script type="text/javascript" src="moundz.js"></script>
<!-- <script type="text/javascript" src="phonegap.js"></script> -->
<script type="text/javascript" src="http://api.geominer.net/jsapi/v1/geominer.js">
</script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript">
function initialize() {
 MOUNDZ.init();
} // initialize
</script>

http://api.geominer.net/jsapi/v1/geominer.js
http://maps.google.com/maps/api/js?sensor=true

CHAPTER 11: Mobile UI Frameworks Compared 264

</head>
<body onload="initialize()">
...
</body>
</html>

Essentially, include css/jo.css and js/jo.js using suitable HTML and Jo will be

available for you to use in moundz.js (this is covered in the next section). Additionally, to

prevent any CSS conflicts, comment out the moundz.css file.

Moundz, Meet Jo
As Jo is a declarative UI framework, most of the existing HTML that we have needs to

be removed. By making appropriate Jo calls (a surprisingly succinct amount), suitable

HTML will be generated. So, first things first, remove the HTML that is shown in bold

and italicized in the following code sample:

<!DOCTYPE html>
<html>
<head>
...
</head>
<body onload="initialize()">
<!-- DELETE FROM HERE
<div id="app">
 <h1 class="simple floating">Moundz</h1>
 <div id="map_canvas" style="width:100%; height:100%"></div>
 <div id="marker-nav">

 Test Text

 </div>
 <div id="marker-detail" class="child-screen">
 <div class='content'>Some Test Content</div>
 <button class='close'>Close</button>
 </div>
</div>
TO HERE (or just leave commented out) -->
</body>
</html>

After the code has been removed (you can also remove the earlier splash page HTML as

well) or commented out, we are left with an HTML document that contains an empty

body tag. This is the ideal blank canvas with which Jo likes to work. We will now hand it

over to Jo to create the required elements. We do this by replacing the code in the

initScreen function with the following code (and defining a few extra variables):

MOUNDZ = (function() {
 // initialize constants
 var DEFAULT_ZOOM = 8,
 GEOMINER_MOUNDZ_URL = 'http://api.geominer.net/v1/moundz';

 // initialize variables
 var geominer = null,

http://api.geominer.net/v1/moundz

CHAPTER 11: Mobile UI Frameworks Compared 265

 // new jo variables
 container = null,
 mapCard = null,
 detailCard = null,
 resourceButton = null,
 navbar = null,
 stack = null,
 toolbar = null,
 map = null,
 ...
 posWatchId = 0;

 ...

 function initScreen() {
 var stackHeight;

 jo.load();

 // create a stack that we will use for paging
 stack = new joStack();

 // create the navbar for the app
 navbar = new joNavbar('Jo Moundz');
 navbar.setStack(stack);

 // define the resource details button
 resourceButton = new joButton("Resource");

 // attach the select event handler
 resourceButton.selectEvent.subscribe(function() {
 // when the button is pushed, then show the detail page
 stack.push(detailCard);
 });

 // create the toolbar
 toolbar = new joToolbar([
 new joFlexrow([
 new joButton("Previous").selectEvent.subscribe(function() {
 activateMarker(markers[markerIndex - 1]);
 }),
 resourceButton,
 new joButton("Next").selectEvent.subscribe(function() {
 activateMarker(markers[markerIndex + 1]);
 })
])
]);

 // create the wrapper to the body
 container = new joScreen([
 navbar,
 toolbar,
 stack
]);

 // now that the screen is created, calculate the available height
 stackHeight = stack.container.getBoundingClientRect().height -

CHAPTER 11: Mobile UI Frameworks Compared 266

 toolbar.container.getBoundingClientRect().height -
 navbar.container.getBoundingClientRect().height;

 // create the map card
 mapCard = new joCard([
 joDOM.create('div', {
 id: 'map_canvas',
 height: stackHeight + 'px'
 })
]);

 // create the detail card
 detailCard = new joCard();

 // add the map to the view
 stack.push(mapCard);
 } // initScreen

 ...
})();

Let’s now walk through what’s happening step by step:

1. Firstly, we tell Jo that we are ready for it to initialize with a call to jo.load().

2. Then we create a new joStack that is used to handle paging in the application. A

stack is typically made up of multiple joCard objects, but this isn’t a hard-and-fast

rule.

3. Next, we create a joNavBar, which will provide our application a title bar and

handle displaying a back button at the appropriate time (for example, when more

than a single card has been added to the stack). We then also create a joToolbar,

which will contain our buttons for navigating through the markers.

4. With our top-level controls defined, we then move on to telling Jo where to put

these controls. This is done by creating a joScreen object and passing it our two

controls in an array. At this point, we have an interface that we can work with, but

we don’t have our map.

5. To add our map, we create a new joCard to hold our map. We’re working at a

lower level here than we usually would for a Jo application, by accessing the

joDOM utility to manually create the div within which Google Maps will generate

the map.

6. After creating the card for the map, we create one more joCard, which will be

used to show the detail for a search result.

7. Finally, we push the map card that we created (in step 5) to the stack (created in

step 2).

The process is quite logical, and having built mobile UIs from scratch you should have a

pretty good understanding of what is going on. In addition to the preceding steps, it is

worth noting the following also:

CHAPTER 11: Mobile UI Frameworks Compared 267

 As the map does not display well using the previous instructions of

100 percent height and width, we need to calculate the height that we

should specify the map to. We do this by calculating the available

height in the stack, and then subtracting the height of the navbar and

toolbar from the total.

 Additionally, note that, when we create our button, we use Jo’s

subscribe method to attach to the selectEvent of each of the buttons.

The subscribe method in Jo is quite similar to the bind function in

jQuery.

Once all of that is completed, we have a screen that resembles the image shown in

Figure 11–5.

Figure 11–5. The Moundz application interface created in a Jo web app

We are now almost finished with our Jo sample. All that is required to make the

application behave as it should are some changes to the activateMarker function, as

shown in bold in the following code:

MOUNDZ = (function() {
 // initialize constants
 var DEFAULT_ZOOM = 8,
 GEOMINER_MOUNDZ_URL = 'http://api.geominer.net/v1/moundz';

 // initialize variables
 var geominer = null,
 ...
 markerIndex = 0,
 posWatchId = 0;

http://api.geominer.net/v1/moundz

CHAPTER 11: Mobile UI Frameworks Compared 268

 /* private functions */

 function activateMarker(marker) {
 // iterate through the markers and set to the inactive image
 for (var ii = 0; ii < markers.length; ii++) {
 markers[ii].setIcon('img/pin-inactive.png');
 } // for

 // update the specified marker's icon to the active image
 marker.setIcon('img/pin-active.png');

 // update the text of the resource button
 resourceButton.setData(marker.getTitle());

 // update the contents of the detail card
 detailCard.setData(markerContent[marker.getTitle()]);

 // get the updated active marker index
 markerIndex = getMarkerIndex(marker);
 } // activateMarker

 ...
})();

While we leave the marker updating in the activateMarker function, we remove all of the

other existing content and replace it with three simple calls:

1. We update the text of the resource button using Jo’s setData method.

2. We update the contents of the detailCard once again using the setData method,

which gives us some nice consistency.

3. We then save the value of the current marker index to the markerIndex variable

(also note the variable definition in the module scope). This final step allows our

Next and Previous button handlers to operate correctly.

At this point, we should have a sample Jo web app that functions as per our previous

hand-constructed Moundz UI. Figure 11–6 shows an example of the expected display.

CHAPTER 11: Mobile UI Frameworks Compared 269

Figure 11–6. Our Moundz application converted to a Jo web app

Well, that’s one down and three to go. Our next framework is jQTouch, which is a

markup-based UI framework. It will be interesting to compare the two approaches.

jQTouch
As mentioned previously, when writing first began on this book, jQTouch was the only

framework of the four investigated here that was actually released. In many ways,

jQTouch demonstrated what could be achieved using web technologies to create

native-like interfaces for mobile devices. This included using WebKit animations to

produce very fluid interfaces.

 Framework: jQTouch

 Style: Markup based

 Web site: http://jqtouch.com

 License: Open source (MIT)

 Source code: https://github.com/senchalabs/jQTouch

 Requirements: jQuery

The following are some of jQTouch’s strengths:

 It is the most established of the frameworks looked at in this chapter,

and has good community resources.

http://jqtouch.com
https://github.com/senchalabs/jQTouch

CHAPTER 11: Mobile UI Frameworks Compared 270

 It contains a large variety of well-implemented page transition effects.

 Its familiar jQuery experience is a plus for those experienced with

jQuery.

The following are some of its weaknesses:

 Updates to the stable releases of the library are very infrequent;

however, the GitHub repository is updated regularly.

 With change of library maintainer under the Sencha Labs transition,

and with jQuery Mobile on the horizon, jQTouch has one of the more

uncertain futures of the libraries looked at in this chapter.

Getting Started with jQTouch
At the time of writing, the current stable release of jQTouch that is available for

download from the jQTouch web site is version 1, beta 2. Due to some changes that are

going to be coming in a future release of the library, however, it is recommended that a

more recent release be obtained from GitHub. The latest source snapshot can be

downloaded from the following URL:

https://github.com/senchalabs/jQTouch/zipball/master

NOTE: If you encounter any problems using the latest version of jQTouch from GitHub, then it is
probably worth checking the jQTouch web site to see if a new release has been published since

the publication of this book. Alternatively, the version of jQTouch files used in the samples are
available through the Apress source code repository for the book (at www.apress.com), so you

can always take a look there also.

Once you have a copy of the jQTouch files, you should have a folder structure similar to

the one displayed in Figure 11–7.

https://github.com/senchalabs/jQTouch/zipball/master
http://www.apress.com

CHAPTER 11: Mobile UI Frameworks Compared 271

Figure 11–7. The folder structure for jQTouch contains the source code and some useful demos.

Within the jQTouch files there are two main directories of interest. The first is jqtouch,

which contains the core JavaScript and CSS files required when using jQTouch, and the

second is themes directory, which contains CSS and image resources that are used to

customize the look and feel of a jQTouch application.

jQTouch also provides samples in its demos directory—these are well worth a look if you

are interested in seeing what jQTouch can do.

For our Moundz jQTouch app, we will need to copy both the jqtouch and themes
directories into our jQTouch challenge directory. Figure 11–8 shows how the structure

of that folder should look after copying the files.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11: Mobile UI Frameworks Compared 272

Figure 11–8. Copy the jqtouch and themes folders from the jQTouch distribution into the Moundz challenge
folder.

There are only a few modifications we need to make to our code to make it usable for

jQTouch.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="jqtouch/jqtouch.css" />
<link rel="stylesheet" media="screen" href="themes/default/theme.css" />
<link rel="stylesheet" media="screen" href="moundz.css" />
<script type="text/javascript" src="jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="jqtouch/jqtouch.js"></script>
<script type="text/javascript" src="moundz.js"></script>
<!-- <script type="text/javascript" src="phonegap.js"></script> -->
<script type="text/javascript" src="http://api.geominer.net/jsapi/v1/geominer.js">
</script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript">
function initialize() {
 MOUNDZ.init();
} // initialize
</script>
</head>
<body onload="initialize()">

http://api.geominer.net/jsapi/v1/geominer.js
http://maps.google.com/maps/api/js?sensor=true

CHAPTER 11: Mobile UI Frameworks Compared 273

...
</body>
</html>

Essentially, to get jQTouch in a position where it is ready to be used, we need to include

jqtouch.js, jqtouch.css, and an appropriate theme file. In this particular case, we’re

using the default theme, but both apple and jqt are also available.

In the next section, we will need to make changes to our HTML, CSS, and JavaScript

files so that the application will behave as it should.

Applying Some jQTouch-Ups to Moundz
Now that we have jQTouch available to us in the Moundz application, let’s go about

making the changes to have it display effectively. First, let’s start with the changes

required in the HTML. Here we will change the code for the layout of the HTML body to

the following:

<body onload="initialize()">
<div id="jqt">
 <div id="mapper">
 <div class="toolbar">
 <h1>Moundz</h1>
 </div>
 <div id="map_canvas" style="width:100%; height: 100%;"></div>
 <div id="marker-nav">

 Test Text

 </div>
 </div>
 <div id="marker-detail">
 <div class="toolbar">
 Back
 <h1>Test Location</h1>
 </div>
 <div class='content'>
 </div>
 </div>
</div>
</body>

In the preceding code, we make some relatively major changes to the HTML to structure

things appropriately for jQTouch. jQTouch requires that a top-level #jqt div element be

the container for the jQTouch components of your application. CSS rules are crafted

around this principle, and without it your application won’t display as it should. This is

one of the primary differences between the older release that is available on the jQTouch

web site and the new version—the older version does not have the #jqt container

requirement, and, while it makes things simpler, it also makes it more difficult to include

non-jQTouch parts of your application.

CHAPTER 11: Mobile UI Frameworks Compared 274

In our case, we made the following changes:

1. We replaced our top-level #app div with a top-level #jqt div.

2. We created “page” divs within the #jqt div to house our application pages. We

have one for the map (#mapper) and one for the detail display (#marker-detail).

This is somewhat similar to the layout we had prior to adding jQTouch.

3. Next, we added div elements with the class of toolbar to the pages that we want

a toolbar for (which is all of them). In the case of the #marker-detail page, we

also added a Back button, as, when the detail view is displayed, we want to be

able to return to the main map view.

4. We moved our #marker-nav bar to within the #mapper div so that we can navigate

around our markers.

If you have applied the changes successfully, your jQTouch version of Moundz will

simply display an empty page (due to CSS rules). We now need to activate jQTouch

within the moundz.js file to get things displaying correctly. We will do this by modifying

the initScreen function inside moundz.js.

function initScreen() {
 jQT = new $.jQTouch();

 $('#map_canvas').height(
 $('#mapper').height() -
 $('#mapper .toolbar').outerHeight() -
 $('#marker-nav').outerHeight()
);
} // initScreen

In addition to activating jQTouch, we set the height of the map canvas to fill the available

space in the #mapper div. Once this is done, you should see a screen similar to the one

displayed in Figure 11–9.

CHAPTER 11: Mobile UI Frameworks Compared 275

Figure 11–9. Once both the HTML and JavaScript changes have been completed, things start to come together.

With those modifications made, all of the basic elements are there. However, we have a

rather unappealing marker navigation bar displayed. Let’s make some modifications to

the moundz.css file to improve the look and feel of the marker navigation bar. Locate the

rule for the #marker-nav element and strip it back to a very basic look and feel:

#marker-nav {
 /* set general color and style */
 color: white;
 font-weight: bold;
 text-align: center;
 padding: 10px;
}

With that simple modification, we should have a more appealing display. Figure 11–10

shows an example of what you should expect to see.

CHAPTER 11: Mobile UI Frameworks Compared 276

Figure 11–10. With some CSS simplification, the display looks much improved.

As we have kept our structure from the original application with regard to the #marker-
nav bar, the application code all works as it did before. Clicking the left and right arrows

will toggle between resources and the title updates, as it should. All that remains now is

to update the functionality within the MOUNDZ module to properly handle showing the

resource details when the resource title is clicked.

Because we have kept many of the UI elements the same for the jQTouch sample, the

changes required here are very simple. All we need to do is update the code in our

showScreen function to call the correct method in jQTouch to update the screen:

function showScreen(screenId) {
 jQT.goTo('#' + screenId, 'slide');
} // showScreen

Essentially, we remove all of our custom code and pass the request on to the goTo

method of our jQTouch object. This takes care of the screen navigation, but we also

need to very slightly tweak the activateMarker function to update the title of the detail

page:

function activateMarker(marker) {
 // iterate through the markers and set to the inactive image
 for (var ii = 0; ii < markers.length; ii++) {
 markers[ii].setIcon('img/pin-inactive.png');
 } // for

 // update the specified marker's icon to the active image
 marker.setIcon('img/pin-active.png');

 // update the navbar title using jQuery

CHAPTER 11: Mobile UI Frameworks Compared 277

 $('#marker-nav .marker-title')
 .html(marker.getTitle())
 .removeClass('has-detail')
 .unbind('click');

 $('#marker-detail h1').html(marker.getTitle());

 // if content has been provided, then add the has-detail
 // class to adjust the display to be "link-like" and
 // attach the click event handler
 var content = markerContent[marker.getTitle()];
 if (content) {
 $('#marker-nav .marker-title')
 .addClass('has-detail')
 .click(function() {
 $('#marker-detail .content').html(content);
 showScreen('marker-detail');
 });
 } // if

 // update the marker navigation controls
 updateMarkerNav(getMarkerIndex(marker));
} // activateMarker

Once we have done this, we have successfully integrated jQTouch into Moundz. Figure

11–11 shows the screen you should see once you are able to navigate from a marker to

the detail page.

Figure 11–11. We are now able to navigate to the details for a resource in our jQTouch Moundz app.

This concludes our sample integrating with jQTouch. Next up is jQuery Mobile.

i

CHAPTER 11: Mobile UI Frameworks Compared 278

jQuery Mobile
While third on our list of mobile frameworks, jQuery Mobile is one of the frameworks that

has probably attracted the most attention. This is due in part to the popularity of the

jQuery library, and also in part to the amount of planning that has gone into the library.

 Framework: jQuery Mobile

 Style: Markup based

 Web site: http://jquerymobile.com

 License: Open source (MIT or GPL)

 Source code: https://github.com/jquery/jquery-mobile

 Requirements: jQuery (1.4.4)

The following are some of jQuery Mobile’s strengths:

 A great deal of research went into the state of mobile device browsers

before any work commenced on the library. An excellent resource

created as part of this research is the Mobile Graded Browser Support

chart, available at http://jquerymobile.com/gbs.

 There are sponsors and a very strong team behind this library.

 jQuery Mobile is based on and well integrated with jQuery.

 jQuery Mobile provides great documentation.

 It’s likely to be considered a quality solution by tech-savvy clients

when building mobile applications, given that it is an official jQuery

Foundation product. Thus, there’s little need to justify its use when

building a mobile web application.

The following are some of its weaknesses:

 At the time of writing, it’s still only in an alpha release state.

 For some, the tight integration with jQuery will be considered a

weakness.

NOTE: While the Mobile Graded Browser Support data was primarily developed as a tool to assist
with the development of the jQuery Mobile library, this is an excellent resource when building

mobile web applications in general. This chart is invaluable for making quick determinations of
where particular mobile applications may or may not run. Theoretically, the code that we have
worked on throughout the course of the book should work on any WebKit-powered device that is

rated with A-class support.

http://jquerymobile.com
https://github.com/jquery/jquery-mobile
http://jquerymobile.com/gbs

CHAPTER 11: Mobile UI Frameworks Compared 279

Getting Started with jQuery Mobile
At the time of writing, jQuery Mobile is in its 1.0 alpha 2 release. While there are likely to

be some changes between this version and the eventual stable release of 1.0, things

should work in more or less the same way. As such, it’s probably best to download the

latest stable release, which can be obtained from http://jquerymobile.com/download.

While that page includes information on how to include jQuery from a CDN (content

delivery network—see http://en.wikipedia.org/wiki/Content_delivery_network for

more information), it is recommended that you download the ZIP file so that wrapping

the application with PhoneGap is still an option.

NOTE: While a CDN offers an efficient way for web sites to optimize load times for scripts by
making use of a distributed network of servers, this does prevent applications from being
wrapped effectively for offline distribution. Carefully consider the type of application distribution

before using a CDN in mobile web application code.

Once you have downloaded the jQuery Mobile distribution, you should have a set of files

similar to that shown in Figure 11–12.

Figure 11–12. Currently, the jQuery Mobile distribution is very simple and light.

http://jquerymobile.com/download
http://en.wikipedia.org/wiki/Content_delivery_network

CHAPTER 11: Mobile UI Frameworks Compared 280

While the distribution does not contain any samples, these can be viewed online. For

instance, the 1.0 alpha 2 demos are available at http://jquerymobile.com/demos/1.0a2.

In addition to the jQuery Mobile library files, we will also need to obtain jQuery 1.4.4, as

this is a prerequisite for the jQuery Mobile framework. One of the simplest ways to get

jQuery 1.4.4 is to download it from the CDN location, at

http://code.jquery.com/jquery-1.4.4.min.js.

Now that we have the files that we need, let’s copy them into our jQuery Mobile Moundz

project. From the jQuery Mobile distribution, copy all the files into the main Moundz

directory, and copy the jquery-1.4.4.min.js file there also. After you have done this,

the Moundz application directory should resemble Figure 11–13.

