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Abstract

The course for which these notes are designed is intended for undergraduate
students who have some programming experience and may even have written
a few programs in Prolog. They are not assumed to have had any formal
course in either propositional or predicate logic.

At the end of the course, the students should have enough familiarity with
Prolog to be able to pursue any undergraduate course which makes use of
Prolog.

This is a rather ambitious undertaking for a course of only twelve lectures
so the lectures are supplemented with exercises and small practical projects
wherever possible.

The Prolog implementation used is SICStus Prolog which is closely mod-
elled on Quintus Prolog (SICS is the Swedish Institute of Computer Science).
The reference manual should also be available for consultation [SICStus, 1988].

c©Paul Brna 1988
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Preface

A Warning

These notes are under development. Much will eventually change. Please
help to make these notes more useful by letting the author know of any
errors or missing information. Help future generations of AI2 students!

The Intended Audience

The course for which these notes are designed is intended for undergraduate
students who have some programming experience and may even have written
a few programs in Prolog. They are not assumed to have had any formal
course in either propositional or predicate logic.

The Objective

At the end of the course, the students should have enough familiarity with
Prolog to be able to pursue any undergraduate course which makes use of
Prolog.

The original function was to provide students studying Artificial Intelligence
(AI) with an intensive introduction to Prolog so, inevitably, there is a slight
bias towards AI.

The Aims

At the end of the course the students should be:

• familiar with the basic syntax of the language

• able to give a declarative reading for many Prolog programs

• able to give a corresponding procedural reading

• able to apply the fundamental programming techniques

• familiar with the idea of program as data

• able to use the facilities provided by a standard trace package to debug
programs

• familiar with the fundamental ideas of the predicate calculus

• familiar with the fundamental ideas specific to how Prolog works

vii
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Course Structure

This is a rather ambitious undertaking for a course of only twelve lectures
so the lectures are supplemented with exercises and small practical projects
wherever possible.

Acknowledgements

These notes are based on a previous version used with the students of the AI2
course in Prolog during the session 1985–87 and 1988–89 at the Department
of Artificial Intelligence, Edinburgh University. My thanks for the feedback
that they supplied.



Chapter 1

Introduction

intro-chap

Prolog is PROgramming in LOGic

A few points must be cleared up before we begin to explore the main aspects
of Prolog.

These notes are supplemented with exercises and suggestions for simple prac-
ticals. It is assumed that you will do most of this supplementary work either
in your own time, for tutorials or during practical sessions.

Each chapter will start with a simple outline of its content and finish with
a brief description of what you should know upon completion of the chapter
and its exercises.

Important points will be boxed and some technical and practical details
which are not immediately essential to the exposition will be

written in a smaller font.

1.1 Declarative vs Procedural Programming

Procedural programming requires that the programmer tell the computer
what to do. That is, how to get the output for the range of required inputs.
The programmer must know an appropriate algorithm.

Declarative programming requires a more descriptive style. The programmer
must know what relationships hold between various entities.

Pure1 Prolog allows a program to be read either declaratively or procedu-
rally. This dual semantics is attractive.

1.2 What Kind of Logic?

Prolog is based on First Order Predicate Logic —sometimes abbreviated
to FOPL.

1Prolog, like LISP, has a pure subset of features. The implication is that some features
of both languages are regarded as impure —these are often provided for efficiency or for
useful, but strictly unnecessary features. The impure features of Prolog damage the
pleasing equality between the declarative and procedural readings of Prolog programs.

1



2 Introduction to Prolog

First order predicate logic implies the existence of a set of predicate symbols
along with a set of connectives.

First order predicate logic implies that there is no means provided for “talk-
ing about” the predicates themselves.

Prolog is based on FOPL but uses a restricted version of the clausal form.
Clausal form is a particular way of writing the propositions of FOPL. The
restriction is known as Horn clause form.

Prolog is a so-called logic programming language. Strictly, it is not the only
one but most such languages are its descendents.

We will spend a little time outlining the basic ideas underlying both proposi-
tional and predicate logic. It is not the intention to use Prolog as a vehicle
to teach logic but some appreciation of the issues is invaluable.

1.3 A Warning

Prolog is known to be a difficult language to master. It does not have the
familiar control primitives used by languages like RATFOR, ALGOL and
PASCAL so the system does not give too much help to the programmer to
employ structured programming concepts.

Also, many programmers have become used to strongly typed languages.
Prolog is very weakly typed indeed. This gives the programmer great power
to experiment but carries the obvious responsibility to be careful.

Another major difference is the treatment of variables —special attention
should be given to understanding variables in Prolog.

Prolog provides a search strategy for free —there is a cost. The program-
mer has to develop a methodology to handle the unexpected consequences
of a faulty program. In particular, pay careful attention to the issue of
backtracking.

It is usual to assume that telling people how they can go wrong is an en-
couragement to do exactly that —go wrong. The approach taken here is to
make the known difficulties explicit.

1.4 A Request

These notes are slowly being improved. Many further exercises need to be
added along with more example programs and improvements to the text.

If you have any comments that will help in the development of these notes
then please send your comments to:

Paul Brna
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN



Chapter 2

Knowledge Representation

KRchapter

We take a very brief and informal look at both the propositional
calculus and first order predicate logic.
We then restrict our attention to a form of predicate logic which
translates directly into Prolog.
This requires that we introduce a simple vocabulary that de-
scribes the syntax of Prolog.
Here, we concentrate on an informal description of the funda-
mental units which are:

clause, rule, fact,
goal, subgoal,
logical variable, constant, atom,
functor, argument, arity.

An explanation as to how statements can be represented in
Prolog form is given.

How do we represent what we know? The simplest analysis requires that we
distinguish between knowledge how –procedural knowledge such as how to
drive a car— and knowledge that —declarative knowledge such as knowing
the speed limit for a car on a motorway.

Many schemes for representing knowledge have been advanced —including
full first order predicate logic. The strong argument for classical (first order
predicate) logic is that it has a well understood theoretical foundation.

2.1 Propositional Calculus

The propositional calculus is based on statements which have truth values
(true or false).

The calculus provides a means of determining the truth values associated
with statements formed from “atomic” statements. An example:

If p stands for “fred is rich” and q for “fred is tall” then we may form state-
ments such as:

3



4 Knowledge Representation

Symbolic Statement Translation
p ∨ q p or q
p ∧ q p and q
p ⇒ q p logically implies q
p ⇔ q p is logically equivalent to q
¬p not p

Note that ∨, ∧, ⇒ and ⇔ are all binary connectives. They are sometimes
referred to, respectively, as the symbols for disjunction, conjunction, impli-
cation and equivalence. Also, ¬ is unary and is the symbol for negation.

If propositional logic is to provide us with the means to assess the truth
value of compound statements from the truth values of the ‘building blocks’
then we need some rules for how to do this.

For example, the calculus states that p∨q is true if either p is true or q is
true (or both are true). Similar rules apply for all the ways in which the
building blocks can be combined.

A Problem

If p stands for “all dogs are smelly” and p is true then we would like to be
able to prove that “my dog fido is smelly”.

We need to be able to get at the structure and meaning of statements. This
is where (first order1) predicate logic is useful.

2.2 First Order Predicate Calculus

The predicate calculus includes a wider range of entities. It permits the
description of relations and the use of variables. It also requires an under-
standing of quantification.

The language of predicate calculus requires:

Variables

Constants —these include the logical constants

Symbol Meaning
∨ or
∧ and
¬ not
⇒ logically implies
⇔ logically equivalent
∀ for all
∃ there exists

The last two logical constants are additions to the logical connectives
of propositional calculus —they are known as quantifiers. The non-
logical constants include both the ‘names’ of entities that are related
and the ‘names’ of the relations. For example, the constant dog might
be a relation and the constant fido an entity.

1Do not worry about the term first order for now. Much later on, it will become
relevant.



5

Predicate —these relate a number of entities. This number is usually
greater than one. A predicate with one argument is often used to
express a property e.g. sun(hot) may represent the statement that
“the sun has the property of being hot”.

If there are no arguments then we can regard the ‘predicate’ as stand-
ing for a statement à la the propositional calculus.

Formulæ —these are constructed from predicates and formulæ2. The log-
ical constants are used to create new formulæ/ from old ones. Here
are some examples:

Formula(e) New Formula
dog(fido) ¬ dog(fido)
dog(fido) and old(fido) dog(fido)∨ old(fido)
dog(fido) and old(fido) dog(fido)∧ old(fido)
dog(fido) and old(fido) dog(fido)⇒ old(fido)
dog(fido) and old(fido) dog(fido)⇔ old(fido)
dog(X) ∀X.dog(X)
dog(X) ∃X.dog(X)

Note that the word “and” used in the left hand column is used to
suggest that we have more than one formula for combination —and
not necessarily a conjunction.

In the last two examples, “dog(X)” contains a variable which is said
to be free while the “X” in “∀X.dog(X)” is bound.

Sentence —a formula with no free variables is a sentence.

Two informal examples to illustrate quantification follow:

∀X.(man(X)⇒mortal(X)) All men are mortal
∃X.elephant(X) There is at least one elephant

The former is an example of universal quantification and the latter of exis-
tential quantification.

We can now represent the problem we initially raised:

∀X.(dog(X)⇒smelly(X))∧dog(fido)⇒smelly(fido)

To verify that this is correct requires that we have some additional machinery
which we will not discuss here.

2.3 We Turn to Prolog

Prolog provides for the representation of a subset of first order predicate
calculus. The restrictions on what can be done will become clearer later.
We will now explain how we can write logical statements in Prolog.

2Note that this is a recursive definition.



6 Knowledge Representation

If “the capital of france is paris” then we can represent this in predicate
calculus form as3:

france has capital paris

We have a binary relationship (two things are related) written in infix form.
That is, the relationship is written between the two things related.

The relationship (or predicate) has been given the name “has capital” —
hence we say that the predicate name is “has capital”.

And in Prolog form by such as:

has capital(france,paris).

where we write a prefix form and say that the relationship takes two argu-
ments. Prefix because the relationship is indicated before the two related
things.

Note that, in Prolog, if the name of an object starts with a lower case letter
then we refer to a specific object. Also, there must be no space between the
predicate name and the left bracket “(”. The whole thing also ends in a “.”
as the last character on the line.

The exact rule for the termination of a clause is that a clause must end
with a “.” followed by white space where white space can be any of
{space,tab,newline,end of file}. It is safest to simply put “.” followed
by newline.

Also note that relations do not need to hold between exactly two objects.
For example,

meets(fred,jim,bridge)

might be read as

fred meets jim by the bridge

Here, three objects are related so it makes little sense to think of the relation
meets as binary —it is ternary.

If we can relate two objects or three then it is reasonable to relate n where
n ≥ 2. Is there any significance to a relationship that relates one or even
zero objects? A statement like

jim is tall

might be represented either as
3The failure to capitalise “france” and “paris” is quite deliberate. In Prolog, named,

specific objects (i.e. the atoms) usually start with a lower case letter.
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tall(jim)

or

jim(tall)

It is, perhaps, preferable to see tallness as being a property which is pos-
sessed by jim.

A ‘relation’ that has no arguments can be seen as a single proposition. Thus
the binary relation “france has capital paris” above might be rewritten as
the statement “france has capital paris” —a relation with no arguments.

2.4 Prolog Constants

If we have

loves(jane,jim).

then jane and jim refer to specific objects. Both jane and jim are con-
stants. In particular, in DEC-10 Prolog terminology, both are atoms. Also,
“loves” happens to be an atom too because it refers to a specific relationship.
Generally speaking, if a string of characters starts with a lower case letter,
the DEC-10 family of Prologs assume that the entity is an atom.

There are constants other than atoms —including integers and real numbers.

A constant is an atom or a number. A number is an integer or a real
number4. The rules for an atom are quite complicated:

quoted item ’anything but the single quote character’
word lower case letter followed by any letter, digit or (underscore)
symbol any number of {+, -, *, /, \, ^, <, >, =, ’, ~, :, ., ?, @, #, $, &}
special item any of { [], {}, ;, !, %}

So the following are all atoms:

likes chocolate, fooX23, ++*++, ::=, ’What Ho!’

By the way, you can include a single quote within a quoted atom —just
duplicate the single quote. This gives the quoted atom with a single
quote as:

’’’’

A practical warning: remember to pair off your (single) quote signs
when inputing a quoted atom or Prolog may keep on swallowing your
input looking for that elusive single quote character. This is one of the
most common syntactic errors for beginners.
While we are on the subject, another common error is to assume that
a double quote (") behaves like a single quote —i.e. that the term
"Hello" is an atom just like ’Hello’. This is not so. When you do
find out what sensible things can be done with the double quote then
remember to pair them off.

4Referred to as a float in the SICStus Prolog manual [SICStus, 1988].
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Because Prolog is modelled on a subset of first order predicate logic, all
predicate names must be constants —but not numbers. In particular,

No predicate may be a variable

That is, we cannot have X(jane,jim) as representing the fact that jane
and jim are related in some unknown way.

2.5 Goals and Clauses

We distinguish between a Prolog goal and Prolog clause. A clause is the
syntactic entity expressing a relationship as required by Prolog —note that
we will regard the ‘.’ as terminating a clause (this is not strictly correct).

loves(jane,jim) is a goal
loves(jane,jim). is a unit clause

The adjectives unit and non-unit distinguish two kinds of clause —intuitively,
facts and rules respectively.

Exercise 2.1 Here is the first opportunity to practice the representation of
some statement in Prolog form.

1. bill likes ice-cream

2. bill is tall

3. jane hits jimmy with the cricket bat

4. john travels to london by train

5. bill takes jane some edam cheese

6. freddy lives at 16 throgmorton street in london

The failure to capitalise “freddy”, “london” etc. is a reminder that the ver-
sion of Prolog that we are using requires that constants should not start
with an upper case letter.

Note that there may be several ways of representing each of these statements.

2.6 Multiple Clauses

A predicate may be defined by a set of clauses with the same predicate name
and the same number of arguments.

We will therefore informally describe the way in which this is handled
through an example. The logical statement (in first order form)

squared(1,1)∧squared(2,4)∧squared(3,9)

is to be represented as three distinct Prolog clauses.
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squared(1,1).
squared(2,4).
squared(3,9).

Note that this way of turning a conjunctive statement into Prolog is one
of the fundamental restrictions previously mentioned. There are more to
follow.

All the above clauses are unit clauses —this is not a necessary requirement.
See section 2.12 for an example with both unit and non-unit clauses.

We now introduce a graphical representation which will be used in a number
of different ways. The idea we use here is to represent a program (in this
case, consisting of a set of unit clauses) as a tree.

•

squared(1,1) squared(2,4) squared(3,9)

(((((((((((((

hhhhhhhhhhhhh

This tree is an example of an OR tree.

It might have been expected that we would call this an AND tree but, when
we are trying to determine whether a statement such as squared(1,1) is
true then we might use either the first clause or the second or the third and
so on.

Exercise 2.2 Represent each of these statements as a set of Prolog clauses.

1. bill only eats chocolate, bananas or cheese.

2. the square root of 16 is 4 or -4.

3. wales, ireland and scotland are all countries.

2.7 Rules

The format is:

divisible by two:-
even.

This is a non-unit clause.

In general, a clause consists of two parts: the head and the body5.

The head is divisible by two and the body is even —even is sometimes
referred to as a subgoal.

5These two body parts are ‘joined’ by the neck. There is an analogous concept in the
Prolog literature.



10 Knowledge Representation

Note that the symbol “:-” is read as if. An informal reading of the clause is
“divisible by two is true if even is true” which is equivalent to “even
⇒ divisible by two”.

Any number of subgoals may be in the body of the rule.

No more than one goal is allowed in the head

This is another way in which Prolog is a restriction of full first order predi-
cate calculus. For example, we cannot translate rich(fred)⇒ happy(fred)∧powerful(fred)
directly into the Prolog version happy(fred),powerful(fred) :- rich(fred).

See section 2.10 for an example of a clause with more than one subgoal in
the body. A fact is effectively a rule with no subgoals.

You may have noticed that, even if it is held that “even” is a relation, it
does not seem to relate anything to anything else.

The rule is not as much use as it might be because it does not reveal the
more interesting relationship that

A number is divisible by two if it is even

We can express this with the help of the logical variable. Here is the im-
proved rule:

divisible by two(X):-
even(X).

This is also a non-unit clause. The named logical variable is X. This Prolog
clause is equivalent to the predicate calculus statement ∀ X. (even(X) ⇒
divisible by two(X)).

2.8 Semantics

Here is an informal version of the procedural semantics for the example
above:

If we can find a value of X that satisfies the goal even(X)
then we have also found a number that satisfies the goal di-
visible by two(X).

The declarative semantics.

If we can prove that X is “even” then we have proved that X is
“divisible by two”.

Note that there is an implicit universal quantification here. That is,
for all objects those that are even are also divisible by two.

∀X.(even(X)⇒ divisible by two(X))

Also note that the head goal is found on the right of the standard logical
implication symbol. It is a common error to reverse the implication.
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Two final examples of a single rule. The first:

all scots people are british

can be turned into:

british(Person):-
scottish(Person).

Note that Person is another logical variable. Now for the final example:

if you go from one country to another they you are a tourist

turns into:

tourist(P):-
move(P,Country1,Country2).

where move(P,A,B) has the informal meaning that a person P has moved
from country A to country B.

There is a problem here. We really need to specify that Country1 and
Country2 are legitimate and distinct countries6.

Exercise 2.3 Represent these statements as single non-unit clauses (rules):

1. all animals eat custard

2. everyone loves bergman’s films

3. jim likes fred’s possessions

4. if someone needs a bike then they may borrow jane’s

2.9 The Logical Variable

In the DEC-10 Prolog family, if an object is referred to by a name starting
with a capital letter then the object has the status of a logical variable. In
the above rule there are two references to X. All this means is that the two
references are to the same object —whatever that object is.

The scope rule for Prolog is that two uses of an identical name for a logical
variable only refer to the same object if the uses are within a single clause.
Therefore in

6This could be enforced by the move/3 relation (predicate) but this would produce
an unnaturally specific version of moving. The real solution is to provide some predicate
such as not same/2 which has the meaning that not same(P1,P2) precisely when P1
is not the same as P2.
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happy(X):-
healthy(X).

wise(X):-
old(X).

the two references to X in the first clause do not refer to the same object as
the references to X in the second clause. By the way, this example is a sort
that is discussed in section 2.11.

Do not assume that the word logical is redundant. It is used to distinguish
between the nature of the variable as used in predicate calculus and the
variable used in imperative languages like BASIC, FORTRAN, ALGOL and
so on. In those languages, a variable name indicates a storage location which
may ‘contain’ different values at different moments in the execution of the
program.

The logical variable cannot be overwritten with a new value

Although this needs some further comments, it is probably better to start
with this statement and qualify it later.

For example, in Pascal:

X:= 1; X:= 2;

results in the assignment of 2 to X. In Prolog, once a logical variable
has a value, then it cannot be assigned a different one. The logical
statement

X=1 ∧ X=2

cannot be true as X cannot be both ‘2’ and ‘1’ simultaneously. An
attempt to make a logical variable take a new value will fail.

2.10 Rules and Conjunctions

A man is happy if he is rich and famous

might translate to:

happy(Person):-
man(Person),
rich(Person),
famous(Person).

The ‘,’ indicates the conjunction and is roughly equivalent to the ∧ of pred-
icate calculus. Therefore, read ‘,’ as ‘and’7. The whole of the above is one
(non-unit) single clause.

It has three subgoals in its body —these subgoals are ‘conjoined’.
7It’s meaning is more accurately captured by the procedural ‘and then’.
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In this single clause, the logical variable Person refers to the same object
throughout.

By the way, we might have chosen any name for the logical variable other
than Person. It is common practice to name a logical variable in some way
that reminds you of what kind of entity is being handled.

We now describe this clause graphically. In this case, we are going to repre-
sent conjunctions using an AND tree. Here is an AND tree that represents
the above.

•

man(Person) rich(Person) famous(Person)

(((((((((((((

hhhhhhhhhhhhh

The way in which we discriminate between an OR tree and an AND tree is
the use of a horizontal bar to link the subgoals. We need this distinction be-
cause we are going to represent the structure of a program using a combined
AND/OR tree.

