X

Cer Run your Neurons

ey Game Programming with Python, Lua, and Ruby
agia= 8 By Tom Gutschmidt
LUA, AND

KUY

i Publisher: Premier Press
na Pub Date: 2003
ISBN: 1-59200-079-7
Pages: 472

LRN

Dedication
Acknowledgments
About the Author
Letter from the Series Editor
Introduction
What's in This Book?
Why Learn Another Language?
What's on the CD-ROM?
Part ONE: Introducing High-Level Languages
Chapter 1. High-Level Language Overview
High-Level Language Roots
How Programming Languages Work
Low-Level Languages
Today's High-Level Languages
The Pros of High-Level Languages
Cons of High-Level Languages
A Brief History of Structured Programming
Introducing Python
Introducing Lua
Introducing Ruby
Summary
Questions and Answers
Exercises
Chapter 2. Python, Lua, and Ruby Language Features
Syntactical Similarities of Python, Lua, and Ruby
Hello World Samples
Summary
Questions and Answers
Exercises
Part TWO: Programming with Python
Chapter 3. Getting Started with Python
Python Executables
Python Debuggers
Python Language Structure
Creating a Simple User Interface in Python
A Simple GUI with Tkinter
Memory, Performance, and Speed

Summary
Questions and Answers

Exercises
Chapter 4. Getting Specific with Python Games
The Pygame Library
Python Graphics
Sound in Python
Networking in Python
Putting It All Together
Summary
Questions and Answers
Exercises
Chapter 5. The Python Game Community

Engines

Graphics
Commercial Games

Beyond Python
Summary
Question and Answer
Exercises
Part THREE: Programming with Lua
Chapter 6. Programming with Lua
Lua Executables and Debuggers
Language Structure
Memory, Performance, and Speed
Summary
Questions and Answers
Exercises
Chapter 7. Getting Specific with Games in Lua
LuaSDL
Gravity: A Lua SDL Game
The Lua C API
Summary
Questions and Answers
Exercises
Chapter 8. The Lua Game Community

Game Engines
Graphics

The Games Themselves
Beyond Lua

Summa
Exercises

Part FOUR: Programming with Ruby

Chapter 9. Getting Started with Ruby
Debuggers
Language Structure
Memory, Performance, and Speed
Summary
Questions and Answers
Exercises

Chapter 10. Getting Started with Ruby Games

FXRuby

Ruby and OpenGL
Ruby and SDL
Summary
Questions and Answers
Exercises
Chapter 11. The Ruby Game Community
Ruby and Game Engines
Ruby and Graphics
Ruby and Games

Beyond Ruby

Summary
Questions and Answers

Exercises
Part FIVE: The Wrap Up
Chapter 12. Using Python, Ruby and Lua in Development
High-Level Languages in the Development Cycle
Extending Python, Lua, and Ruby
Python versus Lua Versus Ruby
Summary
Exercises
Appendix A. History of Computer Programming
Appendix B. Meet the Family
ABC
Ada
AFNOR
C
C+t
Cobol
Eiffel
FORTRAN
GNU Octave
Java
Icon
Modula
Pascal
Perl
PHP
Prolog
PureBasic
Smalltalk

Squeak

Dedication

This book is dedicated to Hailey and Sidney, the two biggest game players in our
household

Acknowledgments

I would like to thank, in no specific order, the following individuals: André LaMothe
and the staff at Premier Press—especially my editors Emi Smith, Mitzi Koontz, and
Estelle Manticas. I would also like to thank my past editors Todd Johnson and Kieron
Murphy.

I want to thank my parents, Katherine and James, for being so supportive over the years.
Thanks also to my sister Tanya and her husband David, as well as to the rest of my
immediate family—Alex, Raleigh, Steve, Stephanie, May Lou, Dodie, Dick, Bobbie,
and Sophie—for their encouragement.

I want to especially thank my loving and wonderful wife Susan for putting up with my
writing mood swings and geek chattering, and for being so kind when I was slumped
over a desk for months in a dark office, furiously typing and staring into the cold blue
monitor. Next year I'll try getting some sun.

About the Author

Thomas Gutschmidt has been professionally involved in the computer industry for the
past seven years and currently works for a large software company headquartered in
Redmond, Washington. He has been a freelance author and writer for three years and
has been involved in several open source game projects and module development
projects. He currently lives in the Northwest with his wonderful wife, Susan, their four
cats, two rats, several goldfish, and the occasional urban wildlife refugee.

Letter from the Series Editor

Game development has reached a fever pitch in the past couple of years— photorealistic
rendering, advanced physics modeling, a million-plus polygon worlds—and
multiprocessor consoles and PCs are powering the revolution. At the same time,
experimentation with scripting languages to help control the high-level aspects of games
has gone from a convenience to an absolute necessity. No longer can game
programmers think of something as absurd as writing a game in C/C++. Game engines
may be written in C/C++, but games—no longer. Today's state-of-the-art games are
controlled almost exclusively with scripting languages.

In the past, scripting languages were custom-made or derivative works made up of the
C/C++ compiler and creative use of the pre-processor. Times have changed, and today
developers are faced with a number of potential scripting languages to use in their
games. Notable players are Python, Lua, and Ruby. Each of these languages has
advantages and disadvantages, but any of them can do the job. Game Programming with
Python, Lua, and Ruby takes you on a tour and tutorial of each language, highlighting
its strengths and weaknesses and offering you detailed examples of getting each
language up and running and interfaced to your game and host languages, such as
C/C++.

With Game Programming with Python, Lua, and Ruby, you won't spend a lot of time
learning irrelevant material—instead, you'll get just the information you need. Tom
Gutschmidt delivers a non-biased view of each language and gets you up and running as
soon as possible in each of the most popular scripting languages today—Python, Lua,
and Ruby.

Sincerely,

e KON

André LaMothe

Series Editor

Introduction

This book is unusual because it covers game programming in three different scripting
languages in three separate sections. Python, Lua, and Ruby are wonderful languages
used all over the world to build efficient, flexible, scalable, and well-integrated
programs and systems.

For the same reasons that these languages have been great choices for other projects,
Python, Lua, and Ruby also are great for making games. This discovery, in fact, was
made over a decade ago. Chances are you've played a computer game that utilized one
of these languages during development. You may be currently working through game
levels that were designed with Lua, or playing on a graphics engine prototyped in
Python, or using an Internet ladder developed with Ruby.

Introduction

This book is unusual because it covers game programming in three different scripting
languages in three separate sections. Python, Lua, and Ruby are wonderful languages
used all over the world to build efficient, flexible, scalable, and well-integrated
programs and systems.

For the same reasons that these languages have been great choices for other projects,
Python, Lua, and Ruby also are great for making games. This discovery, in fact, was
made over a decade ago. Chances are you've played a computer game that utilized one
of these languages during development. You may be currently working through game
levels that were designed with Lua, or playing on a graphics engine prototyped in
Python, or using an Internet ladder developed with Ruby.

10

Why Learn Another Language?

Programming languages require a lot of discipline to learn. They each have their own
set of formal specifications. They all have unique ways of handling data, data structures,
reference mechanisms, and command flow. And underneath all this they each have their
own design philosophy. So the question arises: "Why would anyone want to learn a new
programming language, let alone three new programming languages?"

Well, first of all, these three high-level languages are great starting places to learn
programming. For the most part, they are cleanly designed, well documented, and very
kind to new programmers. Despite this, they are not toys. They are flexible and
powerful, suited for both large projects and classroom exercises.

Second, every language has its own strength and weaknesses. The decisions you must
make during software and game development become easier when more than one
possible tool is available to you. In an ideal development environment, problems are
solved in a general way and then the best language for a particular job is chosen. It may
be difficult in tomorrow's job market for a programmer to get away with knowing only
one or two languages well.

Finally, these three languages are really very similar. Much of what you learn from one
will be applicable to the others. The more languages you learn, the easier the next one
will be to pick up. This compound learning curve eventually begins to work greatly to
your advantage, and after enough experience you will get to the point where you can
learn a new language in days, simply by relating what is in a given manual to what you
already know.

11

What's on the CD-ROM?

The CD that comes with this book is designed to launch automatically when inserted
into a machine running the Windows operating system. On the CD is the source code
for all of the samples and programs written in the book. These are separated into folders
organized by chapter.

The CD also contains the software necessary to install Python, Ruby, or Lua on your
system. This software is also separated into different folders—a Python folder, a Ruby
folder, and a Lua folder.

Also on the CD are several open-source libraries and utilities that are either used for the
source code samples or as examples in this book. These includes PythonWin, Distutils,
Numeric Python, PAWS, Py2Exe, Pygame, PyOpenGL, Pyzzle, RubySDL, LuaSDL,
and Clanruby.

12

Part ONE: Introducing High-Level Languages

Welcome to the first part of this book! In this part, I'll be introducing high-level
languages and covering some of their parallel features. I'll introduce Python, Lua, and
Ruby, but I'll save the gory details for the later parts of the book. Part One is a gentle
introduction to these languages' features, syntax, and similarities, as well as to their
cohorts and partners in the gaming industry. 7

13

Chapter 1. High-Level Language Overview

All programmers are playwrights, and all computers are lousy actors.

Unknown, quoted by Michael Moncur in The Quotations Page

Where to start? There is much to cover, and we have a very short time together. This is
Chapter 1 of Game Programming with Python, Lua, and Ruby. In this chapter I'll
discuss the specific pros and cons of programming with these high-level scripting
languages (after explaining what a high-level scripting language is, of course), delve
into their properties and history, and then wrap up the chapter with a listing of some of
the major projects these languages are responsible for.

14

High-Level Language Roots

In the beginning, a programmer needed to know everything about the internal workings
of a specific computer in order to program it. This took quite a bit of knowledge and
effort. Then, from within the programming industry, an idea emerged. The idea was to
reduce the amount of knowledge of the internal workings of the computer a programmer
needed to write programs (some call this idea encapsulation). If adopted, this concept
could make it easier and faster to program, and the program itself could be less error
prone. A second idea followed this first one: If programs could be presented in a
familiar language, then programmers could learn them quickly. These ideas eventually
led to high-level languages.

High-level languages were created to make programming easier, but today's high-level
programming languages have seriously evolved from early predecessors like
FORTRAN in the 1950s. You have your high-level languages, your high-level scripting
languages, your high-level open-source scripting languages, your high-level open
source object-oriented scripting languages, and your very high-level open-source object-
oriented scripting languages (yes, the dreaded VHLOSOOSLs). So much for easier.
Despite the long, often buzzword-filled names, there are those of us who love these
languages. And luckily we like to spend time explaining why.

Before you commit to a project with a certain language, spend some time under the
hood, read a book or two, and check into the language's community. Most good
languages will already have a large and very active user base—that is, if they have
useful features that appeal to a wide audience and if they are capable of getting the job
done. This chapter and the next spend a bit of time showing how Python, Lua, and Ruby
appeal to a wide range of jobs and professionals and how their communities have grown
in power and presence in recent years.

NOTE
Open Source Software

The basic definition of open source software is software that has its code base opened
up and viewable to users. Anyone can look under the hood of open source software to
see how it works.

Open source software likely originated with the United States government. In the 1960
and 70s, the U.S.was funding systems of distributed computers that would later become
the Internet, and they actively encouraged scientists to develop technologies that could
facilitate distributed computing. Academic researchers, including those at MIT, UCLA,
Berkeley, and Stanford, and later corporate researchers at companies like IBM and
Xerox began developing technologies for computers and operating systems to
communicate with each other. Out of this movement came utilities such as Sendmail
and TCP/IP. Other tools, like Emacs, Perl, and Linux, followed.

Open source does not necessarily mean "free." Open source code is usually free to
download, view, and modify, but most open source software is copyrighted and
possesses some sort of license. Often there are restrictions on its use. For instance, many
open source licenses require that if modifications are made to source code, the

15

modifications need to be released to the public at large. This means that open source
utilization in private, commercial software development involves other costs. Of course,
using commercial software also involves software licenses and tracking copies and
usage.

16

How Programming Languages Work

Let's ignore Webster and Oxford and pretend that the word language simply refers to a
system used to communicate. Languages possess syntax, and syntax defines the order,
arrangement, or structure of the system of communication.

This book is written in English, a language sometimes referred to as American or
Present-Day English, which evolved from the Early Modern, Middle, and Old English
languages. Some historians and linguists claim that forms of English can be traced
through Gothic, Latin, and Greek, eventually finding roots in Sanskrit (see Figure 1.1).

Figure 1.1. A comparison between English and computer language roots

English High-Level Languages
v v
Middle English Low-Lewvel Languages
v '
Old English Assembly
v y
Latin Binary
v v
Sanskrit Machine Language

If you trace programming languages back to their source, you'll find that all computers,
or at least their CPUs, have an internal machine language that they execute directly.
Internally, all data in a modern digital computer is stored as binary on and off states.
The tools used to manipulate these on/off states are coded in a binary representation and
normally consist of operation codes and addresses. The operation code indicates which
operation is to be carried out, while the address dictates the memory location. The
operation basically amounts to what, and the address basically amounts to where. This
process looks something like Table 1.1. Given the operation codes and address in Table
1.1, a programmer can enter in the instructions in pure binary form as:

00100010 10010101

Table 1.1. Sample Machine Language Instructions

Procedure Binary English Translation
Operation 00100010 means "load(X)"
Address Location 10010101 means "location 13" on the CPU

17

These instructions would load X into location 13. As you can imagine, it is very tedious
to write this way. A programmer needs to be especially careful to keep track of which
address locations he is using to store data; program errors often lead to operations
overwriting the wrong addresses.

Programming languages express these operations and addresses at a higher level of
logic than the low-level CPU code. They are translation systems that allow a computer
and a person to communicate with each other in a medium that is something between
English and CPU binary. With a programming language, a person can program what
actions a computer will take and the types of data the program acts upon without having
to speak the computer's language.

CPU is an abbreviation for central processing unit. Often referred to as the
processor or central processor, the CPU performs most of a computer's
calculations. CPUs are normally one or more printed circuit boards, but may be
housed in a single chip called a microprocessor. CPUs typically consist of an
Arithmetic Logic Unit (ALU) that performs logical operations and a Control
Unit that extracts instructions from memory and decodes and executes them.

18

Low-Level Languages

Each CPU has its own unique machine language, which consists of binary numbers
only. Machine languages are tedious and repetitive, two things that humans are poor at
and seem to dislike universally. These machine languages are low-level languages.
Low-level languages closely reflect the inner workings of a computer and are
sometimes referred to as machine-oriented languages.

The most prominent example of a low-level language is assembly. Assembly language
is one step higher than machine language and consists of numeric instructions for a
specific computer architecture. Assembly is limited because it needs detailed
instructions, and there isn't much portability from platform to platform.

In assembly, machine language commands are replaced by mnemonic commands on a
one-to-one basis. An assembler program then takes care of converting the mnemonic
into corresponding machine language binary. In assembly, a programmer can also use
symbolic addresses for data items. The assembler program will assign these symbolic
addresses to machine addresses and make sure they do not overlap or overwrite each
other. Today, most assembly programming is reserved for high-end performance device
drivers, where execution speed and code size are more important than rising
development costs.

In the early days of games, assembly was the mainstay, and common game platforms
were MS-DOS, Apple, and the Atari 800. But as game programs grew in size,
programmers found that assembly was pretty poor at scaling, and as code grew
programs became exponentially more difficult to maintain, and testing and debugging
them became more and more difficult.

After assembly languages came compiled languages like C, COBOL, and FORTRAN.
With a compiled language, the programmer writes source code, and then a compiler
takes the source code and translates it into machine language for a particular computer.
With a compiler hard at work, the programmer can ignore some of the machine-
dependent details, and with a good compiler the program will run almost as fast as with
assembly.

C in particular really made large-scale programming possible by automating much of
what programmers found difficult in assembly. C also universalized the idea of
functions, so for the first time programmers could share functions they wrote with each
other. This led to larger development teams and a growing pool of development tools.
Great games came out of C (and still do), like Doom and X-Wing.

19

Today's High-Level Languages

The terms high-level, interpreted, and scripting all share a similar conceptual space
when it comes to programming, and this often causes confusion. Over the next few
pages I'll explain each term. Pay attention—there may be a quiz coming up!

High-level languages are designed with the native language of the programmer in mind.
They are sometimes referred to as problem-oriented languages and are often very
specific in focus. BASIC is a good example of a high-level language; it was designed
for first-time programmers as a learning tool. COBOL and FORTRAN are other good
examples. COBOL was designed for business problems, and FORTRAN for solving
scientific and mathematical problems.

NOTE

Python is sometimes referred to as a "Very High Level Language" (VHLL). This term
appeared in the mid 1990s to describe languages used for rapid prototyping. Two
features that supposedly separate VHLLs from your standard high-level language are
dynamic types and an interactive environment that allows you to make changes without
having to go through the entire relink recompile steps.

Instructions in high-level languages closely resemble everyday language, making high-
level languages much easier to learn and use than their low-level equivalents. The
programmer does not need to have detailed knowledge of the internal working of the
computer in order to program instructions. Each instruction in high-level is equivalent
to several machine code instructions that then are either compiled or interpreted to
translate them into machine code.

Interpreted versus Compiled Languages

A high-level interpreted language translates the programmer's written code step-by-step
at runtime, or when the program is actually running. A high-level compiled language
translates a programmer's written code before the program is run, a process normally
called compiling. This changes the written code into an executable or object-code that
can then be run as a program on a computer.

Many modern programming languages allow themselves to be both interpreted and
compiled, but normally a particular language is more suited to one or the other. AWK,
Perl, and Python are examples of interpreted programming languages. BASIC, COBOL,
C, and FORTRAN are examples of compiled programming languages.

When a program is compiled, the compiler takes the source code files and generates
object code with those files. The object code is then wrapped together during a linking

process to produce an actual executable. This process is illustrated in Figure 1.2.

Figure 1.2. The process of compiling source code into an executable file or
program

20

Source
Code

Ob .
nnjggt Library

Executabla
Program

When comparing the two types of languages, you can usually make two generalizations.
The first is that interpreted programs are usually much slower than their compiled
counterparts (although the actual process of compiling may take quite a bit of time as
well). The second is that interpreted languages are more flexible at runtime than
compiled languages because they can interact with the execution environment. In other
words, in order to gain flexibility, you must slow down.

Scripting Languages

Scripting is a term used to denote the scripting of a computer, akin to an actor who
follows a script to perform a play. A scripting language is a high-level language used to
assemble components into a predefined software architecture. Scripting languages,
sometimes called glue-languages, are designed for scripting the operation of a
computer. Normal operations that would be considered scripting are administrative
tasks such as running automatic backups, text processing, running server-side requests
such as CGI processing, or automating software tests. Python, Lua, and Ruby are
considered scripting languages in one form or another, as are ASP, AWK, JavaScript,
Perl, and VBScript.

The scripting-language family is hard to pin down. VHLL languages include the various
types of UNIX shell command-line interpreters, and even languages like AWK, Perl,
and Lisp can be classified as scripting languages. Unfortunately, there is no universally
accepted definition of what a pure scripting language actually is, but they usually have
most of the following features:

e They are interpreted languages.

o They possess a simple syntax.

e Variables are dynamic, so that they can act as strings or numbers, depending on
what operation is being performed on them.

21

Variables are created when referenced, as opposed to being allocated to memory
early on or during compile time. Internal details about the variables are only
resolved when necessary. This process is sometimes called late binding.

They possess high-level string manipulation features. Concatenation and
searching are built into the language.

They do not possess pointers.

The programmer does not handle memory allocation; the language handles it
automatically.

Garbage collection (release of unused memory) is handled automatically.

The language is interactive and can give feedback while running, often pointing
out errors, mistakes, and problems.

The code is stored in a plain text format.

Processor and operating system independence exists, and the code can work in
many different environments.

They simplify the usage of common commands such as array sizes, data types,
or expressions. Common commands are often built in.

NOTE
Statically versus Dynamically Typed Languages

The specific system by which data is organized in a program is called the type
system. There is an actual discipline devoted to the design and study of type
systems, called type theory. In practice, however, there are normally only two
type systems: static and dynamic.

Statically typed languages need predefined types for pieces of data, and values
can only have one fixed typed. Static systems are sometimes called type-safe or
strongly typed. C++ and Java are examples of statically typed systems.

Dynamic systems treat data locations interchangeably. They are sometimes
called latently typed systems. Again, the key here is flexibility versus speed.
Dynamic systems are a bit slower during runtime than their static brethren, but
they are faster to code, as there is no need to predefine variables or check for
buffer overflow against them. Examples of dynamically typed systems include
Lisp, JavaScript, TCL, and Prolog.

Statements are usually terminated by returns or new lines, rather than with
semicolons or punctuation.

They are optimized for programmer efficiency as opposed to program
efficiency.

They are optimized for text manipulation, data filtering, system applications,
and/or building graphical user interfaces.

Components of foreign code, such as shell commands, other language libraries,
or COM, can be embedded or "glued" to the scripts, and the language provides
interfaces to external components. This process is called extensibility.

They are considered a rapid prototyping language.

22

The Pros of High-Level Languages

The cost of software is determined by the time it takes to test, debug, modify, and
maintain a code base. In a not-too distant past, the programming field was a much more
static one. Programming was done in a controlled hardware environment, and things
like testability, modification, and portability weren't as important.

High-level languages exist because human time is important. Often the loss of computer
runtime efficiency will gladly be traded for actual savings in human labor. The code
base for a project using a high-level language might be three times shorter than Java and
five times shorter than C++.

Probably the biggest problem with low-level code is that adapting it to different
architectures (platforms) can be problematic. If you cut C off from its standard
compilers and libraries, it is pretty much incapable of porting to a different architecture.
Generally, low-level code has to be rewritten for each specific platform.

High-level languages, on the other hand, are very portable, only needing an alteration to
the interpreter or compiler for the new platform—or needing nothing at all. Compilation
time is usually short—measured in seconds sometimes. Human-time debugging on a
new platform, especially in a low-level language like assembly, can easily take weeks.
This is an obvious trade off.

Another big benefit of high-level languages is reusability. High-level code can be
crafted into small components that are easy to use, as well as easy to organize and bring
into future projects. Such modularity promotes the creation of formal and informal code
libraries. Most high-level languages have particularly great libraries for putting together
graphical user interfaces.

Higher-level languages have more human readable words and phrases and fewer
abstract symbols, peculiar syntax, and abbreviations. This can make them easier to write
and maintain. This makes testing, debugging, and modifying an easier task. Most
importantly, it makes reading them easier, a boon for the high turnover world of
software development.

Safety in source code is a big issue these days. Many high-level language features have
the interesting side effect of producing more secure, bug-free code.

Take, for instance, buffer overruns. A buffer is a device or structure that holds data.
Buffer overruns occur when someone overflows a buffer by giving it more data than it
can handle. A simple example is a login prompt to a computer or Website. The
programmer who develops the login expects that most login names will not be more
than eight characters long and gives the buffer that holds the login data enough space in
memory to hold eight characters. But then some malicious user comes along and writes
257 characters to the login. If the buffer and input login haven't been specifically
designed to handle such a case, the software will fail. Worse, it could allow the user the
ability to write data somewhere besides the login prompt.

CERT (the Computer Emergency Response Team) reports that a majority of bugs and
exploitable holes in software (majority meaning as high as 80 percent) are caused by

23

simple buffer overruns. This type of exploit is very common because manually coding
pointers and garbage collectors can be a very buggy and error-prone enterprise. High-
level languages normally take care of these tasks automatically for the programmer.
Taking away the manual process of handling pointers, automatically handling garbage
collection, and assigning memory allocation of variables at runtime makes it difficult to
cause buffer overruns.

My favorite feature of high-level languages is that they are easy to learn—so easy, in
fact, that they are often considered fun. High-level languages are particularly suited for
applications in which:

The main focus is to connect existing components.

A GUI is required.

A lot of string manipulation is required.

You expect the application's functions to evolve rapidly or change quickly over
time.

24

Cons of High-Level Languages

How high-level can a language get, and what are the potential problems associated with
them? In Star Trek, science-fiction computers communicate with their commanders in
an almost human language. Our science fiction tells us that the higher-level a language
is, the easier it is to communicate, the better. In real life this isn't the case.

The biggest problem with high-level languages is that they are slower than their low-
level counterparts. There is a give-and-take relationship between the speed of
development and the efficiency of a program. C is speed efficient because the
programmer handles all of the low-level resource management by hand.

Since they aren't as speedy and they handle low-level resource management themselves,
high-level languages are not great for engineering system—level programs like device
drivers or kernels, or other situations in which you need tight control over low-level
tasks, like memory allocation. Lack of speed also makes them poorly suited to
computationally intensive applications, like those that build data structures and
algorithms from scratch. In particular, a low-level language may be more suited to your
application if:

e Itneeds to implement complex algorithms or data structures.

e Itneeds to manipulate large data sets.

e Execution speed is critical.

e The functions are well defined and will not change.

The pros and cons of high-level languages are highlighted in Table 1.2.

Table 1.2. High-Level Language Pros and Cons

Pro Con

Saves human time Less efficient during computer runtime

Portable to many platforms Specific platforms aren't as efficiently
utilized

Modularity and reusability Can lead to dizzyingly high number of
libraries

Easier to read, write, and maintain Loss of some control over code organization

Auto-management of many bug-prone Less low-level control of resources

features

Easy to learn Too many programmers could lower one's
salary!

NOTE

High-level languages are criticized more often for their lack of speed than anything else.
But keep in mind that they usually can be compiled or semi-compiled. This can make

25

them much faster than languages like Perl, AWK, or other rivals. Also, today's
machines are 500-2000 times faster than their predecessors from the 1980s.

26

A Brief History of Structured Programming

In the1960s software development went through a number of growing pains.
Development schedules often ran far behind predictions, costs were much higher than
projected, and often the end software product was unreliable or buggy. People began to
realize that software development was extremely difficult, and some folks began to
research development methods of this new field to see what could be improved. Out of
this research came the concept of structured programming.

Structured programming is a method of programming designed to help make large
programs easier to read and is a predecessor to Object-Oriented Programming.
Structured programs are usually illustrated in simple graphs that have a top-down
approach and flow. Figure 1.3 illustrates a structured-programming graph in which the
circles represent starting and ending points, the squares represent program blocks, and
the diamonds represent branches.

Figure 1.3. An illustration of a simple structured language

Algol 60
/ x
CPL Algol W

Pascal
BCPL BASIC Snobol

"y

NOTE
Object-Oriented Programming

Object-Oriented Programming (or OOP) is actually a design methodology that defines
programs in terms of objects. Objects are entities that combine both state (data) and
behavior (methods). In pure OOP, programs are sets of objects that communicate with
each other to do various tasks. This is a pretty different design than procedural
languages (the standard before OOP), where data and procedures are separated.

Unfortunately, there is some disagreement about exactly what features are required to
qualify a programming language as "object-oriented," so giving a definitive description
of an OOP language is difficult. Traditionally, the first OOP language is considered to
be Simula 67, whose OOP features were later refined with Smalltalk. OOP really took

27

off in the mid 1980s with C++—some argue because it was well suited to make GUIs,
which were booming in popularity. OOP features were then added to several languages,
such as Perl, Ada, BASIC, Lisp, and Pascal, and several new languages that embraced
the OOP methodology were developed, like Java and Eiffel.

The main idea behind structured programming is to divide and conquer. As computers,
technology, and software have advanced, programs have become larger and more
difficult to write and maintain. Structured programming breaks down complex programs
into simple tasks. The rule of thumb is that if a task is too complex to be described
simply, then the task needs to be broken down further. When the task is small enough to
be self contained and easily understood, then the task can be programmed.

Structured programming gave rise to a number of other movements, Object-Oriented
Programming being one of the more important ones. A number of languages in the
1980s begin to pick up OOP features. In 1987 Apple creates a language called
HyperTalk, used to script Hypercard stacks. This preempted the release of Perl in 1988,
a still popular higher-level language that combined popular aspects of C, SED, AWK,
and CSH (see Figure 1.4).

Figure 1.4. The big picture, high-level language family tree

Program Start

Program Block

Program Finish

28

Introducing Python

Python is a high-level, interpreted language originally intended for prototyping or as an
extension language for C applications. The language is considered to be an interactive,
object oriented-scripting language. It was designed to be highly readable, uses English
keywords frequently where other languages use punctuation, and has fewer syntactical
constructions than other languages (some call this clear syntax). Python's history is
outlined in Figure 1.5.

Figure 1.5. The Python language family tree

SED C—\ AWE UNIX Shell
Smalﬂ&lc\ﬂnrl Pascal AFNO

Python is renown for its use of white space, as it uses space to delimit program
statements. The language takes a lot of features from ABC, a language designed with
beginners in mind, so Python is a great beginning language. Python supports the
development of a wide range of applications, from simple text processing to WWW
browsers to games (as we will shortly see).

Python Features

Python was developed by Guido van Rossum at the National Research Institute for
Mathematics and Computer Science (otherwise known as CWI) in the Netherlands.
Python is copyrighted, but the source code is open source and freely available. And yes,
the language is named after the TV series Monty Python's Flying Circus.

Python's feature highlights include:

e A broad standard library, one of Python's greatest strengths. The bulk of the
library is very portable and cross-platform compatible on UNIX, Windows, and
Macintosh. The library contains built-in modules (written in C) that provide
access to system functionality (for instance, file I/O) that would normally be
inaccessible to a high-level language. Standard libraries include files, strings,
math, threads, sockets, CGI, HTTP, and FTP.

e Support for an interactive mode in which you can enter results from a terminal
right to the language, allowing interactive testing and debugging of snippets of
code.

e An extensive graphics package.

e It is very portable, with interpreters for most operating systems.

e Support for OOP in the form of multiple inheritance, classes, namespaces,
modules, objects, exceptions, and late (runtime) binding.

29

Support for functional and structured programming methods as well as OOP.
It can be used as a scripting language or can be compiled to byte-code for
building large applications.

Very high-level dynamic data types.

Dynamic type checking.

Automatic garbage collection.

Run type checking.

It is easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

30

Introducing Lua

Lua is a byte-code interpreted glue language with extensible semantics as a primary
feature. Lua is considered lightweight and was designed for extending applications. Its
predecessors are Smalltalk, Perl, Pascal, and AFNOR, as illustrated in Figure 1.6. Lua is
considered an excellent language for rapid prototyping and scripting and is implemented
in C.

Figure 1.6. The Lua Ianguage family tree

Algol 60
Pascal Lisp Simula 67
Aia Smalltalk
;
Eiffel Python Smalltalk 80
.
Ruby

Lua Features

Lua was developed at TeCGraf, the computer graphics technology group at the
Pontifical Catholic University of Rio de Janeiro in Brazil. The team credited with
developing the language in 1994 includes Waldermar Celes, Roberto lerusalimschy, and
Luiz Henrique de Figueiredo. The language qualifies as open source but it is not in the
public domain, and Tecgraf holds the copyright. Lua means moon in Portuguese.

Lua feature highlights include:

A simple Pascal-like syntax.

It is dynamically typed.

Automatic memory management and garbage collection,

Powerful data description constructs like associative arrays.

OOP mechanisms such as classes and inheritance.

User-controlled type constructors.

Fallbacks for extending the meaning of the language in unconventional ways.
Its programs are compiled into byte-code and then interpreted, simulating a
virtual machine.

31

Introducing Ruby

Ruby is considered a pure, modern, object-oriented language. Figure 1.7 shows how
Ruby combined elements of Smalltalk and Eiffel. It sports a simple syntax inspired by
Perl and Ada and is considered very readable, easy to maintainable, and clean, with only
a few special syntactical situations. Ruby is highly portable and runs on UNIX, Max,
Windows, DOS, OSX, and Amiga platforms.

Figure 1.7. The Ruby language family tree

CPL Algol W Simula 67
i Lisp
Y /
Snobol Basic c Pascal Smalltalk
l l i ™ pUnx SED AWK
Yok oo e \d/
\M

Ruby Features

Ruby was created by Yukihiro Matsumoto in 1993. The language is open source, and its
use is covered under the GPL artistic license. Matz, as he is affectionately known, knew
Python, but he didn't like it because it wasn't pure OOP. He wanted a genuine OOP
scripting language that was easy to use and write. Ruby's name, however, is a takeoff on
Perl and is named after a colleague's birthstone.

Ruby feature highlights include:

e Pure OOP. Every bit of data in Ruby is an object, even basic types. There are no
Ruby functions, only method calls (every function is a method). Unified
class/type hierarchy, metaclasses, and the ability to subclass everything. There is
also only single inheritance.

e Dynamic loading.

o Exception handling.

e Automatic garbage collection.

32

Summary

You should now feel pretty comfortable describing a high-level language, and you
probably know enough about Ruby, Python, and Lua to be a source of interesting
conversation at a local coffee house. You might be able to name a few predecessors of
each language and have an idea of how each is related (check out the big family tree in
Figure 1.4 to put this history in perspective). You should definitely understand what a
scripting language, interpreter, and compiler are before you go onto the next section. If
you can also pull facts about OOP and open source, give yourself an A and move on to
Chapter 2.

Important points from this chapter:

o Languages possess a syntax that defines the order, arrangement, and structure of
the system of communication.

e All computers CPUs have an internal machine language that they execute
directly.

e All data in a modern digital computer is stored as binary on and off states. The
tools used to manipulate these on/off states are coded in a numerical
representation, normally consisting of two pieces of information: operation
codes and addresses.

o Assembly language is one step higher than machine language and consists of
numeric instructions for specific computer architecture.

o High-level languages act as translators between programmers and low-level
computer instructions and closely resemble everyday human language, making
them much easier to learn than their low-level equivalents.

o Interpreted languages translate code step-by-step during runtime.

e Compiled languages translate code before a program is run in a process called
compiling that turns written code into a runable executable or runable byte-code.

e A scripting language is a high level language designed for "scripting" the
operation of a computer.

e High-level languages save human time, low-level languages save computer time.

33

Questions and Answers

1:

Q: Why would I want to program a game in Python, Ruby, or Perl if C is
faster?

A: Speed is obviously essential for games, but most of the slowdown of a
particular game engine occurs in only a few places. Many companies opt to
do the bulk of their game development in a high-level language, and then
delve deep into C or assembly for specific, processor-bogging graphics.
Python and Ruby were designed with this mind, so they lend themselves well
to extending themselves in C or any other language. Lua itself is created with
C, and can also work with that family quite easily.

Q: What types of games are usually developed with these languages?

A: Python has been the engine behind a number of titles but is widely known
for allowing companies to easily and quickly create graphically rich, Myst-
like worlds, and cartoon-animated games like the award-winning titles from
Humongous. It is also the glue behind a few major motion picture CGI shops,
used in various ways for computer graphics production. Lua has been a
hidden secret of game companies for a decade and has been the scripting
agent behind a number of popular games on platforms ranging from
handhelds to PCs to the Xbox. Normally Lua is used for game scripting, and
not the game engines themselves. Ruby is still gaining in popularity, and
many of its larger game projects are still in development. Until recently, Ruby
was regarded mostly as an all-purpose OOP language, and much of its
development thrust has been in enterprise-level Internet applications. Ruby is
capable, however, of the same sorts of game development that Python is and
has a few extremely strong graphics and sound toolkits and libraries.

Q: Why is it easier to find projects with Python and Lua than with Ruby?

A: Ruby is just as pervasive as the other two languages, except that the bulk
of development and documentation is happening in Japan. Ruby enthusiasts
claim that the language is much more popular than Python in Japan, which is
evident by the growing number of Ruby books that are available in Japanese.

34

Exercises

1: Answer the following as True or False:

A. High-level languages are difficult to port to other architectures.

B. High-level languages are called high-level because they resemble
human languages.

Programming languages are translation systems.

The biggest problem with low-level languages is adapting them to
different platforms.

oA

2: Fill in the blanks in the following sentences:

A. A computer program that converts assembly language to machine
language is called a(n)

B. A computer program that translates code during the program
called an interpreter.

C. An example of a high-level language besides Python, Ruby, or Lua
is (give at least two examples).

3: What is the only language that a computer can understand directly?

4: Imagine your ideal programming language. Make a list of ten must-have
features that your perfect programming language would possess.

5: Describe the differences between high-level, interpreted, and scripting
language features (I warned you there was a quiz coming up)!

is

35

Chapter 2. Python, Lua, and Ruby Language Features
The limits of my language means the limits of my world.
——Ludwig Wittgenstein

This chapter serves as an introduction to common features of Python, Lua, and Ruby. I
introduced each language in Chapter 1, and in this chapter I'll be going into more details
of the languages.

There are two main goals for the chapter. The first is to give you a foundation for
learning how to use these languages by covering a few features they have in common.
The second objective for this chapter is to start you coding.

These objectives are met in the main sections within this chapter. The first section
covers a few of the common base programming commands the languages have in
common. The second section walks you through a "Hello World" sample in each
language.

36

Syntactical Similarities of Python, Lua, and Ruby

One great bonus to learning similar languages at once is the overarching familiarity that
comes with common elements. All programming languages have some similar features,
and these three languages in particular are based on similar premises and ideas. This
makes it possible to share the learning curve, so to speak. Python, Lua, and Ruby share
the following particularly important programming elements:

e Comments and commenting
e Math and algebraic functions
e Variables

e Lists and strings

e Program structure

Comments and Commenting

All modern programming languages allow programmers to insert comments into their
code. Comments are extremely important, not only to the professional who needs to
write code that other people may need to change or maintain, but also to individuals or
independent programmers who need to look at their code again at some point in the
future to see how they did something or modify an existing program.

Most languages reserve the use of the pound sign (#) to designate a one-line comment.
You will find the # symbol used in this way in AWK, Perl, PHP, and C, but most
importantly for us, in both Python and Ruby. Here is an example of commenting in
Python and Ruby:

PYTHON

RUBY

This code sample has only comments

The computer, compiler, or interpreter will for the most part
Ignore all of these lines

Simply because they start with a pound sign

Lua has its very own comment designator: two dashes in a row (--). Here is an example:

-- This code sample has only comments

-— The computer, compiler, or interpreter will for the most part
—-— Ignore all of these lines

-- Simply because they start with dashes

Math and Algebraic Functions

When it comes right down to it, your computer is speaking a language of Os and Is. It's
no surprise, then, that math tools, functions, and operators tend to be similar across all
languages. You can pretty much bank on functions like add (+), subtract (-), multiply
(*), and divide (/) being available no matter what programming language you are using.

37

Another commonality between Python, Lua, and Ruby is using parentheses () to state
precedence; this comes right out of high school algebra. For instance, the answer to this
code example will be different depending on the order of operations: 1+2*3 = X.

If you perform the operations from left to right, X will equal 9, but if you do it from
right to left, X will equal 7. Python, Lua, and Ruby (along with many other languages)
use parentheses to specify the order in which computations should be performed if you
wish to override the natural order of operations. If you needed to specify that you
multiply before adding in the following example, you can use parentheses around the
multiplication, forcing the multiplication to be computed before the addition:

1+ (2*3) =X

Parentheses are often used with other programming structures to perform comparisons
and to make decisions during the program flow. Understanding how to pose and
evaluate comparisons is a crucial skill for any programmer or computer scientist.
Because they are so often used, many different types of comparisons have been
developed.

Boolean Logic

A mathematician named George Boole invented Boolean algebra in the nineteenth
century. Boolean Algebra only has two values: True and False (this is sometimes called
two-valued logic). It may be difficult to balance your checkbook with Boolean algebra,
but it's extremely easy to create decision and logic trees with it.

Boolean expressions often involve comparison operators to help evaluate truth or
falsehood. Operators such as equal (=), less than (<), and greater than (>) should look
familiar to you if you didn't skip your high school math classes. These constructs are so
common and useful that many languages use them. Python, Lua, and Ruby all use the
same comparison symbols, illustrated in Table 2.1.

Comparison operators are normally used to form expressions that can be evaluated as
True or False. For example:

1 < 2 - Evaluates to TRUE
1 > 2 - Evaluates to FALSE
1 = 2 - Evaluates to FALSE

Sometimes you need to make comparisons in groups. A program may need to ask, "Is
player character one an EIf AND a Wizard?"

Playerl = (E1f AND Wizard)

Typical comparisons use logical structures: logical AND, logical inclusive OR, and
logical NOT. Logical AND along with logical OR are used to combine conditions or
statements. Lua and Python try to keep the constructs simple for the reader by using
common English words, as do most high-level languages, including Eiffel, Ada,

38

Smalltalk, Lisp, and Perl. You can designate logical AND, OR, and NOT by using the
command words and, or, and not, respectively.

Ruby takes a slightly different course and follows convention, using the same
programming symbols that the popular C family (C, C++, and C#) uses to designate
AND, OR, and NOT: &&, ||, and !. These differences are also illustrated in Table 2.1.

The logic constructs AND, OR, and NOT are normally used with Boolean True and
False to form simple and complex programs. These constructs are sometimes called
Boolean operators.

Boolean operators are evaluated differently when in combination with each operator.
For the AND operator, the combination of two True values results in True; all other
combinations evaluate to False, as illustrated in Table 2.2.

Table 2.2. Boolean AND
Operators Evaluation
True AND True Evaluates to True
True AND False Evaluates to False
False AND True Evaluates to False
False AND False Evaluates to False

For the OR operator, as long as one of the values is True, then the expression evaluates
to True, as shown in Table 2.3.

Table 2.3. Boolean OR

Operators Evaluation

True OR True Evaluates to True
True OR False Evaluates to True
False OR True Evaluates to True
False OR False Evaluates to False

The NOT operator is called the complementary operator. It reverses the truth-value, as
shown in Table 2.4.

Table 2.4. Boolean NOT
Operators Evaluation
NOT True Evaluates to False

39

Table 2.4, Boolean NOT

Operators Evaluation

NOT False Evaluates to True

Once you understand Boolean logic, comparison operators, and logical structures, you
can create very complex decision trees, like this:

The following line evaluates to Boolean FALSE

(((1+2)*5) =11) and ((5*6) != (7*6))
The Following line evaluates to Boolean TRUE
((1+1) = 5) or ((5*6) = 40 and ((5/4) = 2*.5)) or ((50/5) = 10)

Table 2.1. Common Math Functions in Python, Lua, and Ruby

Function Python Command Lua Command Ruby Command
Add + + +
Subtract - - -
Multiply * * *
Divide / / /
Equal (assignment) = = =
Equal To == = =
Less Than < < <
Greater Than > > >
Logical NOT or Not Equal To not not !
Logical AND and and &&
Logical OR or or I
Square Root sqrt sqrt sqrt
Exponent exp exp exp
Absolute Value abs abs abs
Basic Sin sin sin sin
Cosin cOs cos Ccos
Tangent tan tan tan
Logarithm log log log
Truncate/Round round round round
Floor floor floor floor
Ceiling ceil ceil ceil
Power K3k A kok

40

Variables

Computers and computer programs manipulate data. Variables are holders for data any
computer or program might need to use or manipulate. Variables are usually given
names so that a program can assign values to them and refer to them later symbolically.
Typically a variable stores a value of a specific given type like:

An integer or whole number

A real or fractional number

A character or a single letter of an alphabet
A string or a collection of letters

Many languages need to know in advance what type a variable will be in order to store
it appropriately. Since computers are finite in memory, there are often several different
numerical designations, depending upon how big a number can grow or how that
number needs to be represented in binary.

Others languages are more flexible in dealing with variables; this is called dynamic
typing, as [mentioned in Chapter 1, and is a common high-level language feature. Even
with dynamic typing, most programmers declare variables at the start of their program
out of convention. This consists normally of dreaming up a name and then declaring a
data type for the variable. Typical variable types are listed and described in Table 2.5.

Table 2.5. Typical Variable Types

Variable type Description

Boolean Holds only True or False

Float A number with a decimal point (floating decimal point)
Integer A whole number

Null No value

String Ordered sequence of characters

Each language's variable types and how to use them are explained in more detail in their
respective sections in this book, but there are a few commonalities I will mention here.
For instance, null values are symbolized by ni1 in both Lua and Ruby, while Python
uses the designation none. Both ni1 and none are treated as false in a Boolean sense.

PYTHON

This assigns x a null or Boolean false value in Python

X = none

RUBY

LUA

This assigns x a null or Boolean false value in Ruby or Lua
X = nil

41

A second example of similarity with variables is that Python and Ruby both use the
value method to grab the value of a variable.

PYTHON

RUBY

this code snip uses the value method to
return the value of x

x =4

This line grabs x and prints it in Python
print x.value

This line grabs x and prints it in Ruby
Sstdout.print (x.value)

NOTE
CAUTION

Many popular languages—for instance C, C++, and Perl—also use zero (0) as Boolean
false. This is not necessarily the case in High-Level Land. For instance, in Ruby,
anything not designated as nil or false is automatically true in the Boolean sense,
even the number 0. This switch sometimes tricks converts from other languages.

Although similar in some ways, Python, Lua, and Ruby differ significantly in how they
handle variables and types. They each follow slightly different paradigms that create
differences on a basic level. These differences will become apparent as you delve into
each language in the chapters that follow.

Lists and Strings

Lists are used to group things together. They are data structures designed to make life
easier for the programmer. A list is simply a row of variables or data elements. They can
be composed numbers, letters, or even constructs such as arrays, hashes, or even other
lists. Lists are created in Python and Ruby by using brackets [7]:

PYTHON

RUBY

#To create a list called lista with the numbers 1 through 10, just put
them in brackets

and separate them with commas:

lista = [1,2,3,4,5,6,7,8,9,10]

You can use the + symbol in each language to concatenate lists together:

PYTHON

RUBY

To combine fish and chips list a with list b
lista = [1,2,3,4,5]

listb = [6,7,8,9,10]
Just add them together into a new list
newlist = lista+listb

42

Since not all languages have direct support for strings, one of the time-saving features
that high-level programmers often enjoy is built-in string handling. Not only are there
common commands for working with strings, the memory management of strings is
usually handled automatically.

A strings is basically just a list of characters. To get Lua, Python, or Ruby to recognize
a string verbatim, you can place it between single parentheses, like so:

PYTHON

LUA

RUBY

Python, Lua, and Ruby will recognize this as a string
'Enclose strings like this in single quotes'

You can also use math functions to make string comparisons in Python and Ruby, just
like you can with lists. For instance, the + sign can be used for string concatenation with
Python or Ruby, like so:

PYTHON

RUBY

to combine the strings 'fish', 'and', 'chips'
stringa = 'fish'

stringb = 'and'

stringc = 'chips'

stringd = stringat+stringb+stringc

You will find that equal to (==) and not equal to (! =) are often used to compare different
strings as well:

PYTHON
RUBY
Is the password 'Enter' ?
First, get the password
If password = 'enter'
Then you shall pass

If password != 'enter'
Then no such luck

Arrays

Arrays are similar to lists. They are both used for storing items or lists of items, but they
keep track of the items in different ways. Arrays organize lists of items by a numeric
index, an extremely powerful tool in programming.

Although each of these languages handles lists in a similar way, they have somewhat
different approaches for arrays. Ruby has a built-in array method, but, strictly speaking,
Lua does not have built-in arrays and substitutes for them with table structures. Python
has its own version of arrays called sequences.

43

Despite the differences, these languages handle arrays in similar ways. An example is
the sort method or command. Ruby uses sort to put in order items within a hash or
array, Lua uses sort to order a table, and Python uses sort to order a list. Similarities
like these run deep through these languages, but can become confusing and difficult to
wade through when switching between them frequently.

Program Structure

All programming languages have some sort of structure or flow to them. Most programs
share a structure similar to that in Figure 2.1. Normally there is a statement that
establishes the beginning of a program, then variables are declared, and then there are

code blocks, which are also called program statements.

Figure 2.1. A typical program structure

kit

T

Program statements provide the control of a program. They usually act as decision trees,
executing different sections depending upon the input given. Figure 2.2 illustrates a
structured-programming graph in which the ovals represent starting and ending points,
the squares represent program blocks, and the diamond represents a decision to be made
in the program that will send the flow down one of two branches.

Figure 2.2. A structured-program flowchart

44

block exacutes K falsa else block executas i frus
branch

Program statements come in a couple of different forms. So far in this book, I've used
mostly simple statements. Simple statements are short expressions that perform specific
actions. There are also compound or complex statements that generally consist of more
than one line of code and use many expressions.

Statements that control which sections of code are to be executed are called control
statements (surprise!) and consist of a few basic types.

e Linear Control Statements. Control is based on a logical sequence, and code is
executed in the default order as it's listed in the source file.

o Conditional Control Statements. A condition is set that makes a decision on
which block of code is to be executed.

o Iterative Control Statements. Blocks of code may be executed more than once
in loops.

Linear Control Statements

Linear control statements are the most intuitive of type of program structure. In linear
control, commands are executed in a sequential, ordered, linear manner. This usually
equates to running one line at a time, like so:

Start Program
Run Command 1
Run Command?2
Run Command3
End Program

45

Since English-speaking humans are most comfortable reading from left to right and
from the top down, the same conventions are used in linear control.

Conditional Control Statements

Statements that are considered conditional are often referred to as if/else statements.
The commands if and else determine which lines or blocks of code might or might not
run, depending on the flow of the program. Programmers generally use these as
branches to initiate actions that are dependent on user input.

The if command is the foundation of all conditional statements. i f checks a specified
condition for truth value. If the condition is true, then if executes a code block that
follows. If the condition is not true, the code block is skipped.

if (this condition is true)

(then this happens)

Figure 2.3 depicts the flow of a program going through an i f statement. The flow goes
through the diamond branch, which executes the code block (the square) if the condition
is true or continues to the ending oval if the condition is false.

Figure 2.3. A generic example of a program flowing through an ir statement

if if trua
command

branch execute this branch

Finish

Python uses if for command flow in the following way:

PYTHON

Examples of and if statement checking the truth of X being greater
than 90 in Python

if X > 90

46

Then do this

Ruby and Lua are similar, but use an end command to designate the end of an if
structure.

RUBY

LUA

if X > 90
then do this
end

The else command is another common conditional that can follow an if statement.
When an i £ statement returns a value of false, the code block held by else executes.
This creates a fork in the program, where either the i £ block or the e1se block is
executed. When using else and if together in Python, Ruby, or Lua, the general syntax
looks something like the following:

if (this condition is true)
then this happens else (this happens instead)

This series of i f and else statements allows code to make decisions based on variables
or input. When the program flow has two possible execution choices, it is known in
structured programming as a double selection. The if/else statement is illustrated in
Figure 2.4.

Figure 2.4. The top-down flow of an if/else statement. The false and true
branches both execute blocks of code

block esmcutes if false bleck exacutas if true

47

A double selection can be limiting because there are only two forks that the program
can take. If you need to program for multiple paths, you can use the e1sif command in
Ruby, the e1seif command Lua, or the e1if command in Python, all of which are
equivalent.

You can use multiple e1sif/elif statements in a row to create one long string of
conditions for which to check. However, only one e1se statement can follow an i f. The
syntax for these statements looks like the following:

if (this first condition is true)

(then this first program block runs)
elsif/elseif/elif (this second condition 1is true)
(then this second program block executes)
elsif/elseif/elif (this third condition is true)
(then this third program block runs)

else

(this fourth block fires instead)

As we get deeper into each language, each will start to have its own distinct flavor, and
they will begin to appear different. You can see how different in the following code,
which displays the typical elsif/elif/elseif flow in each language. Figure 2.5 also
shows a typical elsif/elif/elseif program structure.

Figure 2.5. Structure of a program illustrating multiple eise/if branches

48

An oise/if flow chart

PYTHON
Example of elif In Python
If X > 90

print "this"
elif X < 90

Print "this instead"
Else:

Print "this"
LUA
Example of elseif In Lua
if x>90 then blocka {elseif x<90 then blockb}
RUBY

[else blockc]

end

49

Example of elsif in Ruby
if x > 90

then this blocka fires
elsif x < 90

then this blockb fires
else

blockc fires
end

Iterative Control Statements

Programming languages must have a facility to allow sections of code to be repeated, or
iterated. Iteration is possibly a computer's greatest strength. There are several variations
of constructs that are used to iterate program blocks; these are commonly called loops.

The for Loop

The for loop is probably the most common loop in programming. It takes a few
separate conditions to execute and takes on the following general structure:

for (the length of this expression)

(execute this code block)

Figure 2.6 shows the structured program flow of a for loop. Notice that there are two
programming blocks: the first is the code that executes as part of the loop expression,
and the second is the block that the loop executes.

Figure 2.6. The flow of a for loop

block executes as part block that the loop

of loop expression actually executes

Finish

50

Although iteration commonly is needed when programming, and a built-in for
construct exists for each of these languages, each has its own peculiarities.

Python's for loop uses a counter and a range to determine how many times to loop a
given code block. The counter is incremented each iteration of the loop until the counter
reaches the end of the range and the loop is complete.

PYTHON
for counter in range (X):
block
To create a for loop in Python that loops 10 times, do the following:
PYTHON
for counter in range (10):
block

Lua's for statement works in the same principal way but has two forms, one for
numbers and one for tables. The numerical for loop has the following syntax:

LUA
for name '=' expl ',' exp2 [',' exp3] do block end

The first expression (exp1) is the counter, the second (exp2) is the range, and the third
(exp3) is the step (the step is automatically a step of 1 if omitted). Therefore, a for loop
in Lua that would run a block 10 times would look something like the following:

LUA
for name = 1 ,10, 1 do block end

Ruby has a unique way of dealing with for loops, and iterators in general. Ruby uses a
number of predefined classes with built-in methods to provide iteration functionality.
There are several ways to accomplish the same 10-iteration loop in Ruby:

RUBY

10.times do
block

end

Or

RUBY
l.upto(10) do

block
end

Ruby also has a comparable for/in construct with a similar structure:

RUBY
for 1 in 1..10
block

51

end

and a built in 1oop iterator that looks this:

RUBY

i=0

loop do
i +=1
next if 1 < 3
block

break if 1 > 4

end

The while Loop

A second common loop is known as the while loop (sometimes known as the do/while

loop). A while loop is normally used to keep a section of code continually running
while a certain condition is true. The flow of this loop is shown in Figure 2.7.

Figure 2.7. A flowchart that illustrates a typical whiie loop

if true:

axecute this branch

Finish

The while loop takes on the general structure of:

while (this statement is true)
do (execute this block)

Each language, again, has its own nuances, but the while loop looks fairly similar in

each.

52

Python's while loop is almost identical to the for loop:

PYTHON

X = 100

while X < 100:
block

Note that these examples could execute a never-ending loop unless a way to increase x

was added.

Lua's while is almost identical to Python's, but with substitution of parentheses for the

end colon and the addition of an end:

LUA

while (X> 100) do
block

end

Ruby's while is also almost identical to Python's:

RUBY

while X < 100
block

end

Miscellaneous Similarities

As you read through this book, you will find more and more similarities between the
languages. In addition to commenting, mathematics, lists, variables, and program
structure, there are a number of other significant similarities. Some of these I will point
out as the book progresses, and others you'll discover on your own. A few of the more
significant ones are illustrated in this section. Table 2.6 lists a few miscellaneous

commands that have similar or the same names.

Table 2.6. Similarly Named Commands

Function Python
Command

Access read/write ale]

Runtime evaluation eval

Duplicate n times (string

repeat)
ascii to character chr
Value v

Lua
Command

ale]
dostring

strrep

strchar

Ruby
Command

53

End-of-Line Characters

Knowing where a command line ends is important for understanding program flow. One
line of code is usually over at the end of the line, when a return is entered. The end of a
line may also end in an "End of line" command such as a colon (): or semicolon (;).
Python and Ruby both use the semicolon symbol as an end of line command to end a
statement; in Lua the semicolon is optional. In Python and Ruby you can also simply
use an end of line character (or a return).

Sample of an end of the line statement
This code line ends at the semicolon;
This is a second, separate line of code;

Breaking up a line is useful if the line is too long and you need to go on to the next line.
Both Ruby and Python both use the \ (backward slash) to signify that the command goes
on to the next line.

PYTHON

RUBY

Sample of using a \ to extend a line of code
This code line ends at the semi colon;

This snippet goes on to the next line\

And ends here

OOP Structure

Since each of these languages is object oriented to some degree, and they are all based
on similar strategies, it follows that they possess similar object-oriented constructs. This
is especially true for Python and Ruby, whose commands for method invocation, class
declaration, and scope are identical. In fact, method invocation (and scope) uses a very
recognizable structure for OOP veterans:

object.method (parameter)

As you can see, the . operator is used to define scope as well as a record selector. The
command class is also used to designate a class in both languages.

Function Calls

All three languages have similar commands for function calls, the typical syntax being:

function (parameters)

In Ruby, you can call a function without any parameters just by naming it:

function

54

In Lua and Python, you must still specify that there are no parameters with parentheses:

function ()

The command return is used by Ruby and Python to break the function control flow
and return a value.

55

Hello World Samples

Now that you've seen snippets and small samples of code, it's time to look at what a
fully functioning program looks like in each language.

Programming in each language is explained in depth in each of the following sections,
so don't be concerned if the code sample that follows appears foreign. This is just a
sample to whet your appetite.

The Python Environment

Python is at home in a number of different environments and can be programmed via
command line, script, or debugger. This section will help you install Python on your
system and will demonstrate the different options available when you need to sit down
and write code.

Installing Python

This book's CD-ROM comes with the tar archive and the Windows installer for Python
Version 2.2.2 (released in October of 2002); you can find them in the Python folder.
You can also download Python installers for a number of other different platforms from
the Python.org Website at http://www.Python.org/download.

As of this writing, Python 2.32 alpha is available from Python.org in Windows. The
alpha is also included on the CD, but the samples in this book were written with Version
2.22.

Simply double-clicking on the Python-2.2.2.exe file located on the CD under \PYTHON
will run the Windows installer. The installation is fairly straightforward; just click OK

on the windows that pop up (see Figure 2.8).

Figure 2.8. The Windows Python Installer in action

56

=% Pythan 2,2.2 Installation
Installation Completed!

Python 2.2 2 hat been succassfuly instaled,
Piezs the Finith button bo exil this metallabion

5 pcial windowrs thank s bo
Wize Solutons, for the ums of InstalMasis 8.1
TR e v

LesErmor, Eiik var Blokland. lor the Python b Wind ows graphic.
i e, bethemon Comy’

Wk Hammond, walkool who e pear: of fesly shaved “Windows espetize,
Ptivoans for 'Wirdkows would still be Python fon DOS

Carcel

If you'll be installing for a UNIX platform, you'll need to perform the regular steps for
unzipping the tar archive and installing (gunzip,tar, ./configure, make, and make
install). You will want to perform this action as root.

If you'll be installing Python on a Macintosh, you will want to use the
MacPython222Full.bin file for OS 8.6 or higher—except for OS X. For OS X, you will
want to use the standard tar archive. If you are running Mac OS X 10.2 or later, Python
actually ships on the platform, and you won't need to install it at all. Python for the
Macintosh is maintained by an independent programmer named Jack Jenson. You can
find patches for a few older Mac operating systems and more information at his Website
at http://www.cwi.nl/~jack/macpython.html.

If you are running Red Hat and want to grab the RPM sources instead of using the tar,
they are available for some distributions from Python.org. Just go to the Website and
check out the Download page.

If you do decide to use a version of Python other than 2.2.2, be sure you use Version 2.0
or higher. Python went through a few significant changes from Version 1 to Version 2,
and if you use a version earlier than 2.0, you may have trouble running the code
samples in this book.

The Python language is copyrighted by Stichting Mathematisch Centrum in Amsterdam.
However, it is free to use, copy, modify, and distribute and is OSI (Open Source
Initiative) certified. You can find a copy of the license and copyright in the Python
folder on the accompanying CD, and again in the Licenses folder.

NOTE

CAUTION

57

Intellectual-property attorneys exist for a reason: It is possible to get in legal trouble
selling open-source software. Luckily, the open source community is fairly watchful
about intellectual property law, and licenses are becoming somewhat standard and
easier to read. There are risks associated with incorporating open source code into
commercial endeavors that should not be taken lightly but these risks should not prevent
you or your company from using this viable and effective resource. If you have
concerns or questions about a license, or about using any open source software in a
major enterprise, by all means ask an expert.

Running the Python Interpreter

After you've installed Python on a Windows machine, the Python interpreter is
accessible via the run command. Simply do the following:

1. Open your Start menu.
2. Select Run.
3. Type python and hit OK, as illustrated in Figure 2.9.

Figure 2.9. Windows XP waits for a command from the user to launch
Python

Hun EJE!

Typs the name of & program, Folder, document, o
Intemet resource, and windosss sl open & for you.

Ogerr w

[o J[conced][mowse..]

You will get a command window that looks like Figure 2.10 saying:

Figure 2.10. The Python interpreter awaits your command

58

Python 2.2.2 <#37, Oct 14 2002, 17:02:34> [MSC 32 bit <Intel>] on
win32

Type "help", "copyright", "credits" or "license" for more information
>>>

NOTE
CAUTION

The Python installer tries in good faith to set your machine path variables so that you
can run the Python binaries from the command line or anywhere else for that matter, but
the installer may not be able to on your particular platform. If you cannot get Python to
launch from the command line, you may have to set the path variables yourself or
simply run the Python (command-line) entry that is added to the program files listing
under Python 2.2.

On a UNIX system, the Python interpreter is usually installed as /usr/local/bin/python,
but of course where the interpreter lives is an installation option left up to you. You will
need to put /ust/local/bin in your UNIX shell's search path to make it possible to start
the interpreter by typing the command python to the shell.

The Python interpreter actually operates somewhat like a UNIX shell—it reads and
executes commands interactively. The interpreter can also be called with a filename
argument or with a file as standard input.

Go ahead and test out the interpreter. You can start by executing various one-liners like
print "hello world" or 5*5. The interpreter is great for testing out certain functions.

The interactive help is also very useful. Type the following at the interpreter's prompt:

>>> help (list)

You will receive information on the 1ist command, its syntax, and samples of its use
(as illustrated in Figure 2.11).

Figure 2.11. Python's interpreter shows how to use the built-in 1ist class
object

59

0 Ciifython2 2P ythen.exe

module buileim, =

pewd 1Eag dnitialized from Fegquence's itens

el iyl

el wlizgl

In this mode, which is called interactive mode, you can type any Python command and
it will work just as if you typed it from a script (with a few differences). If you type a
command that returns a value of some sort (except assignments), the interpreter will
print the result automatically. This is great for experimenting and for testing a specific
language feature when you need to get the syntax right. The interpreter isn't very
helpful, however, when it comes to large sections of code or actual programs, which
you will want to write and then execute at once.

What the interpreter is quite good at, though, is running through the code snippets and
short examples you'll find in the next few chapters. You can easily run one-liners to test
a particular Python feature, or you can write short, multiple-line code snips by first
using a colon and then tabs to delineate a code block (as illustrated in Figure 2.12):

Figure 2.12. The Python interpreter is poised to run this five-line code
snippet

4% [HE hit £Iinks
= *licence’ for nore inforn

To exit Python's interpreter, hit Ctrl-Z on Windows and then press the Enter key, or in
UNIX, hit Ctrl-D.

NOTE

60

TIP

When a script file is used, it is sometimes useful to be able to run the script and enter
into interactive mode afterwards. You can do this by passing the -1 (i is short for
"interactive") argument to the script.

NOTE
TIP

When you use Python interactively, you can set standard commands to execute every
time the interpreter is started. You can do this by setting the environment variable
PYTHONSTARTUP to the name of a file containing the commands (this is similar to the
.profile feature in UNIX). This file is only read in interactive sessions, not when Python
reads commands from a script.

Creating Python Program Files
You can also run Python programs from a file. The usual extension for a Python
program is .py. To create new Python program file, just fire up your favorite text editor,

type in a few commands, and save the program as something .py. For instance, on
Windows, open up Notepad and type in:

print "Hello, World!"

and save the file as hello.py. You can then save the file to disk, open up your command
line, browse to hello.py, and run it, as shown in Figure 2.13.

Figure 2.13. A Python program file runs on Windows

=7 CHAW INDOWS\System3 Zicommand.com HEE

Hic of [
4 3 1990-20ARi .

You can create Python program files on other operating systems just as easily, except
that in a Posix environment (UNIX or Linux), you will need to include a line at the top
of each file that points to where Python is installed on your system, like this:

61

#!/usr/local/bin/python

This makes the file directly executable, like any other shell script.

Python's '""Hello World"

A Python "Hello World" looks like this:

#!/usr/bin/python
FHASHHHHEHEH
HELLO PYTHON 1.py
This program displays the string "hello"
It first shows the path to python, then creates a short loop, and
then prints the
string.
FHARHHHH AR
while (1)
print "Hello!";

Most of this script is made up of comments. Python ignores lines that start with the #
symbol, so coders can place their comments and notes in the source code. The one
exception to this (and you will find that there are few exceptions in Python) is the very
first line of code in this sample. The #! /usr/bin/python command lists the path to the
Python program files so that when the script is run, the computer knows where Python
resides. This line is optional in Windows, but is normally required when running on a
UNIX environment, and so it is included here.

Following the path and the comments is a short while loop. This line says, "Do
whatever follows once." Then the print instruction follows. Notice that the print line is
offset, or tabbed inwards. White space in Python actually serves a purpose; it places the
print command within the jurisdiction of the while loop. Also notice the semicolon at
the end of that line. Semicolons, as you've learned, are used to end a statement.

This source code can be found in the \CHAPTER?2 folder on the accompanying CD. If
you run the program, you will see "Hello!" printed to the screen.

C's "Hello World"

For comparison, let's see what Hello from C would look like. There are many different
ways to get C to print a string, but typically the effort looks like the following:

FHAHSHERAEAE

HELLO C 1l.cpp

This program displays the string "hello!".

It first Includes the stdio.h library, then creates a main,
then creates a short loop, and then prints the string.

FHHHHH S
#include <stdio.h>

main ()

{

for(;;)

62

printf ("Hello!\n");

The comments are the same as in Python, but besides the comments you can see that the
program is very different. First, C doesn't have a built-in print function, so you need to
import a library that does. stdio.h is short for Standard Input and Output. The library is
standard and comes with most C compilers, but it will add a significant amount to the
compiled binary.

Second, every C program needs a main statement, a place for the main program piece to
run in. This means that main () must be declared before you can proceed any further.
Then come the squiggly brackets {}. C uses brackets to separate blocks and section of
code. Whatever is in main must be bracketed by squiggly brackets.

Then comes the loop (in this case a for loop), which serves the same purpose here as
Python's while loop; the syntax is, of course, different. Again, squiggly brackets are
needed to bracket off what belongs within the for loop.

Finally, we get to printf, a command from the stdio.h library that prints input to the
screen. Notice that the string must be between both the parentheses () and the quotation
marks "". There is also the semicolon (;) that follows the end of a statement, something
in common with Python. The \n is actually an escape sequence that creates a new line
once the "Hello!" is printed.

The key thing to notice is that with C there are a few extra steps:

e A library that can work with strings must be imported.
e There must be amain ().
e Brackets {} must separate code blocks.

Also look at the syntax. Any missed colon, semicolon, parenthesis, bracket, slash, or
pound sign will result in a program error. Python's code has fewer symbolic syntax
needs because the designers wanted something that would be easy to write and read.

The Lua Environment

The idea behind Lua is that it is to be used as a lightweight configuration language for
any program that needs one. It is written in clean C, which means the Lua source code is
made up of the most common subset of ANSI C and C++. Since this section is about
Lua and this book isn't a book on C, I won't spend a lot of time going over any C code.
If you want a primer on the C language, I suggest picking up a book on C; there are
hundreds to choose from.

Lua is implemented as its own library. It's purely an extension language, and so it has

no "main" loop of its own. Lua normally functions embedded within a host client, like C
code or a C program. It is the host program that invokes Lua code, reads and writes Lua
variables, and so on. Lua can also be extended by C and C functions. We'll look more at

63

combining Lua and C (and Lua's C API) in the next chapter, and we'll examine
extending Lua, Python, and Ruby in Chapter 12.