Figure 11–13. Moundz application folder structure after adding required jQuery Mobile files

Once we have added the required jQuery Mobile (and jQuery) files, there will be a little

duplication. If we were building a production application, we would probably clean that

up, but for the sake of our challenge we’ll let it slide. We’ll now make the required

modifications to the HTML:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="jquery.mobile-1.0a2.min.css" />

http://jquerymobile.com/demos/1.0a2
http://code.jquery.com/jquery-1.4.4.min.js

CHAPTER 11: Mobile UI Frameworks Compared 281

<!-- <link rel="stylesheet" media="screen" href="moundz.css" /> -->
<script type="text/javascript" src="jquery-1.4.4.min.js"></script>
<script type="text/javascript" src="jquery.mobile-1.0a2.min.js"></script>
<script type="text/javascript" src="moundz.js"></script>
<!-- <script type="text/javascript" src="phonegap.js"></script> -->
<script type="text/javascript" src="http://api.geominer.net/jsapi/v1/geominer.js">
</script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript">
function initialize() {
 MOUNDZ.init();
} // initialize
</script>
</head>
<body onload="initialize()">
...
</body>
</html>

In the preceding code, we added the required jQuery Mobile files to the index.html file

and also changed the version of jQuery that is included in the sample (from jQuery-
1.4.2.min.js to jQuery-1.4.4.min.js). Additionally, we commented out the moundz.css
file to prevent any CSS conflicts.

We are now ready to get Moundz working with jQuery Mobile.

Moundz and jQuery Mobile
Like jQTouch, jQuery Mobile uses a markup-based approach to a UI framework. This

means that we need to construct our HTML so that jQuery Mobile can interpret it

correctly and apply necessary styling and JavaScript processing. A good starting point

for our jQuery Mobile Moundz application’s index.html file follows.

<!DOCTYPE html>
<html>
<head>
...
</head>
<body onload="initialize()">
<div id="main" data-role="page">
 <div data-role="header">
 <h1>Moundz</h1>
 </div>
 <div id="map_canvas" data-role="content"></div>
 <div data-role="footer" class="ui-bar" data-id="moundz_footer">
 <div id="marker-nav" data-role="controlgroup" data-type="horizontal">
 Previous
 ** Place Name **
 Next
 </div>
 </div>
</div>
<div id="marker-detail" data-role="page">
 <div data-role="header">

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://api.geominer.net/jsapi/v1/geominer.js
http://maps.google.com/maps/api/js?sensor=true

CHAPTER 11: Mobile UI Frameworks Compared 282

 <h1>Location Detail</h1>
 </div>
 <div data-role='content'>
 </div>
</div>
</body>
</html>

In the preceding code, we created two separate pages for our application display. First,

we have our main application page, which will contain the map, and, second, we have

the page that will display the detail from the selected location (as per our non-framework

version).

In jQuery Mobile, the data-role attribute in an HTML element is used to provide jQuery

Mobile with information regarding its purpose. Our pages have a data role of page, and

inside each page we have more divs with different values for the data-role attribute.

jQuery Mobile makes extensive use of data-* attributes to specify how UI elements

should behave; while not exhaustive, Table 11–1 lists a few that we will encounter in this

sample.

Table 11–1. Some of the Common jQuery Mobile Data Attributes

Attribute Description

data-role The value of the data-role attribute defines the type of UI element that

will be created once the HTML has been processed by jQuery Mobile.

Primarily, UI elements are transformed by the jQuery Mobile library at

runtime by simply adding relevant CSS classes which influence the

look and feel of the original HTML. In some cases, jQuery Mobile will

also add additional HTML elements to the DOM to create the relevant

mobile web page.

data-id The data-id element is used to specify a unique identifier for the UI

control. This ID can be used to tell jQuery Mobile that a particular

element should remain consistent between different pages in the UI.

data-icon Some UI elements (such as the button control) can contain icons to

help represent the purpose of the control. Icons are specified using a

name that relates to a particular icon. There are a number of built-in

icons that can be used, such as the one in our sample. Additionally,

you can use custom icons by specifying a unique identifier and then

defining some custom CSS for that icon. More information can be

found at the following URL:
http://jquerymobile.com/demos/1.0a2/#docs/buttons/buttons-
icons.html

With our modified HTML with the data-role attributes in place, jQuery Mobile can begin

to work with our application layout. Figure 11–14 shows an example of the UI generated

from the preceding index.html file.

http://jquerymobile.com/demos/1.0a2/#docs/buttons/buttons-icons.html
http://jquerymobile.com/demos/1.0a2/#docs/buttons/buttons-icons.html
http://jquerymobile.com/demos/1.0a2/#docs/buttons/buttons-icons.html

CHAPTER 11: Mobile UI Frameworks Compared 283

Figure 11–14. The initial effort with jQuery Mobile yields a header and footer, but not much of a map.

As with our work with the other frameworks so far, the default instructions for including a

Google map don’t yield a very positive result. As such, some special treatment is going

to be required to display the map correctly.

NOTE: When writing this book, we got to framework three and the integration of a Google map
still consistently failed, so it was time to do some further investigation. Was it just one version of
Android that had this issue? It would appear not—testing with Android 1.6, 2.1, and 2.2 all
revealed the same problem across the board.

While not conclusive, this seems tied to the fact that each of the frameworks makes use of
absolute positioning to some degree with regard to controlling their layouts. This in turn makes
correctly sizing child div elements difficult, and yields an incorrect map display. It’s something

that can be worked around, but it is nonetheless frustrating.

As with our work with jQTouch, the fix is to manually size the map container to fit the

containing page. We will make our adjustments to moundz.js to do that, and perform

some other initialization to prepare the Moundz UI. As with earlier examples, we make

our adjustments to the screen layout in the initScreen function:

function initScreen() {
 // size the canvas to the height of the page minus the header
 $('#map_canvas').height(
 $('#main').height() -
 $('#main div[data-role="header"]').outerHeight() -
 $('#main div[data-role="footer"]').outerHeight() - 30

CHAPTER 11: Mobile UI Frameworks Compared 284

);
} // initScreen

In this case, the changes required are relatively minor, but hardly scientific. We

essentially size the height of the map to the height of the page (the #main div) minus the

height of the header and footer within the page (plus a fudge factor of 30 pixels to have

everything display accurately). With that change complete, our Moundz main screen is

starting to look the part. Figure 11–15 shows an example.

Figure 11–15. The jQuery Mobile Moundz interface is starting to come together.

With the interface starting to come together, we just need to make some further

modifications to moundz.js to get things working with our modified HTML.

First, we will update the activateMarker function to update the middle button on the

page footer:

function activateMarker(marker) {
 // iterate through the markers and set to the inactive image
 for (var ii = 0; ii < markers.length; ii++) {
 markers[ii].setIcon('img/pin-inactive.png');
 } // for

 // update the specified marker's icon to the active image
 marker.setIcon('img/pin-active.png');

 // update the navbar title using jQuery
 $('#marker-nav a[href="#marker-detail"]')
 .unbind('tap’)
 .find('.ui-btn-text')
 .html(marker.getTitle());

CHAPTER 11: Mobile UI Frameworks Compared 285

 // if content has been provided, then add the has-detail
 // class to adjust the display to be "link-like" and
 // attach the click event handler
 var content = markerContent[marker.getTitle()];
 if (content) {
 $('#marker-nav a[href="#marker-detail"]')
 .tap(function() {
 $('#marker-detail div[data-role="content"]').html(content);
 });
 } // if

 // update the marker navigation controls
 updateMarkerNav(getMarkerIndex(marker));
} // activateMarker

While the start of the code here is exactly the same as we had in the non-framework

version, there are some differences after that:

1. Rather than target the anchor using a class selector, we are now using an

attribute selector to find the link that takes us to the #marker-detail page.

2. Once that link is found, we unbind from the tap event rather than the click event,

as jQuery Mobile uses these tap events to communicate that the user has tapped

a particular control on the screen.

3. Next, we locate a span with the ui-btn-text class within the anchor tag and

replace its content with the title of the marker. As mentioned previously, for some

of the data-role types, jQuery Mobile will generate additional HTML elements to

properly create the look and feel needed for the UI. This is the case with buttons.

As such, we need to update the text within the ui-btn-text span within the

anchor rather than the text of the anchor itself.

4. We then move on to binding to the tap event of the button when a marker has

content. As before, we locate the link that will take us to the #marker-detail page

and add a handler to the tap event that will occur. The handler for this tap event

simply updates the HTML content in the content area of the #marker-detail page,

in a similar way to what our non-framework UI did previously.

Once these changes have been made, you should be able to navigate to a detail screen

in the application by clicking the middle button in the footer. Figure 11–16 shows how

the two pages should look in an Android emulator.

CHAPTER 11: Mobile UI Frameworks Compared 286

Figure 11–16. We now have the basis of a working multipage jQuery Mobile application.

Now that we have simple paging working in the application, we just need to attach

appropriate event handlers to allow our user to navigate between all the resource

locations that are displayed. We do this by making some fairly subtle changes to the

updateMarkerNav function:

function updateMarkerNav(markerIndex) {
 // find the marker nav element
 var markerNav = $('#marker-nav');

 // reset the disabled state for the images and unbind click events
 markerNav.find('a')
 .addClass('disabled')
 .unbind('tap');

 // if we have more markers at the end of the array, then update
 // the marker state
 if (markerIndex < markers.length - 1) {
 markerNav.find('a.right')
 .removeClass('disabled')
 .tap(function() {
 activateMarker(markers[markerIndex + 1]);
 });
 } // if

 if (markerIndex > 0) {
 markerNav.find('a.left')
 .removeClass('disabled')
 .tap(function() {
 activateMarker(markers[markerIndex - 1]);

CHAPTER 11: Mobile UI Frameworks Compared 287

 });
 } // if
} // updateMarkerNav

Here, we’re essentially just replacing our search for img tags within the #marker-nav div

with a search for anchor elements instead. Additionally, as before, we replace references

to click events with appropriate tap handlers.

That’s it. Our Moundz application as it existed before has been converted to a jQuery

Mobile application with relative ease.

Sencha Touch
Sencha Touch is the last of the frameworks that we will look at in this chapter with our

Moundz conversion challenge. In some respects, Sencha Touch could be considered

the next evolution of jQTouch, considering that jQTouch’s creator (David Kaneda) joined

Sencha and became part of the team that eventually released Sencha Touch. Like Jo,

Sencha Touch follows a declarative style.

 Framework: Sencha Touch

 Style: Declarative

 Web site: www.sencha.com/products/touch

 License: Dual-licensed (GPL and commercial—currently free)

 Source code: Available in download

 Requirements: None

The following are some of Sencha Touch’s strengths:

 Sencha Touch has an extremely robust and well-tested framework, so,

when building a mobile web UI for Android, it will also work well on

iOS devices.

 The framework also has user interface elements that cater for larger

mobile device screen sizes (such as tablet devices)..

 It has excellent touch event support, so it’s a great choice for building

touch- and canvas-oriented applications.

 It has the most complete suite of UI widgets of any of the frameworks

covered in this chapter.

 It has very solid documentation.

The following are some of its weaknesses:

 Sencha Touch is the most heavyweight of the frameworks we’ve

looked at (by quite a bit). Its large library size is mitigated by the ability

to customize the build of the library, but it is inconvenient.

http://www.sencha.com/products/touch

CHAPTER 11: Mobile UI Frameworks Compared 288

 There is some uncertainty about its commercial licensing. It’s free for

open source projects, but the commercial license applies for closed-

source projects. Currently, the library is provided at no charge, but this

could always change.

Getting Started with Sencha Touch
As with the other frameworks we have worked with so far, we first need to download

Sencha Touch. As Sencha Touch is the only framework in this chapter that is covered by

a commercial license (when used for commercial development), you will need to register

your details before downloading. You can, however, download the GPL version if you

intend to release an application built with Sencha Touch under a GPL license.

Either way, head to the Sencha Touch product page and follow the instructions to

download the library. Once you have the library, extract the archive, and you should see

a folder structure similar to what is displayed in Figure 11–17.

Figure 11–17. The Sencha Touch 1.0 release folder structure

The Sencha Touch distribution contains quite a large number of files, including the

source files for the library and some pretty useful tools for working with the library. We

CHAPTER 11: Mobile UI Frameworks Compared 289

won’t go into detail on these here, but if you have the time they are definitely worth

investigating.

For the purposes of the challenge, let’s take the files that we need and copy them into

the Moundz challenge directory. For this exercise, we will take the JavaScript files from

the main directory, and the css directory from the resources folder. Once we have done

this, the Sencha Moundz directory should look something like Figure 11–18.

Figure 11–18. After adding the required Sencha Touch files to the Moundz directory, we will have a css directory
and a few extra JavaScript files.

With the required files in places, let’s now modify our HTML to include the required files.

As with our earlier example with Jo, we will remove the HTML elements from the body

tag, as Sencha uses a declarative style to create the required HTML elements.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="css/android.css" />
<!-- <link rel="stylesheet" media="screen" href="moundz.css" /> -->
<script type="text/javascript" src="jquery-1.4.2.min.js"></script>
<script type="text/javascript" src="sencha-touch-debug.js"></script>
<script type="text/javascript" src="moundz.js"></script>
<!-- <script type="text/javascript" src="phonegap.js"></script> -->
<script type="text/javascript" src="http://api.geominer.net/jsapi/v1/geominer.js">

http://api.geominer.net/jsapi/v1/geominer.js

CHAPTER 11: Mobile UI Frameworks Compared 290

</script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">
</script>
<script type="text/javascript">
function initialize() {
 // MOUNDZ.init();
} // initialize
</script>
</head>
<body onload="initialize()">
</body>
</html>

In the preceding code, we included the android.css stylesheet, which is part of the

Sencha Touch distribution, and commented out moundz.css to prevent any CSS

conflicts. We then included the sencha-touch-debug.js file so we can work through any

problems that might arise during the integration effort (this file would be replaced with

sencha-touch.js before being released). Finally, we commented out the call to

MOUNDZ.init() from the initialize function. We did this because Sencha Touch has its

own “ready” event that we will need to hook into to properly initialize the application.

Moundz and Sencha Touch
By now, you should be feeling pretty comfortable integrating frameworks into Moundz.

Integrating Sencha will be a little different from our previous experiences due to the way

Sencha libraries function.

The first part of this process is to call Ext.setup within our MOUNDZ module to properly

initialize our Sencha Touch application:

MOUNDZ = (function() {
 ...

 Ext.setup({
 onReady: function() {
 module.init();
 }
 });

 return module;
})();

In this case, we are simply telling Sencha Touch that, when it is properly initialized, we

want to execute the init function of our MOUNDZ module. In addition to the onReady

handler defined in the preceding code, the Ext.setup function can take parameters that

can be used to configure the look and feel of the application and device integration for

various platforms. More details on the setup function can be found in the Sencha Touch

documentation, at http://dev.sencha.com/deploy/touch/docs/?class=Ext.

From this point, we then proceed to update our initScreen function to create the main

Ext.Panel that will be used to drive our application.

MOUNDZ = (function() {
 // initialize variables

http://maps.google.com/maps/api/js?sensor=true
http://dev.sencha.com/deploy/touch/docs/?class=Ext

CHAPTER 11: Mobile UI Frameworks Compared 291

 var mainPanel = null,
 ...
 posWatchId = 0;

 ...

 function initScreen() {
 mainPanel = new Ext.Panel({
 id: 'mainPanel',
 layout: 'card',
 dockedItems: [
 createHeader(),
 createFooter()
],
 fullscreen: true,
 ui: 'light',
 defaults: {
 scroll: false
 },
 items: [{
 xtype: 'map',
 id: 'main_map'
 }, {
 xtype: 'sheet',
 id: 'details_panel',
 style: 'color: white'
 }
],
 listeners: {
 cardswitch: function(container, newCard, oldCard, index, animated) {
 var backButton = Ext.getCmp('goback');
 if (backButton) {
 backButton[index === 0 ? 'disable' :
'enable'].apply(backButton);
 } // if
 }
 }
 });
 } // initScreen ...

 var module = {
 ...
 };

 Ext.setup({
 onReady: function() {
 module.init();
 }
 });

 return module;
})();

In this code, we update the initScreen function to create the main panel for the

application. We are creating an Ext.Panel that will be used to hold the two pages for our

application. The first of these pages is the map control, and the second is a details panel

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11: Mobile UI Frameworks Compared 292

that we will show the resource information on—you can see the pages defined in the

items array of the panel definition.

At this point, it is worth noting that Sencha Touch actually provides a map control for

embedding a Google map into our UI. This is definitely going to come in handy, as the

map integration has been problematic in most of the previous frameworks.

Additionally, note the two function calls that are embedded within the dockedItems array.

This is where we will create our top and bottom toolbars for our application layout.

Let’s now take a look at the createHeader function that is used to create the application

header:

function createHeader() {
 return new Ext.Toolbar({
 dock: 'top',
 ui: 'light',
 defaults: {
 iconMask: true
 },
 layout: {
 pack: 'justify'
 },
 items : [{
 xtype: 'button',
 text: 'Back',
 ui: 'back',
 id: 'goback',
 disabled: true,
 handler: function(button, event) {
 Ext.getCmp('mainPanel').setCard(0);
 }
 }, {
 xtype: 'spacer'
 }, {
 xtype: 'panel',
 html: '<h1>Moundz</h1>'
 }, {
 xtype: 'spacer'
 }]
 });
} // createHeader

You can probably see in this code that the process of creating a header in Sencha is not

as easy as in some other frameworks. The payoff is some extra robustness when it

comes to rendering the display, but for some people the cost is too high. Additionally,

the learning curve with Sencha is probably a little steeper than with other frameworks,

purely due to the amount of functionality it offers.

CHAPTER 11: Mobile UI Frameworks Compared 293

NOTE: Due to the complexity of the Sencha Touch framework, we won’t be able to explain all of
the components in detail. We will, however, endeavor to provide a feel for how the framework
operates and put you on the path to finding out more and being able to explore the framework on

your own.

One of the most important things to be aware of is the use of xtype to define UI elements. This
is similar in many respects to the way jQuery Mobile uses the data-role attribute in the HTML

to specify the kind of UI element that should be created.

UNDERSTANDING OBJECT INITIALIZATION IN SENCHA TOUCH

The main thing to get your head around when using the xtype attribute (as we did in the previous code
sample) is that it is essentially interchangeable with manually creating its relevant class and referencing
that variable. This is one of the quite clever aspects of the Sencha Touch approach, and it does create
some interesting possibilities.

While it may take a while to digest and understand, there is a very fluid mapping between the object
definitions using object literals and xtypes and their more formal definitions. For an example, take a
moment to review the Ext.Toolbar reference at the following URL:

http://dev.sencha.com/deploy/touch/docs/?class=Ext.Toolbar

You should start to see the relationship between the preceding definition and the attributes in the
Ext.Toolbar class. Try another one—this time Ext.Button:

http://dev.sencha.com/deploy/touch/docs/?class=Ext.Button

Notice that, if we were to create a new Ext.Button object, it would accept a number of configuration
options, and this would include items such as text and disabled. These are defined in the preceding
object literal definition.

To demonstrate the point, let’s quickly refactor the createHeader function to first define an
Ext.Button class and then include the object in our definition of the Ext.Toolbar:

function createHeader() {
 var backButton = new Ext.Button({
 text: 'Back',
 ui: 'back',
 id: 'goback',
 disabled: true,
 handler: function(button, event) {
 Ext.getCmp('mainPanel').setCard(0);
 }
 });

 return new Ext.Toolbar({
 dock: 'top',
 ui: 'light',
 defaults: {
 iconMask: true
 },

http://dev.sencha.com/deploy/touch/docs/?class=Ext.Toolbar
http://dev.sencha.com/deploy/touch/docs/?class=Ext.Button

CHAPTER 11: Mobile UI Frameworks Compared 294

 layout: {
 pack: 'justify'
 },
 items : [backButton, {
 xtype: 'spacer'
 }, {
 xtype: 'panel',
 html: '<h1>Moundz</h1>'
 }, {
 xtype: 'spacer'
 }]
 });
} // createHeader

What we have done in this code is equivalent to the earlier code. Hopefully, this gives a bit of insight as to
the different ways in which UI elements can be defined in Sencha Touch.

With the createHeader function complete, we now just need to implement the

createFooter function to finish off the basic layout of our application.

function createFooter() {
 return new Ext.Toolbar({
 dock: 'bottom',
 ui: 'light',
 layout: {
 pack: 'justify'
 },
 items: [{
 xtype: 'button',
 text: 'Previous',
 handler: function(button, evt) {
 activateMarker(markers[markerIndex - 1]);
 }
 }, {
 xtype: 'button',
 id: 'btnResource',
 text: 'Resource Title',
 handler: function(button, evt) {
 mainPanel.setActiveItem(1);
 }
 }, {
 xtype: 'button',
 text: 'Next',
 handler: function(button, evt) {
 activateMarker(markers[markerIndex + 1]);
 }
 }]
 });
} // createFooter

In this code, we create another Ext.Toolbar that is set to dock at the bottom of the

screen. For the toolbar items, we specify three buttons, one each for moving forward

and back, and another to take us to the resource details page.

CHAPTER 11: Mobile UI Frameworks Compared 295

Each of the buttons is assigned appropriate event handlers, the Next and Previous

buttons activate the appropriate markers in the marker list, and the button that will

display the resource title takes the user to the details screen when it is clicked.

All being well, a screen similar to the one in Figure 11–19 should be displayed.

Figure 11–19. The initial display of our UI in Sencha Touch actually displays a map—impressive.