Exercise 2.4 A few more exercises. Each of these statements should be
turned into a rule (non-unit clause) with at least two subgoals —even though
some statements are not immediately recognisable as such:

1. you are liable to be fined if your car is untaxed

2. two people live in the same house if they have the same address

3. two people are siblings if they have the same parents

2.11 Rules and Disjunctions

Someone is happy if they are healthy, wealthy or wise.

translates to:

happy(Person):-
healthy(Person).

happy(Person):-
wealthy(Person).

happy(Person):-
wise(Person).

Note how we have had to rewrite the original informal statement into some-
thing like:

Someone is happy if they are healthy OR
Someone is happy if they are wealthy OR
Someone is happy if they are wise
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We have also assumed that each clause is (implicitly) universally quantified.
i.e. the first one above represents ∀X.(healthy(X)⇒happy(X)).

The predicate name “happy’ is known as a functor.

The functor happy has one argument.

We describe a predicate with name “predname” with arity “n” as pred-
name/n. It has one argument —we say its arity is 1.

The predicate happy/1 is defined by three clauses.

Exercise 2.5 Each of these statements should be turned into several rules:

1. you are british if you are welsh, english, scottish or northern irish

2. you are eligible for social security payments if you earn less than £ 28
per week or you are an old age pensioner

3. those who play football, rugger or hockey are sportspeople

2.12 Both Disjunctions and Conjunctions

We combine both disjunctions and conjunctions together. Consider:

happy(Person):-
healthy(Person),woman(Person).

happy(Person):-
wealthy(Person),woman(Person).

happy(Person):-
wise(Person),woman(Person).

This can be informally interpreted as meaning that

A woman is happy if she is healthy, wealthy or wise

We now combine the OR tree representation together with an AND tree
representation to form an AND/OR tree that shows the structure of the
definition of happy/1.

happy(P)

healthy(P) woman(P) wealthy(P) woman(P) wise(P) woman(P)

(((((((((((((

»»»»»»»»»

©©©©©

HHHHH

XXXXXXXXX

hhhhhhhhhhhhh

Note that the logical variable in the diagram has been renamed to P. There
is no significance in this renaming.
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2.13 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to represent any simple fact in legal Prolog.
You should be able to split up a disjunctive expression into a
set of Prolog clauses.
You should be able to express a simple conjunctive expression
as a single clause.
You should be able to represent most rules in legal Prolog.

There is no perfect solution to the problem of representing knowledge. You
may generate representations that differ wildly from someone else’s answers.
To find out which answer is best and in what context will require some deeper
thought.

Exercise 2.6 Here is a small set of problems that require you to convert
propositions into Prolog clauses. Make sure you explain the meaning of
your representation:

1. a ⇒ b

2. a ∨ b ⇒ c

3. a ∧ b ⇒ c

4. a ∧ (b ∨ c) ⇒ d

5. ¬a ∨ b

Exercise 2.7 A simple collection of problems. Represent each statement as
a single Prolog clause:

1. Billy studies AI2

2. The population of France is 50 million

3. Italy is a rich country

4. Jane is tall

5. 2 is a prime number

6. The Welsh people are British

7. Someone wrote Hamlet

8. All humans are mortal

9. All rich people pay taxes

10. Bill takes his umbrella if it rains

11. If you are naughty then you will not have any supper

12. Firebrigade employees are men over six feet tall



Chapter 3

Prolog’s Search Strategy

first-search

So far we have concentrated on describing a fact or rule.
Now we have to discover how to make Prolog work for us.
Here, we informally introduce Prolog’s search strategy.
This requires introducing the ideas of Prolog’s top level, how
to query Prolog, how Prolog copes with searching through a
number of clauses, matching, unification, resolution, binding,
backtracking and unbinding.

Search is a major issue. There are many ways to search for the solution to
a problem and it is necessary to learn suitable algorithms that are efficient.
Prolog provides a single method of search for free. This method is known
as depth first search.

You should find that Prolog enables the programmer to implement other
search methods quite easily.

Prolog’s basic search strategy is now going to be outlined. To do this we
need to consider something about the Prolog system.

Prolog is an interactive system. The interactions between the programmer
and the Prolog system can be thought of as a conversation. When the
Prolog system is entered we are at top level. The system is waiting for us
to initiate a ‘conversation’.

3.1 Queries and Disjunctions

Informally, a query is a goal which is submitted to Prolog in order to
determine whether this goal is true or false.

As, at top level, Prolog normally expects queries it prints the prompt:

?-

and expects you to type in one or more goals. We tell the Prolog system
that we have finished a query —or any clause— by typing “.” followed by
typing the key normally labelled “RETURN”.

A very common syntax error for beginners is to press RETURN before “.”.
This is not a problem —just type in the missing “.” followed by another
RETURN.

16
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We look at the case where we only want to solve one goal. Perhaps we would
like to determine whether or not

woman(jane)

In this case we would type this in and see (what is actually typed is em-
boldened):

?- woman(jane).

Now ?- woman(jane). is also a clause. Essentially, a clause with an empty
head.

We now have to find out “if jane is a woman”. To do this we must search
through the facts and rules known by Prolog to see if we can find out
whether this is so.

Note that we make the distinction between facts and rules —not Prolog.
For example, Prolog does not search through the facts before the rules.
Here are some facts assumed to be known1:

Program Database
woman(jean).
man(fred).
woman(jane).
woman(joan).
woman(pat).

In order to solve this goal Prolog is confronted with a search problem which
is trivial in this case. How should Prolog search through the set of (dis-
junctive) clauses to find that it is the case that “jane is a woman”?

Such a question is irrelevant at the level of predicate calculus. We just do
not want to know how things are done. It is sufficient that Prolog can find
a solution. Nevertheless, Prolog is not pure first order predicate calculus
so we think it important that you face up to this difference fairly early on.

The answer is simple. Prolog searches through the set of clauses in the
same way that we read (in the west). That is, from top to bottom. First,
Prolog examines

woman(jean).

and finds that

woman(jane).
1At some point we had to input these facts into the system. This is usually done by

creating a file containing the facts and rules needed and issuing a command that Prolog
is to consult the file(s). Use the command

consult(filename).

where filename is the name of your file. A command is very like a query. A query is
written something like ?- woman(X). The result (on the screen) is X= something
followed by yes or the word no (if there is no such X). A command is written something
like :- woman(X). The result is that the system will not print the binding for X (if there
is one) (or the word yes) or will print the symbol ? if the query failed. The reason for
the distinction between a query and a command will be explained later.
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does not match. See figure 3.1 for the format we use to illustrate the failure
to match.

We introduce the term resolution table. We use this term to represent
the process involved in matching the current goal with the head goal of
a clause in the program database, finding whatever substitutions are
implied by a successful match, and replacing the current goal with the
relevant subgoals with any substitutions applied.
We illuminate this using a ‘window’ onto the resolution process (the
resolution table). If the match fails then no substitutions will apply
and no new subgoals will replace the current goal.
The term substitution is connected with the concept of associating a
variable with some other Prolog object. This is important because
we are often interested in the objects with which a variable has been
associated in order to show that a query can be satisfied.

Resolution Table

woman(jean). (program clause)

@@

woman(jane). (current goal)

2 (indicates failure)

{ } (no substitutions)

Figure 3.1: A Failed Match

This failure is fairly obvious to us! Also, it is obvious that the next clause
man(fred). doesn’t match either —because the query refers to a different
relation (predicate) than man(fred). From now on we will never consider
matching clauses whose predicate names (and arities) differ.

Prolog then comes to look at the third clause and it finds what we want.
All we see (for the whole of our activity) is:

?- woman(jane).

yes

?-

Now think about how the search space2 might appear using the AND/OR
tree representation. The tree might look like:

2This term is used informally. The basic idea is that a program has an initial structure
which can be represented as a tree. The nodes of the tree are goals and the arcs represent
the rules used to invoke a particular goal or set of goals. A computation can be regarded
very roughly as a path through this tree (really, a subtree).
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woman(jane)

woman(jean) man(fred) woman(jane) woman(joan) woman(pat)

(((((((((((((

³³³³³³³

PPPPPPP

hhhhhhhhhhhhh

We see that the search would zig zag across the page from left to right
—stopping when we find the solution.

Note that we will normally omit facts from the representation of this ‘search
space’. In this case we would have a very uninteresting representation.

3.2 A Simple Conjunction

Now to look at a goal which requires Prolog to solve two subgoals. Here is
our set of facts and one rule.

Program Database
woman(jean).
man(fred).
wealthy(fred).
happy(Person):-

woman(Person),
wealthy(Person).

We shall ask whether “jean is happy”. We get this terminal interaction:

?- happy(jean).

no

?-

Now why is this the case? We said that we would not bother with clauses
with differing predicate names. Prolog therefore has only one choice —to
try using the single rule. It has to match:

happy(jean)

against

happy(Person)

We call this matching process unification. What happens here is that the
logical variable Person gets bound to the atom jean. You could paraphrase
“bound” as “is temporarily identified with”. See figure 3.2 for what happens
in more detail.

In this case the match produces a substitution, Person=jean, and
two subgoals replace the current goal. The substitution of Person by
jean is known as a unifier and often written Person/jean. The process
of replacing a single goal by one or more subgoals —with whatever
substitutions are applicable— is part of the resolution process.
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To solve our problem, Prolog must set up two subgoals. But we must make
sure that, since Person is a logical variable, that everywhere in the rule
that Person occurs we will replace Person by jean.

We now have something equivalent to:

happy(jean):-
woman(jean),
wealthy(jean).

Resolution Table

happy(Person):- woman(Person), wealthy(Person)

happy(jean).

woman(jean), wealthy(jean).

(new subgoals)

Person=jean

Figure 3.2: A Successful Match

So the two subgoals are:

woman(jean)
wealthy(jean)

Here we come to our next problem. In which order should Prolog try to
solve these subgoals? Of course, in predicate logic, there should be no need
to worry about the order. It makes no difference —therefore we should not
need to know how Prolog does the searching.

Prolog is not quite first order logic yet. So we will eventually need to know
what goes on. The answer is that the standard way to choose the subgoal
to work on first is again based on the way we read (in the west)! We try to
solve the subgoal woman(jean) and then the subgoal wealthy(jean).

There is only one possible match for woman(jean): our subgoal is success-
ful. However, we are not finished until we can find out if wealthy(jean).

There is a possible match but we cannot unify

wealthy(fred)

with

wealthy(jean)
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So Prolog cannot solve our top level goal —and reports this back to us.
Things would be much more complicated if there were any other possible
matches. Now to look at the (non-standard) AND/OR tree representation
of the search space. Here it is:

happy(Person)

woman(Person) wealthy(Person)

woman(jean) wealthy(fred) {man(fred)}

³³³³³³³

PPPPPPP

Note that it becomes very clear that knowing that “fred is a
man” is not going to be of any use. That is why man(fred)
is in braces. From now, we will exclude such from our ‘search
space’.

We can now see that the way Prolog searches the tree for AND choices is to
zig zag from left to right across the page! This is a bit like how it processes
the OR choices except that Prolog must satisfy all the AND choices at a
node before going on.

Zig zagging from left to right is not the whole story for this goal.
Once we reach wealthy(Person) with Person/jean and it fails we
move back (backtracking) to the goal woman(Person) and break the
binding for Person (because this is where we made the binding Per-
son/jean). We now start going from left to right again (if you like,
forwardtracking).

3.3 Conjunctions and Disjunctions

We are now ready for the whole thing: let us go back to the set of rules as
found in section 2.12 and some basic facts.

Program Database
woman(jean).
woman(jane).
woman(joan).
woman(pat).
wise(jean).
wealthy(jane).
wealthy(jim).
healthy(jim).
healthy(jane).
healthy(jean).
happy(P):-

healthy(P),
woman(P).

happy(P):-
wealthy(P),
woman(P).

happy(P):-
wise(P),
woman(P).
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and consider the solution of the goal

happy(jean)

Here is the standard AND/OR tree representation of the search space again:

happy(P)

healthy(P) woman(P) wealthy(P) woman(P) wise(P) woman(P)

(((((((((((((

»»»»»»»»»
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and the goal succeeds.

Note that

1. Both the subgoal healthy(jean) and woman(jean) have
to succeed for the whole goal to succeed.

2. We then return to the top level.

Now consider the top level goal of

happy(joan)

The resolution process generates the subgoals healthy(joan) and woman(joan)
from the first clause for happy/1. In all, Prolog tries three times to
match healthy(joan) as there are three clauses for healthy/1. After fail-
ing healthy(joan), however, Prolog does not try to solve woman(joan)
—there is no point in doing so.

There is another way of trying to prove happy(joan) using the second
clause of happy/1. The resolution process again generates subgoals —
wealthy(joan) and woman(joan)— and wealthy(joan) fails. A third
attempt is made but this founders as wise(joan) fails. Now back to top
level to report the complete failure to satisfy the goal.

Now consider

happy(P)

as the top level goal.

happy(P)

healthy(P) woman(P) wealthy(P) woman(P) wise(P) woman(P)

(((((((((((((

»»»»»»»»»
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Much more complicated. First, healthy(P) succeeds binding P to jim
(P/jim) but when the conjunctive goal woman(jim) is attempted it fails.
Prolog now backtracks3. It reverses along the path through the tree until
it can find a place where there was an alternative solution.

3See chapter ?? for more details.
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Of course, Prolog remembers to unbind any variables exactly at the places
in the tree where they were bound.

In the example we are using we again try to resolve the goal healthy(P)
—succeeding with P bound to jane. Now the conjunction can be satisfied
as we have woman(jane). Return to top level with P bound to jane to
report success. What follows is what appears on the screen:

?- happy(P).

P=jane
yes

Prolog offers the facility to redo a goal —whenever the top level goal
has succeeded and there is a variable binding. Just type “;” followed
by RETURN —“;” can be read as or. If possible, Prolog finds another
solution. If this is repeated until there are no more solutions then we
get the sequence of solutions:

jane
jean
jane
jean

It is worth trying to verify this.

Basically, trying to follow the behaviour of Prolog around the text of the
program can be very messy. Seeing how Prolog might execute the search
based on moving around the AND/OR tree is much more coherent but it
requires some effort before getting the benefit.

3.4 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to load in a Prolog program.
You should be able to issue a legal Prolog query.
You should be able to generate successive solutions to a goal
(provided that any exist).
You should be able to apply a depth-first search strategy to
simulate the Prolog execution of a goal in relation to a simple
program.
You should have an idea about the way in which Prolog uses
matching.
You should be aware of the effects of backtracking when a goal
fails.

Exercise 3.1 Here is the first opportunity to try to follow the execution
of some Prolog query. For each of these problems, the aim is to follow
the execution for a number of different queries. Each query gives rise to a
sequence of subgoals which either fail outright or succeed —possibly binding
some variables.

The answers should use a standard format which is illustrated.
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Program Database
a(X):-

b(X,Y),
c(Y).

a(X):-
c(X).

b(1,2).
b(2,2).
b(3,3).
b(3,4).
c(2).
c(5).

Use the following format for your answer:

Subgoals Comment Result
a(5) uses 1st clause new subgoals
b(5,Y) tries 1st clause fails
b(5,Y) tries 2nd clause fails
b(5,Y) tries 3rd clause fails
a(5) using 1st clause fails
a(5) uses 2nd clause new subgoal
c(5) tries 1st clause fails
c(5) tries 2nd clause succeeds
a(5) using 2nd clause succeeds

Note that, if a variable is bound, then indicate with a phrase such as with
Y=2.

Repeat for the following goals:

1. a(1)

2. a(2)

3. a(3)

4. a(4)

Exercise 3.2 As in the previous exercise, for the new program:

Program Database
a(X,Y):-

b(X,Y).
a(X,Y):-

c(X,Z),
a(Z,Y).

b(1,2).
b(2,3).
c(1,2).
c(1,4).
c(2,4).
c(3,4).

1. a(1,X)

2. a(2,X)

3. a(3,X)
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4. a(X,4)

5. a(1,3)



Chapter 4

Unification, Recursion and
Lists

chapter-recursion

We describe the matching process known as Unification that
has already been met.
We review the basic idea of recursion as a programming tech-
nique.
We apply these ideas to list processing.

4.1 Unification

Unification is the name given to the way Prolog does its matching. We will
not do more than sketch the basic ideas here. Basically, an attempt can be
made to unify any pair of valid Prolog entities or terms.

Unification is more than simple matching. A naive view of the matching
process might be represented by the question “can the target object be
made to fit one of the source objects”. The implicit assumption is that the
source is not affected —only the target is coerced to make it look like some
source object.

Unification implies mutual coercion. There is an attempt to alter both the
target and the current source object to make them look the same.

Consider how we might match the term book(waverley,X) against some
clause for which book(Y, scott) is the head. The naive approach might be
that X/scott is the correct substitution —or even that the matching cannot
be done. Unification provides the substitutions X/scott and Y/waverley.
With these substitutions both terms look like book(waverley,scott).

Unification is a two way matching process

The substitution X/scott and Y/waverley is known as a unifier —to
be precise, the most general unifier. If we unify X with Y then one
unifier might be the substitution X/1 and Y/1 but this is not the most
general unifier.

Consider the infix predicate =/2.
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Certain ‘built-in’ Prolog predicates are provided that can be written
in a special infix or prefix form (there are no postfix ones provided
—that is not because they could not be!) For example, 1=2 is written
as =(1,2) in standard Prolog form.

Prolog tries to unify both the arguments of this predicate. Here are some
possible unifications:

X=fred succeeds
jane=fred fails because you can’t match two distinct atoms
Y=fred, X=Y succeeds with X=fred, Y=fred
X=happy(jim) succeeds
X=Y succeeds —later, if X gets bound then so will Y and vice versa

It is worth making a distinction here between the textual name of a
logical variable and its run-time name. Consider a query likes(jim,X).
Suppose there is one clause: likes(X,fred) —this has the reading that
“everyone likes fred” and mentions a variable with the textual name of
X. The query also mentions a specific variable by the textual name of
X. By the scope rule for variables, we know that these two variables,
although textually the same, are really different. So now consider
whether the head of the clause likes(X,fred) unifies with the current
goal likes(jim,X).
We might then reason like this: the task is to decide whether or not
likes(jim,X)=likes(X,fred) succeeds. If this is so then, matching
the first arguments, we get X=jim. Then we try to match the second
arguments. Now can X=fred? If X=jim then the answer is no. How
is this? The answer we expect (logically) is that “jim likes fred”.
We really ought to distinguish every variable mentioned from each
other according to the scope rules. This means that the query is better
thought of as, say, likes(jim,X1 and the clause is then likes(X2,fred).
In the literature the process of making sure that variables with the
same textual name but in different scopes are really different is known
as standardisation apart!

Exercise 4.1 Here are some problems for which unification sometimes suc-
ceeds and sometimes fails. Decide which is the case and, if the unification
succeeds, write down the substitutions made.

1. 2+1=3

2. f(X,a)=f(a,X)

3. fred=fred

4. likes(jane,X)=likes(X,jim)

5. f(X,Y)=f(P,P)

4.2 Recursion

Recursion is a technique that must be learned as programming in Prolog
depends heavily upon it.

We have already met a recursive definition in section 2.2. Here are some
more:
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One of my ancestors is one of my parents or one of their ances-
tors.

A string of characters is a single character or a single character
followed by a string of characters.

A paragraph is a sentence or a sentence appended to a paragraph.

To decouple a train, uncouple the first carriage and then decouple
the rest of the train.

An example recursive program:

talks about(A,B):-
knows(A,B).

talks about(P,R):-
knows(P,Q),
talks about(Q,R).

Roughly translated:

You talk about someone either if you know them or you know
someone who talks about them

If you look at the AND/OR tree of the search space you can see that

• There is a subtree which is the same shape as the whole tree reflecting
the single recursive call to talks about/2.