The use of C in this book is actually pretty infrequent. In fact, all the code samples in
this chapter should run fine in the Lua interpreter alone. If you come across something
in C that doesn't make sense, don't get nervous; just move on. Eventually, all code will
succumb to your will and prowess.

Normally Lua is used within a host language, and usually the host language is C. Lua
can also be used alone, usually for quick glue programs or text-processing utilities.
These standalone projects tend to rely heavily on the basic libraries Lua provides.
Finally, there are applications that use Lua as a library. These apps tend to have more
program code in C than in Lua, and they create interfaces to the Lua language within C.

In this chapter, almost all of the examples are pure Lua and can be run with the Lua
interpreter. Using Lua within a host language or library is covered more in the next
chapter, where I get down to using Lua in a game-programming environment, and also
in Chapter 12, where I'll discuss extending and embedding high-level languages.

Installing Lua

Lua is free software, and the license is included in the CD folder (under Lua) along with
the necessary packages for building and installing Lua 5.0. This includes a generic
tar.gz for building Lua from scratch on most platforms and an .rpm (Redhat Package
Manager) for Linux Red Hat. You can build Lua from the source on any UNIX-flavor
machine with the provided make files.

In order to build Lua from the source on a Windows machine, you need a development
environment like Visual C++ 6.0 or Cygwin, but luckily for you, the precompiled win32
executables and binaries are included in the LuaWin32.zip file. Instead of your building
Lua from scratch, the zip file will provide a lua.exe executable that starts up the Lua
Interpreter.

NOTE
CAUTION

The preconfigured lua.exe and luac.exe binaries are statically linked, so when
developing real projects you will want to place these within the bin folder of the full
Lua source tree. The libraries included should also be placed in the Lua lib folder so that
they can link with one another. See the documentation on installing Lua at
http://www.lua.org

Lua 5.0 was released in April 2003. Some new features in 5.0 include:

e Coroutines (collaborative multi-threading)
o Full lexical scoping (replaces upvalues)

e Metatables (replaces tags and tag methods)
e Support for true / false Booleans

o Weak tables

64

e New API methods
e New error handling techniques

The original Lua language (Version 1.1) was first publicly released in 1994. Way back
then, the language was free for academic use, but commercial licenses had to be
negotiated. However, no commercial negotiations ever occurred, and in Feb 1995, with
Version 2.1, the license opened up to commercial use. For the most recent version of
Lua, check with the Lua home page at http://www.lua.org.

Or with Tecgraf at http://www.tecgraf.puc-rio.br/.

Lua was designed to run on anything out of the box. This versatility is a result of its
plain vanilla C; you just need an ANSI C compiler to compile it. Lua should run not
only on all standard Windows platforms, but also on UNIX, Linux, Solaris, SunOS,
AIX, ULTRIX, and IRIX, not to mention NextStep, OS/2, Sony Playstation, Macs,
BeOS, MS-DOS, 0S-9, OSX, EPOC, and the PalmOS. Whew! Again, all you need is
an ANSI C compiler to build Lua on the given platform.

The Lua Interpreter

The standalone interpreter (lua.exe on Windows machines) that comes with Lua is
extremely useful, as it runs an interactive mode. When fired up, the interpreter displays
the Lua version number and copyright notice at the top of the window, along with a
greater than (>) symbol as a prompt (see Figure 2.14).

Figure 2.14. Opening the Lua standalone interpreter

In the interpreter, each command that you type executes immediately after you press the
Enter key, and that line is considered to be a whole Lua chunk (more on Lua chunks in
just a bit). The Lua interpreter is fairly smart, and if you need to enter multiple lines (for
example, when creating a function), the Lua interpreter doesn't execute right away;
instead, you will see two greater than symbols, indicating that the interpreter is waiting
for you to end the function before executing (see Figure 2.15).

Figure 2.15. The multiple-line function in the Lua interpreter

65

=0 CilDocuments and Settings\Tem. EMOCH\D eskiophlua-5. 04bin\Lsa_exe

Most of the commands and samples in this chapter can be run in the interpreter, which
is an excellent tool for getting a feel for Lua. I suggest you keep the interpreter open and
try the sample code as you go along in the book.

Creating Lua Program Files

As I said, Lua is normally implemented via its host language. The host calls Lua with a
lua_open command and then closes it with a 1ua_close command. A unit of Lua is
stored in a file or string within the host program and is called a chunk. When the host
executes a Lua chunk, the chunk is precompiled into bytecode for a virtual machine, and
then the statements are executed in a sequential order. This Lua chunk does its thing,
perhaps making changes to the global environment (that persist after the chunk ends),
and then it ends (see Figure 2.16).

Figure 2.16. Lua being implemented via the C host language

___—— Import Lua

#include “lua.h” -—

int main()

{ Lu

lua_State *L = lua_open(); - |_———Open Lua
#doluastuffhere —g |
lua_close; [Lua Functionality

return o; ‘_‘
}

|~ Close Lua

NOTE

66

The term virtual machine (VM) was coined by Sun Microsystems to describe the
runtime environment for their budding Java language. A VM acts as an interface
between a compiled binary code and an operating system.

Lua has been designed as an extension language but it can be used as a stand-alone
language as well. The Lua interpreter (named lua.exe) can be called via command line
to execute Lua files (known by their .lua extension) and accepts a number of arguments,
as shown in Table 2.7.

Table 2.7. Lua Interpreter Command-Line Arguments

Argument Purpose

Executes stdin as a file

-é stat Executes string stat

-f file Requires file

-1 Enters interactive mode after running script
-V Prints the version information

- Stops handling options

If the Lua interpreter is given no arguments, it behaves as if lua -,oras lua -v -i
when stdin is a terminal.

Chunks of Lua can be also precompiled into a binary form with Luac.exe, which is also
included in the win32 executables. Luac.exe is a Lua bytecode compiler, an assembler
that compiles the Lua source code into bytecode. This makes it completely unreadable
to normal humans but also makes it run much faster. To use the bytcode assembler, you
just call it as if you were compiling and then tell it what you want the new file to be
(with a .lub extension) and what the sourcefile (.lua) is.

Luac.exe -o Myfile.lub Myfile.lua

The -o is one option to feed Luac, which means "output to file." For a full list of Luac
options, see Table 2.8.

Table 2.8. Luac Options

Option Purpose

-1 Produce a listing of the compiled bytecode for Lua's virtual machine
-o "file" Qutput to file, instead of the default luac.out

P Load files but do not generate any output file

-t Perform integrity tests of precompiled chunks

67

Table 2.8. Luac Options

Option Purpose

-V Print version information

NOTE

As Lua was written in ANSI C, you need to do special work when embedding Lua into
a C++ application due to the "name mangling" that C++ performs. You must place
extern "C" around the inclusion of Lua headers in a C++ application:

extern "C"{
include "lua.h"

}

Lua has no if def cplusplus or if def c directives, because it is pure, clean ANSI C.
This pureness makes the extern command necessary; without it, you will get link
errors.

Lua's "Hello World"

Lua is quite different than the other two languages presented in this book. Lua is
primarily an extension language, and Lua code is usually embedded within a host.
You'll find Lua residing inside C, Python, and Ruby scripts, doing what it does best—
acting as code within code. In-depth coverage of how to program with Lua is covered in
Section 2 of this book, and what follows is just an example to whet one's appetite. With
the understanding that a Lua "Hello World" program would normally exist within
another language's construct, writing a "Hello World" program in Lua is even shorter
and simpler than in Python or C:

-— HELLO LUA 1.lua
-- This program displays the string "hello"
-- It prints the string by using an internal print command.

print "hello world\n"

Notice that Lua's comments are different; they are marked by two dashes (--) instead of
a pound (#) sign. Also notice that the print line itself is almost exactly like the C version
Hello C 1.cpp above, except in this case that you do not need to import a library for the
print command, and a few of the symbols, namely the semicolons and parentheses, are
left out.

The Ruby Environment

Ruby is most used to Posix type operating systems (such as UNIX, Linux, and
FreeBSD) and is written in the C programming language. Although Ruby is comfortable

68

on UNIX, Linux, DOS, the various Windows flavors, Macintosh, and number of other
platforms, it's most at home on the Posix environment where it was born.

Ruby on Windows needs a few additional tools in order to emulate its home
environment. These tools include a Linux-like environment for Windows called cygwin,
a collection of Windows header files and libraries called mingw, and the DJ Delorie
software tools (djgpp). Precompiled versions of Ruby with these tools included can be
found at the Ruby Central Website, which houses the Ruby "one-click" installer for
Windows at http://www.rubycentral.com

The latest versions of this collection of tools can be found at their own respective
Websites as well:

e cygwin. http:/www.cygwin.com/.
e mingw. http://www.mingw.org/.
e djgpp. http://www.delorie.com/.

This Windows one-click installation is also included on the CD that accompanies this
book, and can be found in the Ruby folder: \RUBY

Installing Ruby

The latest version of Ruby, 1.8.0 as of this writing, can be downloaded from the Ruby
language organization Website at http://www.ruby-lang.org.

Developers can also take a peek at the source tree at that location. Ruby Version 1.8.0 is
also on this book's CD in the \RUBY folder.

Windows users can simply use the one-click installer executable to install Ruby on their
machines; just double-click on ruby180-10.exe to run the Ruby Setup Wizard. You may
have to restart your computer afterwards.
Steps for installing Ruby on a Posix environment will vary, depending on the platform
and also on any extension or static module linking that needs to be done. The following
condensed steps will suffice for most folks, however:

1. Become a super user or user with privileges for installing new programs.

2. Run autoconfto generate configure.

3. Run ./configure to generate config.h and the makefile.

4. Run make.

5. Runmake install.

The Ruby Interpreter

Ruby can be used interactively with the interpreter, called irb, that comes bundled with
it. For UNIX machines you need to add irb/ to the $rRUBYLIB environment variable and

69

make a symbolic link to the irb.rb file in your path environment. Then you can type in
irb to call the interactive Ruby shell.

On Windows, the irb is installed by default in the program file's directory, and the Ruby
shell is accessible through the Start menu under Programs (see Figure 2.17). The code

samples in this chapter can be run with the Interactive Ruby Shell.

Figure 2.17. Launching the Ruby interpreter from the Program menu

"
-
~
-
.-
L
%
-4
=
W
~
-

-
=

-a
™ -
- -

A program called eval, which is included in the samples/directory of the Ruby
distribution, allows you to enter expressions and view their values.

Creating Ruby Program Files

Ruby program files invariably end with an .rb extension. They can be created in
Notepad or vi or any other sort of text editor. To make things even easier, Ruby comes
bundled with a nifty tool for scripting called the SciTE, which is a Scintilla-based text
editor. SciTE has features for building and running many kinds of programs (see Figure
2.18), and it understands the syntax of a smattering of different computer languages,
including Python, Lua, and Ruby.

Figure 2.18. The SciTE editor shows off its knowledge of Ruby syntax.

70

Executing Ruby

Ruby itself (that is, Ruby.exe) is meant to run on the command line, whether it's the
UNIX shell or Windows command or DOS. The basic syntax for running Ruby is as
follows:

Ruby options MyProgramScript arguments

Being a child of the command line, Ruby accepts a number of fun command-line
options, or switches; these are outlined in Table 2.9.

Ruby comes with a Ruby Windows executable called rubyw.exe that will run on a
Windows environment without launching a DOS or Windows command-line window,
but the Windows platform will need to have .rb files associated with the executable for
launching.

Ruby is primarily used as an interpreted language or as an extension. One extremely
common use is to find Ruby on a server machine like a Web server where it is used as
an interpreted language to run CGI or create Web forms and cookies. Ruby can also be
embedded into HTML documents, another common use of the language.

Table 2.9. Ruby Command-Line Switches

Argument Purpose

-0digit Specifies the input record separator ($/) as an octal number

-a Turns on auto-split mode

-c Checks the syntax of the script and then exits without executing
~Ke Specifies the KANIJI (Japanese character) code-set

71

Argument
-d

-—-debug

--verbose
--version

—W

x[directory]

-X
s

--yydebug

Table 2.9. Ruby Command-Line Switches

Purpose

Turns on debug mode

Turns on debug mode

Used to specify a script from the command line

Used to specify the input field separator

Prints a summary of all the command options

Prints a summary of all the command options

Specifies in-place-edit mode

Enables automatic line-ending processing

Used to run multiple iterations around the given script (looping)
Same as -n but prints the value of variable $ at each end of the loop
Causes Ruby to load a given file using require

Enables some switch parsing for switches

Forces Ruby to use the PATH environment variable to search for script
Forces taint type checks to be turned on at the given level

Enables verbose mode

Enables verbose mode

Prints the Ruby version

Enables verbose mode without printing the version message at the
beginning

Tells Ruby that the script is embedded in a message and switches to a
given directory (if provided) before executing a script

Causes Ruby to switch to a given directory
Turns on compiler debug mode

Turns on compiler debug mode

The most common use for games is to have Ruby associated with C as an extension.
The Ruby interpreter is embeddable, and it is possible to embed the entire Ruby
interpreter into C or other code. Just like Lua, Ruby has a full C API, which I'll cover in
Chapter 10, and it is extendable not only with C but with other languages; I'll discuss
doing that in Chapter 12.

Ruby's "Hello World"

A "Hello World" program in Ruby looks a lot like Python's:

#!/usr/bin/ruby

72

FHEHHHEHEHEA

HELLO RUBY 1.ruby

This program displays the string "hello"

It first shows the path to ruby, and then prints the string.
FHAFFHHH AR

puts "Hello!"

Ruby's code is extremely streamlined in this example. A built-in puts command

handles the printing without the need of any loops, spacing, brackets, or semi-colons.

Very clean, this script simply tells the computer where Ruby is and then, in one line,
tells it what to do.

73

Summary

I've covered quite a bit in this short chapter. Before you move on to more specifics with
Python in the next chapter, or the other languages later on, you'll want to be sure you are
familiar with Boolean logic and general program flow and structure with conditional
and iterative control constructs. Important points from this chapter:

e Python, Lua, and Ruby organizations keep active lists of projects that are pretty
extensive.

e Math and algebra are handled very similarly in each language.

e Boolean operators, Boolean comparisons, conditional control statements, and
iterative control statements can all be used to control the flow of a program.

e Lists, strings, and a number of other commands all look and are handled in a
similar way in each language.

o Implementing "Hello World" in a standard way in C takes more lines of code
and more symbols than any of the other three languages.

74

Questions and Answers

1: Q: Why are there more projects in Python and Lua than Ruby?

A: A: Ruby is probably the most difficult of the three languages to find evidence
of in the game industry. This is partly due to the language barrier (again, most
modern Ruby development is in Japanese) and also because shops today tend
to be using Ruby more for projects with the World Wide Web, XML
integration, text processing, and general scripting. That doesn't mean Ruby
isn't suited for game development; quite the contrary, as you will shortly see.

2: Q:Ialready know how to program "Hello World", when do I get to write
graphics and games?

A: A: You'll start writing much more in-depth code in the very next chapter.

75

Exercises

1: Describe the difference between a conditional control statement and an
iterative control statement.

2: Boolean logic uses only two values. Which two values are they?

3: Which else/if structure (elseif, elsif, and elif) goes with which
language (Python, Lua, and Ruby)?

4: When printing a simple statement (like "Hello World"), one of the three

languages normally uses a puts command instead of a print command.

Which one is it?

76

Part TWO: Programming with Python

The next three chapters are all about Python. This part of the book starts with an
overview of the Python language and its syntax, then moves in to examine commonly
used libraries for writing games in Python, including Pygame and PyOpenGL. Finally, a
few real-world Python game projects are examined.

77

Chapter 3. Getting Started with Python

Latet anguis in herba

Virgil (70-19 BC), Roman poet, "Aeneid" (Translation: There's a snake hidden in
the grass.)

Let's jump right into programming with Python. I'll start with an introduction to a few
useful tools and then give you a speedy overview of the Python language.

78

Python Executables

You can execute .py files once Python is installed on your machine, but that doesn't
make your Python game programs universally playable. You still need to convert your
scripts into a bundled executable for whatever platform you want to run on. Luckily,
there are a few resources for accomplishing just that.

Packaging Python Code

When modules are imported in Python by other modules, Python compiles the relevant
code into byte-code, an intermediate, portable, closer-to-low-level binary language
form. This byte-code is stored with the .pyc suffix, short for Python compiled, instead
of the typical .py.

Python's .pyc files correspond roughly to DLLs (dynamically loaded libraries) used in
C. Regular .py modules can be used dynamically, too, but the compiled Python code is
tighter and Python interprets the code at runtime when the file is imported.

Precompiling scripts is one way to speed up Python programs that need to import many
modules. You can minimize a program's startup time by making sure source code is
kept in directories where Python will have access to writing .pyc files.

You can also ship Python programs as .pyc files rather than as .py scripts. Since .pyc
files are binary, they cannot be run as scripts, but they can be sent to the Python
interpreter; simply add the name of the .pyc file the next time you run Python, like this:

Python runme.pyc

In order to build a compiled Python file from the Python interpreter, import the compile
function from py_compile and run the compile command, like this:

from py compile import compile
compile ("script to compile.py")

Freeze

Freeze is a system that takes Python script files and turns them into modules packaged
into C files. Originally Freeze was used as one way to ship Python source, but it is now
mostly defunct, although it will still be available in Version 2.3 for backwards-
compatibility. The compiled script that Freeze generates allows a Python program to
ship without the source code in plain view and without using .pyc files. The benefits to
Freeze are that you can ship Python as two .c files and a makefile instead of as a .py,
and you can make Python runable on platforms that do not have Python installed. The
downside is that Freeze doesn't work well initially with Tkinter and other Windows
GUIs.

79

ActiveState

ActiveState is a company that focuses on applied open source. It creates development
packages for software developers and provides resources for Perl, Python, and PHP
development. ActiveState currently has a Python distribution called ActivePython. It
also supports creating Python RPM (Red Hat Package Managers) installers, Windows
complete installers, and a Visual Studio .NET IDE plug-in for Python. These services
(some are free, others not) are available at the ActiveState Python Website, at
http://www.activestate.com/Solutions/Programmer/Python.plex.

py2exe

The py2exe extension is an open source utility that converts Python scripts into
executable Windows programs. The software is copyrighted by Thomas Heller but is
freely distributable, and you'll find a copy with the license on the accompanying CD
under Python/py2exe.

The extension is still under development but has expanded recently to include the ability
to turn Python scripts into Windows NT-like services; it has been used to create a
number of popular Python applications, such as wxPython, Tkinter, and pygame (you'll
get to know these applications a bit better in the next chapter).

py2exe is a Distutils (Python Distribution Utilities) extension, and relies on the work by
Greg Ward to make Python programs distributable (see the Disutils Website at
http://www.python.org/doc/current/dist/). The Distutils are necessary for py2exe to
work and are also included on the Python folder in this book's CD.

80

Python Debuggers

Python comes with a built-in pdb (Python Debugger) module that defines an interactive
source code debugger for Python programs. The Python debugger supports a number of
useful programming functions, such as breakpoint setting, stack frame inspection,
source code listing, and so on, but unfortunately the debugger has been (historically)
poorly documented and the windowing version module (wdb) is considered a bit
primitive.

Since source-level debugging is such an important part of programming, a few
improvements have been made to the existing Python debugger. Two popular free
Python debuggers are commonly used. The first is PythonWin, the Python for Windows
extension. Unfortunately it only runs on Windows. The second is the HAP (Humongous
Addition to Python) debugger developed at Humongous.

PythonWin

PythonWin is a Python debugger and an IDE that runs on Windows. Versions for
Python 2.2 and 2.3 are included on the accompanying CD under Python/debuggers.
PythonWin is becoming the standard Windows debugger and is now included in some
distributions of Python (for instance, in ActiveState's ActivePython). PythonWin has a
GUI environment (see Figure 3.1) but can also be run via command line.

Figure 3.1. Opening shot of the PythonWin debugger

[T e

DEEHD 22 2B RS X T

O et 1 2002, 1 REE) M0 3T e (el 5n et
7 18- 2001 Mak Hammand {mhammendckeen el com) - tee Heklbo
Vo Furdvbr Gty TP il oerriias

PythonWin is basically a wrapper for the MFC (Microsoft Foundation Class) libraries.
PythonWin is copyrighted by Mark Hammond but is freely usable and distributable as
long as the license (found in both the Licenses folder and the
Python/Debuggers/PythonWin folder on the CD) accompanies the binary.

81

The Open Source HAP Debugger

HAP can be found among other open-source Sourceforge projects
(http://hapdebugger.sourceforge.net/) and is released under the Gnu Lesser General
Public Licenses (you can read the license in detail on the CD in the Licenses folder).
The HAP debugger can be run remotely, which makes it an ideal tester for a computer
game in a lab environment. The game can run on full screen on one machine while a
second machine can debug it remotely.

The HAP debugger Version 3.0 is included on the CD, under the
Python/debuggers/HAP folder. HAP was built with the idea that the debugger would
move to console game development and development on the Macintosh, but currently it
runs only on Windows 2000 and must be built with Visual C++. It provides a few
features the standard Python debugger cannot, such as a full-screen mode and multi-
threading. The debugger has two applications. The first is the editor and IDE, and the
second is the remote debugging host. The first application runs whatever Python script
is being debugged and then communicates to the IDE via a network socket.

NOTE

Consoles don't have keyboards, mice, or multiple monitors, so the default Python
debugger isn't so great when you need to test console type games written in Python.
This is one of the reasons Humongous developed the HAP debugger: remote debugging
frees you from the platform and allows you to debug in a comfy computer environment.

NOTE
One Game Script's History

Before Humongous Entertainment used Python, they had an internal tool named
SCUMM (Script Creation Utility for Maniac Mansion). Maniac Mansion was a project
originally under LucasFilm Games, and SCUMM was the custom scripting language
and game engine used to develop Maniac Mansion.

SCUMM was created by Aric Wilmunder and Ron Gilbert when they worked for
LucasFilm. When Gilbert later founded Humongous and Cavedog Entertainment in the
Pacific Northwest, he brought with him SCUMM, which the new companies used to
create over 50 different games, including Humongous's original popular Freddi Fish,
Putt Putt, and Pajama Sam children's titles.

SCUMM's limitations became too restricting after a decade or so of use, and at that time
the company switched over to using C++ and Python for game development. The first
game it scripted with Python was Backyard Hockey. The Game Logic, Al, menu, and
actual executable of Backyard Hockey were all Python, which called in C++ modules
for heavy graphics and sound when necessary.

82

Python Language Structure

Now that you can install and run Python in a variety of ways, it's time to get a real
handle on the language itself. This section goes over Python's types, carries on from last
chapter's section on math and loops, and also introduces a few new concepts.

Python Punctuation

As you have seen from the previous Hello World! examples, Python doesn't need a lot
of punctuation. In particular, Python doesn't use the semicolon (;) to mark the end of
line. Unlike C, Perl, or a number of other languages, the end of a line is actually marked
with a newline, so the following is a complete command in Python:

print "hello"

Code blocks are indicated in Python by indentation following a statement ending in a
colon, for example:

if name == this is true:
run this block of code
else:

run this block of code

Getting used to white space that actually means something is probably the most difficult
hurdle to get over when switching to Python from another language.

NOTE
CAUTION

UNIX, Windows, and the Macintosh Operating System all have different conventions
for how to terminate lines in text files. This is an unfortunate feature of multi-platform
programming, and since Python uses terminated lines as syntax, your Python scripts
written in text editors may not work on different platforms. The Macintosh version of
Python recently fixed this problem; it now checks line endings when it opens a file and
adjusts them on a per-file basis. It may be possible to find or write a filter that
substitutes end-of-line characters for different platforms. Compiling scripts to byte-code
before platform-hopping is another possible workaround.

Language Types

Python includes a handful of built-in data types (see Table 3.1); the most commonly
used of these data types are numbers, strings, lists, dictionaries, and tuples. Numbers are
fairly obvious, although there are several different number types, depending upon the
complexity and length of the number that needs to be stored. Strings are simply rows of
letters. Lists are groups that are usually comprised of numbers or letters. Dictionaries
and tuples are advanced variable types that are similar to lists and comparable to arrays
in other languages. These types all have built-in operations, and some have built-in
modules or methods for handling them.

83

Name

complex
dict
file
float
hexadecimal (0x)
int
list
long
object
octal (0)
str
tuple

unicode

Numbers

Table 3.1. Built-In Python Data Types

Data Held

Complex numbers (see Table 3.2)
Dictionary

File

Floating point number (see Table 3.2)
Hexadecimal number

Integer (see Table 3.2)

List

Long integer (see Table 3.2)

Base object

Octal number (see Table 3.2)
String

Tuple

Unicode string

Python has several basic numeric types; they are listed in Table 3.2.

Type

integer

long integer
floating point
complex

octal

hexadecimal

Table 3.2. Python Basic Numeric Types

Example
1
1111111L
1.1
1.13,.1
0111
0x1101

Integers are the most commonly used math construct and are comparable to C's long
integer. Long integers are size-unlimited integers and are marked by an ending L.
Floating points are integers that need a floating decimal point and are equivalent to C's
double type. Octal numbers always start with a 0, and hexadecimal integers always

begin with a 0x in Python.

Numbers can be assigned just like you would in a high school algebra math problem:

84

The basic math operators (+, -, *, /, **, %, and so on), which were listed in Chapter 2,
can be used in the standard mathematical sense.

Make x equal to 2 times 6

x = (2*%6)

Make y equal to 2 to the power of 6
y=(2**6)

Print vy

Python always rounds down when working with integers, so you if you divide 1 by 20
you will always get 0 unless you use floating point values. To change over to floating
point math, simply place the decimal in one of the equation's numbers somewhere, like
SO:

This will equal 0

x = (1/20)

print x

This will get you a floating point
y = (1.0/20)

print y

In addition to your basic math operators, comparison operators (>, <, =, ==, =, >= and
<=) and logical operators (and, or, not) can be used with basic math in Python. These
operators can also compare strings and lists.

NOTE

The truncation, or "rounding down," during integer division is one of the more common
stumbling blocks for new users to Python.

Python comes with a built-in math module that performs most of the complex constant

functions. The more common constants are listed in Table 3.3.

Table 3.3. Common Functions from math

Function/Constant Description

pi The mathematical constant approximately equal to 3.14
e The base of the natural logarithm (In) approximately equal to 2.7
find Finds the lowest index where the second string (argument) appears

in the first

Python also has a built-in random module just for dealing with random numbers. A few
of the more common random functions are listed in Table 3.4.

85

Table 3.4, Common random Functions

Function Description

seed Seeds the random number generator; default seed is the current time

random Returns the next random number as a floating-point number between 0 and 1.
randint Returns a random number between two given integers

uniform Returns a random number between two given floating-point numbers

choice Randomly chooses an element from the specified list or tuple

Strings

You designate strings in Python by placing them within quotes (both single and double
quotes are allowed):

Print "hello" 'hello'

Strings store, obviously, strings of characters. Occasionally you will want to print a
special character, like a quote, and Python accepts the traditional backslash as an escape
character. The following line:

Print "\"hello\""

prints the word hello in quotes. A few other uses of the escape sequence are illustrated
in Table 3.5.

Table 3.5. Python Escape Sequences

Sequence Function

\n Prints a newline

\t Horizontal tab

\b Deletes the last character typed
\a System beep

M\ Prints a backslash

\r Prints a carriage return

Like with variables, you can manipulate strings with operators. For instance, you can
concatenate strings with the + operator:

This will print mykonos all together
print 'my'+'konos'

86

Anything you enter with print automatically has a newline, \n, appended to it. If you
don't want a newline appended, then simply add a comma to the end of the line with
your print statement (this only works in non-interactive mode):

These three print statements will all print on one line
print "I just want to fly",

print "like a fly",

print "in the sky"

Lists

Lists were introduced in the Chapter 1. In Python, lists are simply groups that can be
referenced in order by number. You set up a list within brackets [] initially. Integer-
indexed arrays start at 0. The following code snippet creates a list with two entries,
entry 0 being "Ford", and entry 1 being "Chrysler", and then prints entry O:

cars = ["Ford", "Chrysler"]
print cars[0]

In Python, there are a number of intrinsic functions, or methods, that allow the user to
perform operations on the object for which they are defined. Common list methods are
listed in Table 3.6.

Table 3.6. Common List Methods in Python

Operation What it does

list = range() Creates a list

list.append() Adds an element to the end of the list
list.insert (index, element) Inserts an element at index
list.sort() Sorts the list

del list[:] Deletes a slice or section of a list
list.reverse() Reverses the list

list.count () Returns the number of elements in list
list.extend(list2) Inserts 1ist2 at the end of list
list.remove () Removes an element from the list

So, for instance, you can add to the list simply by using the append method:

cars.append ("Toyota")
print cars

87

Or you can slice up lists by using a colon. Say you want to print just the first through
the second item from the cars list. Just do the following:

print cars[0:2]

Lists can contain any number of other variables, even strings and numbers, in the same
list, but cannot contain tuples or nested lists. Once created, lists can be accessed by
name, and any entry in a list can be accessed with its variable number. You can also
reference the last item in a list by using -1 as its reference number.

This line prints the last entry in the cars list:

print cars([-1]

You can also use the basic operators explained in Chapter 2 to perform logic on lists.
Say you need to print the cars list twice. Just do this:

print cars+cars

Lists can also be compared. In a case like this:

the first values of each list are compared. If they are equal, the next two values are
compared. If those two are equal, the next values are compared. This continues until the
value in one is not equal to the value in the other; if all of the items in each list are
equal, then the lists are equal.

NOTE
CAUTION

Characters in a string act just like elements in a list, and can be manipulated in many of
the same ways, but you cannot replace individual elements in a Python string like you
can with a list.

If you need to iterate over a sequence of numbers, the built-in function range () is
extremely useful. It generates lists containing arithmetic progressions, for instance:

This snippet assigns the numbers 0 through 9 to listl and then
prints the,

listl=range (10)

print listl

It is possible to let range start at another number, or to specify a different increment:

The following line assigns the numbers 5-9 to list2
list2=range (5, 10)

88

print list2

The following line creates a list that jumps by 5s from 0 through 50
and assigns it to

list3

list3=range (0, 50, 5)

print list3

The following line does the same only in negative numbers
list4=range (-0, -50, -5)

print list4

Tuples

Python also has a structure called a tuple. Tuples are similar to lists and are treated
similarly, except that they are designated by parentheses instead of brackets:

tuplel = (a, b, c)

You don't actually need parentheses to create a tuple, but it is considered thoughtful to
include them:

tuplel = a, b, c

You can create an empty tuple by not including anything in parentheses:

tuplel = ()

There is also a version of the tuple, called a singleton, that only has one value:

Singletonl = a,

While lists normally hold sequences of similar data, tuples (by convention) are normally
used to holds sequences of information that aren't necessarily similar. For example,
while a list may be used to hold a series of numbers, a tuple would hold all of the data
on a particular student—name, address, phone number, student ID, and so on—all in
one sequence.

So what makes tuples so special and different? Well, for one thing, tuples can be nested
in one another:

tuplel=(1,2,3)
tuple2=(4, 5, 6)

tuple3 = tuplel, tuple2
print tuple3

When you enter the last line and print out tuple3, the output is:

&9

NOTE
TIP

For convenience, there is tuple () function that converts any old list into a tuple. You
can also perform the opposite operation, using the 1ist () function to convert a tuple to
a list.

You can see how Python continues to bracket and organize the tuples together. Nesting
tuples together in this way, also called packing, can provide a substitute for things like
two-dimensional arrays in C.

There is one more interesting feature, called multiple assignments, in tuples.

Python assigns X and Y different values, but on the same line of code. Multiple
assignments can be very useful and quite a timesaver.

Dictionaries

Python has a third structure that is also similar to a list; these are called dictionaries and
are indexed by assigned keys instead of automatic numeric list. Often called associative
arrays or hashes in other languages, dictionaries are created in Python in much the same
way as lists, except that they are used to create indexes that can be referenced by
corresponding keys. An example of this might be a phone directory, where each
telephone number (value) can be referenced by a person's name (key).

Dictionaries are designated with curly braces instead of brackets. The keys used to
index the items within a dictionary are usually tuples, so you will see them put together

often. You can create an empty directory in the same way you create empty tuples,
except that you replace the parentheses with curly braces, like so:

dictionaryl = {}

You assign keys and values into a dictionary using colons and comas, like so:

key : value, key : value, key : value

So for instance, in the phone number directory example:

directory = {"Joe" : 5551212, "Leslie" : 5552316, "Brenda" : 5559899}

90

Then you can access specific indexes by placing the key into brackets. If I wanted to
reference Brenda's phone number later on, the following snippet would do the job and
give me 5559899:

directory [Brenda]

If I had mistyped the number, I could change it to new value like this:

directory[Brenda] = 5558872

Dictionaries have a number of standard methods associated with them; these are listed
in Table 3.7.

Table 3.7. Common Dictionary Methods in Python

Operation What it does

clear() Deletes all items in a dictionary

get () Returns key value

has_key () Returns 1 if key is in dictionary, else 0
keys () Returns a list of keys from dictionary

update (dictionary2) Qverrides the dictionary with values from dictionary 2, adds
any new keys

values () Returns a list of values

Identifiers

Identifiers are used in Python to name variables, methods, functions, or modules.
Identifiers must start with a non-numeric character, and they are case sensitive, but they
can contain letters, numbers, and underscores ().

There are also a handful of words Python reserves for other commands. These are listed
below:

and
elif
else
except
exec

finally

91

for

from
global

if

import

in

is

lambda

not
orassert
passbreak
printclass
raisecontinue
returndef
trydel

while

As a convention (but not necessarily a rule), identifiers that begin with two underscores
(__) have special meanings or are used as built-in symbols. For instance, the init
identifier is designated for startup commands.

Python's variables are loosely typed, and you can assign any type of data to a single
variable. So, you can assign the variable x a numeric value, and then turn around later in
the same program and assign it a string:

X=111
Print x

X="Mythmaker"
Print x

NOTE

Not realizing that Python's variable names are case-sensitive seems to be one of the
most common mistakes new users to the language suffer from.

92

Control Structures

The very common if, elif, and else statements showed up in Chapter 2. These are
used in Python to control program flow and make decisions:

if x ==1:

print "odd"
elif x ==

print "even"
else:

print "Unknown"

if can also be used with Boolean expressions and comparison operators to control
which blocks of code execute. Unlike with most other languages, you'll see that
parentheses aren't commonly used to separate blocks in Python, but colons, tabs, and
newlines are.

if 1 >2

print "One is greater than two"
else

print "One is not greater than two"
Loops

You saw how Python's for loop is used in Chapter 2. for is fairly versatile, and works
with lists, tuples, and dictionaries.

for x in cars:
print x

The following example uses for to loop through the numbers 0—9 and then print them:

for x in range (0, 10)
print x

This same example can be rewritten with a while loop:

x =0

while x <= 10
print str(x)
x +=1

The else clause will not fire if the loop is exited via a break statement.
A number of convenient shortcuts exist for use with Python for loops; you'll get used to

using them after a while. For instance, Python will run through each item in a string or
list and assign it to a variable with very little necessary syntax:

93

for X in "Hello":
In two lines you can print out each item of a string
print X

You can use a few borrowed C statements in for and while loops in order to control
iterations, including the break statement, which breaks out of the current for or while
loop, and the continue statement, which jumps to the next iteration of a loop. You can
also add to the loop an else clause that will execute after the loop is finished (in the
case of for loops) or when the while condition becomes false (in the case of while
loops).

x =0
while x <= 10
if x == 22:
this breaks out of this while loop
break
print str(x)
if x <=11:
this jumps to the next loop Iteration
continue
X += 1
else:
This happens when x <=10 becomes false
break
NOTE
CAUTION

It's a common mistake, when first playing with loops, to create a never-ending loop that
locks out any program control. For instance, the following code will never encounter a
condition to exit and will therefore execute forever:

while 1 ==
print "Endless loop."

Modules

Python is based on modules. What this means is that when a Python source file needs a
function that is in another source file, it can simply import the function. This leads to a
style of development wherein useful functions are gathered together and grouped in files
(called modules) and then imported and used as needed. For instance, let's say the
source file MyFile.py has a useful function called useful1. If you want to use the
Usefull function in another script, you just use an import command and then call the
function, like so:

import MyFile
MyFile.Usefull ()

94

For instance, create a file called TempModule.py with the following four lines:

def one(a):

print "Hello"
def two(c):

print "World"

This file defines two functions: the first function prints "Hello" and the second one
prints "World". To use the two functions, import the module into another program by
using the import command, and then simply call them, like so:

import TempModule.py
TempModule.one (1)
TempModule.two (1)

The (1) is included here because each function must take in one argument.

You can also use dir () to print out the functions of an imported module. These will
include whatever has been added and also a few built-in ones (namely doc
__file__,__name__,and__built—ins__)

Module-based programming becomes particularly useful in game programming. Let's
say you like the useful1l function, but it really hinders performance when it runs in a
game because it makes a lot of intense graphical calls or does a lot of complex math.
You can fix usefull by simply rewriting the necessary functions and typing in
MyFile.py as C++ code (or another language like assembly) and then registering the
functions with the same module name. The original Python script doesn't even have to
change; it just now calls the new, updated, faster C++ code. Modules make it possible to
prototype the entire game in Python first and then recode bits and pieces in other, more
specialized programming languages.

Python has a large selection of modules built into the default distribution, and a few of
the commonly used ones are listed in Table 3.8.

Table 3.8. Commonly Used Built-In Modules

Module Description
sys Basic system and program functions
argv List of commands to be passed to the interpreter

stdout, stdin, and stderr Basic standard output, standard input, and standard error
exit Exits the program gracefully
path The paths Python looks at to find modules to import

95

Libraries

Python ships with a number of great, well-documented libraries. Some of these libraries
are providers of Python's much-celebrated flexibility. The library list is constantly
growing, so you may want to check out the Python library reference below before
embarking on any major projects:

http://www.python.org/doc/current/lib/lib.html

96

Creating a Simple User Interface in Python

There are two simple functions in Python for getting keyboard input from the user:
raw_input and input. The raw_input function is the easier to use of the two. It takes
one argument and waits at a normal keyboard prompt for a user to type something.
Whatever is typed is then returned as a string:

X = raw_input("Enter your name: ")
print X

input works just like raw input except that it is preferable to use with numbers
because Python interprets the variables as whatever is typed in, instead of converting
any numbers into strings.

X=input ("Enter a Number: ")
print X

input will think that everything that has been entered is some sort of number, so if you
enter in a string by using input, Python will conclude that the string represents a
number.

Let's try input with something a bit more complex—a bit of code that calculates the
area of a rectangle. To do so, you simply need two input lines and then a print
statement that displays the results:

This program calculates the area of a rectangle

print "Rectangle Program 1"

length = input ("Please put in the length of the rectangle:")
width = input ("Please put in the width of the rectangle:")
print "Area",length*width

You can find this program, called Rectangle Program 1, in the Chapter 3 folder on the
CD. When you run it, it spits out output similar to you can see in Figure 3.2.

Figure 3.2. Python calculates the area of a rectangle based on user input

97

[

Ll s {2
Al D

i e W

HTDERLCT.C0H
= ik

b Bpe L

Tetd Sme 204 G0 =
Fapeliis ey

Wbactarch_program ey

Here is a while loop in action with input:

This program adds until the user quits

a =1
sum =
print
print
while

print

"Enter Numbers to add:"
"Enter Q to quit."

0:

print 'Current Sum:',sum

input ('Number? ')
= sum + a

'Total Sum ="', sum

This loop takes in numbers from a user and keeps adding them until the user quits with

a Q entry. You'll see there is nothing new here; you're just mixing two functions from
the chapter together. You can also find this code sample on the CD as Addition 1.py.

98

A Simple GUI with Tkinter

The GUI API approved by Python is a nifty toolkit already familiar to folks in UNIX
land, TCL (short for Tool Command Language). Tkinker is the library behind common
Python window interfaces and its version of TCL. Folks familiar with TCL\Tk in UNIX
will find that Tkinter is very familiar. Although the library gets more extensive
coverage in Chapter 4, I'll give you a small taste of a GUI that will run on a standard
Windows environment to whet your appetite.

NOTE

Other GUI packages besides Tkinter are available for use with Python. For instance, the
C STDWIN package is somewhat popular. However, Tkinker is the standard and comes
shipped and installed with each Python package, so it's generally the first graphical tool
folks discovering Python learn to use.

GUIs in Python are built from GUI components. In Windows, these components are
called Windows Gadgets, or widgets for short. These widgets are listed in Table 3.9.

Table 3.9. Tkinter Widget Components

Component Function

Button Creates a button that triggers an event when clicked
Canvas Displays text or images

Checkbutton Creates a Boolean check button

Entry Creates a line that accepts keyboard input
Frame Creates the outlying window's edge

Label Displays text as labels for components
Listbox Creates a list of options

Menu Creates a multiple-selection display
Menubutton Creates a pop-up or pull-down style menu
Radiobutton Creates a single option button

Scale Creates a slider that can choose from a range
Scrollbar Creates a scrollbar for other components
Text

Creates a multiple line box that accepts user input

When using Tkinter, you start by importing the library and then creating a frame that
houses all of the other components:

From Tkinter import*

window = Frame ()

99

If you run this via a script, or from Python's interactive mode, you will see an empty
Tkinter window box appear, as shown in Figure 3.3.

Figure 3.3. Tkinter produces an empty frame widget

Let's add a simple label and a quit button to the widget. You will not be able to run this
code in an interactive environment; you will have to actually create a file with a .py
extension and run it via command line, DOS prompt, or by double-clicking it. For
reference, the completed script can be found in the Chapter 3 folder on the CD.

To add a label, you need to first add the pack method. The pack method is used to
determine the size and influence of a given component:

window.pack ()

After referencing the pack method, you can add the Labe1 method and specify the text
('Hello') and placement (TOP) inside parentheses:

Label (window, text='Hello') .pack(side=TOP)

Finally, you add a button using the But ton method, specifying the text ('Exit '), the
command the button will execute (.quit), and then you tell the pack method where to
place the button (BoTTOM):

Button (window, text='Exit', command=window.quit) .pack (side=BOTTOM)

One last step is to use the mainloop method to start the event loop. The full code snip
follows and produces something similar to that in Figure 3.4:

100

Figure 3.4. Tkinter says "Hello" with a slightly more complex widget

i+ J =0| o

from Tkinter import *

window = Frame ()

window.pack ()

Label (window, text='Hello') .pack(side=TOP)

Button (window, text='Exit', command=window.quit) .pack (side=BOTTOM)
window.mainloop ()

To create a simple user interface utilizing Tkinter, you will need to take advantage of
Tkinter's Entry component. Entry works just like raw_input and will take what a user
types in and return it after the Enter key is pressed. A simple Entry box can, by adding a
line to Tkinter Hello, specify a name for the widget and tell pack how to display it.
Adding this line above the mainloop () command in Tkinter Hello will give you an
entry in the window you created to type into, as shown in Figure 3.5 (this code sample
is also on the CD as Tkinter Hello 2.py).

Figure 3.5. Now the Tkinter widget also has an entry box for typing into

P P

Entry(name = "textl") .pack(expand = YES, fill = BOTH)

101

Memory, Performance, and Speed

In Python, everything is an object, and all objects are allocated in dynamic memory
(also called the heap). Because all objects are reference counted, you don't have to
worry about freeing memory yourself; this is one of the great benefits of a high-level
language. But if you're writing a game, especially a game that has to operate on a PDA
or console, you may have to worry about memory allocation and memory fragments.

The Garbage Collector

The first issue is garbage collection. Traditionally, a game's biggest problem is with
memory locks that get used up by the game process but not released back to the
computer—that is, memory leaks. When a variable goes out of scope or is deleted, it
needs to move toward being freed from memory. Problems can arise, however, if a
variable is referencing a number of objects—these extraneous objects may keep the
variable from being deleted. The worst-case scenario is when object A is referencing
object B and vice versa, in which case neither object can be deleted. Since Python
automatically reference-counts each object, this isn't a giant problem. Python's garbage
collector will sweep through all objects eventually and clean them up. However,
Python's collector will not automatically pick up references to unwanted objects or
unclosed files. Failure to delete references to unused objects and leaving unused files
open could cause memory leaks to occur. As a rule, all resources in a program should be
released as soon as they are no longer needed.

Another potential problem with automatic garbage collection is that as a programmer,
you have zero control over when the collector runs. If the collector decides to run while
an important level-loading movies sequence is occurring, or during an unusually intense
graphic sequence, your game could lose flow or its frame rate could be lowered. One
solution to this is to temporarily disable Python's garbage collector while the game is
running and then explicitly call it when you want it.

Access Python's garbage collector with the gc (short for Garbage Collection) module.
Python's garbage collector is capable of reporting on how many unreachable objects are
still allocated memory (this feature is called the Cycle Detector) or how many objects it
is currently tracking. These methods (and others) are listed in Table 3.10.

Table 3.10. Commonly Used gc Functions

Function Purpose

collect () Does a full memory collection

disable () Turns automatic garbage collection off

get_debug () Gets debug flags

get_objects Returns a list of the objects the collector is tracking
get_referrers Returns a list of objects that refer to other objects
get_threshold Returns current collection threshold

garbage Where Python places cyclic garbage with finalizers

102

Table 3.10. Commonly Used gc Functions

Function Purpose

enable () Turns automatic garbage collection on
isenabled() Returns true if automatic garbage collection is on
set_debug () Sets debug flags

set_threshold Sets the collection threshold

Several constants are also provided for use with set debug (), as shown in Table 3.11.

Table 3.11. set_debug Constants

Constant Use
DEBUG_STATS Print statistics during collection
DEBUG_COLLECTABLE Print information on any collectable objects found

DEBUG_UNCOLLECTABLE Print information of any uncollectable objects found

DEBUG_INSTANCES Print information about instance objects found

DEBUG_OBJECTS Print information about objects other than instance objects
found

DEBUG_SAVEALL When this flag is set, all unreachable objects found will be

appended to garbage rather than being freed

DEBUG_LEAK Print information about a leaking program

You can use the de1 command to forcibly remove an object from memory. However,
del is a finalizer; if you use it on an object, the garbage collector can no longer play
with that object, and it loses control. So be sure you know what you are doing.

NOTE

CAUTION

Python's cyclic garbage collector is new as of Python 2.0, and the gc API was added in
Version 2.2. Earlier versions of Python will not be as pliable where garbage collection
is concerned.

NOTE

TIP

The stack dealloc function is what Python uses as a destructor to clean up memory
blocks after they have been designated. This frees up the memory in PyMem DEL, the

103

space that holds objects that are decrementing toward deletion. However, if you aren't
familiar with C style malloc type commands or memory management on a base level,
you should probably hold off on forcibly clearing memory.

Pool Allocators

Another concern, particularly with consoles, is keeping Python memory allocation
contained. Using memory or the garbage collector carelessly can cause Python to swoop
in and eat up all a machine's available virtual memory. The trick is to isolate Python into
its own memory arena.

Luckily, a few new and upcoming features exist in Python that help out with this issue.
Pymalloc, an experimental feature added by Vladimir Marangozov in Version 2.1, is
one of these. Pymalloc is a specialized object allocator that actually utilizes C's

malloc () (short for memory allocation) function to get large pools of memory and then
fill smaller requests for memory from these pools. Since Pymalloc is optional in

Version 2.1 and 2.2, you need to include an option to the configure script (in the form of
--with-pymalloc) in order to use it. Python Version 2.3 or higher enables it by default.

Pymalloc works by dividing memory requests into size classes (see Figure 3.6). These
classes range from eight to 256 bytes and are spaced eight bytes apart. Memory requests
lie within 4k pools that hold requests. Pymalloc allocates and deallocates requests for
memory from these classes within pools. When deallocating Pymalloc memory classes,
the classes can be completely freed (using free ()) or released back into their respective
pools. When the pools are empty, they are also released back into the memory at large.

Figure 3.6. Pymalloc doles out memory requests

NOTE

104

CAUTION

Pymalloc is meant to be transparent, but it may expose so-far-unknown bugs when used
with C extensions. There have already been documented problems using Pymalloc with
Python's C API. Use with caution.

Besides Pymalloc, in Version 2.3 Python has deprecated the previous API for dealing
with memory and has new functions, some under PyMem, for allocating memory by
bytes or type, and some under PyObject for allocating memory specifically for objects.

Performance and Speed

If you write Python code to do complex numerical work and then compare the results to
those done with C++, you will be disappointed. The plain truth is that Python is a
slower language. In Python, every variable reference is a hash table lookup, and so is
every function call. This cannot compete with C++, in which the locations of variables
and functions are decided at compile time.

However, this does not mean that Python is not suitable for game programming; it just
means that you have to use it appropriately. For instance, if you are doing string
manipulations or working with maps, Python may actually be faster than C++. The
Python string manipulation functions are actually written and optimized in C, and the
reference-counted object model for Python avoids some of the string copying that can
occur with the C++ string class.

And, as [mentioned before, even if you don't think you should write your polygon
collision detection code in Python, you may want to write your Al code and game loop
in Python and prototype the collision detection. Then, after benchmarking, you can
write the collision detection in C++ and expose it to Python. This will make coding
much faster for you.

The Python profile module can be used to profile sets of functions. If you had a
function called MyFunction stored in MyModule, the function can be imported into new
script or the Python interpreter and then profiled by running:

import MyModule
profile.run ('MyFunction() ")

Python's profile module prints a table of all the function calls and each function call's
execution time. Python also possesses a useful trace module that can be used to trace
the execution of Python scripts.

You'll find that most folks will argue against using Python in games for speed-related
issues more than any other. Here are a few performance tips to wrap up the chapter and
to keep in mind for dealing with speed issues:

e Python has a number of debugging tools to use for benchmarking. If you get

used to using them, you can easily get a feel for where things are slow in a given
program.

105

e Be careful when using loops, since multiple iterations can easily become
memory hogs. Systems calls should be moved outside of loops whenever
possible (actually, systems calls should be avoided if at all possible). Try not to
instantiate any objects inside of loops; doing so can cause many copies in
memory and lots of work for the garbage collector.

o Use references instead of actual values when calling values, unless the values
are very small.

e Avoid passing long argument lists to functions and subroutines. Keep them short
and simple.

e Avoid reading or writing files line by line. Read them into a buffer instead.

e Check out all the fun libraries before building a function, and in particular, pay
close attention to what Python has built in. Your newly written function is
probably slower than the version the community has been using for a few years.

o Pay close attention to Chapter 12 in this book and learn how to extend Python in
C.

e Use the -o switch when compiling to Python to byte-code (o is short for the
compiler optimizing mode)

e Use aliases for imported functions instead of using the full name. Again, be
especially careful when you do things like use full names inside of a loop.

e C++ programmers sometimes joke about optimizing their code by making
variable names shorter. In Python this may actually work, since Python looks up
variables by name at runtime.

e Avoid while loops with a loop counter. Instead use range () or xrange (). The
Python range () operator is fast because it actually constructs a sequence object
over which to iterate.

e Avoid heavy use of module-scoped variables. Locally scoped variables are
usually faster.

Finally, keep in mind that optimizing code can take a lot of time and effort and isn't
always worth it. Also, optimizing may cause other, bigger problems, such as making
code harder to maintain, harder to extend, or buggier. Only if a script is running
hundreds of times a day, or if the code relies on speed as a requirement, is shaving a few
seconds off of it worth the development time.

106

Summary

Before you move on to the next chapter, make sure that Python installed correctly and
that you can run the interactive environment. You should feel pretty comfy with for
loops, while loops, and if else statements. You should also have had a chance to
poke around with Tkinter a bit, and you should know what Python's garbage collector
does.

Important points from this chapter:

e Tabs, colons, and newlines are the basis for Python punctuation.

e Python's most common data types are numbers, strings, lists, tuples, and
dictionaries.

e Modules can be used to pass functions from file to file.

e Garbage collection and other aspects can be managed in Python if necessary.

107

Questions and Answers

1: Q: I've heard that the creator of Python and other writers have written
tutorials on speeding up Python execution. Why aren't they mentioned here?

A: A: This chapter is a quick, whirlwind introduction to the Python language and
is not meant to be an all-inclusive guide. Both Guido van Rossum and
Andrew Dalke have written a few great online articles on benchmarking,
Python performance, and other topics. The Python Essays Web page is a good
place to start looking into the topic; it's at http://www.python.org/doc/essays/.

2: Q: Is there more to Python graphics than just Tkinter?

A: A: Absolutely. These are covered in the next chapter, along with a closer look
at the usefulness of Tkinter.

3: Q: What about music? Does Python have any functionality for sound built in?

A: A: Python does have libraries that work with music and sound effects. I cover
the Musickit library in Chapter 4.

108

Exercises

1: Lists use parentheses and tuples use brackets for assignments. What do
dictionaries use?

2: List two escape sequences.

3: Name any one list method and what it does.
4: Write a simple example of a for loop.

5: Define "widget."

6: List one possible action that could slow down a program when used within an
iteration, or loop.

7: Write a program that takes as input two strings and two integers and then
displays them.

109

Chapter 4. Getting Specific with Python Games

...corporate methods do not have the conceptual framework to deal with an anarchist
collective run by intelligent and arrogant comedians who have proved that their method
works.

Robert Hewison on the Monty Python group.

Now that you've completed Chapter 3's quick tutorial, it's time to jump into a few
specific multimedia Python libraries and script an actual game or two. This chapter gets
started with Python's Pygame library and moves specifically into graphics, networking,
and sound for game programming.

110

The Pygame Library

Pygame is a Python wrapper for the Simple DirectMedia Layer (SDL). Pygame focuses
on bringing the world of graphics and game programming to programmers in an easy
and efficient way.

Typically, Pygame projects are small, simple, two-dimensional or strategy games. In
Chapter 5, I'll give you a close look at a few existing Pygame-based game engines,
including Pyzzle, a Myst-like engine; PyPlace, a two-dimensional isometric engine; and
AutoManga, a cell-based anime-style animation engine.

Installing Pygame

This book's CD comes with a copy of Pygame in the \PYTHON\PYGAME folder. The
most recent versions can be found online at http://www.pygame.org/download.shtml.

The Windows binary installer on the CD has versions for Python 2.3 and 2.2, there is a
Mac .sit for older Mac versions and a version for the Mac OSX, and the RPM binary
has been included for the Red Hat operating system. Pygame actually comes with the
most recent and standard UNIX distributions, and can be automatically built and
installed by the ports manager.

On Windows, the binary installer will automatically install Pygame and all the
necessary dependencies. A large Windows documentation package, along with sample
games and sample code, is available at the Pygame homepage at
http://www.pygame.org.

Pygame also requires an additional package, called the Numeric Python package, in
order to use a few of its sleeker and quicker array tools. This package can be found in
the Python section of the accompanying CD. At this time, the creators of Numeric
Python are working

NOTE
SDL

SDL is considered an alternative to Direct X especially on Linux machines. As a
multimedia and graphics library, SDL provides low-level access to a computer's video,
sound, keyboard, mouse, and joystick.

SDL is similar in structure to a very rudimentary version of Microsoft's Direct X API,
the big difference being that SDL is open source, supports multiple operating systems
(including Linux, Mac, Solaris, FreeBSD, and Windows), and has an API binding to
other languages, including Python.

SDL is written in C and available under the GNU Lesser General Public License. Sam
Lantinga, who worked for both Loki Software and Blizzard entertainment, is the genius
behind SDL. He got his start with game programming in college by porting a Macintosh
game called Maelstrom to the Linux platform.

111

Sam was working on a Windows port of a Macintosh emulator program called Executor
and figured that the code he was building to extract the emulator's graphics, sound, and
controller interface could be used on other platforms. Late in 1997 he went public with
SDL as an open-source project, and since then SDL has been a contender.

on an even faster version called Numeric. If you need to install the Numeric package,
use the .exe for Windows or the tar.gx for Posix environments. Numeric is distributed
under an OSI license just like Python itself, and the latest development can be found at
http://sourceforge.net/projects/numpy.

The Mac OS X tar includes Python 2.2, Pygamel.3 (hacked for Macs), PyOpenGL, and
Numeric. There are still some bugs and issues with SLD compatibility on pre-OS X and
post-OS X, and a simple installer for the Mac that should fix most of these issues is
planned for when Python 2.3 is released.

NOTE
CAUTION

Do not use stuffit to untar the package on Mac OS X. Stuffit will truncate some of the
larger filenames.

Pygame is distributed under the GNU LGPL, license Version 2.1. See Figure 4.1 for a
shot of Pygame installation.

Figure 4.1. Installing Pygame

Using Pygame

Pygame itself is fairly easy to learn, but the world of computer games and graphics is
often unforgiving to beginners. Pygame has also suffered criticism for its lack of

112

documentation. This lack of documentation leads many new developers to browse
through the Pygame package, looking for information. However, if you browse through
the package, you will find an overwhelming number of classes at the top of the index,
making the package seem confusing. The key to starting with Pygame is to realize that
you can do a great deal with just a few functions, and that you may never need to use
many of the classes.

Importing Pygame

The first step towards using Pygame after it has been installed is to import the Pygame
and other modules needed for development into your code. Do the following:

import os, sys
import pygame
from pygame.locals import *

Keep in mind that Python code is case-sensitive, so for Python, Pygame and pygame are
totally different creatures. Although I capitalize Pygame in this book's text, when
importing the module, pygame needs to be in all lowercase letters.

First import a few non-Pygame modules. You'll use the os and sys libraries in the next
few examples for creating platform independent files and paths. Then import Pygame
itself. When Pygame is imported, it doesn't actually import all of the Pygame modules,
as some are optional. One of these modules, called 1ocals, contains a subset of Pygame
with commonly used functions like rect and quit in the easy-to-access global
namespace. For the upcoming examples the 1ocals module will be included so that
these functions will be available as well.

NOTE
TIP

The Pygame code repository is a community-supported library of tools and code that
utilizes Pygame. The source code is managed by Pygame, but submissions are from
users of the library. The repository holds a number of useful code snippets—everything
from visual effects to common game algorithms—and can be found at
http://www.pygame.org/pcr/.

The Pygame Surface

The most important element in Pygame is the surface. The surface is a blank slate, and
is the space on which you place lines, images, color, and so on. A surface can be any
size, and you can have any number of them. The display surface of the screen is set
with:

Pygame.display.set mode ()

113

You can create surfaces that have images with image.load (), surfaces that contain text
with font.render (), and blank surfaces with surface (). There are also many surface
functions, the most important being b1it (), £i11 (), set_at (), and get_at ().

The surface.convert () command is used to convert file formats into pixel format; it
sets a JPEG, GIF, or PNG graphic to individual colors at individual pixel locations.

NOTE

TIP

Using surface.convert is important so that SDL doesn't need to convert pixel formats
on-the-fly. Converting all of the graphic images into an SDL format on-the-fly will
cause a big hit to speed and performance.

Loading a surface image is fairly simple:

My Surface = pygame.image.load('image.jpeg"')

as is converting an image:

My Surface =
pygame.image.load ('image.jpeg') .convert ()

A conversion only needs to be done once per surface, and should increase the display
speed dramatically.

Drawing on the display surface doesn't actually cause an image to appear on the screen.
For displaying, the pygame.display.update () command is used. This command can
update a window, the full screen, or certain areas of the screen. It has a counterpart
command, pygame .display.flip (), which is used when using double-buffered
hardware acceleration.

NOTE

CAUTION

The convert () command will actually rewrite an image's internal format. This is good
for a game engine and displaying graphics, but not good if you are writing an image-
conversion program or a program where you need to keep the original format of the
image.

Creating a Pygame Window

Creating a window in which Pygame can run an application is fairly easy. First you
need to start up Pygame with an initialize command:

pygame.init ()

114

Then you can set up a window with a caption by using Pygame's display command:

My Window = pygame.display.set mode ((640, 480))

This code run by itself (the code is included as the My window.py example in this
chapter's code section on the CD) creates a 640x480-pixel window labeled Pygame
Window, just like in Figure 4.2. Of course, the window accomplishes nothing, so it
immediately disappears after showing up on the screen.

Figure 4.2. A simple Pygame window

The Ever-Important rect()

The most used class in Pygame probably the rect () class, and it is the second most
important concept in Pygame. rect () is a class that renders a rectangle:

My Rectangle = pygame.rect ()

rect () comes with utility functions to move, shrink, and inflate itself; find a union
between itself and other rects; and detect collisions. This makes rect () an ideal class
for a game object. The position of a rect () is defined by its upper-left corner. The code
that rects use to detect overlapping pixels is very optimized, so you will see rects
used in sprite and other sorts of collision detection. For each object, there will often be a
small rect () underneath to detect collisions.

The Event System

115

In order for Pygame to respond to a player or user event, you normally set up a loop or
event queue to handle incoming requests (mouse clicks or key presses). This loop is a
main while loop that checks and makes sure that the player is still playing the game:

still playing = 1
while (still playing==1):
for event in pygame.event.get():
if event.type is QUIT:
still playing = 0

The for event line uses pygame.event.get () to get input from the user. Pygame
understands basic Windows commands, and knows that oUIT is equivalent to pressing
the X at the top right corner of a created window. The pygame . event function is used to
handle anything that needs to go into the event queue—which is basically input from
any sort of device, be it keyboard, mouse, or joystick. This function basically creates a
new event object that goes into the queue. The pygame . event.get function gets events
from the queue. The event members for pygame . event are

e QUIT. Quit or Close button.

e ACTIVEEVENT. Contains state or gain.

e KEYDOWN. Unicode key when pressed.

e KEYUP. Uncode key when released.

e MOUSEMOTION. Mouse position.

e MOUSEBUTTONUP. Position mouse button releases.
e MOUSEBUTTONDOWN. Position mouse button pressed.
e JOYAXISMOTION. Joystick axis motion.

e JOYBALLMOTION. Trackball motion.

e JOYHATMOTION. Joystick motion.

e JOYBUTTONUP. Joystick button release.

e JOYBUTTONDOWN. Joystick button press.

e VIDEORESIZE. Window or video resize.

e VIDEOEXPOSE. Window or video expose.

o« USEREVENT. Coded user event.

These are normally used to track keyboard, mouse, and joystick actions. Let's say you
wanted to build in mouse input handling. All mouse input is retrieved through the
pygame.eventlnodukl

if event.type is MOUSEBUTTONDOWN :
do something

Pygame also has a number of methods to help it deal with actual mouse position and
use; these are listed in Table 4.1.

Table 4.1. Pygame Mouse Event Methods
Method Purpose

get_cursor Gets the mouse cursor data

116

Table 4.1. Pygame Mouse Event Methods

Method Purpose

get_focused Gets the state of the mouse input focus
get_pos Gets the cursor position

get_pressed Gets the state of the mouse buttons

get_rel Grabbing mouse movement

set_cursor Sets the state of the shape of the mouse cursor
set_pos Moves the cursor

set_visible Displays or hides the mouse cursor

You can check the state of a mouse or keyboard event by using
pygame.mouse.get pos () Orpygame.key.getipressed(),reSpeCﬁVebL

Drawing with Pygame

Pygame has great built-in functions for graphics. These functions revolve around the
idea of the surface, which is basically an area that can be drawn upon. Let's say you
wanted to fill the background in My window.py with a color. First grab the size of the
window:

My Background = pygame.Surface (My Window.get size())

This creates a surface called My Background that's the exact size of My Window. Next
convert the surface to a pixel format that Pygame can play with:

My Background = My Background.convert ()

And finally, fill the background with a color (set with three RGB values):

My Background.fill ((220,220,80))

Now let's do some drawing over the background surface. Pygame comes with a draw
function and a 1ine method, so if you wanted to draw a few lines, you could do this:

pygame.draw.line (My Background, (0,0,0,), (0,240), (640,240), 5)
pygame.draw.line (My Background, (0,0,0), (320,0), (320,480), 5)

Pygame's draw. line takes five parameters. The first is the surface to draw on, the
second is what color to draw (again in RGB values), and the last is the pixel width of
the line. The middle parameters are the start and end points of the line in x and y pixel

117

coordinates. In this case, you draw the thick lines crossing in the exact center of the
window, as shown in Figure 4.3.

Figure 4.3. Pygame's draw. 1ine is used to split my_window Into four sections

The easiest way to display the background and lines is to put them into a draw function:

def draw stuff (My Window) :

My Background = pygame.Surface (My Window.get size())

My Background = My Background.convert ()

My Background.fill ((220,220,80))

pygame.draw.line (My Background, (0,0,0,), (0,240), (640,240), 5)
pygame.draw.line (My Background, (0,0,0), (320,0), (320,480),

5)

return My Background

Then call the function within the loop that exists (and illustrated as code sample
My Window 3.py on the CD):

My Display = draw_stuff (My Window)
My Window.blit (My Display, (0,0))
pygame.display.flip()

Blitting

Blitting (Block Image Transfering) is practically synonymous with rendering, and
specifically means redrawing an object by copying the pixels of said object onto a
screen or background. If you didn't run the b1it () method, nothing would ever get
redrawn and the screen would just remain blank. For those of you who must know, b1it
isn't a made-up word—it's short for "bit block transfer."

118

In any game, blitting is often a process that slows things down, and paying attention to
what you are blitting, when you are blitting, and how often you are blitting will have a
major impact on your game's performance. The key to a speedy graphics engine is
blitting only when necessary.

The b1it method is very important in Pygame graphics. It is used to copy pixels from a
source to a display. In this case, b1it takes the pixels plotted in My Display (which
took the commands from draw stuff) and copies them to My Window. The blit
method understands special modes like colorkeys and alpha, it can use hardware support
if available, and it can also carry three-dimensional objects in the form of an array
(using blit array()). In this example, blit is taking My Display as the input and
rendering it to My Window, and it uses the upper-left corner (pixel 0,0) to key up the
surface.

The pygame .display.flip () command is Pygame's built-in function for updating the
entire display (in this case, the entirety of My window) once any graphic changes are
made to it.

NOTE
TIP

In Windows, you can add a single "w" to the end of a Python file (so that instead of
ending it in py, it ends in pyw) to make the program open up a window without opening
up the interpret console, that funny-looking DOS box.

Loading an Image with Pygame

Image loading is an oft-needed function in games; in this section I'll show you the steps
for loading an image in Pygame.

After importing the necessary modules, you need to define a function for loading an
image that will take an argument. The argument will be used to set the colorkey (the
transparency color) of the image; it looks like this:

def load image (name, colorkey=None) :

Colorkey blitting involves telling Pygame that all pixels of a specific color in an image
should be transparent. This way, the image square doesn't block the background.
Colorkey blitting is one way to make non-rectangular, two-dimensional shapes in
Pygame. The other common trick is to set alpha values using a graphics program like
Adobe Photoshop, as illustrated in Figure 4.4 and explained in the following sidebar.

Figure 4.4. Setting alpha values using Adobe Photoshop

119

v kedobs Pleies ey

To turn colorkey blitting on, you simply use surface.set colorkey(color). The
color fed to surface.set colorkey is three-digit tuple (0,0,0) with the first number
being the red value, the second green, and the third blue (that is, rgb).

NOTE
Colorkey versus Alpha

Both colorkey and alpha are techniques for making parts of a graphic transparent when
traveling across the screen. In Pygame, most 2D game objects and sprites are rects, and
are rectangular in shape. This means you need a way to make part of the rectangle
transparent, so that you can have circular, triangular, or monkey-shaped game pieces.
Otherwise you would only be capable of displaying square pieces over a background.