As you can see, we have an application laid out with a mapping control appropriately

sized to the screen. So, while we had to do some extra work to get the UI set up, the

inclusion of the mapping control into Sencha Touch has made life easy here. We now

need to move on to initializing the map with the appropriate location and get some

markers displayed on the map.

To have the map display integrate with our existing Moundz application code, we need

to make some modifications to the gotoPosition function.

function gotoPosition(position, zoomLevel) {
 // define the required options
 var myOptions = {
 zoom: zoomLevel ? zoomLevel : DEFAULT_ZOOM,
 center: position,
 mapTypeControl: false,
 streetViewControl: false,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 /*
 // initialize the map
 map = new google.maps.Map(
 document.getElementById("map_canvas"),

CHAPTER 11: Mobile UI Frameworks Compared 296

 myOptions);
 */

 // save a reference to the map control
 map = Ext.getCmp('main_map').map;

 // set the options of the map
 map.setOptions(myOptions);
} // gotoPosition

In the preceding code, we do three things:

1. We comment out the previous code that created a Google map control for us; this

is no longer required, since Sencha Touch has created one for us.

2. We get a reference to the map that Sencha Touch has created, and we save that

to the map variable that is part of the MOUNDZ module. As we use this variable in

other function calls, our existing functionality should just work.

3. We update the options of the map to match the options we would have provided

if we had created the map ourselves.

Once this is done, you should get a display similar to the one shown in Figure 11–20.

Figure 11–20. Our Sencha Touch version of Moundz now displays markers.

We now just need to make some changes to functions within the MOUNDZ module to

synchronize our application state with the UI controls. We will start with the

activateMarker function:

MOUNDZ = (function() {

CHAPTER 11: Mobile UI Frameworks Compared 297

 // initialize constants
 var DEFAULT_ZOOM = 8,
 GEOMINER_MOUNDZ_URL = 'http://api.geominer.net/v1/moundz';

 // initialize variables
 var geominer = null,
 ...
 markerIndex = 0,
 posWatchId = 0;

 /* private functions */

 function activateMarker(marker) {
 // iterate through the markers and set to the inactive image
 for (var ii = 0; ii < markers.length; ii++) {
 markers[ii].setIcon('img/pin-inactive.png');
 } // for

 // update the specified marker's icon to the active image
 marker.setIcon('img/pin-active.png');

 Ext.getCmp('btnResource').setText(marker.getTitle());
 Ext.getCmp('details_panel').update(markerContent[marker.getTitle()]);

 // update the marker navigation controls
 markerIndex = getMarkerIndex(marker);
 } // activateMarker

 ...
})();

Interestingly, the activateMarker function has actually been simplified using Sencha

Touch here. We simply set the text of the middle button using the setText method of the

button, and call the update method of the details_panel to supply the appropriate

content to the details page.

Additionally, we assign the current marker index to the new module variable

markerIndex, which will allow the buttons that we defined in the createFooter function

to switch between the various resource locations.

Once this is done, we can navigate through the markers using the navigation buttons,

and display the details for a resource by clicking the resource information button in the

footer.

There we have it—a Sencha Touch version of our Moundz application, as shown in

Figure 11–21.

http://api.geominer.net/v1/moundz

CHAPTER 11: Mobile UI Frameworks Compared 298

Figure 11–21. The final Sencha Touch version of our Moundz application

Summary
This brings us to the end of our look at four different mobile UI frameworks. As we have

seen, each of the four frameworks discussed in this chapter is quite different in its

approach, and each has strengths and weaknesses in different areas.

As mentioned, there really is no best framework. jQuery Mobile and Sencha Touch are

definitely both going to be heavy hitters over the next couple of years, and it’s likely that

fans of one framework will dislike the other due to the different approaches. Additionally,

Jo is gaining popularity and jQTouch has a loyal community behind it (how it competes

with jQuery Mobile in the long run, though, will be interesting).

Hopefully, this chapter has assisted you in identifying a mobile UI framework that sits

well with your own particular style. Or perhaps you’d prefer to construct your own

application interface due to particular requirements that you have.

For our sample game application, we will take the jQuery Mobile interface that we

worked through and polish it up in the next chapter. We’re using jQuery Mobile primarily

because we have worked extensively with jQuery throughout the book.

299

299

 Chapter

Polishing and Packaging
an App for Release
One of the great things about developing mobile application using web technologies is

that you have a choice about how you package and deploy your application. If you build

with native tools, then you have only one option. Admittedly, it’s a very good option, but

still you don’t have a choice.

By using web technologies coupled with tools like PhoneGap, you can choose to deploy

you application for consumption via a web browser, or wrap your web application for

native marketplace distribution.

In this chapter, we will finish writing our sample geosocial game app, Moundz, using the

jQuery Mobile sample that we compiled in the previous chapter. Once coding is

complete (we still have a bit to do), we will package that for marketplace distribution.

Continuing on with jQuery Mobile
In the last chapter, we looked at four different mobile UI frameworks, one of which was

jQuery Mobile. Given that throughout the book we have used jQuery extensively, it

makes sense that we carry the jQuery Mobile sample forward to completion.

NOTE: At the time of writing, jQuery Mobile is still in an alpha release status, so minor tweaks
may be required to make the samples work on the latest stable version that is presently

available.

Reinstating the Login Screen
When we first put together the Moundz application without using a mobile UI framework,

we included a splash and login screen for the application. We’ll put that back in for our

12

CHAPTER 12: Polishing and Packaging an App for Release 300

jQuery Mobile version of the application. But first, let’s copy the jQuery Mobile challenge

code from the previous chapter to a place where we can finish it off. Rather than

overwriting our previous moundz directory, copy the files from

frameworks/challenge/jQueryMobile to a moundz-jqm directory. Once you have done

this, you should have a directory structure that resembles Figure 12–1.

Figure 12–1. The directory structure for the jQuery Mobile version of Moundz

We will now go about making the required modifications to the code. Let’s start with the

index.html file:

<!DOCTYPE html>
<html>
<head>
<title>jQueryMobile Moundz</title>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
<link rel="stylesheet" media="screen" href="jquery.mobile-1.0a2.min.css" />
<link rel="stylesheet" media="screen" href="moundz.css" />
<script type="text/javascript" src="jquery-1.4.4.min.js"></script>
<script type="text/javascript" src="jquery.mobile-1.0a2.min.js"></script>
<script type="text/javascript" src="moundz.js"></script>
<!-- <script type="text/javascript" src="phonegap.js"></script> -->
<script type="text/javascript" src="http://api.geominer.net/jsapi/v1/geominer.js">
</script>
<script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=true">

http://api.geominer.net/jsapi/v1/geominer.js
http://maps.google.com/maps/api/js?sensor=true

CHAPTER 12: Polishing and Packaging an App for Release 301

</script>
<script type="text/javascript">
function initialize() {
 MOUNDZ.init();
} // initialize
</script>
</head>
<body onload="initialize()">
<div id="splash">
 Welcome to

 <p class="hint">
 Press the 'Sign in with Twitter' button below to get started playing.
 </p>
 </login>
</div>
<div id="main" class="noauth" data-role="page">
 <div data-role="header">
 <h1>Moundz</h1>
 </div>
 <div id="map_canvas" data-role="content"></div>
 <div data-role="footer" class="ui-bar" data-id="moundz_footer">
 <div id="marker-nav" data-role="controlgroup" data-type="horizontal">
 Previous
 ** Place Name **
 Next
 </div>
 </div>
</div>
<div id="marker-detail" class="noauth" data-role="page">
 <div data-role="header">
 <h1>Location Detail</h1>
 </div>
 <div data-role='content'>
 </div>
</div>
</body>
</html>

In the preceding code, we make only a few changes, and these mainly involve

reinstating code that we had earlier.

First, we once again include the moundz.css stylesheet, as it includes styles that are

needed to properly style the splash screen. Next, we reinstate the #splash div to have

the splash screen properly displayed, and finally we add the class noauth to both of the

jQuery Mobile pages that we created in the previous chapter.

We now need to make some changes to moundz.css to bring the old and the new

together nicely. The first change that is required to the CSS file is updating the rule that

previously specified the style for the #app div with the following:

/* application window styles */

div.noauth {
 visibility: hidden;
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12: Polishing and Packaging an App for Release 302

Very simply, this means that any div elements with the class of noauth will not be

displayed at application start. The next step in tweaking the moundz.css file involves

completely removing any CSS rules that relate to the #marker-nav element. The segment

of CSS that you need to remove is shown (summarized) here:

/* marker navigation bar */
#marker-nav {
 /* set general color and style */
 background: rgba(33, 69, 123, 0.8);
 color: white;
 font-weight: bold;
 text-shadow: 1px 1px 1px rgba(50, 50, 50, 0.85);
 text-align: center;

 /* initialize positioning and layout */
 position: absolute;
 top: 20px;
 z-index: 90;
 width: 90%;
 margin: 0 2%;
 padding: 18px 3% 10px;

 /* add the 'mandatory' border radius */
 border: 2px solid rgba(255, 255, 255, 0.2);
 -webkit-border-radius: 12px;
}

...

#marker-nav span.has-detail {
 text-decoration: underline;
}

Once these changes are complete, running Moundz in the emulator should display as it

did before. Figure 12–2 shows an example of what you should see.

CHAPTER 12: Polishing and Packaging an App for Release 303

Figure 12–2. The login screen for Moundz has been restored in our jQuery Mobile version.

While the screen displays correctly, things will not work as they should yet. An attempt

to authenticate will simply return you to the splash screen again, as in the previous

chapter we just disabled handling of the authenticated event on our GEOMINER.Bridge

instance. It is quite trivial to reinstate, however, as shown in the following code:

MOUNDZ = (function() {
 ...

 var module = {
 addMarker: addMarker,
 clearMarkers: clearMarkers,

 findResources: findResources,

 init: function(zoomLevel) {
 // initialize the geominer bridge
 geominer = new GEOMINER.Bridge({
 app: 'moundz',
 login: '#login'
 });

 $(geominer).bind('authenticated', function(evt) {
 $('#splash').hide();
 $('.noauth').removeClass('noauth');

 // run the app
 run(zoomLevel, new google.maps.LatLng(-33.86, 151.21));
 });

CHAPTER 12: Polishing and Packaging an App for Release 304

 // initialize the screen
 initScreen();
 },

 ...
 };

 return module;
})();

Although we were simply able to uncomment the actual authenticated event handler, we

also need to tweak the display logic a little. While we do still want to hide the #splash

div once we have successfully authenticated, we no longer want to display the #app div

when completed. Instead, we want to remove any instances of the noauth class from

divs that have been initialized with that in the HTML.

Additionally, to help keep the chapter flowing, we have left the mock location in for the

time being (as specified in the second parameter of the run function), but we will remove

it before the end of the chapter so we can go back to using the location detection

routines.

Once these modifications have been completed successfully, it should be possible to

log into Moundz as we were doing in Chapter 10. Figure 12–3 shows an example of how

this appears with the updated jQuery Mobile interface.

Figure 12–3. Moundz displaying markers in the jQuery Mobile interface—some polishing is still required, though.

With that complete, we are on the road to being able to polish up our application and

add some of those outstanding features. On the to-do list we have:

CHAPTER 12: Polishing and Packaging an App for Release 305

 Cleaning up the alignment of the bottom buttons to achieve a nice,

centered alignment and prevent wrapping

 Adding the ability for a user to collect resources

Improving Navigation Layout
While we won’t spend too much time on it, it is worth having a quick look at ways that

we can improve how those navigation controls format. As shown in Figure 12–3, the

alignment of the controls is not optimal; also, it is possible for the Next button to wrap

over to the next line when a long place name is found.

The good news is that half the work is already taken care of for us thanks to the CSS

that is packaged with jQuery Mobile—any text that cannot fit into a button of a particular

fixed width (or maximum width) will be shortened with an ellipsis (a series of three dots;

see http://en.wikipedia.org/wiki/Ellipsis). All we have to do is appropriately limit

the button sizes.

To achieve this, we will use another new CSS3 feature—the flexible box layout (see

www.w3.org/TR/css3-flexbox)—combined with some standard CSS rules to control

HTML element width.

No changes are required to our HTML, so simply add the following CSS to the end of

the moundz.css file:

/* navigation control visual treatment */

#marker-nav a {
 max-width: 32%;
}

#marker-nav a.left, #marker-nav a.right {
 width: 90px;
}

#marker-nav {
 display: -webkit-box;
 -webkit-box-pack: center;
}

Now, there is nothing overly complicated here. We have a CSS class that tells anchor

tags within the #marker-nav element to have a width no greater than 32 percent (of the

parent element). We then override that style for any anchors with left or right classes

to set their width manually to 90px.

Finally, we specify a rule that implements some CSS3 flexbox magic for the #marker-nav

element. First, we modify the display to -webkit-box (as per the previous CSS3, we

prepend the proprietary webkit prefix) and then tell the element that we want to display

any child elements in the center of the control. This is done using the -webkit-box-pack
rule, and it is set to the value of center.

http://en.wikipedia.org/wiki/Ellipsis
http://www.w3.org/TR/css3-flexbox)%E2%80%94combined

CHAPTER 12: Polishing and Packaging an App for Release 306

NOTE: Using the CSS3 flexible box layout is a good option here, but you might be looking at the
code and HTML elements involved and wondering why a simple text-align rule wasn’t used.
In truth, it could have been in this particular case; however, it doesn’t yield as visually pleasing

results given some of the other CSS rules put in place by jQuery Mobile.

As such, we have gone with the CSS3 flexible box layout approach. Here’s some further reading

on the topic: www.html5rocks.com/tutorials/flexbox/quick.

Once we have made our changes to the CSS, the button alignment should be much

more visually pleasing—as is displayed in Figure 12–4.

Figure 12–4. With some CSS we can constrain our button sizes, replacing overflow text with an ellipsis.

With the navigation buttons more attractively displayed, having that Next arrow left-

aligned on the button is standing out more than it did before. Time to do something

about that. Thankfully, this is made super simple by jQuery Mobile.

Locate the anchor tag for the Next button in the HTML and simply add a data-iconpos
attribute with the value of right to the HTML.

<div id="marker-nav" data-role="controlgroup" data-type="horizontal">
 Previous
 Info
 <a href="#" data-role="button" data-icon="arrow-r" data-iconpos="right"
class="right">Next
</div>

http://www.html5rocks.com/tutorials/flexbox/quick

CHAPTER 12: Polishing and Packaging an App for Release 307

With this trivial change in place, our navigation button now displays with the icon to the

right of the button, as shown in Figure 12–5.

Figure 12–5. Our navigation bar is starting to look pretty polished—time to work on the rest of the app.

Gathering Resources
With the front screen of the application starting to come together, it’s time to work on

some of those features that we left out of the build so far. One of the most important is

the ability to gather our resources for the game. These resources could be whatever you

need them to be for your geosocial game. If you are building a classic strategy game,

then the resources could be things like wood, coal, or gold. But they could just as easily

be something completely different—it really is up to you. For the purposes of our sample

here, however, we will just keep the term generic.

Building the Resource Details Screen
Before we implement functionality for gathering the resources, though, there are a few

things that we need to do in the main moundz.js file that will assist us with managing the

state of the application. Until now, we have simply been displaying some debug-level

information when a marker has been selected, and that really is no longer appropriate

for what we need to do. The following code shows the modifications required to the

moundz.js file to assist with keeping track of resource data in the application.

MOUNDZ = (function() {
 // initialize constants
 var DEFAULT_ZOOM = 8,

CHAPTER 12: Polishing and Packaging an App for Release 308

 GEOMINER_MOUNDZ_URL = 'http://api.geominer.net/v1/moundz';

 // initialize variables
 var geominer = null,
 ...
 markerData = {},
 currentResource = '',
 posWatchId = 0;

 /* private functions */

 function activateMarker(marker) {
 // iterate through the markers and set to the inactive image
 for (var ii = 0; ii < markers.length; ii++) {
 markers[ii].setIcon('img/pin-inactive.png');
 } // for

 // update the specified marker's icon to the active image
 marker.setIcon('img/pin-active.png');

 // update the navbar title using jQuery
 $('#marker-nav a[href="#marker-detail"]')
 .find('.ui-btn-text')
 .html(marker.getTitle());

 // update the active marker title
 currentResource = marker.getTitle();

 // update the marker navigation controls
 updateMarkerNav(getMarkerIndex(marker));
 } // activateMarker

 function markResources(resourceType, deposits) {
 for (var ii = 0; ii < deposits.length; ii++) {
 // add the marker for the resource deposit
 addMarker(
 new google.maps.LatLng(deposits[ii].lat, deposits[ii].lng),
 deposits[ii].name,
 deposits[ii]);
 } // for
 } // markResources

 ...

 /* exported functions */

 function addMarker(position, title, data) {
 // create a new marker and display it on the map
 var marker = new google.maps.Marker({
 position: position,
 map: map,
 title: title,
 icon: 'img/pin-inactive.png'
 });

 markerPosition = position;

http://api.geominer.net/v1/moundz

CHAPTER 12: Polishing and Packaging an App for Release 309

 // save the marker data
 markerData[title] = data;

 // add the marker to the array of markers
 markers.push(marker);

 // capture touch click events for the created marker
 google.maps.event.addListener(marker, 'click', function() {
 // activate the clicked marker
 activateMarker(marker);
 });
 } // addMarker

 ...

 var module = {
 ...
 };

 return module;
})();

These changes to the code have been put in place to facilitate storing the data received

from the Geominer API. While storing some arbitrary content was useful back when we

were putting together our boilerplate mapping application, we have outgrown it here.

The changes to the addMarker and markResources functions are simple inline changes, in

which we change references of content to data (e.g., markerContent becomes

markerData).

The changes to the activateMarker function do a little more. Previously, the

activateMarker function set the active marker (and the inactive markers) to have the

correct icon, updated the marker title in the nav button, and also updated the marker

detail content and attached relevant events. Now that we are working with data instead

of the marker content, it makes sense for us to handle things slightly differently. The

code for updating the #marker-detail div content and binding and unbinding to the

events of the appropriate links has been removed, and has been replaced with a simple

call to set the currentResource variable to the title of the selected marker.

With the currentResource variable in place, we can move on to updating the details for

that resource in the #marker-detail display. Let’s begin by making some changes to our

index.html file:

<div id="marker-detail" class="noauth" data-role="page">
 <div data-role="header">
 <h1>Resource Details</h1>
 </div>
 <div data-role='content'>
 <h2></h2>
 <div id="resavail"></div>
 <div data-role="fieldcontain">
 <label for="slider">Amount to Gather:</label>
 <input type="range" name="slider" id="slider" value="1" min="1" max="5" />
 </div>
 Gather

CHAPTER 12: Polishing and Packaging an App for Release 310

 </div>
</div>

Here we see some more jQuery Mobile code coming into play. For instance, notice the

div marked with the data-role="fieldcontain" attribute. This tells jQuery Mobile that

we are dropping in a section of form controls. Additionally, note the use of the new

HTML5 range input type (www.w3.org/TR/html-markup/input.range.html), which jQuery

Mobile replaces with its own interpretation of the range control by way of an attractive

graphical slider. With this HTML in place, our Resource Details screen will look similar to

Figure 12–6.

Figure 12–6. jQuery Mobile does a very nice job of providing a simple, clean mobile UI.

OK, it’s time to actually show some useful information on this screen. We will do this by

detecting the user navigating to the Resource Details screen by capturing tap events on

relevant links. The following modifications to moundz.js demonstrate how we do this:

MOUNDZ = (function() {
 ...

 // initialize variables
 var geominer = null,
 ...
 supportsTouch = 'ontouchstart' in window;

 /* private functions */

 ...

 function updateResourceDetails() {
 var currentData = markerData[currentResource];

http://www.w3.org/TR/html-markup/input.range.html

CHAPTER 12: Polishing and Packaging an App for Release 311

 if (currentData) {
 $('#marker-detail h2').html(currentData.name);
 } // if
 } // updateResourceDetails

 /* exported functions */

 ...

 function initScreen() {
 // size the canvas to the height of the page minus the header
 $('#map_canvas').height(
 $('#main').height() -
 $('#main div[data-role="header"]').outerHeight() -
 $('#main div[data-role="footer"]').outerHeight() - 30
);

 // bind to the marker detail tap event
 $('a[href="#marker-detail"]').live(supportsTouch ? 'tap' : 'click',
updateResourceDetails);
 } // initScreen

 ...

 var module = {
 ...
 };

 return module;
})();

This code performs a couple of functions:

1. It defines a new function, updateResourceDetails, which uses the

currentResource variable that we defined earlier to retrieve the data on the

resource. This data is then used to update the app display; in this case, we are

simply updating the header within the display, but we will add more functionality

very soon.

2. The initScreen function is modified to attach an event handler to any links that

direct the user to the #marker-detail screen. This is done using the jQuery live
function (http://api.jquery.com/live), which means that the event handler is put

in place for any elements (including ones that might be dynamically created later)

matching the selector.