• The solution of a given problem depends on being able to stop recurs-
ing at some point. Because the leftmost path down the tree is not
infinite in length it is reasonable to hope for a solution.

talks about(X,Y)

knows(X,Y) knows(X,Z) talks about(Z,Y)

knows(Z,Y) knows(Z,Z1) talks about(Z1,Y)

³³³³³³³

PPPPPPP

³³³³³³³

PPPPPPP

In searching the tree with a number of facts along with the clauses for
talks about/1:

Program Database
talks about(A,B):-

knows(A,B).
talks about(P,R):-

knows(P,Q),
talks about(Q,R).

knows(bill,jane).
knows(jane,pat).
knows(jane,fred).
knows(fred,bill).
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using the goal

talks about(X,Y)

If we ask for repeated solutions to this goal, we get, in the order shown:

X= bill Y= jane
X= jane Y= pat
X= jane Y= fred
X= fred Y= bill
X= bill Y= pat
and so on

The search strategy implies that Prolog keep on trying to satisfy the subgoal
knows(X,Y) until there are no more solutions to this. Prolog then finds
that, in the second clause for talks about/2, it can satisfy the talks about(X,Y)
goal by first finding a third party who X knows. It satisfies knows(X,Z)
with X=bill, Z=jane and then recurses looking for a solution to the goal
talks about(jane,Z). It finds the solution by matching against the second
knows/2 clause.

The above AND/OR tree was formed by taking the top level goal and, for
each clause with the same predicate name and arity, creating an OR choice
leading to subgoals constructed from the bodies of the matched clauses. For
each subgoal in a conjunction of subgoals we create an AND choice.

Note that we have picked up certain relationships holding between the (log-
ical) variables but we have had to do some renaming to distinguish between
attempts to solve subgoals of the form talks about(A,B) recursively.

4.3 Lists

Lists, for now, can be regarded as special Prolog structures that can be
used to represent an ordered sequence of Prolog terms. For example, here
are some legal lists:

[ice cream, coffee, chocolate] a list with three elements (all atoms)
[a, b, c, c, d, e] a list with six elements (all atoms)
[ ] a list with no elements in it (it is an atom)
[dog(fido), cat(rufus), goldfish(jimmy)] a list with three elements (all Prolog terms)
[happy(fred),[ice cream,chocolate],[1,[2],3]]a list with three elements!

The last example is a little difficult to decipher: the first element is happy(fred),
the second is [ice cream,chocolate], a list, and the third is [1,[2],3], an-
other list.

Note that the “,” used in the construction of a list is just an argument sep-
arator as in the term foo(a,b). Also note that, because order is preserved,
the list [a,b,c] is not the same as [a,c,b].
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How to construct/deconstruct a list

Given an arbitrary list, we need ways of adding to it and taking it apart1.

The basic approach provides a simple way of splitting a list into two bits:
the first element (if there is one!) and the rest of the list. The corresponding
way of joining two bits to form a list requires taking an element and a list
and inserting the element at the front of the list.

List Destruction: first, we show how to remove the first element from a
list.

[X|Y] = [f,r,e,d]

will result in

X=f

—the first element of the list is known as the HEAD of the list.

Y=[r,e,d]

—the list formed by deleting the head is the TAIL of the list. This list has
been reduced in length and can be further destructed or constructed.

List Construction: the construction of a list is the reverse: take a vari-
able bound to any old list —say, X=[r, e, d] and add the element, say, b
at the front with:

Result Wanted = [b|X]

Bigger Chunks: it is possible to add (or take away) bigger chunks onto
(from) the front of a list than one element at a time. The list notation allows
for this. Suppose you want to stick the elements a, b and c onto the front of
the list X to make a new list Y. then this can be done with Y=[a,b,c|X].

Conversely, suppose you want to take three elements off the front of a list
X in such a way that the remaining list, Y, is available for use. This can be
done with X=[A,B,C|Y]

A limitation of this approach is that there is no direct way of evading
specifying how many elements to attach/rip off. Using the list notation,
there is no way of saying “rip off N elements of this list X and call the
remainder Y”. This has to be done by writing a program and since this
is very straightforward, this limitation is not a severe one —but, see
later.

1We also need ways of accessing an arbitrary element, but this can wait
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The Empty List

Simply written

[ ]

This list ([ ]) has no elements in it: it cannot therefore be destructed. An
attempt to do this will fail.

The empty list ([ ]) is an atom.

Some Possible Matches

We now illustrate how two lists unify and in what circumstances two lists
fail to unify.

1. [b,a,d]=[d,a,b] fails —as the order matters
2. [X]=[b,a,d] fails —the two lists are of different lengths
3. [X|Y]=[he,is,a,cat] succeeds with

X=he, Y=[is,a,cat]
4. [X,Y|Z]=[a,b,c,d] succeeds with

X=a, Y=b, Z=[c,d]
5. [X|Y]=[] fails —the empty list

can’t be deconstructed
6. [X|Y]=[[a,[b,c]],d] succeeds with

X=[a,[b,c]], Y=[d]
7. [X|Y]=[a] succeeds with X=a], Y=[]

Exercise 4.2 Here are some more problems for which unification some-
times succeeds and sometimes fails. Decide which is the case and, if the
unification succeeds, write down the substitutions made.

1. [a,b|X]=[A,B,c]

2. [a,b]=[b,a]

3. [a|[b,c]]=[a,b,c]

4. [a,[b,c]]=[a,b,c]

5. [a,X]=[X,b]

6. [a|[]]=[X]

7. [a,b,X,c]=[A,B,Y]

8. [H|T]=[[a,b],[c,d]]

9. [[X],Y]=[a,b]
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A Recursive Program Using Lists

We make use of a built-in predicate called write/1 to write out all the
elements of a list in order. Note that the argument of write/1 must be a
legal Prolog term.

write/1 is a side-effecting predicate. It captures the logical relation
of always being true but it also produces output which has no part
to play in the logical interpretation. It is therefore hard to produce a
declarative reading for this predicate despite its utility from the proce-
dural point of view. There are a fair number of other predicates which
suffer from this problem including consult/1 and reconsult/1.

To write out a list of terms, write out the first element and then write out
the remainder (the tail).

print a list([]).
print a list([H|T]):-

write(H),
print a list(T).

Note that this can be improved by printing a space between elements of the
list. This requires you to add the subgoal write(’ ’) into the body of the
second clause and before the recursive call to print a list/1.

This will write the elements out on a single line. If you wanted to write each
element on a different line then you would need the built-in predicate nl/0.

The second clause of print a list/1 roughly captures the meaning
above. Then what does the first clause achieve? Without the first
clause, print a list/1 would produce the required output and then
fail because it would have to handle the empty list ([]) which cannot be
deconstructed. Although print a list/1 is a side-effecting predicate,
the natural (procedural) reading is that it succeeds once it has printed
the list of terms. The first clause handles the case of the empty list so
that the predicate will always succeed if it is given a list of terms to
print. Quite reasonably, it will fail if given a non-list.

4.4 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to determine whether or not two Prolog
terms unify.
You should be able to identify programs that are recursive.
You should be able to build and take apart list structures.
You should be able to write simple list processing programs
using recursion.

Exercise 4.3 For each of these problems, the aim is to define a predicate
using one or two clauses. Each of the problems is a list processing problem.
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1. Write a predicate print every second/1 to print every other element
in a list, beginning at the second element —i.e. the 2nd, 4th, 6th
elements etc. It should always succeed provided it is given a list as its
argument.

2. Write a predicate deconsonant/1 to print any element of a list that
isn’t a consonant (i.e. we want to print out the vowels {a,e,i,o,u}). It
should always succeed provided it is given a list as its argument (we
assume that the input list only contains vowels and consonants).

3. Write a predicate head/2 which takes a list as its first argument and
returns the head of the list as its second argument. It should fail if
there is no first element.

4. Write a predicate tail/2 which takes a list as its first argument and
returns the tail of the list as its second argument. It should fail if there
is no first element.

5. Write a predicate vowels/2 which takes a list as its first argument and
returns a list (as its second argument) which consists of every element
of the input list which is a vowel (we assume that the input list only
contains vowels and consonants).

6. Write a predicate find every second/2 which takes a list as its first
argument and returns a list (as its second argument) which consists of
every other element of the input list starting at the second element.

You should note that we have turned the side-effecting predicates of
the first two problems above into predicates which do not make use of
side-effects and can now be given a declarative reading.



Chapter 5

The Box Model of Execution

box

We describe the Byrd box model of Prolog execution.
We illustrate backtracking in relation to the Byrd box model of
execution and then in relation to the AND/OR execution and
proof trees.

5.1 The Box Model

As this model is a model of Prolog execution, we can think in terms of
procedures rather than predicates.

We represent each call to a procedure by a box. Note that, as a procedure
may be executed thousands of times in a program, we need to distinguish
between all these different invocations. In the diagram in figure 5.1 a box
represents the invocation of a single procedure and which is therefore asso-
ciated with a specific goal. The top level query is parent(X,Y), X=f.

We regard each box as having four ports: they are named the Call, Exit,
Fail and Redo ports. The labelled arrows indicate the control flow in and
out of a box via the ports. The Call port for an invocation of a procedure

parent(a,b).
parent(c,d). X = f.

Call- Call-Exit- Exit-

Fail¾ Fail¾Redo¾ Redo¾

Figure 5.1: The Byrd Box Model Illustrated

represents the first time the solution of the associated goal is sought. Control
then ‘flows’ into the box through the Call port.

We then seek a clause with a head that unifies with the goal. Then, we
seek solutions to all the subgoals in the body of the successful clause.
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If the unification fails for all clauses (or there are no clauses at all) then
control would pass out of the Fail port. There are also other ways to reach
the Fail port.

Control reaches the Exit port if the procedure succeeds. This can only occur
if the initial goal has been unified with the head of one of the procedure’s
clauses and all of its subgoals have been satisfied.

The Redo port can only be reached if the procedure call has been successful
and some subsequent goal has failed. This is when Prolog is backtracking
to find some alternative way of solving some top-level goal.

Basically, backtracking is the way Prolog attempts to find another solution
for each procedure that has contributed to the execution up to the point
where some procedure fails. This is done back from the failing procedure
to the first procedure that can contribute an alternative solution —hence,
backtracking.
When backtracking is taking place, control passes through the Redo port.
We then, with the clause which was used when the procedure was previously
successful, backtrack further back through the subgoals that were previously
satisfied. We can reach the Exit port again if either one of these subgoals
succeeds a different way —and this leads to all the subgoals in the body of the
clause succeeding— or, failing that, another clause can be used successfully.
Otherwise, we reach the Fail port. Note that, for this to work out, the
system has to remember the clause last used for each successful predicate.

The system can throw this information away only if it can convince
itself that we will never revisit a procedure that succeeds. We can
always force this to happen by using the cut (!/0) (which is explained
in chapter ??) —but this is a last resort as most implementations of
Prolog can do some sensible storage management. An understanding
of this mechanism can help you avoid the use of cut.

We reach the Fail port

• When we cannot find any clauses such that their heads match with
the goal

• If, on the original invocation, we can find no solution for the procedure

• On backtracking, we enter the box via the Redo port but no further
solution can be found

5.2 The Flow of Control

We illustrate the above with a textual representation of the simple program
found in figure 5.1 using the Byrd box model. The flow of control is found
in figure 5.2. The indentation is used here only to suggest an intermediate
stage in the mapping from the visual representation of the boxes into their
textual sequence.

Many Prolog trace packages that use this box model do no indenting
at all and those that use indentation use it to represent the ‘depth’ of
processing. This depth is equivalent to the number of arcs needed to
go from the root of the AND/OR execution tree to the current node.

Below, we have a snapshot of how the execution takes place —“taken” at
the moment when Prolog backtracks to find another solution to the goal
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Call: parent(X,Y)
Exit: parent(a,b)

Call: a=f
Fail: a=f

Now backtracking
Redo: parent(X,Y)
Exit: parent(c,d)

Call: c=f
Fail: c=f

Now backtracking
Redo: parent(X,Y)
Fail: parent(X,Y)

Figure 5.2: Illustrating Simple Flow of Control

parent(X,Y). We show the backtracking for the same program using an
AND/OR execution tree.

parent(X,Y), X=f

parent(X,Y) X =f

parent(a,b) parent(c,d)

©©©©©©©©

©©©¼ ©©©* ©©©¼

©©©©©©©©

HHHHHHHH

HHHj HHHY

HHHHHHHH

Redo

Call Exit Call Fail

5.3 An Example using the Byrd Box Model

We use a simple program with no obvious natural interpretation to contrast
the Byrd box model with the AND/OR execution tree. See figure 5.3 for
the program and for a graphical representation of the program’s structure
using the Byrd box model. Figure 5.4 shows the same program’s structure
as an AND/OR tree.

We consider how the goal a(X,Y) is solved.
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Program Database
a(X,Y):-

b(X,Y),
c(Y).

b(X,Y):-
d(X,Y),
e(Y).

b(X,Y):-
f(X).

c(4).
d(1,3).
d(2,4).
e(3).
f(4).

a(X,Y)

c(4)

c(Y)b(X,Y)

d(1,3)

d(2,4)

d(X,Y)

e(3)

e(Y)

f(4)

f(X)

Figure 5.3: Program Example with Byrd Box Representation

Call: a(X,Y)
Call: b(X,Y)

Call: d(X,Y)
Exit: d(1,3)
Call: e(3)
Exit: e(3)

Exit: b(1,3)
Call: c(3)
Fail: c(3)

Now backtracking
Redo: b(X,Y)

Redo: e(3)
Fail: e(3)
Redo: d(X,Y)
Exit: d(2,4)
Call: e(4)
Fail: e(4)

Now backtracking
Call: f(X)
Exit: f(4)

Exit: b(4,Y)
Call: c(Y)
Exit: c(4)

Exit: a(4,4)
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5.4 An Example using an AND/OR Proof Tree

We now use the same example program to show how the proof tree grows.
We choose a proof tree because we can delete any parts of the tree which do
not contribute to the final solution (which is not the case for the execution
tree).

The search space as an AND/OR tree is shown in figure 5.4. We now develop

a(X,Y)

HHHHHHHHH

©©©©©©©©©

c(Y)b(X,Y)

@
@

@
@@

¡
¡

¡
¡¡

HHHHHHHHH
d(X,Y) e(Y) f(X)

Figure 5.4: The AND/OR Tree for the Goal a(X,Y)

the AND/OR proof tree for the same goal. We show ten stages in order in
figure 5.5. The order of the stages is indicated by the number marked in the
top left hand corner.

The various variable bindings —both those made and unmade— have not
been represented on this diagram.

5.5 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to describe the execution of simple programs
in terms of the Byrd box model.
You should be able to follow backtracking programs in terms
of the Byrd box model.
You should also be construct the AND/OR execution and proof
trees for programs that backtrack.

Exercise 5.1 We use the same two programs as found at the end of chap-
ter ??. For each of these problems, the aim is to predict the execution first
using the development of the AND/OR proof tree and then using the Byrd
box model for each of the different queries.
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1

a(X,Y)
©©©

b(X,Y)

2

a(X,Y)
©©©

b(X,Y)

¡¡
d(X,Y)

3

a(X,Y)
©©©

b(X,Y)

@@¡¡
d(X,Y) e(Y)

4

a(X,Y)
HHH

©©©
c(Y)
←↩

b(X,Y)

@@¡¡
d(X,Y) e(Y)

5

a(X,Y)
©©©

b(X,Y)

@@¡¡
d(X,Y) e(Y)

←↩

6

a(X,Y)
©©©

b(X,Y)

¡¡
d(X,Y)

7

a(X,Y)
©©©

b(X,Y)

@@¡¡
d(X,Y) e(Y)

←↩

8

a(X,Y)
©©©

b(X,Y)

¡¡
d(X,Y)

9

a(X,Y)
©©©

b(X,Y)
HHH

f(X)

10

a(X,Y)
HHH

©©©
c(Y)b(X,Y)

HHH
f(X)

Note that ←↩ indicates the start of backtracking.

Figure 5.5: The Development of the AND/OR Proof Tree

1. Predict the execution behaviour —developing the AND/OR proof tree
and then using the Byrd box model— for the following goals:

(a) a(1)

(b) a(2)

(c) a(3)

(d) a(4)

Program Database
a(X):-

b(X,Y),
c(Y).

a(X):-
c(X).

b(1,2).
b(2,2).
b(3,3).
b(3,4).
c(2).
c(5).

2. As in the previous exercise, for the new program:
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(a) a(1,X)

(b) a(2,X)

(c) a(3,X)

(d) a(X,4)

(e) a(1,3)

Program Database
a(X,Y):-

b(X,Y).
a(X,Y):-

c(X,Z),
a(Z,Y).

b(1,2).
b(2,3).
c(1,2).
c(1,4).
c(2,4).
c(3,4).



Interlude: Practical Matters

We describe some matters relating to the practical use of Pro-
log.
We show how to invoke Prolog and also how to exit.
We describe how to load programs as files
We show how to develop a program and avoid some common
errors.
We outline the Input/Output features provided by Prolog.
We then illustrate the use of the debugger and provide some
information about the debugging process.

Exiting and Leaving Prolog

The Prolog system you will be using is known as SICStus Prolog and you
are using it within the UNIX environment (DYNIX(R) V3.0.17.9) provided
on a Sequent computer. All that follows is intended for this context only.

Prolog is entered with the command:

unix prompt: prolog1

The most reliable way to exit Prolog is with the command:

| ?- halt.

Note that the prompt is really | ?- for this Prolog. For simplicity, we have
assumed this is ?- in the main body of the notes.

In passing, there is a small problem associated with pressing the Re-
turn key before typing the ‘.’. This is what happens:

| ?- halt
|:

Prolog is still waiting for the ‘.’. All you have to do is type in the ‘.’
and then press Return.

This is guaranteed to work but the other ways can fail depending on cir-
cumstances. Here are two other ways of exiting Prolog from the top level.

1This is supposed to produce a banner a variant on
SICStus 0.6 #11: Tue Jul 3 15:40:37 BST 1990

If the system produces some other system, contact the course organiser.

41
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| ?- ^D
| ?- end of file.

Note that ^D is the keyboard character obtained by holding down the Con-
trol key, pressing the Shift key and then the d key. This character is the
default character to signal that the end of a file has been encountered. It
can be changed.

The reason why these last two ways are not general depends on one of
the sophisticated features of the Prolog system: viz., that the com-
mand break initiates a new incarnation of the Prolog interpreter.
Repeated breaks will generate further levels. The command halt ex-
its Prolog from any level while the above two commands only exit one
level at a time and only exit Prolog if at top level.

Loading Files

A program should normally be considered as a sequence of files. Conse-
quently, it is usually necessary for Prolog to read in one or more files at
the beginning of a session.

The standard command is

| ?- consult(filename).

where “filename” is some legal unix filename. Because some legal unix file-
names contain characters that Prolog may find syntactically illegal it is
often necessary to ‘protect’ the filename using single quotes. Here are some
arbitrary examples:

| ?- consult(foo).
| ?- consult(’/u/ai/s2/ai2/aifoo/program’).
| ?- consult(’foo.pl’).

It is also possible to consult a set of files as in:

| ?- consult([foo,baz,’foobaz.pl’]).

There is a shorthand for the command consult which can be confusing.
The abbreviation overloads the symbols associated with list notation.
The command consult(foo) can be abbreviated to [foo] and the com-
mand consult([foo,baz]) can be rewritten [foo,baz]. There is quite
a subtle syntax error that can cause difficulties when the file you want
to read in needs to be protected with single quotes. Consider:

| ?- [’foo.pl].
|:

Prolog is still waiting for the closing single quote. All you have to do
is type in the closing single quote and then the ]. and press Return.
Prolog will produce an error message because you have asked to load
a very strangely named file.
Another error is to use double quotes instead of single quotes.
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| ?- ["foo.pl"].

{ERROR: absolute file name(102, 45) - invalid file spec}

This weird error will not be explained here —just note that double
quotes have a special interpretation in Prolog which results in the
above command being interpreted as the desire to consult three files:
102, 111 and 111. Can you guess the meaning of double quotes?

Each syntactically correct clause that is found on reading the file will be
loaded. On encountering a syntactically incorrect clause then an error mes-
sage will be printed. We now illustrate some common syntax errors together
with the error messages generated. You will notice that the error messages
can be quite obscure.

foo (X). % space between functor and left bracket

* bracket follows expression **
foo
* here **
( X ) .

fooX). % missing left bracket

* operator expected after expression **
fooX
* here **

foo(X. % missing right bracket

* , or ) expected in arguments **
foo ( X
* here **

foo(X Y). % missing argument separator

* variable follows expression **
foo ( X
* here **

foo([a,b). % missing right square bracket

* , | or ] expected in list **
foo ( [ a , b
* here **
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foo(a) % missing ‘.’
foo(b).