Alpha is one technique for making parts of an image transparent. An alpha setting
causes the source image to be translucent or partially opaque. Alpha is normally
measured from 0 to 255, and the higher the number is the more transparent the pixel or
image is. Alpha is very easy to set in a graphic editor (like Adobe Photoshop), and
Pygame has a built-in get _alpha () command. There is also per-pixel alpha where you
can assign alpha values to each individual pixel in a given image.

When using a colorkey technique (sometimes called colorkey blitting) you let the image
renderer know that all pixels of one certain color are to be set as transparent. Pygame
has a built-in colorkey (color) function that takes in a tuple in the form of RGB. For
instance, set _colorkey (0,0, 0) would make every black pixel in a given image
transparent.

You'll use both techniques in this chapter. The 1oad image function in this section uses

set_colorkey (), while the 1oad image command in the Monkey Toss.py graphics
example later on in the chapter uses get alpha.

120

The module needs to know where to grab the image, and this is where the os module
comes into play. You'll use the os path function to create a full pathname to the image
that needs to be loaded. For this example, say that the image is located in a "data"
subdirectory, and then use the os.path.join function to create a pathname on
whatever system (Mac, Windows, UNIX) that Python is running on.

fullname = os.path.join('data', name)

Try/except Code Blocks

Being able to fail gracefully is important in programming. Basically, you always need to
leave a back door, or way out of a program, for if an error occurs. You'll find that
try/except Or try/finally constructs are very common.

Python offers a try/except/else construct that allows developers to trap different
types of errors and then execute appropriate exception-handling code. try/except
actually looks just like a series of 1£/e1if/else program flow commands:

try:

execute this block
except errorl:

execute this block if "errorl" is generated
except error2:

execute this block if "error2" is generated
else:

execute this block

This structure basically allows for the execution of different code blocks depending on
the type of error that is generated. When Python encounters code wrapped within a try-
except- else block, it first attempts to execute the code within the try block. If this
code works without any exceptions being generated, Python then checks to see if an
else block is present. If it is, that code is executed.

If a problem is encountered while running the code within the try block, Python stops
execution of the try block at that point and begins checking each except block to see if
there is a handler for the problem. If a handler is found, the code within the appropriate
except block is executed. Otherwise, Python jumps to the parent try block, if one
exists, or to the default handler (which terminates the program).

A try/except structure is used to load the actual image using Pygame's image.load. Do
this through a try/except block of code in case there is an error when loading the
image:

try:
image=pygame.image.load (fullname)
except pygame.error, message:
print 'Cannot load image:', name
raise SystemExit, message

121

Once the image is loaded, it should be converted. This means that the image is copied to
a Pygame surface and its color and depth are altered to match the display. This is done
so that loading the image to the screen will happen as quickly as possible:

image=image.convert ()

The next step is to set the colorkey for the image. This can be the colorkey provided
when the function was called, or a -1. If the -1 is called, the value of colorkey is set to
the top-left (0,0) pixel. Pygame's colorkey expects an RGBA value, and RLEACCEL is a
flag used to designate an image that will not change over time. You use it in this case
because it will help the speed of the image being displayed, particularly if the image
must move quickly.

if colorkey is not None:
if colorkey is -1:
colorkey = image.get at((0,0))
image.set colorkey(colorkey, RLEACCEL)

The final step is to return the image object as a rect (Like I've said, Pygame is based on
rects and surfaces) for the program to use:

return image, image.get rect()

The full code snip for 1oad image is listed here and also on the CD, as
Load Image.py:

def load image (name, colorkey=None):
fullname = os.path.join('data', name)
try:
image=pygame.image.load (fullname)
except pygame.error, message:
print 'Cannot load:', name
raise SystemExit, message
image=image.convert ()
if colorkey is not None:
if colorkey is -1:
colorkey = image.get at ((0,0))
image.set colorkey(colorkey, RLEACCEL)
return image, image.get rect()

Displaying Text

Pygame has, of course, methods for dealing with text. The pygame . font method allows
you to set various font information attributes:

My Font = pygame.font.Font (None, 36)

122

In this case, you set up a My Font variable to hold Font (None, 36), which establishes
no particular font type (None, which will cause a default font to be displayed) and a 36
font size (36). Step 2 is to choose what font to display using font . render:

My Text = font.render ("Font Sample", 1, (20, 20, 220))

The arguments passed to font . render include the text to be displayed, whether the text
should be anti-aliased (1 for yes, 0 for no), and the RGB values to determine the text's
color. The third step is to place the text in Pygame's most useful rect ():

My Rect = My Text.get rect()

Finally, you get the center of both rect () s you created and the background with
Python's super-special centerx method (which is simply a method for determining the
exact center of something), and then call the b1it () method to update:

My Rect.centerx = My Background.get rect() .centerx
background.blit (My Text, My Rect)

A Pygame Game Loop

A Pygame game loop is usually very straightforward. After loading modules and
defining variables and functions, you just need a loop that looks at user input and then
updates graphics. This can be done with only a few lines of code. A typical event loop
in a game would look something like this:

while 1:
for event in pygame.event.get():
if event.type == QUIT:
#exit or quit function goes here
return

screen.blit (MY Window, (0O, 0))
pygame.display.flip()

The pygame . event module looks for user input, and pygame.blit and
pygame.display keep the graphics going. Let's say, for example, that you wanted to
look specifically for up or down arrow keys for player control. To do so, you could
simply add e1if statements to the event loop:

while 1:
for event in pygame.event.get () :
if event.type == QUIT:
#exit or quit function goes here
return
Add to listening for arrow keys In the event queue
elif event.type == KEYDOWN:
If event.key == K UP
do something
If event.key == K DOWN

do something

123

screen.blit (MY Window, (0O, 0))
pygame.display.flip()

Pygame Sprites

Originally computers were simply incapable of drawing and erasing normal graphics
fast enough to display in real-time for purpose of a video game. In order for games to
work, special hardware was developed to quickly update small graphical objects, using
a variety of special techniques and video buffers. These objects were dubbed sprites.
Today sprite usually refers to any animated two-dimensional game object.

Sprites were introduced into Pygame with Version 1.3, and the sprite module is
designed to help programmers make and control high-level game objects. The sprite
module has a base class sprite, from which all sprites should be derived, and several
different types of Group classes, which are used as Sprite containers.

When you create a sprite you assign it to a group or list of groups, and Pygame
instantiates the sprite game object. The sprite can be moved, its methods can be
called, and it can be added or removed from other groups. When the sprite no longer
belongs to any groups, Pygame cleans up the sprite object for deletion (alternately,
you can delete the sprite manually using the ki11 () method).

The Group class has a number of great built-in methods for dealing with any sprites it
owns, the most important being update (), which will update all sprites within the
group. Several other useful group methods are listed in Table 4.2.

Table 4.2. Useful Group Methods
Method Use

add () Adds a sprite to the group

copy () Makes a copy of the group with all of its members
empty () Removes all sprites within the group

len() Returns how many sprites the group contains

remove () Removes sprite from the group

truth() Returns true if group has any sprites

update () Calls an update method on each sprite within the group

Groups of sprites are very useful for tracking game objects. For instance, in an asteroid
game, player ships could be one group of sprites, asteroids could be a second group, and
enemy starships a third group. Grouping in this way can make it easy to manage, alter,
and update the sprites in your game code.

Memory and speed are the main reasons for using sprites. Group and sprite code has
been optimized to make using and updating sprites very fast and low-memory

124

processes. Pygame also automatically handles cleanly removing and deleting any
sprite objects that no longer belong to any groups.

Updating an entire screen each time something changes can cause the frames-per-
second rate to dip pretty low. Instead of updating the entire screen and redrawing the
entire screen normally, an engine should only change the graphics that have actually
changed or moved. The engine does this by keeping track of which areas have changed
in a list and then only updating those at the end of each frame or engine cycle. To help
out in this process, Pygame has different types of groups for rendering. These methods
may not work with a smooth-scrolling, three-dimensional, realtime engine, but then
again, not every game requires a whopping frame-rate. Pygame's strength lies
elsewhere.

Besides the standard Group class there is also a GroupSingle, @ RenderPlain, a
RenderClear, and a RenderUpdates class (see Figure 4.5). GroupSingle can only
contain one sprite at any time. Whenever a sprite is added to Groupsingle, any existing
sprite is forgotten and set for deletion. RenderPlain is used for drawing or blitting a
large group of sprites to the screen. It has a specific draw () method that tracks sprites
that have image and rect attributes.RenderPlain is a good choice as a display engine
for a game that scrolls through many backgrounds but not any rects, like scrolling
games where the player stays in a consistent area of the screen and the background
scrolls by to simulate movement. RenderClear has all the functionality of
RenderPlain but also has an added c1ear () method that uses a background to cover
and erase the areas where sprites used to reside. RenderUpdates has all the
functionality of RenderClear, and is also capable of tracking any rect (not just sprites
with rect attributes) for rendering with draw ().

Figure 4.5. Sprite container classes

Sprte Container Classes - Standard Class

Group Class

- Can contaln only

_-="" 1sprite—lowast
- overhoad for
= perormance

GroupSingle Class
-+ Used for large

L= groups of sprites,
L but not many rects

RenderPiain Clasa
-+ As RendarPlain
»=7 bunt with added
- Cclear screen
-7 method

.- As RenderPlain
- but with added
- update methods to
- handle rects,
Renderlpdates Class highest everhoaad
for perdormance

RenderClear Class

125

Sprites also have built-in collision detection. The spritecollide () method checks for
collisions between a single sprite and sprites within a specific group, and will return a
list of all objects that overlap with the sprite if asked to. It also comes with an optional
dokill flag, which, if set to true, will call the ki11 () method on all the sprites.

A groupcollide () method checks the collision of all sprites between two groups and
will return a dictionary of all colliding sprites if asked to. Finally, the
spritecollideany () method returns any single sprite that collides with a given sprite.
The structure of these collision methods is:

pygame.sprite.spritecollide (sprite, group, kill?) ->1list
pygame.sprite.groupcollide (groupl, group2, killgroupl?, killgroup2?) -
> dictionary

pygame.sprite.spritecollideany (sprite, group) -> sprite

Here is an example of a collision that checks to see whether My sprite ever collides
with My Player, and removes the offending My sprite sprite:

for My Sprite in sprite.spritecollide (My Player, My Sprite, 1):
#What happens during the collision plays out here

When using Pygame sprites, you need to keep a few things in mind. First, all sprites
need to have a rect () attribute in order to use the collide () or most other built-in
methods. Second, when you call the Sprite base class to derive your sprite, you must
call the sprite init () method from your own class init () method.

Game Object Classes

Python being a pseudo—object-oriented language, normally game classes are created
first, then specific instances of game objects are initiated from the created classes. Let's
walk through creating an example class, a banana:

class Banana:

1init method
banana method

banana method 2

banana method 3
def main

My Banana = Banana ()

This is roughly how a class works. The Banana class needs at leastan _init method,
and will likely contain many more. After the class is created, simply call the class to
create an instance called My Banana in the main loop.

Since an _init method is mandatory, let's take a look at what that method would look
like first:

126

class Banana (pygame.sprite.Sprite):
def init (self):
pygame.sprite.Sprite. Init (self)

The Banana class is set up as a Pygame sprite. When you define the init method,
you must specify at least one parameter that represents the object of the class for which
the method is called. By convention, this reference argument is called self.

You may want to add other specifications to the init method. For instance, you may
wish to specify an image/rect and load up a graphic. You may also want to tie the
Banana class to the screen:

class Banana (pygame.sprite.Sprite):
def init (self):
pygame.sprite.Sprite. Init (self)
self.Image, self.rect = load png('banana.png')
screen = pygame.display.get surface()

After defining init , you may also want to add methods that define the object's
position on the screen, and update the object when necessary:

class Banana (pygame.sprite.Sprite):

def init (self):
pygame.sprite.Sprite. Init (self)
self.Image, self.rect = load png('banana.png')
screen = pygame.display.get surface()

def Bannana Position(self, rect)
Funky math here
that defines position on screen
return position

def Banana Update (self)
Code that updates the banana

Pygame Drawbacks

Pygame is simply a wrapper around SDL, which is a wrapper around operating system
graphic calls. Although programming is much easier when using Pygame than when
using SDL, Pygame removes you pretty far from the code that actually does the work,
and this can be limiting in a number of ways.

Probably the most significant drawback to Pygame, however, is the fact that the library
needs so many dependencies in order to function. Obviously, Pygame needs Python and
SDL to run, but it also needs several smaller libraries, including sbr,_ttf, SDL mixer,
SDL_image, SDL_rotozoom, and the Python Numeric package for the surfarray
module. Some of these libraries have their own dependencies.

UNIX packages generally come with package and dependency managers that make
managing dependencies a controllable problem in UNIX. But on Windows systems, it
can be difficult to distribute a game without creating a collection of all the needed files
the game requires to run.

127

Luckily, there are Python tools to help build Windows executables. I mentioned a few
of these in Chapter 3, in particular a tool called Py2exe. Pete Shinners, the Pygame
author, actually wrote a tutorial on how to use Py2exe to package a Python Pygame for
Windows. The tutorial comes with a sample distutils script and can be found at
http://www.pygame.org/docs/tut/Executable.html.

Finally, although hardware acceleration is possible with Pygame and fairly reliable
under Windows, it can be problematic because it only works on some platforms, only
works full screen, and greatly complicates pixel surfaces. You also can't be absolutely
sure that the engine will be faster with hardware acceleration—at least not until you've
run benchmark tests.

A Pygame Example
In this section you'll use the Pygame 1oad image function with game loops to create a
simple two-dimensional graphics-engine game example. The steps you need to take are
as follows:

1. Import the necessary libraries.

2. Define any necessary functions (such as 1oad image).

3. Define any game object classes (sprites, game characters).

4. Create a main event loop that listens for events.

5. Set up Pygame, the window, and the background.

6. Draw and update necessary graphics (utilizing groups and sprites).
I envision a monkey-versus-snakes game, where the monkey/player throws bananas at
snakes to keep them at bay. The steps for coding this example are explained in each of
the following sections, the full source code can be found on the CD as

Monkey Toss.py, and Figure 4.6 gives you a preview of the game.

Figure 4.6. A preview of Monkey Toss.py

128

B sy Trad

Importing the Necessary Libraries

Importing has been covered ad nauseum already, so I will not bore you with the details.
Simply start with this code:

Step 1 - importing the necessary libraries
import pygame, os

import random

from pygame.locals import *

These libraries should be familiar to you with the exception of the random module.
Python comes equipped with random, and we will be using the random. randrange
method to generate random numbers.

NOTE
Random Library

The random. randrange method generates a random number (an integer) within the
range given. For instance, this snippet prints a number between 1 and 9:

import random
Print (random.randrange(l, 10))

Simple enough. Note that random. randrange prints up to the highest number given,
but not the actual highest digit. Random numbers are used so often in games that you
will often encounter random number functions like this:

Def DiceRoll():
Dicel = random.randrange(1, 7)
Print "You rolled %d" % (dicel)
Return dicel

129

You will be using random's randrange () and seed () methods to produce random
numbers for the Monkey Toss.py example.

Defining Necessary Functions

You will be using a version of 1oad image in this game example, but you will switch
from using colorkey and look instead for alpha values in the graphics. You have the
graphics already built with alpha channels and stored in a data directory next to the
game code (and also on the CD). This means you need to alter a few lines of code from
Load Image.py:

def load image (name) :
fullname = os.path.join('data', name)
try:
image = pygame.image.load(fullname)
Here instead of the colorkey code we check for alpha values
if image.get alpha is None:
image = image.convert ()
else:
image = image.convert alpha ()
except pygame.error, message:
print 'Cannot load image:', fullname
raise SystemExit, message
return image, image.get rect()

You will also define a very short function to help handle keystroke events from the
player. We will call this function A11KeysUp:

def AllKeysUp (key): return key.type == KEYUP

Defining Game Object Classes

First you will define a sprite class. The class needs, of course, an init method:

class SimpleSprite (pygame.sprite.Sprite):

def init (self, name=None):
pygame.sprite.Sprite. init (self)
if name:
self.image, self.rect = load image (name)
else:
pass

When initiating, you set simpleSprite to load the given image name and become a
rect (). Normally, you would include error code in case the name isn't passed or
something else goes wrong, but for now you will just use Python's pass command
(pass is an empty statement that can be used for just such a situation).

You will also give your simplesprite a method to set up its surface:

130

def set image(self, newSurface, newRect=None) :

self.image = newSurface
if newRect:

self.rect = newRect
else:

pass

Normally you would set up each pass default and also include at least a base method for
updating the sprite, but for now let's keep it easy.

For this engine, as I said, I envisioned a monkey versus snakes game, and since you are
writing in Python, start with the snake Grass class:

class Snake Grass:
def init (self, difficulty):

global snakesprites

global block

for i in range (10):

for j in range(random.randrange (0,difficulty*5)):

block = SimpleSprite ("snake.png")
block.rect.move ip(((i+1)*40),480-(3*40))
snakesprites.add(block)

def clear (self):
global snakesprites
snakesprites.empty ()

There are two methods in this class, one to initiate the object and one to clear it. The
clear () method simply uses empty () to clear out the global snakesprites when it is
time. The init method takes in the required self and also a measure of difficulty,
ensures snakesprites and block are created, and then starts iterating through a for
loop.

The outer for loop iterates through a second inner for loop that creates a random
number of "blocks," each of which contains a square snakespritesloaded with the
snake.png graphic. These sprites are created and moved into stacks on the game board
using a bit of confusing math (block.rect.move ip (((i+1)*40),480-(3*40))).
Don't worry too much about the math that places these sprites on your 480 pixel-wide
surface; instead, realize that when initiated with an integer representing difficulty, a
Snake Grass object will create a playing board similar to that in Figure 4.7.

Figure . Figure 4.7 snake_cGrassobject called with a difficulty of 2

131

B bonkey T

The placement of the snakesprites and the height of the rows are random so that a
differ ent game board surface is produced each time the game is run.

Define the player sprite next; this will be Monkey Sprite. You want the
Monkey Sprite to possess the ability move in the game, so you need to define a
number of methods to define and track movement:

class Monkey Sprite(pygame.sprite.Sprite):
def init (self, game):
For creating an Instance of the sprite
def update (self):
Update self when necessary
def check crash(self):
Check for collision with other sprites
def move (self):
How to move
def signal key(self, event, remainingEvents):
Respond to player If they me to do something
def check land(self):
See If reach the bottom of the screen

That's a lot of methods, but in actuality, the Monkey sprite is fairly uncomplicated
once you take the time to walk through each method. Lets start with _init :

def init (self, game):
pygame.sprite.Sprite. init (self)
self.image, self.rect = load image ('monkey.png')
self.rightFacingImg = self.image
self.leftFacingImg = pygame.transform.flip(self.image, 1, 0)
self.direction = 0
self.increment = 25
self.oldPos = self.rect
self.game = game
self.listenKeys = {}

132

First you load the image into a rect () that will represent the Monkey Sprite game
object, monkey.png, on the game board surface. Then you set a number of variables.
The rightFacingImg is the normal state of the graphic, and the 1eftFacingImg is the
graphic rotated 180 degrees using the Pygame's handy transform. f1ip () method.

The self.direction value is a Boolean value that will either have the Monkey Sprite
traveling left (represented by a 0) or right (represented by a 1). Set sel1f.increment to
25, representing 25 pixels that the Monkey Sprite will travel with each update. The
next three settings are all set for the methods that follow and use them.

Update is the next method:

def update (self):
self.check land()
self.move ()
if self.direction ==
self.image = self.rightFacingImg
else:
self.image = self.leftFacinglImg
self.check crash(()

Update first checks, using the check 1and method, to see whether the Monkey Sprite
has reached the bottom of the screen. You haven't defined check 1land yet, but you will
momentarily. Then update moves the Monkey Sprite with the move method, which
you also have yet to define. It then checks which direction Monkey sprite is facing and
makes sure the graphic being used is facing the correct way. Finally, update calls
check_crash, which also needs to be defined, and checks to see whether there have
been any sprite collisions.

The check land method simply looks to see if the Monkey sprite has crossed a
particular pixel boundary on the game board surface, which is defined by the
self.rect.top and self.rect.left variables. If it has, then we know that the
Monkey Sprite needs to start back over at the top of the screen.

def check land(self):
if (self.rect.top == 640) and (self.rect.left == 1):
self.game.land ()

The move method uses the defined increment value you setin _init to move the sprite
across the screen in the direction you've set. If the sprite goes outside the game window
(>640 or <0 pixels), you make the sprite switch and travel back across the screen in the

opposite direction:

def move (self):
self.oldPos = self.rect
self.rect = self.rect.move(self.increment, O0)
if self.rect.right > 640:
self.rect.top += 40
self.increment = -25

133

self.direction =1
if self.rect.left < 0:
self.rect.top += 40
self.increment = 25
self.direction = 0

The check crash method uses Pygame's built-in group methods and
pygame.sprite.spritecollide () to check if the Monkey Sprite ever collides with
anything in the crash list, which in this case includes any snakesprites. If there is a
crash, Monkey Sprite will call the game.crash () method, which we will define
momentarily.

def check crash(self):
global snakesprites
crash list = pygame.sprite.spritecollide (self, snakesprites,
0)
if len(crash list) is not O0:
self.game.crash (self)

Only one more method is associated with the Monkey Sprite, signal key, which is
simply a listener for keyboard events.

def signal key(self, event, remainingEvents):
if self.listenKeys.has key(event.key) \
and event.type is KEYDOWN:
self.listenKeys[event.key] (remainingEvents)

Once a MonkeySprite object is loaded, it will appear in the top-left corner of the game
board surface and travel across the screen, as shown in Figure 4.8. When it hits the edge
of the screen, it drops a little and then heads back in the opposite direction. If the

Monkey Sprite ever touches a snakesprite or the bottom of the screen, he will start
back at the top again.

Figure 4.8. An instance of the Monkey sprite class travels across the screen

134

I bierikry Toae

Now you have monkeys and snakes. You need one more actor, a banana, which the
Monkey Sprite objects will throw at and destroy the snake objects with. This means
you need methods for the banana to update and move and check for collisions:

class Banana (pygame.sprite.Sprite):
def init (self, rect, game):
def update (self):
def move (self):
def check hit (self):

Initializing the banana sprite works much like the other init methods. There will be
an incremental value that defines how many pixels the banana moves when updated,
and the sprite that represents the banana will load up a rect () and fill it with the
fruit.png file. Finally, you will need some code to check with the master game object for
when the banana collides or moves off the screen:

def init (self, rect, game):
pygame.sprite.Sprite. init (self)
self.increment =16
self.image, self.rect = load image ("fruit.png")
if rect is not None:
self.rect = rect
self.game = game

Updating and moving are also set up like the other classes. The banana moves according
to its increment value and checks are required to see if the banana collides with any
sprites or moves off of the game board surface:

def update (self):
self.move ()
def move (self):
self.rect = self.rect.move (0, self.increment)

135

if self.rect.top==480:
self.game.miss ()
else:
self.check hit ()

Finally, the check hit method looks for any collisions with snakesprites just like
with the Monkey sprite:

def check hit (self):
global snakesprites
collide list = pygame.sprite.spritecollide (self,
snakesprites, 0)
if len(collide 1list) is not O:
self.game.hit ()

There is still one more class to write—the most important and lengthy game object. You
are actually going to put the game controls and variables into a game class called
MonkeyToss. We need MonkeyToss to be able to handle a number of different things,
but mostly keyboard events, collisions, and actions for when sprites move off the
screen. This gives MonkeyToss several different methods:

class MonkeyToss:
def init (self, charGroup):
def crash(self, oldPlane):
def land(self):
def drop fruit(self):
def miss (self):
def signal key(self, event, remainingEvents):
def hit(self):

The master game class initializes pretty much everything else you need as far as game
mechanics. First, it takes in the game sprites and assigns them to the charGroup group.
Then it defines the game difficulty that the rest of the classes use. The specifc keybard
key the sprite needs to respond to is the spacebar, which when pressed will fire the
drop fruit method. Finally the snake, monkey, and banana (fruit) are all initialized:

def init (self, charGroup):
self.charGroup = charGroup
self.difficulty = 2
self.listenKeys = {K SPACE: self.drop fruit}
self.snake = Snake Grass(self.difficulty)
self.monkey = Monkey Sprite(self)
self.charGroup.add([self.plane])
self.fruit = None

The crash method is called by our Monkey Sprite when it collides with a
snakesprite. When the Monkey sSprite collides with a snakesprite, it needs to be
destroyed with the ki11 () method and then a new Monkey Sprite should be
instantiated to start over and be assigned to the sprite group:

def crash(self, oldMonkey):

136

self.monkey.kill ()
self.monkey = Monkey Sprite(self)
self.charGroup.add ([self.monkey])

The 1and method is also called by the Monkey Sprite when it reaches the bottom of
the screen. For this sample the method is identical to the crash method, but in a real
game, the landing might create a new field of snakes, or pop the player to a different
area of the game entirely.

def land(self):
self.monkey.kill ()
self.monkey = Monkey Sprite (self)
self.charGroup.add([self.monkey])

The drop fruit method is called when the spacebar is pressed, and Monkey Sprite
attempts to drop fruit on a snake. brop fruit assigns self.fruit an instance of the
Banana class and adds it to the active sprite group:

def drop fruit(self):
if self.fruit is None:
self.fruit = Banana(self.monkey.rect, self)
self.charGroup.add([self.fruit])

Code must be created for when the dropped fruit falls past the end of the screen; for our
purposes the sprite can just call the ki11 () method on itself:

def miss (self):
self.fruit.kill ()
self.fruit = None

For keyboard events, define a signal key method:

def signal key(self, event, remainingEvents):
if self.listenKeys.has key(event.key):
self.listenKeys[event.key] ()
else:
self.monkey.signal key(event, remainingEvents)

The last part is the code that handles sprite collision. This bit is fairly complex. First
you need to keep track of all the snakesprites, and then all of the sprites in the group,
by creating My Group. Then you call colliderects[], which returns true if any rect
in the group collides:

def hit (self):
global snakesprites
My Group = pygame.sprite.Group ()
colliderects = []

137

Following colliderects] is a for loop that basically checks to see if the bottom of
the fruit rect and the top of the monkey rect collide, and if so adds them to the
collide list:

for i in range(3):
for j in range((self.fruit.rect.bottom+16-
self.monkey.rect.top)/16):
rect = Rect((self.fruit.rect.left-32+1i*32,
self.fruit.rect.
bottom-j*16), (25,16))
colliderects.append (rect)

Then, for each collision, you need to destroy the given fruit and make sure the sprite
group is updated:

for rect in colliderects:
sprite = SimpleSprite ()
sprite.rect = rect
My Group.add(sprite)
list = pygame.sprite.groupcollide (My Group, snakesprites,

self.fruit.kill ()
self.fruit = None

That's quite a lot of work, but, happily, defining the classes comprises the bulk of this
sample's code, and you are past the halfway point of coding. Now onwards!

Creating a Main Event Loop that Listens for Events

To create a main loop, you normally define a main function containing a while loop:

def main() :
while 1:
do stuff
if name == " main ":
main ()

This ensures that main () is called and your while loop keeps running during the course
of the game. As good coding practice, initialize a few variables inside of main () :

global screen
global background
global snakesprites
global block

You are also going to take advantage of a Pygame c1ock feature and use random's seed
method to set a random number seed. Since you are going to be experiencing movement
and time, you'll be setting an o1dfps variable to help keep track of time and loop
iterations:

138

clock = pygame.time.Clock ()
random.seed (111111)
oldfps = 0

Finally, the while loop. You want to make sure time is recorded by using clocktick ()
and updating with each iteration. Any keyboard events are queued, so that QUIT, the

Escape key, or the xEYup, which is set to be the Spacebar, can be responded to:

while 1:

clock.tick (10)

newfps = int(clock.get fps())

if newfps is not oldfps:
oldfps = newfps

oldEvents = []

remainingEvents = pygame.event.get ()

for event in remainingEvents:
oldEvents.append(remainingEvents.pop(0))
upKeys = filter(AllKeysUp, remainingEvents)

if event.type == QUIT:
return

elif event.type == KEYDOWN and event.key == K ESCAPE:
return

elif event.type == KEYDOWN or event.type == KEYUP:

game.signal key(event, upKeys)

Setting Up Pygame, the Window, and the Background

You can initialize Pygame using the init () method within main (). Then you use

display.set mode () to configure the game surface to 640x480 pixels, and the game

caption to be "Monkey Toss". You then use your 1oad image method to load up the

surface background and initialize blitting and flipping:

pygame.init ()

screen = pygame.display.set mode ((640, 480))
pygame.display.set caption('Monkey Toss')
background, tmp rect = load image ('background.png')
screen.blit (background, (0, 0))
pygame.display.flip()

Drawing and Updating Necessary Graphics

For drawing, you start by initializing all of your sprites and sprite groups in main () :

allsprites = pygame.sprite.RenderUpdates ()
snakesprites= pygame.sprite.RenderUpdates ()
block = None

game = MonkeyToss (allsprites)

The code that does all the work lies at the end of the while loop, which clears the sprite

groups then updates and redraws each changed rect ():

139

allsprites.clear(screen, background)
snakesprites.clear (screen, background)
allsprites.update ()

changedRects2 = allsprites.draw(screen)
changedRects3 = snakesprites.draw (screen)
pygame.display.update (changedRects2+changedRects3)

The finished product and the full source code and data files can be found in Chapter 4's
file on the CD. Obviously, quite a bit could be added to this program. Check out the
complete game sample at the end of this chapter for a few ideas!

140

Python Graphics

Choosing a graphics toolkit may be the most difficult choice when creating a game.
There are hundreds of graphic kits to choose from and each is very different in style and
language. This chapter only covers a handful of the graphics libraries available for
Python programming, and goes through samples in only a few of the available
options—mainly the popular kits available for developing cross-platform.

Specifically, more coverage of Tkinter is given in this section, as Tkinter comes
bundled with Python, is cross platform, and is commonly used as a GUI for Python
programs. Pygame is probably the most popular Python game library in use today, and
Pygame graphic calls have already been covered in some detail. A few OpenGL
samples in Python are also examined at the end of this chapter.

NOTE

A number of commercial art tools are programmable with in Python scripts. Some of
the more recognizable tools include Blender, Poser, Lightflow, and Softimage XSI.
Each of these tools has a Python interface. Blender (i.e. gameBlender) uses Python as a
scripting language, the Poser Pro pack includes a Python-scripting agent, Lightflow has
a Python extension module, and Softimage is scriptable via Python.

For the aspiring developer, there are also many other graphic options available. Here,
for starters, is a short list of Python GUI libraries and graphics kits:

e The Standard Window Interface. STDWIN used to be the most commonly
used GUI for Python, but is now largely unsupported. The library was meant to
be a platform-independent interface to C-based Windows systems, but the
module no longer exists in Python 2.0 or above, and I mention it mainly for
legacy. It runs under UNIX and Mac, but was never ported to Windows.

o The Wxpython library. Provides support for the wxWindows-portable GUI
class library. Wxpythin uses the Lesser Gnu Public License and functions like a
wrapper to the C++ wxWindows library. It is relatively cross platform, but not
quite as portable as Tkinter.

e The Pythonwin library. Pythonwin is also included in many standard Python
distributions, but applications designed with it will only run on Windows.
Pythonwin is a wrapper to the Microsoft Foundation Class Library, and provides
features of the Windows user interface.

e Wpy. An object-oriented, cross-platform class library system also based on the
Microsoft Foundation Classes. Wpy is built to be simple and portable.

o PyKDE. A set of Python bindings for the KDE classes written by Phil
Thompson. PyKDE requires Sip to run.

e PyGTK. A free software GUI toolkit that has a large number of widgets
oriented towards the X Window System. PyGTK is distributed under the Lesser
Gnu Public License and was developed for the GTK widget and GNOME
libraries. The library is object-oriented and comes with lots of good samples.

e GNOME Python. A set of bindings for the GNOME libraries that use PyGTK
(which comes bundled with the package).

e Wafepython. Wafe is short for Widget Athena Front End, and is a package for
developing applications with high-level graphical user interfaces in Tcl.

141

WafePython implements an interface between Tcl, the X Toolkit, the Athena
Widget Set, the Motif Widget Set, and a few other classes and widget packages
thrown in for good measure.

PyFLTK. FLTK stands for Fast Light Toolkit; it's a C++ GUI toolkit for UNIX,
OpenGL and Win32. PyFLTK was originally created to build in-house apps for
Digital Domain. Bill Spitzak is the original author and received permission from
the company to distribute it under the Lesser Gnu Public License. Other
developers have done more work on the toolkit since then, and the project has
been moved to Sourceforge.

Fox Python. FXPy is a C++ toolkit for developing GUIs that runs on UNIX and
Windows; it is distributed under the Lesser Gnu Public License. Fox's emphasis
is on speed and ease of use. It uses techniques for increasing drawing speed and
minimizing memory, and most controls can be built with a single line of code.
Fox supports drag and drop, OpenGL widgets, 3D graphics, and tooltips.
Python X. An extension that binds Python together with Motif, which is a set of
user interface guidelines set by the Open Software Foundation. Motif is actually
over a decade old, and there are many books covering its use, but it has been
somewhat in decline for a while.

The Python Computer Graphics Kit. A collection of Python modules for 3D
computer-graphics images. The kit mainly focuses on Pixar's RenderMan
interface, but some modules can also be used for OpenGL programs or non-
RenderMan-compliant renderers.

Vpython. A free and open-source 3D programming library designed "for
ordinary mortals." The idea behind Vpython is ease of use and simplicity.

Zoe. A bare-bones OpenGL graphics engine written completely in Python. Zoe
includes only basic 3D features, and focuses on creating 3D wire-frames for
prototyping or rapid development.

The PyUI Library. An interface library written entirely in Python for Python. It
can run on desktop Windows or in a 3D hardware-accelerated environment and
is meant to be portable. PyUI was originally slated to build user interfaces for
games. PyUI is owned by Sean Riley of Ninjaneering (see Chapter 5 for more
information on Ninjaneering) and utilizes Python 2.1, Pygame, PyOpenGL, the
Python Imaging Library, and the ActiveState win32 extensions.

PyQT. Qt for Windows is a C++ cross-platform GUI toolkit distributed by
TrollTech, who have a free non-commercial version license and a pay
commercial license. PyQT is a set of Python bindings to the C++ QT Toolkit,
originally produced by the Kompany and now under River Bank Computing.
The GUI toolkit runs on Windows, Mac OS X, and UNIX.

GUIs are created with graphical elements called widgets, which are typically scrollbars,
buttons, text fields, etc. Widgets are normally found within a window, which controls
the layout of the widgets.

Python also has a few basic built-in tools for graphics and image handling. These are
included under its Multimedia Services modules, which are listed in Table 4.3.

142

Table 4.3. Python Multimedia Graphic Services
Module Use

colorsys Converting between RGB and other color systems
imageop Manipulating raw image data
imghdr Determining the type of image contained in a file or bytestream

rgbimg Reading and writing image files in SGI RGB format

The imageop module can operate on 8- or 32-bit pixel images and has methods for
cropping, scaling, dithering, and converting the image at a raw level. colorsys can be
used to convert RGB, HLS, HSV, and YIQ color systems. Python's imghdr can
recognize a number of different image formats (as shown in Table 4.4) and is also
extendable to allow even more types.

Table 4.4. Image Formats

Value Image format

rgb SGI ImgLib Files

gif GIF 87a and 89a Files
pbm Portable Bitmap Files
pgm Portable Graymap Files
ppm Portable Pixmap Files

tiff TIFF Files

rast Sun Raster Files

xbm X Bitmap Files

jpeg JPEG data in JFIF Format
bmp BMP Files

png Portable Network Graphics
The Tkinter Library

In the last chapter you built a small display box using Tkinter. Here you'll explore GUI
creation with Tkinter in more depth. As you recall, Tkinter is an object-oriented
interface that works on multiple platforms and is designed to be extensible so that it can
be used to import third-party widgets.

Widgets

143

Tkinter comes with only a handful of standard widgets. Each widget has a standard set
of methods and also supports a large set of general methods, so they are capable of a
wide coverage. There is a lot more to widgets than what's listed in Chapter 3 (reprinted
here as Table 4.5 for easy reference). This is because each of these components has its
own place and use within a GUI, and therefore has its own components and methods
associated with it.

Component
Button

Canvas
Checkbutton
Entry

Frame

Label
Listbox
Menu
Menubutton
Radiobutton
Scale
Scrollbar
Text

Toplevel

NOTE

Tcl/TK

Table 4.5. Tkinter Widget Components

Function

Creates a button that triggers an event when clicked
Displays text or images

Creates a Boolean checkbutton

Creates a line that accepts keyboard input

Creates the outlying window's edge

Displays text as labels for components

Creates a list of options

Creates a multiple-selection display

Creates a pop-up or pull-down style menu
Creates a single option button

Creates a slider that can choose from a range
Creates a scrollbar for other components

Creates a multiple-line box that accepts user input

A widget container like Frame but with its own top-level window

TK 1is a toolkit that handles the creation of windows, GUI events (widgets), and user
interaction. The TK toolkit is provided as an extension for Tcl. Tkinter is an interface to
Tcl; without the interface it would take hundreds of lines of code to do even simple
things like open a window or create a button.

Many languages use or are capable of using TK. Tkinter is Python's behind-the-scenes
director of the TK GUI toolkit, and Tcl is the behind-the-scenes director that Tkinter
uses to communicate to TK. Both TK and Tcl are open-source developments that are
under development at scriptics (the Tcl developer exchange can be found at
http://dev.scriptics.com).

Button

144

Clickable buttons are probably the most widely used widget in any interface, and
Tkinter has a many options available for button components; these are listed in Table
4.6.

Table 4.6. Button Properties

Property Function
activebackground Sets the background color

activeforeground Sets the foreground color

bitmap Displays a given bitmap as the button

default Identifies the default button

disabledforeground Sets a foreground color used when button is disabled (grayed
out)

image Sets an image to display in the widget (precedes bitmap)

state Defines the button state (as NORMAL, ACTIVE, Or DISABLED)

takefocus Indicates whether the Tab key can be used to reach this button

text Defines the text to display within the button

underline An offset applied on text displayed to identify which character
must be underlined

wraplength Determines distance when text should be wrapped to the next
line

Buttons also have their own special methods: f1ash () is a method which reverses and
resets the foreground and background attributes, and invoke () is a method that
executes the function defined in a command.

I used a button widget in the last chapter's GUI sample, inititated by the following code
and looking like Figure 4.8 (a short Hello Button.py sample is also given in this
chapter's code section on the CD):

Button (window, text='Exit', command=window.quit) .pack (side=BOTTOM)

This can be broken down into basic components. Button () is used to create the button,
and the parameters placed within the Button () parentheses, (window, text='Exit',
command=win dow.quit), define what the button can do. The pack () method extends
Button () and defines where the button should be placed within the window, in this
case side=BOTTOM.

Canvas
The Canvas widget component is used to draw everything from arcs to bitmaps to

polygons. It is used as a way to customize graphical items, and resembles an artist's

145

blank canvas, ready to be painted. A canvas in Tkinter, of course, has its own
properties; these are listed in Table 4.7.

Hello Canvas.py is given on the CD as a sample that produces a large widget surface,
as shown in Figure 4.10.

Figure 4.10. Sample Canvas widget

Figure 4.9. The widget at work

Table 4.7. Canvas Properties

Property Function

arc Creates an arc or an arc item

bitmap Creates a bitmap item

image Creates an image item

line Creates a line item

oval Creates a circle or ellipse at the given coordinates

polygon Creates a polygon item (three or more vertices) with the given coordinates

146

Table 4.7. Canvas Properties

Property Function

rectangle Creates a rectangle item with the given coordinates

text Creates a text item at the given position with the given options
window Embeds a window widget to the canvas
Checkbutton

A Checkbutton is basically a box that can either be checked or unchecked; an example
is shown in Figure 4.11 and a sample is included in the CD's source code as

Hello Checkbutton.py. Checkbuttons can have an on value and an off value set for
whether the box is checked, and have a handful of methods available, as shown in Table
4.8.

Figure 4.11. A sample checkbutton

Table 4.8. Checkbutton Methods

Method Function

select () Selects the checkbutton and sets the value of the variable to onvalue
flash() Reverses and resets the foreground/background colors

invoke () Executes a function defined by command ()

toggle () Reverses the state of a button (i.e. off becomes on)

Entry

The Entry widget is designed to let users enter a single line of text within a frame or
window. A sample Hello Entry.py is included on the CD.

147

Frame

A Frame widget is used to group, arrange, and organize other widgets. It uses
rectangular screen areas and padding to put them into view for a GUI. A sample
Hello Frame.py is included on the CD.

Label

A Label widget is a box that displays text or images. The Label widget allows you to
create and update these displays, and a demonstration is given as Hello Label.py on
the CD.

Listhbox

A Listbox widget creates lists of text items that can be selected by the user. Listboxes
have three properties:

o height. The number of rows in the list. Setting height to 0 allows 1istbox to
automatically resize to the number of entries.

o selectmode. Defines the type of list being created. This can be SINGLE,
EXTENDED, MULTIPLE, O BROWSE.

e width. The Number of characters in each row, which can also be automatically
resized with the setting 0.

The Listbox widget also has a number of methods associated with it, as shown in Table
4.9.

Table 4.9. Listbox Methods

Method Function

delete() Deletes a given row, or the rows between the given row and lastrow
get () Gets the string that starts at the given row

insert () Inserts the given string at the given row

see () Makes the row visible to the user

select_clear () Clears the selection

select_set() Selects the rows starting at startrow and ending at endrow

A Listbox example is on the CD as Hello Listbox.py.

Menu

There are three types of Menu widgets: pop-up, toplevel, and pull-down. There are also
special menu widget item types such as radio menu items and check menu items. A

sample menu is given as Hello Menu.py. Menus, of course, have their own methods, as
listed in Table 4.10:

148

Table 4.10. Menu Methods

Methods Function

add_command () Adds a menu item

add_radiobutton () Creates a radio button menu item

add_checkbutton () Creates a check button menu item

add_cascade () Creates a new hierarchical menu

add_separator () Adds a separator line to the menu

add () Adds a specified type of menu item

delete() Deletes the menu items from startindex to endindex
entryconfig() Modifies a menu item

index () Returns the index number to the given menu item

These methods have their very own options available to them, as shown in Table 4.11.

Menubutton

Menubuttons can be used to display menus, but are in decline since the Menu widget
has been expanded to include most of the Menubutton functionality.

Message

Message is very similar to the Label widget, and is used to create a multiple line non -
editable object that displays text.

Radiobutton

Radio button widgets are multiple-choice buttons. Each group of radio buttons must be
associated to the same variable, and each Radiobutton must represent a single value at
any given time. Radiobuttons have their own properties:

e command. Function to be called when the button is clicked.
o variable. Variable to updated when button is clicked.
e value. Defines the value that is stored in the variable when button is clicked.

Table 4.11. Menu Widget Method Options

Option Function
accelerator A keyboard alternative to a menu option
command Names the callback function when the menu item is selected

indicatorOn Adds a switch next to the menu options

149

Option
label
selectColor
state
onvalue
offvalue
tearOff
underline

variable

Table 4.11. Menu Widget Method Options

Function

Defines the text of the menu items

Switches color (with indicatoron)

Defines menu item status (normal, active, or disabled)
Values to be stored in the variable property

Values to be stored in the variable property

Creates a clickable separator at the top of the menu
Defines the index position of the character to be underlined

Variable used to store a value

Radiobuttons also have their own special methods:

o flash(). Reverses forground and background colors.
e invoke(). Executes command function.
e select(). Selects the radio button.

A Radiobutton is shown in Figure 4.12 and a sample is included in the CD samples as
Hello Radiobutton.py.

Scale

Figure 4.12. A radio button

= |0 %

A scale widget is a graphical slider object that allows a user to select values from a
scale. Scale has its own unique methods:

o get(). Gets the current scale value.
e set(). Sets the scale to a specified value.

150

Hello Scale.py is included on the CD as a sample and Figure 4.13 displays the output
of the sample code.

Figure 4.13. A Scale sample widget

Scrollbar

A scrollbar widget is used to select from a vertical scroller and works with 1istbox,
text, and canvas. Scrollbar in Tkinter has the same methods available as scale:

o set(). Defines fractions between 0 and 1 that delimit the view.
e get(). Returns the current scrollbar configuration settings.

A sample scrollbar is incuded on the CD (Hello Scrollbar) and also illustrated in
Figure 4.14.

Figure 4.14. A scale sample widget

Text

Text allows the editing and formatting of multiple lines of text and has a number of
available methods, as listed in Table 4.12.

151

Table 4.12. Text Methods

Method Function

delete () Deletes specified character(s)

get () Returns specific character(s)

index () Returns absolute value of an index

insert () Inserts string at a specified index

see () Returns true if the text located at a given index is visible

There are also a few available attributes for text:

o state. Sets text to editable or non-editable with the flags normal or disabled.
e tabs. Provides a list of strings and identifies table stops on the Text widget.

Text widgets support bookmark positions, called Marks; the naming of regions of texts,
called Tabs; and specific locations, called Indexes, to help them organize text. Each of
these three—Marks, Tabs, and Locations—has access to specified methods.

Toplevel

The Toplevel widgets are directly managed by the window manager; its methods are
listed in Table 4.13.

Universal Widget Methods

All widgets in Tkinter also have standard universal options for defining things they have
in common. They all use a similar syntax, and are listed in Table 4.14.

There are also methods inherited from the base Tk classes that are provided for all
Tkinter widgets, including the toplevel object created by the Tk () method. These
always apply to the widget that makes the method call, and are listed in Table 4.15.
Take notice of the idea of focus with these methods. The window or widget that is in
focus is the one that is toplevel to the viewer.

Table 4.13. Toplevel Methods

Method Function

aspect () Controls the relation between height and width
client () Used in X windows to define wM CLIENT MACHINE
colormapwindows () Used in X windows to define wM COLORMAP WINDOWS
command () In X defines wM_CcOMMAND

deiconify () Displays the window

152

Method

frame ()
focusmodel ()
geopmetry ()
group ()
iconbitmap ()
iconify ()
iconmask ()
iconname ()

iconposition ()

iconwindow ()
maxsize ()
minsize ()

overrideredirect ()

positionfrom ()
protocol ()
resizable ()
sizefrom()

state ()

title ()

transient ()

withdrawn ()

Table 4.13. Toplevel Methods

Function

Returns the window identifier

Sets the focus model

Changes the window's geometry

Adds given window to the window group

Defines a bitmap for when the window is iconified
Turns the window into an icon

Defines an icon bitmap for when the window is iconified
Defines an icon name for when the window is iconified

Defines a suggestion for where the icon goes when the window
is iconified

Defines the icon window that should be used as an icon
Defines the maximum size for the window
Defines the minimum size for the window

Defines a flag different from 0, and tells the window manager
not to add a title or borders to the window

Defines the position controller
Registers a function with a callback
Defines resize flags

Defines size controller

Returns the current state of the window, being normal, iconic,
withdrawn, or icon

Defines the window title

Turns window into a temporary window for the given master
which is automatically hidden

Removes the window from the screen

Table 4.14. Standard Tkinter Widget Options

Standard Widget
Option

height

width

background or bg

foreground or fg

Properties

Defines height in number of characters or pixels
Defines width in pixels or number of characters
Defines background color

Defines foreground color

153

Table 4.14. Standard Tkinter Widget Options

Standard Widget
Option

relief

highlightcolor

Properties

Defines border style

Defines color used to draw the highlight region when widget
has keyboard focus

highlightbackground Defines color used to draw the highlight region when widget

highlightthickness
borderwidth or bd

text

Jjustify

font

command
variable

anchor

padx

pady

cursor

NOTE

CAUTION

does not have keyboard focus
Defines highlight region width in pixels
Width of widget relief border in pixels

Contains widget caption text, formatted by foreground and
font

Sets LEFT, RIGHT, Or CENTER for text captions

Can define font family, font size, and font values like bold,
underline, and overstrike

Associates a widget with a Python function
Maps widget to a variable

Defines location of a widget within a window or of text
within a widget

Defines padding on the x-axis to border
Defines the padding on the y-axis to border

Defines mouse pointer when moved over widget

Colors can vary from platform to platform. For instance, the Windows operating system
has system color settings for windows in the Control Panel, while the UNIX X Window
System keeps them in an xrgb text file. This could cause GUI color choices to change
slightly (or radically) from one operating system to the next.

Method
cget ()

config ()

configure ()

Table 4.15. Tkinter Widget Methods

Function

Returns a string that contains the current configuration value for
a given option

Sets the values for one or more options

Same as config ()

154

Method
destroy ()

focus ()
focus set ()

focus display()

focus force()
focus get ()
focus lastfor()
getvar ()
grab_set ()

grab release()

grab_set global ()

keys ()

1ift ()
tkraise()
lower ()
mainloop ()
quit ()
setvar ()
update ()
update idletasks ()
tk focusNext ()
tk focusPrev ()

wait variable()

wait visibility ()

wait window ()

Table 4.15. Tkinter Widget Methods

Function

Destroys the widget

Sets the widget to a keyboard focus
As focus ()

Returns the name of the window that contains the widget and
has focus

Gives keyboard focus to the widget

Returns the identity of the window that has focus
Returns the window that last had focus

Returns the value of a Tkinter variable

Grabs all events for the entire screen for the widget
Releases grab on a widget

Returns none, local, or global depending upon the grab value
set to a window

Returns all options available for a widget as a tuple
Moves a widget to the top of the window stack

Same as 1ift ()

Moves a widget to the bottom of the windows stack
Activates the mainloop event

Quits the mainloop event

Sets a value to a given Tkinter variable

Processes all queued tasks

Processes all pending idle tasks

Returns the next widget that should have keyboard focus
Returns the previous widget that should have keyboard focus

Creates a local event that waits for the given Tkinter variable to
change

Creates a local event that waits for the given widget to become
visible

Creates a local event that waits for a given widget to be
destroyed

There are also specific methods for all widgets that work within windows. For ease of
reference, they begin with a winfo (short for Window Information). These methods are

listed in Table 4.16.

155

Table 4.16. Widget Window Information Methods

Method

winfo cells ()
winfo children ()

winfo class|()

winfo colormapfull ()

winfor containing()

winfo depth ()

winfo exists()

winfo fpixels()

winfo geometry ()
winfo height ()
winfo width ()
winfo id()

winfo ismapped ()
winfo manager ()
winfo name ()
winfo parent ()
winfo pathname ()

winfo pixels ()

winfo pointerx()

winfo pointery ()

winfo regheight ()

winfo reqwidth ()

winfo rootx ()

winfo rooty ()

Function

Returns the number of cells in the widgets color map
Returns a list of widget instances

Returns the Tkinter class name for widget

Returns true if a widget's colormap is full

Returns the identity of the widget at the given x +y
coordinates

Returns bit depth of the widget (8, 16, 24, or 32 bits per
pixel)

Returns true if a Tk window corresponds to the given
widget

Returns the result of the conversion of the given distance to
the corresponding number of pixels (in floating point
value)

Returns a string showing the widget coordination in pixels
Returns pixel height

Returns pixel width

Returns window identity

Returns true if a widget is mapped by the window system
Returns the name of the geometry manager

Returns widget name

Returns widget parent

Returns pathname of widget

Same as winfo fpixels () except returns a regular integer
instead of a floating point value

Returns the x coordinate of the mouse pointer in pixels
(must be in widget window)

Returns the y coordinate of the mouse pointer in pixels
(must be in widget window)

Returns minimum height required by widget to be
displayed

Returns minimum width required by widget to be displayed

Returns the pixel coordinates of a widget's upper-left
corner

Returns the pixel coordinates of a widget's upper-left
corner

156

Table 4.16. Widget Window Information Methods

Method Function

winfo_screen () Returns the screen name for the current window

winfo_screencells () Returns the number of cells in the default color map for
widget's screen

winfo_screendepth () Returns the bit depth of the window target

winfo_screenheight () Returns the height of a widget screen in pixels

winfor screenwidth() Returns width of widget screen in pixels

winfo_screenmmheight () Returns screen height but in millimeters

winfo_screenmmwidth () Returns screen width but in millimeters

winfo_screenvisual () Returns the default visual class used for widget's screen
(i.e. grayscale, truecolor, staticcolor, and so on)

winfo_toplevel () Returns the widget instance of the top-level window
containing the widget

winfo_visual () Returns the visual class used for the widget (grayscale,
truecolor, staticcolor, etc.)

winfo_x() Returns x axis pixel coordinates corresponding to the
widget's upper-left corner, relative to upper-left corner of
the parent

winfo_y () Returns y axis pixel coordinates corresponding to the
widget's upper-left corner, relative to upper-left corner of
parent

Tkinter Geometry

Tkinter widgets have specific geometry management methods that are used to organize
widgets in their area. These methods are organized in three classes that help a Ul
designer develop an interface. The methods are pack (), grid (), and place ().

Using these methods is fairly effortless. First you create a widget. In the last chapter you
created a widget frame called window:

Import Tkinter *
window = frame ()

After you have a widget, you can simply and easily apply pack (), grid (), or place()
directly on it:

window.pack ()
window.grid ()
window.place ()

157

Using these three methods is very important in organizing a GUI interface, so I'll cover
each one in the next subsections.

pack()

The pack () method is used to organize widgets in blocks before placing them in the
parent widget. pack () adds a widget to a frame or window based on the order that the
widgets are packed. If you don't specify how the widgets are to be packed, they are
simply placed top to bottom in the available space. You can, however, specify
placement with options like anchor or side. The pack () method has a few built-in
methods, shown in Table 4.17.

Table 4.17. pack () Method Options
Option Use

Expand Expands a widget to use up available space

Fill Defines how a widget should fill a parcel or frame

Ipadx Used with £i11 to define space in pixels around an object
Ipady Used with £fi11 to define space in pixels around an object
Padx Defines space in pixels between widgets

Pady Defines space in pixels between widgets

Side Defines where you want to place the widget (chosen from Top, BOTTOM, LEFT,
and RIGHT)

NOTE
TIP

The default is to use pixels to define measurement in pack (), but you can define
different measurements, such as onscreen centimeters (c), onscreen millimeters (m),
inches (i), and printer points (p). You specify which measurement to use by adding the
letters to the options measurements:

this specifies padding to be in inches
window.pack (padx=41i, pady=5y)

grid()

The grid () method is used to organize widgets via a table within the parent widget.
grid() creates a grid pattern (go figure) within a frame, and then allocates space to
each cell in the grid to hold a widget. This grid starts are location (0,0) at the top left of
the window. Grid () has a few methods, outlined in Table 4.18.

158

Table 4.18. grid () Method Options

Option Use Example
Column Specifies the column number

Columnspan To make a widget span multiple (default is 1 column)

Row Specifies the row number
Rowspan To make a widget span multiple rows (default is one row)
place()

The place () method is used to place widgets in specific a specific position in the
parent widget. place () allows you to set the exact position and size of each widget, in
terms of absolute or relative coordinates. The place () method can use the options
listed in Table 4.19.

Table 4.19. p1ace () Method Options

Option use

Anchor Defines coordinates by (by compass: N, s, E, W, NE, NW, SE, SW, or
CENTER). Default value is nw

Bordermode Defines INSTIDE or OUTSIDE

Height Defines widget height in pixels

in Places widget in a position relative to the given widget (in)
Relheight Defines relative height in reference to in

Relwidth Defines relative width in reference to in

Rely Defines relative position in, reference to in

Relx Defines relative position in reference to in

Width Defines widget width in pixels

Y Define absolute position of widget on y-axis, default 0
X Define absolute position of widget on x-axis, default 0
Tkinter Events

Events in Tkinter are user events like keyboard presses and mouse movements. Tkinter
handles events by creating bindings for specific objects. You can bind events to a
widget, to the widget's Toplevel window, to a widget's class, or to an entire application.

Once an event has been bound to a widget, you specify a callback, which is a function
that is called when the event happens. Let's say you had a function called My Event:

159

def My Event () :
//does something here

Let's say you want My Event to be called by a widget button called My Button:

My Button = Button ()

The My Button widget can call My Event by simply including a command option on
one line:

My Button['command'] = My Event

You can assign events to keyboards and mouse presses as well, as shown in Table 4.20
and Table 4.21.

Table 4.20. Tkinter Mouse Events

Event Effect

<Button -1> Mouse button (left) is pressed over widget

<Button -2> Mouse button (middle) is pressed over widget
<Button -3> Mouse button (right) is pressed over widget

<Bl -Motion> Mouse is moved with the button held down (dragged)
<ButtonRelease -1> Mouse button is released

<Double - Button - 1> A double click
<Enter> Mouse pointer enters widget

<Leave> Mouse pointer leaves widget

Table 4.21. Tkinter Keyboard Events

Event Effect
<Alt -x> Pressed Alt and another key

<Control -X> Pressed Ctrl and another key

<Escape> Pressed the Esc key

<key> Press any key (carries the character pressed via a callback)
<Return> Pressed the Enter key

<Shift -X> Pressed Shift and another key

The object that originated the callback exposes the attributes for events. These attributes
are listed in Table 4.22.

160

Object
Char

Height
Keycode
Keysym
Num
Type
Widget
Width

X

X root

Y root

NOTE

TIP

Table 4.22. Tkinter Event Attributes

Attribute

Character code of pressed key

New height of a widget in pixels

Key code of a pressed key

Key symbol of a pressed key

The mouse button number associated with an event (usually 1, 2, or 3)
The event type

The widget instance

New width of a widget in pixels

The current position in pixels of the mouse on the x-axis

The current x-axis position of the mouse in pixels relative to the upper-left
corner of the screen

The current position in pixels of the mouse on the y-axis

The current y-axis position of the mouse in pixels relative to the upper-left
corner of the screen

For Tkinter mouse events, you will often find <Button -1 > replaced with
<ButtonPress-1> or <1>, all of which are correct syntactically. These changes work
for the middle and right-side buttons as well.

For Tkinter keyboard events, most keys can be represented by placing them within less
than and greater than symbols (<F1>, <Cancel>, and <End>, for example).

There are also methods used to handle a callback by binding a Python function or
method to an action that can be applied to a widget. These are shown in Table 4.23.

Method

after ()

Table 4.23. Tkinter Event Callbacks

Event

Alarm callback called after given time in milliseconds

after cancel() Cancels an alarm callback

after_idle() When the system is idle, registers a callback
bindtags () Returns the search order used by widget
bind ()

Defines the callback that must be associated to a given event

161

Table 4.23. Tkinter Event Callbacks

Method Event

bind all() Defines the callback that must be associated to a given event at the
application level

bind class() Defines the callback that must be associated to a given event at the
given widget class

<Configure> Widget is resized or moved to a new location

unbind () Removes bindings for the given event

unbind all() Removes bindings at the application level

unbind class () Removes bindings for the given event at the given widget class

Finally, Tkinter has protocols to handle events that communicate between the window
manager and the GUI. This allows an application to intercept messages from the system
and act accordingly. These protocols were original established for the X system, but Tk
can handle events on multiple platforms. The syntax to bind a protocol to a handle event
is as follows:

widget.protocol (protocol, handler)

In order for the widget to intercept a system message it needs to be on the Toplevel. The
handler is almost always a function.

Tkinter Images

Tkinter uses the image class as a foundation to display graphic objects. Graphic objects
Tkinter can display include both bitmap (BitmapImage) and GIF (PhotoImage) images.
The functions image names and image types are used to handle all the images within
the image class. The first returns a list containing the names of all available images, and
the second returns a list that contains all the existing types that were created.

Images, once created, provide a handful of methods: image.width (), image.type (),
and image.height ().

BitmaplImage
BitmapImage is used to display bitmap images on widgets. In Tkinter, however, a

bitmap not a .bmp format image. Bitmaps are actually two color images (well, two
colors and a transparency mask to be precise) and have the options listed in Table 4.24.

Table 4.24. Bi tmapimage Options

Method Purpose

162

Method
cget ()
config ()
configure ()
height ()

width ()

type ()

Table 4.24. Bi tmapImage Options

Purpose

Returns value of the given option
Changes image options

Changes image options

Returns height in pixels

Returns width in pixels

Returns the bitmap string

These options have methods available to them, listed in Table 4.25.

Method
background

data

file
foreground
format
maskdata
maskfile
height

width

Photolmage

Table 4.25. Bi tmapImage Option Methods
Used For

Background color

String to be used instead of a file

File to be read

Foreground color to be used

Specifies the file handler to be used

String that defines the contents of the mask
Specifies mask file

Gives image dimensions

Gives image dimensions

PhotoImage is used for displaying full color images; it supports GIF and PPM files and
has attributes as listed in Table 4.26.

Attribute
data

file
height

width

Table 4.26. Photolmage Attributes
Holds

String to be used instead of a file
File to be read
Dimensions

Dimensions

163

The PyOpenGL Library

PyOpenGL is an OpenGL widget written by a large group of developers, including
David Ascher, Mike Hartshorn, Jim Hugunin, and Tom Schwaller. PyOpenGL includes
OpenGL bindings for Python created using the Simplified Wrapper and Interface
Generator (SWIG) and distributed under open source licenses. It supports OpenGL
v1.0, OpenGL v1.1, GLU, GLUT v3.7, GLE 3, WGL 4, and Togl (Tk OpenGL widget).
PyOpenGL is also interoperable with Tkinter, wxPython, FxPy, PyGame, and Qt and a
large number of other external GUI libraries for Python. It has a very active following
and a regularly updated sourceforge project page at http://pyopengl.sourceforge.net/.

OpenGL has the reputation of being difficult to learn. Hey, there are reasons why they
pay game developers the big bucks! Python's version of OpenGL is no different than
any other version, and OpenGL looks pretty similar no matter what language you're
playing with.

The reason OpenGL is considered difficult to pick up is because three-dimensional
graphics programming can be a fairly difficult subject just on its own. Since OpenGL is
fairly difficult to master, this section covers just a few examples. If you discover, as
many programmers do, that OpenGL is your calling, then I recommend that you pick up
OpenGL Game Programming by Kevin Hawkins and Dave Astle.

Using OpenGL in Python is quite an advantage over other languages, however, because
Python and Pygame make several complex steps much easier. For instance, I use the
python.game window in these examples to open up a window for displaying graphics.
This could take dozens of lines of code in a non—high-level language, but it only takes
two in these examples. You also do not have to worry about freeing and releasing
memory for all of the complex graphics calls and routines. However, having no control
over memory allocation and de-allocation can cause problems.

NOTE
OpenGL

OpenGL is a standard graphics library originally created by Silicon Graphics. Back then
it was called GPL, and only ran on SGI hardware. SGI eventually turned their
technology into an open standard and licensed it to different machines. OpenGL may be
the premier development tool for developing portable 2d and 3d applications, and it has
also been a standard since the early 1990s.

OpenGL is free for application and game designers. It is an owned technology, but the
licensing applies to venders of hardware (i.e., the graphic card makers) that wish to
utilize the technology, not the software developers. SGI is currently working towards
modifying the license into a true open source license. This makes OpenGL very popular
among game developers, and many commercial games have used it, from Activision's
Quake, to Blizzard's Diablo, to Bioware's NeverWinter Nights.

Installing PyOpenGL

164

PyOpenGL needs a handful of dependencies in order to access all of its functionality.
Luckily, most of these will already be installed if you've been playing with the code in
this chapter. PyOpenGL needs Python 2.2 or higher, Tcl/Tk, OpenGL, GLU (which
should come pre-installed on most modern machines and with most modern graphics
card), the OpenGL Utility Toolkit (or GLUT for short), and Numeric Python.

The OpenGL Context may also require a few dependencies, depending on the platform.
Those dependencies that are freely distributable are on this book's CD, under
\PYTHON\PYOPENGL\DEPENDENCIES, except for Numeric Python, which has its
own folder \PYTHON\NUMERIC PYTHON). The standard binary installers for
PyOpenGL are located on the CD under \PYTHON\PUOPENGL. The source and
project page for PyOpenGL can be found at Sourceforge, which is where you will want
to look for the latest updates and news:
http://pyopengl.sourceforge.net/documentation/installation.html

Using PyOpenGL
There are four libraries to PyOpenGL, each of which is normally imported separately:

e GL. The basic, primitive library.

e GLU. Short for GL utilities; includes more advanced commands than GL.

e GLX. GL for x_windows.

e GLUT. GL Utilities Toolkit, which has even more sophisticated windowing
features.

For these samples you will be using both GL and GLU:

from OpenGL.GL import *
from OpenGL.GLU import *

To make things easier, you will also be using bits of the Pygame library:

import pygame
from pygame.locals import *

First a small program creates a PyOpenGL Window with a graphic on a Win32
platform. This first program, labeled openGL_1.py in this chapter's code section on the
CD, also sets the precedent for each PyOpenGL example that follows, so pay attention!

Presenting a Window in PyOpenGL

If you look at the sample code, the first thing you do after giving Python and Pygame
access to the PyOpenGL libraries through import statements is to declare a couple of
variables, like so:

rquad = 0.0
xrot = yrot = zrot = 0.0
textures = [0,0]

165

These are variables you'll use in later examples, not for this first simple one, so you can
ignore them for now.

After the variables you define how to size the window or PyOpenGL scene. Do this by
creating a windowsize function. This function will be called to set up the window or
scene at least once when the program is first run, and when it is called, it will be given
the height and width you want the window to be:

def windowresize ((width, height)):
glViewport (0, 0, width, height)
glMatrixMode (GL_PROJECTION)
glLoadIdentity ()
gluPerspective (45, 1.0*width/height, 0.1, 100.0)
glMatrixMode(GLiMODELVIEW)
glLoadIdentity ()

The first command in windowresize 1S glViewport. This command resets the current
View.

The glMatrixMode (GL_PROJECTION) line then sets up the projection matrix, which is
responsible for adding perspective. g1MatrixMode is defined by the next two
commands, in which the scene is set and the perspective is defined. The command that
follows is glLoadIdentity (), which resets and restores the projection matrix to its
original state.

Objects on the screen that are meant to be far away need to appear smaller in order to
create realistic 3D, so the perspective is then defined with gluPerspective. In this
example, the perspective is calculated by a 45-degree viewing angle based on 1 times
(1.0*) windowsize's height and width. 0.1 and 100.0 are the starting and ending points
for how deep the screen can go, and how many layers the screen can have.

Finally, you use g1LoadIdentity () a second time to turn attention to the projection
matrix and reset it.

Initializing PyOpenGL

After defining a three-dimensional window, you can then create a function that
initializes PyOpenGL. You need to establish what color the screen starts out as, the
depth buffer, and whether to use smooth shading, as well as a number of other possible
PyOpenGL features. Do this with an initialize command:

def initialize():
glShadeModel (GL_SMOOTH)
glClearColor (0.0, 0.0, 0.0, 0.0)
glClearDepth (1.0)
glEnable (GL DEPTH TEST)
glDepthFunc (GL LEQUAL)
ngint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST)

166

In initialize, you use glshadeModel (GL sMOOTH) first to ask PyOpenGL to use
smooth shading (smooth shading is simply one way of blending colors and lighting
when rendering a polygon). Next you use glClearColor, which sets the color of the
window screen when it is clear.

PyOpenGL takes in four numbers when you declare a color. The first three represent the
primary colors red, green, and blue, and the last is the alpha (transparency channel).
Each number can range from 0.0 to 1.0; the lower the number, the darker the intensity,
the higher the number, the brighter the intensity. The numbers must be in order of Red,
Green, Blue, and Alpha. You can create different colors by mixing these primary colors.
Black would be (0,0,0,0), white would be (1,1,1,0), and yellow would be (1,1,0,0) . Of
course, the last number is the alpha or transparency.