Also worth noting in this code is the use of the ternary (or elvis) operator with the

supportsTouch variable. This, combined with the initialization of the supportsTouch
variable at the start of the module, provides us with a useful mechanism that will allow

us to test our application both on mobile and desktop browsers. It does this by

appropriately attaching to either the tap or the click event handler, depending on

whether the current device supports touch interaction.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://api.jquery.com/live

CHAPTER 12: Polishing and Packaging an App for Release 312

This is very useful during the development of mobile web applications, as debugging

with a desktop browser is generally a more pleasant experience than working with the

Android debugging console—see Appendix A for more information on the topic.

With the code in place, tapping the Resource Details button in the navigation bar will

show us a Resource Details screen similar to that shown in Figure 12–7.

Figure 12–7. Our Resource Details screen is now dynamically updated.

Now that we have the groundwork in place to update the display of the Resource Details

screen, it’s time to make it pretty—we are definitely overdue for some more CSS3

gradients.

The following CSS (added to the end of moundz.css) gets us partway there:

/* resource details screen styles */

#marker-detail h2 {
 text-align: center;
 margin: 0 0 10px;
 color: #777;
}

#resavail {
 background: #333 -webkit-gradient(linear, left top, right top, from(#099), to(#0A0))
no-repeat;
 border: 2px #333 solid;
 -webkit-border-radius: 8px;
 -webkit-box-shadow: #555 0 1px 2px;
 height: 20px;
 font: bold 0.9em Arial;
 letter-spacing: 3px;

CHAPTER 12: Polishing and Packaging an App for Release 313

 text-align: center;
 color: white;
 padding: 5px 0 2px;
 text-shadow: none;
}

With the CSS applied, the Resource Details screen should appear similar to Figure 12–8.

Figure 12–8. Our Resource Details screen is starting to look good, but what is that under the resource name?

While the CSS makes things look a little prettier, that bar beneath the resource name is

a bit of a mystery. What is it for? Well, we are going to turn that into a bar that displays

the current resource availability for the resource by adding some additional code to the

updateResourceDetails function that we recently created.

function updateResourceDetails() {
 var currentData = markerData[currentResource];
 if (currentData) {
 var percAvail = 0;

 // determine the resource available percentage
 if (currentData.total !== 0) {
 percAvail = Math.round((currentData.avail / currentData.total) * 100);
 } // if

 $('#marker-detail h2').html(currentData.name);
 $('#resavail')
 .html(currentData.avail + ' / ' + currentData.total)
 .css('-webkit-background-size', percAvail + '% 100%');
 } // if
} // updateResourceDetails

CHAPTER 12: Polishing and Packaging an App for Release 314

In the preceding code you should be able to see where we are tapping into some of the

extra data that is returned from the Geominer API. With that data we do two things:

1. Calculate the percentage of resources available using some trivial math. That

percentage value is then used to dynamically apply a -webkit-background-size

style to the #resavail div. Our particular definition for the style instructs the div

to size the background image (note that gradients are treated as images) to a

calculated percentage of the width and 100 percent of the height. Essentially, we

have created a simple progress bar with very little code at all.

2. Update the content of the #resavail div to display a textual description of the

quantity of resource available at the particular location.

After implementing this JavaScript code, our Resource Details screen will be similar to

Figure 12–9.

Figure 12–9. The Resource Details screen showing that this location already has many resources gathered

This brings us to the point where our Resource Details screen is showing us some

sensible, reasonably well-presented information. It’s now time to look at gathering some

resources.

Using Geominer for Resource Tracking
Once again, we will make use of the Geominer API to perform the actual gathering of

resources. Behind the scenes Geominer will track the amount of resources that have

been gathered from a particular location and subtract that amount from the total amount

CHAPTER 12: Polishing and Packaging an App for Release 315

of resources (remember that these are in fact Gowalla check-ins) to report available

quantities. For Geominer to be able to track these quantities, we will need to tell it we

are gathering resources—and that is the purpose of this section.

The following code shows the modifications required to moundz.js to hook into the

Geominer API functionality and start gathering resources:

MOUNDZ = (function() {
 ...

 /* private functions */

 ...

 function gatherResource() {
 var currentData = markerData[currentResource];
 if (currentData && geominer) {
 var qty = $('#slider').val();
 geominer.gather(currentData.id, qty, function(totalGathered) {
 // update the quantity available
 currentData.avail = Math.max(currentData.total - totalGathered, 0);

 // if the resource is still the same, then update the display
 if (currentData.name === currentResource) {
 updateResourceDetails();
 } // if
 });
 } // if
 } // gatherResource

 ...

 /* exported functions */

 ...

 function initScreen() {
 ...

 $('#btnGather').live(supportsTouch ? 'tap' : 'click', gatherResource);
 } // initScreen

 ...

 var module = {
 ...
 };

 return module;
})();

In this code we once again attach a tap handler to the Gather button on the Resource

Details screen. When the user taps this button, the gatherResource function will then be

called, which simply makes use of the bundled Geominer API via the exported gather

function call. We pass the ID of the resource the quantity of resources that we wish to

x

CHAPTER 12: Polishing and Packaging an App for Release 316

gather and a callback that will receive the total quantity (from all users and previous

gather operations) of resources that has been gathered for that particular resource.

With the information that we receive back, we can then update our own local data for

the resource in an attempt to keep the two in sync. Should we receive a response from

the server fast enough (which we should), the current resource screen will be updated to

reflect the revised quantity of resources available.

As mentioned in previous chapters, if you are interested in what Geominer does behind

the scenes, you can look at the source on GitHub, at the following URL:

https://github.com/sidelab/geominer.

Remember, though, that Geominer is a bit of a work-in-progress, and has been built to

support the samples in this book, so it would require a good deal of work before it could

be considered a truly useful API.

While there is still so much that we could potentially do, and so much that needs to be

done to make Moundz a useful playable game, this book would never have been

published if we didn’t draw the sample to a close somewhere. We still have work to do

in the chapter, but, as far as implementing functionality in the Moundz application, this is

where we will draw things to a close.

NOTE: If you are interested in how to take Moundz further or have questions about how

Geominer works under the hood, feel free to join the Pro Android Web Apps group and ask
questions there (http://groups.google.com/group/pro-android-web-apps). We will

try to find time to answer any questions posted.

Packaging Moundz As a Native Application
Now that Moundz has all the features that we are going to implement in the context of the

book, it’s time to package it up as a native application using PhoneGap. We won’t go

through the entire process again here, as we covered it pretty thoroughly in Chapter 9.

Bundling for PhoneGap
First, we need to create a directory for our Moundz application. As in Chapter 9, this is

done most simply by copying an existing project to a new moundz directory. Figure 12–10

shows an example of what you should see after the copy operation.

https://github.com/sidelab/geominer
http://groups.google.com/group/pro-android-web-apps

CHAPTER 12: Polishing and Packaging an App for Release 317

Figure 12–10. As discussed in Chapter 9, starting a new PhoneGap project is a simple copy-and-paste operation.

In keeping with our theme of copy-and-paste deployment, taking our Moundz source

code and integrating that into our Moundz project is also simple. If you recall from

Chapter 9, all that is required is to take the HTML files that we have in our moundz-jqm

folder and copy them to the assets/www folder within our new Moundz PhoneGap

project. After completing the process, you should have a folder structure that resembles

Figure 12–11.

CHAPTER 12: Polishing and Packaging an App for Release 318

Figure 12–11. Our HTML, CSS, and JavaScript assets are copied to the assets/www folder of the PhoneGap
project.

We now need to update references in the application to Moundz from their previous

values. For detailed instructions on how to do this, revisit the Chapter 9 section

“Tweaking the Sample PhoneGap Project.”

After we have completed these steps and then installed the application to the emulator

(remember ant debug install in the project folder), you should be able to open the

emulator and see a Moundz application in the Android application launcher. Figure 12–12

shows an example of what you will likely see.

CHAPTER 12: Polishing and Packaging an App for Release 319

Figure 12–12. We have successfully installed our application into the emulator, but it’s time for a different icon.

Supplying an Application Launcher Icon
One thing that we didn’t cover in Chapter 9 was customizing parts of the PhoneGap

application beyond just the name references. If we are going to deploy an application to

the Android marketplace, it’s probably a good idea to provide a custom icon for our

application rather than simply use the PhoneGap default icon.

With regard to application icons, Google provide some excellent documentation that

covers some of the dos and don’ts around icons in your application. This is definitely

worth a read and can be found at the following URL:

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html.

Additionally, if you have Photoshop (http://adobe.com/photoshop) available, then

Google also provide a useful template for building application icons, which can be found

with the icon design guidelines that we referenced in the previous paragraph.

Now, we aren’t going to go through the process of creating an application icon here, as

this is more of a design-related task than a programming one, but you can use a variety

of different tools to create the icon as long as a file named icon.png is generated at the

end of the process. Additionally, as per the icon design guidelines provided by Google 3,

different resolutions of the launcher icon should be supplied:

 A 72 72-pixel icon.png file for high-dpi (hdpi) devices

 A 48 48-pixel icon.png file for medium-dpi (mdpi) devices

 A 36 36-pixel icon.png file for low-dpi (ldpi) devices

http://developer.android.com/guide/practices/ui_guidelines/icon_design.html
http://adobe.com/photoshop

CHAPTER 12: Polishing and Packaging an App for Release 320

Once you have your relevant icon files, these are simply copied to the relevant

res/drawable-?dpi folder (where ?dpi would be hdpi, mdpi, or ldpi, depending on the

icon size). Figure 12–13 shows where each of the files have been placed in our working

copy of the sample, and, while it’s not visible in the screenshot, the 72-pixel image is in

the drawable-hdpi folder, the 48-pixel image is in the drawable-mdpi folder, and the 36-

pixel image is in the drawable-ldpi folder.

Figure 12–13. Our updated icon.png file is placed in the res area of the project.

With the icon in place, we are ready to rebuild and reinstall the application to the

emulator. If everything has gone to plan, you should see an updated launcher icon, as

shown in Figure 12–14.

CHAPTER 12: Polishing and Packaging an App for Release 321

Figure 12–14. Our updated launcher icon now displays in the Android application launcher.

With our application now looking the part, there is one more thing we have to do before

it’s ready to package up and ship to the Android marketplace.

Tweaking Application Permissions
If you have ever installed a native Android application, you are probably familiar with the

screen that tells you what permissions the application is asking for before you complete

the installation procedure. Figure 12–15 shows a screenshot of the permissions

installation screen for the native Gowalla application, which gives you an idea of the kind

of thing that applications request on installation.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12: Polishing and Packaging an App for Release 322

Figure 12–15. The Gowalla installation screen provides an example of the permissions that an application may
request.

Now, we really don’t want to have an application that requests permissions for

operations that it does not use. This is because users may have an objection to granting

certain permissions, and in this case the more permissions our application requests, the

more chance it has of being rejected by a user during installation. As such, it is best to

keep the required permissions to a minimum.

As part of the default sample PhoneGap project, we have an AndroidManifest.xml file

that requests a large number of permissions, and most of these aren’t required for

Moundz. For example, the following is an excerpt from the AndroidManifest.xml file

showing the permission requests.

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
<uses-permission android:name="android.permission.READ_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_CONTACTS" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

CHAPTER 12: Polishing and Packaging an App for Release 323

While we won’t go into the specifics of every permission here, details on what particular

permissions provide can be found on the following page in the Android developer docs:

http://developer.android.com/reference/android/Manifest.permission.html.

For the purposes of Moundz, it is pretty safe to remove the majority of these

permissions and just reduce it to the permissions that provide our application web

access and allow us to access location information. The reduced set of permissions

would be something more like this:

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.INTERNET" />

Depending on the type of application you are building, additional permissions may or

may not be required, which is probably why they are included in the default

AndroidManifest.xml file.

PhoneGap, Authentication, and Intents
Before our application is ready for native deployment, we need to make some

modifications to the way the authentication flow in the application behaves—or, rather,

we need to properly equip our application to be able to respond to the authentication

process that we put in place back in Chapter 10.

Our Previous Web Authentication Flow
Our final authentication process involved opening a new browser window, which is

where we let Geominer and Twitter work through the authentication process before

passing control back to our main Moundz web application. While this worked

seamlessly in a browser environment, it doesn’t work as effectively when we have our

web application wrapped in a native application. Why? That’s an excellent question—

let’s take a look.

In our web application, our authentication flow went something like this:

1. The user clicks the “Sign in with Twitter” button, a session ID is created within

Moundz, and a new browser window is opened to the Geominer session

initialization script.

2. Geominer handles the “OAuth dance” with Twitter, at which point the user may be

asked to validate that they are OK with allowing Geominer to log them in.

3. Once the authentication process is completed, the new browser window is

closed.

http://developer.android.com/reference/android/Manifest.permission.html

CHAPTER 12: Polishing and Packaging an App for Release 324

4. At this point, the user is implicitly returned (when the browser window is closed,

the last browser window is refocused) to our Moundz application window. Behind

the scenes, Moundz has been communicating with the Geominer API in the

background and has determined that we are authenticated. It then sends us to

the application map.

Once Moundz is wrapped in a native application, the process fails at step 3 due to the

way opening a new window is handled from within a PhoneGap application. Essentially,

the WebView that is used in a PhoneGap application represents a single browser

window, and, if any links are opened that require a new window, the native Android

browser (not the application itself) handles this. This is understandable and the right way

to handle such requests; however, it does have an impact when Geominer attempts to

close the browser window in step 3. Essentially, it fails, and the user is left in the native

browser on the Geominer authentication screen with no obvious way to get back—not

exactly optimal usability.

The good news is that we are able to implement a workaround; however, we do have to

work at a native level to do this. Don’t worry, though—the process is quite simple and

won’t involve having to write any Java code.

An Overview of Android Intents
Android intents are structured mechanisms for passing messages between applications

on the Android platform. Essentially, each application runs in its own sandbox and

doesn’t have access to another application’s data—which is fair enough. To

communicate with another application, an intent is sent to the Android OS itself, and, if

one or more applications are configured to respond to that intent, then the OS provides

them an opportunity to do so.

While intents are a native application concept, they make a lot of sense from a web

developer’s perspective, primarily because they respect the web URI scheme

(http://en.wikipedia.org/wiki/URI_scheme) naming conventions. While we aren’t

interested in how to use intents from the perspective of native application development,

using intents can provide us with an almost seamless way to transition from a web page

back into our native application. In our particular case, we are providing a transition from

the Twitter authentication process, back into the PhoneGap application wrapper for

Moundz.

If you own and use an Android device, then you have probably experienced this

already—for example, if you were browsing a web page, and then after clicking a link

were taken to one of the native Android apps, as if by magic. Both the Android Market

and YouTube use intents in this way.

So, let’s see how complicated it is to have Moundz respond to some Android intents.

The first thing we need to do is modify the AndroidManifest.xml file that resides in the

root directory of our Moundz PhoneGap project. In this file, we will be adding an

additional intent-filter to the application definition:

<application android:icon="@drawable/icon" android:label="@string/app_name"

http://en.wikipedia.org/wiki/URI_scheme

CHAPTER 12: Polishing and Packaging an App for Release 325

 android:debuggable="true">
 <activity android:name=".Moundz"
 android:label="@string/app_name"
android:configChanges="orientation|keyboardHidden">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW"></action>
 <category android:name="android.intent.category.DEFAULT"></category>
 <category android:name="android.intent.category.BROWSABLE"></category>
 <data android:host="moundz" android:scheme="content"></data>
 </intent-filter>
 </activity>
</application>

Our new intent-filter definition is setting up Moundz to receive intents with the VIEW

action, and we are marking our filter with the categories of DEFAULT and BROWSABLE. Both

of these category definitions are required to have the intent filter work properly from the

native web browser.

Finally, the intent-filter definition contains a data tag that provides information on

how the URI scheme will look when placed in an HTML anchor. For instance, our

definition specifies a host of moundz and a scheme of content, which means that links in

web pages that start with content://moundz are going to match this filter, and the

Moundz native application would be opened in response to these links being clicked.

NOTE: The content URI scheme is an official registered URI scheme that maps to content
providers for the Android platform. Note that it is also possible to use a custom scheme (e.g., we

have URIs starting with moundz://); however, it is often discouraged, as URI schemes are
meant to be unique, and this uniqueness is controlled through various Internet standards bodies.

Additionally, it is also possible to register the filter using the HTTP (or HTTPS) scheme should you

want to allow users to either complete the action using the Android browser or via a native
application. If we had actually deployed to a public URL, then this might be an excellent way to
go, but at this stage we are focusing on a deployment through PhoneGap, so the content scheme

is probably the best fit.

To test our new filter, we simply need to create a very simply web page with a link that

matches the rule specified in the intent-filter:

<!DOCTYPE html>
<html>
<head>
<title>Intent Test</title>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
</head>
<body>
Moundz Local Test

content://moundz
content://moundz/test

CHAPTER 12: Polishing and Packaging an App for Release 326

</body>
</html>

All right, let’s give it a go. Save the preceding code and then browse to it using the

native Android browser. You should see a simple link and, when you activate the link,

the native Moundz application should be launched. Figure 12–16 displays an example of

what you should see.

Figure 12–16. Clicking the test link takes us directly into the Moundz application.

Excellent, it worked. With that functionality, we should be able to make some tweaks to

our Moundz application code and have it take appropriate action in response to the

intents. We will, however, need a little help.

Using PhoneGap Plug-Ins to Handle Intents
We made a commitment earlier regarding not having to write Java code to work with the

intents from within PhoneGap, and, despite intents being a native Android OS feature,

we are going to be able to keep that promise. This is all thanks to the fact that someone

has already done the hard work for us. In this section, we will be making use of a

PhoneGap plug-in called WebIntent, which was created by Boris Smus. Boris has

written a blog post on his motivations for writing WebIntent and it is well worth a read

(see www.borismus.com/android-phonegap-plugins).

Essentially, Boris’s plug-in provides the ability to invoke Android intents from your

JavaScript, and also to respond to them if your application has intercepted and

responded to an intent. Installation of the plug-in is very simple:

http://www.borismus.com/android-phonegap-plugins

CHAPTER 12: Polishing and Packaging an App for Release 327

1. Download the WebIntent.java and webintent.js files from the following github

repository: https://github.com/borismus/phonegap-
plugins/tree/master/Android/WebIntent.

2. Tae the webintent.js file and place that in the assets/www folder of the Moundz

PhoneGap project.

3. Take the WebIntent.java file and place that in a new borismus directory in the

src/com folder of the PhoneGap project.

Figure 12–17 provides a screenshot of how the application folder should look after

completing these steps.

Figure 12–17. Our Moundz PhoneGap project folder after adding the WebIntent plug-in files

With the plug-in files in their correct place, it’s time to wire everything up. The first step

in this process is including the phonegap.js file in the project and also adding a script

include for the webintent.js file. At the same time, we’ll also move the script include for

moundz.js to just before the closing body tag, as this is required for trapping particular

events.

Additionally, while we are making modifications to the index.html file, we will remove

the body onload event handler, as we now need to start making some PhoneGap-

specific modifications to our code.

<!DOCTYPE html>
<html>
<head>

https://github.com/borismus/phonegap-plugins/tree/master/Android/WebIntent
https://github.com/borismus/phonegap-plugins/tree/master/Android/WebIntent
https://github.com/borismus/phonegap-plugins/tree/master/Android/WebIntent

CHAPTER 12: Polishing and Packaging an App for Release 328

...
<script type="text/javascript" src="phonegap.js"></script>
<script type="text/javascript" src="webintent.js"></script>
...
<!--
<script type="text/javascript">
function initialize() {
 MOUNDZ.init();
} // initialize
</script>
-->
</head>
<body>
...
<script type="text/javascript" src="moundz.js"></script>
</body>
</html>

MAINTAINING A SINGLE CODEBASE

Until now we have maintained a single code base for an application version that could be deployed to both
the web or a native application using PhoneGap. Now we are starting to make modifications that are
specific to a PhoneGap version.

In our sample applications, we will simply be removing and adding code to suit our PhoneGap version, and
having that code live in a location separate from our previous web-only version. If you are working on a
real-world project, however, and find yourself in a similar situation, then look to alternative solutions that
allow you to maintain a single code base while still allowing parts of the code to be customized for certain
situations.

One way this could be achieved is through implementing a build process using previously mentioned tools
like Ant or Rake. The build script selectively combines particular JavaScript files into a single JavaScript
file designed for a particular platform distribution.

Another option is through using detection techniques within your JavaScript code. Given that we do not
include phonegap.js in our pure web version of the application, we can make some runtime checks
around the availability of PhoneGap within our moundz.js file. This allows us to maintain a single version
of our core JavaScript files, and simply requires some small tweaks to the application HTML files (which
are likely to differ somewhat anyway).

With the changes to our index.html file done, we now turn our attention to the

moundz.js file. Here, we will make some modifications to attach to the custom

PhoneGap deviceReady event rather than onload. This will ensure that PhoneGap-

dependent code will only run once PhoneGap has been properly initialized. Additionally,

we will wire in the WebIntent plug-in to monitor for details that will be passed through if

the application is launched using a native intent.

MOUNDZ = (function() {
 ...

 /* private functions */
 ...