* atom follows expression **
foo ( a )
* here **
foo ( b ) .

foo(a), % used ‘,’ for ‘.’
foo(b).

{ERROR: (,)/2 - attempt to redefine built in predicate}

This latter error message is caused because the input is equivalent the the
logical statement foo(a) ∧ foo(b) which is not in Horn clause form and
therefore not legal Prolog. Here is another related error:

foo;- baz. % ; instead of :
{ERROR: (;)/2 - attempt to redefine built in predicate}

We suggest that, if you have made a syntax error and pressed Return (so
you cannot delete the error) then type in ‘.’ followed by Return. This will
probably generate a syntax error and you can try again. Of course, there
are situations for which this will not work: you cannot use this method to
get out of the problem with:

| ?- [’foo.pl].
|:

or the equivalent problem with double quotes.

Now SICStus does one nice thing: consult(foo) will first try to find a file “foo.pl”.
If it does not find one, it will look for “foo”.

Interactive Program Development

We want to be able to develop a program interactively. This suggests that
we will edit our program using one of the editors provided (such as vi, ex,
gnu emacs or microemacs), enter Prolog, load our program, find a bug, exit
Prolog and repeat.

This is clumsy, so we describe two methods that should aid interactive pro-
gram development. In both cases, however, we must be aware of a problem
in connection with consult/1.

A Problem with consult/1

Consider the query:
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| ?- consult([foo1,foo2]).

where both foo1 and foo2 contain clauses for, say, baz/1. We get the
following:

The procedure baz/2 is being redefined.
Old file: /u/user5/ai/staff/paulb/foo1.pl
New file:/u/user5/ai/staff/paulb/foo2.pl

Do you really want to redefine it? (y, n, p, or ?) ?

Therefore, as far as is possible, avoid splitting your predicate definitions
between files.

The command reconsult(foo) is equivalent to consult(foo). The
command reconsult(foo) can be rewritten as [-foo] and the command
reconsult([foo1,foo2]) can be rewritten as [-foo1,-foo2].
Some Prolog systems distinguish these commands. For these systems,
the command consult([foo1,foo2]) has the consequence of loading
the syntactically correct clauses found both in foo1 and in foo2 —if
they share the definition of baz/2 then both parts of the definition
will be loaded.
Finally, if you really have to distribute your predicate definitions be-
tween files with a command like consult([foo1,foo2]) then there must
be a declaration that the predicate is a multifile predicate before SIC-
Stus encounters the first clause. So, if baz/2 is shared between files,
we need to place

:- multifile baz/2.

before the first clause for baz/2.
Even though mostly you won’t need to do this, there are occasions
when it does make sense to distribute a predicate across several files.

Two Variations on Program Development

The first variation depends on whether or not you are using a unix shell
that allows for job suspension. This can be checked by getting into Prolog
and issuing the character ^Z which is the usual default for suspending a job.
You then find yourself at the unix level where you can edit your file in the
normal way. When you have finished editing, get back into Prolog with the
command:

unix prompt: fg

which stands for bringing a suspended job into the foreground. Now you are
back in Prolog and you have to reload your program using consult/12.

The second, more satisfactory variation depends on defining a predicate
which can be used to edit a file without explicitly leaving Prolog. This

2In SICStus anyway —if you are using a Prolog system that distinguishes between
consult/1 and reconsult/1 then you must use reconsult/1 or you can get into trouble.
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can be done because there is a built-in predicate shell/1 which takes as its
argument a unix command as a list of the ASCII codes associated with the
characters forming the command. Here is a simple program that, if loaded,
can be used to edit a file and automatically reconsult it after the edit is
finished.

Program Database
edit(File):-

editor(Editor),
name(Editor,EditorList),
name(File, FileList),
append(EditorList,[32|FileList],CommandList),
name(Command,CommandList),
unix(shell(Command)),
reconsult(File).

editor(emacs).

append([],L,L).
append([H|L1],L2,[H|L3]):-

append(L1,L2,L3).

Now you have to remember to load this each time you enter Prolog. One
way this can be done is by having a file called prolog.ini in your home
directory. This file will then be automatically consulted each time you enter
Prolog. Put the above program in such a file and try it out. Note also
that you can change the editor of your choice by redefining editor/1. The
predicate append/3 is very useful: it ‘glues’ two lists together —e.g. the
goal append([a,b],[c,d],X) results in X=[a,b,c,d]. It is so useful that you
will probably want it around all the time.

Avoiding Various Kinds of Trouble

There is a problem connected with a missing predicate definition. In SICStus
Prolog, the default behaviour is to place you into the tracer. This is roughly
what happens:

{Warning: The predicate foo/1 is undefined}
1 1 Fail: foo( 22) ?

Sometimes, however, we simply want to assume that if a call is made to a missing
predicate then this is equivalent to not being able to solve the goal and the call
therefore fails. This is connected with the closed world assumption which is outlined
in chapter ??.

One way in which this can be controlled is to declare that the predicate, say foo/1
is dynamic with the declaration:

?- dynamic foo/1.

This has the effect that, if there are no clauses for a dynamic predicate then the
program will quietly fail.

A ‘missing’ predicate can be caused in a number of ways which will now be
listed.

• A file that should have been loaded has not been loaded
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• A subgoal has been misspelled —e.g. a call to f00 instead of to foo.

• The name of a predicate has been misspelled in all the clauses of the
definition. —e.g. the call is to foo but every definition is for foo0.

• A subgoal has the wrong number of arguments —e.g. there is a call
foo(1) when the definition for foo has two arguments.

• The definition for a predicate consistently has the wrong number of
arguments.

• Finally, you just may have really forgotten to define some predicate.

One way of dealing with all of these —even if it is hard to locate the cause—
is to set a system flag to regard every call to an undefined predicate as some
sort of error and to invoke the tracer. This is exactly what SICStus does.
If you are using some other Prolog system that does not have this default
behaviour, it may allow for you to use the following (perhapse even in your
prolog.ini file):

?- unknown(X,trace).

The call unknown(X,trace) will change the behaviour from whatever
the current setting is to ‘trace’ (the only other behaviour is ‘fail’). To
find the current setting without changing it you can use the query un-
known(X,X) (SICSTUS can be reset to quietly fail with the command
unknown(X,fail)).

Another problem can be caused by misspelling variables. For example, the
definition:

mammal(Animal):-
dog(Aminal).

probably features a misspelled variable. However, SICStus version 0.6 does
not report such a definition. Some other Prolog systems, such as Edinburgh
Prolog, provide something akin to:

Warning: singleton variable Animal in procedure mammal/1
Warning: singleton variable Aminal in procedure mammal/1

A singleton variable occurs in a clause if a variable is mentioned once and
once only. Such a variable can never contribute a binding to the final re-
sult of the computation. Even though there are occasions when this does
not matter, a singleton variable is an indication that there might be a mis-
spelling.

Consider the clause member(X,[X|Y]). This has a legitimate sin-
gleton variable, Y. If you need to mention a singleton variable, then
you can use the anonymous variable. This is a special symbol for a
variable for which you don’t want to know any binding made. It is
written as an underscore ( ). Consequently, the above clause becomes
member(X,[X| ]).
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This is fair enough and there will be no warning given when the clause
is read in. It is, however, good practice to give meaningful names to
variables —as much for program maintenance as for any other reason.
The way round this can be achieved with a variable that begins with
an underscore ( ). For example, the above clause could be rewritten
as member(X,[X| Tail]). The anonymous variable is also described
in section 10.2.

Note too that some Prolog systems define member/2 as a system
predicate. To experiment with member/2, change the name to some-
hting like my member/2.

Input/Output Facilities

We now mention, in passing, some of the I/O facilities built into Prolog.
We have already met a way of inputting multiple clauses via consult/1
(and reconsult/1). We have already met predicates that produce output
—write/1 and nl/0— in chapter ??. Much more information can be found
in chapter 10.10.

For now, we will not show how to output to a file —see chapter 10.10 for
the details. In passing, we mention that a single Prolog term can be read
in using read/1. Input using this predicate must be terminated by the
standard ‘.’ followed by white space.

Here are some low level I/O predicates:

get0(X) unifies X with next non blank printable character
(in ASCII code) from current input stream

get(X) unifies X with next character (in ASCII) from
current input stream

put(X) puts a character on to the current output stream.
X must be bound to a legal ASCII code

Note that they do not have a declarative reading. They fit poorly into the
theoretical structure underlying Prolog —but other languages suffer from
this problem (e.g. ML).

The Debugging Issue

Once we have loaded our syntactically correct program and tried it out we
may realise that things aren’t the way we want. We may come to realise
that we did not (informally) specify the problem correctly or that we must
have coded the specification wrongly.

We may come to realise that we have an error in our code through executing
some query which produces an unexpected result. We regard such evidence
as a symptom description. The kinds of symptom description that may result
include:

• (apparent) non-termination

• unexpected Prolog error message(s)
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• unexpected failure (or unexpected success)

• wrong binding of one of the variables in the original query

There is also the possibility of unexpected side-effects (or an unex-
pected failure to produce a side-effect).

Different strategies exist for pinning down the cause(s) of these symptoms.
We will not give a complete account here —just sketch in ways in which the
tracer can be used.

The idea of using the tracer is to unpack the program’s response to the
query which produced a symptom description. This is done by examining
the program’s behaviour in the hope that we can track down subcomponents
which ‘misbehave’. Hence we search for a program misbehaviour description.
Once this has been found we then need to track the fault to an error in the
code and generate a program code error description. Finally, underlying the
error in the code may be a number of misunderstandings about the way
Prolog executes a program, the generality of the code written and so on.
Tracking this down would produce a misconception description.

The Tracer Outlined

The description of the tracer’s features that follows is intentionally brief. A
more complete account can be found in appendix B. Note that the tracer
uses the Byrd box model.

Full tracing only applies to non-compiled (i.e. interpreted) code but some
limited tracing can be done for compiled code. The behaviour is similar to
the treatment of system predicates.

Activating the Tracer

First, we outline the facilities for altering the behaviour of the system with
regard to the tracer.

spy(predicate name) Mark any clause with the given predicate name as
“spyable”. Does not work for built-in predicates.

debug If a spied predicate is encountered, switch on the tracer.

nodebug Remove all spypoints. The tracer will therefore not be invoked.

nospy(predicate name) Undo the effect of spy —i.e. remove the spy
point.

debugging Shows which predicates are marked for spying plus some other
information.

trace Switches on the tracer.

notrace Switches the tracer off. Does not remove spypoints.
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Note that both spy/1 and nospy/1 can also take a list of predicates for
their argument. The predicates can also be specified as, for example, foo/1.
This allows for the distinction between (distinct) definitions for two or more
predicates all with different arities.

There is also the concept of leashing. The tracer provides for the possibility
of various decisions to be made by the user at each of the four ports. There
is also a facility for stopping interactions at the ports. This is done via
leash/1. This predicate can take one of five arguments: full, tight, half,
loose and off.

Argument Consequence
full Call, Exit, Redo and Fail interactive
tight Call, Redo and Fail interactive
half Call and Redo interactive
loose Call interactive

The default is full.

The system is set up to default to full leashing: to change this, You
can set your system up using the prolog.ini file by putting a line such
as ?- leash([call,exit]). in it.

Note that the ports of spy-points are always leashed (and cannot be
unleashed).

Interacting with the Tracer

Now we outline the actions that the user can take at one of the interactive
ports. In all, there are about 22 different actions that can be taken. We will
describe a useful subset of 6 commands.

creep This is the single stepping command. Use Return to creep. The
tracer will move on to the next port. If this is interactive then the
user is queried —otherwise, the tracer prints out the results for the
port and moves on.

skip This moves from the Call or Redo ports to the Exit or Fail ports.
If one of the subgoals has a spypoint then the tracer will ignore it.

leap Go from the current port to the next port of a spied predicate.

retry Go from the current Fail or Exit port back to the Redo or Call
port of the current goal —i.e. replay the execution over again.

unify This provides for the user giving a solution to the goal from the ter-
minal rather than executing the goal. This is available at the Call
port. This is of use in running programs which are incomplete (pro-
viding a form of “stub” for a predicate that has not yet been written).
Enter a term that should unify with the current goal.

(re)set subterm This provides the facility to examine a subterm of a com-
plex term. This provides a means for focussing on the part of the
datastructure which is of interest. Consider the display at the Call
port.
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1 1 Call:foo(a(1,baz),[q,w,e,r,t])?

By selecting the set subterm option with ^ 1 we would see

1 1 Call:̂ 1 a(1,baz)?

Then we can further select with ^ 2 :

1 1 Call:̂ 2 baz?

To go back to the parent of a term requires the reset subterm com-
mand (^).

Debugging

We now sketch a simple strategy for using the tracer which copes with
several of the symptoms described above. First, we handle (apparent) non-
termination.

There may be several reasons why a program appears not to termi-
nate. These include factors outside of Prolog —e.g. the system is
down, the terminal screen is frozen and the keyboard is dead. Another
factor might be a ‘bug’ in the Prolog system itself. We have four
more possibilities: some built-in predicate may not have terminated
(e.g. you are trying to satisfy a read/1 goal but not terminated input
properly), you may accidently be writing to a file instead of to the
terminal, the program might just be extremely inefficient or, finally,
the program is never going to terminate —real non-termination— but
it is hard to be sure of this!

During the execution of the goal:

^C Raise an interrupt
t Return Switch on tracing
^C If no trace output, raise another interrupt
Return or . . . creep (or some other choice)

If the trace reveals a sequence of repeated, identical subgoals then this sug-
gests that the program will not terminate.

Now, we look at a top-down way of debugging a program for terminating
programs. The idea is to examine a goal by looking at each of its subgoals
in turn until an error is detected. The subgoal containing the error is then
explored in the same way. The basic schema is to

trace,goal. Turn on the tracer and issue the goal
s skip over each subgoal
r If an incorrect result is detected, redo the last subgoal
Return creep
repeat . . . Repeat the process for the new set of subgoals

All we suggest is that you examine whether or not a goal succeeds (or fails)
when it should, whether or not it binds (or does not bind) those variables
which you expect, and whether the bindings are the ones you intended.
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Program Database
for yuppies(X):-

near austria(X),
rich(X).

near austria(X):-
country(X),
neighbouring(X,austria).

country(austria).
country(switzerland).
country(england).
country(france).
country(west germany).
neighbouring(switzerland,austria).
neighbouring(west germany,austria).
neighbouring(leichtenstein,austria).
neighbouring(czechoslovakia,austria).
rich(X):-

average income(X,Y),
loadsamoney(Y).

average income(austria,10000).
average income(switzerland,20000).
average income(czechoslovakia,5000).
loadsamoney(X):-

X>8000.

Figure 5.6: Yuppies on the Move

We illustrate with a simple program found in figure 5.6. If the predicate
for yuppies/1 is taken to mean “a country is suitable for yuppies to live
in if it is near Austria and wealthy” then we might intend that the query
for yuppies(austria) should succeed —but it does not. We make sure
that leash(full) (the default), turn on the tracer with trace and then issue
the goal for yuppies(austria). Using the box model, we should get (in a
simpler form than that produced by most tracers):

Call: for yuppies(austria) ? creep
Call: near austria(austria) ? skip
Fail: near austria(austria) ? retry
Call: near austria(austria) ? creep
Call: country(austria) ? skip
Exit: country(austria) ? creep
Call: neighbouring(austria,austria) ? skip
Fail: neighbouring(austria,austria) ?

At this point we know that there is no clause for neighbouring(austria,austria)
and we can change the program.

Note that this is what the Byrd box model predicts, what SICSTUS does but not
what Edinburgh Prolog produces. Consequently this strategy, although eminently
sensible, will not work well for Edinburgh Prolog.



Chapter 6

Programming Techniques
and List Processing

techniques

We introduce the idea of calling patterns —the ways in which
a predicate may be used.
We then present some standard schemata for list processing.
We then apply these ideas to the construction of a simple-
minded dialogue handler.

6.1 The ‘Reversibility’ of Prolog Programs

Consider the program:

Program Database
square(1,1).
square(2,4).
square(3,9).
square(4,16).
square(5,25).
square(6,36).

This has the reading that the second argument is the square of the first
argument. There are four kinds of query: we can ask what is the square
of a specific number, what number has a specific square and what entities
are related by the square relation. We can also ask whether two specific
numbers are in the relation to each other of one being the square of the
other. The queries would look like this:

?- square(2,X).
?- square(X,5).
?- square(X,Y).
?- square(2,3).

Unlike many other programming languages, we do not need different proce-
dures to calculate each of these results. This is a consequence of the declar-
ative reading of Prolog. Sometimes we say that the program for square/2
is reversible.

53
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This is a very desirable property for programs. For example, if we could write
a program to determine that a given string of words was a legitimate sentence
then we could use the same program to generate arbitrary grammatical
sentences. Unfortunately, it not always possible to give a declarative reading
to a Prolog program.

6.1.1 Evaluation in Prolog

Unlike many programming languages, Prolog does not automatically eval-
uate ‘expressions’. For example, in Pascal,

Y := 2 + 1;

the term 2 + 1 is automatically evaluated and Y is assigned the value 3.
Here is an attempt to do ‘the same thing’ in Prolog using =/2:

Y = 2 + 1.

with the consequence that the term 2+1 is unevaluated and the term Y is
unified with the term 2+1 with the result that Y is bound to 2+1.

Similar problems arise in relation to LISP. LISP will generally seek to
evaluate expressions. For example, in

(foo (+ 1 2) 3)

LISP evaluates the term (s-expression) (foo (+ 1 2) 3) by evaluating
(+ 1 2) to 3 and then evaluating (foo 3 3). A naive attempt to
construct a similar expression in Prolog might look like:

foo(1+2,3)

but Prolog does not try to evaluate the term 1+2.

Of course, there are times when evaluation is exactly what is wanted. Some-
times, particularly with arithmetic expressions, we want to evaluate them.
A special predicate is/2 is provided. This predicate can be used as in:

Y is 2 + 1.

In this case, the term 2+1 is evaluated to 3 and Y is unified with this term
resulting in Y being bound to 3.

We can use is/2 to implement a successor relation:

successor(X,Y):-
Y is X + 1.
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where it is intended that successor/2 takes the first argument as input and
outputs the second argument which is to be the next largest integer.

In the above, note that X + 1 is intended to be evaluated.

This means that you must use the stated calling pattern as to try to solve
the goal successor(X,7) will lead to trying to evaluate X + 1 with X
unbound. This cannot be done. The result is an error message and the goal
fails.

Consider the query

?- 3 is X+1.

This results in a failure and an error message.

*** Error: uninstantiated variable in arithmetic expression:

Yet the logical statement that we might associate with the query is

∃ X 3 is one more than X

This requires that we can search for the integer that, when added to
1 gives 3. Quite reasonable, but the arithmetic evaluator used is non-
reversible. So the evaluation of arithmetic expressions is a one-way
process.

Therefore is/2 must always be called with its second argument as an arith-
metic expression which has any variables already bound. So successor/2
is not ‘reversible’. For these queries,

1. successor(3,X).

2. successor(X,4).

3. successor(X,Y).

4. successor(3,5).

The 1st and 4th goals result in correct results (success and failure respec-
tively) while the 2nd and 3rd goals produce error messages and fail.

6.2 Calling Patterns

For any given predicate with arity greater than 0, each argument may be
intended to have one of three calling patterns:

• Input —indicated with a +

• Output —indicated with a -

• Indeterminate —indicated with a ? (+ or -)

For example, successor/2 above requires a calling pattern of

1st argument must be +
2nd argument can be + or - and is therefore ?
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We write this as

mode successor(+,?).

The notation used here is consistent with the mode declarations found in
many Prolog libraries. For a further example, the mode declaration of is/2
is mode is(?,+).

Because of the discrepancy between the declarative and the procedural as-
pects of Prolog we often need to think carefully about the intended usage
of a predicate. It is good practice to comment your code to indicate a
predicate’s intended usage.

6.3 List Processing

Many programs will be easiest to write if lists are used as the basic data
structure. Therefore, we will need to process lists in a number of different
ways. We are going to look at four different kinds of task and then loosely
describe the schemata which can be utilised.

6.3.1 Program Patterns

One way in which experienced Prolog programmers differ from beginners
is that they have picked up a wide variety of implementation techniques
from their previous programming experience and are able to bring this to
bear on new problems. Here, we consider four schemata for handling a large
number of list processing tasks. This not intended to cover all possible list
processing programs. Rather, the intention is to give some guidance about
how to think about the problem of constructing a program.