After setting the screen color you set up the depth buffer. The depth buffer keeps track
of how many layers deep the screen goes, and you need to have depth in order to have
any sort of 3D. The depth buffer actually keeps track of which objects are in front and
which are in back, so it knows how to draw the screen in the proper perspective. There
are three commands associated with the depth buffer in our initialize function:
glClearDepth,glEnable,andwngepthFunc.

glClearDepth specifies the depth value used when the depth buffer is cleared. The
glEnable command is used to enable various PyOpenGL capabilities. In this case, it is
enabling depth testing, which will allow initialize to do depth comparisons and
update the depth buffer. g1pepthFunc specifies the function used to compare each
incoming pixel depth value with the depth value present in the depth buffer. LEQUAL
is short for Less than or Equal to, and sets g1bepthFunc to pass the incoming depth
value if it is less than or equal to the present value.

glHint (GL_PERSPECTIVE CORRECTION HINT, GL NICEST) is along command, but it's
basically only a way of telling PyOpenGL to please use the best corrective perspective
and the highest-quality view when there is room for interpretation.

Drawing a Square

Our third function is the code that actually draws the display, so let's call it
drawgraphics (). This function will actually display everything that goes onto the
screen, so it will be doing most of the work in each example.

def drawgraphics/() :
glClear (GL7COLOR7BUFFER7E>IT | GLiDEPTHiBUFFERiBIT)
glLoadIdentity ()
glTranslatef (0.0, 0.0, -5.0)
glBegin (GL QUADS)

glvVertex3f(-1.0, 1.0, 0)
glvVertex3f (1.0, 1.0, 0)

glVertex3f (1.0, -1.0, 0)
glVertex3f(-1.0, -1.0, 0)

glEnd ()

167

First you g1clear to clear the screen to a color, clear the buffer, and then reset with
glLoadIdentity. glLoadIdentity actually moves you to the center of the screen,
which is 0,0 on the x- and y-axis. Left and down are negative numbers, and right and up
would be positive numbers; see Figure 4.15.

Figure 4.15. Three-dimensional space labeled by X, Y, and Z

The glTranslatef () command produces a translation of the current matrix by
multiplying it by the x, y, and z coordinates given to it. This sounds confusing, but all it
really does is change the drawing point from the current view to someplace else. In this
case, you do not change the glTranslatef () X ory coordinates (leaving them at 0,0)
but you do give a -5.0 for the z-axis, which basically pushes the matrix back five screen
depths. If you didn't push the matrix back, what you drew would be too close to the
front of the 3D space for you to see it. Basically, glTranslatef () is the command that
moves along the x-, y-, and z-axes. For instance, glTranslatef (1.5, 0.0, and -6.0)
would mean to move left 1.5 units and into the screen depth by 6 units.

NOTE

TIP

When you use glTranslatef (), you are not moving coordinated relative to the center
of the screen, you are actually moving glTranslatef () relative to wherever it
currently is. If you left glTranslatef () at the top right corner of the screen with the
last command, that is where it will still be when you use it later. This means you need
always keep track of its current position.

168

glBegin tells PyOpenGL that you want to start drawing, and (GL_ouaDs) tells
PyOpenGL that you want to draw a square or four-sided shape of some sort. You use
glvertex () to tell PyOpenGL where the four points of your square shape are located
on the x-, y-, and z-axes, and g1End () means you are done drawing and that there are
no more points. The first glvertex () number is is the first point of the square (and the
x-axis, if you are drawing a polygon). The second number is the y-axis, and the third
number is the z.

You have three usable functions; now you just have to set them up in a main loop.

def main () :
Define any variables
video flags = OPENGL|DOUBLEBUF
Initialize Pygame
pygame.init ()
pygame.display.set mode ((640,480), video flags)
Call our windowsize and Initialize functions
windowsize ((640,480))
initialize ()
#set frames to 0 before loop starts
frames = 0
Have pygame keep track of time
ticks = pygame.time.get ticks()
while loop that draws and looks to quit

while 1:
event = pygame.event.poll ()
if event.type == QUIT or (event.type == KEYDOWN and event.key
== K ESCAPE) :
break
Draw our fun graphics
drawgraphics ()
pygame.display.flip()
frames = frames+1l

A}

if name == ' main_ ': main()

There is actually quite a bit going on here. First, you define video flags to be
OpenGL and double-buffered; these are calls you need to make to Pygame in order to
render OpenGL correctly. Then you initialize Pygame with its init () method and set
the display to 640x480 with your video flags.

NOTE
Double Buffering

Drawing and redrawing screens and images can be time- and processor-consuming, and
game programmers have developed many tricks for increasing the speed it takes to
render drawings. One of these tricks is called double buffering, and is very common
when animating. Double buffering is so common, in fact, that most modern game and
animation libraries have built-in support for flags for using the technique. Can you
believe that programmers used to have to create their own buffers by hand? Talk about
Dark Ages!

169

Normally, when an image is redrawn, it is simply redrawn in place on the screen. In
double buffering, the image is redrawn ahead of time in a buffer or a hidden area of the
screen or memory, and then, when it is time to re-display, the buffer is simply copied to
the screen. In reality, a complex animation or sequence may have dozens of unseen
layers constantly loading with the graphics that will display seconds later.

Then you call the windowsize function with the same display size (640x480) and the
initialize function that initializes PyOpenGL. You set up a baseline frame variable
(equaling 0) and then you ask Pygame to use pygame.get . ticks to keep track of time
in milliseconds.

The actual work happens in the while loop. First, use Pygame's event.pol1l () function
to see, via keyboard input and an i f statement, whether the user wants to quit. Then call
the draw graphicsfunction, which draws the square.

pygame.display.flip () updates the display each time it is called. pygame.dipsplay
knows that you are using OpenGL and double buffering because of your earlier video
flags, so it updates the entire display by swapping the current view with the new ones it
has drawn and stored in memory (this is called a gl buffer swap). Then you update your
frames so that you know how many times the while loop has looped, and finally you
initiate main with a standard Python if line.

Whew! If you run openGL_1.py you'll see a white square open in a 640x480-pixel
Pygame window, similar to that in Figure 4.16.

Figure 4.16. OpenGL_1.py displays a square rendered in PyOpenGL and
displayed within a Pygame window

Setting the Color of an Object

170

Now that you have a baseline, let's look at what else you can do with PyOpenGL. Let's
try giving the square a color. You can use the glcolor3f () command, which also takes
in three commands, one each for red, green, and blue intensity values: g1lColor3f (r,

g, b,).PyOpenGL keeps these standards consistent across commands, so the colors
have a range from 0.0 to 1.0 and work exactly the same as if you were setting up the
screen background color with giclearColor3f ().

Turning on glcolor3f is like switching to a different-colored pen. When you switch to
red, everything you draw after that point is red. Then, if you switch to another color,
everything you draw after that is drawn in the new color. To make your square a Python
green, you simply need to add the g1Color3f command in your drawgraphics ()
function before you begin drawing with g1Begin (GL QUADS), like so:

def drawgraphics() :
glClear (GL _COLOR BUFFER BIT|GL DEPTH BUFFER BIT)
glLoadIdentity ()
glTranslatef (0.0, 0.0, -5.0)
#Adding color to our square
glColor3£(0.1, 0.9, 0.5)
glBegin (GL QUADS)

glVertex3f (-1 1.0, 0)
glVertex3f (1.0, 1.0, 0)
glVertex3f (1.0, -1.0, 0)
glvertex3f(-1.0, -1.0, 0)
glEnd ()

Now when you run this program (labeled openGL 2.py on the CD), you will see a
green square just like that in Figure 4.17. Notice that the polygon fills in the entire
surface with the colors you've drawn. This is called smooth coloring.

Figure 4.17. Coloring in a surface with gicolor3f()

171

Rotation and Movement

Now that you can color the square, let's try to rotate it. To do so, you need to add a bit to
the drawgraphics function. First, make use of the rquad (rquad is short for rotate
quad) variable by declaring it a global and then calling the g1rotatef () function. Use a
variable for rotation so that you have fine-grain control over the movement.

glRotatef (angle, x, y, z) produces a rotation of a given angle in degrees over a
given vertices given in X, y, and z coordinates. The command takes four arguments:
Angle, X vectol, Y vector, and z vector. Angle is a number that represents how
much to spin the object. The x, y, and z vectors represent the vector around which the
rotation will occur. For instance, (1,0,0), describes a vector that travels in the direction
of 1 unit along the x-axis.

The current matrix (remember it's all about g1MatrixMode) is changed by this rotation.
Set up the rotation by adding one line that calls glRotate () on your square using the
rquad variable as the angle and rotating on the x-axis:

def drawgraphics() :
glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT)
glLoadIdentity ()
glTranslatef (0.0, 0.0, -5.0)

Set up rquad for rotation, only real difference
global rquad
glRotatef (rquad, 1.0, 0.0, 0.0)

glColor3f (0.1, 0.9, 0.5)
glBegin (GL QUADS)

glVertex3f(-1.0, 1.0, 0)
glVertex3f (1.0, 1.0, 0)
glVertex3f (1.0, -1.0, 0)
glvVertex3f(-1.0, -1.0, 0)
glEnd ()

And then at the end of drawgraphics you update rquad so that the drawing of the
square continually rotates:

And update rquad for movement
rquad+= 0.1

This creates a rotating flat square, as illustrated in Figure 4.18 (the source is on the CD
as OpenGL_3.py).

Figure 4.18. A flat plane rotates along its x-axis

172

By playing with the rquad variable, you can change how many degrees the plane rotates
on the x-axis. You can make the plane spin faster or slower, backwards or forwards, by
changing the values associated with it.

Moving from Flat to 3D
You have already done most of the work for displaying three dimensions. Let's say you
wanted to change your flat plane to a cube. GL_QuUAD is actually capable of displaying a

cube object; you just need to tell it where the other vertices for the other five flat planes
should go. This becomes a pixel-plotting problem; it is shown in Figure 4.19.

Figure 4.19. A cube and points for each side are mapped out in 3D space

giViertencaf{1.0, 1.0, 1.0)

~— glVertex31(1.0, 1.0, -1.0)

gVertex3i(-1.0, 1.0, 1.0)—m

!

giVertexai(-1.0, 1.0, -1.0)

173

Once you know where each pixel belongs, you can feed the location to GL._ouap, which
fills in each surface for you:

Front Face

glvertex3f(1.0, 1.0,-1.0)
glVertex3f(-1.0, 1.0,-1.0)
glVertex3f(-1.0, 1.0, 1.0)
glVertex3f(1.0, 1.0, 1.0)
Back Face

glvVertex3f(1.0,-1.0, 1.0)
glVertex3f(-1.0,-1.0, 1.0)
glVertex3f(-1.0,-1.0,-1.0)
glVertex3f(1.0,-1.0,-1.0)
Top Face

glVertex3f(1.0, 1.0, 1.0)
glVertex3f(-1.0, 1.0, 1.0)
glVertex3f(-1.0,-1.0, 1.0)
glvertex3f(1.0,-1.0, 1.0)
Bottom Face

glvVertex3f(1.0,-1.0,-1.0)
glVertex3f(-1.0,-1.0,-1.0)
glvertex3f(-1.0, 1.0,-1.0)
glvVertex3f(1.0, 1.0,-1.0)
Right face
glVertex3f(-1.0, 1.0, 1.0)
glvertex3f(-1.0, 1.0,-1.0)
glvVertex3f(-1.0,-1.0,-1.0)
glVertex3f(-1.0,-1.0, 1.0)
Left Face

glvertex3f(1.0, 1.0,-1.0)
glVertex3f(1.0, 1.0, 1.0)
glVertex3f(1.0,-1.0, 1.0)
glVertex3f(1.0,-1.0,-1.0)

Now the cube has six sides. PyOpenGL automatically draws them in a counter-
clockwise order—the first point is top-right, the second point is bottom-right, and so on
until completely around the given plane. The rotation is already built-in, and the
MatrixMode automatically knows to update each side as it rotates; check out
OpenGL_4.py on the CD and Figure 4.20.

Figure 4.20. The flat plane becomes a full rotating cube

174

Let's say you wanted to speed up and twist your rotating cube around a bit more. It's
easy to fiddle with MatrixMode, especially since you've thought ahead and included a
number of variables with which to do it:

Now we use all of these
x,y, and z rots are the rotations on each axis
xrot = yrot = zrot = 0.0

These variables, xrot, yrot, and zrot, can be used to rotate the cube in a new way on
the x-, y-, and x-axes. Do so by adding a few lines to the top of drawgraphics:

global xrot, yrot, zrot
glClear (GL _COLOR BUFFER BIT|GL DEPTH BUFFER BIT)
glLoadIdentity ()
glTranslatef (0.0, 0.0, -5.0)

global rquad # not used for now
glRotatef (xrot,1.0,0.0,0.0)
glRotatef (yrot,0.0,1.0,0.0)
glRotatef (zrot,0.0,0.0,1.0)

And then add a few lines to the end of drawgraphics:

Use XYZ to rotate - speed it up a bit
xrot = xrot + 0.9
yrot yrot + 0.9
zrot = zrot + 0.9

This will cause your cube to rotate quicker and also spin on aother axis.

Adding Textures

175

In your final PyOpenGL tutorial you'll open and use a local texture image instead of
having PyOpenGL simply color the cube; this is illustrated in Figure 4.21. The full code
is listed in OpenGL_5.py in the Chapter 4 code section on the CD.

Figure 4.21. A textured cube spins around each axis

First you will make use of import os. A texture will then have to be loaded from
outside of Python, and your program will need to understand how to navigate through
different directories and pull files from its native operating system.

You will also finally be using the texture variables you initialized early on:

textures for loading the .bmp image
textures = [0,0]

You will be using textures[] for loading the .bmp you will be using for texture. The
first thing you need is a new function that opens up the .bmp file:

New function to find, load, and use the texture
def loadtextures|():
Need to find and load the texture
point to file = os.path.join('dtcfe.bmp')
texture surface = pygame.image.load(point to file)
texture buffer = pygame.image.tostring(texture surface, "RGBX", 1)

First, point to file uses the os module's os.path.join to point to the .bmp you
want to use—in this case it is the dtcfe.bmp file found on the CD with the code samples.
The next two commands use Pygame methods to load the .bmp image to a new surface
(texture surface) and then copy the image into a larger string buffer

(texture buffer). Specifying RGBX tells Pygame that the texture should be 32-bit
padded RGB data. This turns the .bmp image into an actual texture.

176

With Pygame, your textures must be at least 64x64 pixels, and shouldn't be more than
256x256 pixels. Textures need to be sized in height and width to the power of 2 (if the
textures are 64x64, 128x128, or 256x256, they do not need to be resized, otherwise they
do). These are of course the standard defaults for textures and are changeable, but not
without more advanced programming.

Now that Pygame has the texture, you hand it over to OpenGL. First you need to
specify that the texture is two-dimensional with G TEXTURE 2D, and then you need to
bind it to a texture[] array that will hold any and all textures your program needs:

glBindTexture (GL TEXTURE 2D, textures[0])

glTextImage2D is a PyOpenGL command that specifies a two-dimensional texture.
You feed it several values, including the texture surface, width, and height (using the
get width () and get height () methods). Then you specify that the texture is two-
dimensional with GL_ TEXTURE 2D, explain how the color format is organized with
GL_RGBA, define the data format used to store the texture data with GL_ UNSIGNED BYTE,
and finally, you give glTextImage2D () the actual data of the texture itself,

texture buffer, which you defined with Pygame:

glTexImage2D(GL TEXTURE 2D, 0, GL RGBA,
texture surface.get width(), texture sur-
face.get height(), O,
GL RGBA, GL UNSIGNED BYTE, texture buffer);

Whew—that's our longest one-liner yet. The last step in loading a texture is to tell
PyOpenGL what filtering to use when the image is stretched or altered on the screen. To
do so, use PyOpenGL's built-in glTexparameterf (), which simply defines the options
to use when texture mapping. The MIN and MAG filters specify texture magnification, and
GL_NEAREST asks PyOpenGL to grab the nearest pixel when redrawing the
GL_TEXTURE 2D image:

glTexParameterf (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST)
glTexParameterf (GL_TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST)

Now that you can load the .bmp image and turn it into a texture, you need to make
PyOpenGL use the texture on each side of the cube instead of filling in the sides with
glColor3f ().

Drawing a textured cube is quite a bit different from drawing colored cubes. Most of the
gl functions are the same but the g1BindTexture command we used to load textures
sets the texture we want to use, much like glcolor3f () set the pen to a specific color:

glBindTexture (GL _TEXTURE 2D, textures[0])

177

To map the texture correctly into a specific side of the texture, you need to make sure
the top-right of the texture is mapped to the top-right of the side; same with the bottom-
left. Each corner needs to be mapped using the glTexCoord2f (), command like so:

glTexCoord2f (0.0, 0.0); glVertex3f(-1.0, -1.0, 1.0)

The glTexCoord2f command is designed to map out textures in two dimensions. Once
you get the hang of using the command it is as easy to use as g1Color, there is just an
added complexity to each of the cube's mapped points:

glBegin (GL QUADS)

Front Face

glTexCoord2f (0.0, 0.0); glVertex3f(-1.0, -1.0, 1.0)
glTexCoord2f (1.0, 0.0); glVertex3f(1.0, -1.0, 1.0)
glTexCoord2f (1.0, 1.0); glVertex3f(1.0, 1.0, 1.0)
glTexCoord2f (0.0, 1.0); glVertex3f(-1.0, 1.0, 1.0)
Back Face

glTexCoord2f (1.0, 0.0); glVertex3f(-1.0, -1.0, -1.0)
glTexCoord2f (1.0, 1.0); glVertex3f(-1.0, 1.0, -1.0)
glTexCoord2f (0.0, 1.0); glVertex3f(1.0, 1.0, -1.0)
glTexCoord2f (0.0, 0.0); glVertex3f(1.0, -1.0, -1.0)
Top Face

glTexCoord2f (0.0, 1.0); glVertex3f(-1.0, 1.0, -1.0)
glTexCoord2f (0.0, 0.0); glVertex3f(-1.0, 1.0, 1.0)
glTexCoord2f (1.0, 0.0); glVertex3f(1.0, 1.0, 1.0)
glTexCoord2f (1.0, 1.0); glVertex3f(1.0, 1.0, -1.0)
Bottom Face

glTexCoord2f (1.0, 1.0); glVertex3f(-1.0, -1.0, -1.0)
glTexCoord2f (0.0, 1.0); glVertex3f(1.0, -1.0, -1.0)
glTexCoord2f (0.0, 0.0); glVertex3f(1.0, -1.0, 1.0)
glTexCoord2f (1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0)
Right face

glTexCoord2f (1.0, 0.0); glVertex3f(1.0, -1.0, -1.0)
glTexCoord2f (1.0, 1.0); glVertex3f(1.0, 1.0, -1.0)
glTexCoord2f (0.0, 1.0); glVertex3f(1.0, 1.0, 1.0)
glTexCoord2f (0.0, 0.0); glVertex3f(1.0, -1.0, 1.0)
Left Face

glTexCoord2f (0.0, 0.0); glVertex3f(-1.0, -1.0, -1.0)
glTexCoord2f (1.0, 0.0); glVertex3f(-1.0, -1.0, 1.0)
glTexCoord2f (1.0, 1.0); glVertex3f(-1.0, 1.0, 1.0)
glTexCoord2f (0.0, 1.0); glVertex3f(-1.0, 1.0, -1.0)
glEnd () ;

The result of this code (0penGL 5.py) is illustrated in Figure 4.21.

178

Sound in Python

Like with graphics, there are a number of available libraries for implementing sound in
Python.

PythonWare Sound Toolkit. An (unfortunately) abandoned kit for reading and
playing AU, VOC, and WAV files on Windows and Sun OSs. The unfinished
tookit is still available from PythonWare at http://www.pythonware.com.

PythonWare is a copyrighted, but free to use, library.

Boodler. An interesting tool for creating soundscapes which uses Python and is
created for UNIX operating systems (although some work on PDAs, Mac, and
with Direct X has been done). The project can be found at
http://www.eblong.com/zarf/boodler/.

Boodler combines sound samples into an ongoing stream of sound for
background noise.

The Snack Toolkit. The Snack Toolkit was developed by Kare Sjolander for
TCL and Python. It is a sound-processing toolkit with a TK interface. It supports
MP3 and sound filtering; the idea behind the kit is rapid development. Snack
needs both Tkinter and Tcl/Tk to work correctly. It adds the snack: sound
command, which is used to create and handle sound objects, read audio data
from wav files, and play sounds. Snack is accessed using the tkSnack module.
You can find information on Snack at http://www.speech.kth.se/snack.

The MusicKit Library. MusicKit is a full, object-oriented library for signal
processing and building sound, music, and creating MIDI applications. The kit is
based on Music V (From Bell Labs and Max Mathews) and was originally
written for NeXT. These are C tools made available to Python using PyObjC or
the Objective-C bridge. The DSP tools are only portable to Intel systems or
m68k, but the MIDI and sound streaming are available on Windows and Mac
platforms (at the time of this writing the project team was still working on a port
to Linux). The kit can be found on its own Sourceforge page, along with on-line
documentation, code examples, utilities, applications, and musical scores at
http://musickit.sourceforge.net/.

Python, of course, comes with a few sound functions built-in. These are included under
Multimedia Services and listed in Table 4.27.

Table 4.27. Python Multimedia Audio Services

Module Use

audioop Manipulates raw audio data.Operates on sound fragments consisting of signed

aifc

sunau

integer samples 8, 16, or 32 bits wide, stored in Python strings

Reads and writes audio files in AIFF or AIFC format (Audio Interchange File
Format)

An interface to the Sun AU sound format

179

Table 4.27. Python Multimedia Audio Services
Module Use

wave An interface to the WAV sound format. Supports stereo and mono but not
compression and decompression

chunk Reads EA IFF chunks

sndhdr Provides utility functions that determine the type of a sound file

Python also possesses a Winsound module that provides access to the basic sound-
playing machinery on Windows platforms. Winsound includes a single function from
the platform API, p1aysound, which takes in a sound parameter argument that can be
either a filename, a string (that's a string of audio data) or None.

Winsound's flags are listed in Table 4.28.

Table 4.28. Windsound's Flags

Flag Purpose

SND_FILENAME The sound parameter is the name of a WAV file

SND_ALIAS The sound parameter should be interpreted as a control panel sound
associlation name

SND_LOOP Play the sound repeatedly

SND_MEMORY The sound parameter to PlaySound () is a memory image of a WAV
file

SND_PURGE Stop playing a specified sound

SND_ASYNC Allows sounds to play asynchronously

SND_NODEFAULT [f the specified sound cannot be found, do not play the default beep
SND_NOSTOP Do not interrupt sounds currently playing

SND_NOWAIT Return immediately if the sound driver is busy

Although loading and playing sounds is covered in this section, audio programming and
the science behind sound waves is a complex and in-depth field. If you find audio
programming to be your bliss, I suggest checking out a copy of Mason McCuskey's
Beginning Game Audio Programming from your local library.

Playing a Sound with Pygame
You can play a sound using Python Pygame with just a few short lines of code. First do

the typical pygame import and the os module import so that you can find files on the
native operating system:

180

Import necessary modules
import os, pygame
from pygame.locals import *

After importing the needed libraries, you initialize pygame:

pygame.init ()

Pygame 's cross-platform music tools for sound effects and music are built through the
mixer module, so you use pygame.mixer to load the sound, and the built-in p1ay ()
method to play it:

soundl = pygame.mixer.Sound ('JUNGLE.wav')
soundl.play ()

That's it. To get this code to run on its own (as the Play Sound.py sample in the
Chapter 4 code section on the CD does), you also need to add a loop that keeps the
program running so that the sound has time to be loaded and played:

while 1: pass

Viola! Instant sound with only six small lines of code! Not bad at all. Of course, a real
game will need a sound function that's a bit more versatile.

Building a load_sound Function

A Pygame load sound function would look very similar to the 1oad image function
you created at the beginning of this chapter. You start by defining the function, which
takes in the name of the sound file:

def load sound(name) :

The 1oad sound code should check to see if pygame .mixer (the Pygame module that
loads up sounds) is installed. If pygame .mixer isn't available, Pygame will not be able
to load the sound. Pygame has a built-in feature called Nonesound, which, if used, will
send a blank sound object if the file cannot be found, so your function will not crash
while trying to load a non-existent sound.

if not pygame.mixer:

return NoneSound ()

Next, as with 1oad image, you build the complete path to the object with the os
module:

fullname=os.path.join('data', name)

181

Then use a try/except clause and return the sound object:

try:
sound=pygame.mixer.Sound (fullname)
except pygame.error, message:
print 'Cannot load sound:', wav
raise SystemExit, message
return sound

The full snip can be found as Load Sound.py on the CD:

def load sound(name) :
class NoneSound:
def play(self): pass
if not pygame.mixer:
return NoneSound ()
fullname=os.path.join('data’', name)
try:

sound=pygame.mixer.Sound (fullname)

except pygame.error, message:
print 'Cannot load sound:', wav
raise SystemExit, message
return sound

182

Networking in Python

For Python to send or receive information between two computers, it needs both of
those computers to understand a common address. This address consists of two things:
an Internet address (or IP address) and a port number.

IP addresses are 32-bit numbers represented by four decimals and separated by dots (for
example: 10.124.220.13). These numbers range from 0 to 255. Each IP address for each
network card or connector in a network must be unique.

A port is an entry point into an application or service that resides on the computer. Ports
are numbers represented by 16-bit integers, ranging from 0 to 65-535. Certain ports on
any

NOTE

The OSI Model

Systems of networking are defined by the OSI/ISO (Open Systems
Interconnection/International Standards Organization) model. The OSI model is made
up of seven layers. Most of today's networking protocols (like TCP/IP and UDP) span a
few of these layers.

1. Physical Layer.

Defines the information needed to transport data over physical components
(cables).

2. Data Link Layer.
Defines how data is passed to and from the physical components.
3. Network Layer.
Organizes the network by assigning addresses to each network element (IP).
4. Transport Layer.
Packs data and ensures transfer on the network (TCP, UDP).
5. Session Layer.
Handles each individual session or connection made.
6. Presentation Layer.
Used to handle problems with different formats and platforms.

7. Application Layer.

183

The actual application—the FTP client, HTTP browser, e-mail handlers, and so
on, that run on the network.

given machine are responsible for connections to certain services and applications (for
instance, port 80 is reserved for HTTP or Web page requests). Any number less than
1,024 is considered privileged, or reserved, and on most computer systems you will
need to be an administrator of some sort to run an application on them. An example of
this process is outlined in Figure 4.22 along with the OSI network model (see sidebar).

Figure 4.22. Sample communication between two computer stations

130 Nelwork Model

Layer 1: Physical

Gmwlnrﬁhmll’
address of 10.1.1.2 Layer 2: Dala

Leyer 3: Network
Layar 4: Transport
Layar 5: Session

Port 40000

Layar B: Prasantation

Layer 7: Application

Python uses a construct called a socket to send and receive data between addresses.
Sockets were originally introduced by UNIX BSD way back in the early 80s and are
used today to provide network-application connections. Basically, each end of a
network application needs to have a socket object of some type established on an
address in order to send and receive data or communicate. Establishing a socket on an
address is called binding.

Python has a socket () module to create object-based socket-style connections, and
socket ()

Table 4.30. socket () Methods

Method Purpose

accept () Accepts a new connection and returns two values: a new socket
object to be used to transfer data and the address of the socket
that this object is talking to

184

Method
bind ()

close ()
connect ()

getpeername ()

getsocketname ()

listen ()

makefile ()

recvirom/()

send ()

sendto ()

setblockingflag ()

shutdown ()

Table 4.30. socket () Methods

Purpose

Binds the socket to a port address
Closes the socket

Connects to another socket

Returns an IP address and the port to which the socket is
connected

Returns an IP address and the port of its own socket

Starts listening on a given port, waiting for other sockets to
connect

Creates a file object that you can use read () and write () on

Returns the data string received from the socket and the IP
address that has originated from the socket

Sends the date string to the socket

Sends the data string to the socket hosted by hostame at the
provided port

Blocks all read/write operations

Shuts down the client sockets or the server sockets or both

can be used to create both sides of a connection (which are usually referred to as the
client- side and server-side). The socket () module implements a number of functions,

as listed in Table 4.29.
Table 4.29. socket () Functions
Function Purpose
socket () Creates and returns a new socket object
gethostname () Returns the hostname of the local machine
gethostbyname () Converts hostname to an IP address
gethostbyaddr () Returns a tuple containing the hostname, hostname alias list, and
hostname IP list
getprotobyname () Returns a constant value equivalent to the protocol name
getservbyname () Returns the port number associated to the service and protocol pair

Once created, each socket object has access to a number of methods, as listed in Table

4.30.

185

NOTE

socket.ssl () can be used to set up a secure SSL connection. The secure connection
uses OpenSSL, which is also supported in the socket module.

Let's get Python to create a network connection—in this case, a TCP connection (see the
upcoming sidebar for more information on TCP and UDP). In order to set up the server
side of the connection, Python needs to take the following steps:

1. Create a socket.

2. Bind the created socket to an available port.

3. Start listening on that port.

4. Check the port periodically for new connections coming in.

5. When a connection comes in (from the client side), the server processes the
request and sends it back to the client.

Taken one at a time, these steps are fairly straightforward to implement. To create a
socket, you first import the socket module and then create an instance of a socket; this
requires a call to the socket constructor. The code looks like this:

Import the socket () module

import socket

Call the socket constructor

created socket=socket.socket (family, type)

Typically, the family designated in the socket constructor is set as AF_INET, which is an
Internet-type socket, or a socket that communicates between different machines. You
may also run into the AF un1x family, which is used for a UNIX-type socket and is
normally used when sockets communicate with each other on the same machine.

For a type designation you would see sock sTReaM for a stream or TCP connection or
sock_DGRaM for a datagram or UDP connection. If you wanted an Internet TCP
connection, the socket constructor would look like this:

server socket = socket.socket (socket.AF INET, socket.SOCK STREAM)

After creating a socket, you need to bind the socket to a port. To do so, you use the
bind () method:

socket.bind (address)

The socket is of course replaced with your socket instance, and the address is a two-
part tuple in the form of (host, port). If you wanted to bind server socket to host
10.100.100.201 and port 9000, do this:

186

server socket.bind("10.100.100.201", 9000)

Step 3 is to tell the server to start listening on the port, waiting for any connections. For
this step you use the 1isten () method, like so:

socket.listen (backloqg)

backlog lists the maximum number of clients that can request connections from the
server. In this example, you will set server socket with a maximum of 10
connections:

server socket.listen(10)

Now you need to set up a loop that waits for the client to request a connection. The loop
needs to run an accept method to receive the client requests:

connection, address = socket.accept ()

Finally, you set up communications for the server and client using the send () and
recv () methods. All of this inside of a while loop in Python looks like the following:

while 1:
data sent = "data to send client"
client socket, client address = server socket.accept()
print "Connection established with", client address
client socket.send(data_ sent)
client socket.close()

The data sent variable sets the data that will be sent to the client. Then the socket
accept () method grabs the client address to print on the following line. The contents of
data_sent are then sent to the client, and the connection is closed with the close ()
method.

The connection on the client side is even easier to code. There are only three things that
need to be done:

NOTE

TCP versus UDP

TCP/IP is a connection-oriented form of networking. It was originally developed by the

US Department of Defense as a form of communication with built-in redundancy. Layer
3 of the OSI model (the Network Layer) is provided by the Internet Protocol (IP), which

provides the basic mechanism for routing packets back and forth on the Internet.

TCP is short for Transmission Control Protocol. It is the main form of communication
over the Internet (working on OSI's Layer 4). IP needs TCP because on Level 3, IP

187

doesn't understand the relationships between the packets it sends, and it doesn't perform
any re-transmission. TCP handles the reliability by double-checking the packets' arrival
and controling sequencing of packets by keeping track of when each one arrives. With
TCP and IP, you can have two-way connections between machines over the physical
OSI layers, and, thus, all the cable, wires, phone lines, satellites, and wireless stations
that make up the Internet.

UDP is a different form of protocol that provides transport on OSI's Level 4 instead of
TCP. UDP is faster because it doesn't track packets sent and it doesn't bother
acknowledging their arrival. This, of course, is also less reliable. TCP guarantees
delivery and the order of delivery, but UDP doesn't guarantee either, and since it doesn't
have to waste time to double check, it can send packets to a destination more quickly.

1. First, create a socket.

2. Open a connection to the server socket via the address (the address being the
host's IP and the port number it is listening on).

3. If any data comes through the connection, process it and close the connection.

Step 1 looks fairly identical to the server-side steps:

import socket
client socket = socket.socket (socket.AD INET, SOCK_ STREAM)

After the socket is created, Step 2 involves connecting via the server address; this is
accomplished through the connect () method:

client socket.connect ("server hostname", 9000)

Finally, any data received is processed via the recv () method (capped at 512 bytes in
this example), printed, and then the client connection is closed via the close () method:

data received = client socket.recv(512)
client socket.close()
print "Received from host", data

Let's try the sample again, only this time initiate a UDP connection instead of a TCP
connection. With UDP, the server still creates a socket and binds with the address and
then begins listening. But at that point, the server's obligations stop, and the rest is
handled by the client.

To start, when initializing the socket you must specify sock DGRaM instead of
SOCK_STREAM:

server socket = socket.socket (socket.AF INET, socket.SOCK DGRAM)

188

And, in this case, the while loop action is shortened up to only receive the information
from the client (with a maximum number of bytes again) and display it:

while 1:
data sent, address = server socket.recvfrom(512)
print address[0], "server sent: ", data sent

It is the client, in this example, that does the rest of the work, Again, you need to
specify that the socket is a UDP-type socket:

client socket = socket.socket (socket.AD INET, SOCK DGRAM)

Then you specify the data to send, make the connection, send the data, and close the
connection:

data sent = my input("Data to send")
client socket.sendto(data sent, ("server hostname", 9000))
client socket.close()

How about an actual example? How about setting up a socket client and a socket server
and send text data between them? (This code can be found in the Chapter 4 source files,
labeled upP_server.py and UDP_Client.py, on the CD.) For the server, start by
importing socket and then designate a host and a port as variables:

UDP_ Server.py
import socket

My Host = "127.0.0.1"
My Port = 5555

You are using the standard localhost address 127.0.0.1 because, by doing so, you can
then test the server and client on the same machine. Next, establish a UDP socket
instance as before, and bind the socket to My Host and My Port:

Create the socket instance
My Socket = socket.socket(socket.AF INET, socket.SOCK DGRAM)

Bind the socket to host and port
My Socket.bind((My Host, My Port))

And finally, add a while loop that receives the packet from the client:

while 1:

Received Packet, address = My Socket.recvfrom(1024)
print "Packet received:"

print "From host:", address|[0]
print "Host port:", address[1]
print "Containing:"

189

print "\n" + Received Packet

Send data back to client

print "\ndata to client...",

My Socket.sendto(Received Packet, address)
print "Packet sent\n"

This time, you take advantage of the information that comes through the connection,
print the data, and then send data back to the client. Afterwards, you close the socket
connection.

Now for the client: Again you need to import the socket, set up the variables, and create
an instance of the socket:

UDP Client.py

Import socket and set up variables
import socket

My Host
My Port

"127.0.0.1"
5555

Create the socket instance
My Socket = socket.socket(socket.AF INET, socket.SOCK DGRAM)

Now you handle the sending of the data back and forth in a while loop:

while loop that handles the sending of the packets

while 1:
Send the data packet to the server
My Packet = raw input("Send Data to Server:")

print "\nSending packet containing:", My Packet
My Socket.sendto(My Packet, (My Host, My Port))
print "Packet sent\n"

Receive information back from the server

My Packet, address = My Socket.recvfrom(1024)
print "Packet received:"

print "From host:", address|[0]
print "Host port:", address|[1]
print "Containing:"

print "\n" + My Packet + "\n"

Data is received through Python's useful raw_input and sent to the server socket. The
while loop stays open to receive information that it is expecting from the server, and
then prints out the information. When you run the client and server, you are able to send
a custom message back and forth; it looks something like Figure 4.23.

Figure 4.23. UDP client server connection using the socket () module

190

Facksr semn

Fars Bats..

difg Fars Data e,

B e
At ain ey

il oo M Blal

191

Putting It All Together

In this section you'll take a bit from each previous part in the chapter to create a sample
game. This sample is called Snowboard!.py and can be found along with its data files in
this chapters section on the CD.

Snowboard! has a structure similar to the Monkey Toss.py sample from earlier, and
you'll follow the same general steps during creation:

1. Import the necessary libraries.

2. Define any necessary functions, the only one in this case being a
Display Message function for displaying splash text on the screen.

3. Define any game object classes, in this case SimpleSprite, Player, Obstacle,
and FinishLine.

4. Create amain () function and set up Pygame.

5. Draw and update the necessary graphics utilizing groups and sprites within a
while () loop.

Are you ready? Then break!

Import the Libraries

And the libraries are:

import os

import sys

import random

import pygame

from pygame.locals import *

'Nuff said.

Define the Functions

You want to set up a function that will display text in the game window. Let's call this
function Display Message, and use it to display a "You Win!" or a "Game Over!"
message at the game's conclusion. The function will take three parameters: the actual
message, the game screen, and the game background. You'll use pygame. font.Font to
define the type of font to use, font.render to render the message in white (RGB values
1,1,1), and use get rect () .cen terx and centery to ensure the text placement is in
the center of the window.

Generic function to place a message on screen
def Display Message(message, screen, background):
font = pygame.font.Font(None, 48)
text = font.render(message, 1, (1, 1, 1))

192

textPosition = text.get rect()

textPosition.centerx = background.get rect () .centerx
textPosition.centery = background.get rect () .centery
return screen.blit(text, textPosition)

As you see, our Display Message function looks remarkably similar to the
font.render example earlier in the chapter.

Define the Classes

Snowboard! will have four classes: simplesprite, which will be a base class for all the
other classes, and a Player, Obstacle, and FinishLine class:

class SimpleSprite:

class Player(SimpleSprite):
class Obstacle(SimpleSprite):
class FinishLine(SimpleSprite):

The simplesprite is the basis for all the others, and defines base methods for placing
the sprite on the screen using blit () and then covering the sprite with the background
to make it disappear. The default init method can take a loaded image and set itself
up as a rect () :

Base sprite class for all moving pieces
class SimpleSprite:

def init (self, image):
Can load an image, sets up w-In a rect()
self.image = image
self.rectangle = image.get rect()

def place(self, screen):
#Places the sprite on the given screen
return screen.blit(self.image, self.rectangle)

def remove(self, screen, background):
#Place under background to remove
return screen.blit (background, self.rectangle,
self.rectangle)

The FinishLine is a sprite that represents a movable line on the game board. The
snowboarder must travel a number of screen lengths before reaching the finish, dodging
obstacles on his way.

You only need an _init method and a move method for FinishLine to initialize it and
then move it where you have established the end game to be:

Finish line - movable for game difficulty
class FinishLine(SimpleSprite):

Initialize and center
def init (self, image, centerX = 0, centerY = 0):

193

SimpleSprite. init (self, image)
self.rectangle.centerx = centerX
self.rectangle.centery = centerY

#Finish line can move up and down depending upon game difficulty
def move(self, xIncrement, yIncrement):
self.rectangle.centerx -= xIncrement
self.rectangle.centery -= yIncrement

The obstacle sprite will be used to load up tree images, which the snowboarder will
have to avoid, to place on the screen. Notice how the move () method is used:

Class definition for the trees to avoid

class Obstacle(SimpleSprite):

Initiate an object of the class

def init (self, image, centerX = 0, centerY = 0):

Initiate with a loaded image and set as a rectangle
SimpleSprite. init (self, image)
self.positiveRectangle = self.rectangle
move obstacle to a specified location
self.positiveRectangle.centerx = centerX
self.positiveRectangle.centery = centerY
display that the object has moved position
self.rectangle = self.positiveRectangle.move(-60, -60)

The movement of these sprites will be dependent upon the player's actions, and will
require a complicated move method:

def move(self, xIncrement, yIncrement):
#Move trees up as the player moves down the slope
self.positiveRectangle.centerx -= xIncrement
self.positiveRectangle.centery -= yIncrement
Change position for the next sprite update
if self.positiveRectangle.centery < 25:
self.positiveRectangle[0] += \
random.randrange (-640, 640)
Keep the rectangle values from overflowing
self.positiveRectangle[0] %= 760
self.positiveRectangle[1] %= 600
Display that the object has moved In position
self.rectangle = self.positiveRectangle.move(-60, -60)

You will also need to check, using a col1ision watch method, for sprite collisions
with the snowboarder. The rectangular box that you use to detect the collisions is
actually a bit smaller than the graphics:

def Collision Watch(self):
#Make the collision box smaller than graphic
return self.rectangle.inflate(-20, -20)

Finally, you need to define the p1ayer class, which is the class that will actually control
the snowboarder. This class must be able to accomplish several things. First, the

194

snowboarder's four graphics—default, going left, going right, and crashed—all need
methods, and a method must also exist to load each graphic when it is needed.

The player class speed should be controllable, which means you need three methods—
one to determine if the P1ayer class is moving at all, one for speeding up, and one for
slowing down.

The P1layer class also needs to watch for collisions with obstacle classes, and
remember how far it has traveled so it can know when it passes FinishLine.
Altogether, this works out to some ten methods:

class Player(SimpleSprite):
def init (self, images, crashImage, centerX = 0, centerY = 0):
def Load Image(self):
def Move Left(self):
def Move Right(self):
def Decrease Speed(self):
def Increase Speed(self):
def Collision(self):
def Collision Watch(self):
def Are We Moving(self):
def Distance Moved(self):

We start with the init method that establishes the loading graphic and the initial
state of the Player:

def init (self, images, crashImage,
centerX = 0, centerY = 0):
Initial image and player state
self.movingImages = images
self.crashImage = crashImage
Initial Positioning - top and center
self.centerX = centerX
self.centerY = centerY
Starts with the Player graphic facing down
self.playerPosition =1
Start with 0 speed - not moving
self.speed = 0
self.Load Image ()

You use yet another version of Load Image to pull each version of the snowboarder
graphic when needed:

Load the correct image
def Load Image(self):
If the player has crashed - special

if self.playerPosition == -1:
image = self.crashImage
else:

All other cases the self.playerPosition determines which
graphic to use
image = self.movingImages|[self.playerPosition]
Notice that the SimpleSprite Is re-Initialized
SimpleSprite. init (self, image)

195

self.rectangle.centerx = self.centerX
self.rectangle.centery self.centerY

Now tackle movement. The following simply double-check that p1ayer class hasn't
crashed into something, and then change the player's position:

#Player Is Moving left
def Move Left(self):

Check for crashing, If so drop speed

if self.playerPosition == -1:
self.speed =1
self.playerPosition = 0

Otherwise start moving left

elif self.playerPosition > O:
self.playerPosition -= 1

self.Load Image ()

#Player Is Moving Right
def Move Right(self):
#Check for crashing
if self.playerPosition == -1:
self.speed =1
self.playerPosition = 2
Otherwise start moving right
elif self.playerPosition < (len(self.movingImages) - 1):
self.playerPosition += 1
self.Load Image ()

When moving down the hill, the P1ayer class will have variable speeds. First use the
Are We Moving method to determine if the p1ayer class is moving at all:

Is Player moving or does speed = 0
def Are We Moving(self):
if self.speed ==
return 0
else:
return 1

Then we define, increase, and decrease speed, which basically alters from 1 to 10
variables that the game code will use to increase or decrease the obstacle movement
rates:

Subtract 1 from speed
def Decrease Speed(self):
if self.speed > 0:
self.speed -= 1
Add 1 to speed up to 10,
Double check to see If we crash
def Increase Speed(self):
if self.speed < 10:
self.speed +=1
player crashed
if self.playerPosition == -1:
self.playerPosition = 1
self.Load Image ()

196

Next, you need to keep track of the distance the p1ayer class has moved. You do this
with two variables, xIncrement and yIncrement. These start at O and then increase as
the Player class moves down the virtual hill. Additionally, if P1ayer is facing straight
down, she travels a little bit faster than when she is traversing the hill. The distance is
also modified by self.speed:

def Distance Moved(self):
xIncrement, yIncrement = 0, O
if self.isMoving() :
Are we facing straight down, then faster
if self.playerPosition ==

xIncrement = 0
yIncrement = 2 * self.speed
else:
xIncrement = (self.playerPosition - 1) * self.speed
yIncrement = self.speed

return xIncrement, yIncrement

Finally, set up collisions. This includes the same sort of Collision Watch you saw
earlier with obstacle, and also a Col1sion method that can change the p1ayerclasses'
graphic if necessary:

def Collision Watch(self):
#Slightly smaller box
return self.rectangle.inflate(-20, -20)
Change graphic If necessary
def Collision(self):
#Change graphic to player crashed
self.speed = 0
self.playerPosition = -1
self.Load Image ()

Create main() and Set Up Pygame

The main () function is where all of the fun happens. The game needs a number of
variables defined, some of which change constantly and others that never change at all
(called constants). The first trick is to get all of these straight.

def main () :

#First set Constants (all capitalized by convention)
Time to wait between frames

WAIT TIME = 20

Set the course to be 25 screens long at 480 pixels per screen
COURSE DEPTH = 25 * 480

Seeds the number of trees on the screen
NUMBER_TREES = 5

Secondly set Variables

vertical distance traveled

distanceTraveled = 0

time to generate next frame

nextTime = 0

197

The course has not been completed

courseOver = 0

Randomly generated obstacle sprites
allTrees = []

All screen position sprites that have changed and are now "dirty"
dirtyRectangles = []

current time clock
timePack = None

Total time to finish course
timeLeft = 60

There are a number of images and sounds you will be using (located in the Data folder

under Chapter 4's code listing on the CD), so we need to tell Python where they are
exactly and what you will call them:

The paths to the sounds

collisionFile = os.path.join("data", "THUMP.wav")
chimeFile = os.path.join("data", "MMMMM1.wav")
startFile = os.path.join("data", "THX.wav")
applauseFile = os.path.join("data", "WOW2.wav")
gameOverFile = os.path.join("data", "BUZZER.wav")

The paths to the Images

Place all snowbaord files Into girlFiles

girlFiles = []

girlFiles.append(os.path.join("data", "surferLeft.gif"))
girlFiles.append(os.path.join("data", "surfer.gif"))
girlFiles.append(os.path.join("data", "surferRight.gif"))
girlCrashFile = os.path.join("data", "surferCrashed.gif")
treeFile = os.path.join("data", "tree.gif")

timePackFile = os.path.join("data", "time.gif")
game_background = os.path.join("data", "background2.png")

Now, to initialize Pygame, set the game surface to be 640x480 pixels, make the box

caption "Snowboard!", and make the mouse invisible, as the game code doesn't use it:

initializing pygame
pygame.init ()

screen = pygame.display.set mode((640, 480))
pygame.display.set caption("Snowboard!")
Make mouse.set visable = false/0

pygame.mouse.set visible(0)

Now that Pygame has been initialized and you have a window to play in, set the
background to the nice snowy-hill-looking background2.png image:

Grab and convert the background image

background = pygame.image.load(game background) .convert ()

blit the background onto screen and update the entire display
screen.blit (background, (0, 0))

pygame.display.update ()

198

Now you need to use Pygame to load the sounds and images to which you have
established the paths:

First load up the sounds using mixer
collisionSound = pygame.mixer.Sound(collisionFile)
chimeSound = pygame.mixer.Sound(chimeFile)
startSound = pygame.mixer.Sound(startFile)
applauseSound = pygame.mixer.Sound(applauseFile)
gameOverSound pygame.mixer.Sound(gameOverFile)

Next we load the images, convert to pixel format
and use colorkey for transparency
loadedImages = []
Load all the snowboard files which are In girlFiles
Then append them Into LoadedImages]|]
for file in girlFiles:
surface = pygame.image.load(file) .convert ()
surface.set colorkey(surface.get at((0, 0)))
loadedImages.append(surface)
load the crashed surfer image
girlCrashImage = pygame.image.load(girlCrashFile) .convert ()
girlCrashImage.set colorkey(girlCrashImage.get at((0, 0)))
load the tree image
treeImage = pygame.image.load(treeFile) .convert ()
treeImage.set colorkey(treeImage.get at((0, 0)))
load the timePack image
timePackImage = pygame.image.load(timePackFile) .convert ()
timePackImage.set colorkey(surface.get at((0, 0)))

There are three last things you need to do before jumping into the while () game loop.
The first is initialize the p1ayer snowboarder. Secondly, set up all the obstacle trees

on the course. Finally, play the start up THX sound, just for effect:

initialize the girl-snowboarder
centerX = screen.get width() / 2
Create and Instance of Player called theGirl
Use the crashimage, center horizontally and 25 pixels from the
top
theGirl = Player(loadedImages, girlCrashImage, centerX, 25)
place tree Objects in randomly generated spots
for i in range(NUMBER TREES):
allTrees.append(Obstacle(treelmage,
random.randrange(0, 760), random.randrange(0, 600)))
Play start - up sound for effect
startSound.play ()
pygame.time.set timer (USEREVENT, 1000)

Drawing and Updating within the while Loop

Now you need to set up the while loop that updates all the sprites, keeps track of time,

and renders everything. The while loop will be set to run until the course is over:

while not courseOver:

199

Then there are a few things you need to do with timing to make sure the game flows
smoothly:

currentTime = pygame.time.get ticks()
Wait In case we are moving too fast
if currentTime < nextTime:
pygame.time.delay(nextTime - currentTime)
Update the time
nextTime = currentTime + WAIT TIME

Then check for sprites that are "dirty" (that have changed and need to be updated). We
remove any sprites that need to be removed and check to see whether a timePack
should to be drawn (a timePack will increase the time left before the loop is exited,
giving the player more time to reach the finish line):

remove objects from screen that should be removed
dirtyRectangles.append(theGirl.remove (screen,
background))
Check all the trees
for tree in allTrees:
dirtyRectangles.append(tree.remove(screen,
background))
Check timepack
if timePack is not None:
dirtyRectangles.append(timePack.remove(screen,
background))

Now throw in the event code that listens for a player hitting the keyboard. Use Pygame's
built in po11 () method to fill the event queue. The player's commands directly affect
the P1ayer instance (theGirl) by calling the appropriate methods:

get next event from event queue using poll () method
event = pygame.event.poll ()
if player quits program or presses the escape key

if event.type == QUIT or \
(event.type == KEYDOWN and event.key == K ESCAPE):
sys.exit ()

if the up arrow key was pressed, slow down!

elif event.type == KEYDOWN and event.key == K UP:

theGirl.Decrease Speed()

if down arrow key was pressed, speed up!

elif event.type == KEYDOWN and event.key == K DOWN:
theGirl.Increase Speed()

if right arrow key was pressed, move player right

elif event.type == KEYDOWN and event.key == K RIGHT:
theGirl.Move Right ()

1if left arrow key was pressed, move player left

elif event.type == KEYDOWN and event.key == K LEFT:
theGirl.Move Left ()

Update the time that the player has left

elif event.type == USEREVENT:
timelLeft -= 1

200

Use random to randomly create timePacks on the screen as the player travels down the
mountain:

1 in 100 odds of creating new timePack
if timePack is None and not random.randrange(100):
timePack = FinishLine(timePackImage,
random.randrange(0, 640), 480)

Now, as the theGirl class instance moves down the mountain, you need to make sure
the sprites that handle the trees and the timePack are updated and redrawn. This only
happens if Are We Moving is true

update obstacles and timePack positions if the player Is moving
First check Are We Moving
if theGirl.Are We Moving():
Check theGirl x and y Incremented distance
xIncrement, yIncrement = theGirl.Distance Moved()
Move all the tree sprites accordingly
for tree in allTrees:
tree.move (xIncrement, yIncrement)
If there Is a timePack move It as well
if timePack is not None:
timePack.move (xIncrement, yIncrement)
if timePack.rectangle.bottom < 0:
timePack = None
distanceTraveled += yIncrement

Next handle the meat of the collision detection. Check all grouped tree sprites in the
timePack using the Collision Watch method:

check for collisions with the trees
treeBoxes = []
for tree in allTrees:
treeBoxes.append(tree.Collision Watch())
Retrieve a list of the obstacles colliding with the theGirl

Collision = theGirl.Collision Watch().collidelist (treeBoxes)
When colliding play a sound and subtract from the time left
if Collision != -1:

collisionSound.play ()

allTrees|[Collision].move(0, =540)
theGirl.Collision ()

timeLeft -= 5

Determine whether theGirl has collided with a timePack
A timePack must exist first
if timePack is not None:
if theGirl.Collision Watch() .colliderect(timePack.rectangle

Play a sound and Increase the time left
chimeSound.play ()

timePack = None

timeLeft += 5

201

There are only a few things left to do before yoou can exit the while () loop. First you
want to draw any dirty or changed objects, mainly the trees and the timepPacks. You
also want to check to see if theGirl has reached the finish line, and, if so, exit the loop.
Finally, you want to check the time; once timeLeft has reached 0 the game will also
exit the loop:

place objects on screen
dirtyRectangles.append(theGirl.place(screen))
for tree in allTrees:
dirtyRectangles.append(tree.place(screen))
if timePack is not None:
dirtyRectangles.append(timePack.place(screen))
update whatever has changed
pygame.display.update (dirtyRectangles)
dirtyRectangles = []

check to see If we have reached the end of the course
if distanceTraveled > COURSE DEPTH:

Set a flag that says we have won!

courseOver = 1

check to see If our time has run out
elif timeleft <= 0:
break

Whew! Now, just a bit of wrap-up code at the end of main () and after exiting the
while () loop. If you have exited the while loop and courseover is set to 1, that means
the player reached the end of the course and should get praise. Otherwise she lost.

if courseOver:
applauseSound.play ()

message = "You Win!"
else:

gameOverSound.play ()

message = "Game Over!"

Of course, you use your handy-dandy Display Message function to tell the player what
happened:

pygame.display.update(Display Message(message, screen,
background))

Use the event queue to wait for the player to gracefully exit the program:

wait until player wants to close program
while 1:
event = pygame.event.poll ()

if event.type == QUIT or \
(event.type == KEYDOWN and event.key == K ESCAPE):
break

202

Finally, close off the main () function and make sure main is called with this typical end
to the Python program:

if name == " main ":
main ()

203

Summary

Wow, you've come a long way. Just a few short 80 pages or so ago you were a newbie
Python programmer; now you can surf with the best of them! You should feel
comfortable creating a game loop, loading sounds and graphics, and doing basic
networking with Python now.

Important points from this chapter:

e The two keys to Pygame are the surface and the rect.

e Really understanding blitting and sprites can greatly increase your game's
performance.

e There is a ton of libraries that exist for doing things in Python.

e Tkinter has more methods and constructs than you can throw a stick at.

e Tkinter's pack (), grid(), and place () methods are the key to organizing the
Tkinter GUL

e There are tried and tested libraries for dealing with common development needs
like networking and sound, most of which are uncomplicated.

204

Questions and Answers

1: Q: Why didn't you cover [popular game programming library]?

A: A: There is so much out in Python land that it would simply be impossible to
include detailed references to everything that is out there. Not only is the
amount of development work immense, it is constantly changing.

2: Q: Which graphics library is the best one to use for my first best-selling
game?

A: A: Each library seems to have its own strengths and weaknesses. However,
this important decision should be based on your project's needs, not on the
features of any particular library. With the rapid change in today's technical
world, I would also check and make sure a library has had recent updates and
a number of faithful, experienced users before launching a project with it.

205

Exercises

1: Use Load Image to create a simple slideshow that switches between images
every few seconds or with a keyboard click.

2: What are the steps taken to create a simple game engine with Pygame?

3: Change the event code in Monkey Toss.py or Snowboard! to take mouse
input instead of keyboard input.

4: List at least three of the OSI network layers.

S: Alter Load_sound.py so that it is capable of playing a MIDI, MP3, or any
file besides a WAV.

206

Chapter 5. The Python Game Community
Even snakes are afraid of snakes.
——Steven Wright

Python's game-development community is extremely active, and literally dozens of
prebuilt game engines are available through the GNU open-source community license.
There are also specific tools and libraries for utilizing and creating art and graphics, not
to mention resources for networking and massive multiplayer gaming. It is not possible
within the confines of this book to list all of the active projects and awesome tools
available to the young Python programmer; you just have to dive in and start
researching. This chapter starts the process with tools and resources that I have had
some good experiences with; I think it'll be a good place to start.

207

Engines

An engine is simply a tool, and this chapter focuses on tools and engines available that
help you program games. These tools are all Python-based and open-source, and, for the
most part, are geared towards the beginning programmer and so have easy-to-use
interfaces.

The Cyclon Online Gaming Engine

The Cyclon Online Gaming Engine (COG for short) is an open-source computer game-
authoring system. The system comes with a development application to facilitate game
creation, a "fill-in-the-blanks" GUI that brings up windows in which you set up the
game information, player information, rooms, directions, items, events, and even define
action verbs that can be taken in by the text parser. The development application is
shown in Figure 5.1.

Figure 5.1. The COG development application

SlRisSielH|R o= el]y

=
- ERNEEE

Ao # [1 e L [T T

COG currently supports a semi-Myst interface, with photo-realistic screens, text-based
input, and mouse company-point movement. Games created with COG are meant to be
run online via HTTP or through a Web browser interface. The engine can be found on
Sourceforge at http://cogengine.sourceforge.net/.

Python Adventure Writing System

The Python Adventure Writing System (PAWYS) is a text adventure system developed
by Roger Plowman. As with many Python-based game tools, PAWS is aimed at the
non-programmer and consists of a game engine, a world library, and a play module.
PAWS is fairly well documented, and comes with a few sample games and two great
explanatory texts, one aimed towards first-time game writers and another, aimed
towards code-heads, that explains how the Python sources work. Even the source code

208

itself is well documented—especially the sample games, which read like tutorials
themselves. You can find PAWS on the CD accompanying this book under the Python

section (see Figure 5.2).

Figure 5.2. The PAWS engine at work

Cloak of Darkness

Foyer of the Opera House

Tixd @t

PAWS includes a few fun tricks to keep its games lively. For instance, it has a say ()
function that takes the place of print in Python; say () has the special ability to read
commands for paragraph breaks, boldface, titles, and color. These tricks are especially
helpful when designing a text-based game. say () also has a parse alias, Object, which
is called p in the code for short. PAWS also includes a number of fun and unique
classes, set up in the core game and in the universe library, for creating game objects
and doing lots of useful things. These classes and what they are used for are outlined in

Table 5.1.

Class
ClassActivatableltem

ClassActor

ClassBaseObject

ClassBasicThing

ClassContainer
ClassDirection

ClassDoor

Table 5.1. PAWS Classes

Summary
Creates items a player can turn on and off

Creates people, animals, monsters, and other things players
will be able to talk to or fight with. Based on

ClassBasicThing.
Base class for creating all "things" the player can interact with

Defines basic physical laws. Base for specialized classes of
"things"

Creates containers that can hold things
Used to create direction traveled by the player

Creates one side of a door

209

Table 5.1. PAWS Classes

Class Summary

ClassFundamental The base root class of all the other classes. All other classes
are based on this parent

ClassGameObject Creates the game object

ClassGlobal Creates a global object

ClassItem Creates an object that can be taken and carried by the player

ClassLockableDoor Creates a lockable door

ClassMonster Defines anything with combat abilities. Based on
ClassActor

ClassOpenableltem Defines items that can open or close

ClassParserError Stores error messages

ClassPlayer Defines the player character object

ClassRoom Defines room

ClassScenery Creates props and atmosphere

ClassShelf Creates a fixed shelf that items can be placed on

ClassUnderHider Creates an item that drops contents when taken

PAWS makes it very easy to develop games quickly if you're accustomed to Python.
For instance, the directions a player can traverse are set up through a Python dictionary.
An example map might be something like the following:

MyRoom 1.Map = {North: "You can't go that way.",

Northeast: "You can't go that way.",
East: "You can't go that way.",
Southeast: "You can't go that way.",
South: "You can't go that way.",
Southwest: "You can't go that way.",
West: "You can't go that way.",
Northwest: "You can't go that way.",
Up: MyUpstairsRoom 1,

Down: MyDownstairsRoom 1, }

PAWS knows its maps well enough to figure out how to link rooms together or print out
a string if that's what you want to have happen when a player travels in a certain
direction. Items and rooms in PAWS are defined by using the class and then overriding
the appropriate defaults methods, like so:

MyItem 1 = ClassItem("Mine")
MyItem 1.Bulk = 1
MyItem 1l.StartingLocation = MyUpstairsRoom 1

210

In this example, I defined an item, MyItem. The argument given ("Mine") is the noun
descriptor PAWS will use to reference the item. The Bulk () and startingLocation ()
methods (inherited from classTtem) set up where the item will originally be found,
along with its weight/size in the player's inventory.

Other fun PAWS features include a parser that can be extended so that a programmer
can add new verbs and adverbs, game daemons that can be spawned to run functions at
every player turn, and "fuses" that will run a function after a delay of so many turns.
There is even a debug mode that allows you, for testing purposes, to trace commands
and set variables while playing.

To get the latest version of Paws, hit Roger's site, at
http://members.nuvox.net/~zt.wolf/PAWS.shtml.

PyPlace

PyPlace, by Peter Goode (and based on work by Pete Shinners), is a tool for generating
isometric maps—"Place" rendering in Python.

The power behind PyPlace is a render.py module. This render model takes in a map
object, which is basically a three-dimensional array, and uses the map to render an
isometric view map with a number of square tiles (which are provided in a .png format).

Unfortunately, the project has been in alpha for quite a while, and it appears as though
development on the project has stopped. Still, for the guru, this could be a good starting
place for an isometric game engine. Find the project homepage at:
http://www.mrexcessive.net/pyplace.

And find it at Sourceforge project page at http://sourceforge.net/projects/pyplace/.

Python Universe Builder

The Python Universe Builder is a set of Python modules used to create text-based
games or works of interactive fiction. PUB was originally built by Joe Strout and was
subsequently revised by Terry Handcock for his AutoManga project. PUB is currently
now under the wing of Joshua Macy, who has made efforts to update PUB for Python
2.0 and document the project. The Sourceforge page can be found at http://py-
universe.sourceforge.net/index.html.

NOTE
The Basic Universe Simulator

PUB's younger brother, the Basic Universe Simulator, is a set of Python code that
demonstrates interactive fiction and Python. It is meant to be a short example of what
Python is capable of, or a building block for a more complex game (the BUS is really
just a few scripts capable of parsing English sentence-like commands). BUS was also
built by Joe Strout and can be found at his Website, http://www.strout.net/.

211

PUB has a handful of modules for importing, as shown in Table 5.2. The modules are
object-oriented, and have several big base classes grouped around objects that players
interact with and verbs that the PUB uses to translate player commands.

Table 5.2. PUB Modules
Module Function
demo Contains a simple demo game
gadgets For building specific objects
pub Contains globals
pubobjs Contains standard objects
picklemod For saving (pickling) entire modules
pubscore Contains datatypes, functions, and constants
pubtcp Used for network support
pubverbs Contains standard verbs
tcpdemo Used for MUD adaptation

PUB also has classes for schedulers, commands, the parser itself, and events, which can
be used to create everything used in the engine.

After importing PUB, you can begin building MUD-like rooms and areas fairly quickly.

Create a room with module pubobjs and method Room
MyPrisonRoom = pubobjs.Room ("Dungeon Prison Cell")

Describe room with desc method

room.desc = "You're in a small barred cell with walls of stone.\
To the north is a rusty Iron-barred door. \

A small bowl filled with water lies In one corner of the room."
Establish north exit exits

room n= Exit ("north,n,out,bars,door")

Describe exit

room n.desc = "The door appears to be unlocked.”

Add object Into the room

water = pubobjs.Liquid ("water,liquid")

Describe object

water.desc = "It appears to be ordinary water, and fairly clean."

This example first creates a sample room called MyPrisonRoom using pubobjs.Room,
and then describes the room and establishes exits with the desc () and Exit () method
calls. Then an object, in this case a Liquid () object, is created within the room and
described in a similar way. Notice how creating an object in a room and creating the
room itself are nearly identical.

PUB's biggest strength is likely its sentence parser, which allows fairly complex input
from players ("Get the dragon and put it in the shoe...").

212

The Sourceforge page provides a few sample games (including a sample game that has
been turned into a MUD version) and a template script that handily shows, via
comments, where objects must reside. The source code itself is also available and fairly
well commented.

The Pyzzle Game Engine

Pyzzle is a free (under the GNU public license), pre-built game user-interface in the
spirit of the Myst and Riven (it is included in this book's CD under the section on
Python). Authored by Andrew Jones and written in Python and Pygame, the engine
includes the following features:

A modular rendering interface capable of using OpenGL, SDL, or Direct3D.
Runs on several platforms (Windows, NT4, OSX, BeOS, FreeBSD, IRIX, and
Linux).

Full API using Python scripting.

Support for different display sizes (640x480, 800x600, 1024x768, and so on).
Ambient sound, music, and sound effects (using WAV files).

Over-slide images (formats include BMP, GIF, PNG, JPG, PCX, and TGA), text
using True Type fonts, and movie playback using MPEG files.

In-game objects that players can carry.

Zip navigation option.

Customizable color graphical cursors.

Slide-like Riven-style area transitions.

Basic menus.

See Figure 5.3 for a look at Pyzzle's packaged demo game in action. Pyzzle is composed
of the handful of modules listed in Table 5.3.

Figure 5.3. The Pyzzle demo game showing the engine at work

213

Table 5.3. Pyzzle Modules

Module Use

AmbientSound Defining ambient sounds and music
Image Defining over-slide images

Movie Defining movies

Object Defining objects

parameters Controlling the global game parameters
paths Defining the default paths

Pyzzle The base engine

Slide Defining slides. The basic graphics unit
Sound Defining sound effects

Text Defining over-slide text

The API isn't quite finished as far as documenting goes, but just opening up the demo
game files (check demogame.py) and perusing them can be quite revealing (and, of
course, the source code is freely available).

Once Pyzzle has been imported, you use parameter methods to set the game
parameters like screen size and background color:

#import Pyzzle
import pyzzle
from pyzzle import *

Set a few game parameters
parameters.setScreenSize ((800,600)) # window size in game
parameters.setBackgroundColor ((0,0,0)) # set background to black

Then you use the paths module to set the paths to the WAV, MPEG, screen, and other
files:

#Tell Pyzzle about a few paths to use.

paths.setSlidePath (os.path.join('data', 'slides'))
paths.setSoundPath (os.path.join('data', 'sounds'))
paths.setImagePath (os.path.join('data', 'images'))
paths.setMoviePath (os.path.join('data', 'movies'))

You will need at least one slide, which is basically a game screen. It can be easier to
start off giving each slide a label:

#define Slide containers

MyStartingSlide = Slide ()
MySecondSlide = Slide()
MyThirdSlide = Slide ()

214

And then defining each slide:

Define slides

MyStartingSlide.setNavType (standard)
MyStartingSlide.setSlideFile ('MyImageFile.jpg')
MyStartingSlide.setNavigation ([MySecondSlide, MyThirdSlide,])
MySecondSlide.setNavType (standard)

MySecondSlide.setSlideFile ('MyImageFile2.jpg')
MySecondSlide.setNavigation ([MyStartingSlide])

This would set and connect two different images as slides that could navigate to each
other. Starting the game up requires two lines:

Set the starting slide
pyzzle.setFirstSlide (MyStartingSlide)
#start the game

pyzzle.start ()

There is a lot more that Pyzzle can do. Each slide can include music, items, special
effects, and special behavior defined for clicking and navigating. Text, objects, ambient
sound, containers, and puzzle control logic can all be defined and used to make a great
game. For the latest version of Pyzzle, check out its homepage on Sourceforge, at
http://pyzzle.sourceforge.net/.