CHAPTER 12: Polishing and Packaging an App for Release 329

 function parseUrlParams(url) {
 return {};
 } // parseUrlParams

 ...

 var module = {
 ...
 };

 // bind to the PhoneGap deviceReady event
 document.addEventListener('deviceReady', function() {

 window.plugins.webintent.getDataString(null, function(dataString) {
 module.init(parseUrlParams(dataString));
 }, function() {
 module.init();
 });

 }, false);

 return module;
})();

In the preceding code, we are making two changes to ensure that we properly handle

the PhoneGap initialization:

1. Just before we return the module definition at the end of moundz.js, we add an

event listener for the deviceReady event that is triggered by PhoneGap. Within this

event handler, we ask the WebIntent plug-in to provide us details on any

additional data that it has received.

If the Moundz application has been started directly from the launcher, this call will

simply pass a null value through; however, if the application has been called from

a URL in the browser (such as our test page), this will be available to the native

application.

2. Once we have successfully retrieved the value passed through, this value is

passed through a new function called parseUrlParams before being passed on to

our init method. For the moment, this function is just a placeholder and simply

returns an empty object literal; however, we will add some meaningful code next.

The code we need to add to our parseUrlParams function will allow our application to

translate URL query string parameters into a JavaScript object literal, which will then be

interpreted in the MOUNDZ.init module function.

The following is the code required to have parseUrlParams perform that operation:

function parseUrlParams(url) {
 var matches = /^.*?\?(.*)$/.exec(url),
 keyPairs = matches ? matches[1].split('&') : [],
 params = {};

 // iterate through the key pairs we found

CHAPTER 12: Polishing and Packaging an App for Release 330

 for (var ii = 0; ii < keyPairs.length; ii++) {
 // split the pair on the = as we are only going to process these
 var pair = keyPairs[ii].split('=');

 // update the parameters
 params[pair[0]] = pair.length > 1 ? pair[1] : null;
 } // for

 return params;
} // parseUrlParams

This may not be the most readable code in the world, being littered with regular

expressions and ternary operators, but its purpose is simple. As previously stated,

parseUrlParams needs to extract that query string parameters from a URL and return

them in a JavaScript object literal.

For instance, if we passed the following URL to the function:

http://test.com/test.htm?param1=foo¶m2=bar, then the parseUrlParams function

would return an object literal of the following:

{
 param1: 'foo',
 param2: 'bar'
}

Once we have our query string parameters in that format, we can pass them to a

modified version of our MOUNDZ.init function to be processed intelligently. Our modified

init function follows:

MOUNDZ = (function() {
 ...

 var module = {
 ...

 init: function(args) {
 // initialize the parameters
 args = $.extend({
 zoomLevel: null
 }, params);

 // initialize the geominer bridge
 geominer = new GEOMINER.Bridge($.extend({
 app: 'moundz',
 login: '#login',
 returnUrl: 'content://moundz/'
 }, args));

 $(geominer).bind('authenticated', function(evt) {
 $('#splash').hide();
 $('.noauth').removeClass('noauth');

 // run the app
 run(args.zoomLevel);
 });

http://test.com/test.htm?param1=foo¶m2=bar
content://moundz/

CHAPTER 12: Polishing and Packaging an App for Release 331

 // initialize the screen
 initScreen();
 },

 ...
 };

 ...

 return module;
})();

Let’s quickly walk through the modifications we are making here; once we are done,

Moundz will be ready to be packaged up for deployment.

1. We change the init function from taking a zoomLevel parameter to taking a more

generic args parameter. This args parameter is then used to pass multiple values

through (using an object literal) to the constructor of our GEOMINER.Bridge object.

This is particularly useful when combined with our earlier code that converted the

url parameters for the current web page into an object literal (as we will see in

step 3).

2. Next, we update the initialization of GEOMINER.Bridge to include a returnUrl
configuration parameter. This returnUrl parameter will be displayed on the page

that Geominer presents as the final step in the Twitter authentication process. So

now, rather than attempting to close the window, a link will be displayed that we

can then click to return to the Moundz native application.

3. Additionally, we pass through the values specified in the args parameter through

to the GEOMINER.Bridge using the $.extend function ($.extend is equivalent to

jQuery.extend). This is a concise and effective way of passing parameters that

have been sent to our application as part of the Android intent right through to our

JavaScript module code.

4. Finally, we modify our call to the run function to remove the mock location that we

have been using up until this point while developing the application.

That’s it. The coding, tweaks, and refinements are all done. It’s now time to package this

application up for Android Market distribution.

Packaging Our Application for Release
We finally made it. Our coding is done, we have an application icon, and it’s time to

package the application for deployment. This involves a number of steps:

1. Building our application in release mode, and then signing our application for

deployment.

2. Registering for the Android Market.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12: Polishing and Packaging an App for Release 332

3. Publishing our application to the market.

In this final section of this chapter, we will cover what is required to complete step 1

successfully, and then we will point you in the right direction so you can complete steps

2 and 3 with your own application once you reach that point. While there are some

nuances to building the application for release (most of which are now handled during

the build process), the registration and application-publishing processes are made very

simple by Google. Additionally, they provide an excellent guide on the topic of

publishing your application (see

http://developer.android.com/guide/publishing/publishing.html).

The first step in building our application for release is using ant to build a binary of the

application in release mode. This is achieved by running the following command from

the Moundz PhoneGap project directory: ant release.

When run, this command should generate output similar to that shown in Figure 12–18.

Figure 12–18. Output from running the build in release mode—note the comments regarding signing.

In this figure, you may notice some output generated by the Ant build referring to not

having key.store or key.alias properties available with which to sign our application.

This has prevented the build script from successfully signing our application, which is

required if we wish to distribute our application.

http://developer.android.com/guide/publishing/publishing.html

CHAPTER 12: Polishing and Packaging an App for Release 333

To sign our application, the first thing we must do is generate a private key. This can be

achieved by running the following command (however, you should change both the

keystore and alias to something more appropriate for your own configuration):

keytool -genkey -v -keystore my-release-key.keystore -alias alias_name -keyalg RSA -
keysize 2048 -validity 10000

Running this command shows output similar to that displayed in Figure 12–19.

Figure 12–19. If you don’t already have one, you will need to generate a private key to sign your application.

With our keystore created, we can now modify our build.properties file and specify its

location so the build script can sign our application as part of the build process. With

our application requirements, there are no additional settings required in this file, so,

after the key.store and key.alias properties are added, our build.properties file

should look something like the following:

key.store=/path/to/release-key.keystore
key.alias=your_alias

Now, with those settings in place, we are ready to attempt rebuilding our application in

release mode. If everything has gone correctly, you should now be prompted for your

keystore and alias password as part of the build process. Provide the password

correctly, and your application will be signed and ready for release. Figure 12–20 shows

an example of the output that will be generated in a successful build.

CHAPTER 12: Polishing and Packaging an App for Release 334

Figure 12–20. After generating a private key and providing details to the build script, our build process
successfully signs our application.

If you have a look in the bin folder of your Moundz PhoneGap project folder, you should

see a number of files. The most important one as far as a project release is concerned is

moundz-release.apk. Figure 12–21 shows an example screenshot of what your bin

folder might look like.

CHAPTER 12: Polishing and Packaging an App for Release 335

Figure 12–21. The bin folder of the Moundz PhoneGap project folder should contain a moundz-release.apk file
after our successful build.

That’s it. We now have the main application file, which will enable us to publish an

application to the Android Market.

If you decide to go down this path with your own Android web apps, then from this point

you should register with the Android Market (http://market.android.com/publish) and,

as mentioned previously, familiarize yourself with Google’s publishing guide that we

referenced early in this section of the chapter.

In terms of the tasks that remain, you will need to gather a few screenshots, make some

larger icons, and think of some text that describes your application well to potential

users. If you are looking to sell applications through the market, then you should also

investigate a Google Merchant account.

From here on, you enter the land of pictures, text, and promotion.

http://market.android.com/publish

CHAPTER 12: Polishing and Packaging an App for Release 336

Summary
In this chapter, we covered a lot of material, ranging from some additional information

on jQuery Mobile and visual tweaks to our application, to information on how to package

an Android web app using PhoneGap for release to the Android Market.

In the next chapter, we will finish off the book by looking at some potential future trends

in mobile computing. Hopefully, these will provide some food for thought, and perhaps

even give you some ideas of things you might possibly like to explore in the world of

mobile web application development.

337

337

 Chapter

The Future of Mobile
Computing
Through the course of the book, we have looked at some code examples and exercises

that will enable you to build web apps for Android and Chrome OS using the features

available both on the phone and in the cloud. What’s coming though? How are new

technologies and trends going to change our development approach?

What is presented in this chapter is a developer’s perspective on the potential future of

mobile platforms and subsequently applications. Of course, the contents of this chapter

represent only one possible view of the mobile future, and many possibilities exist. Given

current trends in both desktop and mobile computing, though, we certainly believe that

we will see components of this chapter implemented over the next few years.

The Era of Mobile Computing
The era of mobile computing is upon us. The adoption of web-connected mobile

devices is one of the fastest-moving trends worldwide. Consumers have become

accustomed to mobile technology, and for most of us that now includes mobile web

access.

This in turn affects the way we will choose to consume and produce information. For

instance, rather than making sure we are prepared before leaving the house or office for

things such as appointments, we can now just get up and go. We can access the

information that we need via our mobile device of choice when we need it, whether that

is checking the exact time of the meeting or accessing driving directions on how to get

there. We are definitely becoming accustomed to getting information “just in time”—

assuming we have good connectivity.

13

CHAPTER 13: The Future of Mobile Computing 338

A Worldwide Phenomenon
The take-up of mobile computing is not limited to established markets. In fact, for many

emerging markets and nations, mobile broadband technologies are being rolled out in

favor of traditional “landlines” due to the cost-effectiveness of the solution. Figure 13-1

helps demonstrate this point by showing a graph of monthly traffic for a mobile Twitter

client, Tweete (http://m.tweete.net). In this particular graph, we can see that the

majority of traffic for Tweete comes from Indonesia. The primary reason for this is due to

mobile broadband being more prolific than fixed broadband in countries like Indonesia,

and thus lightweight mobile clients can get very good traction over more heavyweight

desktop (and nonoptimized mobile) clients.

Figure 13-1. Emerging markets can provide unexpected opportunities for mobile development.

http://m.tweete.net

CHAPTER 13: The Future of Mobile Computing 339

TIP: Many of you may look at the above graph and think—so what? We would like to challenge
that thinking and recommend considering how you could build mobile applications for emerging
markets (http://en.wikipedia.org/wiki/Emerging_market) as well as established

markets. When doing this, though, you will also have to consider the fact that these nations will
still have large numbers of simpler mobile devices in circulation. These devices often have web
connectivity, but don’t have the HTML5 support that we have been looking at using over the

course of the book.

Effectively implement your web application or site with progressive enhancement (discussed in
the section titled “Embracing Progressive Enhancement”) and you may be able to start making

inroads into those markets now, and still offer a rich experience with HTML5 features for more

advanced devices.

Death of the Desktop?
Smartphones and tablets are really just the tip of the iceberg when it comes to mobile

computing. The Mobile Internet Report

(www.morganstanley.com/institutional/techresearch/mobile_internet_report122009.
html) delivered by Mary Meeker (http://en.wikipedia.org/wiki/Mary_meeker) of

financial services firm Morgan Stanley makes a number of predictions with regard to

mobile device penetration and Internet usage of mobile platforms compared with

desktop platforms.

Without going into the detail of the report, it suggests that mobile devices will likely be

the platform of choice for Internet connectivity by about 2014. If this turns out to be an

accurate estimate, then we need to start designing both sites and applications for the

mobile web now.

Embracing Progressive Enhancement
Progressive enhancement

(www.alistapart.com/articles/understandingprogressiveenhancement) is a web design

strategy in which web designers and coders design web sites and application interfaces

for the lowest common denominator (within reason) first and foremost. The application

or site is then enhanced if the visitor’s browser is able to support more advanced

features. JavaScript libraries such as Modernizr (www.modernizr.com) are very useful

here.

As to why this is important, take a look at Figure 13-2, which shows the breakdown of

mobile-browser market share from August 2009 up until August 2010.

http://en.wikipedia.org/wiki/Emerging_market
http://www.morganstanley.com/institutional/techresearch/mobile_internet_report122009.html
http://www.morganstanley.com/institutional/techresearch/mobile_internet_report122009.html
http://en.wikipedia.org/wiki/Mary_meeker
http://www.alistapart.com/articles/understandingprogressiveenhancement
http://www.modernizr.com

CHAPTER 13: The Future of Mobile Computing 340

Figure 13-2. Mobile browser market share from August 2009 to August 2010

This data (sourced from StatCounter: http://gs.statcounter.com) shows a few things:

 Android device usage is on the rise, but is still a small part of the

market.

 While the most popular mobile platform for browsing the web is iOS

(iPhone, iPod Touch, iPad), there are still many browsers out there in

active use that do not support HTML5 and CSS3 (e.g., Opera Mini:

www.opera.com/mobile).

To assist in showing the current HTML5 vs. non-HTML5 device trending, Figure 13-3

has simplified the data into two categories: HTML5 supported and non-HTML5.

http://gs.statcounter.com
http://www.opera.com/mobile

CHAPTER 13: The Future of Mobile Computing 341

Figure 13-3. HTML5 vs. Non-HTML5 mobile browser market share

As shown in Figure 13-3, HTML5 devices have a smaller market share than non-HTML5

devices.

NOTE: These statistics aren’t what we expected them to be. Over time, the graph actually shows
less HTML5 compatible devices accessing the Web—and this is extremely suprising, at least at
first. We think there are a number of potential explanations for why this is the case.

ONE such explanation could be the recent interest and promotion of the mobile Web. This in turn
raises consumer awareness of the mobile services that are available online, and thus people with
existing handsets are accessing mobile web services.

We would be lying if the statistics didn’t make us second-guess our certainty of HTML5 adoption
across a large number of mobile devices. However, this is not the only information we have
about HTML5 adoption in mobile. Established vendors have provided HTML5 support in their new

devices. For instance, RIM recently released the BlackBerry Torch and put an emphasis on
HTML5 support and development options. We believe this is evidence validating the claim that

HTML5 support in mobile browsers will trend up quickly over the next couple of years.

While it won’t always be possible to build web applications and sites using progressive

enhancement, it is worth spending some time at the start of a project evaluating the

potential to support less advanced devices. If you can, you will broaden the reach of

your application, and, while this book is focused on building Android web apps,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13: The Future of Mobile Computing 342

minimizing the amount of work you have to do to cater for another platform is always a

good thing.

Mobile Technology Predictions
The future is far from certain, but it is likely that mobile device development and

architecture will play out in a similar way to desktop computing. This being the case, we

can probably be brave and make a few predictions.

NOTE: While there is an obsession with mobile development using native technology at present,
we strongly believe that history will repeat itself in mobile the same way it did for desktop
devices.

This is definitely a risk-vs.-reward situation though, as many roadblocks stand in the way of
web-oriented mobile development. We believe the community has sent device manufacturers a
message, though, and that is that web development for mobile is important and something that

needs to be prioritized. We also believe they have heard this message, and things are starting to

change for the better.

Improvements in Tools and Libraries
The maturity and availability of both tools and libraries to streamline mobile web

development is quite limited at the moment. This is changing, though, and we will

certainly see a lot more options become available over the next year. One of the most

promising libraries under development (at the time of writing) is the jQuery mobile

framework (http://jquerymobile.com).

The research that has gone into this library and the focus on broad-spectrum mobile

device support is very encouraging. From this research, the jQuery team has produced

what is called the graded browser support (http://jquerymobile.com/gbs) chart, shown

in Figure 13-4.

http://jquerymobile.com
http://jquerymobile.com/gbs

CHAPTER 13: The Future of Mobile Computing 343

Figure 13-4. A screenshot of the jQuery Mobile graded browser support chart

Hopefully, this will finally provide a mobile web UI that can be used across devices,

presenting a web UI in a device-neutral sense (rather than styling all UI elements with an

iPhone look and feel).

Additionally, as developers, we can only hope for the maturity of mobile web

development tools to improve. While integrated development environments (IDEs) tend

to get in the way of web development in general, having suitable testing and debugging

tools for mobile devices will be important for pushing mobile web development forward

(in the same way that Firebug contributed to moving web development forward). There

CHAPTER 13: The Future of Mobile Computing 344

is a lot that can be done using desktop browsers such as Chrome, but there really is no

substitute for device-targeted development tools.

Changes in Device Architecture
While Palm is not one of the dominant market players at the moment, there is a lot that

can be learned from the way it architected its webOS (http://developer.palm.com)

platform. From the ground up, webOS has been built with a strong web technology

focus, providing developers a first-class way of building applications for the platform

with HTML, CSS, and JavaScript.

Given this is an Android web apps development book, that might be considered to be a

strange comment, but let’s look at a couple of industry trends around both mobile and

desktop computing:

 There is a lot of interest with regards to web operating systems as a

replacement for current desktop operating systems. The

implementation of a web operating system is generally achieved by

using something like Linux to manage the interaction with the

hardware, and then a web presentation layer providing the operating

system “desktop” to the user. Two examples of web operating

systems are Google’s Chrome/Chromium OS

(www.chromium.org/chromium-os) and Joyent’s Jolicloud

(www.jolicloud.com).

 Modern mobile operating systems are demonstrating continued

innovation, and they could quite possibly move to implementing web

operating systems (as Palm has demonstrated) before broader

adoption on desktop platforms.

With those trends and the current Palm webOS architecture in mind, what will mobile

device architectures look like in the future? Certainly one possibility is a device

architecture that has a very strong web flavor to it, and this is shown in Figure 13-5.

http://developer.palm.com
http://www.chromium.org/chromium-os
http://www.jolicloud.com

CHAPTER 13: The Future of Mobile Computing 345

Figure 13-5. More mobile devices may incorporate web-centric architectures in the future.

In this architecture we see a services layer that is exposed to a web UI. This services

layer would then expose functionality of the device, very similar to the way that existing

web applications expose RESTful web services.

Using this technique for interacting with the device, combined with the fact that client-

side web technologies are becoming more powerful, the need to build a mobile

application interface with native languages should definitely become the exception

rather than the rule.

This will probably first be evident in an increasing number of mobile applications being

implemented using web technologies as opposed to native technologies. Once mobile

web applications are predominant, removing some of the intermediate layers to more

tightly couple the web UI to the underlying system layers will likely be the next step.

CHAPTER 13: The Future of Mobile Computing 346

NOTE: It is doubtful that this will occur on all mobile operating systems, as some will likely
remain as primarily native development platforms. We would estimate, however, that by 2013
around 30 to 50 percent of mobile operating system vendors will either release or announce a

mobile web operating system and complementary dashboard UI.

Interestingly, some momentum is already building in this area, with the European Union
announcing a project called Webinos (http://webinos.org), which appears to be designed to

build exactly what is suggested above.

Coding for Future Architectures
If things do continue to progress in a web-oriented direction, then there will be very little

that experienced mobile web developers will have to change. One exception to that may

well be the way we interact with client-side storage. For instance, while HTML5 offers

three very interesting APIs for working with local data, we discovered in Chapter 5 that

synchronization with online services was not available out of the box.

Given that mobile devices currently have (and may always have) less reliable

connections than their desktop cousins, it is expected that offline data synchronization

will become a consumer requirement in the not-too-distant future. Therefore, either the

HTML5 APIs will have to mature to support this requirement, or some alternative options

will need to be investigated. A very interesting possibility is the use of an embedded

CouchDB (http://couchdb.apache.org) instance within the mobile device, which would

serve both the mobile app code and data, and keep that synchronized with the cloud

automatically.

Imagine that—an embedded database capable of serving local web applications and

supporting data, and keeping that in sync with the cloud so when you use the

application from your desktop everything is synchronized.

The Internet of Things
As the number of web-connected mobile devices increases, not only does the number

of potential consumers of information increase, but also the number of potential

producers. As discussed back in Chapter 1, the modern smartphone already features a

large number of hardware sensors, and this opens up some quite amazing possibilities.

The increasing number of web-connected devices that are present in our society (mobile

phones and tablets are part of that larger group) has resulted in the creation of some

interesting research projects and applications that could influence the way our society

and we as individuals operate in the future.

The collection of these web-connected devices has been termed the Internet of Things

(http://en.wikipedia.org/wiki/Internet_of_Things), and is well worth getting involved

with if you are interested in building some really cool mobile apps.

http://webinos.org
http://couchdb.apache.org
http://en.wikipedia.org/wiki/Internet_of_Things

CHAPTER 13: The Future of Mobile Computing 347

Another term that is sometimes used to describe this connected network of devices is

the Web of Things (http://en.wikipedia.org/wiki/Web_of_Things). The Web of Things

and Internet of Things are very similar in that they both involve a massive number of

interconnected devices feeding real-time information between each other and

centralized services. The Web of Things model, however, specifies the use of existing

web communication standards such as HTTP, REST

(http://en.wikipedia.org/wiki/Representational_State_Transfer), and RSS to enable

that communication.