Test for Existence

We want to determine that some collection of objects has at least one object
with a desired property. For example, that a list of terms has at least one
term which is also a list. Here is the general schema:

list existence test(Info,[Head|Tail]):-
element has property(Info,Head).

list existence test(Info,[Head|Tail]):-
list existence test(Info,Tail).

The expression Info stands for a specific number of arguments (including
zero) that carry information needed for the determination that a single el-
ement has the desired property. The arguments represented by Info are
parameters while the remaining argument is the recursion argument. The
functors in italics are in italics to indicate that these can be replaced by
‘real’ functors.

We outline two examples. The first has 0 parameters. We test whether a list
contains lists using nested list/1—e.g. we want the goal nested list([a,[b],c])
to succeed.
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nested list([Head|Tail]):-
sublist(Head).

nested list([Head|Tail]):-
nested list(Tail).

sublist([]).
sublist([Head|Tail]).

Note that, for any non-empty list, a goal involving nested list/1 can
be matched using either the first or the second clause. This produces
the possibility that, if the goal is redone then it may once again succeed
(if there is more than one occurrence of a sublist). This may not be
what is wanted. You can test this with the query:

?- nested list([a,[b],c,[],[d],e]),write(y),fail.

which produces the output yyyno because the first subgoal succeeds,
the second writes y and the third fails (fail/0 always fails!). Then
backtracking occurs to write/1 which fails.

We then backtrack into nested list/1 which can be resatisfied. Ba-
sically, the first success had terminated with the subgoal sublist([b])
succeeding for the goal nested list([[b],c,[],[d],e]). We can resat-
isfy this goal using the second clause which then sets up the goal
nested list([c,[],[d],e]) which will eventually succeed. This will re-
sult in another y being written and, after a while, another attempt to
resatisfy nested list/1 etc.

The point is that you are safe when no goal can be satisfied via different
clauses. We could repair the above using an extralogical feature which
is described in chapter ?? (the cut).

The program for member/2 fits into this pattern when used with mode
member(+,+).

member(Element,[Element|Tail]).
member(Element,[Head|Tail]):-

member(Element,Tail).

where there is one parameter —viz the first argument.

In case you are wondering where the element has property item has
gone then we can rewrite member/2 to the logically equivalent:

member(Element,[Head|Tail]):-
Element = Head.

member(Element,[Head|Tail]):-
member(Element,Tail).

Now we can see how this definition fits the above schema.

Test All Elements

In this situation we require that the elements of a list all satisfy some prop-
erty. Here is the general schema:
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test all have property(Info,[]).
test all have property(Info,[Head|Tail]):-

element has property(Info,Head),
test all have property(Info,Tail).

Again, the expression Info stands for a specific number of parameters that
carry information needed for the determination that an individual element
has the desired property. The remaining argument is the recursion argument.
We illustrate with a predicate digits/1 for testing that a list of elements
consists of digits only. We assume that we have mode all digits(+).

all digits([]).
all digits([Head|Tail]):-

member(Head,[0,1,2,3,4,5,6,7,8,9]),
all digits(Tail).

plus definition of member/2.

This predicate has a declarative reading that a list has the property of
consisting of digits if the first element is a digit and the tail of the list has
the property of consisting of digits.

Note that we can make this fit the schema better if the term [0,1,2,3,4,5,6,7,8,9]
is passed in as a parameter.

Return a Result —Having Processed One Element

Now we turn to the idea that we can return a result. This requires an extra
argument to be carried around —termed the result argument. We will now
outline two further schemata that can be seen as developments of the two
above. The first is intended to work through a list until an element satisfies
some condition whereupon we stop and return some result. The schema is:

return after event(Info,[H|T],Result):-
property(Info,H),
result(Info,H,T,Result).

return after event(Info,[Head|Tail],Ans):-
return after event(Info,Tail,Ans).

We will illustrate this with a predicate everything after a/2 that takes a
list and returns that part of the list after any occurrence of the element a.
We assume that the mode is mode everything after a(+,-).

everything after a([Head|Tail],Result):-
Head = a,
Result = Tail.

everything after a([Head|Tail],Ans):-
everything after a(Tail,Ans).

Again, there are no parameters. There is one input (also the recursion
argument) and one output argument (also the result argument).
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The first clause can be rewritten to:

everything after a([a|Tail],Tail).

Again, there is the same problem with this program as with the test
for existence schema. The goal everything after a([d,a,s,a,f ],X)
will succeed with X=[s,a,f ]. On redoing, the goal can be resatisfied
with X=[f]. This suggest that we have to be very careful about the
meaning of this predicate.

Return a Result —Having Processed All Elements

We now deal with a very common task: taking a list of elements and trans-
forming each element into a new element (this can be seen as a mapping).
The schema for this is:

process all(Info,[],[]).
process all(Info,[H1|T1],[H2|T2]):-

process one(Info,H1,H2),
process all(Info,T1,T2).

where process one/1 takes Info and H1 as input and outputs H2

The reading for this is that the result of transforming all the elements in
the empty list is the empty list otherwise, transform the head of the list and
then transform the rest of the list.

The second clause can be rewritten to:

process all(Info,[H1|T1],Ans):-
process one(Info,H1,H2),
process all(Info,T1,T2),
Ans = [H2|T2].

Understanding the way in which this program works is quite difficult.

An example program is one that takes a list of integers and ‘triples’ each
of them. The goal triple([1,12,7],X would result in X=[3,36,21]. We
assume the mode of mode triple(+,-).

triple([],[]).
triple([H1|T1],[H2|T2]):-

H2 is 3*H1,
triple(T1,T2).

This has the reading that the two arguments lie in the relation that the head
of the second argument is 3 times that of the head of the first argument
and the tails lie in the same relation. The declarative reading is easier to
construct than exploring the way in which a goal is executed.
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6.3.2 Reconstructing Lists

We now elaborate on a feature of the schema for return a result —having pro-
cessed all elements. Looking at the structure of the head of the 2nd clause for
triple/2, we see that the recursive call is structurally simpler than the head
of the clause —viz triple(T1,T2) is ‘simpler’ than triple([H1|T1],[H2|T2]).
The input variable for the recursive call, a list, is structurally smaller and
so is the output variable.

Many students try to write triple/2 as:

triple([],[]).
triple([H1|T1],T2):-

H2 is 3*H1,
triple(T1,[H2|T2]).

This does not work at all. Looking at the trace output, it is tempting to
think the program is nearly right. Consider this trace output from SICStus
Prolog for the goal triple([1,2],X).

1 1 Call: triple([1,2], 95) ?
2 2 Call: 229 is 3*1 ?
2 2 Exit: 3 is 3*1 ?
3 2 Call: triple([2],[3| 95]) ?
4 3 Call: 520 is 3*2 ?
4 3 Exit: 6 is 3*2 ?
5 3 Call: triple([],[6,3| 95]) ?
5 3 Fail: triple([],[6,3| 95]) ?
4 3 Redo: 6 is 3*2 ?
4 3 Fail: 520 is 3*2 ?
3 2 Fail: triple([2],[3| 95]) ?
2 2 Redo: 3 is 3*1 ?
2 2 Fail: 229 is 3*1 ?
1 1 Fail: triple([1,2], 95) ?

At one point, we have a term triple([],[6,3| 95]) which, if only it succeeded,
might provide the result we want (even though it seems to be back to front).
The first observation is that, since its first argument is [] it can only match
the first clause for triple and this has a second argument of [] —so, this
call must fail. The second observation is that each recursive call is called
with an increasingly complex second argument —but, when the call is over,
there is no way in which this complex argument can be passed back to the
original query. For example, we start by trying to show that

triple([1,2],X) is true if triple([2],[3|X]) is true

Even if triple([2],[3|X]) were true, that only means that triple([1,2],X)
is true —where has the 3 gone?

We now describe the original schema for return a result —having processed
all elements and an alternative way.
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Building Structure in the Clause Head

This is the same as the previous return a result —having processed all ele-
ments. The following version of predicate triple/2 is described as building
structure in the clause head:

triple([],[]).
triple([H1|T1],[H2|T2]):-

H2 is 3*H1,
triple(T1,T2).

We can see this if we think of the output argument as a structure which is
to be constructed out of two parts: a bit we can calculate easily (H2) and
another bit which requires a recursive call to determine its structure (T2).
The term [H2|T2] just shows how the result is constructed out of these
bits.

Building Structure in the Clause Body

Now we produce a variant which achieves a similar (but not identical) ef-
fect. We introduce a new kind of variable: the accumulator. Consider the
example:

triple([],Y,Y).
triple([H1|T1],X,Y):-

H2 is 3*H1,
triple(T1,[H2|X],Y).

We still have the first argument as the recursion argument but now the
third argument is the result argument and the second argument is the ac-
cumulator. Now, we can see that the recursive call triple(T1,[H2|X],Y)
is simpler in the first argument than the head triple([H1|T1],X,Y) and
more complex in the second argument (the accumulator).

Note that the third argument is unchanged. If this is so, how can it take
a value at all? Well, the recursion stops once we reach a call with its first
argument as the empty list. This means that we will need to unify the goal
with the head of the first clause. This will result in the second argument
(the accumulator) being unified with the third argument (the result) which,
at this point, is an unbound variable. We establish that this up-to-now
unchanged variable is bound to the term in the accumulator. Following
back along the path of recursive calls, we see that (more or less) the result
we want is returned.

The goal triple([1,2,3],[],X) will result in X=[9,6,3]. Note two things:
the expected order is reversed and that the accumulator has to be initialised
in the original call. Sometimes, however, the order is not too important.

Here is the schema:

process all(Info,[],Acc,Acc).
process all(Info,[H1|T1],Acc,Ans):-
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process one(Info,H1,H2),
process all(Info,T1,[H2|Acc],Ans).

where process one/1 takes Info and H1 as input and outputs H2

6.4 Proof Trees

For an illustration of the difference between building structure in the clause
head and building structure in the clause body, we construct an AND/OR
proof tree for the goal triple([1,2],Y) using the code described previously
for the building structure in the clause head case in figure 6.1 and, in fig-
ure 6.2, an AND/OR proof tree for the goal triple([1,2],[],Y) for the case
of building structure in the clause body.

The method used to rename the variables is to use an superscript to indicate
different instances of a variable.

There is a slight cheat because the different instances of Y have not
been distinguished. Really, there should be a succession of instances
—Y1,Y2 and so on. They are, however, all established as equivalent
(via unification).

You will notice that they are extremely similar in shape. The difference
lies in the order of the construction of the variable bindings. Note that,
in figure 6.1, the binding for Y is achieved after computing T21 and the
binding for T21 is achieved after computing T22 which is done through the
clause triple([],[]). In the other case, in figure 6.2, the binding for Y is
achieved through the clause triple([],L,L).

The main point is that one computation leaves incomplete structure around
(which is eventually completed) while the other does not do so.

triple([1,2],Y)
HHHHHHH

©©©©©©©

Y=[H21|T21](=[3,6])

[1,2]=[H11|T11]

H11=1
T11=[2]

H21 is 3*H11

2

triple(T11,T21)
HHHHHHH

©©©©©©©

T21=[H22|T22](=[6])

[H12|T12]=[2]

H12=2
T12=[]

H21=3

triple(T12,T22)
©©©©©©©

H22 is 3*H12

2

T22=[]H22=6

triple([],[])

2

Figure 6.1: The Proof Tree for triple([1,2],Y)
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triple([1,2],[],Y)
HHHHHHH

©©©©©©©

[H11|T11]=[1,2]

H11=1
T11=[2]

Acc1=[]

H21 is 3*H11

2

triple(T11,[H21|Acc1],Y)
HHHHHHH

©©©©©©©

[H12|T12]=[2]

H12=2
T12=[]

Acc2=[H21|Acc1](=[H21]=[3])
H21=3

triple(T12,[H22|Acc2],Y)
©©©©©©©

H22 is 3*H12

2

T22=[]

Acc3=[H22|Acc2](=[6,3])

H22=6

triple([],Acc3,Y)

2

Y=Acc3(=[6,3])

Figure 6.2: The Proof Tree for triple([1,2],[],Y)

6.5 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be aware of some standard techniques for processing
lists and be able to identify programs that use these techniques.

Exercise 6.1 We will now work on the four basic list schemata that we
have suggested:

1. The Schema test for existence

2. The Schema test all elements

3. The Schema return a result —having processed one element

4. The Schema return a result —having processed all elements

1. The Schema test for existence

(a) Define a predicate an integer/1 which checks to see if a list has
at least one integer in it. Use the built-in predicate integer/1.

?- an integer([a,fred,5,X]).
yes

(b) Define a predicate has embedded lists/1 which checks to see if
a list is an element which is itself a list. Assume that the input
list contains no variables and that the empty list is not a member
of this input list.

?- has embedded lists([a,[b],c,d,e]).
yes
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2. The Schema test all elements

(a) Define a predicate all integers/1 that succeeds if and only if the
(one) argument contains a list of integers.

?- all integers([1,fred,23]).
no

(b) Define a predicate no consonants/1 which checks to see if a list
of lower-case alphabetic characters has no consonants in it. Make
up your own predicate to check whether an atom is a consonant.

?- no consonants([a,e,i,t]).
no
?- no consonants([a,e,e,i]).
yes

3. The Schema return a result —having processed one element

(a) Write a predicate nth/3 which takes two inputs: the first a posi-
tive integer and the second a list. The output (initially, an unin-
stantiated variable) will be the element that occurs at the nth po-
sition in the list. So

?- nth(3,[this,is,[an,embedded,list]],X).
X=[an,embedded,list]

(b) Define a predicate next/3 which again takes two inputs: a possi-
ble member of a list and the list. The output should be the element
of the list that immediately follows the named list element (if it
exists —if not, the predicate should fail).

?- next(a,[b,r,a,m,b,l,e],X).
X=m

(c) define del 1st/3 which takes a possible element of a list and a list
as inputs and ”returns” the list with the first occurence of the
named element removed. (If the named element is not in the list
then the predicate is to fail)

?- del 1st(a,[b,a,n,a,n,a],X).
X=[b,n,a,n,a]

This one can also be solved using an accumulator with the help
of append/3.

4. The Schema return a result —having processed all elements All these
can be done in two ways. One uses the idea of building structure in
the clause head and the other building structure in the clause body.

Remember that the latter requires one more argument than the former
—the accumulator. As this usually needs initialising it is customary
to do this by such as:
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foo(a,X):-
foo(a,[],X).

Do each problem both ways.

(a) Define nple/3 to take two inputs —an integer and a list of inte-
gers. The result is to be a list of integers formed by multiplying
each integer in the list by the input integer.

?- nple(5,[1,2,3],X).
X=[5,10,15]

(b) Define del all/3 which takes a possible element of a list and a
list as inputs and returns the list with all occurences of the named
element removed. (If the named element is not in the list then
the result is, of course, the whole list with no deletions)

?- del all(a,[b,a,n,a,n,a],X).
X=[b,n,n]

(c) Define sum/2 to take a list of integers as input and return the
output as their sum. This one is slightly unusual with regard to
the base case.

?- sum([1,32,3],X).
X=36



Chapter 7

Control and Negation

negation-control

We introduce a number of facilities for controlling the execution
of Prolog.
We outline the problem of trying to represent logical negation
and one solution.
We introduce some more programming techniques.

7.1 Some Useful Predicates for Control

true/0

Always succeeds.

father(jim,fred).

is logically equivalent to

father(jim,fred):-
true.

That is, any unit clause is equivalent to a non-unit clause with a single
subgoal true in the body.

fail/0

Always fails.

lives forever(X):-
fail.

is intended to mean that any attempt to solve the goal lives forever(X)
will fail.

66
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repeat/0

If it is asked to Redo then it will keep on succeeding.

test:-
repeat,
write(hello),
fail.

The goal test produces the output:

hellohellohellohellohellohellohellohellohello...

repeat/0 behaves as if it were defined in Prolog as:

repeat.
repeat:-

repeat.

call/1

The goal call(X) will call the interpreter as if the system were given the
goal X. Therefore X must be bound to a legal Prolog goal.

?- call(write(hello)).

hello
yes

To handle a query which has multiple goals then:

?- call((write(hello),nl)).

hello
yes

Note that we cannot write call(write(hello),nl) as this would be
taken to be a usage of call/2 with the first argument write(hello)
and the second argument nl) —and most systems do not have a call/2.

Note that call/1 is unusual in that its argument must be a legitimate Pro-
log goal. Also note that call(X) will be legal if and only if X is bound to
a legal goal.

7.2 The Problem of Negation

To maintain the connection with predicate logic, we would like to be able
to represent the negation of a statement. This, however, proves to be prob-
lematic.

Consider
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man(jim).
man(fred).

?- man(bert).

no

To say that man(bert) is not true we have to assume that we known all
that there is to know about man/1. The alternative is to say the the no
indicates don’t know and this is not a possible truth value!

Turning to Prolog, If we try to solve a goal for which there is no clause (as
in the case above) then we assume that we have provided Prolog with all
the necessary data to solve the problem. This is known as the Closed World
Assumption.

This enables us to stick to the desirable property that a goal can have only
two outcomes.

\+/1

This strangely named predicate is Prolog’s equivalent to the not (often
written as ¬ which stands for negation) of predicate logic. It is not named
not/1 because we it turns out that we cannot easily implement classical
negation in Prolog.

The predicate \+/1 takes a Prolog goal as its argument. For example:

?- \+( man(jim) ).

will succeed if man(jim) fails and will fail if man(jim) succeeds.

7.2.1 Negation as Failure

Negation as failure is the term used to describe how we use the closed world
assumption to implement a form of negation in Prolog. We now give an
example which uses a rule to define women in terms of them not being men.
Logically, ∀ x ∈ people ( ¬ man(x) =⇒ woman(x)).

man(jim).
man(fred).
woman(X):-

\+( man(X) ).

?- woman(jim).

no

The strategy is: to solve the goal woman(jim) try solving man(jim). This
succeeds —therefore woman(jim) fails. Similarly, woman(jane) succeeds.
But there is a problem. Consider:
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?- woman(X).

It succeeds if man(X) fails —but man(X) succeeds with X bound to jim.
So woman(X) fails and, because it fails, X cannot be bound to anything.

We can read ?- woman(X) as a query “is there a woman?” and this
query failed. Yet we know that woman(jane) succeeds. Therefore,
this form of negation is not at all like logical negation.
The problem can be highlighted using predicate logic. The query
woman(X) is interpreted as

∃ x ¬ man(x)

which, logically, is equivalent to

¬ ∀ x man(x)

Now Prolog solves this goal in a manner roughly equivalent to

¬ ∃ x man(x)

The only time we get something like the desired result if there is no
existentially quantified variable in the goal. That is, whenever \+/1
is used then make sure that its argument is bound at the time it is
called.

Also, note that \+(\+(man(X))) is not identical to man(X) since the
former will succeed with X unbound while the latter will succeed with X
bound, in the first instance, to jim.

This is the basis of a well known Prolog programming ‘trick’ —i.e.
it is a technique which is frowned upon by purists. The idea is to
test whether, for example, two terms will unify without the effect of
binding any variables. The goal \+(\+(X=2)) will succeed without
binding X to 2. The meaning is roughly X would unify with 2.

7.2.2 Using Negation in Case Selection

We can use \+/1 to define relations more carefully than previously. To
illustrate, consider

parity(X,odd):-
odd(X).

parity(X,even).

together with the set of facts defining odd/1.

The goal parity(7,X) is intended to succeed using the first clause. Suppose
that some later goal fails forcing backtracking to take place in such a way
that we try to redo parity(7,X). This goal unifies with the rest of the
second clause! This is not desirable behaviour. We can fix this using \+/1.

parity(X,odd):-
odd(X).

parity(X,even):-
\+(odd(X)).
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Thus \+/1 provides extra expressivity as we do not need a set of facts to
define even/1.

If we go back to a previous example found in section 6.3.1 then we can
now resolve the problem about how to deal with unwanted backtracking
in programs like:

nested list([Head|Tail]):-
sublist(Head).

nested list([Head|Tail]):-
nested list(Tail).

sublist([]).
sublist([Head|Tail]).