215

Graphics

What do 3DS Max, Lscript, Lightwave, Alice, Maya, Blender, Animation Master,
TrueSpace, RenderMan, and Poser all have in common? Well, besides being graphic
programs and 3D applications, they are all Python scripting interfaces. Python is ideal
for the struggling artist; it's able to link up to industry gear and is perfect for creating
quick custom tools or automating repetitive tasks.

Alice

Alice is a tool for developing three-dimensional graphics, built around the concept of
"3D for everyone." Most 3D engines require the programmer to know extensive
trigonometry, vector algebra, and other painful math. Alice is designed to provide non-
programmers with access to 3D programming and interactive worlds. One of the things
that makes Alice powerful is that it has a very straightforward, easy-to-learn GUI
(shown in Figure 5.4) for placing, sizing, tweaking, and animating three-dimensional
objects and spaces.

Figure 5.4. The Alice GUI

B e {30 EERTO0N] 11 SeAPAl - 1 W ik 00 e W it Wi e [el

g e | g

O 518 = 29

| oy

Alice is open source and made available by its current developers and copyright holders,
the Stage Three Research Group at Carnegie Mellon University, and can be found
online at http://www.alice.org.

The worlds and content created with Alice are freely distributable, as long as the
stipulations in the license are followed. The Alice project initially began at the
University of Virginia, and over the years has received support in the form of grants
from DARPA, Intel, Microsoft, NSF, Pixar, Chevron, NASA, the Office of Naval
Research, Advanced Network and Service Inc., ONR, and the Python community itself.

216

Currently Alice supports two-dimensional graphic imports (via drag and drop or
through its built-in billboard) and .ase files, which are ASCII Scene Export files used
for exporting 3D wire-frames on several 3D modelers (including 3D Studio Max). Alice
is also capable of importing music and sounds by using MP3 files. The engine comes
equipped with hundreds of models and sounds pre-built and packaged for the newbie.

Alice actually has draggable programming constructs (for example, i f/else statements
and loops) that can be used to set the behavior of the models. Underneath the GUI is a
complete language that supports methods, arrays, lists, functions, recursion, and so on.

Alice has recently gone through a complete re-development, and work is ongoing to
allow Alice to export and import more formats and run on more platforms. Originally,
Alice was completely Python—the core, the code, the whole enchilada. With the recent
major rewrite (which has been ongoing since 1999), much of the software has been
rewritten in Java. However, the engine is still scriptable via Jython.

Jython is an implementation of Python. However, Jython is written completely in Java,
and is integrated into Sun Microsoft's Java 2 J2EE platform. This means Jython has all
the dynamic object-oriented features of the Python language, and also runs on any Java
platform.

In order to implement Python/Jython scripting in Alice, you need to first enable it. You
can turn on Jython scripting under the Preferences menu. Select Edit, Preferences,
Enable Jython Scripting, as shown in Figure 5.5.

Figure 5.5. Enabling Jython scripting in Alice's GUI

Once scripting is enabled, every object within the Object Tree (the top left-hand

window, which includes any instance of three-dimensional objects, including the world
itself) is script editable with a right-click of the mouse, or through one-line scripts via a
"go" executable line (see Figure 5.6). You can also access scripts when editing methods

217

(Alice has a built-in method editor) with two draggable tiles called Script and Script-
Defined Response.

Figure 5.6. Editing a penguin object script from the object tree

- e e

Heissss
| it

The Script tile allows you to type in code that will be run when that script method is run
in the Alice engine. The Script-Defined Response is used to fire pre-composed Alice
animations.

Objects in Alice can be called, using their names, through scripts, and their properties
and variables are accessed just like member variables:

Penguin.isShowing = false

All of this is pretty powerful—not only can you script objects via Python/Jython, but
with Jython you also have access to the entire Java API. The scripts can also call built-
in Alice animations and Alice's "RightNow" methods, like those outlined in Table 5.4.

Table 5.4. Alice's RightNow Methods

Method What it does

DoInOrder () Runs a series of animations

IfElseInOrder () Runs animation list if the condition is met for if/else
statements

isShowing () Sets subject to be visible or not visible

ForEachInOrder () Iterates through a list

MoveAnimation () Moves subject

218

Table 5.4. Alice's RightNow Methods

Method What it does

moveRightNow () Moves subject immediately if given direction and amount
PositionAnimation () Sets subject position in world

ResizeAnimation () Resizes subject

resizeRightNow () Resizes subject immediately

rotateRightNow Rotates on given axis immediately

setOrientationRightNow Sets subject's orientation via 3D matrix immediately

SoundAction () Plays given sound at specified volume
TurnAnimation () Rotates subject

turnRightNow () Rotates subject immediately given amount
WaitAction () Waits for given duration

WhileLoopInOrder () Runs through animation list while condition is true

These methods (and many others—check out the Alice2 documentation) can be called
on models within Alice, but also on Alice's camera (the "watcher" point of view) and
other objects like lights.

Let's say you wanted to define an animation function in Jython. You can define the
animation just like you define any other function:

def MyAnimation (MyObject) :
return MyAnimation

In this case, the function Myanimation will take in MyObject as an argument and send
back Myanimation as the animation series you want the model to execute (assuming
that the object will be an Alice model). Now let's set the animation to do something:

def MyAnimation (MyObject) :
turn = TurnAnimation (MyObject, right, amount=1.0)

movel = MoveAnimation (Forward, amount =1.0, duration =1.0)
move?2 = MoveAnimation (Backward, amount=1.0, duration=1.0)
MyAnimation = DoInOrder (

MyObject.IsShowing = true,

movel,

turn,

moveZ2,

return MyAnimation

You define movel and move2 to move forward and backwards using Alice's
MoveAnimation method. Then you set turn to give the model a spin using

219

TurnAnimation. Finally, you make sure the object is visible with MyObjectIsShowing
and run your series of animations.

AutoManga

Although now nearly defunct, AutoManga is a solution for digital cell animation.
Japanese Manga-style animation is the idea behind AutoManga, and the engine is
implemented with Python scripts that call C/C++ extensions for SDL routines. The
engine was developed by Terry Hancock, has had a number of other contributors over
the years, and originally was to be connected to the Python Universe Builder to handle
interactive fiction and use XML for sequencing resource files.

Much of AutoManga was completed, including lighting effects and the ability to pull a
few different formats for background images and animation cells, but the project
unfortunately hasn't seen much action in the past year or two. Still, it is a good starting
point for frame and cell based Python animation; the developer notes and files are
located on Sourceforge, at http://automanga.sourceforge.net/.

Blender

Blender is a 3D graphics suite with a tumultuous history. Originally, Blender was a
rewrite of the Netherlands animation house NeoGeo's 3D toolset. One of the co-
founders of NeoGeo, Ton Roosendaal, also founded a spin-off company called Not
another Number (NaN). This company's model was to further develop and market
Blender technology. Initially this company faired very well, raising millions of dollars
and gaining thousands of customers, but it was hit with hard economic times. In 2001,
the company announced bankruptcy and the investors closed down NaN.

Blender, however, proved to have a strong will to live. Roosendaal started a non-profit
foundation and began the "Free Blender" campaign with the idea of opening up Blender
to the community as an open-source project. He worked with NaN's investors to agree
to a plan wherein the Blender Foundation would be able to purchase the intellectual
rights and source code of the Blender engine. Then, to the surprise of everyone,
Roosendaal and several ex- NaN employees, with the help and support of Blender's
loyal users, managed to raise 100,000 EUR in seven weeks to make the purchase.
Blender was free, and continues to be free to this day, supported by developers and used
by artists around the world, under the GNU GPL License.

Blender can be used for 3D modeling, animation, game-engine scripting (in some
versions), and rendering. Most useful is Blender's built-in text editor (see Figure 5.7) for
Python scripts, which can be used to customize tools, set up animations and effects, and

even build sophisticated Al control over lighting and game objects.

Figure 5.7. Blender's text editor readily opens a Blender Python script

220

SEOEFF FOEE R O

Blender offers a number of Python modules (shown in Table 5.5) to use in scripting.
Some of them are still being ported into the newest version of Blender as of this writing.

Table 5.5. Blender Python Modules

Module Description Porting Complete
Blender The main Blender module yes
BGL The Blender OpenGL module yes
Camera The Camera module yes
Draw Display module yes
Image The Image module yes
IPO The IPO animation key module no
Lamp The Lamp module yes
Material The Material module no
Mesh The Mesh module no
Nmesh Low level mesh access no
Object The Object module no
Scene The Scene module no
Text The Text module yes
Window The Window module yes

To switch to the scripting mode in Blender, press the Shift and F11 keys simultaneously
or go to the current Window Type button and choose Text Editor. Click the Browse

221

Datablock button and choose Add New Blender to open a blank .py file. Blender will
automatically name the file TX:text; you can change the name by clicking on it and
typing in the new name (see Figure 5.8).

Figure 5.8. Highlighted text controls in Blender

To test out Blender, start by renaming a text file to MyFile.py, and then import the main
Blender module. From that point on you have access to the Blender methods such as
Object:

import Blender
MyObject=Blender.Object.Get ("Some Object")

When running scripts on objects in Blender, you would normally have two windows
open. One would be a workspace with the object within, and the second would contain
the Python script that you would run on the object.

Let's say you needed to run some complex math on a Mesh or Nmesh in Blender. First
you import Mesh Or Nmesh:

import Blender
from Blender Import Nmesh

Then grab the mesh object, its name, and its raw data using object and Nmesh methods:

MyObject=Blender.Object.Get ("Some Mesh Object")
MyMeshName=MyObject[0] .data.name
MyMesh=Nmesh.GetRaw (MyMeshName)

222

Finally, run your complex math on each vertex, replace the values in your objects, and
have Blender redraw the object:

for each vertex In MyMesh.verts:

complex math here

complex math here

complex math here
Nmesh.PutRaw (MyMesh, MyMeshName)
Blender.Redraw

Blender a is an excellent demonstration of the power of open source and open
community development. Blender's user base is extremely supportive and creative, and
is busily at work at making Blender the best appliance since toasters. You'll find
information on Blender at

e The Blender community site. http://www.blender.or.g
e The Blender foundation site. http://www.blender.org/bf.
o The Blender release page. http://www.blender3d.org.

Nebula

Nebula is an open-source, 3D, real-time, multi-platform game engine that supports
Direct X and OpenGL. The project is brought to us by the game studio Radon Labs, in
Berlin. Nebula is actually implemented with C++, but what makes it super-fun is that it
is also scriptable with Python, Lua, and Tcl/Tk. I'll talk a bit more about Nebula later on
in this book (specifically in the Lua sections).

Panda3D
Panda3D is a rendering engine for SGL. The core of the engine is in C++, but Panda3D

also provides a Python scripting interface and utility code. I'll talk a bit more about
Panda3D in the section on commercial games later in this chapter.

Poser

The Poser Pro Pack and Poser 5 come equipped with Python scripting as an available
resource for artists; this is mainly used to automate advanced functions in the interface.
Python scripts can be accessed from Poser's Window menu, which opens up a Python
Scripts dialog box, as shown in Figure 5.9.

Figure 5.9. Accessing Poser's Python Scripts dialog box

223

The dialog box can be used as a placeholder for commonly used scripts. Clicking on a
script with the Alt key on a PC or the Control key on a Mac will bring up a text version
of the script that you can edit.

When creating custom scripts, much of the work on Poser is done through the scene,
which is part of the Poser import module:

First Import Poser module
import poser
Create a scene
MyScene = poser.Scene ()
Then you would do things to the poser scene
And at the end re-draw the scene
Myscene.DrawAll ()

Pretty nifty, huh? Poser actually has a very deep API for interacting with Python; it goes
way beyond scenes and comes equipped with pre-defined scripts for you to use. There is
also a fairly large knowledge base and plenty of sample scripts within the community.

Information on Poser can be found at Curious Labs's site, at
http://www.curiouslabs.com/products/poserd#productinfo.

224

Commercial Games

Game engines and graphics are all well and good, but what about actual commercial
games, you ask? You're in luck, for Python has slithered its way into many a shop. The
language has been used as the primary scripting tongue for quite a few major games,
and there are also a handful of game development tools, scriptable via Python, that have
also been released.

Eve Online

Eve Online is a massive multiplayer online game that won the award for best online
game in Game Revolution's The Best of E3 2002 Online Awards, and was also featured
shortly after its release at 2003's E3 conference. Created by Iceland's CCP Games and
released in 2001, Eve's world is a massive RPG science-fiction environment featuring
photo-realistic graphics and a real space-faring feel.

What makes Eve special for us is that its game-logic is controlled by Stackless Python.
CCP used Stackless on both the client and server side to free its programmers from
many of the mundane tasks of model behavior and instead focus on the creative parts of
Al Stackless also allows CCG to easily make changes to the game and game behavior,
even while the game is running, which is extremely important for its persistent online
world model.

Freedom Force

Freedom Force, a popular super-hero multiplayer game from Irrational Games, was
nominated for handfuls of PC Gamer's annual 2002 awards, and Irrational is currently
working on an expansion of the game. Irrational used NDL's Netlmmerse game engine
and Freedom Force was co-published by Crave Entertainment and Electronic Arts.
Many of the game's functions were exported to the Python side, so that Python could set
and move objects and control camera movements. The single-player levels were
scripted with Python as well, in order to control mission control and cut-scenes.

Python was used with custom extensions provided by the Freedom Force engine, and
the key to using these extensions is understanding the scripting guides, which you can
download from Irrational games at
http://www.irrationalgames.com/modforce/Editor/script.htm.

Freedom Force launches two Python scripts (located in its system folder): startup.py and
init.py. Both of these files are used to set the data paths for the game; by adding to the
default path, you can change which module ff (Freedom Force) loads up at the
beginning:

import ff

ff.DefaultPath = "MyModule;data"

Python scripts control the flow of a module or adventure and can be used to script
missions, create events that spawn new enemies, check for mission success and failure,
trigger speech, and run cut-scenes. Each mission has a single script file (called mission,

225

py) with which it is associated and must be in the same folder as mission.dat (this file is
commonly know as a mission script).

There are also level offshoots, called briefings and intermissions, that are loaded in
between missions. These are scripted in the same way as missions but use a base.py file
and a base.dat file instead.

The custom extensions provided by the Freedom Force engine are huge. Everything
from Al to Object control to missions to camera movement is completely accessible via
the Python scripting interface. Let's take a look at one example, a cut-scene snip from
Freedom Force. The Freedom Force camera has a number of methods for using cut-
scenes, as illustrated in Table 5.6.

Table 5.6. Freedom Force Cut-Scene Methods

Method Purpose

play() Plays a cut-scene

isPlaying () Determines whether a cut-scene or scripted sequence is
currently playing

startCs () Starts a cut-scene

endCs () Ends a cut-scene

endBriefingCS () Ends a briefing

startCSNormalScreen () Starts a cut-scene but doesn't go into widescreen mode
isCSPlaying () Returns true if a cut-scene is currently playing

playTransition () Plays the logo transition

Using these methods to start and stop a cut-scene would look like the following:

Define Cutscene
MyCutscene = [

(
Start Cutscene
"startCs ()",

)

End Cutscene
"endCS ()",

)

Those who have been paying attention will notice that cut-scenes in Freedom Force are
Python lists; here is the same code condensed to one line for familiarity:

MyCutscene=[(iteml,) (item2,) (etc)]

226

Later in the code you call the play () function and viola! The MyCutscene cut-scene
would run:

play (MyCutscene)

Of course, this cut-scene doesn't do much at all, but that's where FF's camera controls
come in. The camera is enabled by a Camera LookAtObject () command and released
back to the player with the Camera Release () command. Camera LookAtObject ()

can be set with a number of commands common to the FF camera, as shown in Table
5.7:

Table 5.7. Freedom Force Camera Controls

Command Description

objectName The object to track

camDist The zoom distance

camPitchRot Angle of pitch around object right vector, in degrees
camYawRot Angle of yaw around object up vector, in degrees
camSpeed Time in seconds it will take to complete the move

movePathMode Set camera snap (CPM_SNAP, CPM_SCROLLTO, CPM_HOMING, Of
CPM_SIMPLEPATH)

camAction Set camera move (CA MOVE) or tracking (CA TRACK)
callbackFunc Sets a Python script function to call when finished

fUser User defined data

Given the camera controls in Table 5.7, you can move the camera around the main
player or protagonist:

MyCutscene = [

(

"startCs()",

"Camera LookAtObject ('My Player', -
195,30,384,3,CPM_SCROLLTO,CA MOVE) ",

"Camera LookAtObject ('My Player', -
200,20,320,3,CPM_SCROLLTO,CA MOVE)",
)

"endCS ()",

)
]

Table 5.7. Freedom Force Camera Controls

Command Description

objectName The object to track

227

Table 5.7. Freedom Force Camera Controls

Command Description

camDist The zoom distance

camPitchRot Angle of pitch around object right vector, in degrees
camYawRot Angle of yaw around object up vector, in degrees
camSpeed Time in seconds it will take to complete the move

movePathMode Set camera snap (CPM_SNAP, CPM_SCROLLTO, CPM_HOMING, OF
CPM SIMPLEPATH)

camAction Set camera move (ca MOVE) or tracking (CA TRACK)
callbackFunc Sets a Python script function to call when finished

fUser User defined data

Not bad for a quick delve into the Freedom Force API—and we've really just begun.
There are actually a number of other camera commands to set wide-screen, introduce
camera jitter, snap to objects or markers, fade in and out, and so on. Outside of the
camera there are whole suites of functions and methods to set up narration, music, and
sound effects, control NPCs and characters, set mission objectives and game flow, and
so on and so on.

Severance: Blade of Darkness

Severance: Blade of Darkness is a fantasy combat game from Codemasters / Rebel Act
Studios (which is now defunct). It is a mature-audience game released in 2001 along
with a level editor (called LED) and a set of tools (called RAS) for making levels and
mods, which are, of course, based on Python and wholly scriptable. A Blade of
Darkness level generally includes:

e A .bw file which has the map architecture details, compiled from the LED map
editor (uncompiled maps are .mp files).

o .mmp files, which are files with the textures used in and on the map.

e One or more Blade of Darkness (BOD) files that define the objects and
characters that inhabit the mod.

e A number of Python scripts that initialize and make objects and npcs and so on.

e A level file (.1vl) that loads things up to the game engine (the .mmp bitmaps and
the .bw map file).

The LED editor is shown in Figure 5.10 (notice Python on the top toolbar).

Figure 5.10. The LED editor with an open sample file

228

T L - e A
P D8 e Deul ek Pl ke S
BE/fm==F3D -4 -0l

o R R LAl L L

In the Python scripts, you'll find that objects (weapons, torches, and so on) are usually
defined with a objs.py file, players with a pl.py file, configurations with a cfg.py file,
the placement of the sun and its position with a sol.py file, and any water coordinates
with a agua.py file.

Take a look at a sample agua.py file:

import Bladex

pooll=Bladex.CreateEntity ("pooll","Entity Water",72000,39800,-2000)
pooll.Reflection=0.9
pooll.Color=90,20,20

pool2=Bladex.CreateEntity ("pool2","Entity Water",116000,39800,54000)
pool2.Reflection=0.1
pool2.Color=60,10,10

pool3=Bladex.CreateEntity ("pool3","Entity Water",116000,39700,46000)
pool3.Reflection=-0.5
pool3.Color=0,0,0

First, the necessary Bladex libraries (which hold most of the necessary commands and
functions) are imported. createEntity is then called on to create three separate pools
of water at three separate locations. Once instantiated, each pool is then further defined
with the Reflection and Color methods.

NOTE

A handful of developers from Rebel Act started their own company called Digital
Legends Entertainment at http://www.digital-legends.net/ shortly after RAS closed its
doors. They are currently focused on producing their first game, Nightfall Dragons at
http://www.nightfalldragons.com.

229

ToonTown

ToonTown, an online cartoon style mulit-player game, is the latest from the Walt
Disney Imagineering studio. Players create their own cartoon avatars and explore a rich
world where they can meet and interact with other "toons," earn jelly beans to put in the
bank, and buy things (like a toon house or items for a toon house). There is even a bit of
conflict thrown in, in the form of a "Cog Invasion" that is threatening the city.

Disney's ToonTown uses Python in a direct and powerful way. The ToonTown
executable actually calls Python on the client when the program is instantiated. Python
was also used in development of the game, particularly in the Panda3D rendering
engine.

Panda3D is powered by Python, DirectX, and the Fmod music and sound effects
system. After being used to create Disney's ToonTown it was released to the open
source community and is currently under even more extensive development by both the
VR Studio and the Entertainment Technology Center at Carnegie Mellon University.
ETC is working on making a simple installer for Panda3D (the current installation is
somewhat of a bear...ahem), creating solid documentation, adding to the basic model
import functionality, and creating tools like level and script editors.

Note that there are two versions of Panda. One is the original release to the community
from Disney, located on Sourceforge and found there at
http://sourceforge.net/projects/panda3d/).

The second version is the release from Carnegie Mellon's ETC, and can be found online
at http://www.etc.cmu.edu/projects/panda3d/downloads.

Panda is capable of importing Maya and 3D Studio Max models, as well as the standard
.gif, tiff, and .jpeg image formats. It has a fairly extensive API that is still undergoing
documentation. It can also be extended with the SDK, and the engine itself is tweakable,
as the code has been released to the community.

The two most important lines in any Pythoned Panda script are

from ShowBaseGlobal import *

and

run ()

The first line imports the necessary Panda files (which takes quite a bit of time) and the
second line runs the environment. Running these two lines in a script after installing
Panda will create a large, blank, gray window. These two lines are the minimum needed
to create a Panda environment.

Panda3D is built around the scene-graph, which is a tree-like object hierarchy structure.
Individual objects, which are normally 3D models or GUI elements, are called

230

NodePath objects. NodePath objects inherit behavior from their parents, and there are a
number of built-in, base, pre-defined NodePath objects in Panda.

Panda3D models are either .egg or .bam. EGG files are ASCII format (and therefore
readable by humans), and .bam is their corresponding binary format (for faster load
times). You load a 3D object in Panda using its global 10ader object, like so:

My3Dobject = loader.loadModel ("3Dobject.egg")

All loaded objects in Panda are, by default, hidden from view. To change this, take the
loaded object (which is now a NodeObject) and change its parent to render; doing so
will make the object render onscreen:

My3Dobject.reparentTo (render)

Once the object is loaded, you can call upon all sorts of fun methods to manipulate it,
from setting the x,y, and z coordinates with setx (), setY (), setZ () or

setPos (x,v,2):

My3Dobject.setX (4) # Moves the object 4 "feet: on the X coordinate

to changing the heading, pitch, and roll with setHPR (heading, pitch, roll):

My3Dobject.setHPR (50, 30, 0) # Changes the model heading by 50 degrees
and pitches the
model upward 30 degrees

to changing the object's scale with setScale ():

My3Dobject.setScale (10) # sets the scale uniformly x10 in each
direction (x,y, and 2z)

Panda is also capable of handling events (mouse clicks and key presses), has a GUI
system for creating Ul elements like buttons and dialog boxes (which can be bound to
Python functions), and can incorporate sound effects and music.

231

Beyond Python

So what else is there besides games and graphics? Well, a whole heckuva lot, actually.
Being the adaptable language that it is, you'll find Python sunning on rocks and
slithering in the grass just about everywhere on the planet. The projects in this section
may particularly pique your interest.

Beyond

One problem with 3D titles is the massive amounts of knowledge and work required to
design, maintain, and update them. Another is the constant re-engineering each
independent gaming company must fund and support in order to create the latest and
greatest. Beyond is a reusable object framework for game design that was created to
address these problems. The idea behind the Beyond project was to identify which parts
of the process are works that could be reusable, and then wrap them up as components
in order to create robust, easily modifiable 3D games. Python was chosen for this
project because of its adaptability to multiple platforms, and its extensibility.

The first version of Beyond, Beyond 1, was the development project and platform for
UO2, which was to be an imaginary-planet, massively multiplayer game released by
Origin Systems. Based on the Ultima fiction originally created by Richard Garriott,
UO2 had player avatars with highly customizable identities capable of interacting with
objects and other players in a massive world. Unfortunately, UO2 was dropped and
never actually saw the light of day, but this has been a minor setback for one of the
principle developers, Jason Asbahr, who now leads an open-source, virtual-world,
MMP Python framework, Beyond 2.

Beyond 2 is still very young, with only Version 0.0.1 released, but, of course, it is being
built on the backs of several other highly successful platforms, including the Nebula
Device by Radon Labs, Beyond 1, and Twisted Python.

Technically, the original Beyond 1 project was based on many languages, but Python
had a particularly interesting role. Client-server information is encrypted and passed
through constructs called simobjects using remote method invocations in Python.

The simObject was a root object, or superclass, for all other objects. SimObjects were
organized in an object-oriented hierarchy, and could perform actions by executing
methods on themselves or other SimObjects.

Beyond 1 was also data-driven and had a master game database. World builders were
able to alter and expand the world by adding behaviors, entities, and data into the
database without changing the actual runtime code. Clients (players) would connect to
local Python area servers which eventually connected to a main data base server and the
main game database.

Sound libraries, network communications, and graphics were all wrapped into Python as

extensions using SWIG (short for Simplified Wrapper and Interface Generator; more on
SWIG in Chapter 12). Functions in C and C++ are exposed as Python function objects.

232

Progress on Beyond 2 and Jason Asbahr's other projects can be found at his Website, at
http://www.asbahr.com/index.html.

The site includes several papers he has presented on Python and Python games. This set
of papers also includes a port of Python onto the PlayStation 2 and Nintendo platforms.

Pippy

Pippy is a port of the Python language to the PalmOS currently under development at
Endeavors Technology. Although still young, the latest version runs on Palm OS 3.5 or
higher. A handful of the standard Python modules have been removed to reduce the
code footprint, though these removals are mostly code features (like dynamic linking
libraries) that aren't necessary on a Palm platform. Pippy can be freely distributed as
long as the copyright notice is included; the latest versions can be found on its
Sourceforge page, at http://pippy.sourceforge.net.

A handful of Python features have been removed for smooth running on the Palm,
including the following:

e Floating point numbers/objects.

Complex numbers/objects.

Python parser and compiler
Documentation strings

Dynamic linking

Signals

Path-related code

e File I/O (stdio and stderr are simulated)
e Most of the Python library modules

e Most of the Python extension modules

Pippy does include a version of the popular Python interactive interface and a keyword
popup menu interface with both a Keywords and Modules menu that contain built-in
Python names, reserved keywords, and a listing of the built-in and extension modules.

Development work may still be needed on Pippy to reduce the code footprint, and
currently Pippy works on a reduced version of Python 1.5.2. There are a few issues to
work out with the Palm's stack (work is underway to bring Stackless Python to Pippy)
and Palm's dynamic heap, but the early project results appear promising, the key being
an active community willing to take the project to the next level.

Stackless Python

Stackless Python is a development effort led by Christian Tismer, and is a Python
variant that doesn't use the C stack. The Python interpreter is written in C, so at some
level every Python action is executed via C. Mostly this is good, but sometimes having
multiple instances of Python C code running on the stack can cause problems, for
example with recursion and with object references that build up on the stack.

Stackless has received quite a bit of community support and has been highlighted at a
number of Python conferences. Several companies, including Twin Sun, IronPort, and

233

CCP Games have used Stackless in development. Stackless is a super-tool for Python
work using co-routines or micro-threads; the popular MMOG Eve Online is a good
example of Stackless use in this case. Stackless has gone through a few variations, and
Tismer continues to maintain, update, and further improve the concept, tirelessly
making Stackless faster, more portable, and efficient.

You can find more information on Stackless at Christian Tismer's Website, at
http://www.tismer.com/.

Twisted

Twisted began its existence as an open-source, massive, multi-player game called
Twisted Reality. Since then Twisted has become a way to create network applications,
from network transports and protocols to secure client servers. Twisted is no longer just
a toy. It is a competitive production server system, designed with a small footprint to
run on low-end hardware and still be capable of handling thousands of users.

Twisted supports the following:

e Win32 events

e GUI (GTK, Qt, wxPython, Tkinter, and so on)

e TCP, SSL, UDP, Multicast, and UNIX sockets and subprocesses
e Scheduling

e Threading integration

o RDBMS event loop integration

Twisted also comes with prebuilt implementations, including:

e A complete Web framework

o Frameworks providing facilities on top of SSH, FTP, and HTTP
e An NNTP server framework

e A user authentication system

e An instant messenger

Twisted has been the basis for a handful of other open source projects, including
CVSToys, Hep, Bannerfish, Beyond 2, and DocmaServer. The users of Twisted include
a number of high-profile companies like Masters of Branding, NASA, and Mailman.

Twisted programs usually use the twisted.internet.app.Application function. The
applications created with this function are actually Python objects and can be used along
with the variety of built-in tools to create and manipulative these applications Twisted
comes with, just like any other Python object. The process for creating an application in
Twisted normally involves creating an application object and then choosing a reactor
(twisted.inter net.reactor), which is basically a toolkit for running Twisted on
different platforms, for the application.

Reactors are the core of the event loop in Twisted, and they provide a basic interface to
a number of services, including network communications, threading, and event
dispatching. A reactor implements a set of interfaces, usually dependent upon which
platform Twisted is playing on. After setting up an application and a rector, you can

234

implement Twisted network protocol parsing and handing with

twisted.internet.protocol.Protocol

Twisted also has Factory classes (twisted.internet.protocol.Factory) where
persistent configuration is kept. The default factory classes can instantiate each
protocol.

Programming in Twisted looks remarkably like Python network programming
(surprise!). First you must import the reactor and protocol:

from twisted.internet import reactor, protocol

Then let's say you wanted the protocol to react to a connection:

class MyTwistedClass (Protocol) :
def MyConnection (self):
do something
self.transport.loseConnection ()

Now set up Twisted listening on port 5555:

def main () :
factory = protocol.ServerFactory ()
factory.protocol = Echo
reactor.listenTCP (5555, factory)
reactor.run ()

if name ==' main ':

main ()

Twisted itself can be found on its Sourceforge page at
http://sourceforge.net/projects/twisted.

Twisted also has an active community of users and developers who can be found online

at the Twisted Matrix, at http://twistedmatrix.com.

235

Summary

Many impressive projects have been listed and explored in this chapter. Don't be fooled,
however. For each engine that I spent time researching, I had to leave out at least three
others, and for every Python-based game that I played I had to miss at least two others.
This is just an appetizer for what's out there waiting for the Python game developer.

Important points from this chapter:

e Python use is fairly widespread.

e Itis becoming more common for games to ship with their own internal level and
script editors, and Python is one of the commonalities between these tools.

e There are a number of development efforts using Python to bring the
complicated task of game programming to the non-programmer.

e Most professional graphics tools include some sort of scripting interface that is
Python-able.

236

Question and Answer
1: Q: Why didn't you mention (insert product/tool/program/ here)?

A: A: Python is so widespread and so rapidly developing that it would be
impossible to list all of the games, engines, and tools that utilize it.

237

Exercises

1: List five industry tools that are scriptable with Python.
2: List a few of the most common uses of Python in commercial games.

3: Choose one of the engines in Section 1 of this chapter to write a two- or three
screen game interface.

238

Part THREE: Programming with Lua

Programming with Lua and becoming comfortable with the Lua interpreter are the main
focuses early on in this part of the book. Part Three also covers Lua's C API and
specific industry game examples. Also included is a close-up look at LuaSDL.

239

Chapter 6. Programming with Lua
Language exerts hidden power, like a moon on the tides.

Rita Mae Brown

This chapter will offer a brief introduction to the Lua language. This is a speedy
overview, but the chapter does include a few common and useful examples.

240

Lua Executables and Debuggers

Lua can be executed in chunks written in a file or in a string by using the following
function's API commands, but normally a host program executes Lua. In UNIX
systems, Lua scripts can be made into executable programs by using chmod and placing
the #! /usr.local/bin/1lua (or whatever the Lua path is) line at the top of a Lua file.
Lua files can also be executed via the Windows command line the long way (C:\1ua-
5.0\bin\Lua.exe file torun.lua), butit won't run with a double mouse click until
you've set up a path or a usable development environment for Lua. For now we'll just be
using Lua with the interpreter, so do not fret about it.

Lua doesn't have any built-in debugging facilities. It does, however, offer an interface
with special functions and hooks that allow a programmer to construct profilers and
debugging tools. These hooks are called when the interpreter enters or leaves a function
or changes code. Most of these functions are new as of Lua 5.0, which is good because
the older call and hook functions had the a reputation of being slow and possibly
volatile. Common debug functions are listed in Table 6.1.

Table 6.1. Lua Debug Functions

Function Purpose

debug.gethook () Returns current hook settings

debug.getinfo () Returns a table with information about a function
debug.getlocal () Returns name and value of the local variable
debug.getupvalue () Returns name and value of upvalue
debug.setlocal () Assigns a given value to a variable
sebug.setupvalue () Assigns a given value to an upvalue
debug.sethook () Sets the given function of a hook
debug.traceback () Returns a string with a traceback of the call stack

For more information on the built-in debugging facilties, check out the Lua user
manual, which is available from the lua.org documentation page at:
http://www.lua.org/docs.html.

One interesting development tool is the LualDE by Tristan Rybak, which is an
integrated environment for developing Lua applications (see LualDE in action in Figure
6.1). The environment is currently in Beta testing but is available for free for
commercial or non-commercial use. Despite being a prototype, LualDE supports output
for building and debegging messages, step-into- and stop-over-type debugger
commands, breakpoints, and a callstack trace window. You can find the latest version
(including source code) at Tristan Rybak's Website, at
http://www.gorlice.net.pl/~rybak/luaide/.

Figure 6.1. The LualDE environment with a simple Lua source sample

241

242

Language Structure

As I mentioned, executions of Lua are broken down into units called chunks. Chunks
are simply sequences of statements, and are basically equivalent to program blocks. Lua
handles a chunk just like any language handles a function, so chunks can hold local
variables and return values.

Chunks may be stored in a file or in a string inside the host program. When a chunk is
executed, first it is precompiled into byte-code for the Lua virtual machine, and then the
compiled code is executed by an interpreter for the virtual machine. Lua has no
declarations, so a chunk may be as simple and short as a single statement:

chunk ::={single statement}

Or it can be big and complex:

Chunk ::={
event buffer = nil,
last update ticks = 0,
begin time = O,
elapsed ticks = 0,
frames = O,
update period
active =1,
screen = nil,
background = nil,
new actors = {},
actors = {},
add_actor = function(self, a)
assert (a)
tinsert (self.new actors, a)

33

end

Punctuation

Lua uses C- and Pascal-like punctuation. This takes a bit of getting used to, especially
when you're just coming from Python. While Python uses spaces and tabs to keep
statements separated, Lua utilizes brackets, quotes, parentheses, squiggly lines, and
other deliminators, and spaces and tabs are pretty much ignored, which can be
confusing at first. A good practice is to use the interpreter often; because the interpreter
expects code to be properly bracketed off;, it

NOTE
I talked a bit about Pascal in earlier chapters when discussing the history of computer

languages. As you may recall, Pascal is a high-level structured programming language,
which forces design with a very regimented structure.

243

will complain immediately if you return a line of Lua that's missing something. For
example, see Figure 6.2, in which our friendly interpreter reminds me that I left off the
second " in the string assignment.

Figure 6.2. The Lua interpreter complains that I've left off something
important

Statements in C are normally ended in a semicolon. In Lua this is optional, but you will
still see it commonly done:

a=1

b=2
-—-equivalent to
a=1;

b=2;
--equivalent to
a=1l;b=2;

Language Types

Lua is a dynamically typed language, so variables themselves do not have types; only
the values of the variables have types. The basic types in Lua are shown in Table 6.2:

Variables created in Lua are visible within the blocks in which they are created and are
considered global unless the area is specifically defined as local using the 1ocal
keyword. After a code block is executed, local variables are destroyed.

Booleans

In Lua, all values different from false or nil are considered true. This means that
only nil and Boolean false are considered false for the purposes of statement
execution; everything else is considered true. As of Version 5.0, Lua has a built-in

Boolean recognition of true and false.

Try running the following lines in the Lua interpreter:

244

Table 6.2. Built-in Data Types

Name Data Held

Boolean Either false or true

function Function stored as a variable

nil Value nil

number Real numbers (double precision floating point)
string Character string

table Associative array (i.c., dictionary / hash)
thread Independent threads of execution

userdata C pointers stored as variable

x = true

print (x)
print (not x)

You will see that the interpreter is smart enough to know that if something is not true,
then it must be false. You can use Lua to test Boolean validity by using two equal
signs to represent "is equal to," like so:

print (0=
1

=1
print (=

00)
==1)

Note that in Lua, true and false are not numerical values (0 and 1) like in some
languages.

Functions

A really wonderful feature of Lua is that you can assign functions to variables. In fact,
when you define a function in Lua, you are basically assigning the text body of the
function to a given variable. Functions are declared by using the function keyword,
with the general syntax being:

function name (args) does something end

where name is the name of the new function, args is any arguments the function takes,
does_something represents what the function actually does, and end tells Lua the
function is over.

For example, here is a quick function that prints a statement to the screen:

function Myfunction () print ("What's your function?") end

245

After creating a function, you can call it at will:

Myfunction ()

You can also print the value of the function's memory address using print:

print (Myfunction)

When you run this last line in the interpreter, you can see that Lua notices that it's
dealing with a function as well as returning its memory address.

Functions can take arguments as well, like in this example that takes an argument and
assigns it to x:

function Myfunction (X) print (X) end

When you call this function with Myfunction (1), the interpreter prints out what is
assigned to x—in this case a 1. You could also assign the function a string with
Myfunction ("hello"). If no argument is passed to the function, Lua automatically
assigns nil to the argument, and in the case of Myfunction (), the interpreter prints
nil.

Since functions can be stored as variables in Lua, they can then be passed as arguments

to other functions or they can be returned. This makes them fairly powerful creatures in
Lua-land.

Nil
Nil values mean that a variable has no value. You can set values to nil to delete them:

X = nil

and you can test to see whether a variable exists by checking to see if its value is nil:

print (x==nil)

Nil is the equivalent of no value, so if a variable is assigned ni1, it ceases to exist.
Numbers

Lua supports the standard add (+), subtract (-), multiply (*), and divide (/) operators.
These can be fun to play with after firing up the lua.exe and using the print statement:

print (1+1)
print (5*5)
print (10/9)

246

If you run these lines in the interpreter, you will notice that Lua automatically brings in
floating point numbers and gives you 1.11111111 as an answer to the third chunk. Lua
doesn't bother with rounding off like many other languages do. All numbers in Lua are
"real" numbers stored in floating point format.

You can assign numbers to variables by using the = sign:
X=100

print (x)

Lua also supports multiple assignments:

X, vy =2, 4

print (x,vVy)

XYy = ¥,/X
print (x,Vy)

NOTE
The act of setting the value of a variable is called an assignment.

Lua supports the standard arithmetic relational operators, including

+

>

4
Il

These should be pretty familiar to you by now. Lua also understands logical and, or,
and not. Logical not inverts a logical expression:

not true = false

247

while logical and and or can be used and combined to form the logical statements
programmers often need:

true or false
x = true and y = true

NOTE
CAUTION

Lua does exhibit some strange behavior when ordering precedence in an equation. This
behavior shows up when running through equations from left to right and right to left.
Normally, Lua figures out the left side of the equals sign first, but the order in which
multiple assignments are performed is actually undefined. For instance, if the same
values or tables occur twice within an assignment list, then Lua may perform the
equation from right to left. The order precedence may also be changed in future versions
of Lua. This can be a hassle, but it simply means that you should always use separate
assignment statements when possible.

An important topic for numbers and running equations is operator precedence, which is
illustrated in Table 6.3.

Table 6.3. Lua Operator Precedence

Precedence Operator

1.(highest) ~(exponentiation)

2. not - (unary)

3. */

4. + -

5. ..(string concatenation)
6.(lowest) <><=>= ===

Lua has an additional library that interfaces with the common C Math library functions.
The library is available for access by Lua with a 1uaopen math function and include a
number of fun math tricks that should look familiar to C users and Math whizzes. The
functions are listed in Table 6.4.

Table 6.4. Additional Math Lua Library Functions

Function Use

math.abs Absolute value

248

Table 6.4. Additional Math Lua Library Functions

Function Use

math.acos Arc cosine

math.asin Arc sine

math.atan Arc tangent

math.atan2 As atan but uses signs of the arguments to compute quadrant of the
return value

math.ceil Ceiling, returns smallest integer no less than given argument

math.cos Cosine

math.exp Exponent

math.floor Returns largest integer no greater than given argument

math.frexp Turns argument number into mantissa and exponent

math.ldexp Returns X*(2"exp)

math.log Logarithm

math.1logl0 Base-10 logarithm

math.mod Splits given into integer and fraction parts

math.pi Pi (3.14)

math.pow Power, the base raised to exp power

math.sin Sine

math.sqgrt Square root

math.tan Tangent

math.random Random number

math.randomseed Seed number for random

These functions all follow a similar pattern when used. Let's say I wanted the value of
pi. I'd do this:

MyPy = (math.pi)
print (MyPy)

If I needed to find the tangent of a given number, I'd do this:

MyTan = (math.tan(10))
print (MyTan)

Strings

249

Lua supports strings as text variable types. You can assign strings just like you would
numbers, but you must be sure to include the quotes and parentheses, like so:

myself = ("me")
print (myself)

You cannot use operators like + to concatenate strings, but Lua does allow you to
concatenate strings using two periods, like in the following:

myself = ("me")

print ("Hello to "..myself)

Besides double quotes, you can also set up strings using single quotes or double square
brackets, as in the following:

--this

myself = ("me")

--is equivalent to this
myself = ('me')

--is equivalent to this
myself = ([[me]])

Lua supports these various methods so that you can place quotes within strings without
using nasty escape sequences:

Mystring = ([["quote"]])
print (Mystring)

But Lua does support the standard C-type escape sequences when using strings. These
sequences are listed in Table 6.5.

Table 6.5. Lua Escape Sequences

Sequence Translates to

\a System beep

\b Backspace, deletes the last character typed
\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\V Vertical tab

M\ Backslash

\" Double quote

250

Table 6.5. Lua Escape Sequences

Sequence Translates to

\! Single quote
It is important to note that when indexing a string in Lua, the first character is at
position 1 (not at 0, as with C).

Brackets have further uses when you're creating strings. For instance, they can be used
to place strings on several lines of code, as shown in Figure 6.3.

Figure 6.3. Using brackets to input a string over multiple lines

| : timgs \Tom. IHOCH Deskiopea-5.0%in W ua. exe

T4 -2

Lua comes packaged with additional library string functions. These are not necessary to
import Lua but are very helpful if you are working on an application with heavy string
handling. These functions are listed in Table 6.6; the library is opened with the
luaopen_string function.

Table 6.6. Lua's String-Handling Library

Function Purpose

string.byte () Returns the internal numerical code of the character
string.char () Returns a string of given length and internal numerical codes
string.dump () Returns binary representation for a given function
string.find () Uses pattern matching to find the first match of a given string
string.len () Returns a string's length

string.lower () Returns a copy of a given string in all lowercase letters
string.rep () Returns a string concatenated to specifications given

251

Function

string.sub ()

string.upper

0

string.format

0
string.gfind

string.gsub

0
0

Table 6.6. Lua's String-Handling Library

Purpose
Returns a substring of the given string

Returns a copy of a given string in all uppercase letters

Returns a formatted version of a given string using C's printf style

of arguments and rules

Used to iterate over strings to match pattern

Returns a copy of a given string after running given arguments over

the specific string

The string library also has built-in functions for pattern matching, allowing Lua to
search through long strings or tables, match up patterns, and return them (called
capturing). These controls are normally preceded by modulus; they are outlined in Table

6.7.

Symbol

oe oo oe oo o© oo oe o oe
b = o &) ge} = o, Q)

o
N

Table 6.7. Common Pattern-Matching Controls

Pattern

All characters

All letters

All control characters

All digits

All lowercase letters

All punctuation characters
All space characters

All uppercase letters

All alphanumeric characters
All hexadecimal digits

Character with representation 0

Using these functions to find patterns and matches is relatively straightforward using
string. find. For instance, here is a Lua chunk that searches for the letter "0" in the

given string:

MySearch = string.find('word', 'o')

print (MySearch)

252

When this chunk is run in the Lua interpreter, you are given the location of o in the
string, which is the second character location, right after 'w' which is first.

Let's say that you wanted to find four-letter words that begin with s in a given string.
You can use period (.) as a wildcard:

Mystring = 'Blah blah blah blah sand blah'
Mystring2 = (string.find(Mystring, 's...'"))
print (Mystring2)

This chunk will find the word sand in the string at the 21st character location after the
first four Blahs.

Tables

Tables are the main data structure in Lua. Let me repeat that, because it's important:
Tables are the main data structure in Lua. Instead of lists or tuples or dictionaries, Lua
utilizes tables as its primary data holder. Tables are Lua's general-purpose data type and
are capable of storing groups of objects, numbers, strings, or even other tables. Tables
are created using curly brackets, like so:

Mytable = {}

If you were to print out Mytable (using print (MyTable)), you would get a funny
number, something like 0032bb99. This is the unique identifier and memory address
that Lua has assigned to Mytable.

Tables are used everywhere in Lua. They are the basic building block to creating all of
the important programming constructs like queues, linked lists, and arrays. Tables can
also function more like hashes and dictionaries than arrays and lists. You can add hash-
like objects to a table by assigning a key/value pair, like so:

Mytable = {Mynumber = 1, Myword = "Ikes!" }

You can then refer to the table with the familiar

print (Mytable.Mynumber)
print (Mytable.Myword)

Tables can also be used in an array/list-type way. You do this by creating a comma-
separated list of objects when creating the table. You can then access the table like an
array, using brackets and numeric references, like so:

Mytable = { 1,2,3,4,5,6,7,8,9,0 }
[1]

print (Mytable)

253

Notice, when you run this chunk in the interpreter, that the array/table starts at 1, not 0.
The 0 value is actually assigned ni1, or no value.

You can mix a dictionary-type table and array-type table together, making tables pretty
versatile little buggers. Tables can also contain other tables:

Mytable = { tablel= {a =1, b = 2}, table2={c = 3, d = 4}}

Additional ways to manipulate tables are possible using the additional library functions
listed in Table 6.8.

Table 6.8. Table Functions

Function Purpose

table.concat () Returns concatenated tables

table.foreach () Used to execute a given function over all elements of a table
table.foreachi () Executes given function over numerical indices (only) of table
table.getn () Returns the size of the table

table.sort () Sorts tables elements in a given order

table.insert () Inserts element at a given position, shifting all other elements
table.remove () Removes element from given position, shifting elements down
table.setn () Updates the size of a table

These functions all work in a similar way. For instance, you can use table.getn and
table.insert to update a table entry, like so:

Mytablelength = table.getn (Mytable)
--Inserts 22 into the end of the table
table.insert (Mytable, 22)

You can insert elements at a chosen point in the list using table.insert:

table.insert (Mytable, 10,100)

You can print out the contents of the table using table. foreachi:

table.foreachi (Mytable, print)

Even though you can treat a table as an array, keep in mind that it is still table. You can
store whatever you want:

Mytable[5] = "Hey, a string!"

254

So, if you were printing out a dictionary version of the table

Mytable = {Mynumber = 1, Myword = "Ikes!" }

you would use the foreach function to print out each key/value pair:

table.foreach (Mytable, print)

The next function can also be used to iterate over a table. next takes a table and an
index and gives back the next key/value pair from the table:

next (Mytable, "key")

Tables are also objects in Lua in the sense that they have state, independent identity, a
life cycle, and operations that can be called upon them. The Lua programming model
also has ways of implementing traditional OOP in the form of inheritance,
polymorphism, classes, and late binding with tables.

People considered tables in Lua so impressive that in the latest version metatables were
added as well. Every table and userdata object in Lua may now also have a metatable,
which is an ordinary Lua table that further defines behavior. The commands

lua getmetatable and lua setmetatable allow you to manipulate the metatables of
a given object.

Weak tables were also added with Lua 5.0, which are tables whose elements are weak
references. Unlike regular references weak references are ignored by Lua's garbage
collector.. Since weak tables do not prevent garbage collection, they are useful for
determining when other objects have been collected by the GC and for caching objects
without impeding garbage collection.

Threads

Threads allow programs to do multiple things at once. In a multi-threading model, each
task runs in a thread that is separate from other threads. There are many ways to
implement multi-threading, and Lua's way is a bit unique. Lua uses a "cooperative
multi-threading," using coroutines that aren't actually operating-system threads but are
instead just blocks of code that can be created and run in tandem.

To create a coroutine, you first must have a function that the coroutine runs:

function Myfunction ()

print ("do something")
coroutine.yield()
end

255

You then create a coroutine using coroutine.create:

Mythread = coroutine.create (Myfucntion)

Once you have established a coroutine, you can check its status with

coroutine.status:

Mystatus = coroutine.status (Mythread)
print (Mystatus)

When run in the interpreter, this code will show that Mythread is suspended. To start or
resume a coroutine, use coroutine.resume. In this example, the interpreter will print
do something, and then Mythread will exit by yielding.

Yielding is key to coroutines. Coroutines must be able to yield system resources and
pass control to the next thread that needs it. The coroutine.yield is similar to the
return function, and it exits the current thread and frees up any resources.

If you run the Mystatus code a second time:

Mystatus = coroutine.status (Mythread)
print (Mystatus)

the status will show that the thread has already run by reporting dead.
Userdata

Userdata is used to represent C values in Lua. There are two types of userdata: full
userdata and light userdata. Full userdata represents a block of memory and is
considered to be an object. A light userdata represents a pointer.

Identifiers

Identifiers in Lua can be made up of letters, numbers, and underscores, but they cannot
begin with a digit. Lua is case-sensitive, so the strings HELLO and hello are considered
different strings. There are a handful of reserved words that Lua keeps for itself and
cannot be used as identifiers; these are as follows:

and
break
do
else

elseif

256

end
false
for
function
if

in
local
nil
not

or
repeat
return
then
true
until

while

A standard convention in Lua is that internal variables begin with an underscore and a
capital letter, like Myvariable.

Control Structures
Control structures in Lua are similar to those in Lua's syntactical parents C and Pascal.

if, while, and repeat commands are very common. The traditional if statement looks
like the following in Lua:

if true then block {elseif true then block} [else block] end

An example of an i f statement that prints whether x is less than 10 would be:

x=1
if <10 then print ("x is less than 10")end

You can add a second else statement in case x is greater than 10:

257

if x<10 then print ("x is less than 10")else print ("x is greater than
10")end

Loops

One extremely common looping statement is the while loop, which looks syntactically
like the following:

while true do block end

A second common looping construct is the repeat loop:

repeat block until true

Here is a sample Lua while loop that prints out a series of numbers:

x =1

while x<10 do
print (x)
x=x+1

end

The sample is just as easy to implement using repeat:
x=1

repeat

print (x)

x=x+1
until x==10

The for loop, however, is what holds a special place in the programmer's heart. Lua has
two versions of the for loop. The first one is used with numbers:

for variable = var, var, var do block end

Like in a typical for loop, all three expressions aren't necessary:

for X=1, 10 do print(X) end

This loop prints X as it iterates through the loop 10 times.

The second version of for is used for traversing a table, and it is capable of iterating
through each key/value pair of a given table:

for variable {, var} in explist do block end

258

An example of this version of for iterating over a given table is as follows:

Mytable = {1,2,3; word="hi, number=100000}
for key,value in Mytable do print (key,value) end

Included with this fun for is also a pairs () function for iterating key/value pairs:

for key,value in pairs (Mytable) do print (key,value) end

In this instance, pairs () will iterate only over the array type table entries in the table:

for index,value in ipairs (Mytable) do print (index,value) end

Lua uses a return statement to return values from a function or a Lua chunk. There is
also a break statement that can be used to terminate the execution of a loop and skip to
the next statement that follows. Both return and break must be the last statements in a
given block.

Modules

Modules, packages, namespaces: all are mechanisms used by languages to organize
global names and space and avoid collisions. In Lua, modules are implemented with the
all-important and versatile (you guessed it) table. Identifiers become keys within tables
instead of global variables. A package may look like this:

Mypackage = {
functionl = function() dosomething{} end,
function2 = function() dosomething{} end,
function3 = function() dosomething{} end,
function4 = function () dosomething{} end,

Then the package can be called like this:

call = Mypackage.functionl (arguments)

Libraries

Lua has a set of standard libraries that provide useful and common routines. These are
implemented directly through the standard API but aren't necessary to the language, and
so are provided as separate C libraries. There is a basic library, a library for string
manipulation, one for mathematical functions, one for system facilities and I/O, one for
debugging, and one for tables. The functions are declared in 1ualib.h and must be
opened with a corresponding function, like in the following examples:

luaopen_string
luaopen table

259

luaopen math
luaopen io

A few of the libraries (math and string) were covered in the previous sections. The
others will be covered here.

The Basic Library

The basic library provides much of Lua's base functionality. The commands involved
are listed in Table 6.9.

The coroutinefunctions are actually part of a sublibrary of the basic library.

Input/Output Library

Input and output are handled by two file handles. These handles are stored in two global
variables: 1nPUT and ouTpUT, the former for reading and the latter for writing.
_INpUT and _OUTPUT are also equivalentto sTpin and sTpouT. The common I/O
functions are listed in Table 6.10.

Function

io.close ()
io.flush ()

io.input ()

io.lines ()

io.open ()

io.output

io.tmpfile

io.type ()
file:close
()

file:flush
()

file:read

0

file:lines

0

file:seek

Table 6.10. Common Lua Input/Output Functions

Purpose
Closes the given file
Flushes over the default output file

Opens the named file in text mode and sets its handle to the default
input file

Opens the given file name in read mode and returns an iterator function
that returns a new line from the file each time it is called

Opens a file in the mode specified and returns a new file handler

Opens named file in text mode and sets its handle to the default output
file

Returns handle for a temporary file

Checks if object is a valid file handle
Closes file

Saves any written data to file
Reads the file according to given formats

Returns an integrator that returns a new line from the field each time it
is called

Sets and gets the file position

260

Function
()

file:write

0

Function
()

assert

collectgar

coroutine.

0

coroutine.

0

coroutine.

0

coroutine.
coroutine

dofile ()

error

0

G

getfenv

()

getmetatab

()

gcinfo

ipairs ()
loadfile (

loadlib ()

loadstring

newtag ()
()
()

()

next
pairs

pcall

.yield

Table 6.10. Common Lua Input/Output Functions

Purpose

Writes the value of each of its arguments to the filehandle file

Table 6.9. Lua's Basic Function Library

bage ()

create

resume

status

0
0

wrap

le ()

)

)

Purpose
Issues an error when its argument is nil

Forces a garbage collection cycle and returns the number of
objects collected

Creates a new coroutine
Starts or continues coroutine execution
Returns status for a coroutine

Creates a new wrapped coroutine
Suspends coroutine execution

Opens a given file and executes its contents as a Lua chunk or
as precompiled chunks

Calls the error handler and then terminates the last protected
function called

Holds the global environment
Returns current environment in use by a given function

Returns objects' metatable field value or else nil for no
metatable

Returns dynamic memory use and garbage collector threshold in
kbytes

Iterates over a table

Loads a file as a Lua chunk

Links a program to a C library

Loads a string as a Lua chunk

Returns a new tag - equivalent to the API function 1ua newtag
Allows a program to traverse all fields of a table

Iterates over tables

Calls a function in protected mode with given arguments

261

Table 6.9. Lua's Basic Function Library

Function Purpose

print () Receives arguments and prints their values using the strings
returned by tostring

rawequal () Checks to see if two values are equal

rawget () Gets the real value of an index within a table

rawset () Sets the real value of an index within a table

require () Loads a given package

setenv () Sets the environment to be used by a function

setmetatable () Sets the metatable for a given table

tonumber () Tries to convert an argument to a number

tostring () Tries to convert an argument to a string

type () Returns the type of its only argument

tinsert () Inserts an element at a given table position

tremove () Removes an element from a given table

type () Tests the type of a value

unpack () Returns all elements from a given list

~VERSION Holds the current interpreter version (i.e. Lua 5.0)

xpcall () Calls a function in protected mode using err as the error
handler

System Facilities

There are also a few system utility functions that can be included with Lua's built-in
library. They are listed in Table 6.11.

Function

os.clock ()
os.date ()
os.difftime ()

os.execute ()

os.exit ()

os.getenv ()

Table 6.11. Lua System Facilities

Purpose

Returns an approximate CPU time, in seconds, used by the program
Returns the date and time according to given format

Returns the seconds between two given times

Passes a command to be executed by the operating system.
Equivalent to C's system

Calls the C function exit to terminate a program

Returns the value of a given environment variable

262

Function

OoSs.

oS

oS

oS

remove ()

.rename ()

.setlocale

.time ()

.tmpname ()

Table 6.11. Lua System Facilities

Purpose
Deletes a given file
Renames a given file

Used as an interface to the ANSI C setlocale function

Returns current time

Returns a string with a filename that can be used for a temporary file

263

Memory, Performance, and Speed

Like most high-level languages, Lua manages memory automatically, so that you don't
have to worry about allocating memory for new objects and freeing it when the objects
are no longer needed. Lua manages memory automatically by running a garbage
collector from time to time to collect any objects that are no longer accessible to Lua.
The garbage collector picks up all of Lua's objects, including threads, tables, and so on.

Although this is not an issue when running the Lua interpreter, when calling Lua from a
host, Lua's stack-in memory must be managed. Each function call in Lua needs one
stack position for each argument, local variable, and temp variable, plus one position for
bookkeeping. The stack should also have some 20 extra positions available. For small
implementations of Lua (without, say, recursive functions), the Lua user manual
suggests a stack size of 100. The default is 1,024.

Figure 6.4. A Lua script interacts with the stack

The Stack
Stack Position 1
Stack Position 2 \
Program
\ Push a global variable o
Stack Position 3 \ Push number onto stack
Push string onto stack
Stack Position 4 Pop battom element off stack
Stack Position 5 /
Stack Position 8 r{

lua_Stat *lua open (int stacksize);

To release Lua, you close its state with the stack:

void lua close (lua-Stat *L);

This destroys all objects in a given Lua environment by calling the corresponding

garbage-collection tag methods and frees all of the dynamic memory used by that state.
You do not normally need to call this function because all resources are released when
your program ends. However, long-running programs like Web servers or game-server

264

hosts may need to release states as soon as they are no longer needed so that the states
don't grow too large.

When you use the Lua C API, you are responsible for controlling stack overflow.
Whenever Lua calls C, it ensures that at least LuA MINSTACK positions are available, so
that you only have to worry about stack space when your code has loops pushing
elements onto the stack. The API offers a number of functions for basic stack
manipulation, including

e void lua_settop. Sets the stack top.

e void lua_pushvalue. Pushes onto the stack.

e void lua_remove. Removes element at given position.

e void lua_insert. Moves top element into given position, shifting elements on top
of that position to open space.

e void lua_replace. Replaces a given element.

You can also query the stack with a number of functions that check the type of the given
object and return strings. These functions include the following:

lua type

lua isnil

lua_ isboolean

lua_ isnumber

lua isstring

lua istable

lua isfunction

lua iscfunction

lua isuserdata

lua islightuserdata

lua equal and lua rawequal are functions for comparing two values on the stack.

To push C values onto the stack, there are a number of functions that receive C values,
convert them to corresponding Lua values, and push the result onto the stack. These
include:

lua pushboolean

lua pushnumber

lua pushlstring

lua pushstring

lua pushnil

lua pushcfunction

lua pushlightuserdata

When chunks are called, functions like 1ua-dowhile push onto the stack any values
eventually returned by the chunks. A chunk can return any number of values, and Lua
checks to make sure the values fits within the stack space. But after the call, the
responsibility for fitting within the stack falls back to the programmer. This means that
if you need to push other elements after calling any of these functions, you should check
the stack space and remove returned elements from the stack if you do not need them.

265

Garbage Collection

Lua uses two variables to control its garbage collection cycles. The first keeps track of
how many bytes of dynamic memory Lua is using. The second variable is a threshold
that, when hit, tells Lua to run the collector. These are accessible and changeable via the
C API and through the gcinfo and collectgarbage functions.

Lua first counts the amount of memory it is using. If the count reaches the threshold, it
runs the garbage collector. After the collection, the count is updated and the threshold is
reset to twice the count value. The current count value can be retrieved with

lua getccount (lu State *L);

The current threshold can be retrieved with

lua getcthrechold (lua State *L);

Each returns their values in KB. The threshold can be changed with

lua_setgcthreshold (lua_State *L, int newthreshold);

A garbage collection cycle can be forced with

long lua collectgarbage (lua State *L long limit);

This also returns the number of objects collected.

Garbage collector metamethods for userdata can be also set using the C API. These
metemethods are called finalizers. The finalizers allow you to coordinate Lua's garbage
collection with external resource management if necessary.

Speed

Lua supports coroutines as independent threads of execution. This isn't, however, a true
independent multi-threaded system—it is a semi-collaborative multithreading system.
That means a coroutine only suspends its execution by explicitly calling a yield routine.
Lua also offers some support for multiple threads of execution via its C API, so if you
have C libraries that offer kicking, then multi-threading Lua can cooperate with them.

Although garbage collection can be monitored and controlled, the main cause of low
system performance is a large number of objects generated. If you are managing many

objects, then the GC is an option, but it may not be always necessary.

Local variables in Lua are much quicker than global variables. This is because the locals
are accessed by index. If possible, make any global variables local. Additionally, local

266

variables are kept on the stack and so will not affect the garbage collector (their values
do not need to be collected by the garbage collector, as they are created on the stack).

for loops in Lua have been optimized, and also have specialized virtual machine
instructions. This means that they can be faster than while- and repeat-type loops and
should be used if speed is your goal.

The built-in debugger features (mainly hooks) can be used to profile Lua code and look
for bottlenecks in execution time. There is also a Lua Profiler available on the lua-
users.org site Wiki page, at http://lua-users.org/wiki/LuaProfiler.

When reading in files, Lua buffers the files in chunks, which is faster than reading files
line by line.

267

Summary

Before moving on to the next chapter, you should have Lua installed on your computer
and you should feel quite comfortable plugging chunks into the Lua interpreter. You
should have taken a good look at Lua's structures, particularly i f/for/while, and
especially tables. You should have tried playing with a few functions from the string
and math libraries. Important points from this chapter:

e Lua is normally executed by a host program or language.

e Lua code is broken up into chunks, which are similar to program blocks or
single statements.

o Tables are very important in Lua.

e Lua is not designed for building huge programs. Its aim is to be useful in
creating small programs or parts of a larger system.

268

Questions and Answers

1: Q: What about all the object-oriented features of Lua, like multiple
inheritance and polymorphism?

A: A: Although Lua has worked towards OOP support, the language isn't really
meant to be the huge factory-like mechanism for building giant programs.
Unlike other OOP-type languages, Lua is meant to be small and flexible.
Because of this, some OOP constructs may feel like hacks to the power
Smalltalk developer. For this reason, I left out some of the complicated OOP
features in this chapter.

2: Q: I want to know more about the Lua C API.

A: A: Start reading the next chapter!

269

Exercises

1: List four things tables are used to create in Lua.
2: Explain the difference between lua.exe and luac.exe.
3: Explain the concept of "chunks" in Lua.

4: Write a quick Lua program that looks for and finds white space within a text
string and then deletes it (bonus points!).

270

Chapter 7. Getting Specific with Games in Lua

The plainest sign of wisdom is a continual cheerfulness: her state is like that of things in
the regions above the moon, always clear and serene.

——Michel de Montaigne

In this chapter, you'll push the boundaries of Lua and examine game programming
itself—with some help from LuaSDL. I'll also launch into the Lua C API in this chapter.

271

LuaSDL

LuaSDL is Simple DirectMedia Layer's binding into the Lua universe. LuaSDL has its
own project page on Sourceforge, at http://sourceforge.net/projects/luasdl/. Lua users
also keep a copy of the distribution on their Wiki pages, at
http://luausers.org/wiki/LuaModuleLuaSdl.

You can also find a copy of LuaSDL in the Chapter 7 section of this book's CD. The
LuaSDL binaries are taken from Lua users.org and precompiled and generated by
Thatcher Ulrich, a programmer for Oddworld Inhabitants. Thatcher's latest LuaSDL
versions can be found at his Website, at http://tulrich.com.

In Windows, you need to place the prebuilt luaSDL.dIl somewhere in your path in order
for SDL to function. The easiest way to do this is to drop the luaSDL.dII into your
Windows system folder. Linux-platform users also need to set the path or place
libluaSDL .so into their library-loading path file (which varies; usually ust/lib or
ust/local/lib). Only the pre-built binaries are available at the time of this writing, and
they are only available on these platforms.

NOTE

TIP

If you really want to get up-to-speed with SDL, check out the highly rated Focus on
SDL, by Ernest Pazera, published by Premier Press.

272

Gravity: A Lua SDL Game

I first introduced SDL way back in Chapter 4, where you used it with Python to do
some pretty amazing stuff. Lua's SDL bindings aren't quite as complete, and
unfortunately they are also a little out-of-date. The bindings are still in beta (Version 0.3
as of this writing) and were put together using the Lua 4 interpreter (the binary module
has been pre-packaged with the toLua tool). Because of this, all of the necessary Lua
scripts are bundled with the game inside the folder (so you don't try running it with Lua
5).

LuaSDL comes bundled with a 2D sprite game prototype called Meteor Shower. The
game is written entirely in Lua and SDL by Thatcher Ulrich, who has generously given
the source code to the public domain. I use this code as a base for Gravity. The entire
source sample can be found in the Gravity folder in the Chapter 7 section on the CD,
along with the pre-compiled DLLs necessary to use SDL and the Lua 4 interpreter.

You can launch Gravity from the command line; just navigate to the directory using the
command line and type:

Lua Gravity.lua

In Gravity, the player is the moon in a universe gone haywire. Planetary objects and
space travelers zoom across the screen, each attracted to themselves and to the player by
their given mass (see Figure 7.1). The player must avoid these objects or face
destruction.

Figure 7.1. Gravity goes haywire in this LuaSDL game

A number of functions keep Gravity going. The list of functions for Gravity is shown in
Figure 7.2.

273

Figure 7.2. The function list for Gravity

show_sprite) _ pyr
sprite Sprite functions | aca0r render R
aclor_update
e normal Vecior functions
vec2. pomalze hande_player_colision
render player_manager
N player_manager_render | p
engine_inft player_manager_update Player functions
enging_loop ‘ Dlayer updale
gameloop_iteration | Engine functions | player
update_tick
handle_event bstacle
oollsion W.Obﬂ;ni;_lmage
a- or g ¥
cusy odate | OUrsor functions m_ﬂbm_mﬂm Obstacle functions
CUrs0r_u bstaci, U
obstacle_creator

Importing SDL

Before other code can start working, the program must have access to LuaSDL. This
can be achieved with only a few short lines:

-— Need to load the SDL module
if loadmodule then

end

NOTE

loadmodule ("SDL")

Lua 5 versus Lua 4

Lua 5.0 was released early in April of 2003. A number of new features came with Lua
5.0, including the following:

Coroutines for executing many independent threads.

Block comments for having multiple comment lines in code.

Boolean types for true and false.

Changes to how the API loads chunks. This is supported by new commands:
lua load, lual loadfile, and lualL loadbuffer.

Lightweight userdata that holds a value and not an object.

Weak tables that assist with garbage collection.

A faster virtual machine that is register-based.

Standard libraries that use namespaces, although basic functions are still global.
New methods of garbage collection, such as metamethods and other new
features that make collection safe.