NOTE: From our observations, very few things that happen on the Internet are planned and
executed in a way that people expect. We believe that the evolution of the Internet of Things will
be no different, and that it will begin with mobile devices communicating information to web

applications and sites. This in turn will probably mean that the Web of Things implementation will
be the one that eventuates, rather than a new way of doing things. Whether that is a good thing
or not is another conversation, but suffice to say there will be a significant increase in active web

clients (desktop plus mobile plus embedded devices) in coming years. It will be interesting to see

how the current way of doing things scales to that volume of information.

Hardware Sensor Networks
As stated previously, mobile devices can have many hardware sensors. Picture those

sensors being able to (through appropriate privacy controls) share information with

centralized systems. This could include data such as weather and traffic information at

particular locations.

A couple of examples of existing mobile applications and companion web sites that

have already created sensor networks are Waze (http://waze.com) and NoiseTube

(www.noisetube.net). Waze is a mobile application that collects GPS readings as you

drive around your local area. That information is fed back into Waze and used to

generate mapping information that can be shared among all users. Figure 13-6 shows a

screenshot of the Waze mobile interface, which is currently implemented as a native

interface, but could easily be implemented as a mobile web application in the future.

http://en.wikipedia.org/wiki/Web_of_Things
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://waze.com
http://www.noisetube.net

CHAPTER 13: The Future of Mobile Computing 348

Figure 13-6. The Waze mobile interface—not a web UI, but with HTML5 it could be.

Waze is an excellent example of an application that makes use of sensors to collect

information. A more generic example of a platform that supports sensor networks is a

site/application network called Pachube (www.pachube.com). Figure 13-7 shows a

screenshot of the front page of Pachube displaying the number of sensors contributing

information back into the network. These sensors are typically small embedded devices,

but could be mobile devices just as easily.

http://www.pachube.com

CHAPTER 13: The Future of Mobile Computing 349

Figure 13-7. Pachube is a site with API-supporting distributed sensor networks.

The Human Sensor
In addition to the applications that focus on using device sensors to collect and

communicate information, consider the phenomenon known as the Human Sensor. This

is where individuals are reporting information about their surroundings back into a

central system for processing.

An excellent example of this is a mobile application and supporting web site called

Ushahidi (www.ushahidi.com). This application is designed to allow individuals to submit

location-specific reports to a central Ushahidi server. Figure 13-8 shows some device

shots from the current Ushahidi Android application, which like Waze is currently a

native application.

http://www.ushahidi.com

CHAPTER 13: The Future of Mobile Computing 350

Figure 13-8. Ushahidi is a crowdsourcing crisis information system with mobile clients.

As can be seen in the device shots of Ushahidi, it markets itself as an application that

does a particularly good job of collecting crisis information. In fact, the Ushahidi platform

was used to assist with the relief efforts after the earthquakes in Haiti.

In addition to specialized applications like Ushahidi, things like geosocial networking (as

covered in Chapter 10) are also good examples of sensor networks driven from human

interaction.

Summary
In this chapter, we have had a look at some trends in mobile computing and how mobile

web development fits into the picture. There are many opportunities opening up in the

mobile space, both in established and emerging markets.

Additionally, with more and more devices coming online, there are some very interesting

projects that can be explored both for mobile app development and in the cloud.

The best thing any developer can do right now is to get involved, and, while we would

highly recommend working with mobile web technologies, the more important thing is to

get started somewhere. Hopefully, over the course of the book you have been exposed

to both the basics of mobile web development and some more advanced topics, plus

some ideas about the kinds of applications you could build.

Now, get out there and build great mobile apps.

351

351

 Appendix

Debugging Android Web
Apps
Debugging JavaScript applications and libraries is something that traditionally haunts

web developers. You may have read forum comments or articles by people who have

been less than enthusiastic about going down this mobile web application path. We will

admit that it is more difficult than debugging an application that has a nice, shiny IDE;

however, with the right tools and techniques, you can learn to track down and fix

JavaScript errors with relative ease. Before you debug your scripts, though, you can use

certain tools to scan and check your code and report any issues. This is a huge time-

saver in the development process. In this appendix, we will see how we can increase our

productivity and at the same time improve our code quality. This is an essential aspect

of software engineering, especially when you start to work on bigger projects. A good

starting point is the JSLint tool.

JSLint: Prevention Is Better Than Cure
JSLint (http://jslint.com) is a tool created by Douglas Crockford to assist developers

in writing their JavaScript code consistently. JSLint is a code quality tool, and it can be

run either online at the JSLint web page or from the command line. Depending on the

text editor you are using, you may even be able to get a plug-in/extension that

automatically runs JSLint over your code each time you save—which is very handy.

JSLint checks for common mistakes that can occur during coding, such as missing

semicolons and portions of “dead code,” which is code that will never be executed

because it’s unreachable. It will also warn you about code that runs without errors but is

considered bad practice or violates a style convention, and it will produce a report for

you that lists all the problems. In general, JSLint will help you fix code errors faster, as

well as learn good JavaScript practices, especially if you are a novice.

In most cases, using the online JSLint tool is sufficient, and it’s recommended when

working through the sample code in this book. In the online JSLint tool, you paste your

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://jslint.com

APPENDIX: Debugging Android Web Apps 352

code into an input text area and then just press a button to generate the report. But, if

you are working on a big project with a team, at a certain point you may want to provide

some automation in your build and release process, instead of checking it manually

each time by pasting it into the online tool. For this type of situation, there are some

options available, including a plug-in for Hudson, a continuous-build server that

automatically retrieves from source control servers, tests and distributes your code (see

http://hudson-ci.org), and more basic bash scripts that can be integrated to crone

jobs, for instance. Another option is to use Mozilla Rhino, which is a Java-based

JavaScript interpreter (see www.mozilla.org/rhino). You can pass your script and the

JSLint library to Rhino as arguments, and Rhino will run JSLint’s check process. And

because it’s a Java program, Rhino is very easy to integrate with other Java-based

frameworks, including the famous Ant build tool (discussed in more detail in Chapter 9;

see http://ant.apache.org). Check this blog post to see how Ant and JSLint can be

combined: www.ifisgeek.com/2009/05/05/running-jslint-in-automated-build-
scripts.

However, even if you take all these precautions to produce well-written, robust code,

you’ll still have to confront the debug process at some point, especially if the complexity

of your script is growing or if you’re dealing with third-party libraries where the

implementation is unknown by you. The following sections discuss some of your

debugging options.

Debugging with the Google Chrome Developer Tools
The maturity of tools for working with JavaScript has improved dramatically over the last

few years. The first notable mention goes to Firebug for enabling the debugging of so

much brilliant code during the course of the Ajax movement (see http://getfirebug.com).

Secondly, and more importantly for us working in the Android mobile space, Chrome

and the Chromium project (http://chromium.org) are taking that tool maturity even

further.

The main advantage to working with the Chrome developer tools

(www.chromium.org/devtools) in Chrome or Chromium is that you’ll be working once

again with the WebKit rendering engine, which means that your JavaScript code will be

interpreted the same way. This provides developers with some common ground

between the desktop and mobile platforms for identifying and debugging problems.

We will have a look at some of the most useful tools now. The tools suite is integrated

with the Chrome browser (www.google.com/chrome), so just be sure to have it installed

before moving on.

Catching Messages and Errors in the Console
The developer tools console is probably the least advanced of the tools available in the

suite, but almost certainly the most useful. Quite simply, the console is both a reporting

interface and a manual code execution tool. Figure A-1 shows an example of how the

developer tools console appears after running the following snippet of code:

http://hudson-ci.org
http://www.mozilla.org/rhino
http://ant.apache.org
http://www.ifisgeek.com/2009/05/05/running-jslint-in-automated-build-scripts.However
http://www.ifisgeek.com/2009/05/05/running-jslint-in-automated-build-scripts.However
http://www.ifisgeek.com/2009/05/05/running-jslint-in-automated-build-scripts.However
http://getfirebug.com
http://chromium.org
http://www.chromium.org/devtools
http://www.google.com/chrome

 APPENDIX: Debugging Android Web Apps 353

<html>
<body>
<script type="text/javascript">
// write some console messages
console.debug("debug message");
console.info("info message");
console.warn("warning message");
console.error("error message");

// throw an exception
throw new Error("This is a test exception");
</script>
</body>
</html>

Figure A-1. The Chrome developer tools console after running our console test snippet

The console displays messages that you placed in JavaScript code using console

debugging. Additionally, it shows the location of any uncaught exceptions that have

been raised while executing a script.

To see an error in the context of the code that it was running against, simply click one of

the underlined files displayed on the right of the screen. You will then be taken to the

Resources section, which shows where the warnings/errors were generated from.

APPENDIX: Debugging Android Web Apps 354

Debug and info messages aren’t displayed. Figure A-2 shows an example of the

Resources screen.

Figure A-2. The Resources section of the developer tools shows warnings, errors, and exceptions in context.

For the most part, the functionality provided by the console and Resources view is

adequate for catching the small and frustrating errors that can occur when working with

JavaScript. For example, try to insert your console statements at strategic places and

using the right log type (“warning,” “info,” “error” or “debug”). Your catch closure should

always log the reason why it was caught. Good log output is always very instructive and

helpful before using heavier tools such as the debugger, which will be explained now.

Script Debugging
Every now and again, you may hit a problem that is either difficult or inefficient to solve

using logging to the console in isolation. For a long time, the console method was the

best that JavaScript developers could hope for, but more recently both Firebug and the

Chrome developer tools have provided interactive debugging features. This enables the

creation of breakpoints, watches, and other goodies that are usually reserved for IDEs

and compiled code. Figure A-3 shows the script debugger, and, while we won’t go into

an in-depth tutorial on its use here, we will just explain the basic concept of a

breakpoint.

 APPENDIX: Debugging Android Web Apps 355

A breakpoint functions just like the Pause button on your DVD player. It stops the code

from running at whatever point you set it. You can set a breakpoint anywhere you

want—just click the line number label, and the code will pause when it reaches the line.

Why is it useful to pause code execution? Well, at the moment you enter a breakpoint,

you get an instant picture of the state of your script, including all the variables’ states.

This is very useful, for example, to see whether a variable has been set yet or is still

null. You can even change the value of a variable at runtime. You can also check the

call stack, which shows the hierarchy of function calls; this can be very handy when

you’re working with complicated flows and you want to know exactly who is calling

whom. For example, if you set a breakpoint inside the function retrieveTaskDetails()

which was called by the function getNewestTask(),you will be able to see this

arborescence in the debug tool.

After inspecting your script, you have different options: step over, step in, and stop.

Stepping over is just like hitting the Play button on your DVD player after a video has

been paused—your script will continue to run until it reaches the end or another

breakpoint. Stepping in can be used if your breakpoint is on a code line that calls

another function. You can step into this function, and the script will freeze at the first

statement of this function. Of course, you can stop running the script at any time by

clicking the Stop button.

Figure A-3. The script debugger provides breakpoints and variable watches for more trying times.

APPENDIX: Debugging Android Web Apps 356

NOTE: You’ll often hear the statement “Smart developers don’t use the debugger.” The idea
behind this is that, if you put your console log statements in the right places and trace the right
info, it won’t be necessary to use the debugger, and you’ll be spared a lot of time (checking your

console output is quicker than stepping into your code). The fact is, however, that you won’t
always be testing your own code, and you’ll sometimes have to test code that you wrote a long
time ago and don’t remember the details of—in these cases, the debugger offers some flexibility

for seeing exactly what’s happening.

Inspecting the DOM with the Elements Tab
It is pretty easy to end up with typos in HTML, and sometimes strange things can

happen in terms of your layout—especially when you are modifying the DOM (Document

Object Model) at runtime. To see what the current state of your HTML is, the Elements

tab in the developer tools is invaluable. Figure A-4 shows an example of the Elements

tab.

Figure A-4. The Elements tab shows the current state of the mobile app’s HTML.

 APPENDIX: Debugging Android Web Apps 357

When an element is selected in the HTML pane on the left, details of the element

(including applied styles, bound event listeners, etc.) are displayed on the right.

Additionally, you can use the DOM inspector

(http://en.wikipedia.org/wiki/DOM_Inspector) to dynamically apply styles and change

properties at runtime to experiment with what impact a change to a stylesheet would

actually have before implementing it. If you change a property at runtime, be aware that

it will only be temporary; when your page is reloaded, this property will return to its

original value, so don’t forget to update and save your source file if you find a suitable

property for an element.

Debugging with the Android Debug Bridge
While Chrome is invaluable for testing your web apps, spending time in the Android

emulator is crucial to seeing how the application will actually behave once deployed to a

device.

NOTE: In addition to running tests in the emulator, it is also important to test your application on
an actual device before deploying either to a publicly accessible web site or the Android
marketplace (if you are using a bridging framework). Information on how to configure USB

debugging to gain similar debugging features as described below can be found at the following

web page: http://developer.android.com/guide/developing/device.html.

Once you start working with the browser in the emulator or on an actual device, and you

attempt to debug your application, it will start to feel like you are back working in the

early versions of Internet Explorer. JavaScript errors occur silently, and the Android

browser doesn’t even have a console similar to mobile Safari on the iPhone.

That’s certainly how it appears on the surface, but it’s not as bad as it seems. By using

the adb tool that comes packaged with the Android SDK, you can actually see

JavaScript errors that occur within the browser on the emulator.

Running adb logcat will generate output similar to that displayed in Figure A-5. In this

particular example, the events pertaining to JavaScript console events have been sent

from the WebCore application. It can be useful to see what other events are going on in

the emulator, though—such as when garbage collection and other system-level events

are occurring.

http://en.wikipedia.org/wiki/DOM_Inspector
http://developer.android.com/guide/developing/device.html

APPENDIX: Debugging Android Web Apps 358

Figure A-5. Output from adb logcat is extremely useful when debugging JavaScript in the emulator.

If you find this log a bit too noisy, there is a tip to extract only the lines from the

WebCore process:

adb logcat WebCore: * *:S

359

359

Index

■ Special Characters
#alltasks div, 86
#app div, 242, 259, 301, 304
#jqt container requirement, 273
#jqt div element, 273–274
#login area, 246
#main div, 284
#main element, 82
#mapper div, 274
#marker-detail display, 309
#marker-detail div content, 309
#marker-detail page, 274, 285
#marker-detail screen, 311
#marker-nav bar, 274, 276
#marker-nav div, 287
#marker-nav element, 178, 275, 302, 305
#menu element, 70
#resavail div, 314
#splash div, 242, 301, 304
#tweets element, 222
$.ajax function, 225, 227
$.extend function, 331

■ A
a 0.0.0.0 parameter, 100
accelerometer, data capture of PhoneGap

sample application, 204–205
accelerometer.clearWatch function, 205
accelerometer.watchAcceleration method,

205
accuracy property, 119
action bars, 116–117
action button, 66
actionCounter variable, 70
activateMain function, 105
activateMarker function, 183, 186, 188,

267–268, 276, 284, 296–297, 309
activeView variable, 69

adb command, 200–201
adb devices command, 202
adb logcat, 357
adb tool, 357
Add view, 84
addMarker function, 183, 186, 188–189, 309
ADT plug-in, 11
ajax function, 229
All Tasks screen, building, 85–90
All Tasks view, 116
allscreens.css stylesheet, 35
alltasks view, 117
altitude property, 119
altitudeAccuracy property, 119
anchor tag, 70–71, 285
android command-line tools, 198, 210
Android debug bridge, debugging with,

357–358
Android directory, 194–195
android file, 12
Android Virtual Devices (AVDs), creating,

12–14
Android web apps, 200
android.css stylesheet, 290
android.database.sqlite package, 5
android.exe file, 12
android.hardware.Camera class, 5
AndroidManifest.xml file, 196, 212, 214,

322–324
ANDROID_SDK/tools directory, 201
animate function, 138–139, 152, 158
ANIMATION_DURATION constant, 152
animations, 137–148

with action bars, 116–117
canvas

drawing images, 142–148
transformations, 153–160

creating loops, 137–138
creating realistic movement, 149–152
and device DPI, 142–148
drawing frames for, 138–142

Index 360

canvas paths, 141–142
example of, 139–141

loading spinners, 112–115
for scrollable content, 115–116

ant debug install, 318
ant debug mode, 210
Ant debug target, 199
ant release command, 332
api-version, 235
APIs (application programming interfaces)

Geolocation, W3C specification for,
118–122

HTML5 storage, 47–63
Appcelerator Titanium, 194
appearance property, 31
application definition, 324
application permissions, modifying, 321–323
application programming interfaces. See

APIs
APPMAP.addMarker function, 179
APPMAP.init function, 179
arc method, 142
args parameter, 331
Array.sort method, 80
assets/www folder, 196, 214–216, 317, 327
assets/www/img directory, 214
ATM (automated teller machine), 161
authenticated event, 303
authentication process, in Moundz, 323–324
autohiding, URL bar, 25–26
automated teller machine (ATM), 161
AVDs (Android Virtual Devices), creating,

12–14

■ B
back button, 66
Back link, 91
backAction handler, 93
beep method, 209
beginPath method, 131, 142
bin folder, 334
bind method, 37, 39, 45, 267
Blur radius parameter, 32
body onload tag, 26
body tag, 26, 264, 289, 327
border-radius property, 31
borismus directory, 327
box-shadow property, 32
breakpoint, 357
Bridge Code, 250

bridges, defined, 195
bridges/Sample folder, 195
bridging frameworks. See PhoneGap
BROWSABLE category, 325
browsers, WebKit, 6
build.properties file, 333
build.xml file, 197, 201, 210

■ C
C2DM (Cloud to Device Messaging), 5
cache.manifest file, 123–124
caching offline

hidden features, 124–125
manifest file, 122–124

callback argument, 55
camera, in PhoneGap sample application,

205–208
camera support, 5
Camera.DestinationType.DATA_URL value,

207
Camera.DestinationType.FILE_URI value,

207
camera.getPicture method, 206
Camera.Picturesourcetype.CAMERA value,

207
Camera.PictureSourceType.PHOTOLIBRAR

Y value, 207
canvas, 129–131

animations for, 137–148
creating loops, 137–138
and device DPI, 142–148
drawing frames of, 138–142

drawing interactively to, 132–137
by mouse events, 132–134
by touch events, 134–137

paths, 141–142
transformations for, 153–160

canvas tag, 130
car-easing.js file, 150
car.js file, 143
carX variable, 152
challenge directory, 271
changeVersion method, 62
ChangeViewAction class, 117
child-screen class, 180
child-screen div, 181
Chrome developer tools, 58–59, 223,

352–353
class attribute, 33
className property, 117

Index 361

clear handler, 54
clear method, 48
clearTimeout function, 38
clearWatch method, 240
click events, 285, 287
client-side databases, saving items with,

56–61
cloud services, synchronizing with, 95–110

Google App Engine service, 98–102
making desktop interfaces, 110
online storage options, 95–97
updating user interface for, 103–106

Cloud to Device Messaging (C2DM), 5
com/phonegap/Sample directory, 212
com/prowebapps/maptest directory, 212
com.phonegap.Sample reference, 212
com.phonegap.Sample.Sample class, 212
completionCallback argument, 55
com.prowebapps.maptest, 212
connection status, detecting, 126–127
connectivity, 2–3
console, debugging with Google Chrome

developer tools, catching
messages and errors in, 352–354

content://moundz, 325
context.clearRect method, 141
context.restore() method, 155
context.save() method, 141, 155
Coordinates type, 118
coords property, 118
corner radius property, 112
CREATE TABLE statement, 61
create-task-form.html file, 84
createFooter function, 294, 297
createHeader function, 292–294
creationCallback argument, 55
Crockford, Douglas, 50
css directory, 263, 289
css/jo.css file, 264
CSS styles, for mobile HTML forms, 27–39

with different screen sizes, 34
and orientation changes, 35–39
page title appearance, 33

CSS3 definitions, 30–33
appearance property, 31
border-radius property, 31
box-shadow property, 32
gradient fill style, 32–33

currentResource variable, 309, 311
currentTasks variable, 86

■ D
data-* attributes, 282
data-icon attribute, 282
data-iconpos attribute, 306
data-id attribute, 282
data-role attributes, 282, 293
data-role types, 285
data-role="fieldcontain" attribute, 310
data transfer object (DTO), 57
databaseId argument, 55
databases, local and storage, 5
Date().getTime() function, 152
Date object, 61
DATETIME columns, 61
DATETIME type, 61
debugging, 351–358

with Android debug bridge, 357–358
with Google Chrome developer tools

catching messages and errors in
console, 352–354

inspecting DOM with Elements tab,
356–357

script debugging, 354–356
with JSLint, 351–352

declarative frameworks, comparison of
Mobile UI frameworks, 257

DEFAULT category, 325
default theme file, 273
define function, 69
DELETE operation, 55
demos directory, 271
deploying apps, Moundz, 299–331

and Android intents, 324–326
authentication process in, 323–324
handling intents with PhoneGap plug-in,

326–331
login screen for, 299–305
modifying application permissions,

321–323
navigation layout for, 305–307
packaging for release, 331
packaging with PhoneGap, 316–321
resource details screen for, 307–314
using Geominer for resource tracking in,