The problem is caused by the fact that a goal like nested list([a,[b],c,[d]])
will succeed once and then, on redoing, will succeed once more. This
happens because the goal unifies with the heads of both clauses —i.e.
with nested list([Head|Tail]) (the heads are the same). We can now
stop this with the aid of \+/1:

nested list([Head|Tail]):-
sublist(Head).

nested list([Head|Tail]):-
\+(sublist(Head)),
nested list(Tail).

sublist([]).
sublist([Head|Tail]).

Note that this is at the price of often solving the identical subgoal twice
—the repeated goal is sublist(Head). Note also that there is never
more than one solution for sublist(X).
Finally, we can define \+/1 using call/1 and the cut (!/0:

\+(X):-
call(X),
!,
fail.

\+(X).

This is a definition which essentially states that “if X, interpreted as
a goal, succeeds then \+(X) fails. If the goal X fails, then \+(X)
succeeds. To see this is the case, you have to know the effect of the
cut — fail combination ((!,fail). See later on in this chapter for more
details of this.

7.3 Some General Program Schemata

We have already introduced some list processing schemata. Now we discuss
some further, very general, program schemata.

Generate — Test

One of the most common techniques in Prolog is to use the backtracking in
first generating a possible solution, then testing the possible solution to see
if it is acceptable. If not, backtracking takes place so that another possible
solution can be generated.
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generate and test(Info,X):-
. . .
generate(Info,X),
test(Info,X),
. . .

In the above schema, the ellipsis (. . . ) indicates a number of subgoals (0 or
more).

We can distinguish two kinds of generator: a finite generator and an infinite
generator. We will illustrate with two different versions of a non-negative
integer generator which we will call int/1 —we cannot name this integer/1
since this is already defined (as a built-in predicate) and it only works with
mode integer(+) and we want int/1 to work with mode int(-).

Finite and Infinite Generators

We define a predicate integer with two digit square/1 to produce a pos-
itive integer that has a square which is greater than or equal to 10 and less
than 100.

integer with two digit square(X):-
int(X),
test square(X).

test square(X):-
Y is X*X,
Y >= 10,
Y < 100.

Here is the definition of int/1 which is a finite generator —because there
are only a finite number of unit clauses (containing no variables) used to
define int/1.

int(1).
int(2).
int(3).
int(4).
int(5).

The goal integer with two digit square(X) eventually fails because the
generator runs out of potential solutions. Now we define a version of int/1
which is an infinite generator (verifying this is left as an ‘exercise for the
reader’ !).

int(1).
int(N):-

int(N1),
N is N1 +1.
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On backtracking, this will generate a new solution for integer with two digit square(X)
until we test 10. From then on, we will keep generating with int/1 and fail-
ing with test square/1. We are trapped in a generate—test cycle with no
way out.

The usual way out is to ensure that once we have found the solution we
want then we commit ourselves to that solution and forbid backtracking
from ever seeking another solution. Again, the usual solution is to place
a cut (!/0) after the test. This results in:

integer with two digit square(X):-
int(X),
test square(X),!.

and the example demonstrates the (usually necessary) fix to stop a pro-
gram using the generate — test schema from overgenerating. However,
our solution now provides for only one solution to be generated!

Test — Process

Now we look at another fundamental schema. The idea with test — process
is to guarantee that some inputs will only be ‘processed’ if the input passes
a test.

test process(Info,X,Y):-
test(Info,X),
process(Info,X,Y).

where we assume that the Info is 0 or more arguments which are all input
arguments, the last but one argument is an input argument and the last
argument is a output argument. Although this gives a very procedural view
it is often possible to give a declarative reading.

We usually want to make sure that

1. test does not have alternative ways of confirming that the gener-
ated element is ok

2. process does not have alternative ways of ‘processing’ the input

In short, we often want only one way of finding an output.

We have already met a program that satisfies this schema —one for parity/2
(which is slightly rewritten here).

parity(X,Y):-
odd(X),
Y=odd.

parity(X,Y).
\+(odd(X)),
Y=even.

plus set of facts defining odd/1
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This example illustrates that if the input argument is an integer then we see
two cases: either the integer is even or it is odd. There is no third case. Nor
can any integer be both even and odd.

As in the above example, the usage of test — process is closely coupled with
the idea of writing all the clauses for a predicate in this form —each clause
is designed to handle one ‘class’ of input. The whole scheme falls down if
we do not design the ‘classes’ of input to be disjoint –i.e. no input falls into
more than one category. We also require that each input falls in at least one
category —to summarise, each input falls in one and only one class.

We can show a previous example which does not properly use the test —
process schema (for good reasons). Modifying the code using this schema
results in a different and useful program.

member(Element,[Element|Tail]).
member(Element,[Head|Tail]):-

member(Element,Tail).

Now member/2 can be used as a generator if the first argument is a variable
and its second argument is a list —as in the goal member(X,[a,b,c,d,e,f ].
The first solution for X is the first element of the list [a,b,c,d,e,f ]. On
redoing, we get, in succession, X bound to the different elements in the list.

We now rewrite using the test — process schema. We also rename the
predicate to the standard name of memberchk/2 (this is its usual name
in libraries of Prolog code).

memberchk(Element,[Head|Tail]):-
Element = Head.

memberchk(Element,[Head|Tail]):-
\+(Element = Head),
memberchk(Element,Tail).

This will no longer generate alternative solutions on backtracking for the
goal memberchk(X,[a,b,c,d,e,f ]) (because there are no alternative ways
of resatisfying it). If the mode of use is mode memberchk(+,+) then the
meaning is that we check that the first argument is an element of the list
(which is the second argument).

Failure-Driven Loop

We now introduce an extremely procedural programming technique for sim-
ulating a kind of iteration. The idea is deliberately generate a term and
then fail. This suggests the useless schema

failure driven loop(Info):-
generate(Info,Term),
fail.

failure driven loop(Info).
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Provided that the generator eventually fails any version of this schema will
always succeed —i.e. it will be equivalent to true.

We now use side effecting predicates to do something useful with the gener-
ated term.

A side-effecting predicate is one that is (often) logically equivalent to true
but also does something else that is non-logical. For example, write/1 and
nl/0 have the side-effect of writing material onto the terminal screen (usu-
ally). Also, consult/1 and reconsult/1 have the side-effect of changing the
program. The predicate read/1 has the side-effect of destructively reading
input from the terminal (or whatever).

To illustrate the problem: if we query Prolog with the goal
(write(hello),fail) then write/1 will be used to write hello on (we as-
sume) the terminal screen and the call to fail/0 will fail. Now, logically,
we have a statement with the truth value of false —so we have proved that
the goal cannot succeed and therefore there should be no message (hello)
on the screen.

Here is another example: if we try the goal (read(X),fail) then read/1
will be used to read some input from the user (we assume) and the call to
fail/0 will fail. Again, we have a statement with the truth value of false
—so the input should still be available for consideration. Yet we taken input
from the keyboard (or somewhere) and we do not put that input back so
that it can be reconsidered. The input has been consumed.

We can see that any predicate succeeds generating an effect that cannot be
undone on backtracking must be a side-effecting predicate.

The complete failure-driven loop schema can be taken as:

failure driven loop(Info):-
generate(Info,Term),
side effect(Term),
fail.

failure driven loop(Info).

This can be elaborated by having several side-effecting predicates, replacing
the fail/0 with some other predicate that fails and so on.

We illustrate with a simple example. We will use int/1 as a finite generator
and then print out the valid arguments for this relation on the screen.

int(1).
int(2).
int(3).
int(4).
int(5).

print int:-
int(X),
write(X),nl,
fail.

print int.
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This programming technique can be very useful. In the early days, it was
overused because it was space-efficient.

Some Practical Problems

We now come to some needs that cannot easily be satisfied and still retain
a clean declarative reading. We look at three problems that are intercon-
nected.

Commit

We have outlined the use of test — process to do case analysis but it was
necessary to have one clause for each case. If we have a goal which can
be satisfied via two different clauses then, on redoing, the same goal may
generate a different solution.

In reality, this situation can arise quite often —i.e. the tests we do on the
input do not divide the input into non-overlapping classes. Essentially, we
have two problems. We often want to make sure that only one clause is
legitimate —once it has been determined that the input passes some test.
We think of this as a statement of commitment to the solution(s) derived
through ‘processing’ the input.

test process(Info,X,Y):-
test(Info,X),
commit,
process(Info,X,Y).

When we backtrack and try to find another way of satisfying some program
that makes use of the test — process schema then we first try to find another
way of satisfying the process part. If that fails, then we try to resatisfy the
test part. We do not want this to happen.

Then, assuming that we cannot resatisfy the test part, we try to resatisfy
the goal making use of this program by trying different clauses.

Therefore there are two senses in which we may want to be ‘committed’: we
want to commit to using a single clause and we want to commit to the result
of a test —we do not want to run the risk that the test can be successful
(with the same input) twice.

Satisfy Once Only

Sometimes, we would like a way of stopping Prolog looking for other solu-
tions. That is, we want some predicate to have only one solution (if it has
one at all). This is the requirement that the predicate be determinate.

Naturally, predicates which do not have this property are indeterminate.
This is a desirable property sometimes —e.g. the generate — test schema
makes use of the generator being indeterminate. On the other hand, it
can cause major problems when a program has many predicates which are
unintentionally indeterminate. Our aim is to make sure that those predicates
which should be determinate actually are determinate.
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We have already met an example of a predicate (memberchk/2) that might
have been written with this situation in mind. We recall that member/2
used with mode member(-,+) behaves as a generator. Perhaps it is worth
pointing out that member/2 with mode member(+,+) is also, under
certain circumstances, resatisfiable —precisely when there are repetitions of
the sought element in the list which constitutes the second argument.

Of course, if we are dealing with lists–as–sets, we should have arranged it
so that the second argument does not have repeated elements. Anyway, it
is very desirable to have a determinate version of member/2 available.

memberchk(X,[X|Y]):-
make determinate.

memberchk(X,[Y|Z]):-
memberchk(X,Z).

Note this isn’t quite what we had before. Previously, we arranged for mem-
berchk/2 to be determinate with the help of \+/1. Stating our requirement
as above, we seem to be going outside of logic in order to tell the Prolog
interpreter that, once we have found the element sought, we never want to
consider this predicate as resatisfiable.

Fail Goal Now

We often search for the solution to a goal using several clauses for some
predicate. For example, we might have a social security calculation which
tries to assign how much money to give a claimant. Here is a fragment of
program:

calculate benefit(Claim Number,Nationality,Age,Other Details):-
Nationality = british,
calculate british entitlement(Age,Other Details).

calculate benefit(Claim Number,Nationality,Age,Other Details):-
Nationality = martian,
give up.

calculate benefit(Claim Number,Nationality,Age,Other Details):-
Nationality = french,
calculate french entitlement(Age,Other Details).

If we reach the situation where we realise that the whole search is doomed
then we may want to say something informally like ‘stop this line of approach
to the solution and any other corresponding line’. In the above, if we find
we are trying to assign benefit to a martian then we make the decision
that calculate benefit/4 should fail and therefore that there is no point
in trying to use any remaining clauses to find a solution.

In practice, we need to make use of this kind of action. Again, we are
potentially asking Prolog to behave abnormally.

In fact, in all these situations, we are asking Prolog to behave in a non-
standard way. Whatever the complications, it is hard top make do without
ways to:
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• Commit

• Make Determinate

• Fail Goal Now

7.4 What You Should Be Able To Do

You should be able to make use of the ‘predicates’ true/0,
fail/0, repeat/0 and call/1.
You should be able to describe the difference between the open
and closed world assumptions.
You should be able to describe the difference between classical
negation and negation as failure.
You should be able to distinguish side-effecting from non side-
effecting predicates.
You should be able to use Prolog negation to achieve the
effect of case selection.
You should be able to use the techniques of generate — test,
test — process and failure-driven loop. You should also be
aware of the needs for the techniques commit — process,
satisfy–only–once and fail–goal–now.



Chapter 8

Parsing in Prolog

parsing-chap

We introduce the facilities that Prolog provides for parsing.
This is done through the idea of a parse tree as applied to a
simple model for the construction of English sentences.
Three ways of parsing Prolog are described: the first illustrates
the ideas, the second is more efficient and the third provides
an easy way of coding a parser via Grammar Rules.
We then explain how to extract the parse tree and show how
to extend a parser using arbitrary Prolog code.

Later on in the course, you will be involved in trying to face up to the
problem of parsing ordinary english language sentences. For this lecture,
we shall also be interested in parsing sentences but we will look at the very
simplest examples.

First, what do we want the parser to do? We would like to know that a
sentence is correct according to the (recognised) laws of english grammar.

The ball runs fast

is syntactically correct while

The man goes pub

is not as the verb “go” (usually) does not take a direct object.

Secondly, we may want to build up some structure which describes the
sentence —so it would be worth returning, as a result of the parse, an
expression which represents the syntactic structure of the successfully parsed
sentence.

Of course, we are not going to try to extract the meaning of the sentence
so we will not consider attempting to build any semantic structures.

8.1 Simple English Syntax

The components of this simple syntax will be such categories as sentences,
nouns, verbs etc. Here is a (top down) description:
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Unit: sentence
Constructed from: noun phrase followed by a verb phrase

Unit: noun phrase
Constructed from: proper noun or determiner followed by a noun

Unit: verb phrase
Constructed from: verb or verb followed by noun phrase

Unit: determiner
Examples: a, the

Unit: noun
Examples: man, cake

Unit verb:
Examples: ate

8.2 The Parse Tree

Figure 8.1 shows the parse tree for the sentence:

the man ate the cake

with some common abbreviations in brackets. We must remember that

sentence
(s)

nounphrase
(np)