274

Along with the added features came a number of incompatibilities with previous Lua
versions. Watch out for the following differences if you are a Lua 4.0 guru moving to
Lua 5.0:

o Metatables have replaced the tag-method scheme.

e There are a number of changes to function calls.

e There are new reserved words (including false and true).

e Most library functions are now defined inside Lua tables.

e lua pushuserdata is deprecated and has been replaced with 1au_newuserdata
and,lua_pushlightuserdata.

Work on 5.1 has already begun, and the rumor mill has it that this next version may be
available by the end of 2003.

Setting Initial Variables
You must initialize a blit surface and a start gamestate early on for this 2D game.
Blitting, as you may recall from Chapter 4, is basically rendering or drawing, and in

particular is the act of redrawing an object by copying the pixels of an object onto the
screen.

An SDL blit surface looks like this:

SDL.SDL BlitSurface = SDL.SDL UpperBlit;

The gamestate is a collection of state variables, assigned to a Lua table, that are
initialized before the game starts to run. These are listed in Table 7.1.

Table 7.1. The gamestate Variables

Element Value
last update ticks 0
begin time 0
elapsed ticks 0
frames 0
update period 30
active 1
new_actors Nested table
actors Nested table
add actor Function
gamestate = {

last update ticks = 0,

begin time = 0,

275

elapsed ticks = 0,
frames = 0,

update period = 30, -- interval between calls to
update tick
active =1,
new_actors = {},
actors = {},
add actor = function(self, a)
assert (a)

tinsert (self.new _actors, a)
end

In this table there are a number of variables set to 0 and also a few nested tables. The
update period is the interval in milliseconds between calls to the update tick, and
active is a Boolean that says whether the engine is currently active or not. The
add_actor function is also defined in this table.

The next Lua table is for a sprite cache. This cache will hold sprites that have already
been loaded, so the engine won't have to try and load them on-the-fly:

sprite cache = {}

Gravity is all about speed and velocity and, well, gravity. I envisioned flying planetary
objects, each with different masses, bumping and colliding with each other in a solar
system-like playing screen. To achieve this effect, I have to set gravity, how often
obstacles fly onto the screen, and how many lives the player will have.

-- Set gravity

GRAVITY CONSTANT = 100000

-— table of virtual masses for the different obstacle sizes
obstacle masses = { 10, 50, 75 }
OBSTACLE RESTITUTION = .05

-- soft speed-limit on obstacles
SPEED TURNOVER THRESHOLD = 4000

-- player manager actor
MOONS PER GAME = 3

--How often till new obstacle appears
BASE RELEASE PERIOD = 500

The three obstacles, two planets and a space cow, are illustrated in Figure 7.3. Each will
use a unique bitmap image that is already included in the Gravity folder. These images
are placed into a Lua table.

Figure 7.3. The three obstacles in Gravity

276

'J Cosiade 1: Ring Planet

W Oostacle 2. Gas Planat

™ Obataca 3 Space Cow

--load the bitmap obstacle images
obstacle images = {

{ "obstaclel.bmp" 1},

{ "obstacle2.bmp" 1},

{ "obstacle3.bmp" 1},

Creating Functions

Creating functions is really the meat and gravy of the endeavor. You need functions,
lots of functions. Sprites, vectors, events, the game engine, and each actor (or object)
within the game must be handled.

Sprite Handling

Sprite handling is the first thing to tackle (see Figure 7.4). The main sprite function will

be a constructor that takes in a bitmap file and returns an SDL surface that can be blitted
and used by the engine. A function that draws the new blitted SDL surface sprite onto a

rect (rects are again from Chapter 4—they are the basic object for a 2D SDL game)

will be part of the process as well. The main sprite function will be sprite ():

Figure 7.4. Sprite handling functions in Gravity

277

Bitmap
Bitmap is passed
to the agrﬂa function +

gprite

The sprite function

SD0L surface Is passed
to the show_aprite
function

show_sprite

Ensuras tamporary
rect structure

function sprite(file)
-- The sprite constructor. Passes in a bitmap filename and returns an
SDL_Surface
--First check the cache
if sprite cache[file] then
return sprite cache[file]
end
local temp, my sprite;
-- Load the sprite image
my sprite = SDL.SDL LoadBMP (file);
if my sprite == nil then
print ("Couldn't load " .. file .. ": "
SDL.SDL GetError());
return nil
end
-- Set colorkey to black (for transparency)
SDL.SDL SetColorKey (my sprite, SDL.bit or (SDL.SDL SRCCOLORKEY,
SDL.SDL_RLEACCEL), 0)
-- Convert sprite to video SDL format
temp = SDL.SDL DisplayFormat (my sprite);
SDL.SDL FreeSurface (my sprite);
my sprite = temp;
sprite cache[file] = my sprite
return my sprite
end

The sprite constructor first checks to make sure that the sprite doesn't already exist in
sprite cache. If it does not, the constructor tries to find the given BMP image file. If
the file doesn't exist, the constructor exits with an error; otherwise it goes ahead and
loads the image into an SDL format (using a temp variable as interim), sets the

278

colorkey (another Chapter 4 concept), loads the sprite into the sprite cache, and
returns the sprite.

The second sprite function, show sprite, is passed a sprite and draws it on the screen
at the given coordinates (x,y). It uses the massively powerful rect () to accomplish this.
Notice that in order for show sprite to work, it needs all four variables:

function show sprite(screen, sprite, x, y)
-- make sure we have a temporary rect structure
if not temp rect then
temp rect = SDL.SDL Rect new ()
end
temp rect.x = x - sprite.w / 2
temp rect.y y — sprite.h / 2
temp rect.w = sprite.w
temp rect.h = sprite.h
SDL.SDL BlitSurface (sprite, NULL, screen, temp rect)

end

Vector Handling

When used in game physics, vectors combine magnitude (speed) and direction (see
Figure 7.5). Vectors are extremely useful, as the engine needs to know the speed and
direction of the objects and actors flying around the screen. In order to do this, the vec2
function needs to take in a table and do some math.

Figure 7.5. Vectors in physics combine magnitude and direction.

Vectors combine magnitude and direction. In this figure, magnitude is
represented by length, or the distance between x and y, and direction
is represented by which way the amrow poinis.

¥

In geometry, vectors consist of a point or a location in space, a direction, and distance.
The combination of direction and distance is sometimes called displacement. The vec2
function helps to keep track of vectors using x and y coordinates, as shown in Figure
7.6. The starting coordinates are a.x and a.y, and the ending coordinates are b.x and
b.y.

279

Figure 7.6. Starting and ending points of a vector

This vactor starts at
point “a™ and ends at

B point b

Y-Axia

X-Axds

The vec2 function has a number of methods for determining speed and direction of an
actor or object using vectors. The add, sub, mul, and unm methods are used to track
position in two-dimensional space by performing sector arithmetic.

The add method is used to do vector addition where the results of two vectors can be
plotted in two-dimensional space, as shown in Figure 7.7. Vector subtraction is handled
by the sub method, and does the opposite of vector addition by delivering the difference

between two vectors.

Figure 7.7. Vector addition

280

Y-Axi

X-Axis

You can multiply a vector by a constant to produce a second vector that travels in the
same or the opposite direction but at a different speed. Multiplying vectors in math is
called scalar multiplication. Scalar multipication can be really useful for collisions—say
if two planets in the Gravity game collide, and they need to bounce off of each other in
opposite directions.

There is also a second way of multiplying vectors that gives the angle between two
vectors. This called the dot product; it is also handled by the mul method. Although you
don't use the dot product in this game, it is a useful vector function and is sometimes
used to perform lighting calculations (say, if you wanted to add a sun object that casts
shadows to the game) or determine facing in 3D games.

After running through vec?2, vec2 normalize finishes the vector math by dividing by
the length and catching any possible close to 0 calculations that could cause errors.

--vec2 tag = nil
-- re-initialize the vector type when reloading
function vec2 (t)
—-— constructor
if not vec2 tag then

vec2 tag = newtag()

Vector addition

settagmethod (vec2 tag, "add",

function (a, b) return vec2{ a.x + b.x, a.y +

b.y } end

281

Vector subtraction
settagmethod (vec2 tag, "sub",
function (a, b) return vec2{ a.x - b.x, a.y -

b.y } end
)
Vector multiplication
settagmethod (vec2 tag, "mul",
function (a, b)
if tonumber (a) then
return vec2{ a * b.x, a * b.y
}
elseif tonumber (b) then
return vec2{ a.x * b, a.y * Db
}
else
-- dot product.
return (a.x * b.x) + (a.y *
b.y)
end
end
)
settagmethod (vec2 tag, "unm",
function (a) return vec2{ -a.x, -a.y } end
)
end
local v = {}
if type(t) == 'table' or tag(t) == vec2 tag then
v.x = tonumber (t[1l]) or tonumber(t.x) or 0
v.y = tonumber (t[2]) or tonumber(t.y) or O
else
v.x = 0
v.y = 0
end
settag (v, vec2 tag)
v.normalize = vec2 normalize

return v
end

function vec2 normalize (a)
-- If a has 0 or near-zero length, sets a to an arbitrary unit vector
local d2 = a * a
if d2 < 0.000001 then
-- Return arbitrary unit vector

a.x =1
a.y =0
else
-- divide by the length to get a unit vector
local length = sqgrt(d2)
a.x = a.x / length
a.y = a.y / length
end
end
Event Handling

Handlers for key presses and mouse clicks are necessary for any computer game. Mouse
events will be picked up by the individual actor that controls the player, but monitoring
for the keyboard and windows events must also occur in case a player wants to close a

282

window or quit using the Escape key. This can be done fairly easily (see Figure 7.8) by
using SDL_KEYDOWN to watch for SDLK g or SDLK ESCAPE.

Figure 7.8. Event handling

handle_event
Ty
SDL.KEYDOWN
if Escape Key
L
> gamestate = nil

if Q Key

PR |

function handle event (event)

-- called by main loop

—--Checks for keypresses

-- sets gamestate to nil if player wants to quit

if event.type == SDL.SDL KEYDOWN then
local sym = event.key.keysym.sym
if sym == SDL.SDLK g or sym == SDL.SDLK ESCAPE then
gamestate.active = nil
end
elseif event.type == SDL.SDL QUIT then
gamestate.active = nil
end

end

The Engine and the Game Loop

A number of actions must happen in the engine and game loop, and these actions should
correspond to a codeable function. You must have a function to remove any sprites that
aren't being used and add any new ones, a function to render the screen and background,
a function that keeps track of time and updates the game state, a function that does the
blitting, and a function that listens for player keystrokes:

e render_frame. Updates and redraws.

e engine_init. Sets screen and video.

e engine_loop. Main engine loop.

e gameloop_iteration. Tracks time and call other functions.
o update_tick. Updates any game actors.

e handle_event. Listens for any events caused by the player.
o handle_collision. Handles any actor collisions.

The first step is to initialize the engine.

283

The engine init function is used to set the screen width and height and the video
mode and to start the game ticking, so to speak. It does all this through common-sense
local variables, a few SDL calls, and calling gamestate:

function engine init (argv)

local width, height;

local video bpp;

local videoflags;

videoflags = SDL.bit or (SDL.SDL HWSURFACE, SDL.SDL ANYFORMAT)

width = 800

height = 600

video bpp = 16

-- Set video mode

gamestate.screen = SDL.SDL_ SetVideoMode (width, height,
video bpp, videoflags);
gamestate.background = SDL.SDL MapRGB (gamestate.screen.format,
0, 0, 0);
SDL.SDL_ShowCursor (0)
-- initialize the timer/ticks
gamestate.begin time = SDL.SDL GetTicks();
gamestate.last update ticks = gamestate.begin time;
end

Removing any actors that are no longer used and adding any new actors is handled by
an update tick function. Two Lua for loops iterate through each actor in the game.
The first removes any actors that aren't active and adds any new ones:

for i = 1, getn(gamestate.actors) do
if gamestate.actors[i].active then
--— add the actors
tinsert(gamestate.new_actors,
gamestate.actors[i])
end
end

The former gamestate.actor table is then replaced with the new table in a quick swap:

gamestate.actors = gamestate.new actors
gamestate.new _actors = {}

Then a second for loop calls an update for each actor in the table:

-- call update for each actor
for i = 1, getn(gamestate.actors) do
gamestate.actors[i] :update (gamestate)
end

After the actors have been updated, each needs to be redrawn, as does the screen. A
quick render frame function does this work, first clearing the current screen and then
redrawing each actor rect () within gamestate.actors:

function render frame (screen, background)

284

—-— When called renders a new frame.
-— First clears the screen
SDL.SDL FillRect (screen, NULL, background);
-- re-draws each actor in gamestate.actors
for i = 1, getn(gamestate.actors) do

gamestate.actors[i] :render (screen)

end
-- updates
SDL.SDL UpdateRect (screen, 0, 0, 0, 0)

end

Most of the actual game-engine work is done by this next little function, called
gameloop iteration. Itis called each time the engine loops, and is responsible for
calling all the other rendering functions and keeping track of time. First

gameloop iteration calls handle event on any pending events in the gamestate's
event buffer (checking first that the buffer exists):

function gameloop iteration()
-- call this to update the game state. Runs update ticks and renders
-- according to elapsed time.
-- if buffer doesnt exist make it so
if gamestate.event buffer == nil then
gamestate.event buffer = SDL.SDL Event new /()

end

-— run handle even on any pending events

while SDL.SDL PollEvent (gamestate.event buffer) ~= 0 do
handle event (gamestate.event buffer)

end

gameloop iteration then uses SDI GETTICKS () to setthe local time variable and
compares this with the gamestate to see if an update needs to occur. If the engine needs
to update, then update tick is called and the time count is updated:

-- run any necessary updates
local time = SDL.SDL GetTicks();
local delta ticks = time - gamestate.last update ticks
local update count = 0
while delta ticks > gamestate.update period do
update tick();
delta ticks = delta ticks - gamestate.update period
gamestate.last update ticks =
gamestate.last update ticks +
gamestate.update period
update count = update count + 1
end

Finally, render frame has to be called to redraw any actors and the screen background
if an update has occurred:

-- if we did any updates, then render a frame
if update count > 0 then
render frame (gamestate.screen, gamestate.background)
gamestate.frames = gamestate.frames + 1
end

285

end

The actual engine game loop (engine loop) runs while the gamestate is active. The
engine loop calls gameloop iteration each time its own while loop fires. The
engine loop then cleans out the buffer. If the gamestate is no longer active, then
engine loop calls sDL QUIT:

function engine loop ()
-— While loop calls gameloop iteration
while gamestate.active do
gameloop iteration()
end
-- clean up
if event buffer then
SDL.SDL Event delete (event)
end
SDL.SDL Quit();
end

Actors

Everyone wants to be an actor—or a computer game programmer—these days. Actors
in Gravity aren't as revered or lucky as the Hollywood variety, however. They are the
constructs that can be interacted with in the game, as shown in brief in Figure 7.9. These
base actor functions will be used by the other objects in the game.

Figure 7.9. Actors are initialized in Gravity

Actor functions

actor

actor_render
player obstacle
player_manager obstacle_creator
player_manager_rander pick_obstacle_image
player_manager_update obstacle_take_damage
handle_player_collision handle_cbstacle_collision
player_update obstacle_update

Obstacle functions Player functions

Learning how to update an actor's position on the screen is the first task here, and this is
where the vector functions get to stretch their legs. Velocity is multiplied by how much
time has elapsed in the gamestate loop since the last update:

286

function actor update(self, gs)

-—- Updates than actor using vector functions
local dt = gamestate.update period / 1000.0
-- update according to velocity & time
local delta = self.velocity * dt
self.position self.position + delta

Since this is a 2D Asteroids-type game, objects on the screen should wrap around to the
other side when they hit an edge. This effect is achieved with simple math applied to the
position and the game screen (gs . screen) before actor update ends:

-- wrap around at screen edge

if self.position.x < -self.radius and self.velocity.x <= 0
then

self.position.x = self.position.x + (gs.screen.w +

self.radius * 2)

end

if self.position.x > gs.screen.w + self.radius and
self.velocity.x >= 0 then

self.position.x = self.position.x - (gs.screen.w +
self.radius * 2)
end
if self.position.y < -self.radius and self.velocity.y <= 0
then
self.position.y = self.position.y + (gs.screen.h +
self.radius * 2)

end
if self.position.y > gs.screen.h + self.radius and
self.velocity.y >= 0 then
self.position.y = self.position.y - (gs.screen.h +
self.radius * 2)
end
end

A function that blits actors onto the screen using show sprite is the next thing to
create after determining the actor's position:

function actor render(self, screen)
-- Blit the given actor to the given screen
show sprite(screen, self.sprite, self.position.x,
self.position.y)
end

The final curtain on actors is to build an actor constructor. The constructor will take in
the sprite bitmap and keep track of position, velocity, and radius, and then return the
actor in a nice, neat Lua table:

function actor (t)
-- actor constructor. Pass in the name of a sprite bitmap.
local a = {}
-— copy elements of t
for k,v in t do
alk] = v
end

287

a.type = "actor"

a.active = 1
a.sprite = (t[l] or t.sprite and sprite(t[l] or t.sprite)) or
nil
a.position = vec2 (t.position)
a.velocity = vec2(t.velocity)
a.radius = a.radius
or (a.sprite and a.sprite.w * 0.5)
or O
a.update = actor update
a.render = actor render
return a
end
Obstacles

The game obstacles are cows and planets. These obstacles must track a number of
different things in order to make the game interesting.

e Obstacles can take damage. Some of the bigger objects will survive collisions
with several smaller objects, so they need to track how much damage they can
take.

e Opbstacles need to know when they collide with something.

e Obstacles are drawn to each other by gravity, and so they need to keep track of
other nearby obstacles.

Obstacles should also occasionally appear on the screen. They should come from
offscreen at a random place, at a random speed, and travel somewhat towards the center
of the screen. These object capabilities are handled with the following functions:

e obstacle update(). Handles gravity, movement, and collisions.

o handle_obstacle_collision(). Called when a collision is detected.

o obstacle take damage(). Damages the object.

o pick_obstacle_image(). Chooses one of the obstacle images at random.
o obstacle(). The obstacle constructor.

o obstacle creator(). Randomly places obstacles onto the screen.

The obstacle update is the first function to tackle. It watches for collisions by first
updating itself and then keeping track of where the other actors are:

function obstacle update(self, gs)

-- update this obstacle. watch for collisions with other actors.
-—- move ourself
actor update(self, gs)
local dt = gamestate.update period / 1000

local accel = vec2()
-- check for the position of other actors
for i = 1, getn(gs.actors) do

local a = gs.actors[i]

Actors with a large mass will draw other actors towards themselves. This is simulated
with the GRAVITY CONSTANT, the two actors' mass, and some math.

288

The Newtonian concept of attraction takes the mass of two objects, the distance between
them, and the constant of gravity to determine how strong the attraction is between the

two objects (see Figure 7.10).

Figure 7.10. Newton's law of attraction (i.e. universal gravitation)

Object 1
Mmb:tm

=G

Gravity Constant

4 oz

- (G'm1)(G'm2)
Force of Attraction = requared

This law is usually expressed by (G*m1)*(G*m2)/t"2, where G is the gravitational
constant, ml is the mass of the first object, m2 is the mass of the second object, and r is
the distance between the two objects.

This formula is used in obstacle update by taking the GRAVITY CONSTANT and the
mass of an object (a.mass) and accelerating actors towards other actors:

-— if the actor has mass then compute a gravitational acceleration

towards it
if a.mass then
local r = a.position - self.position
local d2 = r * r
if d2 < 100 * 100 then
local d = sqrt(d2)
if d * 2 > self.radius then
accel = accel + r * ((GRAVITY CONSTANT *
a.mass) / (d2 * d))
end
end
end

Then obstacle update needs to check for actual collisions and handle them by calling
handle collision. You end the function by resetting the actor's velocity:

—— check for collisions, and respond
if a and a ~= self and a.collidable then

289

local disp = a.position - self.position
local distance squared = disp * disp
local sum radius squared = (a.radius +
self.radius) » 2
if distance squared < sum radius_squared then
-- we have a collision, call the
collision handler.
handle collision(self, a)
end
end
end
self.velocity = self.velocity + accel * dt
end

The next function, handle obstacle collision, fires when the obstacles collide. It
first makes sure that the collision is between two obstacles and not between an obstacle
and the player; that would be handled by a different function. It then damages the
objects that collide by calling obstacle take damage:

function handle obstacle collision(a, b)
-- handles a collision between two obstacles, a and b.
--Make sure we are handling collison between two obstacles,
otherwise exit
if a.type == "obstacle" and b.type == "obstacle" then
-- impulse will be along the displacement vector between
the two obstacles
local normal = b.position - a.position
normal :normalize ()
local relative vel = b.velocity - a.velocity
-- Damage the objects that collide
local collision-energy = 0.1 * (relative vel *
realtive ve;) * (a.mass + b.mass)
local split dir = vec2{ normal.y, -normal.x }
obstacle take damage(a, split dir, -normal,
collision energy)
obstacle take damage (b, split dir, normal,
collision energy)
end
end

The obstacle take damage is called in the event of a collision. Some objects may
survive a collision, but at least one (the one with lesser mass) will be destroyed. The
smallest objects (cows) will always be destroyed:

function obstacle take damage (a, split direction, collision normal,
collision energy)
-- damage the obstacle; if it's damaged enough, destroy
local split speed = sqgrt(2 * collision energy / a.mass) * 0.35
-- obstacle takes damage; when its damage reaches 0 it dies
a.hitpoints = a.hitpoints - collision energy / 2000
if a.hitpoints > 0 then
-- collision is not violent enough to destroy this
obstacle
return
end

290

local new size = a.size - 1

if new size < 1 then
-— The smallest obstacle always disintegrates.
a.active = nil
return

end

-- kill a

a.active = nil

end

Pick obstacle image is a short random function that will pick which object to use
from the image table using Lua's built-in random:

function pick obstacle image (size)
local image table = obstacle images([size]
-- pick one of the obstacle images at random
return image table[random(getn (image table))]
end

The obstacle constructor uses the actor constructor as its building block. It then sets
its type to "obstacle", flags it as collideable, makes sure it has one of the three
obstacle sizes, and then sets variables for radius, size, and speed. It also assigns the
obstacle to obstacle update:

—-— constructor
-- start with a regular actor
local a = actor (t)
a.type = "obstacle"
a.collidable = 1
a.size = a.size or 3 -- make sure caller defined one of the
three sizes of obstacle
a.sprite = sprite(pick obstacle image(a.size))
a.radius = 0.5 * a.sprite.w
a.mass = obstacle masses[a.size]
a.hitpoints = a.mass * a.mass
-- implement a speed-limit on obstacles
local speed = sqgrt(a.velocity * a.velocity)
if speed > SPEED TURNOVER THRESHOLD then
local new speed = SPEED TURNOVER THRESHOLD +
sgrt (speed -
SPEED TURNOVER THRESHOLD)
a.velocity = a.velocity * (new_speed / speed)
end
-- attach the behavior handlers
a.update = obstacle update
return a
end

Math functions like sqrt () have a reputation for being slow, especially when complex
math has to be calculated on-the-fly. Having to process sudden large computations can
cause an otherwise fluidly running game to grind to a halt. One way to speed up sqrt is
to cache any square root values that are used more than once. Let's say you had the
following code:

291

a* sqgrt(s)
b* sqgrt(s)
c = atb

Instead of running the sqrt () function twice, run it once first and store the value:

square = sgrt(s)
a*square
b*square
c = atb

A second trick is to do common math ahead of time and place it in a table for the
program. Let's say you did a log of power of multiplication in a program; you could
work out common equations first and put them in a table like Table 7.2.

Table 7.2. Common Power

Initial Value A2 N3
2 4 8

3 9 27
4 16 64
5 25 125
6 36 216

When the code needs one of these values, it gets a reference to the appropriate row and

column instead of calculating on-the-fly.

The very last thing obstacles need to do is appear occasionally on the screen to harass
the player. This is achieved by creating an actor that sets a countdown timer. When the
timer reaches 0, the actor calls the obstacle construct, creates the obstacle on the edge of

the screen, and sets it flying towards the middle somewhere. Then it starts the timer
over again:

-—- random obstacle creator
function obstacle creator (t)
—-— constructs an actor that randomly spawns a new obstacle
periodically
a = {}

a.active = 1

a.type = "obstacle creator"

a.collidable = nil

a.position = vec2{ 0, 0 }

a.velocity = vec2{ 0, 0 }

a.sprite = nil

-- set the random timer countdown

a.period = t.period or t[0] or 100 -- period between

spawning obstacles
a.countdown = a.period

292

a.render = function () end
a.update =
function (self, gs)
self.countdown = self.countdown -
gs.update period
if self.countdown < 0 then
-- timer has expired; spawn an
obstacle
-- pick a random spot around the edge
of the screen

local w, h gs.screen.w, gs.screen.h
local edge = random(w * 2 + h * 2)
local pos
if edge < w then

pos vec2{ edge, 0 }
elseif edge w*2 then

pos vec2{ edge - w, h }
elseif edge w*2 + h then

pos vec2{ 0, edge - w*2 }

A Al

else

pos vec2{ w, edge - (w*2 +
end
-—- aim at the middle of the screen
local vel = vec2{ w/2, h/2 } - pos
vel:normalize ()
vel = vel * (random(400) + 50)
gs:add actor (
obstacle{
size = random(3),
position = pos,
velocity vel

}

)

-- reset the timer
self.countdown = self.period

end
end
return a
end

The Player

The player is arguably the most important game piece. Much of the infrastructure the
player needs (such as sprite handling and actor functions) has already been laid out.
However, you still need functions to handle the following:

e Updating the player
e Player collision
e The player constructor

The player updater function handles updating the player; it looks similar to the
object updater function. The player object is handled just like an operating system's
mouse cursor. The player's position is based on the mouse position. Using

SDL GetMouseState, the player position is updated, and checks for any collisions are
made. If there is a collision, handle player collision is called:

293

function player update(self, gs)
-- update the player and watch for collisions

local dt = gamestate.update period / 1000

-- get the mouse position, and move the player position
towards the mouse position

local m = {}

m.buttons, m.x, m.y = SDL.SDL GetMouseState (0, O0)

local mpos = vecZ2{ m.x, m.y }

local delta = mpos - self.position

local accel =
delta * 50 -- move towards the mouse cursor
- self.velocity * 10 -- damping

self.velocity = self.velocity + accel * dt
-—- move ourself
actor update (self, gs)
—-— check for collisions against all other actors
for i = 1, getn(gs.actors) do
local a = gs.actors([i]
-—- check for collisions, and respond
if a and a ~= self and a.collidable then

local disp = a.position - self.position
local distance squared = disp * disp
local sum radius squared = (a.radius +

self.radius) » 2
if distance squared < sum radius_squared then
-— we have a collision
-- call the collision handler.
handle player collision(self, a)
end
end
end
end

The handle player collision also looks quite a bit like the
handle obstacle collision, except it's shorter because there is no concern over
damage. A collision will kill the player by setting its active method to ni1:

function handle player collision(a, b)
-- handles a collision between a player, a, and some other object, b
-- impulse will be along the displacement vector between the
two obstacle
local normal = b.position - a.position
normal :normalize ()
local relative vel = b.velocity - a.velocity
if relative vel * normal >= 0 then
-- don't do collision response if obstacles are moving
away from each other
return
end
-- Kill the player
a.active = nil
end

The player constructor is similar to the other constructors that have been built, except
that it's smaller. The actor template is used initially, then the constructor loads the

294

moon.bmp as its image, sets itself as collideable, gives itself a mass (yes, the player's

gravity attracts objects) and radius, and sets itself to run player update.

function player(t)

—-— constructor
-- start with a regular actor
local a = actor (t)

a.type = "player"

a.collidable =1

a.sprite = sprite("moon.bmp") -- or error("can't load")
a.radius = 0.5 * a.sprite.w

a.mass = 10

-- attach the behavior handlers
a.update = player update
return a

end

The player object needs a few utility functions with which to keep track of his lives

and whether he's entered the game. The player cursor will have different visual states

before the game starts, while playing, and after a collision, so these need to be kept
track of as well. This is done with corresponding functions in the player manager.

First is the player manager update. It keeps track of the player state, which is either

pre-game or setup, active or playing, or deceased. If the player has died,

player manager update checks to see if there are any lives left by checking the
MOONS PER GAME constant. If there are, there is a short delay before the player can
launch his next moon. These are all handled by a handful of Lua if elseif then
statements:

function player manager update(self, gs)
-- keep track of game functions
if self.state == "pre-setup" then
-- delay, and then enter setup mode.
self.countdown = self.countdown -
gamestate.update period
if self.countdown <= 0 then

self.state = "setup"
self.cursor.active = 1
gamestate:add actor (self.cursor)
end
elseif self.state == "setup" then

if not self.cursor.active then

-- player has placed the moon. start playing.

self.player.active =1

self.player.position = self.cursor.position
gamestate:add actor (self.player)

-- deduct the moon that we just placed.

self.moons = self.moons - 1
self.state = "playing"
end
elseif self.state == "playing" then

if not self.player.active then
-- player has died.
if self.moons <= 0 then
-- game 1is over
self.state = "pre-attract"

295

self.countdown = 1000

else
-- set up for next moon
self.state = "pre-setup"
self.countdown = 1000
end
end
elseif self.state == "pre-attract" then
-- delay, and then enter attract mode
self.countdown = self.countdown -

gamestate.update period
if self.countdown <= 0 then

self.state = "attract"
end
elseif self.state == "attract" then
local m = {}

m.buttons, m.x, m.y = SDL.SDL GetMouseState (0, O0)
if m.buttons > 0 then

-—- start a new game.

self.state = "pre-setup"

self.moons MOONS PER GAME

self.countdown = 1000
end
end
end

The function called player manager render comes in at this point to display moon
sprites that show how many lives the player has left:

function player manager render (self, screen)
if self.state == "attract" then
show _sprite(screen, self.game over sprite, screen.w /
2, screen.h / 2)
else
—-- show the moons remaining
local sprite = self.player.sprite
local x = sprite.w
local y = screen.h - sprite.h
for 1 = 1, self.moons do
show_sprite(screen, sprite, x, y)
X = X + sprite.w
end
end
end

The player manager constructor is the last function you need to wrap up the player.
Like the constructors, this function builds a Lua table that stores the variable you need,
such as which player mouse curser you currently use, how many lives are left, and who
to call for rendering and updating:

function player manager (t)
—-— constructor
local a = {}
for k, v in t do al[k] = v end -- copy values from t
a.active = 1
a.moons = MOONS PER GAME

296

a.state = "setup"
a.cursor = cursor/{
}
gamestate:add actor (a.cursor)
a.player = player({
position = { gamestate.screen.w / 2,
gamestate.screen.h / 2 },
velocity = { 0, 0 },

}
a.obstacle creator.period = BASE RELEASE PERIOD
a.game over sprite = sprite("finish.bmp")
a.update = player manager update
a.render = player manager render
return a

end

Starting the Game

Almost finished! Only a few functions remain. The mouse cursor must be properly

tracked and you need a check for mouse buttons that will start gameplay. The mouse
cursor is set initially to a start.bmp graphic that lets the player choose where to position

the moon when in the playing window. All of these actions are accomplished with

cursor update and the cursor constructor, and all the information is held within Lua

tables:

function cursor update(self, gs)

-- update the cursor. follow the mouse.
local m = {}
m.buttons, m.x, m.y
self.position.x = m.x
self.position.y = m.y
if m.buttons ~= 0 then

-- player has clicked
self.active = nil

SDL.SDL GetMouseState (0,

end
end

function cursor(t)

—-— constructor
-- start with a regular actor
local a = actor (t)
a.type = "cursor"
a.sprite = sprite("start.bmp") -- or error("can
a.radius = 0.5 * a.sprite.w
-- attach the behavior handlers
a.update = cursor update
return a

end

0)

't load

Initializing the game engine is a pretty straightforward endeavor after all the work that's
already been done. The engine init function is called, and a slew of obstacles are in

the gamestate with add_actor:

engine_init{}
-— Generate a bunch of obstacles

297

for 1 = 1,10 do
gamestate:add actor(
obstacle(

position

random (gamestate.screen.h) 1},
velocity

(random()*2 - 1) * 100 }, -

- pixels/sec

{ random(gamestate.screen.w),

{

(random () *2

size = random(3)

end

Then create an obstacle creator and a player manager and let them duke it out:

-— create an obstracle creator
creator = obstacle creator({}
gamestate:add actor (creator)
-—- create a player manager
gamestate:add actor(
player manager {
obstacle creator

}

Last but not least, call the engine loop (), and lo-and-behold, the game is running:

-— run the game
engine_ loop ()

creator

1)

* 100,

298

The Lua C API

Ah, the power of C. Anything that can be done directly in Lua can also be done in the
Lua C API, including manipulating variables and tables, calling functions, controlling
the garbage collector, or loading Lua from strings or files.

Typically, the Lua C library is compiled into an application or run as a shared library.
This is the most common way of accessing Lua in a game program. Altogether, the Lua
library is very small, so it is not uncommon to find the entire source tree included with a
distributed game.

NOTE

TIP

If you want to delve deeper into the C family, check out C Programming for the
Absolute Beginner, by Michael Vine, or C++ Programming for the Absolute Beginner,
by Dirk Henkemans and Mark Lee.

Opening Up Lua

Before calling any API function, a pointer to the Lua state must be passed as the first
argument. This pointer opens up Lua. The 1ua open command (introduced in Chapter
6) is what fires up the Lua state. All API functions need to set 1ua_open up as their very
first argument.

In order to use 1ua_ open in a C environment, the lua.h file must be included. The lua.h
file is a C header file that defines the Lua API. However, since Lua is ANSI C, any
inclusions of the Lua library must be wrapped within an extern C command, otherwise
the compiler will mangle the names and not be able to call the commands properly. This
may sound complicated, but in practice it looks like this:

extern "C"

{

#include <lua.h>

}

NOTE
Name Mangling

Compilers have a habit of modifying the names of functions and objects when
compiling. This is done so that the compiler can include extra information, provide type
linkage, and support function overloading. This modification is often called mangling.
Particularly confusing is that each compiler has its own way of mangling names and
laying out the compiled objects. This can cause problems when working with more than
one language, as a second language cannot predict how a particular object or command
may be mangled. Luckily, the extern command can be used to disable name mangling
entirely.

299

When the Lua state machine is finished with its job, it should be closed using the
lua_close () command. This command destroys all objects in the given Lua state via
the garbage collector. Therefore, a full instance of Lua wrapped within C code looks
something like this:

extern "C"

{
#include <lua.h>

}

lua state *Mylua lua open (0)
// Many lines of

// Useful Lua code that

// Do something

lua close (MyLua)

More or less, every function in the Lua API deals with the Lua state or the current state
of the Lua interpreter (you will often hear Lua being referred to as a "state machine"
when used in this way). The Lua state keeps track of functions, globals, and any
interpreter-related information. When the Lua state is closed, all the Lua objects and any
dynamic memory used by the state are freed.

Whenever Lua calls C, the called function gets a virtual stack. This stack contains any
arguments to the C function, is used to pass values to and from C, and will hold any
values the C functions push back. Stacks can hold more than one element and are
represented by an index, the top element of which can be called with 1ua gettop:

Int lua gettop (lua State *L);

NOTE

On some platforms, you may not need to call the close state, because
resources are released normally when the program ends. Long-running
programs or daemons may need to be released occasionally.

Stack Commands

Lua uses a stack to pass values to and from C. Each element in this stack represents a
value (nil, number, and so on) that Lua uses. The Lua API offers a number of useful
commands for manipulating the stack, querying stack functions, and translating C to
Lua. These commands are listed and summarized in Table 7.3.

Stack commands are normally given as arguments to the 1ua State, a pointer to Lua
(*Lua), and/or the appropriate index in the stack. Push functions receive a C value,
convert it to a corresponding Lua value, and then push the result onto the stack.

The Lua stack is is the primary means of communication between C and Lua. There are

no Lua type values in C, only functions that manipulate the stack. All values, functions,
and so on are pushed onto or pulled from the stack.

300

Variables

Lua variables in the API do not need to be declared, and by default are considered
global in scope unless specified otherwise. The variables that store Lua values are
global values, local values, or table fields.

Local values can be declared anywhere within a block or chunk of Lua code. They are
lexically scoped. This means the scope of variables begins at the first statement after
their declaration and lasts until the end of the innermost block that includes the

declaration.

Table 7.3. Lua API Stack Commands

Command

lua concat ();

lua equal ();

lua_insert ();

lua isboolean ();
lua iscfunction ();
lua isfunction ();
lua isnil ();

lua isnumber ();
lua istable ();

lua isstring ();
lua isuserdata ();
lua islightuserdata
07

lua lessthan ();

lua pushboolean ();

lua pushcfunction ();

lua pushfstring ();

Type

void
int
void
int
int
int
int
int
int
int
int
int

int

void

void

void

Purpose

Concatenates the values at the top of a stack,
pops them, and leaves the result at the top

Compares two items on the stack
Moves the top element to a given index

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Returns 1 if the object is compatible, otherwise
0

Compares two items on the stack

Pushes Boolean value onto the stack and
returns a pointer to the Boolean

Pushes a C function onto the stack and returns
a pointer to the function

Pushes a formatted string onto the stack and

301

Table 7.3. Lua API Stack Commands

Command Type Purpose
returns a pointer to the string

lua_pushlightuserdata void Pushes light user data onto the stack and
O returns a pointer

lua pushlstring (); void Makes an internal copy of given string, pushes,
and returns a pointer to the string

lua _pushnil (); void Pushes a nil value onto the stack and returns a
pointer to the value

lua_pushnumber () ; void Pushes a numeric value onto the stack and
returns a pointer to the number

lua_pushstring (); void Pushes proper C strings onto the stack and
returns a pointer to the string

lua_pushvalue (); void Pushes a copy of an element to a given index

lua_pushvfstring (); void Pushes a string onto the stack and returns a
pointer to the string

lua_rawequal (); int Compares values for primitive equality

lua_remove (); void Removes element at the given index

lua_replace (); void Replaces given index with given element

lua_settop (); void Sets the stack top to a given index

lua_State struct Dynamic structure that holds all Lua states

lua_totrhead(); int Converts a value on the stack into a C thread

lua_strlen (); int Gets a string's length

lua_tocfunction ()7 int Converts a value on the stack into a C function

lua_tonumber (); int Converts a Lua value at given index to a C type
number. Number is a double by default

lua_tostring (); const Converts a Lua value at the given index to a C

char type string (in C a const *char)
lua_touserdata (); void Translates userdata to a specific C type
lua_type (); int Returns the type of a value in a stack

All global variables exist as fields in ordinary Lua tables called environment tables or
simply environments. Functions written in C and exported to Lua all share a common
global environment. Each function written in Lua has its own reference to an
environment, so that all global variables in that function refer to that environment table.
When a function is created, it inherits the environment from the function that created it.

302

Userdata

Userdata is used to represent C values. Lua supports two types, full userdata and light
userdata. Full userdata represents a block of memory and light user data represents a
pointer. Both are considered objects.

The 1ua type command will return LuA TUSERDATA for full userdata or
LUA TLIGHTUSERDATA for light userdata when checking an existing userdata. New
userdata can be created with the 1ua newuserdata () function:

void *lua newuserdata (lua_stat *MyLua, size t size);

This allocates a new memory block, pushes onto the stack a new userdata with the block
address, and then returns the address.

Tables

The Lua API also has a few functions for manipulating metatables in objects. You
create tables by calling the function 1ua newtable. This function creates a new, empty
table and then pushes it onto the stack. The function 1ua gettableis provided for
reading a value from a table that resides somewhere on the stack; when 1ua gettableis
given an index that points to the table, it will read and return the value.

Interestingly, in the Lua API, all global variables are kept within the ordinary Lua tables
called environments. The initial environment that is created is called the global
environment, and it can be pseudo-indexed at LuA_ GLOBALSINDEX. Regular table
operations can be used over an environment table to access and change these global
values (using lua pushstring, for example). The global environment of a thread can
be changed using 1ua replace.

The 1ua getfenv and lua setfenvfunctions are used to get and set the environment
of Lua functions. First 1ua_getfenv pushes the environment table of the function on
the stack at a given index, and then 1ua setfenv pops a table from the stack and sets it
as the new environment for the function at a given index.

There are a number of other useful Lua functions for dealing with tables.

Lua getmetatable pushes the metatable of an object on the stack, and
lua_setmetatable sets the table on the top of a stack as a new metatable for that
object and then pops the table. The 1ua load command is used to load up Lua chunks.
It automatically detects whether a chunk is text or binary, and then loads it accordingly.

int lua load (lua_State *MyLua, lua reader, void *Mydata, const char
*MyChunk) ;

The function 1ua rawget gets the real value of a table key. To store the value into a
table that resides somewhere in the stack, the key and the value are pushed by calling
lua set table. The 1ua rawest function is used to set the real value of any table
index. Tables can be traversed with int 1ua next, which pops a key from the stack and

303

pushes a key-value pair from the table. If there are no more elements left, then
lua next returns a 0.

Tables are created by calling 1ua newtable:

void lua newtable (lua_ State *MyLua);

Reading the value in a table on the stack is done by calling the 1ua gettable command
with a specific index:

lua gettable (lua_State *MyLua, int specific index);

Because of their universality and flexibility, tables are often used as arrays in the APL
NOTE
TIP

Some of you C buffs are probably wondering how Lua handles arrays. Lua does have
functions to work with C arrays, which are treated as Lua tables and indexed by
numbers. Lua basically turns Lua tables into arrays indexed by number keys. The API
uses two commands to accomplish this: 1ua rawgeti, to push the value of elements
into the table at a given stack position, and 1ua rawseti, for setting the value of
elements of a table at a given stack position. The 1ua getn command is a third function
that will get the number of elements in the table/array.

Threads

Lua offers partial support for multiple threads. Since the support is pretty basic, you will
often find programs that instead incorporate an existing C library offering full multi-
threading.

Adding a new thread to the Lua state can be done by using the 1ua newthreadfunction:

Lua State *lua newthread (lua State *L);

The 1ua newthread function pushes the thread onto the stack and then returns a pointer
to lua State that represents this new thread. All the global objects are then shared
between the different threads, but this new thread has its own independent runtime
stack. Each thread also has an independent global environment table.

Manipulating an existing thread can be accomplished by using the 1ua resume and

lua_yield functions, which allow one to suspend or resume running threads. Lua
threads can be closed using the 1ua closethread () function.

304

Calling Functions

When C and Lua are working in tandem, both C and Lua functions can be called. For C
functions to work, you must do the following:

1. Register the C function with Lua.

2. Push the function to be called onto the stack.

3. Push any arguments to the function onto the stack.
4. Call the function with 1ua call.

The 1ua call function looks something like this:

int lua call (lua State *MyLua, int arguments, int results);

The arguments and results integers are the numbers of arguments and results that
passed onto the stack.

If a C function needs to keep a reference to a Lua value outside of its lifespan, it must
create a reference to the value. These references are stored and manipulated and
released with lua_ref, lua getref, and lua unref.

All arguments and the function value are then popped from the stack. Lua makes sure
that the returned values fit on the stack, and that the function results are pushed in direct
order so that the last result is on the top. The 1ua call function propagates any errors
in this process upwards, and a special function, 1ua pcall, is used to track error
messages that flow this way.

C functions can also be used to extend Lua, a technique that is covered in Chapter 12,
along with extending Ruby and Python in the same way.

Performing Actions

Lua's C API has equivalent commands to the basic library that it uses when in C API
mode. These commands are listed in Table 7.4.

Table 7.4, Lua API Actions

Basic Library Function Equivalent C API Function
dofile () lua dofile

dostring () lua dostring

error () lua error

newtag () lua newtag

tag () lua_ tag

305

Table 7.4, Lua API Actions

Basic Library Function Equivalent C API Function
type () lua type

Out of all of these, 1au_dostring is the one most likely to be encountered because it is
used to perform most Lua actions. Lua can also be executed in chunks written in a file
or in a string by using lua dofile, lua dostring, or the lua dobuffer command.

When called with a NULL argument, 1ua dofile executes the standard in (stdin)
stream. Both 1ua dofile and 1ua dobuffer are able to execute pre-compiled Lua
chunks this way. The 1ua dostring command, however, can only execute source code.

The function 1ua dostring calls the interpreter over a section of code contained in a
string. The lua getglobal, lua setglobal, lua call, and lua_register are used to
interpret code files, set and manipulate global variables, call Lua functions, and make C
functions accessible to Lua.

306

Summary

Lua's capabilities should be fairly clear at this point, and SDL has been tackled for the
second time in this book. Here are a few important points before continuing to the next
chapter:

« Blitting is still the key to rendering objects in SDL, whether using Python or
Lua.

o Rects are still the key for blitting a sprite or object to the screen.

e The key to utilizing the C API is the stack.

e Tables in Lua are used everywhere. They make good containers for game
objects and good containers for global variables in the C API.

e The most commonly found API function (after 1ua state and lua open)is
lua dostring.

e The Lua API functions are held within the 1ua.hheader, which must be wrapped
in a C extern command.

307

Questions and Answers

1: Q:Ican't seem to get the Gravity.lua code to work. Is there anything else I
should try?

A: A: Make sure you have the luaSDL.dII file somewhere on your system path.
If you are using Windows, try this:

1. Open up a command prompt: type cmd or command from the Run
option on the Start menu.

2. Navigate to the Gravity directory with the command line: use the cd
command to change directories to cd MY
DOCUMENTS\BOOK\CHAPTER 7\GRAVITY.

3. Type Lua.exe Gravity.lua

2: Q: Where can I learn more about the Lua API?

A: A: Lua-users.org Wiki pages have a few good, short API tutorials:

http://lua-users.org/wiki/

There is also an API section in the online 5.0 Lua manual:

http://www.lua.org/manual/5.0/

308

Exercises

1: Make a copy of the Gravity.lua source code and try playing with some of the
variables to see what happens. Change the width and height of the video
screen, change the number of player lives, and mess with the gravity and
speed constants. What would you add or change to make the game more
interesting or fun?

2: Take a look at the Meteor Shower game that comes bundled with the LuaSDL
after you have a pretty good feel for Gravity to see what an even more
complex Lua game looks like. Again, make some changes to the constants
and variables. See if there is anything you would change to make the game
more interesting or fun.

3: Take a few of the simple Lua code samples from the last chapter try to re-
script them using the C APL

309

Chapter 8. The Lua Game Community

Daring ideas are like chessmen moved forward. They may be beaten, but they may start
a winning game.

Goethe

Of the three languages covered in this book, Lua is the most widely used in the game
industry. It is already an established tool in a handful of large game shops, and it also
has a history with some of the biggest games to come out on the PC. It would be folly to
try to list all of the projects in which Lua has been a player (although the Lua home site
has a fairly large sampling of projects). This chapter instead highlights a few key
projects.

310

Game Engines

Game engines are tools that help program games. In Lua's case, some of these engines
are open-source and some are not; some of them are aimed towards beginners and some
towards advanced programmers. Some of these engines are established and complete,
while others are still in raw alpha or a quiet beta. The range of engines out there is clear
evidence of the language's popularity.

Arkhart

Arkhart is an original fantasy role-playing game that uses a unique engine called the
Ark engine. The Ark engine and Arkhart itself are built upon Lua and SDL. Ark
provides tools, a 3D client, and Lua scripting facilities to those who want to try their
hand at 3D programming Lua-style. The Arkhart home page can be found at
http://arkhart.nekeme.net/en/.

The Arkhart code was originally built with JavaScript and Mozilla's jslib, but it grew so
large that the authors migrated to the current SDL platform. The Ark engine itself has a
module for Lua scriptables, and in particular the animation files (.anm) are defined with
the Lua module. The game Al is handled within its arkhart.lua file, which initializes
through the Lua Al library. Areas in the game also appear to be defined by Lua files
(quest.lua files to be exact).

Arkhart is published under the Gnu General Public License. The Arkhart design team is
currently looking for developers and authors in both English and French.

ClanLib

ClanLib is a multi-platform game development library—perhaps one of the most
popular libraries for amateur game designers today. The idea behind ClanLib is to take
care of all the hard-to-develop deep functionality like sound mixing, setting up direct
draw, and read-ing image files. ClanLib provides a way of dealing with sound, graphics,
and networking.

ClanLib is licensed under the GNU Library General Public License and uses Lua for
extending itself and for scripting. It can also be extended and scripted with Ruby, and is
discussed in a bit more length in Chapter 11 of this book.

Enigma

Enigma is a "nearly complete" puzzle game inspired by Atari's Oxyd and Amiga's
Rock'n'Roll. Enigma is free software, with the executables and source distributed under
the General Public License; it can be downloaded at the creator's Website,
http://www.nongnu.org/enigma/.

Version .70 is also included on the CD in the Chapter 8 file section. Currently,
executables for both Windows and Macintosh are included with the latest release,
although Enigma should be playable on Posix operating systems with a bit of tweaking.

311

Enigma has been developed by volunteers and has a few community sites that offer
levels and encouragement to new users and level designers. The game is engineered
using Lua, SDL, and Oxydlib, which is a C++ library. Lua holds the distinction of being
the primary language for coding different levels. Enigma is an excellent example of a
cross C++/Lua project, and also a good example of how to tie the ability to script levels
into a product; for these reasons, I'm going to spend some time focusing on how it
works in this section.

The Enigma world is a 2D area in which the player travels in the guise of a rolling black
ball (see Figure 8.1). The first step in creating a level in Enigma is to create a map of the

world for the player to exist on:

Figure 8.1. The Enigma world

_B ﬂIﬁIlldﬂlnﬁiun

-!jl

e
ey ——

R
"

»
L

. i

create world(10,10)

This creates a 10x10 block world map. Once the map has been created, each point on
the map can be accessed like a grid. The upper-left corner is always (0,0) and, in this
case, the map's lower-right corner is (9,9), as you are counting from 0.

Enigma Tiles and Game Pieces

Enigma has a number of different stone tiles (prefixed by st-), icons (prefixed by ix-),
items (prefixed by it-), floor tiles (prefixed by £1-), and two players (ac-blackball
and ac-whiteball), although player two is currently unimplemented in the engine.
These can be used to populate the world that the player travels in. Many of the standard
tiles and game pieces are listed in Tables 8.1 through 8.5, although it is also possible to
create your own. The Xs used in the object names indicate wildcards, where there are
multiple similar tiles (for instance, there are several st-oneway X tiles, a few examples
being st-oneway white-s, st-oneway black-s, and st-oneway white-n).

312

Object
ac-blackball

ac-whiteball

Object
fl-abyss

fl-bluegray
fl-bluegreen
fl-brick
fl-bridge
fl-dunes
fl-gradient
fl-gray
fl-hay
fl-himalaya
fl-inverse
fl-leaves
fl-marble
fl-metal
fl-normal
fl-plank
fl-rough
fl-sahara
fl-samba
fl-sand
fl-space
fl-stone
fl-tigris
fl-water
fl-wood

fl-woven

Table 8.1. Enigma Players

Description
Player piece

Second player piece (currently unimplemented)

Table 8.2. Enigma Floor Tiles

Description

Abyss floor style

Two color combo tile

Two color combo tile

Orange brick style floor

Bridge tile can be open or closed
Sand tile

Fading tile set

Gray tiles

Straw texture

Blue snowy tile

Inverse of f1-normal

Green forest tile

Golden stone

Metallic tiles with different rivets
Metallic tile with four corner rivets
Wood floor, planks are cross stitched
Granite-looking

Desert tile

Stone tile segmented into four pieces
Desert tile

Black with multi-colored stars
Generic stone floor

Light marble looking floor

Water floor style

Wood floor, four even strips per tile

Escher-like black and white weave

313

Object

ic-actor
ic-arrow
ic-bottom
ic-down
ic-floor
ic-stone
ic-top

ic-up

Object
it-blackbomb

it-brush
it-coin
it-crack
it-document
it-dynamite
it-extralife
it-floppy
it-hammer
it-hill
it-hollow
it-key
it-laserX
it-magicwand
it-magnet-off
it-magnet-on
it-pipe
it-seed
it-shogund-X
it-spade

it-springl

Table 8.3. Enigma Icons

Description

Player icon

Mouse pointer
Directional arrow
Directional arrow
Section of 3D grid
Picture of 3D block
Directional arrow

Directional arrow

Table 8.4. Enigma Items

Description

Exploding bomb
Paintbrush

Money piece

Crumbling segment
Scroll

Stick of dynamite

Black ball (player piece)
Floppy disk

Hammer

Tile bubble simulates a hill

Concave tile simulates a depression or hollow

Key

Different item tiles for laser items
A magic wand

Magnet with no animation
Magnet with animation

Pipe segments

Small seed bits

A Shogun dot, in small, medium, and large sizes

Shovel

Uncompressed spring

Object
it-spring2
it-surprise
it-sword
it-tinyhill
it-tinyhollow
it-trigger
it-umbrella
it-wormhole

it-yanying

Object
st-black

st-block
st-bluegray
st-bolder
st-break
st-brick
st-brownie
st-coinslot
st-death

st-death-munch

Table 8.4. Enigma Items

Description

Compressed spring

Gift package with a question mark over it
Sword

Smaller hill

Smaller hollow

Metallic trigger grate

Umbrella

Animated spinning wormhole

Reversed yin-yang symbol

Table 8.5. Enigma Stone Tiles

Description

Different stones with black designs
Standard gray stone block

Blue and gray fading stone

Stones with different directional arrows
Breaking stone animation

Brick wall

Brown earthen wall

Wall with slot for coin

Stone with skull and crossbones

Skull and crossbones animation

st-doorX Different stone doors
st-fakeoxyd=blink_ X Different blinking stones / oxyd pieces
st-floppyl Stone for accepting it-floppy items
st-floppy?2 Stone with it-floppy inserted
st-glass Stone with white glass design
st-gratel Closed grate

st-grate?2 Open grate

st-greenbrown

st-keyl

Earthen green-brown stone

Keyhole with no key

315

Table 8.5. Enigma Stone Tiles

Object

st-key?2
st-laser-X
st-magic
st-marble
st-metal
st-mirror-movable
st-mirror-static
st-mirrortempl X
st-oneway X
st-oxydX
st-plain
st-puzzle
st-rockX
st-rubberband
st-scissors
st-scissors-snip
st-shogunX
st-stoneimpulse
st-stoneimpulse-hollow
st-swap
st-switchX
st-thief
st-timer
st-timeroff
st-white

st-wood

st-woven
st-yellow

st-yinyangl

Creating Enigma Levels

Description

Keyhole with key

Different stone tiles for lasers

Stones with a keyboard look and numbers on them
Generic marble stone tile

Generic metal stone tile

Movable mirror tile

Static mirror tile

Different tiles for mirrors

Different stones with directional arrows
Oxyd stone (many different game object stones)
Generic plain stone wall

Different pipe tiles

Several differently colored rock tiles
Rubber band tile

Open scissor stone

Closed scissor stone

Several Shogun stone tiles

Impulse stone animation

Hollow impulse stone animation

Broken circle

Different stoplight stones

Thief stone animation

Stone that triggers timed events, animated
Triggered stone timer, no animation
Different white stone tiles

Stone tile with wood design

Escher like white weave design

Yellow stone tile

Yin-yang stone tile design

316

There are a number of functions for creating levels; these are listed and described in

Table 8.6.

Function
AddRubberBand

create world
def stone

def floor
draw checker-
board floor

draw border

draw_floor

draw_items

draw_stones

fill floor

fill_items

fill stones

GetAttrib

make object

set actor

set attrib

set attribs

setDefaultAttribs

Purpose

Connects actors and stones

that are then pulled together

with given strength
Sets base map
Defines st-stone

Defines f1-floor

Draws floor alternating
between two tiles

Adds a border to the level

Draws given f1-floor
Draws given it-item
Draws given st-stone

Fills area with particular
st-floor

Fills area with given item
Fills area with given stone

Returns current attribute
value

Creates an object on the
map, used internally by
other functions

Creates a moveable object
(actor)

Sets an object's attribute

Sets several attributes at
once

Used when placing many

Table 8.6. Enigma Level Design Functions

Arguments

Actor, object, strength, length

Width and height
Stone name, sound

Floor name, friction, and mouse
factor

floorl, floor2, location (X,y), size
(height,width), attributes

Given stone (optional: location
in X,y,z coordinates and height +
width)

Floor name, x and y coordinates
and increments, and attributes

Item name, x and y coordinates
and increments, and attributes

Stone name, x and y coordinates
and increments, and attributes

Floor name, attributes, x and y
coordinates

Item, coordinates (X,y,z), size
(height)

Stone, coordinates(x,y,z), size
(height)

Object, attribute name

name and attributes

Name, x and y coordinates,
attributes

The object, value and a key
Object, attributes

Object name, attribute

317

Table 8.6. Enigma Level Design Functions

Function Purpose Arguments

objects with same attributes

set_floor Sets given to f1-floor Floor name, position (x,y),
attributes
set_item Sets givento it-item Item name, position (X,y),
attributes
set_stone Sets given to st-stone Floor name, position (X,y),
attributes
set_stones Sets given to st-stone, but Stone name, positions (X,y),
takes multiple position attributes
arguments

There are also a few standard preset variables in Enigma, the most common being the
following:

level width

level height

oxyyd default flavor
EAST

WEST

SOUTH

NORTH

TRUE

FALSE

After using create world to begin an Enigma level, the next step is usually to create a
frame of stones as a border around the map using the draw border command. To set a
border to the st-woodtile, do this:

draw_border ("st-wood")

That's pretty simple. Now to fill the floor. By feeding draw checkerboard floor with
the upper-left corner of the fill (as x and y coordinates), the map height and width
(which are defined in constants already), and the two floor tiles, the floor can be filled in
with alternating desert tiles:

fill floor ("fl-sahara","fl-sand",0,0, level width, level height)

Now that there is a filled map, you can use set stone functions to create objects on the
map. The set stonefunction needs to know the type of stone and coordinates on the
map and must be given a unique name (which is given as an attribute in curly braces):

set stone ("st-grate", 4,7, {name="My Stone"})

318

The trick to solving a level is finding the matching onyx stones. To set these, you could
also use set_stone:

set stone("st-onyx", 1,1, {name="My oxyd"})

But luckily the Enigma designers made it even easier. To save a bit of typing, use the
oxyd command:

oxyd(1l,1)
oxyd (2,2)
oxyd shuffle()

These commands populate four game pieces, and then oxyd shuffle permutes the
colors on the oxyd stones within the landscape. After creating the map and the game
pieces, the final step is to create the player on the map using set actor using the same
general conventions. The player attribute should always be p1ayer=0 for the purposes
of the current engine code; 5, 5are the starting X,y coordinates, and ac-blackball is the
player piece:

set actor ("ac-blackball", 5,5, {player=0})

The Enigma source code (also included in the Enigma file folder on the CD) comes with
a documents folder that includes more detailed instructions for level design, as well as
many level examples (over 100) for the budding builder. The source itself is a great
example of using Lua in combination with SDL.

Gime

Gime is a two-dimensional game development platform primarily used for fast
prototyping. Gime uses SDL as the graphics system, and has an API that is scriptable
with Lua. Gime also comes with a GUI system for creating windows and dialog boxes.
Gime is written in C and is basically a glue language layer between SDL and Lua. It is
currently only in prerelease (alpha) and is available at its homepage under the GNU
Public License, http://www.gime.org/.

The Gime API actually has two important Lua parts: a LuaGUI library and a LuaUtil
library. The LuaGUI library is capable of handling different typefaces and images. Its
typface command supports both BDF and TF fonts, as well as different styles and sizes
of text. Image processing is done with a wrapper to several SDL functions and allows
Gime, through an image command, to create colored surfaces for text with standard
opaque and alpha and colorkey settings. The GUI also supports drawing routines for
filling and updating surfaces, events processing for returning information on keyboard
presses and mouse movements, and a few miscellaneous functions for tracking frames,
timing, and debugging.

319

The LuaUtil library is used for file manipulation, string manipulation, bitwise
operations, and creating cache tables, which Gime uses to store value types (tables) and
weak references. Gime currently requires Lua 4.0, SDL 1.2 or higher, spL_image,
spDL_ttf, freetype 2.0, and sDL_mixerfor music.

HZ Engine

The HZ Engine is a development project by David Jeske, who wanted to re-create
Herzog Zwei, a classic Sega Genesis game released in 1990 by Technosoft. Herzog
Zwei was one of the first real-time strategy games and a precursor to popular titles like
Command and Conquer, Total Annihilation, and Age of Empires.

Since its creation, HZ has grown into a rough platform and a nearly full real-time
strategy game engine. The original version was built for Windows, but David Jeske has
ported the latest to run on Linux/Xwindows. Features include

e A sprite and tile engine

e 2D hardware blit support on Win32 (which makes it a very fast engine)
e 8- or 16-bit color

e Third-person RTS-style view

e Lua scripting

HZ uses an older version of Lua (3.1) and C as its primary driver. Since many of the
game's features are based on the embedded Lua, you can interactively query for
information about the game using the Lua console. The backtick (') key will bring up a
Lua console while the game is being played, and you can actually script and write new
code from the text console. In its current implementation, you can, by using the
backtick, toggle between the game screen and the prompt that accepts Lua.

Besides being able to script events live and experiment with the Lua console while
playing the game, you can completely define sprite objects using Lua. This includes
everything from UI to behavior to physics.

Browsing through the source of the game (which is also available on the project
Website), you can see that the engine initiates an init.lua file during the game startup.
The lua.init file loads up the other necessary Lua files (using the dofile command from
Lua's basic function library—refer to Chapter 5 for more).

Sprite initiation is one of the things Lua controls in the HZ Engine. Visually, the sprites
are defined within the visrep.lua file, where you can find the code that creates the
sample bases and tanks in HX. David Jenke also includes a sample sprites.lua file with
examples of how to create the visual representation. A sprite that only uses one image
would look like this:

SimpleSprite = {"image.bmp"}

A more complicated image with several images to indicate an animation or different
traveling directions would include those images and an index:

320

ComplexSprite = {

"imagel.bmp" },

"image?2.bmp" },

"image3.bmp"},
{ "imaged.bmp" };

IndexedBy = "CSprite"

}

_— e

The 1ndexedBy line tells the HZ Engine what object variable holds the array (table) of
images. The game engine reads these values to determine which to draw (the default is
the first image). You can choose one of the other images by setting the image frame in
the code.

The sprite logic, as well as the sprite images, are defined with Lua. The engine runs in
frames, and in each frame sprites are redrawn, key presses are listened for, and sprite
collisions are detected.

NOTE
CAUTION

In the existing code files, these image declarations are followed by a number of zeroes.
The zeroes were for functionality that was never implemented, and they are no longer
relevant or necessary, but they may cause confusion because of the obvious difference
between the existing code base and the code samples.

Each sprite also has a doTick () method that is called at each iteration of the engine.
The doTick method can be used to decide which image to show and set the object
properties for. These properties can be anything you can dream up in Lua, but Jenke has
reserved some functions in C so that the engine runs at an optimal speed. These
functions are highlighted in Table 8.7.

Table 8.7. HZ Engine's C Functions for Lua Sprites

Function Purpose

C_obj_delete (objnum) ; Removes a sprite
C_obj_viewFollow (objnum) ; Main camera will follow this sprite
C_obj_getVelocity (objnum) ; Gets the velocity of a sprite
C_obj_setVelocity(objnum,vx,vy); Sets the velocity of a sprite
C_obj_getPos (objnum) ; Gets the position (x,y) of a sprite
C_obj_setPos (objnum, x,y); Sets the position (X,y) of a sprite
C_obj setLayer (objnum, layer number) ; Sets the graphic layer of a sprite

These functions take in objnum as their first parameter and X,y coordinates to follow.
For instance, here's how to get an object position:

321

Co_obj getPos (self.objnum);

and here's how to set the position:

Co_obj setPos(self.objnum, 100, 80);

Having the C++ engine do the range checking and math greatly speeds up the HZ
Engine. C++ is also used to handle collisions. Each sprite in HZ has a ge_collision ()
method. The point of a collision given by x and y parameters and the object that is hit
are provided by a whoThit parameter, which is a Lua script object.

The keyDown and keyUp event methods detect which keys are being held down. Key
methods vary between platforms, making it difficult to design cross-platform, but they
should suffice for game events. The inputEvent is used for taking in a name or typing
strings from a player. More HZ documentation, the binaries, and source code can be
found at David Jenke's Website and HZ project page, at
http://pulp.fiction.net/~jeske/Projects/HZ.

Lixoo

Lixoo is a small, 2D, mouse-driven adventure game engine designed for conversation
and character-based computer games. Lixoo consists of both the driving graphics engine
and also a number of tools for users to build their games with. The main use of Lua in
Lixoo is as an IDE with modules for creating rooms, characters, music, and animation.

Currently, Lixoo is under development and works only on OS X and Linux. It was
originally written with ZeroForce (a small C library) but has since moved to C++.
Lixoo's project page can be found on Sourceforge at http://lixoo.sourceforge.net/cgi-
bin/cgilua/content.html?section=files.

The Lune Mud Server

Lune Mud is a text-based, multiuser dungeon that uses a modified Lua interpreter. Lua
provides the functionality for sockets, time, and directory listings. Lune Mud runs on
Linux and Win32 platforms and was written by Jason Clow.

Lune Mud is in early development but is playable. It is licensed under the GPL and can
be found at Sourceforge, at http://lune.sourceforge.net.

The MADProject

An adventure-game project based on the classic Sierra Quest games, MADProject is an
opensource, cross-platform, script-driven game engine, and, yes, Lua is the script that
drives it. In its current iteration (as of this writing) MAD runs only on DOS and
Windows, but the community is working on porting to Macintosh and Posix systems as
well.

322

The MADProject was founded by Rick Springer. More recent development has been
undertaken by project leader Nunzio Hayslip and lead programmer Javier Gonzalez, and
Posix porting is being tackled by Christopher Reichenbach. MAD features include the
following:

e Sprite animation

o Pathfinding

e An in-house GUI

e Music and sound effects (MIDI, WAV, and MP3)
e A Lua-based scripting interface

Windows machines must have a DLL file (alleg41.dll) placed on their path or within
their systems folders in order to run the MAD sources and binaries. The engine comes
with an example game called Lambazzo, whose code is the basis for the code in this
section.

MAD leverages a number of other community resources besides Lua, in particular the
allegro, alfont, almp3, and zlib libraries. It comes equipped with an interpreter and
several utilities, all within the tools directory of the MAD source tree. Besides Lua,
MAD also uses its own proprietary file format (*.mad), MAD animation files (*.anm),
image files (*.img), and graphical scen files (*.scn).

The official homepage for MAD is http://mad-project.sourceforge.net. There is also a
Sourceforge project page, at http://sourceforge.net/projects/mad-project/.

MAD accepts and uses full-force Lua. Lua is used to set variables and tables, perform
loops, operate math, and set control structures. The latest version of MAD (of this
writing) is 1.9 and is included in the Chapter 8 section on the CD.

MAD relies on a number of specific files. It searches the computer's primary archive for
stdmad.lua and main.lua, the first two scripts it needs to run. Another important file is
mad.cfg, which is used to determine the primary file archive and what screen size to set
the display to. The mad.cfg file has the standard format of a Windows .ini file. You can
also prompt mad.cfg to run in safevideo mode. Another important file is stdmad.lua,
which can be hacked to alter or add custom actions and cursors to MAD.

MAD Tools
MAD files (*.mad) can be created with the MAD File Archive Manager (Mfile). Mfile
can compile many game resources into a single compressed data file. Mfile is used to

build MAD archives and compress the files MAD will use. The command line is used to
run Mfile, and Table 8.8 lists a few of Mfile's runtime flags.