314–316
description argument, 55
desktop computing, vs. mobile computing,

339
desktop interfaces

deploying applications on cloud
services, 109–110

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

content://moundz

Index 362

querying jsonengine instances, 107–109
destinationType value, 207
detailCard, 268
details_panel, 297
dev_appserver command, 100
developer tools, Chrome, 58–59
development environment, 8–16

emulators for, 11–16
creating AVDs, 12–14
starting, 14–16

text editors, and working directories, 8–9
web server, 9–11

Mongoose, 9–10
SD card images, 11

working directories for, and text editors,
8–9

device architecture, 344–346
device-dpi setting, 143
deviceReady event, 328–329
directories, and text editors, 8–9
displayErrors function, 41
display:none attribute, 105
div elements, 257, 274, 283, 302
dockedItems array, 292
_doc:taskJson,_docId:task.id parameter,

102
DOM (Document Object Model), inspecting

with Elements tab, 356–357
DOMTimestamp type, 118
dots per inch (DPI), for devices, 142–148
double type, 119
downloading PhoneGap, 194–195
DPI (dots per inch), for devices, 142–148
drawable-hdpi folder, 320
drawable-ldpi folder, 320
drawable-mdpi folder, 320
drawing interactively, to HTML5 canvas,

132–137
by mouse events, 132–134
by touch events, 134–137

drawTo method, 131
drawWheel function, 158
drops.html file, 137
drops.js file, 137
DTO (data transfer object), 57
due field, 61

■ E
Elements tab, inspecting DOM with,

356–357

emulator @android_web_apps command,
200

emulator command, 201
emulator executable, 200
emulators, 11–16

creating AVDs, 12–14
starting, 14–16

enableHighAccuracy option, 240
endAngle variable, 158
errorCallback argument, 55
estimatedSize argument, 55
executeSql method, 55
Ext.Button class, 293
Ext.Button object, 293
Ext.Panel, 290–291
extraClauses parameter, getTasks function,

79–80
Ext.setup function, 290
Ext.Toolbar class, 293–294

■ F
fabric.js library, 142
FALLBACK keyword, 124
FALLBACK. NETWORK keyword, 124
features, 7, 148
feedback, for form validation, 40–46
fill method, 142
fillRect method, 155
findResources function, 236–237, 240
for loop, 101–102, 236
form elements, for mobile HTML forms,

26–27
form validation, for mobile HTML forms

overview, 39–40
providing feedback for, 40–46

foursquare app, 118
Foursquare network, 163
frameworks/challenge/jQueryMobile

directory, 300
frequency option, 205

■ G
gather function, 315
gatherResource function, 315
geolocation

overview, 3–4
tracking position with, for Moundz,

238–241

Index 363

Geolocation APIs, W3C specification for,
118–122

geolocation div element, 119
Geominer API

connecting to social APIs using,
230–231

finding resources with, for Moundz,
234–237

in Moundz, using for resource tracking,
314–316

GeoMiner application, 54
geominer module variable, 251
GEOMINER.Bridge object, 252, 303, 331
Geosocial networking, 163–164
get function, 108
GET method, 107
getAction function, 92–93
getAnchor method, 70
getContext method, 131
getCurrentPosition method, 238, 240
getDaysDue method, 81
getIncompleteTasks method, 80
getItem method, 48, 51
getMarkerIndex function, 187
getMostImportantTask method, 80
getPicture method, 206
getTasks function, 78–80
getTasksInPriorityOrder method, 80
getViewActions function, 92–93
GitHub repository, 158
Global Positioning System (GPS), 3
Google App Engine service, 98–102

choosing synchronization mode for, 100
deploying jsonengine instances locally,

99–100
sending offline data to jsonengine

instances, 101–102
Google Chrome developer tools, debugging

with
catching messages and errors in

console, 352–354
inspecting DOM with Elements tab,

56–357
script debugging, 354–356

Google Maps API, 165–166
adding markers to, 169–171
showing marker detail, 171–173

google.maps.LatLng object, 240
google.maps.Map class, 166
google.maps.Marker class, 170
goTo method, 276

gotoPosition function, 251, 295
Gowalla network, 161, 163
GPS (Global Positioning System), 3
gradient fill style, 32–33
Gradient type parameter, 32
Gruber, John, 25

■ H
h1 element, 66, 177
h1.fancy style, 66
hardware sensor networks, 347–349
hardware sensors, 4–5
has-detail class, 183
head section, 30
heading property, 119
height parameter, 24
Hello World example, 16–19
helloworld.html file, 17, 19
hide function, 115
high DPI mode, 145
Home Screen

requirements of storage module for,
78–81

wiring up, 82–84
Horizontal offset parameter, 32
hsla color function, 245
hsla scheme, 245
HTML elements, 289
HTML files, multipage apps with single file,

65–72
ViewAction class for, 70–72
ViewManager module for, 68–70

html function, 108
HTML5 (HyperText Markup Language 5)

storage APIs, 47–63
local vs. session storage, 54
saving objects using JSON, 49–54
Web SQL databases, 54–63

saving items with client-side, 56–61
versioning and upgrades, 62–63

Human Sensor, 349–350
HyperText Markup Language 5 storage

APIs. See HTML5 storage APIs

■ I
icon.png file, 319
icons, custom, 185–186
ifconfig command, 17

Index 364

IMEI (International Mobile Equipment
Identity), 97

img directory, 185, 214
img tags, 287
Indexed database, 47
index.html file, 215–216, 233, 237, 257, 263,

282, 300, 327–328
index.html initialize function, 238
index.html page, 246
info div element, 104
init method, 252, 259, 290, 329, 331
initial-scale parameter, 24
initialize function, 176, 190, 237, 290
initMap function, 166, 168–169
initScreen function, 187, 264, 274, 283,

290–291, 311
INSERT operation, 55
install target, 199
intent-filter, 324–325
intents, in Moundz

handling with PhoneGap plug-in,
326–331

overview, 324–326
interactivity, 129–160

for canvas animations, 132–160
creating loops for, 137–138
creating realistic movement, 149–152
and device DPI, 142–148
drawing frames of, 138–142
drawing images for, 142–148
by mouse events, 132–134
by touch events, 134–137

with HTML5 canvas, 129–131
International Mobile Equipment Identity

(IMEI), 97
ipconfig command, 17
iScroll library, 115
items array, 292
items variable, 54

■ J
JavaScript language, synchronization

libraries for, 97
JavaScript Object Notation (JSON), 49–54,

95
Jo, 261–269

Moundz with, 264–269
using, 262–264

joCard objects, 266
joDOM utility, 266

jo.load() method, 266
joNavBar, 266
joScreen object, 266
joStack, 266
joToolbar, 266
jQTouch, 269–277

Moundz with, 273–277
using, 270–273

jqtouch directory, 271
jqtouch.css, 273
jqtouch.js, 273
jquery-1.4.4.min.js file, 280
jQuery bind function, 252
jQuery Mobile, 278–287, 299–307

browser support for, 342–344
login screen with, 299–305
Moundz with, 281–287
navigation layout with, 305–307
using, 279–281

jQuery.extend function, 331
jQuery.validate plug-in, 46
jquery.validate.js library, 44
js directory, 50, 263
js/jo.js file, 264
js library, 215
JSLint, debugging with, 351–352
JSON (JavaScript Object Notation), 49–54,

95
json2.js file, 51
json2.js library, 50
jsonengine instances

deploying locally, 99–100
overview, 97
querying, 107–109
sending offline data to, 101–102

JSONP, connecting to social APIs using,
222–227

■ K
key/value pair array, 58
key.alias property, 332–333
key.store property, 332–333

■ L
largescreen.css file, 35
largescreen.css stylesheet, 34
latitude attribute, 119
latitude column, 120

Index 365

latitude property, 119
launcher icon, for Moundz, 319–321
left class, 305
libs/phonegap-0.9.3.jar Java library, 196
lineTo method, 142
lineWidth parameter, 141
Linux, Mongoose on, 9–10
list method, 232
listitems, 53
live function, 311
loading spinners, 112–115
local databases, and storage, 5
local storage, vs. session storage, 54
local.properties file, 198, 210
localStorage, 48–49
location-aware applications

overview, 118
W3C Geolocation API specification for,

118–122
location-based services, 161–164
login screen, 299–305
longitude attribute, 119
longitude column, 120
longitude property, 119

■ M
Mac OS, Mongoose on, 9
main directory, 289
main view, 117
make command, 10
manifest file, 122–124
map variable, 296
MAPAPP module, 176, 189, 233
mapapp.css file, 176, 192, 214, 233
mapapp.html file, 180, 185, 190, 192,

214–215
MAPAPP.init function, 176
mapapp.js file, 178, 181, 187, 192, 214, 216,

233
MAPAPP.updateDisplay() function, 190–191
mapping, 164–192

Geosocial networking, 163–164
Google Maps API

adding markers to, 169–171
overview, 165–166
showing marker detail, 171–173

Tile5 HTML5 API, 167–169
UI for

coding, 175–179
implementing navigation in, 180–184

overview, 173–175
selecting markers with navigation

bar, 184–192
mapping app, with PhoneGap, 209–219

renaming app, 209–214
renaming classes in, 211–214
transferring existing code into, 214

maptest-debug.apk, 210
maptest directory, 210
MapTest.java file, 212
marker-detail screen, 183
markerData, 309
marker.getTitle method, 183
markerIndex variable, 268, 297
markers

applying sorting to, 190–192
for Google Maps API

adding to, 169–171
showing detail in, 171–173

setting up, 185–186
tapless selection for, 187–190

markResources function, 236, 309
markup-based frameworks, comparison of

Mobile UI frameworks, 256–257
master.css file, 215
maximum-scale parameter, 24
medium DPI mode, 145
messaging, and push notifications, 5–6
meta tags, viewport, 23–25
minimum-scale parameter, 24
mobile computing, 337–350

vs. desktop computing, 339
and device architecture, 344–346
hardware sensor networks, 347–349
and Human Sensor, 349–350
is worldwide phenomenon, 338–339
jQuery Mobile browser support, 342–344
and progressive enhancement, 339–342

mobile HTML forms, 21–46
autohiding URL bar, 25–26
CSS styles for, 27–39

CSS3 definitions, 30–33
with different screen sizes, 34
and orientation changes, 35–39
page title appearance, 33

elements for, 26–27
validation for, 39–46
viewport meta tag for, 23–25

Mobile UI frameworks, 255–298
comparison of, 255–261

declarative, 257

Index 366

markup-based, 256–257
Jo, 261–269

Moundz with, 264–269
using, 262–264

jQTouch, 269–277
Moundz with, 273–277
using, 270–273

jQuery Mobile, 278–287
Moundz with, 281–287
using, 279–281

Sencha Touch, 287–298
Moundz with, 290
using, 288–290

Mongoose
on Linux, 9–10
on Mac OS, 9
running, 10
on Windows, 9

mongoose command, 10, 17
More Details button, 173
Moundz, 232–241, 299–331

and Android intents, 324–326
authentication process in, 323–324
finding resources with Geominer API,

234–237
handling intents with PhoneGap plug-in,

326–331
with Jo framework, 264–269
with jQTouch framework, 273–277
with jQuery Mobile framework, 281–287
login screen for, 299–305
modifying application permissions,

321–323
navigation layout for, 305–307
packaging for release, 331
packaging with PhoneGap, 316–321
resource details screen for, 307–314
with Sencha Touch framework, 290
using geolocation to track position,

238–241
using Geominer for resource tracking in,

314–316
moundz directory, 300, 316
moundz-jqm directory, 300, 317
MOUNDZ module, 233, 235–237, 239,

251–252, 276, 290, 296
moundz-release.apk file, 334
Moundz welcome screen, 248
moundz.css file, 233, 243, 259, 264, 281,

290, 301–302, 305, 312

MOUNDZ.init() method, 250–251, 259, 290,
329–330

moundz.js file, 233, 238, 258, 274, 283, 307,
310, 315, 328–329

mouse events, interactivity for canvas
animations by, 132–134

mousecanvas.html file, 135
mousecanvas.js file, 132, 136
mousedown event, 134
mouseover event, 134
mouseup event, 134

■ N
native applications, competing with,

111–127
adding animations, 111–117
making applications location-aware,

118–122
native-like layouts, 111–117
running applications offline, 122–127

native bridging. See PhoneGap
navigation bar, selecting markers with,

184–192
applying sorting to, 190–192
and showing custom icons, 185–186
tapless selection for, 187–190

navigation layout, 305–307
navigator object, 205–206
navigator.online function, 126
NETWORK keyword, 124
noauth class, 301–302, 304
notification events, in PhoneGap sample

application, 209
notification object, 209
notifications, push, 5–6

■ O
Oehlman, Damon, 169
offline application cache, 122
offline caching

hidden features, 124–125
manifest file, 122–124

offline.png file, 124
onclick event, 205
online storage options, 95–97

avoiding three-tier architecture, 96
JavaScript synchronization libraries, 97
jsonengine instances, 97

Index 367

synchronization store requirements, 96
user authentication, 96–97

online.png file, 124
onload event, 166, 168, 327–328
onload handler, 158
onReady handler, 290
Open Handset Alliance, 1
openDatabase method, 55, 62
OpenLayers API, 167
operating system (OS), 1
ORDER BY statement, 79–80
orientation changes, and CSS styles, 35–39
orientation-monitor.js file, 36
orientationchange event, 37–38
OS (operating system), 1
overflow:hidden instruction, 177, 181

■ P
PaaS (Platform-as-a-Service), 98
packaging apps. See deploying apps,

Moundz
page not found error, 122
parseUrlParams function, 329–330
Penner, Robert, 149–150, 152–153
permissions, for applications, 321–323
PhoneGap, 193–219

connecting to social APIs using native
app, 230

downloading, 194–195
handling intents in Moundz with,

326–331
mapping app, 209–219

renaming app, 209–214
renaming classes in, 211–214
transferring existing code into, 214

packaging Moundz with, 316
sample application with, 195–209

accelerometer data capture, 204–205
building, 197–203
camera connections, 205–208
notification events in, 209
photo library connections, 205–208

uses for, 194
phonegap-0.9.3.jar file, 195
phonegap-0.9.3.js file, 195
PhoneGap framework, 4–5
phonegap.js file, 216, 233, 327–328
photo library, in PhoneGap sample

application, 205–208
pin-active.png file, 185

pin-inactive.png file, 185
placeholder attribute, 28–29
plain-old Java object (POJO), 57
Platform-as-a-Service (PaaS), 98
platform capabilities, 1–7

camera support, 5
device connectivity, 2–3
device features, 7
geolocation, 3–4
hardware sensors, 4–5
local databases, and storage, 5
messaging, and push notifications, 5–6
process management, 6–7
push notifications, and messaging, 5–6
storage, and local databases, 5
touch events, 3
WebKit web browser, 6

Point 1 parameter, 32
Point 2 parameter, 32
POJO (plain-old Java object), 57
populateTaskList function, 86–87
position, tracking with geolocation, 238–241
position.coords.latitude property, 119
position.coords.longitude property, 119
post function, 101–102
posWatchId variable, 240
preferences object, 48
preventDefault method, 78, 136
processes, management of, 6–7
processResourceSearch function, 236
progressive enhancement, and mobile

computing, 339–342
PROJECT_WORKING_DIR directory, 10
proui.css file, 65–66, 76
prowebapps-code repository, 185
prowebapps GitHub, 242
PROWEBAPPS module, 51, 71, 92
PROWEBAPPS.ChangeViewAction class, 71
PROWEBAPPS.Easing.Linear function, 152
PROWEBAPPS.Easing.Sine.Out function,

152
prowebapps.js file, 57, 68, 72, 77, 149, 153
prowebapps.js library, 51
PROWEBAPPS.Storage functions, 52
PROWEBAPPS.Storage module, 51, 54
PROWEBAPPS.Storage.get function, 53
PROWEBAPPS.Storage.get(key, scope), 52
PROWEBAPPS.Storage.remove(key, scope),

52
PROWEBAPPS.Storage.set(key, value,

scope), 52

Index 368

PROWEBAPPS.ViewAction class, 70–71
PROWEBAPPS.ViewManager module, 68,

85, 91, 93
PROWEBAPPS.ViewManager.activate("main

"), 94
PROWEBAPPS.ViewManager.back()

function, 94
PROWEBAPPS.ViewManager.define

function, 69
push notifications, and messaging, 5–6

■ Q
quality value, 207

■ R
radius property, 31
readTransaction method, 55
ready function, 119
rect method, 142
releasing apps. See deploying apps,

Moundz
removeItem method, 48
renaming

apps, in PhoneGap, 209–214
classes, in PhoneGap, 211–214

res/directory, 197
res/values directory, 210
Research In Motion (RIM), 6
resetCanvas function, 138
resize event, 38
Resource Details screen, 314
resource details screen, for Moundz,

307–314
resources folder, 289
Resources screen, 354
resources tools, 235
REST API, 97, 107
restore method, 153
returnUrl configuration parameter, 331
returnUrl parameter, 331
rgba function, 141, 181
right class, 305
RIM (Research In Motion), 6
rotate method, 153, 155
rotation.html file, 154
rotation.js file, 154
run function, 71, 238–240, 258–259, 304,

331

■ S
sample-debug.apk, 210
Sample directory, 195, 201
Sample PhoneGap application folder, 196
sample references, 212
sample.java file, 212
samples directory, 262
save method, 153
saveTask method, 80, 121
screens, coding for different sizes, 34
script tag, 224
scripts, debugging with Google Chrome

developer tools, 354–356
scrollable content, animations for, 115–116
SD card images, 11
SDK (software development kit), 4
sdk.dir property, 198
SELECT statements, 55, 79
selectEven, 267
Sencha Touch, 287–298

Moundz with, 290
using, 288–290

sencha-touch-debug.js file, 290
sensor parameter, 166
sensors, hardware, 4–5
server-side proxy, connecting to social APIs

using, 228
session storage, vs. local storage, 54
sessionStorage object, 48–49
setData method, 268
setInterval method, 137–138, 183
setItem method, 48, 51
setText method, 297
setTimeout function, 38, 137
Shadow color parameter, 32
shadow property, 112
shouldPush variable, 92
Show All Tasks screen, 77
show function, 115
showData function, 226
showMap function, 118
show_pic function, 206
showScreen function, 183, 276
showTaskDetails function, 83
simple browser detection, 148
simplecanvas.html file, 130
simplecanvas.js file, 130, 132
smallscreen.css file, 35
/snippets/01/helloworld.html file, 19
snippets directory, 19
snippets stylesheet, 50

Index 369

social APIs, 221–254
connecting to, 221–231

with Geominer API, 230–231
with server-side proxy, 228
using JSONP, 222–227
using PhoneGap native app, 230
using YQL, 228–230

Moundz, 232–241
finding resources with Geominer API,

234–237
using geolocation to track position,

238–241
user login for, 241–254

screens for, 242–245
Twitter authentication via Geominer,

250–254
using Twitter anywhere JavaScript

application, 245–250
software development kit (SDK), 4
sort function, 191
sortMarkers function, 190
speed property, 119
spinners, 112–115
spots endpoint, 232
SQL-like syntax, 228
sqlParameters argument, 55
sqlText argument, 55
src/com folder, 327
src/* directory, 197
startCar function, 158
Stop 1 parameter, 33
Stop 2 parameter, 33
storage, and local databases, 5
storage APIs, HTML5, 47–63

Web SQL databases, 54–63
Web Storage, 48–54

Storage module, 51, 58, 60, 79, 83, 103
Storage tab, 59
strings.xml file, 210
stroke method, 131, 142
strokeStyle parameter, 141
Submit button, 41
submit event, 41
subscribe method, 267
supportsTouch variable, 311
switchView function, 69–70
synchronization

choosing mode for, 100
libraries for, JavaScript language, 97
store requirements for, 96

Synchronize button, 103–104, 114, 126–127

synchronizeOnline() function, 103, 114
synchronizeTasks function, 103

■ T
tap events, 285
tap handlers, 287
tapless marker selection, 187–190
target-densitydpi parameter, 24
target-densitydpi setting, 143
Task class, 81
Task table, 57, 120
test.html file, 262
text-align rule, 306
text/cache-manifest MIME type, 122
text editors, and working directories, 8–9
themes directory, 271
three-axis accelerometer, 4
three-tier architecture, avoiding, 96
Tile5 HTML5 API, 167–169
tile5.cloudmade.js file, 168
tile5.js library, 168
Timers plug-in, 126
timestamp property, 118
title page, appearance of, 33
todolist database, 57
TODOLIST module, 86
todolist-readonly.css file, 108
todolist-readonly.html file, 107
TODOLIST.activateMain function, 82
todolist.css file, 29, 33, 40, 74, 83
todolist.html file, 84–85, 123
todolist.js file, 41, 43, 56–57
TODOLIST.Storage module, 56, 62, 78, 82
TODOLIST.Storage.getMostImportantTask

function, 82
toggleAccel function, 205
toggleDetailsDisplay function, 86
toolbar class, 274
tools folder, 12
touch events

interactivity for canvas animations by,
134–137

overview, 3
touchcanvas.html file, 135
touchcanvas.js file, 135
touchdown event, 134
touchmove event, 134
touchstart handler, 136, 158
touchup event, 134
tracking position, with geolocation, 238–241