ÃÃÃÃÃÃÃÃ

verbphrase
(vp)

```````̀

determiner
(det)

»»»»»»

noun

HHH
nounphrase

(np)

XXXXXX

verb

»»»»»»

the man ate
determiner

(det)

»»»»»»

noun

HHH

the cake

Figure 8.1: A Parse Tree

many sentences are ambiguous —i.e. they result in different parse trees.
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8.3 First Attempt at Parsing

We assume that we will parse sentences converted to list format. That
is, the sentence “the man ate the cake” will be represented by the list
[the,man,ate,the,cake].

We use append/3 to glue two lists together. The idea is that append/3
returns the result of gluing takes input as lists in the first and second argu-
ment positions and returns the result in the third position.

sentence(S):-
append(NP,VP,S),
noun phrase(NP),
verb phrase(VP).

noun phrase(NP):-
append(Det,Noun,NP),
determiner(Det),
noun(Noun).

verb phrase(VP):-
append(Verb,NP,VP),
verb(Verb),
noun phrase(NP).

determiner([a]).
determiner([the]).
noun([man]).
noun([cake]).
verb([ate]).

Here is what happens to the query:

?- sentence([the,man,ate,the cake]).

append/3 succeeds with NP=[], VP=[the,man,ate,the,cake]
noun phrase/1 fails
append/3 succeeds with NP=[the], VP=[man,ate,the,cake]
noun phrase/1 fails
append/3 succeeds with NP=[the,man], VP=[ate,the,cake]
noun phrase/1 succeeds
. . .
verb phrase/1 succeeds

This is all very well but the process of parsing with this method is heavily
non deterministic.

Also, it suffers from not being a very flexible way of expressing some situa-
tions. For example, the problem of adjectives:

the quick fox
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is also a noun phrase.

We might try to parse this kind of noun phrase with the extra clause:

noun phrase(NP):-
append(Det,Bit,NP),
determiner(Det),
append(Adj,Noun,Bit),
adjective(Adj),
noun(Noun).

A little ungainly.

8.4 A Second Approach

We now try an approach which is less non-deterministic. We will start by
looking at:

sentence(In,Out)

The idea is that sentence/2 takes in a list of words as input, finds a legal
sentence and returns a result consisting of the input list minus all the words
that formed the legal sentence.

We can define it:

sentence(S,S0):-
noun phrase(S,S1),
verb phrase(S1,S0).

Here is a rough semantics for sentence/2.

A sentence can be found at the front of a list of words if there is a
noun phrase at the front of the list and a verb phrase immediately
following.

This declarative reading should help to bridge the gap between what we
want to be a sentence and the procedure for finding a sentence.

Here is the rest of the parser:

noun phrase(NP,NP0):-
determiner(NP,NP1),
noun(NP1,NP0).

verb phrase(VP,VP0):-
verb(VP,VP1),
noun phrase(VP1,VP0).

determiner([a|Rest],Rest).
determiner([the|Rest],Rest).
noun([man|Rest],Rest).
noun([cake|Rest],Rest).
verb([ate|Rest],Rest).
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As you can see, there is a remarkable sameness about each rule which, once
you see what is going on, is fairly tedious to type in every time. So we turn
to a facility that is built in to Prolog.

8.5 Prolog Grammar Rules

Prolog, as a convenience, will do most of the tedious work for you. What
follows, is the way you can take advantage of Prolog.

This is how we can define the simple grammar which is accepted ‘as is’ by
Prolog.

sentence --> noun phrase, verb phrase.
noun phrase --> determiner, noun.
verb phrase --> verb, noun phrase.
determiner --> [a].
determiner --> [the].
noun --> [man].
noun --> [cake].
verb --> [ate].

It is very easy to extend if we want to include adjectives.

noun phrase --> determiner, adjectives, noun.
adjectives --> adjective.
adjectives --> adjective, adjectives.
adjective --> [young].

This formulation is sometimes known as a Definite Clause Grammar (DCG).

We might later think about the ordering of these rules and whether they
really capture the way we use adjectives in general conversation but not
now.

Essentially, the Prolog Grammar Rule formulation is syntactic sugaring.
This means that Prolog enables you to write in:

sentence --> noun phrase, verb phrase.

and Prolog turns this into:

sentence(S,S0):-
noun phrase(S,S1),
verb phrase(S1,S0).

and

adjective --> [young].

into
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adjective(A,A0):-
’C’(A,young,A0).

where ’C’/3 is a built in Prolog Predicate which is defined as if:

’C’([H|T],H,T).

8.6 To Use the Grammar Rules

Set a goal of the form

sentence([the,man,ate,a,cake],[])

and not as

sentence.

or

sentence([the,man,ate,a,cake])

8.7 How to Extract a Parse Tree

We can add an extra argument which can be used to return a result.

sentence([[np,NP],[vp,VP]]) --> noun phrase(NP), verb phrase(VP).
noun phrase([[det,Det],[noun,Noun]]) --> determiner(Det), noun(Noun).
determiner(the) --> [the].
and so on

What we have done above is declare predicates sentence/3,
noun phrase/3, verb phrase/3, determiner/3 and so on. The explicit
argument is the first and the two others are added when the clause is read
in by Prolog. Basically, Prolog expands a grammar rule with n arguments
into a corresponding clause with n+2 arguments.

So what structure is returned from solving the goal:

sentence(Structure,[the,man,ate,a,cake],[])

The result is:

[[np,[[det,the],[noun,man]]],[vp,[...

Not too easy to read!
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We can improve on this representation if we are allowed to use Prolog
terms as arguments. For example, in foo(happy(fred),12) the term
happy(fred) is one of the arguments of foo/2. Such a term is known
as a compound term. We discuss this at greater length in chapter ??.
With the help of compound terms, we could tidy up our representation
of sentence structure to something akin to:

sentence([np([det(the),noun(man)]),vp([...

8.8 Adding Arbitrary Prolog Goals

Grammar rules are simply expanded to Prolog goals. We can also insert
arbitrary Prolog subgoals on the right hand side of a grammar rule but
we must tell Prolog that we do not want them expanded. This is done
with the help of braces —i.e. { }. For example, here is a grammar rule
which parses a single character input as an ASCII code and succeeds if the
character represents a digit. It also returns the digit found.

digit(D) -->
[X],
{ X >= 48,

X =< 57,
D is X-48 }.

The grammar rule looks for a character at the head of a list of input char-
acters and succeeds if the Prolog subgoals

{ X >= 48,
X =< 57,
D is X-48 }.

succeed. Note that we assume we are working with ASCII codes for the
characters and that the ASCII code for “0” is 48 and for “9” is 57. Also
note the strange way of signifying “equal to or less than” as “=<”.

8.9 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to write a simple parser for a small subset
of English.
You should be able to use Prolog’s grammar rules to define
the grammar of a simple language.
You should be able to describe how Prolog rewrites the gram-
mar rules into ‘standard’ Prolog.
You should be able to use the grammar rules to extract a parse
tree.

Exercise 8.1 Here is a Definite Clause Grammar:
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s --> np,vp.
np --> det,noun.
np --> det,adjs,noun.
vp --> verb,np.
det --> [a].
det --> [the].
adjs --> adj.
adjs --> adj,adjs.
adj --> [clever].
noun --> [boy].
noun --> [sweet].
verb --> [buys].

1. Give some examples of sentences that this grammar could parse.

2. Modify this DCG so that the parse returns information about the struc-
ture of the sentence.

3. Suppose that the DCG is given a sentence to parse containing a mis-
spelled word -say “boy”. Modify the DCG so that the information about
the structure of the sentence will include some information about any
unrecognised component.

4. Suppose now that the DCG is given a sentence to parse missing a word
or two. Modify the DCG so that it will identify the missing component.

The last two parts of this exercise are hard —it is essentially the problem of
robust parsing. We try to do the best we can to identify gaps, misspellings
and redundant information.



Chapter 9

Modifying the Search Space

extralogical

We describe solutions to various problems of control raised in
chapter ??.
We detail other useful Prolog built-in predicates that are non-
logical.

9.1 A Special Control Predicate

We now present a solution to the practical problems posed in chapter ??
about how to control Prolog’s search strategy. We summarised these issues
as ones of:

• Commit

• Make Determinate

• Fail Goal Now

In each of these cases the solution is to make use of a built-in predicate which
always succeeds —but with a very unpleasant side-effect. This notorious
predicate is known as the cut and written !/0.

The reason why cut (!/0) is so unpleasant are that it effects Prolog’s search
tree. Consequently, by adding a cut, the program’s meaning may change
radically. We sometimes say that a cut that does this is a red cut. On the
other hand, the placing of a cut may not change the intended meaning but
simply junk a part of the search tree where it is known that there is no legal
solution. Such a cut is termed a green cut. The Art of Prolog by Sterling
and Shapiro has a nice section on the cut [Sterling & Shapiro, 1986].

We now go over how to solve the three control problems.

9.1.1 Commit

Assume we want to make Social Security payments. That is, pay(X,Y)
means “pay the sum X to Y”. Assume that we also have this code fragment.
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pay(X,Y):-
british(X),
entitled(X,Details,Y).

pay(X,Y):-
european(X),
entitled(X,Details,Y).

In each clause, the first subgoal in the body is acting as a test in a program
using the test — process schema. We also assume that, for some reason,
we have not been able to apply the disjoint (and exhaustive) case analysis
technique.

Consequently, if we have successfully checked that a person is British and,
for some reason, the subgoal entitled(X,Details,Y) fails (or some later
computation forces backtracking back to redo the call to pay/2 that we
are considering) then there may be no point in

• checking if they are “european” (assuming that there are no regulations
under which British people can qualify for payment as being European
when they fail to qualify as British citizens).

• checking to see if there is more than one entry for the person in some
database accessed by british/1.

In the immediate situation, we want to be committed to telling Prolog not
to redo the british/1 subgoal and not to consider other clauses for pay/2
that might contribute an alternative.

The truth is, of course, that we may want these two consequences whether
or not entitled/3 fails.

If this is so, then we insert a cut as shown below and highlighted by a box .

pay(X,Y):-
british(X),
! ,
entitled(X,Details,Y).

pay(X,Y):-
european(X),
! ,
entitled(X,Details,Y).

We want to be committed to the choice for the pay/2 predicate. We can
see the use of !/0 as a guard that has two effects.

• On backtracking through the list of subgoals: a cut can be thought of
as indicating that all attempts to redo a subgoal to the left of the cut
results in the subgoal immediately failing. We sometimes say that any
unifications taking place prior to the cut have been frozen and cannot
be remade.

• On backtracking into the predicate once the call had exited: if one of
the clauses defining the predicate had previously contained a cut that
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had been executed then no other clauses for that predicate may be used
to resatisfy the goal being redone. We sometimes say that, once a cut
is executed, later clauses have been chopped out of the search space.

Note that, with the cut in the position it is above, it is still possible that
entitled/3 could be resatisfied. We have to guarantee that we have made
entitled/3 determinate before we can guarantee that pay/2 is determinate.
We have to do some more on this issue.

Also note that the effect of cut (!/0) prunes the search space only until the
parent goal of the cut fails. If we leave the Fail port of pay/2 and some
previous goal leads to another call to pay/2 then the cut (!/0) has no effect
until it is executed.

We also have to remember that cut (!/0) has two distinct effects: back-
tracking cannot redo any subgoals to the left of the cut and clauses in the
program database for the same predicate that are textually after the current
clause are unreachable. See figure 9.1 for a graphic representation of these
effects on a rather artificial program.

a(X):- b(X),c(X).
b(1).
b(4).
c(X):- d(X),!,e(X).
c(X):- f(X).
d(X):- g(X).
d(X):- h(X).
e(3).
f(4).
g(2).
h(1).

a(X)
©©©©©©©

XXXXXXXXXXXXXX
b(X)

2

X=1

d(1)
©©©©©©©

g(1)

HHHHHHH
h(1)

2

Frozen

©©©©©©©©©©

HHHHHHHHHH

c(X)
»»»»»»»»»»»»»»

©©©©©©©

XXXXXXXXXXXXXX
! e(X) f(X)

Chopped

Figure 9.1: The Effect of cut on the AND/OR Tree
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9.1.2 Make Determinate

We now go onto the key problem of making our programs determinate. That
is, if they succeed, then they succeed precisely once unless we really want
them to generate alternative solutions. Many programmers find taming
backtracking to be a major problem.

Consider the problem raised by this program:

sum(1,1).
sum(N,Ans):-

NewN is N-1,
sum(NewN,Ans1),
Ans is Ans1+N.

together with the goal

?- sum(2,X).

The meaning of sum/2 is that, for the first argument N (a positive integer),
there is some integer, the second argument, which is the sum of the first N
positive integers.

We know that, for the mode sum(+,-), there is only one such result.
Therefore, if we try to redo a goal such as sum(2,Ans) it should fail. We
could test that this is so with:

?- sum(2,Ans),write(Ans),nl,fail.

We would like the result:

3
no

Alas, here is the result using Edinburgh Prolog.

3
(a very very long wait)

We have a runaway recursion. Figure 9.2 shows the execution tree for the
goal sum(2,Ans). Now look at the goal:

?- sum(2,X),fail.

and the resulting fragment of the execution tree which is shown in figure 9.3.
Prolog goes into a non terminating computation. We want to make sure
that, having found a solution, Prolog never looks for another solution via
Redoing the goal. Figure 9.4 shows the consequence when the cut (!/0) is
used.
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sum(2,Ans1)

@
@

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

¡
¡

©©©©©©©©©©©©©©©©

©©©©©©©©©©©©©©©©

2

2 2

sum(NewN1,Ans11) Ans1 is Ans11+2

Ans1=3

NewN1 is 2-1

NewN1=1

sum(1,1)

Ans11=1

sum(1,1)

Figure 9.2: The First Solution to the Goal sum(2,Ans)

sum(1,1):-
! .

sum(N,Ans):-
NewN is N-1,
sum(NewN,Ans1),
Ans is Ans1+N.

9.1.3 Fail Goal Now

We are trying to solve the problem that arises when we realise, in the middle
of satisfying subgoals for some goal, that the goal will never succeed —even
if we try other clauses which have heads that unify with the goal.

Here is a way of defining woman/1 in terms of man/1 where we base the
idea that, in trying to establish that someone is a “woman”, we prove that
they are actually a “man” and there is therefore no point in trying to find
some other proof that this person is a woman.

woman(X):-
man(X),
! ,
fail.

woman(X).
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sum(NewN1,Ans11)

sum(NewN2,Ans12)Ans11 is Ans12+NewN1

Ans1 is Ans11+2

Ans1 6=3

NewN1 is 2-1

NewN1=1

NewN2 is N2-1

NewN2=0

sum(1,1)

Ans11 6=1

sum(1,1)

Figure 9.3: Resatisfying the Goal sum(2,Ans)

Putting it a slightly different way, to solve for woman(jim) we try
man(jim). If that succeeds then we want to abandon the attempt to prove
woman(jim) without trying any other clauses for woman/1.

Note that the use of the cut (!/0) stops any attempt to resatisfy man/1
once backtracking is forced through fail/1 failing. Note also that the second
clause for woman/1 will not be used after the cut—fail combination has
been met.

We call this use of cut in conjunction with fail/0 the cut—fail technique.

The above code for woman/1 is a special case of Prolog’s implementation
of negation as failure. Here is a possible definition of \+/1 using cut (!/0)
and call/1.

\+(Goal):-
call(Goal),
!,
fail.

\+(Goal).

9.2 Changing the Program

The use of cut (!/0) changes the search space while the program is run-
ning. We now introduce a family of predicates that can be used to change
the search space during program execution. We do this with the strongest
request:
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sum(NewN1,Ans11) Ans1 is Ans11+2

Ans1 6=3

NewN1 is 2-1

NewN1=1

sum(1,1)

Ans11=1

sum(1,1)

This part of the seach tree pruned by the cut!

Figure 9.4: The Effect of the cut on the Goal sum(2,Ans)

Never use these predicates unless you really have to do so

9.2.1 Do Not Do It!

The Prolog database is the set of clauses loaded into Prolog via consult/1
or reconsult/1 (these predicates can also be used at run-time so they are
subject to the same strictures as the rest described below).

If, during run-time, a new clause is introduced into the Prolog database
then this can change the behaviour of the program as, often, the program’s
meaning changes.

The predicates that we refer to are as follows:

Program Modifying Predicates
assert(C) Assert clause C
asserta(C) Assert C as first clause
assertz(C) Assert C as last clause
retract(C) Erase the first clause of form C
abolish(Name,Arity) Abolish the procedure named F with arity N

Note that all the predicates except retract/1 are determinate. They are
not resatisfiable. The predicate abolish/2 has mode abolish(+,+) while
the predicate retract/1 can be used with mode retract(-). This latter
predicate can therefore be used to ‘wipe out’ a complete program as in:

?- retract(X),fail.
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This will fail with the side-effect of removing all the clauses loaded. We can
remove just some clauses as in:

?- retract(foo(1,X)).

will remove all clauses whose heads unify with foo(1,X).

Note that to add a clause which is also a rule you will need to write
assert((a:- b)) and not assert(a:-b). See chapter ?? for an explanation.

Together, these predicates can be used to implement global flags and a
form of global variable. This almost always makes it harder to understand
individual parts of the program —let alone the disastrous effect such changes
have on the declarative reading of programs.

All these predicates are side-effect ing. Therefore, backtracking will not undo
these side-effects. For example, if assert/1 is used to maintain a database
of results found so far then, on backtracking, Prolog will not remove these
results.

Further, the program becomes sensitive to interupts. It has been known for
someone to abort a program (using ^C and then a for abort) between the
asserting of a new clause and the retracting of an old clause —leaving an
unexpected old clause around which interfered badly with the subsequent
execution of the program.

If a problem seems to require the use of assert/1 then, usually, there is
another way of doing things.

9.2.2 Sometimes You have To!

There are one or two occasions when you might want to use these predicates.
The main one is when you have definitely proved that something is the case.
That is, there is no way in which some statement (added to the program
as a clause) can be false. Sometimes, of course, a program is supposed to
modify the Prolog database. For example, consult/1 and reconsult/1.

Often, we do not want to modify the program itself —rather, we want to
change the data the program accesses. There is a facility in Edinburgh
Prolog known as the recorded database. This is a way of storing Prolog
terms under a key. Such terms are hidden from the listing/0 program. The
predicates that access this recorded database are:

Program Modifying Predicates
erase(R) Erase the record with reference R.
record(K,T,R) Record term T under key K, reference R.
recorda(K,T,R) Make term T the first record under key K, reference R.
recorded(K,T,R) Term T is recorded under key K, reference R.
recordz(K,T,R) Make term T the last record under key K, reference R.

These can be used to squirrel away information to be used by the program
itself. An example is the predicate random/2:

random(Range,Num):- % to choose random number in range
recorded(seed,Seed,Ref), % get seed from database
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erase(Ref), % delete old value of seed
Num is (Seed mod Range) + 1, % fit seed into range
NewSeed is (125*Seed+1) mod 4093,% calculate new value
record(seed,NewSeed, Ref). % and assert it into database

This shows how we can maintain information about the seed used to generate
the next pseudo-random number. Note that, unless we want to delete an
entry (using erase/1) we usually use an anonymous variable for the record
reference.

Using this family of predicates is more elegant (and sometimes more efficient)
but suffers from the same problems as the assert family.

9.3 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to use the cut (!) to implement the
techniques of commit, make–determinate and fail–goal–now
(cut—fail).
You should know how to change the program at run-time and
understand the dangers in doing so. You should know some of
the circumstances when it is acceptable to do so.
You should know how to use the recorded database.

Exercise 9.1 1. Given the following clauses, it is required to place cut(s)
in the program to achieve the given outputs: First, determine what the
output will be without placing any cuts in the program.

female author:-
author(X),
write(X),
write(’ is an author’),
nl,
female(X),
write(’ and female’),
nl.

female author:-
write(’no luck!’),
nl.

author(X):-
name(X).

author(X):-
write(’no more found!’),
nl,
fail.

name(sartre).
name(calvino).
name(joyce).
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female(murdoch).
female(bembridge).

and here are the desired outputs. Make sure that you use only one cut
to get the desired output.

(a) sartre is an author
no more found!
no luck!

(b) sartre is an author
calvino is an author
joyce is an author
no more found!

(c) sartre is an author
no luck!

(d) sartre is an author

(e) sartre is an author
calvino is an author
joyce is an author
no luck!

2. Here is an example of code taken from one of the standard Prolog
libraries —only all the cuts have been removed! Try to put them back.

delete([], , []).
delete([Kill|Tail], Kill, Rest) :-

delete(Tail, Kill, Rest).
delete([Head|Tail], Kill, [Head|Rest]):-

delete(Tail, Kill, Rest).

The semantics is roughly “remove the element named in the second
argument from the list in the first argument to produce the list in the
third argument (which does not contain any copies of the element to
be removed)”.

Therefore, the first two arguments are supposed to be inputs and the
third an output. Note that the predicate must be determinate so that,
if asked to Redo, it will fail.

3. Define a predicate disjoint/1 which is true only when the argument
to disjoint/1 contains no repeated elements. Make sure that the pred-
icate is determinate.

Now use the cut—fail method to define the same predicate.
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4. Try writing plus/3 which declares that “the first two arguments add
up to the third argument provided all the instantiated arguments are
integers”. If, however, less than two argument are not integers then
the predicate should fail and print out some pleasing error message.

Note that this is not equivalent to “Z is X + Y” and get the cuts in!



Chapter 10

Prolog Syntax

syntax

We describe Prolog syntax more formally.
We introduce the concept of a Prolog term, a variation of the
logical variable and arbitrarily nested terms.
We explain how two Prolog terms are unified and demonstrate
the need for a special check to ensure that we do not get infinite
datastructures.
We show that lists are also terms and illustrate how to con-
catenate two lists together.
We also show that the structure of every Prolog clause is also
a Prolog term.

Prolog Terms are one of:

• Constant

• Variable

• Compound Term

10.1 Constants

A Constant is one of:

• Atom

• Integer

• Real Number

Atoms are made up of:

• letters and digits: AB...Zab...z01...9 and (underscore)

• symbol: any number of +, -, *, /, \, ^, <, >, =, ~, :, ., ?, @, #, $ &

• quoted strings: ’any old character’ —but the single quote character is
handled specially

Normally, atoms start with a lower case letter. Note that, in a quoted atom,
you can include a “ ’ ” by prefixing it with another “ ’ ”. So, to print a “ ’ ”
on the screen you will need a goal like write(’ ’ ’ ’).
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10.2 Variables

Variables usually start with a capital letter. The only interesting exception
is the special anonymous variable written and pronounced “underscore”.
In the rule

process(X,Y):-
generate( ,Z),
test( ,Z),
evaluate(Z,Y).

the underscores refer to different unnamed variables. For example, here are
two versions of member/2.

member(X,[X|Y]).
member(X,[Y|Z]):-

member(X,Z).

member(X,[X| ]).
member(X,[ |Z]):-

member(X,Z).

Note that, in the clause,

know both parents(X):-
mother( ,X),
father( ,X).

the underscores do not refer to the same object. The reading is roughly
that “we know both the parents of X if someone(name unimportant) is the
mother of X and someone else (unimportant) is the father”. Note that
Prolog regards the two occurrences of the anonymous variable in the above
as different variables.

10.3 Compound Terms

A Compound Term is a functor with a (fixed) number of arguments each of
which may be a Prolog term.

This means that we can arbitrarily nest compound terms. For some exam-
ples:

happy(fred)
principal functor = happy
1st argument = a constant (atom)

sum(5,X)
principal functor = sum
1st argument = constant (integer)
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2nd argument = variable

not(happy(woman))
principal functor = not
1st argument = compound term

Nesting compound terms may be of use to the programmer. For example,
the clause

fact(fred,10000).

is not as informative as

fact(name(fred),salary(10000)).

which can be thought of as defining a PASCAL-type record structure.

10.4 (Compound) Terms as Trees

Take the compound term

sentence(np(noun(fred)),vp(verb(swims)))

and construct a tree. Start by marking the root of the tree with the principal