Table 8.8. Mfile Commands and Switches

Switch Use Example
< Use a Scrlpt tO bu11d a MAD ﬁle mfile —-n MyF:Lle .mad < MyScrlpt .in
n Create a new archive mfile MyFile.mad

323

Table 8.8. Mfile Commands and Switches

Switch Use Example

None Open an archive mfile MyFile.mad

The MAD Scene Generator (Scengen) takes as input a background image, a mask
image, and a wasc image, and puts them all together to create a scene. Scengen.exe
combines these three images (normally bitmap layers) into one format, a .scn format,
that the MAD engine can read and use. This is done via command all on one line,
naming the scene (MyScene) and then feeding the three bitmaps:

secnegen.exe MyScene.scn background.bmp mask.bmp wasc.bmp

After you create scenes you can view them with the MAD Scene Viewer, Sceneview.
Sceneview can also be loaded with alternate resolutions by designating them on the
command line. For instance, to load a scene at 640x480, do this:

scenview.exe MyScene.scn 640 480

The F10 key can be used to write bitmaps in scenview.exe into the current directory.

MAD's Animation Generator (anmgen) creates the animation file types (.anm) MAD
uses. To create an animation file, you need to give anmgen the animation-creation script
file (.asr) and the generated animation file (.anm) on the command line:

anmgen.exe MyScript.asr MyAnimation.anm

Animation script files have two sections separated by three percentage symbols: $%%.
The first section lists all of the frames filenames to be used in the sub-animations:

walkingl.bmp
walking2.bmp
walking3.bmp

o
°

oo
oo

The second section lists all of the frame filenames that are used in the sub-animations.
First, the sub-animation is named, then, in parentheses, the time to display each of the
frames is given:

walking (10)

A comma can be used to designate flip flags, with a 0 indicating no flipping, a 1
designating a vertical flip, a 2 designating a horizontal flip, and a 3 designating a
vertical and a horizontal flip:

324

/* no flipping*/

walking (10, O0)

/*Vertical Flipping*/

walking (10, 1)

/*Horizontal Flipping*/

walking (10, 2)

/*Both Horizontal and Vertical Flipping*/
walking (10, 3)

After the flip frame is designated, the frame numbers are listed, separated by a space:

walking(10) 0 1 2

There is also an anmview.exe utility for viewing animation files. It loads up the
animation in a viewer; then the spacebar can be pressed to play the current sub-
animation. The arrow keys can be used to change the currently displayed frame.

Imgconv is an image converter that converts .bmps to MAD's image format, .img. It can
convert a BMP file to a MAD image file or vice versa.

NOTE

MAD runs in 320x420 video mode with high resolution (16, 24, or 32bpp) by default.
Some video cards no longer support the classic 320x240 in 16/24/32 bit modes, and you
may receive errors (something like "You need a direct x compatible video card") when
trying to run MAD games. There is a safevideo command switch, mad.exe -
safevideo, that you can run to get around this issue.

MAD API

MAD has an API that performs various system and engine tasks and sends information
to the kernel. The functions are listed in Table 8.9.

MAD Scenes

Scenes are the background of a MAD game. Each scene is composed of three bitmaps: a
24-bit background, an 8-bit mask, and an 8-bit walk/scale. See Figure 8.2 for a sample
MAD game scene.

Figure 8.2. A sample scene from MAD

325

dofilefluafobj_fg.luajl

Ubject

Loa rlim_'|. Spr

ag] defined.
Typefilag]...

Tablefinde=xed
—.tdone loading

doflle|lun,

unafohbj_proj.lua)i

Ohject type
Loading Spr

|baslbet] delined.)

| defimed.n
|milssile]

..dene loading SpriteType
dofileflunfinitab].lua]l
errar im _old_dofile]]

table: I

[rll.l-r;1h-:r]: 0 = [tahlz] table; DIIET20D 0

1 entrg.d

Function
GetKey ()

GetKeyState ()

GetKeyWait ()

GetMouseBtn ()

GetMouseX ()

GetMouseY ()

GetTickCount ()

LoadGlobals ()

RunScript ()

SaveGlobals ()
SetGUIArchive ()

SetMadSpeed ()

SetMasterVolume ()

SetObjectArchive ()

sebup game[] finished

Table 8.9. MAD API Functions

Purpose
Returns code of the last key pressed
Returns state of key constant passed to it

Returns code of the last key pressed, waits if nothing has been
pressed

Returns 1 if given mouse button is pressed down, 0 if it's not
pressed down

Gets X position of the mouse pointer in pixels from top left
corner of the screen

Gets Y position of the mouse pointer in pixels from top left
corner of the screen

Returns time in milliseconds since MAD has started
Used to load global variables or tables from a specified file

Used to have interpreter run through and add any functions or
variables from a given script into the global environment

Saves global variables or tables to a specified file
Sets the filename for an archive to store game files

Specifies the update speed in milliseconds; speed value of 1 is
maximum speed

Used to set digital, MIDI, or MP3 volume from 0 (quiet) to 255
(loud)

Sets the filename for an archive to store game files

326

Table 8.9. MAD API Functions

Function Purpose

SetSceneArchive () Sets the filename for an archive to store game files

SetScreenFX() Specifies an FX filter to apply to a screen after the sprites are
drawn

SetSoundArchive () Sets the filename for an archive to store game files

Create a scene with the following steps:
1. Assign a name (and initial memory) to the new scene.
2. Assign a particular script for the scene to run.
3. Load the actual scene file into RAM.
4. Start the scene running.

Step 1 is accomplished using the NewScene command:

My Scene = NewScene ()

The setscript command is used to accomplish Step 2:

My Scene:SetScript ("My Script.lua")

Loading the scene file into RAM, Step 3, is done with the Load command:

My Scene:Load("My Scene File.scn")

And then, finally, you run the scene. In this example, running the scene causes
My Scene File.scn to be drawn and My Script.lua to start executing:

My Scene:Run ()
A game will likely be composed of a number of different scenes; use the run () function
to jump from one scene to another.

There are a couple of other scene functions for dealing with loading and unloading
scenes from memory. These include

e SetFileName.Sets a scenes filename without loading it into memory.
e Unload.Frees a scene's bitmaps from memory.

327

e IsLoaded () .Checks whether or not the bitmaps for a function have been loaded
into RAM.

As I mentioned, every MAD scene is composed of three bitmaps. The first is the
background bitmap. The background bitmap is the actual imagery used for the
background, the illustration that sets the scene; it must be 24-bit.

The Mask scene is the second bitmap, an 8-bit bitmap that is used to designate objects
the player can walk behind on a background scene. Build a scene by drawing solid gray
masks of the objects and then drawing a rectangle around the objects. If the rectangles
of two different masks intersect, then a different shade of gray must be used so that
MAD can make a designation between the two objects. These rectangles can be created
in scenegen.exe by right-clicking. The scenegen.exe right-click menu also grants access
to a few drawing tools, including Pencil, Paintbucket, and Undo, with a right-click. The
rectangle command actually writes the text you'll need for the mask to a file. When
drawing these rectangles, be sure to start at the top-left and move to the bottom-right;
otherwise, the script will give out negative numbers.

There is some scripting involved with the mask, as well. Each object's rectangle must be
defined with a NewMaskOb7 () command, so that the engine understands the size of the
objects and whether other objects are drawn in front of or behind them.

The WaSc layer is the third and final bitmap layer that makes up a scene file. WaSc is
short for Walk Scale, and this bitmap designates which areas of the screen the player
can walk in. Areas of this mask that are painted with an index of 0 are designated as not
walkable by the player.

The WaSc is also an 8-bit bitmap. In addition to designating unwalkable areas, it can
also set the scale of objects drawn at given points in the scene. Depending on the
background drawing, you can set the distance scale of the sprites; this is also
accomplished with the index value. An index of 50 draws the objects at 50 percent, or
half their original size, while an index of 100 draws the sprites at their original size.
The point in a scene that determines where a sprite is to be drawn is always the middle
bottom of the sprite. This is because this is where the feet of most characters in MAD
would be in a drawn sprite.
MAD Objects
Anything that a player can interact with in MAD is considered an object of some sort.
The primary indicators of an object are that they move and that they are independent of
their background. The steps for creating an object in MAD are as follows:

1. Allocate memory for a new object.

2. Load any animations the object will use.

3. Set the object into a scene.

4. Set any object attributes, flags, or graphic filters.

328

5. Show the object.

Step 1 is accomplished with the NewObj command:

My Object = NewObj ()

This step has to done first before any other commands can be run on an object. Objects
on the move are likely to use animations of some sort, so there is a LoadAnimation
command that will load MAD animation files (*.anm) and set the animation facing and
looping:

My Object:LoadAnimation ("MyAnimation.anm", "My facing", 0)

This loads up the MAD animation, sets the animation facing to My facing (which is an
attribute set within the animation), and sets the looping to 0. The setScene function
places the object within a scene at a certain position using (x,y) coordinates:

My Object:SetScene (My Scene, 10, 200)

There are a handful of attributes that may or may not be necessary for a given object;
setsize specifies the height and width of an object and setspeed specifies the
horizontal and vertical speed of an object. Object flags are also commonly used by the
engine. These flags are listed in Table 8.10.

Table 8.10. MAD Object Flags

Flag Purpose

OBJFLAG_8WAYANIM Tells MAD that the object contains eight sub-animations
for directional movement

OB JFLAG_ISCHARACTER Sets object as a "character"

OBJFLAG_ISEGO Sets object as a player-controlled character

OBJFLAG_ISEGOANDSWAYANIM Sets object as both controlled character and containing
eight sub-animations

OBJFLAG_NOSCALE Tells MAD to not rescale grap to fit the scene's wasc

OBJFLAG_DRAWASBKG Draws object as part of the background pass, before
other objects

OBJFLAG_DRAWASEFRG Draws object as part of the foreground, after other

objects are drawn

Graphic filters are set with the setGFxFilter command and generally use a flag and a
color (red, green, blue, or alpha) as input to create an effect when drawing an object on
the screen. The following flags are defined within the stdmad.lua file:

329

GFXFILTER TINT. Tints the color of an object
GFXFILTER_BLEND. Blends the object with its background

These flags work as expected. For example, let's say you want to have a few flags and
manually set the speed and size of an object:

My Object:SetSize (10,10)

My Object:SetSpeed(1l,1)

Myiobj ect:SetFlags (OBJFLAG ISCHARACTER + OBJFLAG 8WAYANIM)
My_Obj ect:SetGFXFilter (GFXFILTER BLEND)

The last step in creating a MAD object is to actually show it. All objects by default in
MAD start out invisible. You use show to make them appear and Hide to make them
disappear:

MyObject:Show ()
My Object:Hide ()

You can run a ki1l command to destroy or remove an object. Doing so will de-allocate
memory applied to an object:

My Object:Kill ()

A number of MAD graphic functions just for objects exist; they are listed in Table 8.11.

Table 8.11. Object Graphics

Functions Purpose
GetAnimFrame () Returns current position of the sub-animation
GetAnimState Returns 0 if animation is stopped, and a 1 if animation is running

LoadAnimation() Loads a MAD animation into the object

LoadImage () Loads a MAD image into the object

PauseAnim () Pauses the current animation

ResumeAnim () Resumes the current animation (after pausing)
SwitchAnim() Changes current sub-animation and loop parameter

Path-Finding

You can set an object's position on the scene and move an object around by using the
SetPosition command and giving MAD the (X,y) coordinates:

MyObject:SetPosition(1,5)

330

It isn't actually necessary to use setPosition when first creating an object because
setscene will place the object into the scene. When an object needs to move, and move
in an animated way, it is usually best to use MAD's built-in path-finding. Mad actually
has a number of functions for creating mobile objects within its scene; these are listed in
Table 8.12.

Table 8.12. MAD Path-Finding Functions

Function Purpose

GetDistance Calculates distance between two objects in pixels
GetMaskDistance (Calculates distance between an object and a mask object
GetPosition Returns current (X,y) coordinates

GetPositionChange Returns the change in position of the object since the last frame

GetSpeed Returns speed of the object per frame

SetPosition Sets object position to given coordinates

SetPositionTL As above, except uses top-left positioning

SetSpeed Returns horizontal and vertical speed of the object per frame
WalkTo Object will walk to given coordinates. Object will move around

any not walkable areas of the scene

By default, each function (except where noted) uses x and y as the coordinates within
the scene. By default, MAD places an object by its middle-bottom position, the idea
being that it is easier to drop a character onto a flat (2D) floor if you're using a middle-
bottom position. The functions that use top-left (TL) positioning are the exceptions to
this MAD rule.

Interacting with Objects

Certain object actions can be bound to script functions. This is done using a
BindAction command and a number of object action flags. These flags correspond to
cursors within the MAD GUI and are listed in Table 8.13.

Table 8.13. Object Action Flags

Flag Cursor Purpose
OBJACTION_ARROW ARROW Calls function when arrow cursor is used
OBJACTION_BUSY BUSY Calls function when busy cursor is used
OBJACTION CURITEM CURITEM Calls function when the currently selected

inventory item cursor is used

331

Table 8.13. Object Action Flags

Flag Cursor Purpose

OBJACTION_CUSTOM CUSTOM MAD has space for custom, programmer
defined cursors

OBJACTION_DROP DROP Calls function when drop cursor is used
OBJACTION_HELP HELP Calls function when help cursor is used
OBJACTION_EGOWALKOVER N/A Calls function when EGO object walks over
OBJACTION_LOOK LOOK Calls function when the look cursor is used
OBJACTION_TALK TALK Calls function when the talk cursor is used
OBJACTION_TARGET TARGET Calls function when target cursor is used
OBJACTION_UPDATE N/A Calls function with every frame update
OBJACTION_USE USE Calls function when the use cursor is used
OBJACTION_WALK WALK Calls function when walk cursor is used

Masks

While MAD uses standard objects to handle sprites and characters that actually move
around the screen, it uses Mask objects for immovable background pieces and
decorations. Mask objects are considered the second type of object in MAD, but Masks
are stationary, and their graphics are taken from the scene files and mask layer.
However, the code for manipulating Mask objects is nearly identical to the code for
manipulating objects themselves.

Mask objects are set up just like standard objects, but since they are based on a mask and
the background layer of a scene file, not all object functions are available to them. The
functions that are available, and the functions that are unique to masks, are listed in
Table 8.14.

Table 8.14. mask Object Functions

Function Purpose

BindAction () As object function
GetPosition Ag object function
Kill() As object function
Hide () As object function

NewMaskObJ () Creates a new Mask object with given scene, (x,y) coordinates, width
height, and color index

SetFlags() Sets Mask flags

Show () As object function

332

There is also a single Maskflag, MASKOBJFLAG NODRAW, that will set masks to appear as
part of the background but not be drawn.

Ego

The main player in MAD, otherwise known as Ego, has a number of functions with
which to handle information and its display, but is otherwise just another MAD object.
Ego is set with the flag OBJFLAG ISCHARACTER, and must have a number of additional
animations loaded with the following sub-animations:

eaststill
eastwalk
northstill
northwalk
southstill
southwalk
weststill
westwalk

If the character is also set with OBJFLAG 8WAYANTWM, it contains the following additional
walking animations:

nestill
newalk
nwstill
nwwalk
sestill
sewalk
swstill
swwalk

The MAD GUI
MAD comes with a built-in customizable GUI system that allows designers to

e Alter the mouse cursors

e Set fonts

e Create buttons and bars

e Create pop-up windows and boxes

e Customize the GUI frame or skin
These commands are outlined in Table 8.15. There are a few Ul boxes that are hard-
coded into the engine. These include the basic menu, the choice box, and hello world
message box.

Acceptable fonts for MAD include the following:

CFF

333

CID-keyed Type 1 fonts
OpenType (TrueType and CFF)

SFNT-based bitmap fonts

TrueType
Type 1
Windows FNT

X11 PCF

Function
AddFloatingInput ()

AddFloatingText ()

Button BindAction()

Button Hide ()

Button LoadAnim()

Button LoadBmp ()

Button SetFlags()

Button SetText ()

Button_ Show ()

ChoiceBox ()

GetCursor ()

LoadCursor ()

MenuBox ()

MoveFloating-

Table 8.15. MAD GUI Functions

Purpose Notes

Creates a floating input
box

Creates and returns
floating text object

Binds a given function to
the button

Hides a button bar and all
of its buttons

Loads an animation into
the specified button

Loads image file into
specified button

Must be MAD image format

Sets the button flags

Specifies the label of a
button

Shows a button bar and all
its buttons

Displays question on
screen with two choices

Hardcoded, can be positioned,
stops game

Returns cursor state

Specifies the mouse
cursor animation

Displays question on
screen with several
choices

Hardcoded, can be positioned,
stops game

Moves given floating

334

Function

InputBox ()

MoveFloatingText ()

MsgBox ()

NewButton ()

NewButtonBar ()

RemoveFloating-—

ImnputBox ()

RemoveFloatingText ()

SetCursor ()

SetCursorCycling ()

SetCursorFocus ()

SetObjectUpdate-
InGuiBoxd ()

SetSystemFont ()

SetTextButton-
Outlines ()

Purpose

input box to given (x,y)
coordinates

Moves floating text object

to given (X,y) coordinates

Window that displays
messages on screen

Creates a button inside of

a button bar

Creates a bar that holds
GUI buttons

Removes given floating
input box

Removes given floating
text object

Sets selected cursor state

Enables or disables right-
clicking through cursors

Sets the cursor graphic
focus point

Turns GUI background
animations on or off

Loads a font file to be
used as game text

Turns text button outlines
on and off

Here are steps for creating a GUI button bar:

1. Create the button bar using MyButtonBar = NewButtonBar (10,

Table 8.15. MAD GUI Functions

Notes

Hardcoded, can be positioned,
stops game

States are listed in Table 8.16

Focus point is the (x,y) point in
the mouse graphic that the
screen considers "clicked"

Acceptable font formats follow

1, width,

height). You must include x and y coordinates, width, and height.

2. Set any optional options, including a bar images and rgb values.

3. Add buttons to the button bar using MyButtonBar :NewButton (width, height,
ox, oy) . The width, height, and x, y offset are required.

4. Add any optional button arguments, such as a bound function.

335

5. Specify the button label with MyButtonBar:Button SetText (MyButton,
:"label").

6. Show the button bar on the screen with
MyButtonBar:Button Show (MyButton).

The MAD mouse pointer within the GUI has a number of states that can be set. This
allows the player to perform a number of different actions. There are a few built-in
mouse pointer states, as well as room for a number of custom states, each of which
returns a different number. These possible cursor states are outlined in Table 8.16.

Table 8.16. Possible Cursor States

State Number Returned
CURSOR _ARROW 0

CURSOR BUSY 1
CURSOR_LOOK 2

CURSOR WALK 3
CURSOR_TALK 4
CURSOR_USE 5

CURSOR _CURITEM 6

CURSOR TARGET 7
CURSOR_DROP 8

CURSOR HELP 9
CURSOR_CUSTOM1 10 through 42

The keyboard is managed in a similar way to the MAD engine, with each state returning

a specific number. These numbers start with kEy A = 1, kEy B = 2, and so on. The
standard GUI skin can also be used to create custom GUI boxes, which can possess

animations and custom graphics. These graphics are also referenced by number—top

window border = 1, bottom window border = 2, and so on. For a complete listing of
these GUI features, check out the documentation that comes with MAD and is also
included on this book's CD.

MAD Sounds

MAD can load and play .wav, .voc, .mid, and .mp3 files for sound effects and music.

play sounds or effects in MAD, follow these steps:
1. Initialize the sound object.

2. Load the sound file.

To

336

3. Play the sound file.
4. Delete the sound file when it's done.

Step 1 is accomplished with a simple declaration, NewSound (), which loads a new
sound structure into memory:

My Sound = NewSound ()

After the sound is in memory, you can use LoadWave Or LoadMp3 to load a particular
sound file:

My Sound:LoadWav ("My Wav_File.wav")

Then play the sound using pPlay:

My Sound:Play (0)

Playtakes input on how many times to loop the sound, in this case a big 0.

Finally, delete the sound using beleteSound():

DeleteSound (My Sound)

Playing a music loop is an almost identical process. The NewMusic command is used
instead of the Newsound command, and .mid files replace .wav files, although MP3s can
also be used with NewMusic:

My Sound = NewMusic ()

My Sound:LoadMidi ("My Wav_ File.mid")
My Sound:Play(0)
DeleteSound (My Sound)

Items and Spells

The MAD engine handles spells that the player casts and the items that he uses in a
nearly identical way. Each is associated with an ID number, and the actions performed
by spells or items are left for the programmer to script. The spells and inventory items
are handled the same way. The showInventory and ShowSpells commands take in the
following parameters:

e x and y coordinates (x, y)

e Back window texture (MyTexture.img)

e Total size of the window (window width, window height)

e x and y coordinates for the item box, where all inventory items are drawn in
(itembox width, itembox height)

337

e Any item box offset (itembox ox, itembox oy)
e Iconsize (itemicon_width, itemicon_height)

The Inventory window in game can be toggled on and off using the HideInventory
command. Items within the Inventory box can be either bitmaps or animations.
Inventory items are added to the window using AddItemToInv. AddItemToInv also
takes in a number of parameters:

e Myltem.img, which is the bitmap filename to use.

e Myltem.anm, which is the animation filename to use.

e Item Name is the name of the item.

o Weight is how much the unit weighs in game units.

e Quantity is how many units of the item stack up in the slot.

e Description Message is the message that appears when the item is examined.

Finally, there are a number of functions available for MAD items and spells. These are
outlined in Table 8.17.

Table 8.17. MAD Item and Spell Functions

Function Purpose

f_use_item Global function to call when the item is used
f_combine_item Name of function to call when the item gets used
RemoveItemFromInventory () Removes items

SetCurInvItem() Specifies the currently selected item
GetCurInvItem Retrieves currently selected item
GetCurInvItemID () Retrieves the currently selected item IDs
AddSpellToBook () Adds spell to spellbook

RemoveFrom SpellBook () Removes a spell from the spellbook
GetCurSpell () Returns currently used spell

GetCurSpellID Returns current spell ID

This makes MAD very customizable; spells and inventory items can launch any of the
code already mentioned, as well as operate familiar Lua constructs.

338

Graphics

Lua is no slouch when it comes to graphic application integration. Lua owns a handful
of open engines and even one that has been used in several commercial games.
Although it is uncommon to find a completely Lua-based graphic engine, it's extremely
common to find engines that rely on Lua to perform the underlying scripting.

Apocalyx 3D Engine

Apocalyx is an OpenGL 3D engine that includes Lua scripting support. The engine
comes with a built-in console that can be launched and will fire Lua scripts or execute
lines of Lua. The following commands are viable on the command-line console:

h. Reads the complete list of commands.

1. Reads a list of the scripts.

r. Executes a script.

c. Compiles a script.

i. For entering Lua lines.

Apocalyx has an entire API with exposed features and classes for Lua to manipulate.
These classes are highlighted in Table 8.18, but for complete reference, check out the
online manuals at the Sourceforge project page, at http://apocalyx.sf.net.

Class

Background

Image
Material

Reference

Sample
Simulator
Socket
Terrain
Win

Zip

Table 8.18. The Apocalyx API

Purpose

Used to render the sky and out of reach

background objects
Converts images and checks for alpha
Holds the light properties of a surface

Changes position and orientation of
objects in 3D space

Creates sounds

Holds physics data

Holds methods for networking
Renders the ground

Manages application window

Holds methods that retrieve data from
zip files

Child classes
HalfSky

Texture

BumpedMaterial

Transform (parent class),
Camera, Object

Sample3D, Sound, Music

ParticleSet
Host

Scenery

Scene, World, Filesystem

339

Doris

Doris is an OpenGL viewer driven by Lua. It uses Lua, bound to OpenGL, GLUI, and
GLUT, for creating graphics scripts. Doris was mainly built to perform graphical
experiments, but it is also great sample code for learning how to code with Lua,
OpenGL, and 3D.

Doris can be found on the Doris Sourceforge page, at http://doris.sourceforge.net. Doris
was created by Nick Trout and named after his pet hamster. Currently there are versions
of Doris for both Lua 4 and Lua 5. The Sourceforge page includes Lua code samples.

Nebula

Nebula is an open-source, 3D, real-time game engine written in C++. Nebula is actually
scriptable through a number of languages, including both Python and Lua. It supports
Direct X (8.0 and 8.1) and OpenGL and currently runs on Linux and Windows worlds.

Nebula is a base technology engine released by Radon Labs in Berlin, at
http://www.radonlabs.de. Radon is responsible for a few large game products, including
Project Nomads, released by CDV in 2002, and Urban Assault, released by Microsoft in
1998.

Radon is currently at work on the second generation of Nebula, Nebula2, available as a
Sourceforge project. This new version of Nebula will include a new graphic system and
subsystems and improvements to the code used for programming on the X-Box and will
also incorporate changes made to the Nebula engine from the recent publishing of a few
Radon games. Radon also plans to port Nebula to OpenGL and Linux and do a rewrite
of Lua and Python support for the new engine. For more information on Nebula, check
out the Nebula Wiki, at http://nebuladevice.sourceforge.net/cgi-bin/twiki/view/Nebula/.

340

The Games Themselves

Lua has been a part of the game industry for many years, and it probably comes as no
surprise that it's been used in dozens of commercial titles. Lua can take pride in being
part of many very successful products, including several that are on shelves today. In
addition, a number of titles slated for release in the next few years are also jumping on
the Lua bandwagon.

Angband

Angband is a freeware dungeon-exploration game based on the works of J.R.R. Tolkein
(Angaband was a citadel constructed by Morgoth in Tolkein's The Silmarillion).
Angband has been around in one variation or another for quite sometime. Its
predecessors include Moria (1985) and Rogue (late 1970s). It was originally text-based,
but now sports some nifty graphics

There are three main points to keep in mind with Angband. First, it runs on just about
every platform, including Windows, Windows CE, DOS, Mac, Amiga, OS/2, Linux,
BeOS, Atari, Solaris, and several others. Second, it is considered to be extremely
addictive. Third, the game still fits on a 1.44 floppy disk!

Lua has been added to the C Angband distribution for customizations. There are
literally dozens of Angband variants, with everything from psionics to multiplayer Iron
Man adventures added. Lua scripting is available to handle using objects (like wands,
rods, staves, food, potions, and scrolls) and player spells. Event handling exists for Lua
functions for in-game events; for instance, Lua scripts handle which objects stores in the
game will buy and sell.

Angband can be found online, at http://www.thangorodrim.net, and is currently
maintained by Robert Ruhlmann.

Baldur's Gate

Bioware used Lua as the primary script engine for its popular game Baldur's Gate. All
of the game's debugging commands were exposed to Lua, and the script engine was
exposed and available via command line from the game. For Bioware, this allowed a
deep level of debugging without having to develop extensive debugging tools for the
engine. For the fans, this allowed a window into the engine that also help spawn
numerous hacks and independent projects utilizing the Infinity engine.

Baldur's Gate can be found on Bioware's site at
http://www.bioware.com/games/baldurs_gate/.

Bioware also used Lua to some extent in another popular game you may have heard of,
MDK2.

341

Monkey Island

Lucas Arts was one of the first game studios to really start utilizing Lua. A large amount
of Grim Fandango, the main adventure game Lucas Arts released in 1997, was written
in Lua.

Lua replaced an in-house scripting engine Lucas Arts used, called SCUMM. Lua was
also used in the game Monkey Island as the development script engine. In Monkey
Island there is a small tribute to Lua—apparently the designers renamed a bar inside the
game from SCUMM to the Lua Bar.

Homeworlds

Relic Entertainment's Homeworlds was released with Lua hooks to allow its hardcore
fans the ability to create mods. The result was numerous enjoyable mods and hacks
from the community, including Homeworld variants set in the worlds of Star Trek,
Babylon 5, Battlestar Galactica, and Star Wars. Relic says they chose Lua for the same
reasons so many other companies do: because it is easy to use, performs speedily, and is
small in size.

Relic is also working on a new game that uses Lua scripts for its Al decision engine.
The plan is for an interpretive Al layer to help programmers test out the different
behavior easily, and therefore tweak game settings with scripting instead of having to
do complete re-compiled source code builds. Relic can be found at
http://www.relic.com/.

Other Games

There are dozens of other titles that have used Lua. Criterion Studios is one of the larger
companies, located online at http://www.criterionstudios.com.

Criterion has released several 3D game titles here and in Japan that use Lua as their
primary game scripting language. The popular fantasy RPG Pern made extensive use of
Lua, so much so that the community spawned several hacks to the engine overriding
some of the common Lua files that handled races and classes. Slingshot Game
Technologies produced a snowboarding game using Lua called Soulride, which can be
found online at http://soulride.com.

The former chief programmer at Slingshot, Thatcher Ulrich, has written a few open-
source Lua 2D script tools (you used one in the last chapter). Now he works for
Oddworld, which we expect to release an X-Box title any day now.

342

Beyond Lua

Being the versatile, lightweight creature that it is, Lua can be found in a number of
different places, doing any number of different things. Not relegated to just the game
world, Lua has found its way as a development language into commercial endeavors,
university projects, and government agencies across the world.

LualDE

A programming language isn't complete until it possesses an IDE (Integrated
Development Environment), and that's exactly what LualDE is. Developed for the
community by Tristan Rybak, LualDE is currently (as of this writing) under a beta 1.0
release, with support for Lua 5.0. It has features for multiple-documents interfacing,
Windows-build and debugging messages, breakpoints, and call stack trace windows. It
also has an API for dynamically loaded Lua extensions.

Most folks familiar with a graphical development environment will recognize the
interface right away (see Figure 8.3). LualDE can be downloaded from
http://www.gorlice.net.pl/~rybak/luaide.

Figure 8.3. The Lua IDE hard at work debugging Gravity

Plua
Plua is a port of Lua to the Palm platform. Based on the PalmOS 3.1 and Lua 4.0, Plua

has much to add to the platform, and is generally a complete distribution, except for a
few missing pieces of functionality—mainly a few standard I/O functions, standard in

343

(stdin) functions, and math functions that would need additional support from third-
party math libraries.

Despite the size restrictions for the Palm, Plua adds quite a bit to Lua distribution,
including

o Database functions

o Serial input functions

e Low-level Palm graphics support

e New user interface functions for the Palm

The Plua project itself was was created and copyrighted by Mardcio M. Andrade, and
documentation and sample code can be found online at
http://netpage.em.com.br/mmand/pluadoc.htm.

toLua

The toLua tool is designed to make integration between Lua and C or C++ code super
easy. toLua is capable of mapping C-style constants, functions, classes, variables, and
methods. It also automatically generates the binding code to access these features from
Lua. Version 5.0 alpha, which corresponds to the 5.0 Release of Lua, is the current
release as of this writing. The software package is brought to us by Waldemar Celes,
and can be found on the Lua Wiki page, at http://www.tecgraf.puc-rio.br/~celes/tolua/.

344

Summary

Lua is found in everything from simple 2D puzzles to complicated 3D shoot-em-up
games, and from small Palm devices to large, industrial science projects. Most
commonly, Lua partners with C as the script of choice to provide an additional interface
of flexibility to the development team, and to add features like level builders and user
customizations.

Important points from this chapter include the following:
e Lua tends to be a choice in commercial development because it is small in size,
fast, and easy to use.

e SDL, C, and Lua are often partners in crime.
e Lua is fairly pervasive across the gaming industry.

345

Exercises

1: Use the Enigma library and sample levels to construct an Enigma level.

2: Use the sample that ships with the MAD engine to construct a MAD scene.

346

Part FOUR: Programming with Ruby

This part of the book begins with an overview of Ruby to get you up to speed, then
moves into Ruby libraries like Rubysdl and FXRuby. Code for a quick-and-easy
graphics engine written in Ruby appears in Chapter 10. Lastly, some of the more game-
oriented real-life Ruby projects are discussed.

347

Chapter 9. Getting Started with Ruby

They brought me rubies from the mine, And held them to the sun; I said, they are drops
of frozen wine From Eden's vats that run.

Ralph Waldo Emerson
Like Chapters 3 and 6, this is a brief introduction to the language of interest—in this

chapter, that's Ruby. This is a speedy overview chapter, but it does include a few useful
examples of Ruby code.

348

Debuggers

Ruby comes with a debugger, accessible on the command line, for stepping through
problems with programs (see Figure 9.1). Type the following to access it:

Figure 9.1. Accessing the Ruby command-line debugger

2]
'y
F 4
o5
N
=
&
l‘,-'.
T
[
8
Fi.
"ﬂ_"
Fi.
&
"";':

5 @ F
i
I
"
k™

s B

Ruby -r debug MyProgramScript.rb

The debugger has a number of useful commands for, well, debugging a Ruby program.
These are listed in Table 9.1.

Table 9.1. Debug Commands

Command Use
break Set breakpoint at specified line or method
watch Set a watchpoint for an expression

349

Table 9.1. Debug Commands

Command Use

catch Set a catchpoint for an exception

delete Delete breakpoints or watchpoints

display Set display expression to be printed when program stops

undisplay Unset display

cont Continue program execution

step Step forward in the program until the next source line

next Step forward in the program until the next source line. Treat method
calls as one instruction

list List line of source code

up Select stack frame that called current stack frame

down Select stack frame called by current stack frame

finish Execute until selected stack frame returns

trace Turn trace mode on or off

quit Exit debugger

var global Show global variables in current stack frame

var local Show local variables in current stack frame

var instance Show instance variables of the given object

var const Show constants of the given object

method Show methods of the given object

instance

method Show instance methods of the given class or module
thread list Show thread list

thread Show current thread

current

thread Switch to a given thread

thread stop Stop the given thread

thread resume Resume the given thread

p Evaluate the given expression in current stack frame and show its
value

help Print debug commands

else Evaluate input in the current stack frame and show its value

350

Language Structure

The most important thing to remember when starting out is that Ruby is considered to
be a pure object-oriented scripting language. Being object-oriented means that any data
itself is treated like an object. For instance, integers in Ruby automatically become
objects, instances of the number class.

The Ruby language is considered similar to Perl and PHP. Ruby resembles Perl in a lot
of ways. For instance, there are shortcuts to globals using funny characters, like $s, $<,
$>, and $DEBUG. If you're familiar with string handling and pattern matching in Perl, you
will find Ruby's handlings of those same problems to be similar.

One important difference between Ruby and other object-oriented languages: Ruby only
supports single inheritance; most OOP languages have multiple inheritance. This means
that in Ruby, sub-classes can only be derived from one parent.

A few lingual notes right off the bat. Each expression in Ruby generally takes up one
line. There is no need for line terminations in Ruby. Semicolons can be used at the end
of a line statement for style, but they aren't necessary. Ruby will recognize when a new
line comes along, so you can end a statement by simply hitting Return. Expressions can
also be grouped with parentheses.

Comments in Ruby begin with the pound sign.

This is a comment.
The interpreter ignores me

Comments can also be embedded between =begin and =end commands; the interpreter
will also skip anything in between them:

=begin

This is a comment

The interpreter ignores me
=end

Without the equal signs, begin and end take the form of a block expression, most likely
to be seen in an exception:

begin

This is a block

There are normally expressions within
end

Ruby supports these concepts, called blocks, which are designated in a number of
different ways. Basically everything within a do and an end is a block. Blocks can also
be designated with curly brackets, like so:

do | this is a block |
end

351

{this is_another block}

A special Ruby command called yield can call code blocks and evaluate them. yield
evaluates the block given to the current method with arguments (if no argument is
given, it uses nil). The argument assignment to the b1ock parameter is done just like a
multiple assignment.

Objects, Classes, and Methods

As Ruby is an object-oriented language, it may be useful to define some object-oriented
terms. An object is a container that holds variables and functions that are specific to
itself. Objects are created by classes, and are synonymous with class instances. Classes
are like object factories. They combine an object template with its methods. Methods
are chunks of code that return a value of some sort (see Figure 9.2).

Figure 9.2. Objects and methods derived from a class

Class
Object Constructor

Object Object

In practice, objects, classes, and methods are combined together. One example of this is
that objects are created by calling classes with their constructor methods.

In Ruby, classes take on the following form:

Class MyClass ()
def initialize /()
end
def MyMethodl
end
Other Expressions
Mayhap a CONSTANT
end

352

The def expressions inside of MyClass are actually methods:

Def MyMethod (arguments)
expression
end

A class instance of MmyClass (that is, a MyClass object) can be created by calling the
MyClass constructor, initialize. An initialize method has special meaning in
Ruby; it will automatically link up with a new method call. So, to create a class instance
of MyClass, just type

MyObject = MyClass.new ()

Once MyObiject has been created, all of Myclass's methods are available to it:

MyObject.MyMethodl

Ruby has a number of standard built-in classes and methods. Many of the common
classes are listed in Table 9.2, and common methods are listed in Table 9.3.

Table 9.2. Built-in Ruby Classes

Classes Domain

Array Ordered collection of objects

Bignum Holds integers outside the range of Fixnum
Binding Encapsulate execution context

Class Base class for all classes

Continuation Qbjects generated by kernel call that hold a return address and
execution context

Dir Represents directories
Exception Carries exception information
FalseClass Base class for logically false
File Abstraction of any file object

File::Stat Common status information for file objects

Fixnum Holds integer values

Float Represents real numbers

Hash Collection of key value pairs

Integer Base class for Bignum and Fixnum

10 Basis for all input and output

Matchbata Type of the special $~ variable for encapsulating pattern matches

353

Classes
Method

Module
NilClass
Numeric
Object

Proc

Range
Regexp
String
Struct
Struct::Tms
Symbol
Thread
ThreadGroup
Time

TrueClass

Method

'str
Array
at _exit
autoload
binding
caller
catch
chop
chomp
eval
exec

exit

Table 9.2. Built-in Ruby Classes

Domain

Base class for method objects

Base class for module objects

Base class for ni1

Base type for Float, Fixnum, and Bignum
Parent class for all classes

Parent for object blocks of code that are bound to a set of local
variables

An interval with a start and end

Holds regular expressions

Holds byte sequences

Bundles attributes together

Holds information on process times
Object that represents a Ruby name
Parent for thread objects

For keeping track of threads as a group
Abstraction of dates and times

Base class for logically true

Table 9.3. Built-in Ruby Methods
Description/What It Does

Performs str by a subshell

Converts given argument to an array

For cleaning up when the interpreter exits
Specifies a file to be loaded using require
Returns data structure of a binding

Returns the information of the current call
Executes a throw/catch block

Removes last character of a value

Removes a line from a value

Evaluates the given expression as a Ruby program
Executes the given command as a subprocess

Exits immediately

354

Method

exit!
fail
Float
fork
format
gets

global variables

gsub

gsub!

Integer
iterator?
lambda
load

local variables

loop
open

p
print
printf
proc
putc
raise

rand

readline

readlines
require

select

Table 9.3. Built-in Ruby Methods

Description/What It Does

Exits immediately and ignores any kind of exception handling
Raises exceptions

Converts given argument to a float

Forks child and parent processes

Returns a string in the given format

Reads a string from standard input

Returns the list of all the global variable names defined in the
given program

Searches for a pattern in a string, and if the pattern is found, makes
a copy of the string with the pattern replaced with a given
argument

Searches for a pattern in a string, and if the pattern is found,
replaces the pattern with the given argument.

Converts given argument to an integer

Returns true if called from an iterator

Returns newly created procedure object from the block
Loads and evaluates the Ruby program in the file

Returns the list of all the local variable names defined in the
current scope

Loops until terminated

Opens a file and returns a file object associated with the file
Prints given object to the stdout

Prints arguments

Prints arguments in a given format

Returns newly created procedure object from the block
Writes a given character to the default output

Used for raising exceptions

Returns a random number greater than or equal to 0 and less than
the given value

Reads a string from standard input, raises exception at the end of a
file

Returns an array containing the read lines
Used to load modules

Calls select to reads, writes, excepts, and timeout system calls

355

Table 9.3. Built-in Ruby Methods

Method Description/What It Does

sleep Causes script to sleep for a given amount of seconds

split Splits a string at the given string

String Converts given argument to a string

sprintf Returns a string in the given format

srand Sets the random number seed for rand

sub Searches a string held in $_ for a pattern and makes a copy that
replaces the first occurrence with given argument

sub'! Searches a string held in $_ for a pattern and replaces the first
occurrence with given argument

syscall Used to make system calls

system Runs given command in a subprocess

test Performs a file test

throw Executes a throw/catch block

trace_var Sets the hook to a given variable that is called when the value of
the variable is changed

trap Specifies the signal handler for a signal

untrace_var Deletes hooks set by trace var

Obviously, Ruby supports inheritance. Inheritance allows classes to inherit functionality
from each other. A parent class in this sort of relationship is called a super class, and the
child class is called a sub class. Sub classes are defined as children by the less than (<)
symbol:

MySubClass < MyParentClass
def MyMethod (arguments)
expression

end

Ruby also supports a number of other OOP concepts, such as mixins, which simulate
multiple inheritance in Ruby's single parent system); singletons, which provide a way to
override object creation; and overloading, which is when method calls can be
overwritten by new definitions.

Language Types
Ruby is case-sensitive, and identifiers can be composed of letters of the alphabet,

decimals, or the underscore character. The standard language types include strings,
constants, ranges, and numbers.

356

All variables and constants in Ruby point at an object. When a variable is assigned or
initialized, the object that the variable is referencing is also assigned. Variables in Ruby
are either global variables that begin with the $ character, instance variables that begin
with an e character, class variables that start with @e, constants that are all uppercase
letters, local variables that are all lowercase letters, or class constants that are defined
within certain classes or modules. There are also a few special variables in Ruby. All of
these Ruby variables are outlined in Table 9.4.

Table 9.4. Ruby Variables

Variable Description

__FILE__ Current source filename

_ LINE__ Current line number in the source file
@variable Instance variable

ce Class variable

Svariable Global variable

variable Standard variable

VARIABLE Constant variable

false Instance of the class FalseClass (i.e. false)
nil Instance of the class Nilclass (i.e. false)
self Receiver of the current method

true

Instance of the class TrueClass (that is, true)

Setting a variable is fairly intuitive; it is done like so:

myvariable = "My String\n"

Set a global variable like this:

Smyvarible = "My String\n"

Set class variables like this:

@@myvariable = "My String\n"

And so on.

In Ruby, a handful of reserved words cannot be used for variable names. These include

the following:

BEGIN

357

class

ensure

nil

self

when

END

def

false

not

super

while

alias

defined

for

or

then

yield

and

do

if

redo

true

begin

else

in

rescue

undef

break

358

elsif
module
retry
unless
case
end
next
return

until
Strings

In Ruby, strings are 8-bit byte sequences. They normally hold characters, but can also
hold binary data. A string object is actually an instance of the class string.

When playing with strings, one should know that Ruby differentiates between single
and double quotes. Notice the difference between

print "string\n"

and

Print 'string\n'

When the two lines of code above run within the interpreter, Ruby recognizes the \n as
an escape sequence on the first line and not on the second.

The explanation for this is that strings can begin and end with either single or double
quotation marks, but whether you use single or double quotation marks depends on the
situation. Expressions in double quotes are generally subject to backslash escape
characters, and single quotes are not (except for \ and \\). If you need a string to not be
subject to any escape sequences, including the \ or \\, then you must begin the
expression with a percentage % sign.

The string class has many methods (close to 100) associated with it. Since Ruby must
often handle strings, it makes sense that it would have many standard methods for

performing standard actions on strings.

Common escape sequences are listed in Table 9.5.

359

Table 9.5. Common Ruby Escape Sequences

Sequence Meaning

\ Add octal value character
\a Bell

\b Backspace

\cx Control x

\C-x Control x

\e Escape

\ £ Form feed

\n Newline

\r Carriage return

\s White space

\t Tab

\v Vertical tab

\x Add hexadecimal value character
\M-x Meta x

\M-\C-x Meta control x

Regular Expressions

Regular expressions are the tools that Ruby uses for pattern matching and other
common functions against strings. Not only do commands exist for matching patterns,
but there are also commands for anchoring patterns, repeating searches, choosing
between alternate patterns, grouping, and substitution. Common Ruby expressions are
listed in Table 9.6.

Table 9.6. Common Ruby Expressions

Expression Description

$!
s@
$&
5

$ |

S+

Exception information message (set by raise)
Backtrace of the last exception
The string matched by the last successful pattern match in this scope

The string preceding whatever was matched by the last successful pattern
match in the current scope

The string following whatever was matched by the last successful pattern
match in the current scope

The last bracket matched by the last successful search pattern

360

Table 9.6. Common Ruby Expressions

Expression Description

$1, $2... Contains the subpattern from the corresponding set of parentheses in the
last successful pattern matched

S~ Information about the last match in the current scope

8= Flag for case insensitive

S/ Input record separator

S\ Output record separator

S Output field separator

S; Default separator for String#split

S. The current input line number of the last file that was read

$< The virtual concatenation file of the files given by command-line
arguments. stdin by default

§> Default output for print, printf.s by default

S_ The last input line of string by gets or readline

S0 Contains the name of the file containing the Ruby script being executed

§* Command-line arguments given for the script

$9 The process number of Ruby running this script

§? The status of the last executed child process

S: The array contains the list of places to look for Ruby scripts and binary
modules by 1oad or require

s" The array contains the module names loaded by require

SDEBUG Status of the -d switch

SFILENAME Same as $<.filename Or stdin filename

SLOAD_PATH The alias to the $:

$stdin The current standard input
Sstdout The current standard output
Sstderr The current standard error output

SVERBOSE The verbose flag, which is set by the -v switch to the Ruby interpreter

$-0 The alias to the $/

$-a True if option -a is set
$-d The alias to the $DEBUG
S-F The alias to the $; . \
$-1i In in-place-edit mode
$-I The alias to the s:

361

Table 9.6. Common Ruby Expressions

Expression Description

$-1 True if option -1is set
S-p True if option -pis set
§-v The alias to the $VERBOSE
Constants

Like variables, constants hold references to objects and are created when they are first
assigned. Unlike in other languages, constants can be changed in Ruby, although a
change fires off a warning from the interpreter.

Constants that are defined within a class or module are accessible from within the class
or module. Outside of the class or module, the scope operator (::) can be used to
access them. Ruby also has a number of pre-defined constants that are global in scope;
these are listed in Table 9.7.

Table 9.7. Ruby Global Pre-Defined Constants

Constant Description

ARGF Alias to $<

ARGV Alias to $*

DATA The file object of the script
ENV Contains current environment variables
FALSE False

NIL Nil

RUBY_RELEASE_DATE Ruby release date string
RUBY_PLATFORM Ruby platform identifier
STDIN Standard input or $stdin
STDOUT Standard output or $stdout
STDERR Standard error or $stderr
TRUE True

VERSION Ruby version string
Ranges

362

Ranges are used in Ruby to express sequences such as one through ten or A to Z.
Ranges come with a number of useful methods for iterating over themselves or testing
their contents. The . . operator is used to create a range type object:

myrange = 1..10

Ranges are probably most often used to create arrays but are also sometimes used in
conditional statements.

Numbers

Ruby deals primarily with integers and floating-point numbers. Smaller numbers are
objects of the Fixnum class and large numbers are objects of the Bignum class. Ruby

understands octal, binary, and hexadecimal numbers. Ruby numbers are outlined in
Table 9.8.

Table 9.8. Ruby Numbers
Number Type
10 Integer
-10 Signed integer
10.10 Floating point number
Oxffff Hexadecimal integer
0001011 Binary integer
0377 Octal integer

As all numbers are objects, you may find them used in Ruby in what would be unusual
ways in other languages. Numbers in Ruby will respond to messages and built-in
methods that do iterations.

Ruby has a number of operators, including the standard +, -, /, and *. Again, most
operators are method calls. Following is a list of the Ruby operators, from highest to
lowest level of precedence (the operators are further outlined in Table 9.9):

.

-(unary) +(unary) ! ~
! %

+ -

<< >>

&

| A

L >=<<=

0. <= ====I== I~
11. &&

S B el

363

and
eql?
equal?
not

or

Table 9.9. Commonly Used Ruby Operators

Use

Tests for equality

Tests equality in a case statement
Compares two values

Less than, greater than, etc.
Regular expression pattern match
Increment by 1

Decrement by 1

Logical and

Logical or

Logical not

Not equal

Range

Scope resolution

Logical and

Compares type and value
Compares object ID

Logical not

Logical or

Assignments are made in Ruby using the powerful equal sign:

Hello = 'Hi'

Multiple assignments can be made by using commas and equal signs:

1,2,3 = 'you',

'IV

364

Control Structures

Ruby has a number of standard control structure expressions for controlling program
flow. These include if, then, unless, else, while, until, for, and case. These
controls are supported by a number of operators in addition to the standard ==, <, <=, >,
>=, and =. These operators are listed in Table 9.9.

The chain of if... then... else... is one of the most common control structures, and in
Ruby the syntax appears as follows:

if this is true [then]
do_this
[elsif this is true instead [then]
do_this Instead]
[else
do this if all else fails]
end

A typical unless control structure looks almost identical:

unless this is true [then]
do_this
[else
do this instead]
end

The case statement in Ruby is much like a quicker-coding i f statement when multiple
choices are available. The case statement makes a comparison between the expression
given and any number of expressions (or ranges) that are set after while keywords:

case Smy case statement

when 0 .. 1 "case 1"
when 2 .. 3 "case 2"
when 4.. 20 "case 3"

when Square "case 4 sides"
else "case 5"
end

The until construct and the while construct are also very similar:

First until

until this is true
do_this

end

#Then while

while this is true
do_this

end

365

The for looping construct is used to iterate over any object that can respond to iteration,
namely arrays or ranges. The following example prints everything listed in the first
argument given:

for 1 in [1, 2, 3]
print I, " "
end

There are a few useful commands that can be used in loops (and in blocks), including
the following:

break. Terminates the immediately enclosing loop.

next. Skips to the end of the loop.

redo. Repeats the current loop from the start without re-evaluating the condition.
retry. Repeats the current loop.

return. Exits the method/loop/block with the return value or an array of return values.

For handling exceptions Ruby has a built-in raise command. raise can create a
runtime error, send messages, create an exception of type error type, and even send
traceback information in the format given by a variable caller function. Examples:

raise "This is an error"
raise SyntaxError, "invalid syntax"
raise SyntaxError.new("new error type")

Arrays and Hashes

Arrays are instances of the class Array, and they hold collections of object references.
An array can be created by simply assigning a number of values as you would with a
variable:

SMyArray = ['Hello', 'I', 'love', 'you']

Each value in the array can then be accessed numerically:

print S$MyArray
print S$MyArray
print S$MyArray
print $MyArray

Hashes are also instances of the Hash class, and are also collections of object references.
Hashes are like arrays, only within curly brackets and with key => value pairs:

$MyHash = {'a'=>1, 'b'=>2, 'c'=>3, 'd'=>4}

366

Then hash values can be referenced by their keys:

print $MyHash['a']
print S$MyHash['Db']
print $MyHash['c']
print $MyHash['d']

Exceptions

Ruby has built-in exception classes for raising exceptions, each of which has its own
message string and stack backtrace. Exception code is normally put into begin and end
blocks, and is handled by a rescue clause, like this:

begin
code that does something
rescue Exception
$stderr.print "error message"
raise
end

The raise method is used in this case to raise the current exception, but it can also be
used to create a unique exception and error message:

if MyError == true
raise MyError, "My Unique Error", caller
end

catch and throw are also used when execution must be abandoned completely. The
catch command creates a block of code that executes normally until a throwis
encountered. When Ruby hits a throw, it goes back up the call stack looking for the
matching catch, rewinds to that point, and terminates the block. Optionally, when Ruby
jumps back up the stack, another throw parameter can be sent upwards, causing Ruby
to continue bouncing upward:

catch (:MyCatch) do
while (1)
throw :MyCatch unless all is well
end
end

Modules

Modules are groups of methods, classes, and constants (see Figure 9.3). As programs
grow bigger and bigger, it becomes necessary for most languages to segregate bits of
functionality and similar functions. Modules are Ruby's way of organizing large batches
of code.

367

Figure 9.3. Modules hold groups of classes and methods

il

Objoct

&

Objact
Muathod

!

an

I
%
(e

PN

{

&

f

1
)

Modules can be defined fairly easily with the module command:

i
i

(Bl

module MyModule
SOME7CONSTANT=1
ANOTHER_CONSTANT=2
def Some Class
class expressions

end

end

368

Save the module into a file called MyFile.rb, and Ruby will have the option of loading
the additional module by using require or load:

Load "MyFile.rb"
Require "MyModule"

Ruby comes with a number of modules for adding extra functionality to your program
already built in (see Table 9.10).

Table 9.10. Pre-Defined Ruby Modules

Module Use/Description

Comparable Comparing objects

Enumerable Traversal and searching methods

Errno Mapping OS system errors

FileTest File test operations

GC Garbage collection interface

Kernel Objects can access kernel module

Marshal Ability to serialize objects

Math Basic trigonometry and transcendental functions

ObjectSpace Added GC functionality for iterating over all living objects

Precision Number precision
Process Manipulate processes
Libraries

Libraries are collections of modules and classes, and Ruby has a wealth of them. Table
9.11 lists a few of the more common libraries and their general purposes. These libraries
are written in Ruby itself and are found in the /1ib/ folder of the distribution.

Table 9.11. Ruby Libraries

Library Purpose/Description

Delegate For building delegate-type objects

English Includes the English library file

Observer For communication between objects

Profile For code profiling, prints summary of system calls to $stderr

Network — Ruby provides a number of socket-level access classes, including socket,

BasicSocket,IPSocket,TCPSocket,SOCKSocket,TCPServer,and
UDPSocket

369

Table 9.11. Ruby Libraries

Library Purpose/Description
Singleton For ensuring that only one instance of a particular class is created

Timeout For timing code blocks

370

Memory, Performance, and Speed

Ruby suffers from the same speed impediment as the other languages in this book—
being interpretive and-high level. Ruby's built-in profiler tool helps quite a bit when
gauging performance by examining code snips and routines for slowdowns. The profiler
can be called from the command line by adding -r profile, or it can be used inside
code by using require, like so:

require "profile"

The profile library will print a summary of the number of calls to each Ruby method in
the given program and the time spent in each method. This is all printed to $stdout.

Garbage Collection
Ruby has a mark and sweep garbage collection system. It periodically sweeps through
dynamically allocated memory and reclaims it if it isn't in use. Ruby also provides a GC
(garbage collection) module for interfacing the underlying garbage collection methods,
which include

e disable. Disables garbage collection.

e enable. Enables garbage collection.

e start. Initiates a garbage run (unless disabled).
o garbage_collect. Starts garbage collector.

Speed

Finally, here are a number of tricks you can use to help speed up Ruby code:
Check the profiler to see where the code is bogging down.

Use the built-in GC to take control over garbage collection.

Initialize variables before they are used. Variables used within a block can be defined
before the interpreter hits the block.

When iterating over a large set of elements, declare any iterator variables.

When returning variables from a block, have the variables pre-initialized so they aren't
allocated on-the-fly.

Ruby supports both multiple threads and forks for creating sub-processes. Threads are

implemented within the interpreter, and forks are invoked in the operating system.
Either of these can be used for a speed hit in certain cases.

371

Summary

Before moving on to the next chapter, you should have Ruby installed on your
computer, and you should feel quite comfortable using Ruby blocks, classes, methods,
variables, and common control structures like while and if.

Important points from this chapter:

e Any form of data in Ruby is an object.

e An object is a container that holds variables and functions that are specific to
itself.

o Lowercase letters equal local variables, uppercase letters equal a constant,
variables that start with $ are global, variables that start with @ are instance
variables, and variables that start with @@ are class variables.

e End-of-line deliminators are not necessary in Ruby.

372

Questions and Answers

1: Q: Ack! What does "parse error" mean?
A: A: It usually means you have a block that's missing an end.
2: Q: I heard that Ruby is a compiled language and not interpreted; is this true?

A: A: There are plans in the future to move Ruby closer to a compiled language
in order to increase its execution speed.

373

Exercises

1: Define object, class, and method.

2: What is the difference between a Ruby hash and a Ruby array? How is each
declared?

3: Describe two built-in Ruby classes.

374

Chapter 10. Getting Started with Ruby Games
The price of wisdom is above rubies.

Job 28:18

This chapter covers the common libraries used for game programming in Ruby,
focusing on Ruby's OpenGL and SDL wrappers.

375

FXRuby
Ruby comes with a few toolkits, including FXRuby and OpenGL. FXRuby is a Ruby
interface to the FOX toolkit, which is designed for creating graphical user interfaces and

which is written in C++.

The Fox toolkit has a home at http://www.fox-toolkit.org/.

FXRuby and OpenGL for Ruby are partners in many projects. They are often used
together, and Fox provides a few widgets for providing OpenGL support. FXGLCanvas
and FXGLViewer are FXGLVisual objects. FXGLVisual can be used to create new visual
applications and includes options for double buffering (vISUAL DOUBLEBUFFER) and
stereo sound (VISUAL STEREO):

MyVisualObject = FXGLVisual.new (MyApplication, VISUAL STEREO)

The FxGLCanvas widget is an OpenGL window with minimal functionality:

MyCanvas = FXGLCanvas.new (MyApplication, visual to use)

The FxcLviewerwidget is a higher-level OpenGL window with more functionality and
is built the same way:

MyViewer = FXGLViewer.new (MyApplication, visual to use)

There are a number of important differences between the standard FOX API and the
actual FXRuby API. FXRuby uses Ruby strings instead of the standard Fox FXStrings.
Since Ruby handles underlying memory management, some of the drudgery of handling
pointers and arrays in FOX can be skipped. Many of the FOX classes have been
extended with built-in Ruby methods such as each, initialize, and catch. There are
also differences in multi-threading and the return values to a few interfaces.

With the FXRuby included in the standard Ruby package comes a number of FXRuby
samples. These are in the (surprise!) Samples directory. FXRuby is fairly easy to
include in a Ruby script. Once installed, Ruby's require and include commands can
be used to bring in the library:

#!/usr/bin/env ruby
require "fox"
include Fox

A new FXRuby application is declared by calling the Fxapp class with its new
constructor:

MyApplication = FXApp.new ()

376

FXRuby requires a main or parent window; these can be declared in the same way using
the new method of FxMainwindow. This function ties into the newly created
MyApplication Fox application and is also fed the window title:

main = FXMainWindow.new (MyApplication, "FXWindow")

You can create a GUI button in the main window by using FXButton:

FXButton.new (main, "Press This Button!")

Finally, you must create MyApplication with a create method, show it on the screen
with a show method, and then turn it on with a run method:

MyApplication.create ()
main.show (PLACEMENT SCREEN)
MyApplication.run ()

377

Ruby and OpenGL

I discussed OpenGL first in Chapter 4, where I introduced PyOpenGL. To briefly
summarize, OpenGL is a platform-independent API for creating graphics. Ruby's
OpenGL extension module was developed by Yoshiyuki Kusano. It provides an
interface to the basic OpenGL, GLU, and GLUT APIs.

As of this writing, the extension is at Version 0.32b and can be found at Yohshiyukani
Kusabo's homepage, at http://www?2.giganet.net/~yoshi.

GLU is a high-level library that partners with OpenGL. It provides additional
functionality that would otherwise be fairly difficult to code in just OpenGL. GLUT is
another OpenGL addition—it's a toolkit for designing OpenGL programs. Together
these two build an API that allows Ruby to easily access OpenGL commands.

A simple example of OpenGL is drawing a geometric shape. Step 1 is including the
OpenGL, GLU, and GLUT libraries if they are necessary. Posix systems may also need
the Ruby path—that is, #! /usr/local/bin/ruby:

#!/usr/local/bin/ruby
require "opengl"
require "glut"

Using the OpenGL proc function and its new method will declare a new function, called
MyTriangle, that can draw a geometric shape:

MyTriangle = Proc.new {

In order to draw the shape, the GL buffer must be cleared, and a new GL object of type
TRIANGLE must be created:

GL.Clear (GL: :COLOR BUFFER BIT)
GL.Begin (GL: : TRIANGLES)

Then you can set, with GL. Color, the RGB values that you'll use when drawing:

GL.Color(1.0, 1.0, 1.0)

And then you need to set the vertices of the three points of the triangle in 2D space:

GL.Color (1.0, 1.0, 1.0)
GL.Vertex (0, 0)
GL.Vertex (10, 10)
GL.Vertex (10, 50)

The OpenGL buffer must be flushed with GL.Flush and the calls to OpenGL ended.

378

The whole MyTriangle function looks like this:

MyTriangle = Proc.new {
GL.Clear (GL: :COLOR BUFFER BIT)
GL.Begin (GL: :TRIANGLES)

GL.Color (1.0, 1.0, 1.0)
GL.Vertex (0, 0)

GL.Vertex (10, 10)
GL.Vertex (10, 50)
GL.End
GL.Flush

In order to use the function, you must create a window (Mywindow) for display. The
window can be built using GLUT's createwindow method after GLUT is initialized:

GLUT.Init
MyWindow = GLUT.CreateWindow ("OpenGL Triangle")

The final steps for actually running this short Ruby OpenGL sample are to use GLUT's
DisplayFunc method to display MyTriangle, and then call MainLoop to get it all
started:

GLUT.DisplayFunc (MyTriangle)
GLUT.MainLoop

The standard Ruby install comes with many OpenGL samples located in the
Ruby\Samples\OpenGL directory. These include examples showing how to draw two-
dimensional and three-dimensional shapes, play with colors, and rotate objects in three-
dimensional space.

379

Ruby and SDL

SDL has been a common thread throughout the book, first in Chapter 4 with the
Pygame SDL wrapper for Python, and then in Chapter 7 with LuaSDL. It would stand
to reason that SDL, being the progressive library that it is, also has its fingers in Ruby.

To use SDL with Ruby, you first need to install the SDL library, which can be found in
its entirety at its home page, http://www.libsdl.org.

Once SDL is installed, Ruby needs an interface into SDL; there are several different
interfaces to choose from. Most of the interfaces can be found in the Ruby Application
Archive at http://raa.ruby-lang.org/.

To make it a bit easier for Windows users, a bundled SDL package is contained in a
nifty executable included on this book's CD; it is called pack-rubysdl.exe, and you can
find it on the CD in the Chapter 10 folder. The pack-rubysdl.exe package is distributed
under the GNU Public License and, for Win32, includes the following:

Ruby 1.6.4. The Ruby version.

Rubysdl-0.6. The actual SDL package.

Rubywin-0.0.3.2. An IDE for Ruby on Windows platforms.

Rb2exe-0.2. A program for converting Ruby scripts into executable files.
Opengl-0.32. The version of OpenGL.

The package is built with Cygwin and comes with a few SDL samples, including those
for using the keyboard and joystick, loading sound files from disk, and manipulating a
CD. The package also includes one fairly complete sample game by Ohbayashi Ippei.

The caveat to this bundle is that the documentation and installation are in Japanese. You
will not be able to read the install files without the proper Japanese character set
installed. This is inconvenient for English speakers, as the install files may look like
Figure 10.1, depending on the platform used.

Figure 10.1. The pack-rubysdl install may look strange without the right
Japanese character set.

Entry Pack for Puby/50L and etc for Win32

380

Whether your platform displays the characters correctly or not, choosing the left-hand
confirmation button means you agree to install the RubySDL folder and files on your
C:\ drive (see Figure 10.2).

Figure 10.2. Choosing the left-hand button at this screen after launching
.pack-rubysdl.exe will install the package.

o o e B e b o

i

RubyWin is one of the big bonuses in this package. A GUI developed by Masaki Suketa
that bundles Ruby 1.6.4 and Scintilla 1.38 (by Neil Hodgsen), RubyWin creates an
environment for running Ruby SDL scripts without having to change or manipulate
local environment variables. Launching the executable brings up the RubyWin GUI (see
Figure 10.3) and the Run File command, accessible via the Ctrl-R shortcut or through
the Ruby menu, can be used to launch and test Ruby SDL applications

Figure 10.3. The RubyWin GUI

381

Commonly Used Ruby SDL Modules and Classes

The common Ruby SDL modules and classes are listed in Table 10.1.

Table 10.1. Common Ruby SDL Modules and Classes

Component Module or Description
Class
SDL: :CD Class Represents the CD-ROM drive
SDL::Error Class Error class; handles Ruby/SDL errors
SDL: :Event Class Handles events
SDL: :Event2 Class Handles events
SDL::Joystick Class Represents a joystick
SDL: :Key Module Defines key constants and gets the key state
SDL::Mixer Module Holds sound functions and constants
SDL: :Mixer: :Wave (Class Handles WAYV files
SDL: :MPEG Class Handles MPEG streams
SDL: :Mouse Module Contains mouse constants and functions
SDL::PixelFormat (lass Parent to SDL: : Surface (obsolete)
SDL::Screen Class Displays the screen image
SDL: : SKK Class Handles Japanese input
SDL: : Surface Class Contains methods for creating SDL surfaces
(images)
SDL::TTF Class Handles TrueType fonts
SDL: : WM Module Handles windows

Ruby SDL includes all sorts of classes for supporting window management, MPEG
streaming, joysticks, CD-ROMs, and different fonts. More commonly used are the tools
for initializing and SDL environments, creating SDL surfaces, handling events, audio,
time, and Japanese character support.

Initializing SDL

The init module is used to initiate SDL. A flag that triggers which portion of SDL
needs to be initialized is included when initializing:

SDL::INIT_AUDIO. Initialize system audio.
SDL::INIT_VIDEO. Initialize system video.

SDL::INIT_CDROM. Initialize the CD-ROM.

382

SDL::INIT_JOYSTICK. Initialize a joystick device.

The line of code that will initialize video looks like the following:

SDL.init (SDL::INIT VIDEO)

A particular game's video mode is set with SDL.set video mode (), which takes as
arguments the width and height of the screen, bits-per-pixel (0=s current or local
display), and any necessary flags:

SDL.set video mode (640, 480, 0, SDL FLAG)

Possible flags for spL.set video mode include the following:
SDL::SWSURFACE. Creates video surface in system memory.
SDL::HWSURFACE. Creates video surface in video memory.
SDL::FULLSCREEN. Attempts to use the full screen.
SDL::SDL._DOUBLEBUF. Enables double buffering.

To find out if a particular video mode is supported, there is also an
SDL.checkVideoMode () command that uses the same syntax.

Surfaces

After setting up a video mode, SDL: : Surface.new will create an empty SDL surface.
Its new method also keeps an eye out for several flags:

SDL::SWSURFACE. Creates the surface in system memory.
SDL::HWSURFACE. Creates the surface in video memory.
SDL::SRCALPHA. Chooses the location with the best hardware alpha support.

SDL::SRCOLORKEY. SDL chooses the location with the best hardware colorkey
blitting.

Surface.new also needs width, height, and format. The format must be the instance of
SDL: : Surface and have the same bits per pixel as the specified surface.

There are dozens of methods that can be used on SDL surfaces. Some of the more
commonly used ones are listed in Table 10.2.