Index 370

transaction method, 55
translate method, 153, 155
trigger function, 39
try block, 141
try.finally block, 141
try.finally loop, 141
twitter-test.html file, 226
Twitter, user login for

using Geominer API, 250–254
using Twitter anywhere JavaScript

application, 245–250

■ U
ui-btn-text class, 285
ui-btn-text span, 285
UIs (user interfaces)

for mapping, 173–175
coding, 175–179
implementing navigation in, 180–184
selecting markers with navigation

bar, 184–192
updating for synchronizing with cloud

services, 103–106
ul elements, 44
ul (unordered list), 28
uninstall target, 199
unordered list (ul), 28
update method, 297
UPDATE operation, 55
updateAcceleration function, 205
updateDisplay function, 189
updateMarkerNav function, 187–188, 190,

286
updateResourceDetails function, 311, 313
updateViewStack function, 91
Urbanspoon application, 162
URL bar, autohiding, 25–26
user authentication, 96–97
user interfaces. See UIs
user logins, for social APIs, 241–254

screens for, 242–245
Twitter authentication via Geominer,

250–254
using Twitter anywhere JavaScript

application, 245–250
user-scalable parameter, 24

■ V
validate method, 45
venues API endpoint, 229
version argument, 55
Vertical offset parameter, 32
vibrate method, 209
VIEW action, 325
view class, 66
view stack, implementing, 91–94
ViewAction class, implementing, 70–72
ViewAction module, 92
ViewManager class, 116
ViewManager module

creating, 68–70
functionality of, 77–78

ViewManager.activate method, 72, 78
viewport meta tag, 23–25, 143, 148

■ W
W3C (World Wide Web Consortium)

Geolocation API specification,
118–122

war folder, 99–100, 123
war/web-inf folder, 122
war/web-ing/appengine-web.xml file, 110
watchAcceleration method, 206
watchHash function, 183, 187
watchPosition method, 239–240
web applications, multipage, 65–94

All Tasks screen for, 85–90
Home Screen for, 82–84
Home Screen Storage module

requirements, 78–81
implementing view stack, 91–94
ViewAction class for, 70–72
ViewManager module for, 68–70, 77–78

web browsers, WebKit, 6
web pages, 21–26

autohiding URL bar, 25–26
viewport meta tag for, 23–25

web servers, 9–11
Mongoose

on Linux, 9–10
on Mac OS, 9
running, 10
on Windows, 9

SD card images, 11
Web SQL databases, 54–63

saving items with client-side, 56–61

Index 371

versioning and upgrades, 62–63
Web Storage API, 48–54

local vs. session storage, 54
saving objects using JSON, 49–54

WebIntent.java file, 327
webintent.js file, 327
webkit-animation-delay attribute, 112
webkit-animation-delay-count selector, 113
webkit-animation selector, 113
-webkit-appearance property, 31
webkit-background-size style, 314
-webkit-border-radius property, 31
webkit-box-pack rule, 305
-webkit-box-shadow property, 32
WebKit browsers, 48
-webkit-gradient fill style, 32–33
webkit prefix, 305
webkit-transform rule, 178
webkit-transform selector, 113
webkit-transform:rotate attribute, 112
WebKit web browser, 6
webservice, 235
webstorage-test.js file, 51–52
web.xml file, 122
welcome screen, Moundz, 248
wheelie.html file, 156
wheelie.js file, 156
wheelOffset variable, 158

WHERE statement, 79
width parameter, 24
window.location.hash property, 183
Windows, Mongoose on, 9
working directories, and text editors, 8–9
World Wide Web Consortium (W3C)

Geolocation API specification,
118–122

wrapper div, 115

■ X
x attribute, 205
xtype attribute, 293

■ Y
y attribute, 205
YQL (Yahoo Query Language), 228–230

■ Z
z attribute, 205
z-index rule, 177

zoomLevel parameter, 331

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

 i

Pro Android Web Apps
Develop for Android Using

HTML5, CSS3 & JavaScript

■ ■ ■

Damon Oehlman
and
Sébastien Blanc

ii

Pro Android Web Apps: Develop for Android Using HTML5, CSS3 & JavaScript

Copyright © 2011 by Damon Oehlman and Sébastien Blanc

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3276-6

ISBN-13 (electronic): 978-1-4302-3277-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editors: Steve Anglin and Douglas Pundick
Technical Reviewer: Kunal Mittal
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Damon Larson
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 v

Contents

■Contents at a Glance ... iv
■About the Authors ... x
■About the Technical Reviewer .. xi
■Acknowledgments ... xii
■Introduction .. xiii

■Chapter 1: Getting Started ... 1

Understanding Android Platform Capabilities ... 1
Device Connectivity .. 2
Touch ... 3
Geolocation .. 3
Hardware Sensors ... 4
Local Databases and Storage .. 5
Camera Support ... 5
Messaging and Push Notifications ... 5
WebKit Web Browser ... 6
Process Management .. 6
Android OS Feature Summary ... 7

Preparing the Development Environment ... 8
Text Editors and Working Directories .. 8
Web Server .. 9
Emulator .. 11

Hello World .. 16
Summary .. 19

■ CONTENTS

vi

■Chapter 2: Building a Mobile HTML Entry Form ... 21
HTML for the Mobile Web ... 21

Mobile-Ready Web Pages .. 21
Adding Form Elements ... 26

Adding Some Style .. 27
Form Styles with a Splash of CSS3 .. 30
Improving the Page Title Appearance .. 33
Coding for Different Screen Sizes .. 34
Handling Device Orientation Changes .. 35

Adding Form Validation ... 39
Providing Feedback with Limited Screen Space ... 40

Summary .. 46

■Chapter 3: HTML5 Storage APIs ... 47
The Web Storage API .. 48

Saving Objects to Web Storage Using JSON .. 49
Local vs. Session Storage .. 54

The Web SQL Database ... 54
Saving To-Do List Items with a Client-Side Database ... 56
Database Versioning and Upgrades ... 62

Summary .. 63

■Chapter 4: Constructing a Multipage App ... 65
Single HTML File, Multiple App Pages .. 65

Creating a View Manager ... 68
Implementing View Actions ... 70

Building the Application’s Main Screen .. 73
Tweaking ViewManager Functionality ... 77
Home Screen Storage Requirements ... 78
Wiring Up the Home Screen ... 82

Building the All Tasks Screen ... 85
Implementing the View Stack ... 91
Summary .. 94

■Chapter 5: Synchronizing with the Cloud .. 95
Exploring Online Storage Options ... 95

Online Synchronization Store Requirements ... 96
Avoiding a Three-Tier Architecture .. 96
User Authentication ... 96
A JavaScript Synchronization Library .. 97
Possible Synchronization Solutions ... 97

Getting Started with Google App Engine ... 98
Deploying jsonengine Locally .. 99
Choosing a Suitable Synchronization Mode ... 100
Sending Your Offline Data to jsonengine ... 101

Updating the User Interface for Online Synchronization ... 103
Making a Desktop Interface .. 106

Querying a jsonengine Instance ... 107
Deploying Your Application on the Cloud ... 109

Summary .. 110

■ CONTENTS

 vii

■Chapter 6: Competing with Native Apps .. 111
Adding Lightweight Animations and Native-Like Layouts .. 111

Adding a Simple Loading Spinner .. 112
Adding Scrollable Content ... 115
Sprucing Up the Action Bar .. 116

Making Your Application Location-Aware ... 118
The W3C Geolocation API Specification ... 118

Running Your Application Offline .. 122
The Offline Cache Manifest File ... 122
Exploring Hidden Offline-Caching Features ... 124
Detecting Your Connection Status ... 126

Summary .. 127

■Chapter 7: Exploring Interactivity ... 129
Introduction to the HTML5 Canvas .. 129
Drawing Interactively to the Canvas ... 132

Interactivity: The Way of the Mouse ... 132
Interactivity: The Way of Touch .. 134

Implementing Canvas Animation .. 137
Creating an Animation Loop ... 137
Drawing a Frame of Animation .. 138
Drawing Images: Accounting for Device DPI ... 142

Advanced Animation Techniques .. 149
Creating Realistic Movement in Animations .. 149
Canvas Transformations and Animation .. 153
Transformations and Our Car Animation .. 156

Summary .. 160

■Chapter 8: Location-Based Services and Mobile Mapping 161
Location-Based Services .. 161
Geosocial Networking ... 163
Mobile Mapping .. 164

Displaying a Map with Google Maps .. 165
Tile5: An Alternative HTML5 Mapping API .. 167
Adding Markers to a Google Map ... 169
Showing Marker Detail .. 171

A Mobile-Optimized Mapping UI ... 173
A Mapping UI Mockup .. 173
Coding a Boilerplate Mobile Mapping UI .. 175
Implementing UI Navigation in the Boilerplate .. 180
Selecting Markers with the Navigation Bar ... 184

Summary .. 192

■Chapter 9: Native Bridging with PhoneGap ... 193
Introducing Bridging Frameworks .. 193

When to Use PhoneGap .. 194
Downloading PhoneGap ... 194

A Sample PhoneGap Application ... 195
Building the Sample Application .. 197
Investigating the Sample Application .. 204

■ CONTENTS

viii

A Simple PhoneGap Mapping App .. 209
Tweaking the Sample PhoneGap Project ... 209
Transferring Existing Code into a PhoneGap App .. 214

Summary .. 219

■Chapter 10: Integrating with Social APIs .. 221
Connecting to Web APIs .. 221

What Is JSONP? ... 222
Dealing with APIs That Lack JSONP Support ... 228
Introducing the Geominer API .. 230

Locating Resources in Moundz ... 232
Finding Nearby Resources with the Geominer API .. 234
Using Geolocation to Track Your Position .. 238

Implementing a User Login ... 241
Constructing the Welcome and Login Screen .. 242
Twitter Anywhere and the Login Process .. 245
Alternative Twitter Authentication via Geominer ... 250

Summary .. 253

■Chapter 11: Mobile UI Frameworks Compared .. 255
Mobile UI Frameworks Overview .. 255

Similarities and Differences Between Frameworks ... 256
Setting Up for the Framework Comparison ... 257

Jo .. 261
Getting Started with Jo .. 262
Moundz, Meet Jo ... 264

jQTouch ... 269
Getting Started with jQTouch ... 270
Applying Some jQTouch-Ups to Moundz .. 273

jQuery Mobile .. 278
Getting Started with jQuery Mobile .. 279
Moundz and jQuery Mobile .. 281

Sencha Touch ... 287
Getting Started with Sencha Touch ... 288
Moundz and Sencha Touch .. 290

Summary .. 298

■Chapter 12: Polishing and Packaging an App for Release 299
Continuing on with jQuery Mobile ... 299

Reinstating the Login Screen ... 299
Improving Navigation Layout ... 305

Gathering Resources ... 307
Building the Resource Details Screen .. 307
Using Geominer for Resource Tracking ... 314

Packaging Moundz As a Native Application .. 316
Bundling for PhoneGap .. 316
Tweaking Application Permissions .. 321

PhoneGap, Authentication, and Intents ... 323
Our Previous Web Authentication Flow .. 323
An Overview of Android Intents ... 324

■ CONTENTS

 ix

Using PhoneGap Plug-Ins to Handle Intents .. 326
Packaging Our Application for Release ... 331
Summary .. 336

■Chapter 13: The Future of Mobile Computing .. 337
The Era of Mobile Computing .. 337

A Worldwide Phenomenon ... 338
Death of the Desktop? ... 339
Embracing Progressive Enhancement ... 339

Mobile Technology Predictions ... 342
Improvements in Tools and Libraries ... 342
Changes in Device Architecture ... 344
Coding for Future Architectures ... 346

The Internet of Things ... 346
Hardware Sensor Networks ... 347
The Human Sensor ... 349

Summary .. 350

■Appendix: Debugging Android Web Apps .. 351
JSLint: Prevention Is Better Than Cure ... 351
Debugging with the Google Chrome Developer Tools ... 352

Catching Messages and Errors in the Console .. 352
Script Debugging ... 354
Inspecting the DOM with the Elements Tab ... 356

Debugging with the Android Debug Bridge ... 357

■Index .. 359

■ ACKNOWLEDGMENTS

x

About the Authors

Damon Oehlman is an experienced software developer and technical manager
who currently lives in Brisbane, Australia. Having developed for a variety of
platforms, from Windows to web development and now mobile, Damon has a
unique perspective which fuels his passion for the “write once, run anywhere”
promise of mobile web app development.

Seeing the growing trend toward mobile development, Damon left the
stable environment of the corporate world and co-founded mobile
development company Sidelab (www.sidelab.com). Sidelab offers professional
development services for mobile web apps with particular expertise in
mapping, location-based services and data visualization. Damon also

maintains a technical blog, Distractable (www.distractable.net) and created the HTML5 mobile
mapping JavaScript library Tile5 (www.tile5.org).

When not coding or writing, Damon enjoys spending time with his wife and kids, who help
him to remember that there is more to life than writing software.

Sébastien Blanc is a senior JEE software engineer. He works for E-id
(www.e-id.nl), a Dutch IT company. Additionally, Sébastien spends a lot of time
providing expertise for mobile web apps. He is a regular conference speaker
and really believes in the success of web-based mobile applications. Like
Damon, when not coding, Seb enjoys spending time with his family.

http://www.sidelab.com
http://www.distractable.net
http://www.tile5.org
http://www.e-id.nl

■ CONTENTS

 xi

About the Technical
Reviewer

Kunal Mittal serves as an Executive Director of Technology at Sony Pictures
Entertainment, where he is responsible for the SOA, Identity Management,
and Content Management programs. He provides a centralized
engineering service to different lines of business, and he leads efforts to
introduce new platforms and technologies into the Sony Pictures
Enterprise IT environment.

Kunal is an entrepreneur who helps startups defining their technology
strategy, product roadmap, and development plans. With his strong
relations with several development partners worldwide, he is able to help
startups and even large companies build appropriate development
partnerships. He generally works in an Advisor or Consulting CTO capacity,
and he serves actively in the Project Management and Technical Architect

functions. He has authored and edited several books and articles on J2EE, cloud computing, and
mobile technologies. He holds a Master’s degree in Software Engineering and is an instrument-
rated private pilot.

■ ACKNOWLEDGMENTS

xii

Acknowledgments

Firstly, my thanks go to my awesome wife and kids. 2010 was a massive year, filled with so many
opportunities, and you not only supported me with all the work I had to do, but also reminded
me that taking time to spend with family was just as important. I love you all so much.

Secondly, I want to thank the team at Apress for both the opportunity to write this book and
for the support and advice along the journey of writing it. I’ve certainly learned a great deal
through the process, and have appreciated your patience and professionalism from start to finish.

Damon

To Mathilde, my kids, Damon, Douglas, Mary, Kunal, and Steve.

Sébastien

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Getting Started
	Understanding Android Platform Capabilities
	Device Connectivity
	Touch
	Geolocation
	Hardware Sensors
	Local Databases and Storage
	Camera Support
	Messaging and Push Notifications
	WebKit Web Browser
	Process Management
	Android OS Feature Summary

	Preparing the Development Environment
	Text Editors and Working Directories
	Web Server
	Emulator

	Hello World
	Summary

	Building a Mobile HTML Entry Form
	HTML for the Mobile Web
	Mobile-Ready Web Pages
	Adding Form Elements

	Adding Some Style
	Form Styles with a Splash of CSS3
	Improving the Page Title Appearance
	Coding for Different Screen Sizes
	Handling Device Orientation Changes

	Adding Form Validation
	Providing Feedback with Limited Screen Space

	Summary

	HTML5 Storage APIs
	The Web Storage API
	Saving Objects to Web Storage Using JSON
	Local vs. Session Storage

	The Web SQL Database
	Saving To-Do List Items with a Client-Side Database
	Database Versioning and Upgrades

	Summary

	Constructing a Multipage App
	Single HTML File, Multiple App Pages
	Creating a View Manager
	Implementing View Actions

	Building the Application’s Main Screen
	Tweaking ViewManager Functionality
	Home Screen Storage Requirements
	Wiring Up the Home Screen

	Building the All Tasks Screen
	Implementing the View Stack
	Summary

	Synchronizing with the Cloud
	Exploring Online Storage Options
	Online Synchronization Store Requirements
	Avoiding a Three-Tier Architecture
	User Authentication
	A JavaScript Synchronization Library
	Possible Synchronization Solutions

	Getting Started with Google App Engine
	Deploying jsonengine Locally
	Choosing a Suitable Synchronization Mode
	Sending Your Offline Data to jsonengine

	Updating the User Interface for Online Synchronization
	Making a Desktop Interface
	Querying a jsonengine Instance
	Deploying Your Application on the Cloud

	Summary

	Competing with Native Apps
	Adding Lightweight Animations and Native-Like Layouts
	Adding a Simple Loading Spinner
	Adding Scrollable Content
	Sprucing Up the Action Bar

	Making Your Application Location-Aware
	The W3C Geolocation API Specification

	Running Your Application Offline
	The Offline Cache Manifest File
	Exploring Hidden Offline-Caching Features
	Detecting Your Connection Status

	Summary

	Exploring Interactivity
	Introduction to the HTML5 Canvas
	Drawing Interactively to the Canvas
	Interactivity: The Way of the Mouse
	Interactivity: The Way of Touch

	Implementing Canvas Animation
	Creating an Animation Loop
	Drawing a Frame of Animation
	Drawing Images: Accounting for Device DPI

	Advanced Animation Techniques
	Creating Realistic Movement in Animations
	Canvas Transformations and Animation
	Transformations and Our Car Animation

	Summary

	Location-Based Services and Mobile Mapping
	Location-Based Services
	Geosocial Networking
	Mobile Mapping
	Displaying a Map with Google Maps
	Tile5: An Alternative HTML5 Mapping API
	Adding Markers to a Google Map
	Showing Marker Detail

	A Mobile-Optimized Mapping UI
	A Mapping UI Mockup
	Coding a Boilerplate Mobile Mapping UI
	Implementing UI Navigation in the Boilerplate
	Selecting Markers with the Navigation Bar

	Summary

	Native Bridging with PhoneGap
	Introducing Bridging Frameworks
	When to Use PhoneGap
	Downloading PhoneGap

	A Sample PhoneGap Application
	Building the Sample Application
	Investigating the Sample Application

	A Simple PhoneGap Mapping App
	Tweaking the Sample PhoneGap Project
	Transferring Existing Code into a PhoneGap App

	Summary

	Integrating with Social APIs
	Connecting to Web APIs
	What Is JSONP?
	Dealing with APIs That Lack JSONP Support
	Introducing the Geominer API

	Locating Resources in Moundz
	Finding Nearby Resources with the Geominer API
	Using Geolocation to Track Your Position

	Implementing a User Login
	Constructing the Welcome and Login Screen
	Twitter Anywhere and the Login Process
	Alternative Twitter Authentication via Geominer

	Summary

	Mobile UI Frameworks Compared
	Mobile UI Frameworks Overview
	Similarities and Differences Between Frameworks
	Setting Up for the Framework Comparison

	Jo
	Getting Started with Jo
	Moundz, Meet Jo

	jQTouch
	Getting Started with jQTouch
	Applying Some jQTouch-Ups to Moundz

	jQuery Mobile
	Getting Started with jQuery Mobile
	Moundz and jQuery Mobile

	Sencha Touch
	Getting Started with Sencha Touch
	Moundz and Sencha Touch

	Summary

	Polishing and Packaging an App for Release
	Continuing on with jQuery Mobile
	Reinstating the Login Screen
	Improving Navigation Layout

	Gathering Resources
	Building the Resource Details Screen
	Using Geominer for Resource Tracking

	Packaging Moundz As a Native Application
	Bundling for PhoneGap
	Tweaking Application Permissions

	PhoneGap, Authentication, and Intents
	Our Previous Web Authentication Flow
	An Overview of Android Intents
	Using PhoneGap Plug-Ins to Handle Intents

	Packaging Our Application for Release
	Summary

	The Future of Mobile Computing
	The Era of Mobile Computing
	A Worldwide Phenomenon
	Death of the Desktop?
	Embracing Progressive Enhancement

	Mobile Technology Predictions
	Improvements in Tools and Libraries
	Changes in Device Architecture
	Coding for Future Architectures

	The Internet of Things
	Hardware Sensor Networks
	The Human Sensor

	Summary

	Debugging Android Web Apps
	JSLint: Prevention Is Better Than Cure
	Debugging with the Google Chrome Developer Tools
	Catching Messages and Errors in the Console
	Script Debugging
	Inspecting the DOM with the Elements Tab

	Debugging with the Android Debug Bridge

	Index
	Special Characters
	A
	C
	B
	D
	F
	G
	E
	H
	I
	K
	J
	L
	M
	N
	O
	P
	S
	Q
	R
	T
	V
	U
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