Table 10.2. Common SDL Surface Methods

383

Method
alpha

bpp
colorkey
drawCircle

drawEllipse

DrawFilledCircle

drawFilledEllipse

drawLine

drawRect

displayFormat

displayFormatAlpha

fillRect

flags
format

getClipRect

getPalette

GetPixel

GetRGBget rgb

getRGBA

load

loadBMP

lock

makeCollisionMap

mapRGB

Equivalent To

draw circle

draw_ellipse

draw _filled circle

draw filled ellipse

draw_ line

draw_rect

display format

display format alpha

fill rect

get clip rect

get palette

get pixel

get rgba

load bmp

map_rgb

Purpose

Returns surface alpha
Return bits per pixel
Returns surface colorkey
Draws a circle

Draws an ellipse

Draws a circle filled with specified
color

Draws an ellipse filled with specified
color

Draws a line between the given
coordinates

Draws a rectangle

Makes a copy of itself on a new
surface; used for fast blitting

As displayFormat wtih alpha value
per pixel

Fills given rectangle with specified
color

Returns surface flags
Returns pixel format

Returns clipping rectangle for the
given surface

Returns the palette of the specified
surface

Gets color of the specified pixel

Returns RGB component values of
specified pixel in an array

Like getRrGB, but includes an alpha
value

Return height

Loads image (such as a BMP) and
returns instance of SDL: : Screen

Loads given bitmap

Sets up a surface for directly
accessing pixels

Creates a collision map

Maps the RGB color value to the
pixel format of specified surface and

384

Table 10.2. Common SDL Surface Methods

Method

mapRGBA

mustLock?

put
PutPixel

rotateScaled
Surface

rotateSurface

saveBMP

setAlpha

setColorKey

setColors

setPalette

transformSurface

unlock

Events

Equivalent To

map_ rgba

must lock?

put pixel

rotate
scaled surface

rotate surface

save_ bmp

set alpha

set color key

set colors

set palette

transform surface

Purpose
returns the pixel value as an integer

Same as MapRGB but also includes an
alpha value

Returns true if surface must be locked
to directly access pixels

Draw given image in self
Writes pixel to the specified position

Rotates surface instance with given
angle and scale. Note: method is
considered obsolete; it's been
superceded by transformsSurface.

AS rotateScaledSurface but scale
1ssetto 1.0

Saves file in BMP format

Used to set alpha and per-pixel alpha
blending

Sets the colorkey of a blit-able
surface

Same as setPalette but with
different flags

Sets a portion of the palette for the
given 8-bit surface

Creates a rotated and scaled image of
given surface

Unlocks a surface

Returns width

Ruby SDL has two event classes, eventand event2, for handling events. Each has a
number of methods; these methods are outlined in Tables 10.3 and 10.4.

Method
appState

Table 10.3. Event Methods

Equivalent To

Event.app state

Purpose

Returns current
stat.enableUNICODE

385

Method

Event.enable unicode

Event.disableUNICODE

Event.enableUNICODE?

gain?

info

keyMod

keyPress?

keySym
mouseButton

mousePress?

mouseX

mouseXrel

mouseY

mouseYrel

new
poll

type

wait

appState

Method

Active

Table 10.3. Event Methods

Equivalent To
Enable UNICODE

Event.disable unicode

Event.enable unicode?

key mod

key press?

key sym
mouse button

mouse press?

mouse x

mouse xrel

mouse_y

mouse yrel

app_state

Purpose

Keyboard translation (disabled by
default)

Disables Unicode keyboard
translation

Returns whether Unicode
keyboard translation is enabled

Returns true when gaining focus

Returns event information in an
array

Returns the current key modifiers

Returns true when a key is pressed
down in a key event

Returns SDL virtual keysym
Returns the mouse button index

Returns true during a mouse
button down event

Returns the x coordinate of the
mouse

Returns the relative mouse motion
on the x-axis

Returns the y coordinate of the
mouse

Returns the relative mouse motion
on the y-axis

Creates a new SDL: :Event object
Polls for currently pending events

Returns the type of a given stored
event

Waits for the next available event

Returns the kind of ActiveEven

Table 10.4. event2 Methods

Equivalent To

Purpose

Event that occurs when
mouse/keyboard focus gains/loss

386

Table 10.4. eventz Methods

Method Equivalent To

appState Event2.app state

enableUNICODE enable unicode

enableUNICODE? Event2.enable unicode?

disableUNICODE disable unicode

JoyAxis

JoyBall

JoyButtonDown

JoyButtonUp

JoyHat

KeyDown

KeyUp

MouseButtonDown

MouseButtonUp

MouseMotion

poll

quit

SysWM

VideoResize

wait

Purpose
SaHKBaSEvent.appState

Same as Event .enableUNICODE
Same as Event.enableUNICODE?
Same as Event .disableUNICODE

Event that occurs when axis of joystick
is moved

Event that occurs when a joystick
trackball moves

Event that occurs when joystick button
is pressed

Event that occurs when joystick button
is released

Event that occurs when joystick hat
moves

Event that occurs when a key is pressed

Event that occurs when a key is
released

Event that occurs when a mouse button
is pressed

Event that occurs when a mouse button
is pressed

Event that occurs when the mouse is
moved

Same as Event.poll

Event that occurs when a quit or exit
is requested

Event that occurs when plaform-
dependent window manager occurs

Event that occurs when windows are
resized

Same as Event.wait

Ruby SDL also has mouse and key classes and methods for mouse and keyboard events;

these are outlined in Table 10.5.

387

Table 10.5. Mouse and Keyboard Events

Method Equivalent To Purpose
Key.disableKeyRepeat Key.disable key repeat Disables key repeat

Key.enableKeyRepeat Key.enable key repeat Sets keyboard repeat rate

Key.getKeyName Key.get_ key name Returns the string of key name

Key.modState Key.mod state Returns the current of the
modifier keys

Key.press? Return true if given key is
pressed

Key.scan Scans key state

Mouse.hide Hides mouse cursor

Mouse.setCursor Mouse.set cursor Lmedtochangethernousecunxn

Mouse. show Shows a mouse cursor

Mouse.state Returns mouse state in array

Mouse.warp Sets the position of the mouse
cursor

Audio

Ruby's SDL has a Mixermodule that is used to serve up music files, change volume, and
set up sound effects like fading. mMixerhas a class for handling WAV files,

SDL: :Mixer: :Wave, and a class for loading music, SDL: :Mixer: :Music. Wave
handles standard WAV files, while Music can load mod, S3M, it, XM, MID, and MP3
file formats. Mixer's methods are outlined in Table 10.6.

Table 10.6. vixer Methods

Method Equivalent To Purpose

allocateChannels allocate_channels Dynamically change the number of channels
managed by the mixer

fadeInMusic fade_in _music Fade in the given music in milliseconds

fadeOutMusic fade_out _music Fade out the given music in milliseconds

halt N/A Halt playing of a particular channel

haltMusic halt music Halt music

load Load a music file and return the object of
Mixer::Music

open Initialize SDL mixer

play? Return whether specific channel is playing

388

Table 10.6. Mixer Methods

Method Equivalent To Purpose
or not
playChannel play_channel Play a WAV on a specific channel
playMusic play music Play music
playMusic? play music? Return whether the music is playing
pause Pause on a particular channel
pause? Return whether a particular channel is
paused
pauseMusic pause music Pause music
pauseMusic? pause_music? Return whether the music is paused
resume Resume a particular channel
resumeMusic resume music Resume music
rewindMusic rewind music Rewind music
setVolume set volume Set the volume
setVolumeMusic set volume music Set volume
spec Return the audio spec in array
Time

SDL uses the notion of ticks to keep track of time. The getTicks/get ticks method
will get the number of milliseconds that have passed since SDL was initialized. There is
also a delay method that will wait a given number of milliseconds before returning; it is
used to process scheduled jobs and events.

Japanese Input

Ruby's SDL comes equipped with an SSK module for encoding the Japanese character
set. This module relies on the SDLSSK library, and can set the encoding to the Japanese
character system (EUCJP), the ASCII-preserving Unicode system (UTFS), or the Shift-
JIS Japanese system (SJIS). SSK has a handful of methods; these are outlined in Table
10.7.

Table 10.7. SSK Methods
Method Purpose
Context Super class that represents the state of input
Dictionary Super class for manipulating user dictionaries
encoding Returns encoding

389

Table 10.7. SSK Methods

Method Purpose
EUCJP Sets encoding to EUCJP
Keybind Represents the keybind in SDLSKK input system

RomKanaRuleTable Represents the rule of conversion from Alphabet to Japanese kana
SJIS Sets encoding to SJIS

UTF8 Sets encoding to UTF8

A Sample Ruby SDL Program

All of the tables given in this chapter aren't enough—you need to try an example of
using SDL and Ruby together. In the Chapter 10 section of the accompanying CD is a
sample RubyBounce folder with five Ruby files. They are as follows:

CONST.RB
PLAYER.RB
RUBYBOUNCE.RB
STATE.RB
SYSTEM.RB

These five files are explained in the next few subsections. Each has a part to play in
setting up a quick SDL Ruby environment where a player manipulates a small bouncing
ruby (see Figure 10.4).

Figure 10.4. A bouncing ruby is displayed in the RubyBounce program.

390

i e L = = e

17, By

This program can be run from the RubyWin application. Open up rubywin.exe in your
new C:\RUBYSDL\BIN folder, choose the Ruby menu, select Run, and then choose the
RUBY-BOUNCE.RB file.

The CONST.RB File

The simplest of the five Ruby files, CONST.RB is used to hold any specific game
constants that need to be defined (see Figure 10.5). In this example, the file holds four
constants, each of which defines a wall in the playing surface. Changing these values

later on changes where the player can travel onscreen:

Figure 10.5. File relationship for RubyBounce

391

CONST.RB

Defines the game constants

v

SYSTEM.RB

Initializes the display

v

RUBYBOUNCE.RB

Initializes SDL and launches
the game loop

STATE.RB

Tracks the game state
in a loop

v

PLAYEH.RB

Constructs and controls
the Player

LWALL X=40
RWALL X=600
FLOOR_Y=440
CEIL_Y=60

These values are x- and y-set pixel ranges that define the edges of the playing surface in
pixels (see Figure 10.6).

Figure 10.6. Playing field x and y boundaries.

392

A A
-
CEIL_Y = 60
g 3
[} Il
i3 -
) 3 Playing Surface 3‘
= g
-
FLOOR_Y = 440
X—Axis

The SYSTEM.RB File

The functions set up in the SYSTEM.RB file should look familiar, as they are similar to
the functions you used in earlier chapters. The only difference between the first define,
setup bmp, and earlier endeavors to load bitmaps is Ruby's own unique twist:

def setup bmp (filename)
graph=SDL: :Surface.loadBMP (filename)
graph.setColorKey SDL::SRCCOLORKEY, graph[0,0]
graph=graph.displayFormat

end

Here spL: : surface.loadBMP is used to grab a .BMP file, the colorkey is set with the
setColorKey method, and finally, displayFormat is used to display the surface.

Also included in this file are two functions for keeping track of where an object travels
in the two-dimensional screen. The x_out function and the send 1oc function help

determine if the object tries to travel past the LwaLL and RWALL constants set in
CONST.RB:

def x out?(x,w)
x+w+10<LWALL X || x-10>RWALL X
end

def send loc?(x,w)
return true if LWALL X+SEND FIELD WIDTH>xX+w
return true if RWALL X-SEND FIELD WIDTH<x
false

393

end

Then you define the system class with the initialize and continue game methods. In
a full version game, this would be a good place to set important variables like player
score and number of lives, but in this case just one instance variable is set; @1ife:

class System

def initialize
@life=3
end

def continue game?
@life > O
end

end

The STATE.RB File

There are three classes defined in STATE.RB: State, StateInitializer, and
stateDriver. Each is used to keep track of the game state, and each is stored within the
jt (just in time) module. The state class has two methods, initialize and

move state. State.initialize is probably the most important method in this script.
It first calls the constructor and sets three important instance variables: state hash,
state driver, and state. Using each variable, state.initialize then sets a loop
that iterates over each entry in state hash:

class State

def initialize(first state)

state initializer = Statelnitializer.new
yield state initializer

@state hash = state initializer.state hash
@state driver = StateDriver.new(self)
@state = first state

@state hash.each do |key,val]

self.instance eval <<-EOS

def self.#{key.id2name} (*arqg)

if @state hash[:#{key.id2name}] [@state] then

@state hash[:#{key.id2name}] [@state].call (@state driver, *arqg)
end

end

EOS

end

end

The move state method is used to create new states and assign them to @state:

def move state(new state)
@state=new state
end

394

The stateInitializer class defines both initialize—which creates the
state hash instance variable—and add event:

class StatelInitializer
def initialize
@state hash={}
end
attr reader :state hash
def add event (state,event, &block)
if not @state hash[event] then

@state hash[event]={}
end

@state hash[event] [state]=block
end
end

Finally, define the class stateDriver with two methods, initialize and move state:

class StateDriver

def initialize(state obj)

@state obj=state ob]

end

def move state(new_state)

@state obj.move state(new_ state)
end

end

The PLAYER.RB File

Now the fun stuff—the player must be defined with a constructor method
(initialize). You need methods to display the player onscreen (w, h, and draw) and
move around the screen (act and move 1r). But first, the PLAYER.RB file needs help
from SYSTEM.RB and STATE.RB:

require 'system.rb'
require 'state.rb'

Next, designate the class p1ayerand define a few player constants:

class Player
INIT DY=-50
DX=20
H=32;W=32
G=20
GRAPH Pl = setup bmp 'ruby.bmp'

These constants initialize the height and width and name of the bitmap image of the
player piece. After that, call the initialize method. This method not only calls the

395

SYSTEM.RB code but it also establishes keyboard events for moving the player's ruby
piece around the screen, including moving left and right and jumping the piece up:

def initialize(system)
@system=system
@x=320;@y=200
@dy=0
@state=JT::State.new(:jumping) do |i]
i.add event (:walking,:act) do |d,key,dt]
move 1r (key,dt)
if key.jump then
@dy= INIT DY
d.move_ state :jumping
end
end

The player pieces must also track the constants set in CONST.RB so that the piece
cannot leave the playing field:

i.add_event (:jumping, :act) do |d, key,dt]
move 1r (key,dt)
@y += @dy*dt/100
@dy += G*dt/100
if @y > FLOOR Y - H then
@y = FLOOR Y - H
d.move_ state :walking
end
end

Included in the Player.initialize method are sample event handlers to track the
player piece in case it collides with any other sprites/rects on the playing surface:

@damage state = JT::State.new(:normal) do [i]
i.add _event(:normal, :act) { }

i.add _event(:normal, :collision enemy) do |d]
@system.collision enemy

@damage time=0

d.move state (:damaged)

end

i.add event (:damaged, :act) do |d,dt]

@damage time+=dt

d.move state(:normal) if @damage time > DAMAGE TIME
end

i.add _event (:damaged, :collision enemy) { }
end

end

After Player.initialize come two quick methods that define the width and height of
the player piece:

def w ;W;end;
def h ;H;end;

396

You need a draw method to put the previously defined bitmap (in GRaAPH P1) onto the
screen. Drawing the bitmap is accomplished with the put method:

def draw(screen)
screen.put (GRAPH P1,@x,Qy)
end

The act method is a worker method that checks with STATE.RB and establishes the
state.act and damage state.act instance variables so that the player piece has the
functionality from STATE.RB:

def act (key,dt)
@state.act (key, dt)
@damage state.act (dt)
end

Finally, define the player's movement within a move 1r method. Move 1r checks
whether the player's key presses move the actual game piece off of the predefined
playing surface:

def move 1r (key,dt)
@x-=DX*dt/100 if key.left
@x+=DX*dt/100 if key.right
@x = LWALL X if @x< LWALL X

Ax = RWALL X-W if @x > RWALL X-W
end
The RUBYBOUNCE.RB File

It's in RUBYBOUNCE.RB that SDL is opened and initialized and the actual game loop
runs. First, SDL and the other defined files are required:

require 'sdl'

require 'system.rb'

require 'state.rb'

require 'const.rb'
require 'player.rb'

Initialize SDL with its init method, define the video mode, and establish the surface
area with the following two lines:

SDL.init (SDL::INIT_VIDEO)
screen = SDL::setVideoMode (640,480,16,SDL::SWSURFACE)

A new structure is established that holds each keypress available to the player:

Key = Struct.new("Key", :left, :right, : jump, :send)

397

The new method constructor is called for each object that must be initialized:

system=System.new
player=Player.new (system)
event=SDL: :Event.new
key=Key.new

Now that every object you need is established, the game loop is created. First, use tick

to establish the time:

before=now=SDL: :getTicks-1

Then establish a while loop that uses the po11 method to check for events from the

keyboard:
while system.continue game?
if event.poll != 0 then
if event.type==SDL::Event::QUIT then
break
end

if event.type==SDL::Event::KEYDOWN then
exit 1f event.keySym==SDL: :Key::ESCAPE
end
end

Each possible key press is queried for by Key: :press?:

SDL: :Key: :scan

key.left = SDL::Key::press? (SDL::Key: :LEFT)
key.right = SDL::Key::press? (SDL: :Key: :RIGHT)
key.jump = SDL::Key::press? (SDL: :Key: :UP)
key.send = SDL::Key::press? (SDL: :Key: : DOWN)

The SDL ticks are checked for in the loop as time moves forward:

before=now
now=SDL: :getTicks
dt=now-before

Any actions are fulfilled by calling player.act:

player.act (key,dt)

The screen is filled, and the player redrawn with each iteration of the loop:

screen.fillRect (0,0,640,480,0)
player.draw (screen)

398

All that is left to do is make sure the SDL screen is flipped and that any garbage is
collected:

ObjectSpace.garbage collect
screen.flip

399

Summary

That's a wrap on the common Ruby game libraries. A few important points to take from
this chapter are as follows:

e Ruby distributions commonly come equipped with pieces needed to make games
and GUIs, and it is common to find FOXRuby and Ruby OpenGL.

e Python, Lua, and Ruby each have tools for using SDL and OpenGL.

e SDL and OpenGL in Ruby look really similar to SDL and OpenGL in other
languages.

e There are a number of significant differences to how FOX is implemented in
Ruby than in other languages.

400

Questions and Answers

1: Q: What platforms does RubySDL operate on?
A: A: Linux, Win32, FreeBSD, and BeOS.

2: Q: How do I use threads in RubySDL?

A: A: RubySDL cannot handle SDL threads. However, Ruby's threads can be

used instead.

401

Exercises

1: List three common Ruby SDL surface methods.
2: FXRuby is most commonly used to

3: Use the PLAYER.RB code as a sample to create an OBSTACLE.RB script
that can add obstacles to the RubyBounce code.

402

Chapter 11. The Ruby Game Community
The gem cannot be polished without friction, nor man perfected without trials.
——Chinese proverb

Ruby is probably the least entrenched of the languages within English-speaking game-
development companies. It is found much more often in the scientific and research
community than in the game and entertainment industries. This doesn't mean that Ruby
can't be found hard at work in the game field, though—it's been a part of a number of
large-scale projects involving games. This chapter highlights a few Ruby projects
associated with games or game-related technologies.

403

Ruby and Game Engines

Ruby is available as a tool for a few game-programming engines. ClanLib is an engine
I've mentioned before that has been used on many independent projects, while MUES is
a new Ruby tool known primarily as the backbone of The FerieMUD World.

ClanRuby

ClanLib (www.clanlib.org) is one of the more popular libraries for amateur game
designers today. ClanLib is written entirely in C++ as a graphics and game library. It
takes the hard-to-develop functionality like sound mixing, DirectDraw, networking, and
working with images and provides an easy-to-use, multi-platform library to develop this
functionality. ClanLib also provides low-level interfaces to other popular libraries such
as DirectFB, DirectX, OpenGL, and X11.

ClanRuby is a set of bindings from Ruby that tie into ClanLib's library. ClanLib and
ClanRuby are licensed under the GNU Library General Public License. ClanRuby was
developed by Russell Olsen, and, as of this writing, Version 0.6.5a—which is
compatible with ClanLib 0.6.5—is available at its Sourceforge project page at
http://sourceforge.net/projects/clanruby/. ClanRuby's home page—which shows the
latest ClanRuby developments, offers a brief ClanRuby tutorial and shows sample
ClanRuby uses—is at http://clanruby.sourceforge.net.

ClanRuby 0.6.5 is also included on this book's CD in the Chapter 11 folder. Russell
Olsen has tested the platform primarily on Red Hat Linux 7.3 using ClanLib 0.6.5 and
Ruby 1.6.7 or 1.6.5. ClanRuby can be installed from the source by unpacking the tar
files, running the Ruby configuration script (EXTCONF.RB), which creates the make
file, and then running make and then make install.

While ClanRuby currently only works in Red Hat, ClanLib delivers a platform-
independent interface. If a game is written with ClanLib, it should be possible to
compile the game under just about any platform without changing the application
source code.

But ClanLib is not just a wrapper library, providing a common interface to low-level
libraries such as DirectFB (Direct Frame Buffer), DirectX, OpenGL, X11, and so on.
While platform independence is ClanLib's primary goal, it also tries to be a service-
minded game SDK. In other words, a lot of effort has been put into designing the API in
order to ensure that ClanLib is easy to use but still quite powerful.

ClanRuby can be brought into a Ruby program after installation with the following:

require 'ClanRuby'
include ClanRuby

Setting up the ClanRuby environment is accomplished with a few init methods and
Display.setVideoMode, Which set the screen size and resolution. Cleanup is handled
by deinit methods:

404

#Initialize
SetupCore.init ()
SetupDisplay.init ()

#Set Display 640x480x16bit
Display.setVideoMode (640, 480, 16, false)

#
#Actual Bulk of the program here
#

#De—-initialize
SetupDisplay.deinit ()
SetupCore.deinit ()

Users of ClanLib will recognize the upcoming code. Those who have delved into
OpenGL and SDL in earlier chapters will also find ClanLib's syntax familiar; for
instance, here's how to draw a rectangle:

Display.fillRect () #Parameters to define where rect is drawn go here
Display.flipDisplay ()

Sourceforge is also home to a few games written in ClanLib, including a Boulderdash
clone called Epiphany written by Guiseppe D'Aqui; it's at
htttp://epiphany.sourceforge.net.

MUES

The MUES (Multi-User Environment Server) is a game-environment server written in
Ruby. The purpose of MUES is to facilitate building online multiplayer games or
simulations. It provides game worlds in the form of dynamically programmed object
environments, machine services and daemons for creating in-game systems, and a
network client to access these environments.

MUES is just the first half of the project—the programming of the server platform.
MUES is also tied into a MMORPG (Massively Multi-player Online Role-Playing
Game) called FerieMUD, which is the creative, vision-inspired, story-based world the
development team has been building in conjunction with the engine.

MUES itself is open-source software that was released to the public in late 2001. The
source code and documentation can be found at http://mues.faeriemud.org/. The MUES
engine supports a number of useful MUD features, including:

e Multi threading

e 1/O abstraction

e Network sockets and protocols

e Object persistence

e Logging

e Dynamic/data driven environment
e User authentication

405

Ruby and Graphics

Because Ruby is the new kid on the block, a number of the graphical Ruby projects are
still very much under construction. The projects I will present in the next subsections
have been around for a while, have proven their usefulness in a number of applications,
and can be found packaged with good examples and documentation. In contrast to
Python and Lua libraries, Ruby graphic libraries tend to be scientific or Web-based in
nature.

FXRuby

I offered a quick look at this toolkit and OpenGL in Chapter 10. In addition to working
with OpenGL, FXRuby can also work with Scintilla—or at least with FXScintilla,
which is FOX's wrapper around the Scintilla library.

More information on FXRuby can be found at its Website, at http://www.fxruby.org/

Ruby/PGPlot

Ruby/PGPlot is a Ruby interface to the PGPlot graphics library. PGPlot is, itself, a
device-independent graphics package specifically designed for plotting graphs of
publication quality. PGPlot is not public domain software, but it is available free of cost
for non-commercial endeavors. It also has hooks into several other languages, including
Ada, C, FORTRAN, and Python. Ruby/PGPLot relies on Numeric Ruby; the
technologies and URLs are

e Ruby/PGPlet. http://www.ir.isas.ac.jp/~masa/ruby/pgplot/index.html.
e Numeric Ruby. http://www.ir.isas.ac.jp/~masa/ruby/index-e.html#pgplot.
o PGPlot. http://www.astro.caltech.edu/~tjp/pgplot/.

RubyDCL

RubyDCL is a Ruby interface, written by T. Horinouchi, K. Kuroi, and K. Goto that
hooks into the DCL scientific-graphics library. The interface supports all of DCL—
every function and subroutine—and, although much of the documentation is in
Japanese, it does come with some English-language documents and support. Ruby DCL
is part of a larger project, the Dennou Ruby Project, the purpose of which is to develop
a suite of software that facilitates visual scientific simulations.

The DCL graphics library was originally written in FORTRAN and later ported into C,
and Ruby DCL is actually the second version of the product built by Dennou. The first
library, AdvancedDCL, was the experimental prototype for RubyDCL and is now
obsolete.

RubyDCL, the Dennou Ruby Project, and the RubyDCL project page can be found
online at the following links:

e RubyDCL. http://ruby.gfd-dennou.org/products/ruby-dcl/.
e Dennou Ruby Project. http://ruby.gfd-dennou.org/.

406

e RAA RubyDCL Project Page. http://raa.ruby-
lang.org/list.rhtml?name=rubydcl.

Libgd-Ruby

GD is a library by Thomas Boutell that is used for dynamically creating graphic images,
particularly PNG and JPEG images, and Libgd-Ruby is a package extension library that
allows Ruby to wrap around GD. Libgd is written in C, and is considered freeware. It is
dependent on several other libraries, including libc6, the GNU C Library, FreeType 2,
the GD Graphics Library, and The Independent JPEG Group's JPEG runtime library.
Details can be found at the following links:

o Libgd-Ruby. http://packages.debian.org/unstable/graphics/libgd-ruby.html.
e GD Library. http://www.boutell.com/gd/fag.html.

407

Ruby and Games

Ruby is the newcomer in the American game industry, but gamers can expect many
good things to come. Ruby is perfect for Internet-based games such as FerieMUD,
which is highlighted below.

The FerieMUD Project

Built in tandem and integrated with MUES, The FarieMUD project is built to be story-
rich, with a focus on detail, realism, and imagination—unlike the all-too-common
violent fantasy world.

FeerieMUD was originally written in Perl and was ported over to Ruby to take
advantage of a few Ruby features like built-in meta classes, strict encapsulation, and
pure OOP.

The FaerieMUD Project is still being built, and can be found at
http://www.faeriemud.org/.

The MUES engine can be found online at http://mues.faeriemud.org/.

408

Beyond Ruby

Ruby is the shining star in a few other domains besides game graphics and game
engines. A few of these are listed in the following sections.

The Snack Sound Toolkit for Ruby

The Snack Sound Toolkit is a collection of sound- and voice-processing routines and
includes tools for speech recognition, formant tracking and synthesis, and other fun
sound-and speech-based tools. The toolkit, written by Stephen Legrand, is used to
extend scripting languages and enable such tools within them; Ruby is its prodigy pilot-
child.

The original implementation of Snack was inspired by Kare Sjolander and was extended
to Tcl/Tk. Snack for Ruby leverages the existing Tk graphics and provides direct
support for waveforms and spectrograms.

Snack for Ruby requires that the Snack package and Tcl/Tk be installed. RPMs that
combine both Snack and Tcl/TK in one install are available for Linux users, and the

toolkit runs on both Posix and Windows environments.

Snack for Ruby is still under development but was presented at the International Ruby
Conference.

The toolkit can be found on Sourceforge at http://sourceforge.net/projects/rbsnack/.

rbwrap

rbwrap is a tool for converting Ruby scripts and programs into standalone executables.
The tool is in Alpha currently but works for Windows systems. The package relies on
Cygwin and the Gnu C Compiler.

rbwrap is written by Robert Feldt and can be found at the author's Website, at
http://www.ce.chalmers.se/~feldt/ruby/applications/rbwrap.

Memeoize

Memeoize is a tool for speeding up program execution. It does so by caching functions,
increasing the size of the running program but also speeding up execution time.
Memoize is also the brainchild of Robert Feldt; it relies on Cygwin and is meant to
work with Ruby 1.6.2.

Memeoize is available online at
http://www.ce.chalmers.se/~feldt/ruby/extensions/memeoize.

409

Summary

That's a wrap on Ruby. I hope you enjoyed your stay. A few important points to take
from this chapter:

e Even though Ruby tools appear more frequently and are used more often in the
scientific world than in the entertainment and game industries, they can still be
found if you look hard enough.

o Ruby has quite a bit of support for developing scientific graphs and charts.
Integration with some of the libraries that allow the rapid development of Ruby
GUIs makes Ruby a good tool for a number of research facilities.

410

Questions and Answers

1: Q: Where can I find more Ruby projects?

A: A: The Ruby community updates a Web page with active Ruby projects at the
Ruby Application Archive at http://raa.ruby-lang.org/.

2: Q: Have there been many games written with Clanlib?

A: A: Clanlib has been involved in dozens of games, and most of them are listed
on the Clanlib Web site at http://www.clanlib.org/games.html/.

411

Exercises

1: List three available resources for programming games in Ruby.

2: Finish this statement: "The Snack toolkit deals mostly with a

412

Part FIVE: The Wrap Up

The book wrap-up discusses taking what you've learned so far into other areas. The
main topics are using extension as a technique in development and wrapping high-level

languages into C.

413

Chapter 12. Using Python, Ruby and Lua in Development

The game is up.

——William Shakespeare, Cymbeline

High-level languages are capable of working with other programming tools. Discussed
in this chapter are common ways these languages can be brought in to work as part of a

team. I'll cover, with examples, extension and wrapping, as well as integrating the
languages with C.

414

High-Level Languages in the Development Cycle

There are a number of advantages for using a high-level language in a development
project. These advantages include

e Automated garbage collection.

o High-level features like built-in pattern matching and built-in types.

o Simpler syntactical rules.

e Coding is less time-consuming.

e Lower costs than using an internally built language.

o High-level languages are easily embedded, modular, and extensible.

e Artists, level designers, and even employees with little computer science
experience can easily grasp and understand high-level languages.

There are also a number of reasons to not use a high-level language for a development
project. These include

e They are slower.

e Their byte-code can be easier to hack.

o Their debuggers aren't as advanced.

e Legal concerns could arise when using open-source code in for-profit
development.

The key, then, is to know when to use the tools and when not to use the tools. Although
Python, Lua, and Ruby can be used to write complete games, they usually aren't. In a
typical shop they serve a specific function, where their strengths can be leveraged.

For instance, in a Python game, the main looping engine code may look something like
the following:

Update any input from the User
Input.GetInput ()

Process user Input
Input.ProcessInput ()

Use tick to up-date the graphics scene
Graphics.Tick ()

#Redraw the graphics

Graphics.Redraw ()

There is nothing that says each of the calls must be Python, however. Python can be
calling to modules written in other languages. The Graphics.Tick and Redraw
methods could be ANSI C or even assembly. Python could be running the game loop
and calling out to C only when needed for CPU-intensive operations.

In a project that mixes languages, you'll likely see two languages, as shown in Figure
12.1. One will be high-level, used for generic tasks, and administrative. The low-level

language is used for specific time-saving tasks (see Table 12.1).

Figure 12.1. Typical roles of partnered languages

415

Table 12.1. Partnered Languages

Typical High-Level Language Tasks Typical Low-Level Language Tasks
Call low-level language CPU intensive tasks

Game code default Graphics/rendering system

Al Collision detection

User interface Tasks with many quick iterations

Perhaps the biggest benefit to development is using a scripting language to drive data.
Over the years, companies have discovered that it is not a good idea to bury game
parameters— like movement speed, character strength, and unit hit points for
example—deep down in executable code. If these attributes are buried, play testing
becomes an extremely lengthy process because every little change must be made to
complex, difficult-to-read-and-understand code, and then there must be a lengthy
recompilation and re-building of the entire game. Rebuilding a game with a large code
base from scratch can take hours, or even a whole day, and the act of recompiling
actually risks introducing new bugs or issues.

If game parameters (like movement speed, character strength, and unit hit points) can
instead be controlled with a scripting language, they can be changed almost on-the-fly.
Play testers could change statistics and attributes until the balance of the game makes
sense without having to go back to a development team.

Also, game play details can be really time-consuming to program in C or C++. If high-
level scripting is running the Al, the player attributes, or the quest flow of the game,
then the C coder will be freed up to focus on the engine code. Designers can easily
fiddle with the settings of the higher-level code and try out parameters that they
normally would have to delve deep into the engine to get to.

416

Even better, if the separation between the engine and the game code is severe enough,
the base low-level engine can actually be used for multiple games and multiple releases.
The C/C++ engine stays static while the high-level scripts define new parameters, new
game objects, and new goals and missions for the new player characters. Since many
companies claim that the biggest problem they face is resource management, you can
see why many have adopted this release philosophy.

417

Extending Python, Lua, and Ruby

Extending is one of the super powers Python, Lua, and Ruby have to offer. Extending is
basically the ability to combine code from two or more different languages into one
running executable or script. Although this adds a layer of complexity to a project, it
gives a developer the ability to pick and choose from the existing toolbox.

All of these languages are built around being extensible; extensibility is one of the
features that has made them so prolific. The language documentation that comes with
each includes a nifty sample and explanation of how to partner with other languages, so
this section is more of a brief overview of the process.

Languages are extended for many different reasons. A developer may want to use an
existing C library or port work from an old project into a new development effort. Often
extensible languages are used as prototypes, and then profiling tools are used to see
what parts of the code execute slowly, and where pieces should be re-written.
Sometimes a developer will need to do something that just isn't possible in the main
language, and must turn to other avenues.

Extending is mainly used when another language can do the job better—better meaning
more efficiently or more easily. Most commonly, you will find these languages
partnered with C and C++, where the Cs are running code that needs to be optimized for
speed and memory.

Problems with Extending

As I've already mentioned, multilanguage development adds an extra layer of
complexity. Particular problems with extending are as follows:

e You must debug in two languages simultaneously.

e You must develop and maintain glue code that ties the languages together (this
might be significantly large amounts of code).

Different languages may have different execution models.

Object layouts between languages may be completely different.

Changes to one side of the code affect the other side, creating dependencies.
Functions between languages may be implemented differently.

Extended programs can also be difficult to debug. For instance, Ruby uses the GNU
debugger, which can look at core dumps but still doesn't have breakpoints or access to
variables or online source help. This is really different from the types of tools available
for C and C++, where breakpoints and core dumps can be watched and managed during
debug execution. Since the tools can differ between two languages, a developer may
have to hunt through more than one debugger to find a problem. Also, because high-
level language debuggers are usually more primitive, there is less checking during
compile time, which could lead to missed code deficiencies.

There are some glue code packages that solve some of these problems. These are third-

party programs that manage the creation of extended code; Simple Wrapper Interface
Generator (SWIG, covered later in the chapter) is one example of such a package.

418

Though adding more than one language to a project gives you more options, as I said, it
does add an extra level of complexity. When you add a language, you will need multiple
compliers and multiple debuggers, and you will have to develop and maintain the glue
code between the two languages. Whether to add a language is a tough management
question, one that needs to be answered based on the needs of each particular project.

A final issue with having high-level code in a shipped product is that the code reveals
much more about the source than does C or C++; this can make it more vulnerable to
hacking. This doesn't mean that C or C++ cannot be hacked, just that if the variable
names and function names are shipped in scripts with the game code in a high-level
format, the game can be easier to break into or deconstruct.

Extending Python

There are a few built-in ways of integrating Python with C, C++, and other languages.
Writing an extension involves creating a wrapper for C that Python imports, builds, and
can then execute. Python also provides mechanisms for embedding, which is where C
(or an equivalent) is given direct access to the Python interpreter. There are also a
number of third-party integration solutions.

Writing a Python Extension

You must write a wrapper in order to access a second language via a Python extension.
The wrapper acts as glue between the two languages, converting function arguments
from Python into the second language and then returning results to Python in a way that
Python can understand. For example, say you have a simple C function called
function:

int function (int x)

{

/*code that does something useful*/

}

A Python wrapper for function looks something like the following:

#include <Python.h>
PyObject *wrap function (PyObject *self, PyObject *args)
{

int x, result;

if (!PyArg ParseTuple(args, "i:function", &x))
return NULL;
result = function (x);

return Py BuildValue("i",result);

The wrapper starts by including the Python.h header, which includes the necessary
commands to build a wrapper, and also a few standard header files (like stdio.h,
string.h, errno.h, and dstlib.h).

NOTE

419

TIP

Python commands that are included with Python.h almost always begin with Py or py,
so they are easily distinguished from the rest of the C code.

The pyobject wrapper wrap function has two arguments, self and args (see Figure
12.2). The self argument is used when the C function implements a built-in method.
The argsargument becomes a pointer to a Python tuple object containing the
arguments. Each item of the tuple is a Python object and corresponds to an argument in
the call's argument list.

Figure 12.2. The illustrated wrap function

Orignal C Function l

wrap_function

Argument: self
Used when the C function
implements a built in method

Argument: args
Points to a Python tuple

;

Python Tuple

Contains Python objects that
correspond to any arguments

The small "i" in the i : functionline is short for int. If the function instead required a
different type, you would need to use a different letter than "i":

420

e i. For an integer.

e L For a long integer.

o s. For a character string.

e c. For a single character.

e f. For a floating point number

e d. For double

e 0. For an object

e Tuple. Python tuples can hold multiple objects.

Together, PyArg ParseTuple () and PyBuildvalue () are what converts data between
C and Python (see Figure 12.3). Arguments are retrieved with PyArg ParseTuple, and
results are passed back with Py Buildvalue. Py Buildvalue () returns any values as
Python objects.

Figure 12.3. Data converting between C and Python

C Data PyArg_ParsaTuple PyBulidValue Python Data

PyArg ParseTuple () is a Python API function that checks the argument types and
converts them into C values so that they can be used. It returns true if all arguments
have the right type and the components have been stored in the variables whose
addresses are passed. If a C function returns no useful argument (i.e. void), then the
Python function must return None.

In the code snippet an i fstatement is also used. This structure is there just in case an
error is detected in the argument list. If an error is detected, then the wrapper returns
NULL.

Once a wrapper has been written, Python needs to know about it. Telling Python about
the wrapper is accomplished with an initialization function. The initialization function
registers new methods with the Python interpreter and looks like this:

Static PyMethod exampleMethods[] = {
{"function", wrap function, 1},
{NULL, NULL}

}i

void initialize function () {

PyObject *m
m = Py InitModule ("example", "exampleMethods");

421

Only after a wrapper and an initialization function exist can the code compile. After
compilation, the function is part of Python's library directory and can be called at any
time, just like a native Python module.

You can also use a setup file when importing a module. A setup file includes a module
name, the location of the C code, and any compile tags needed. The setup file is then
pre-processed into a project file or makefile.

The compile and build process for extending varies, depending upon your platform,
environment, tools, and dynamic/static decision-making, which makes the Python
parent documentation extremely valuable when you're attempting this sort of
development.

Guido Van Rossum has a tutorial on extending and embedding Python within the
language documentation, at http://www.python.org/doc/current/ext/ext.html.

The Python C API Reference manual is also extremely helpful if C or C++ is your
target language. It's at http://www.python.org/dev/doc/maint22/api/api.html.

The last step in Python extension is to include any wrapped functions (in this case,
function) in the Python code. Do this with a simple import line to initialize the
module, like so:

import ModuleToImport

Then the function can be called from Python just like any other method.

ModuleToImport.function (int)

Embedding Python

Embedding in Python is where a program is given direct access to the Python
interpreter, allowing the program the power to load and execute Python scripts and
services. This gives a programmer the power to load Python modules, call Python

functions, and access Python objects, all from his or her favorite language of comfort.

Embedding is powered by Python's API, which can be used in C by including the
python.h header file. This header

#include "Python.h"

contains all the functions, types, and macro definitions needed to use the API.

It is fairly simple to initialize Python in C once the Python header file is included (see
Figure 12.4):

Figure 12.4. The embedding Python process

422

Embedding Python

Allocates resources for the

P interprater to use the API.

3t it ™ Creates and initializes the
necessary modules.

Py_SImpIaFIIe - HReads the given file and

executes any commands there.

Releases any resources
Py_Finalize = allocated and shuts down
the interpreter.

int main ()

Py Initialize();

PyRun SimpleFile ("<filename>");
Py Finalize();

return () ;

Py Initialize is the basic initialization function; it allocates resources for the
interpreter to start using the API. In particular, it initializes and creates the Python sys,

exceptions, builtin ,and main modules.
NOTE
CAUTION

Py Initialize searches for modules assuming that the Python library is in a fixed
location, which is a detail that may need to be altered, depending on the operating
system. Trouble with this function may indicate a need to set the operating system's
environment variable paths for PYTHONHOME or PYTHON PATH. Alternately, the module
paths can be explicitly set using PySys SetArgv ().

The pyrun simpleFilefunction is simply one of the very high-level API functions that
reads the given file from a pointer (FILE *) and executes the commands stored there.
After initialization and running any code, Py Finalize releases the internal resources
and shuts down the interpreter.

Python's high-level API functions are basically just used for executing given Python

source, not for interacting with it in any significant way. Other high-level functions in
Python's C API include the following:

423

o Py CompileString(). Parses and compiles source code string.

e Py _eval _input. Parses and evaluates expressions.

o Py file_input. Parses and evaluates files.

e Py Main(). Main program for the standard interpreter.

o PyParser_SimpleParseString(). Parses Python source code from string.

e PyParser_SimpleParseFile(). Parses Python source code from file.

e PyRun_AnyFile(). Returns the result of running pyRun InteractiveLoop Or
PyRun_SimpleFile().

e PyRun_SimpleString(). Runs given command string in main .

e PyRun_SimpleFile(). As PyRun SimpleString except source code can be read
from a file instead of a string.

o Py single_input. Start symbol for a single statement.

o PyRun_InteractiveOne(). Read and execute a single statement from an
interactive device file.

o PyRun_InteractiveLoop(). Read and execute all statements from an interactive
device file.

e PyRun_String(). Execute source code from a string.

o PyRun_File(). Execute source code from a file.

The high-level tools really just scratch the surface, and Python's API allows memory
management, object creation, threading, and exception handling, to name a few things.
Other commonly used commands include PyImport ImportModule (), which is for
importing and initializing entire Python modules; Pyobject GetAttrstring (), which
is for accessing a given modules attributes; and pyObject SetAttrString(), which is
for assigning values to variables within modules.

Third-Party Integration

So what happens when there is a large integration project and some 100+ C functions
must be gift-wrapped for Python? This can be a time-consuming, tedious, error-prone
project. Imagine now that the library goes through a major update every four to six
months, and each wrapper function will need to be revisited. Now you know what job
security looks like!

Luckily, there are other options available for extension besides wrappers. SWIG, for
instance, is an extension wrapper designed to make extension easier. It can be used to
generate interfaces (primarily in C) without having to write a lot of code. Another
option is Sip, a relative of SWIG, which focuses on C++. The Boost.Python library is
yet another tool that can be used to write small bits of code to create a shared library. Of
these three, SWIG is the most popular, probably because it plays well not only with C,
C++, Python, and Ruby, but also with Perl, Tcl/Tk, Java, and C#. SWIG is copyrighted
software, but it is freely distributed. It is normally found on UNIX but will also operate
on Win32 OSs.

SWIG automates the wrapper process by generating wrapper code from a list of ANSI
C functions and variable declarations. The SWIG language is actually fairly complex
and very complete. It supports preprocessing, pointers, classes, inheritance, and even
C++ templates.

424

SWIG is typically called from a command prompt or used with NMAKE. Modules can
be compiled into a DLL form and then dynamically loaded into Python, or they can be
set up as a custom build option in MS Development Studio. SWIG can be found online
at Sourceforge (http://swig.sourceforge.net/), and Boost.Python, by David Abrahams,
can be found online at Python.org (http://www.python.org/cgi-

bin/moinmoin/boost 2epython).

Extending Lua

Lua was built to partner with other languages, and it can be extended with functions
written in C just as Python can. These functions must be of the 1ua CFunction type:

typedef int (*lua_ CFunction) (lua State *L);

A C function receives a Lua state and returns an integer that holds the number of values
that must return to Lua (see Figure 12.5). The C function receives arguments from Lua
in its stack in direct order. Any return values to Lua are pushed onto the stack, also in
direct order.

Figure 12.5. Representation of Lua and C partnership

Create a C function that takes
/ in the lua_State returns an int
Import Lua functions stack ,/:.fﬂggﬁgggﬂaffwl
#Ancludedua.h>
l“;é Argumanis ara placed

X
\
i
:

i |

lua_State’L = lua_opan()
Return valuas are pushad

/ onto the stack

When registering a C function to Lua, a built-in macro receives the name the function
will have in Lua and a pointer to the function, so a function can be registered in Lua by
calling the 1ua register macro:

lua register (L, "average", MyFunction);

Values can be associated with a C function when it is created. This creates what is
called a C closure. The values are then accessible to the C function whenever it is
called. To create a C closure, first push the values onto the stack, and then use the

425

lua_pushcclosure command to push the C function onto the stack with an argument
containing the number of values that need to be associated with the function:

void lua pushcclosure (lua State *L, lua CFunction MyFunction, int
MyArgument) ;

Whenever the C function is called, the values pushed up are located at specific pseudo-
indices produced by a macro, 1ua upvalueindex. The first value is at position
lua upvalueindex (1), the second at 1ua upvalueindex (2), and so on.

Lua also provides a predefined table that can be used by any C code to store whatever
Lua value it needs to store. This table is a registry and is really useful when values must
be kept outside the lifespan of a given function. This registry table is pseudo-indexed at
LUA REGISTRYINDEX. Any C library can store data into this table.

Extending Ruby

Extending Ruby in C is accomplished by writing C as a bridge between Ruby's C API
and whatever you want to add on to Ruby (see Figure 12.6). The Ruby C API is
contained in the C header file ruby.h, and many of the common API commands are
listed in Table 12.2.

Figure 12.6. The Ruby C APl

Ruby C AP

"~ Bridge Code —

Ruby and C must share data types, which is problematic when Ruby only recognizes
objects. For C to understand Ruby, some translation must be done with data types. In
Ruby, everything is either an object or a reference to an object. For C to understand
Ruby, data types must be pointers to a Ruby object or actual objects. You do so by
making all Ruby variables in C a vaLUuEtype. When VALUE is a pointer, it points to one
of the memory structures for a Ruby class or object structure. vALUE can also be an
immediate value such as Fixnum, Symbol, true, false, Or nil.

A Ruby object is an allocated structure in memory that contains a table of instance
variables and other class information. The class is another allocated structure in memory

426

that contains a table of the methods defined for that class. The built-in objects and
classes are defined in the C API's header file, ruby.h. Before wrapping up any Ruby in
C, you must include this file:

#include "ruby.h"

You must define a C global function that begins with 1nit when writing new classes
or modules. Creating a new subclass of Ruby's object looks like the following:

void Init MyNewSubclass () {
cMyNewSubclass = rb_define class ("MyNewSubclass", rb cObject);
}

Objectis represented by rb cobject in the ruby.h header file, and the class is defined
with rb_define class. Methods can be added to the class using rb _define method,
like so:

void Init MyNewSubclass () {
cMyNewSubclass = rb_define class ("MyNewSubclass", rb cObject);
rb _define method(cMyNewSubclass, "MyMethod", MyFunction, value
)
}

Ruby and C can also directly share global values. This is accomplished by first creating
a Ruby object in C:

VALUE MyString;
MyString = rb str new();

Then bind the object's address to a Ruby global variable:

Rb define variable("$String", &MyString);

Now Ruby can access the C variable Mystring as $String.

You may run into trouble with Ruby's garbage collection when extending Ruby. Ruby's
GC needs to be handled with kid gloves when C data structures hold Ruby objects or
when Ruby objects hold C structures. You can smooth the way by writing a function
that registers the objects, passing free (), calling rb global variable () on each
Ruby object in a structure, or making other special API calls.

Once code has been written for an extension, it needs to be compiled in a way that Ruby
can use. The code can be compiled as a shared object to be used at runtime, or it can be
statically linked to the Ruby interpreter. The entire Ruby interpreter can also be
embedded within an application. The steps you should take depend greatly on the
platform on which the programming is being done; there are instructions for each

427

method on the online Ruby library reference, at http://www.ruby-

lang.org/en/20020107.html.

The C API, however, is quite large, and for English users the best source for
documentation is likely the source code itself.

Type

char
ID
int
int
int
int
int

int

int

int

int

int

VALUE
VALUE
VALUE
VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

Table 12.2. Common Ruby C Language APIs

API Command

rb_idZ2name ()

rb_intern()

Check SafeStr ()

OBJ FREEZE ()
OBJ FROZEN ()
OBJ_ TAINT ()

OBJ TAINTED ()

rb block given p()

rb cvar defined()

rb safe level()

rb scan_args ()

rb secure ()

rb_apply ()

rb ary entry ()
rb _ary new()
rb_ary new2 ()

rb ary new3()

rb _ary newé ()

rb _ary push()

rb _ary pop()

rb_ary shift()

Function

Returns a name for the given ID
Returns an ID for a given name
For raising securityError
Marks the given object as frozen
For testing if an object is frozen
Marks the given object as tainted
For testing if an object is tainted

Returns true if yield would execute a
block in the current context

Returns ot rue if the given class variable

name has been defined, otherwise returns
Qfalse

Returns the current safe level

Scans the argument list and assigns them in
a similar way to scanf

Raises securityError if level is less than
or equal to the current safe level

Function for invoking methods

Returns an array element at a given index
Returns a new array

Returns a new (long) array

Returns a new array populated with the
given arguments

Returns a new array populated with the
given C array values

Pushes a value onto the end of an array
self

Removes and returns the last element from
an array

Removes and returns the first element from
an array

428

Type
VALUE

VALUE

VALUE
VALUE

VALUE

VALUE
VALUE
VALUE
VALUE

VALUE

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

VALUE
VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

Table 12.2. Common Ruby C Language APIs

API Command

rb_ary unshift ()

rb call super()

rb catch()
rb cv_get ()

rb cvar get()

rb _define class ()
rb define class under ()
rb_define module ()
rb define module under ()

rb each ()

rb funcall ()
rb funcall2()
rb_ funcall3()
rb gv _get ()
rb gv_set ()

rb hash aref ()

rb hash aset ()
rb _hash new()

rb _iterate()

rb _ivar get ()

rb _ivar set ()

rb iv_get ()

rb_iv_set ()

rb rescue ()

rb str dup()

Function

Pushes a value onto the front of an array
self

Calls the current method in the super class
of the current object

Equivalent to Ruby catch
Returns class variable name

Returns the class variable name from the
given class

Defines a new top-level class
Defines a nested class

Defines a new top-level module
Defines a nested module

Invokes the each method of the given
object

Invokes methods

Invokes methods

Invokes methods

Returns the global variable name
Sets the global variable name

Returns element corresponding to given
key

Sets the value for a given key
Returns a new hash

Invokes method with given arguments and
block

Returns the instance variable name from
the given object

Sets the value of the instance variable
name in the given object to a given value

Returns the instance variable name

Sets the value of the instance variable
name

Executes until a standardError exception
is raised, then executes rescue

Returns a new duplicated string object

429

Type
VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

VALUE

void
void

void

void
void

void

void
void
void
void

void

void

void
void
void

void

void

Table 12.2. Common Ruby C Language APIs

API Command

rb str cat()
rb str concat ()

rb str new()

rb_str new2 ()

rb_str split()

rb _thread create()

rb yield()

rb_ary store()
rb_bug ()

rb cvar set()

rb cv_set ()
rb define alias()

rb _define attr()

rb _define class variable()
rb define const()

rb define global const()

rb define global function()

rb _define hooked variable ()

rb_define method()

rb define module function()

rb define readonly variable()

rb _define singleton method()

rb define variable()

rb _define virtual variable()

Function
Concatenates length characters on string
Concatenates other on string

Returns a new string initialized with length
characters

Returns a new string initialized with null-
terminated C string

Splits a string at the given deliminator and
returns an array of the string objects

Runs a given function in a new thread

Transfers execution to the iterator block in
the current context

Stores a value at a given index in an array
Terminates the process immediately

Sets the class variable name in the given
class to value

Sets the class variable name
Defines an alias in a class or module

Creates access methods for the given
variable with the given name

Defines a class variable name

Defines a constant in a class or module
Defines a global constant

Defines a global function

Defines functions to be called when
reading or writing to variable

Defines an instance method

Defines a method in the given class
module with the given name

Same as rb_define variable except is
read-only from Ruby

Defines a singleton method

Exports the address of the given object that
was created in C to the Ruby namespace as
a given name

Exports a virtual variable to the Ruby
namespace

430

Type

void
void
void

void

void
void
void
void
void
void

void

void

void

Table 12.2. Common Ruby C Language APIs

API Command
rb_exit ()
rb_extend object ()
rb fatal ()

rb_include module ()

rb _iter break()

rb notimplement ()
rb raise()

rb _set safe level()
rb sys fail()

rb _throw ()

rb undef method /()

rb warn ()

rb_warning ()

Function

Exits Ruby with the given status
Extends given object with module
Raises a fatal exception

Includes the given module into the class or
module parent

Breaks out of the enclosing iterator block
Raises a NotImpError exception

Raises an exception

Sets the current safe level

Raises a platform-specific exception
Equivalent to Ruby throw

Undefines the given method name in the
given class or module

Unconditionally issues a warning message
to standard error

Conditionally issues a warning message to
standard error

431

Python versus Lua Versus Ruby

So which of the three languages is the best to use on your project? That depends a great
deal on what you want to accomplish. To wrap up the book, I've outlined some of the
pros and cons of each language in this section.

Python Pros and Cons
The pros of Python are as follows:

e Python has more extension modules than the other languages.

e Many online Python tutorials exist. There are also plenty of English books and
reference materials, many sample scripts exist online, and there is a wealth of
introductory material. The Python.org Website is a good place to start looking
for these because it has sections for beginners, tutorials, guides organized by
topic, and lists of links and references.

e Most folks really enjoy the syntax of the Python language because it appears
clean and is easy to read.

o Python has an edge where libraries are concerned. There are many libraries, and,
for the most part, they are well documented.

o Lots of tools that tie into Python are available, and they are often easier to find
than the tools for Lua and Ruby.

The cons of Python are as follows:

o Existing Python debuggers are considered quirky and slow. Debugging support
on Macintosh and consoles is even weaker.

e It can be difficult to bundle Python with other languages. There are lots of
binary DLLs, and Python has (compared to the other languages) a large standard
distribution.

e Lots of folks really dislike the white space sensitivity of Python syntax.

e Python can be quite slow at times, as everything is an object on the heap.

Lua Pros and Cons
The pros of Lua are as follows:

o Lua is probably the fastest of the three languages and usually uses the least
amount of runtime memory.

e Lau has the smallest memory footprint for bundling.

e The Lau C API is very well documented and has good examples for integrating
with C.

The cons of Lua are as follows:

o The documentation has improved but is still a bit sketchy overall. Of the three
languages, Lua it is probably the least documented (the API being the
exception), with the least amount of code comments. This makes for the largest
ramp-up time to learn, and there isn't much in the way of introductory Lua
material.

432

There isn't a lot of built-in functionality for Lua. There is little support if you
need to create a large, complex application.

Lua could use a better garbage collector—the current development is moving
towards that now. Right now, Lua GC uses a very simple and traditional simple
mark and sweep.

Pros and Cons of Ruby

The pros of Ruby are as follows:

Ruby possesses fairly good advanced debuggers.

Ruby is object oriented from the ground up, and programmers who are OOP
enthusiasts or who are used to the OOP paradigm will find the language
extremely comfortable.

Ruby has arguably the simplest syntax, with no real rules exceptions. Especially
true for OOP enthusiasts.

The cons of Ruby are as follows:

Lack of English documentation.
Fewer existing works and samples for games than with the other languages.

433

Summary

Programming is turning more and more into an everyman's tool. Every single day,
software becomes easier for everyone to use. High-level languages are behind this
incredible movement in Game programming. Today, because of these incredible
languages, games are released with hooks, customizable engines, their own languages,
and modifiable graphics. This can be accomplished in development using a data-driven,
partnered game design model.

A few important points to take from this chapter:

e There are a number of things to consider before including high-level languages
in a development project.

e Extending a high-level language can allow two or more languages to really
focus on what they are good at in a single project, but it adds a layer of
complexity.

o Extending is a similar process in Python, Lua, and Ruby.

434

Exercises

1: How do you call an object's method from C using Python? Lua? Ruby?

2: Write sample code to extract C values from one of the three languages' object.
Watch out for types!

3: List two possible issues when using extensions in a project.

435

Appendix A. History of Computer Programming

The following table outlines the history of computer programming through its
(arguably, in some cases) most important events.

Year

Around
4000 BC

Around
3000 BC

Around
800 AD

1612-
1617

1622

1786

1822

1834-35

1840s

1842

1847-49

1853

1854

1941

1944

Table A.1. A Brief History of Programming

Event

Clay tablets are used to keep track of transactions.

Abacus invented in Babylonia.

The Chinese start to use the number 0, although some historians believed it
was introduced from India.

John Napier uses the decimal point, devises logarithms, and uses numbered
sticks for calculation.

William Oughtred invents the circular slide rule based on Napier's
logarithms.

J.H.Mueller dreams up his "Difference Engine," but like many dot com
companies, he cannot get the funds from investors to build it.

Charles Babbage begins to redesign and build Mueller's Difference Engine
with funding from the British government.

Babbage changes his focus from the Difference Engine to a new version
called the Analytical Engine.

Ada Lovelace becomes the world's first programmer by putting together
methods of computing using Babbage's notes on the Analytical Engine.

The British government pulls funding for the construction of the Difference
Engine.

Babbage completes 21 drawings for a new improved second version of the
Difference Engine but still does not complete construction.

The Difference Engine is finally completely built, but by another group not
including Babbage.

Herman Hollerith, whose electric tabulating system was used for the 1890
census, establishes the Tabulating Machine Company. TMC will later
become IBM.

Atanasoff and Berry build the first electronic (and non-programmable)
computer named ABC. Zuse completes the Z3 machine, the world's first fully
functional program in an automatically controlled electro-mechanical
computer. It has a 64-word memory and computes at three seconds per
multiplication.

Howard Aiken completes the first programmable computer, the Mark I, using
punched paper tape for programming and vacuum tubes and relays to

436

Year

1945

1951

1957

1958
1958
1959

1960

1962

1964

1965

1967

1968

1968

1969

1971

1972

Table A.1. A Brief History of Programming

Event
calculate problems.

Zuse develops "Plankalkul" (short for plain calculus), which is considered the
first programming language and was designed to be a chess-playing (i.e.
game) program. Also, on Sept 9th, working on a prototype of the Mark II,
Grace Murray finds the first computer "bug," an actual moth that caused a
relay failure.

Betty Holberton creates a "Sort Merge Generator," a predecessor to modern
compilers.

FORTRAN appears, short for Mathematical FORmula TRANslating System.
Heading the FORTRAN team is John Backus, who also goes on to contribute
to the development of ALGOL and BNF.

John McCarthy introduces the Lisp programming language.
First computers to be built with transistors instead of vacuum tubes.
There are now over 200 programming languages in existence.

COBOL, created by the Conference on Data Systems and Languages, is
launched for business applications.

Spacewar, arguably the first video game ever, is invented at MIT by a
graduate student named Steve Russel.

At Dartmouth University, professors John G.Kemeny and Thomas E. Kurtz
invent BASIC. The first BASIC program runs on May 1, 1964 (at around 4
a.m.).

Ken Iverson develops the APL language at IBM.

IBM announces that it will no longer bundle software and hardware together,
but rather will sell them separately. This business move is considered the
beginning of the software industry.

Edsgar Dijkstra first writes about the harmful effects of the goto statement.
Intel is formed and incorporated on July 18th.

ALTRAN, a FORTRAN variant, appears. COBOL is officially defined by
ANSI.

Kenneth Thornson and Dennis Ritchie formulate UNIX at AT&T Bell Labs.
Donald Knuth writes Volume 1 of the Art of Computer Programming,
considered the first computer programming book.

Niklaus Wirth develops Pascal, a predecessor of Modula-2.

Nolan Buchnell's game Pong is so popular that he founds Atari.Rary
Tarnlinson creates e-mail to send personal messages across Arpnet (Arpnet
will become the Internet;currently it is used only by the military). Smalltalk
is developed by Xerox PARC's learning research group. Denis Ritchie
develops C at Bell Labs.

437

Year

1975

1976

1977
1979

1980

1981

1983

1984

1985

1986
1987
1989

1990

1991
1992
1993

1994

1995
1996

Table A.1. A Brief History of Programming

Event

The Altair 8800 is available in January as a kit you can order and build from
Popular Mechanics, and the PC is born.Bill Gates and Paul Allen write a
version of BASIC that they sell to MITS (Micro Instrumentation and
Telemetry Systems) on a per-copy royalty basis.Scheme, a Lisp dialect by
G.L.Steele and G.J.Sussman, appears.

Crowther and Woods create the first adventure game called—you guessed
it—Adventure. Steve Jobs and Steve Wozniak design and build the Apple 1.

Bill Gates and Paul Allen found Microsoft in Albuquerque, New Mexico.
Pac Man appears.

IBM selects PC-DOS from the Microsoft Corporation as the operating
system for its new PC. Smalltalk-80 appears.Bjarne Stroustrup develops a set
of languages, collectively referred to as "C With Classes," which serves as
the breeding ground for C++.

Japan begins the Fifth Generation Computer System project using Prolog as
the primary language.

Microsoft announces "Windows," a graphical user interface for PCs.
Windows doesn't actually ship, however, until 1985. The first C compilers
for microcomputers are released. In July the first implementation of C++
appears.

The Macintosh is unveiled, with much glitter and hype, at the Super
Bowl.William Gibson coins the term "cyberspace" in his novel Neuromancer.

Windows finally launches. The C++ language is issued from Bell Labs. The
Intel 80386 chip with 32-bit processing is released.

The programming language Eiffel appears.
The Perl programming language is released.
The C programming language is standardized by ANSI.

By now more than 54 million computers are in use in the United States alone,
and the first commercially available dial-up Internet access appears.

The Python programming language is released.
The programming language Dylan is released by Apple.
The Ruby programming language is released.

The Lua programming language is released.Netscape's first browser becomes
available.

Sun Microsystems releases Java.

One out of every three homes in the United States has a computer.

438

Appendix B. Meet the Family

After the first high-level languages were developed in the 1950s, dozens of other
languages popped up and followed suit. Today, you can't surf the Web or sit on a busy
subway without encountering them in use in some form or another. This book focuses

on three languages most commonly used in game shops, but there are dozens of others
in popular use.

439

ABC
Created by Leo Geurts, Lambert Meertens, and Steven Pemberton. The idea behind

ABC was to create a simple, interactive language designed for quick and easy
programming. ABC was originally intended to replace BASIC.

440

Ada

Ada was developed in the 1970s by the United States Department of Defense. Named
after Lady Ada Lovelace Byron, Ada is a general-purpose language used for everything
from business apps to rocket science. Ada is mandatory for the development of many
major U.S. military projects and has been used for large real-time systems for air-traffic
control and banking.

441

AFNOR

AFNOR isn't actually a language, but a standards-setting organization. AFNOR is an
acronym for Association Frangais Normal and is part of the International Organization
for Standardization that also includes ANSI (American National Standards Institute),
the BSI (British Standards Institution), DIN (Deutsche Institut fiir Normung), and other
standards organizations.

442

C

C is credited to Dennis Ritchie at Bell Labs in 1972. C was originally a systems
language for UNIX on the PDP-11 and was briefly named NB. Partly due to its free
distribution with UNIX, C became the language most widely used for software
implementation. C has gone through a few incarnations, including K&R (Kernighan and
Ritchie) C, and ANSI C, and has been lately revamped as the object-oriented C++.

443

C++

Both C and C++ are considered high-level languages, although they are much closer to
machine assembly than other high-level languages. This makes them very efficient but
sometimes difficult to implement. C++ was developed at Bell Labs by Bjarne Strousrup,
who took C and added object-oriented programming (OOP) features. The C family is
especially brilliant when it comes to creating the very popular graphics and Windows-
based applications and has a wonderful section of well-designed libraries.

444

Cobol

Cobol is short for Common Business Oriented Languages. Cobol goes way back to the
1950s and is considered one of the old timers (with FORTRAN being its father).
Cobol's focus was, of course, business applications that ran on large computers. Back in
the 1950s Cobol wasn't really considered high-level, it was considered wordy. The
wordiness makes it easy to follow the business jargon, but it also requires a lot more
typing than other languages.

445

Eiffel
Released by Bertrand Meyer in 1986. Eiffel is considered an object-oriented language,

has automatic garbage collection, and possesses interfaces to routines written in other
languages. It is implemented as a C preprocessor.

446

FORTRAN

FOTRAN is an acronym for FORmula TRANGslator. It is probably the oldest high-level
language, originally designed at IBM by John Backus in the late 1950s. The language
has branched into several different versions, many of which are still in use today.
FORTRAN's niche is mathematical computations, and it is most commonly used in
universities.

447

GNU Octave

Used for numerical computations, GNU Octave has lots of tools for common math and
algebra functions and tasks. GNU Octave is customizable, can run via command line or
through batch, and can dynamically load up FORTRAN or C for other tasks. GNU
Octave is distributed under the GNU General Public License published by the Free
Software Foundation.

448

Java

Originally developed by Sun Microsystems for set-top boxes and handheld devices in
an incarnation known as Oak, Java moved to the World Wide Web in 1995 and took off
because it was multi-platform. Java is similar to C++ but was designed with OOP and
security in mind from the ground up, and efforts were made in its structure to remove
features that caused common errors and bugs (like pointers and garbage collection).

449

Icon

Icon is another high-level language used often in research and text processing. Icon was
developed at the University of Arizona and is loosely based on Bell Lab's Snobol.

450

Modula

Short for MODUlar LAnguage, Modula precedes Modula-2, developed as a system
language for the Lilith workstation. The central concept behind Modula is the module—
a programming construct that can be used to encapsulate a set of related subprograms
and data structures. Modules are also restricted in their visibility from other portions of
the program. Modula-2 precedes Modula-2+ and Modula-3.

451

Pascal

Pascal was developed in the late 1960s by Niklaus Wirth and was named after Blaise
Pascal, who was a 17th-century French mathematician who constructed early adding
machines. In addition to being high-level, Pascal is also a structured programming
language, which forces design into its very nature. Pascal is often used as a teaching
tool because of its regimented structure.

452

Perl

Short for Practical Extraction and Report Language, Perl was released in 1987 by Larry
Wall, who developed the language while working for the National Security Agency.
Larry wanted his language to be based on common sense programming techniques and
wanted applications developed with Perl to be quickly and easily written. Perl was built
originally as a simple language to scan text files, extract information from those files,
and print reports based on that information. It has blossomed into a full programming
language with hundreds of supplemental libraries. Perl is easy to learn and is commonly
found on the Internet, used in conjunction with CGI and HTML.

453

PHP

PHP is a domain-specific language for Web server-side scripting. PHP embeds itself
into HTML to create dynamic Web pages. The language has a syntax similar to Perl's or
C's and is comparable to CGI; its primary strength is in database access. PHP was
originally developed in 1994 but has gone through at least one major rewrite and has
had many contributors.

454

Prolog

Short for PROgramming LOGic, Prolog is a high-level language based on the discipline
of traditional logic. While most computer languages perform a sequence of commands,
Prolog has an entirely different approach. Prolog first creates definitions and
assumptions and then uses them to solve logic problems. For Prolog, a program is just a
list of facts and rules. Prolog is most often found in Al experiments and expert systems
(programs that function like human experts).

455

PureBasic

A high-level language based on BASIC, a revival of sorts that focuses on keeping
programming linear and simple. PureBasic is a good learning tool with a few games
under its belt, including Bricklinerby Wegroup, Krakout 2 Unlimited(a remake of the
Commodore 64 game Krakout), and a few titles by Reelmedia.

456

Smalltalk

Smalltalk was created by Software Concepts Group (i.e.Xerox) in a development led by
Alan Kay in the early 1970s. Smalltalk took the concepts of class and message from
Simula-67 and made them pervasive, basically creating the quintessential object-
oriented language. Early versions were Smalltalk-72, Smalltalk-74, and Smalltalk-76;
now we're on Smalltalk-80.

457

Squeak
Disney and Paul Allen's Interval Research Lab helped develop the open source Squeak

language. Squeak has three environments: one for young children, one for middle
school through adult age, and one for experts who are into "deep computing."

458