functor and draw as many arcs as the principle functor has arguments. For
each of the arguments, repeat the above procedure.

sentence
!!!!!!

aaaaaa
np vp

noun verb

fred swims

10.5 Compound Terms and Unification

Consider

?- happy(X)=sad(jim).

—fails, because we know that it is necessary that the principal functors and
their arities are the same for unification to succeed.
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?- data(X,salary(10000))=data(name(fred),Y).

—succeeds, because, having matched the principal functors (and checked
that the arities are the same) we recursively try to match corresponding
arguments. This generates two subgoals:

X = name(fred)
salary(10000) = Y

which both succeed.

10.6 The Occurs Check

This is an aside. If we try to unify two expressions we must generally avoid
situations where the unification process tries to build infinite structures.
Consider:

data(X,name(X)).

and try:

?- data(Y,Y).

First we successfully match the first arguments and Y is bound to X. Now
we try to match Y with name(X). This involves trying to unify name(X)
with X. What happens is an attempt to identify X with name(X) which
yields a new problem —to match name(X) against name(name(X)) and so
on. We get a form of circularity which most Prolog systems cannot handle.

To avoid this it is necessary, that, whenever an attempt is made to unify a
variable with a compound term, we check to see if the variable is contained
within the structure of the compound term.

This check is known as the occurs check. If we try to unify two terms and
we end up trying to unify a variable against a term containing that variable
then the unification should fail.

Most Prolog implementations have deliberately missed out the occurs check
—mostly because it is computationally very expensive.

Consequently, the goal X=f(X) will usually succeed where it should really
fail. The most common way in which this error might manifest itself is when
the system tries to print out the binding for X. This usually results in an
attempt to print an infinite term.

?- X=f(X).
X=f(f(f(f(f(f(f(f(f(f(f(f(f(f(f...
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10.7 Lists Are Terms Too

If a list is a term then it must be a compound term. What, then is its
principal functor? Predicates have a fixed arity but lists can be any length
—so what is the arity of the principle functor?

For the moment only, let us suppose we have a gluing agent which glues an
element onto the front of a list. We know this is a reasonable supposition
because we already have a list destructor/constructor that works like this.

[a,b,c,d] = [Head|Tail]
—results in Head=a, Tail=[b,c,d]

We might think of this constructor as a predicate cons/2. We have to build
lists like this. Note, however, that there is no built-in predicate named
cons/2 —the real name for the list constructor function is ./2!

In Prolog, the empty list is represented as []. In some implementations, the
empty list is named “nil” —but the Prolog you will use does not use this
name.

Familiar Intermediate Compound Term
List Notation Form Form
[ ] []
[a] cons(a,[])
[b,a] cons(b,[a]) cons(b,cons(a,[]))
[c,b,a] cons(c,[b,a]) cons(c,cons(b,cons(a,[])))

Now to represent the lists as trees —but we will distort them a little:

r []

[]

r []

[a]

a

r r []

[a,b]

b a

You will have noticed that we could have written cons where we have writ-
ten . —well, remember that Prolog doesn’t use a meaningful name for the
constructor cons/2. Really, the constructor is ./2. For (textual) explana-
tion purposes, we shall stick to using cons/2.

Now we will show how to unpack the structure of a non-flat list. We do this
by building up the structure from left to right.

[a,[b,c],d]
goes to

cons(a,[[b,c],d])
goes to

cons(a,cons([b,c],[d])
goes to

now [b,c] is cons(b,[c])
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that is, cons(b,cons(c,[]))
cons(a,cons(cons(b,cons(c,[])),[d])

goes to
cons(a,cons(cons(b,cons(c,[])),cons(d,[])))

As this is difficult to read, we construct a tree using the method for drawing
trees of compound terms.

r

a

r

r

b

r

c

[]

r

d

[]

10.8 How To Glue Two Lists Together

We want to ‘glue’, say, [a,b] to [c,d,e] to give the result [a,b,c,d,e]. That
is, we want a predicate append/3 taking two lists as input and returning
the third argument as the required result.

Here are the two lists as trees:

r r r []

c d e

r r []

a b

You might think of checking to see whether cons([a,b],[c,d,e]) correctly
represents the list [a,b,c,d,e]. Look at this ‘solution’ as a tree.

r r r r []

c d e

r r []

a b

It is not the required
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r r r r r []

a b c d e

Let’s try again:

r r r []

c d e

r r []

a b

We could solve our problem in a procedural manner using our list decon-
structor as follows:

Lop off the head a of the first list [a,b]
Solve the subproblem of gluing [b] to [c,d,e]

Put the head a back at the front of the result

But we have a subproblem to solve:

Lop off the head b of the first list [b]
Solve the subproblem of gluing [] to [c,d,e]

Put the head a back at the front of the result

But we have a subproblem to solve:
Gluing [] to [c,d,e] is easy..the result is [c,d,e]

First thing to note is that there is a recursive process going on. It can be
read as:

Take the head off the first list and keep it until we have solved
the subproblem of gluing the rest of the first list to the second
list. To solve the subproblem simply apply the same method.

Once we are reduced to adding the empty list to the second
list, return the solution —which is the second list. Now, as the
recursion unwinds, the lopped off heads are stuck back on in the
correct order.

Here is the code:

append([],List2,List2).
append([Head|List1],List2,[Head|List3]):-

append(List1,List2,List3).
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10.9 Rules as Terms

Consider:

happy(X):-
rich(X).

If this is a term then it is a compound term. Again, what is its principal
functor and its arity?

1 Principal Functor is

:-

Usually, the functor is written in infix form rather than the more usual prefix
form.

2 Arity is

2

3 The above rule in prefix form

:-(happy(X),rich(X)).

But what about

happy(X):-
healthy(X),
wealthy(X),
wise(X).

Trying to rewrite in prefix form:

:-(happy(X),whatgoeshere?).

Note that the comma ‘,’ in this expression is an argument separator. In the
definition of happy/1 above, the commas are read as “and”.

Yes,

healthy(X),wealthy(X),wise(X).

is also a compound term with principal functor

,
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and arity 2. Since we have to represent three subgoals and the arity of ‘,’ is
2 we again have a nested compound term. The correct prefix form for the
example is:

’,’(healthy(X),’,’(wealthy(X),wise(X))).

Note: try the goal display((healthy(X),wealthy(X),wise(X))) to see
the “truth”. Also, note that, for a reason as yet unexplained, you need an
extra pair of brackets around the goal you want printed via display/1.

Here is the tree:

,
©©©©©©

wealthy(X)

HHHHHH

wise(X)

,
©©©©©©

healthy(X)

HHHHHH

:-
©©©©©©

happy(X)

HHHHHH

10.10 What You Should Be Able To Do

You should be able to use the anonymous variable correctly.
You should know how to form Prolog atoms.
You should be able to construct a tree to represent any com-
pound term —including lists and rules.
You should be able to determine whether or not two Prolog
terms unify.
You should know what the occurs check is for and when it
should be used.



Another Interlude:
Input/Output

We describe how to make use of input and output streams.
We show how to read from files and write to files.
We describe how to read individual Prolog terms and how to
build a ‘consult’ predicate.
We illustrate the development of several example programs to
demonstrate how to write Prolog programs.

We discuss a number of practical issues.

Testing a Predicate

Suppose that we want to test the predicate double/2 to see if it works for
its intended inputs.

double(X,Y):-
Y is 2*X.

To do this, we write a test predicate:

test:-
read(X),
double(X,Y),
write(Y),
nl.

Here is a transcription of executing the query test:

?- test.
|: 2.
4
yes

Note that, since we are using read/1 which only accepts valid Prolog terms
terminated by a “.” followed by Return (in this case), we have to enter
input integers as 2.!
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Now to make this into a loop. The easy way is to recursively call test/0.
We would prefer, however, to put in a test so that we can abort the loop.
This requires an end-of-input marker.

test:-
read(X),
\+(X = -1),
double(X,Y),
write(Y),
nl,
test.

When we input the end-of-input marker (-1) we backtrack to read/1 which
fails (for this Prolog implementation!) and test/0 fails as there are no
other clauses. We could always add a second clause (after —not before)
which guaranteed that the goal test succeeded once the end-of-input marker
was met.

Note that it is up to us to make sure that read/1 is never asked to
process non-integer inputs. We could always define and use our own
read integer/1 to catch non-integer input.

Input/ Output Channels

The standard input stream is taken from the keyboard and is known as
“user”.

Think of the stream of characters typed in as issuing from a file called “user”.

The standard output stream is directed to the terminal screen and is
known as “user” too.

Think of the stream of characters issuing from Prolog as going to a file
called “user”.

Input/ Output and Files

Let us take our input data from a file called “in”.

go:-
see(in),
test,
seen.

We wrap the test/0 predicate into a predicate go/0 which takes input from
the specified file “in”. This file should contain legal Prolog terms —for the
predicate double/2 we want something like:

2.
23.
-1.
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Facilities for Redirecting Input
see/1 Take input from the named file
seen/0 Close the current input stream and take input from user

How do you find out what the current input stream is?
seeing/1 Returns name of current input stream

Now to redirect output to a file named “out”:

go:-
tell(out),
see(in),
test,
seen,
told.

Using the same file “in” as previously, “out” will contain:

4
46

Facilities for Redirecting Output
tell/1 Send output to the named file
told/0 Close the current output stream and send output to user

How do you find out what the current output stream is?
telling/1 Returns name of current output stream

The End of File Marker

When read/1 encounters the end of a file it returns the Prolog atom

end of file

So we can rewrite test/0:

test:-
read(X),
\+(X = end of file),
double(X,Y),
write(Y),
nl,
test.

and now we have our end-of-input marker as the atom end of file.
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Input of Prolog Terms

Both consult/1 and reconsult/1 have been described in chapter 5.5. Pro-
log will try to read a clause at a time from the named file. So any error
message only refers to the current term being parsed.

Of course, if Prolog cannot find the end properly then we have problems.
The Prolog you are using will load all clauses that parse as correct and
throw away any ones that do not parse.

Some example problems: the first is where we have typed a ‘,’ instead of a
‘.’.

a:- a:-
b, b,
c, is read as c,

d:- d:-e.
e.

There are problems with this reading which will be reported by Prolog.
Here is another problem caused by typing a ‘.’ for a ‘,’.

a:- a:-
b. b.
c, is read as c,d:-e.

d:-
e.

This is basically illegal as we are seen to be trying to insert a clause defining
,/2 into the Prolog database.

Defining Your Own Consult

For this, we need some additional information about the side-effecting predicate
assert/1. Note that you should make use of this predicate as little as possible. If
tempted to use it, think again.

The predicate assert/1 takes a legal Prolog clause as its argument. A call with a
legal argument will always succeed with the side-effect of inserting the clause in the
database —usually, at the end of any clauses with the same principle functor and
arity (there is a variant, asserta/1, which can be used to position a new clause for
a predicate at the beginning).

Essentially, we redirect input to a named file, read a clause, assert it and recurse.

my consult(File):-see(File),
my read(X),
my process(X),
seen.

my process(X):-
\+(X=end of file),
my assert(X),!,
my read(Y),
my process(Y).
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my process(X):-
\+(X=end of file),
my read(Y),!,
my process(Y).

my process(end of file).
my read(X):-

read(X),!.
my read(X):-

my read(X).
my assert(X):-

assert(X).

There are some subtleties here. We have to consider various problems with, in-
evitably, different treatments.

The first problem is that of syntactically incorrect input. To handle this, we have
defined a resatisfiable form of read/1. The predicate my read/1 is designed
so that, if read/1 fails, we just try again. Since read/1 has the side-effect of
throwing away the offending input, we can have a go with another chunk of input.
This mimics the behaviour of consult/1.

The second problem is to make sure that end of file is treated properly —we do
not want to insert it into our database nor do we want to force backtracking to take
place back into my read/1! The simplest solution is to realise that we only want
to keep resatisfying my read/1 if read/1 fails owing to a syntactic error. Once
read/1 succeeds we would like to be committed. Hence we use case selection in
my process/1 making use of \+/1. This means that, on encountering end of file,
we will use the third clause of my process/1.

There is a third problem which this procedure can handle. There are syntactically
correct Prolog terms which are not legal Prolog clauses. For example, a,b:-c. is
a legal term but not a legal clause. The predicate my assert/1 will fail and we will
then try the second clause of my process/1 which will pick up some more input
and try to handle that. The cut (!/0) is needed in the first and second clauses of
my process/1 because we are certain that if we have successfully ‘processed’ a
clause then we are committed from there on.

There is a fourth problem. If there is a query (or directive) in the file consulted
such as ?- write(hello) then we do not want to assert this clause —we want to
issue some goal to the Prolog interpreter. This could be handled by two extra
clauses for my assert/1. One of these would be my assert((?- X)):- !,call(X).
Fixing this program to deal with this fourth difficulty can be left as an exercise for
the reader (again).

The fifth problem is to write your own version of reconsult/1. This is a little
trickier.

The sixth problem is not immediately obvious —but remember that Pro-
log converts a grammer rule like s --> np,vp into something like
s(S,S0):- np(S,S1), vp(S1,S0). Therefore, we ought to arrange to handle this.

In reality there is one further problem. It is possible to write one’s own
transformation rule to turn some legal Prolog clause into another one using
term expansion/2. This, however, can be hidden inside the call to the predi-
cate that transforms grammar rules.

What You Should Be Able To Do

After finishing the exercises at the end of the chapter:
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You should be able to write a program to read input from one
file and write output to another file.
You should also understand something of how the Prolog consult-
loop works and (possibly) be able to write your own version.



Chapter 11

Operators

operators

We describe some familiar operators.
We define the three forms which they may take.
We introduce and describe the notions of operator precedence
and operator associativity.
We then describe how to define new operators and then how to
parse complex terms containing several user-defined operators.

An operator is a predicate which has some special properties.

Here is a list of ones we have met already:

+ − ∗ /
< =< > >=
= is \+
, −− > : − ?−

Note that \+/1 is an operator. So we can write \+(man(jim)) as \+
man(jim).

11.1 The Three Forms

11.1.1 Infix

Here are some examples of arithmetic expressions that use infix operators:

3 + 2 23− 2 8 ∗ 2 30/2 2 < 7 6 > 2 Y is 23

All the infix operators used in the above are necessarily binary operators
—i.e. they have an arity of 2. Each of the above terms can be rewritten in
‘regular’ Prolog syntax as

+(3, 2) −(23, 2) ∗(8, 2) /(30, 2) < (2, 7) > (6, 2) is(Y, 23)
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Remember that the use of the inequality operators requires that both argu-
ments are evaluated before unification is applied. For is/2, only the second
argument is evaluated before unification is applied.

Here are some examples of infix operators used in the basic syntax of Prolog
clauses.

healthy(jim), wealthy(fred) adjective --> [clever] a:- b

These infix operators are also binary. Here are their regular forms.

’,’(healthy(jim), wealthy(fred)) -->(adjective, [clever]) :-(a,b)

Note how the functor ,/2 has to be ‘protected’ with single quotes as in ’,’.

11.1.2 Prefix

Some expressions using prefix operators:

\+ man(jane) + 23 - 12

and here are the equivalent regular expressions:

\+(man(jane)) +(23) -(12)

Inevitably, prefix operators are associated with unary predicates —-i.e. they
have an arity of 1.

11.1.3 Postfix

There are no predefined postfix operators but this one might have existed!

X is a factorial

If it had then it would have been writable in the regular form
is a factorial(X). As with prefix operators, postfix operators have an arity
of 1.

11.2 Precedence

We will now look at the structure of some Prolog expressions:

happy(jim):-
healthy(jim),
wealthy(jim).

We assume that it is always possible to represent a Prolog expression as a
tree in an unambiguous way. Is this
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wealthy(jim)

,
©©©©©©

healthy(jim)

HHHHHH

:-
©©©©©©

happy(jim)

HHHHHH

which corresponds to happy(jim):- (healthy(jim),wealthy(jim)) or

wealthy(jim)

:-
©©©©©©

happy(jim)

HHHHHH

,
©©©©©©

healthy(jim)

HHHHHH

which corresponds to (happy(jim):- healthy(jim)),wealthy(jim). We
can see that the first version is the one we have taken for granted. We
describe this situation by saying that ,/2 binds tighter than :-/2.

This relates to the way we are taught to calculate arithmetical expressions in
that we are told that we do multiplication before addition (unless brackets
are used to override this). But there is another way to think of things: how
to construct the expression tree. In this case, we choose the root to be
the operator that is ‘loosest’ (in opposition to ‘tightest’ for computational
purposes).

The issue is decided by operator precedence.

To construct a tree which describes a Prolog expression we first look for
the operator with the highest precedence (this is in some sense the opposite
of the way we compute a function). If this operator is an infix one, we can
divide the expression into a left hand one and a right hand one. The process
is then repeated, generating left and right subtrees.
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Operator Precedence
:- 1200
--> 1200
, 1000
\+ 900
is 700
< 700
= 700
=< 700
> 700
>= 700
+ 500
- 500
* 400
/ 400

We still need to decide what to do with two operators of the same precedence.
Should we regard

3 - 2 - 1

as one or the other of:

1
-©©©

3

HHH

-©©©

2

HHH

1

-©©©
2

HHH

-©©©
3

HHH

and, remember, that we are not yet talking about arithmetic evaluation!

We can use brackets to distinguish

(3 - 2) -1

from

3 - (2 - 1)

but we have a special way of distinguishing which interpretation we wish
Prolog to make. In the above arithmetic example, the left hand tree has
two subtrees hanging from the root “-”. The left hand one has “-” as its root
while the right hand one is not so allowed. We say that this interpretation
of “-” is left associative.

The normal interpretation of “-” is left associative. The common left asso-
ciative operators are:

* / + - div 1

Are there any right associative operators? Yes —consider how we are to
disambiguate

1div/2 is integer division. It is a synonym for ///2 —read this as an infix operator of
arity 2 written //.
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a,b,c

where “a”, “b” and “c” are all legal Prolog subgoals.

c
,

©©©
a

HHH

,
©©©

b

HHH

(a,b),c
(left associative)

c

,
©©©

b

HHH

,
©©©

a

HHH

a,(b,c)
(right associative)

The answer is that ,/2 is right associative. Usually, we do not have to
concern ourselves with the details of this.

In all the previous cases we have allowed exactly one subtree to have, as
its root, the same operator as the “principal” root. We can extend this to
permit operators of the same precedence. Thus, since “+” and “-” have the
same precedence, we know that both operators in

3 - 2 + 1

are left associative (and legal) and therefore the expression represents

(3 - 2) +1.

Sometimes, we do not wish to permit left or right associativity. For example,
obvious interpretations of:

a:- b :- c
Y is Z+1 is 3
a --> b --> c

do not readily spring to mind. Therefore we make it possible to forbid the
building of expressions of this sort.

11.3 Associativity Notation

11.3.1 Infix Operators

Left Associative yfx
Right Associative xfy
Not Associative xfx

Note that “x” indicates that the indicated subtree must have, as its root,
an operator of lower precedence than that of the root.

The “y” indicates that the root of the subtree may have the same precedence
as the operator that is the root of the tree.

The “f” indicates the operator itself.
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11.3.2 The Prefix Case

Here are a number of unary, prefix operators:

Operator Precedence
:- 1200
?- 1200
\+ 900
(unary) + 500
(unary) - 500

We regard a prefix operator as having only a right hand subtree. We must
decide which of the above may be right associative. That is, which of the
following make sense:

+ + 1
\+ \+ happy(jim)
:- :- a

Of these possibilities, we only accept \+/1 as right associative.

11.3.3 Prefix Operators

Right Associative fy
Not Associative fx

11.3.4 Postfix Operators

As we have no examples here at the moment, here is the table:

Left Associative yf
Not Associative xf

11.4 How to Find Operator Definitions

It is possible to find out the associativity and precedence of any operator
—whether it is a built-in one or a user-defined one— with the help of cur-
rent op/3. For example, here is how to find out about +:

?- current op(X,Y,+).
X=500
Y=fx ;

X=500
Y=yfx

produces two solutions (if we ask for a further solution after the first one is
found). The first solution is the precedence and associativity for unary +
(in that order) and the second is for binary +. Note that you can get all
the operators currently known with the help of a failure-driven loop:
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?- current op(X,Y,Z),write op(X,Y,Z),fail.
write op(Precedence,Associativity,Operator):-

write(’Operator ’),write(Operator),
write(’ has precedence ’),write(Precedence),
write(’ and associativity ’),write(Associativity),
nl.

You will find some strange things amongst the 45 different operator decla-
rations.

11.5 How to Change Operator Definitions

We will illustrate with an infix operator and/2 and another or/2. We will
choose the precedence of and/2 to be greater than that of or/2. This means
that we interpret:

she is clever and rich or healthy

as

healthy

or
©©©©©

rich

HHHHH

and©©©©©
she is clever

HHHHH

Since and/2 reminds us of ,/2 we will give it the same precedence and
associativity:

Precedence Associativity
1000 xfy

The required command is

op(1000,xfy,and).

The predicate op/3 takes a precedence as its first argument, a legal associa-
tivity for its second argument and an operator name for its third argument.
If given legal arguments, it succeeds with the side-effect of adding or chang-
ing an operator definition. You can even change the existing definitions
—but, be warned, this can be dangerous.

We could also make it like ,/2 by defining and/2 as in:

X and Y :-
call(X),
call(Y).
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Note that we have to have defined and/2 as an operator before we can write
the head of this clause as X and Y.

For or/2 we choose precedence of 950 (less than and/2) and associativity
of xfy (the same as and/2) with:

op(950,xfy,or)

and define it as equivalent to:

X or Y :-
call(X).

X or Y :-
call(Y).

11.6 A More Complex Example

We now try to represent data structures that look like:

if a and b or c then d

As we already have a representation for “a and b or c”, this reduces to
representing

if a then b

We will make “then” an infix operator of arity 2. Because both subtrees
might contain and/2 we will need to make then/2 of higher precedence
than and/2 —say,1050 and not associative. Hence:

op(1050,xfx,then).

This means that “if” must be a prefix operator. As we do not wish expres-
sions of the form

if if a

we must make if/1 of higher precedence than then/2 (say, 1075) and if/1
must be non associative:

op(1075,fx,if).

We can now represent

if a and b or c then d
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as the tree

if
HHHHHthen

©©©©©

HHHHH
d

c

or
©©©©©

b

HHHHH

and
©©©©©

a

HHHHH

or, as the Prolog term

if(then(and(a,or(b,c)),d))

This Prolog term is difficult to read but unambiguous while the represen-
tation using operators is easy to read but depends heavily on your under-
standing the precedences and associativities involved. All right if you wrote
the code but the code is harder for someone else to read.

11.7 What You Should Be Able To Do

After finishing the exercises at the end of the chapter:

You should be able to parse a complex Prolog term that in-
cludes several built-in operators.
You should be able to do the same thing with user-defined
operators.
You should be able to define your own infix, prefix and postfix
operators.

Exercise 11.1 Given the following declarations of precedence and associa-
tivity, express this clause as a tree.

rule31: if colour of wine =white
and body of wine =light or body of wine=medium
and sweetness of wine =sweet or sweetness of wine=medium

then wine =riesling confidence factor 1000.
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Operator Precedence Associativity
: 975 xfy
if 950 fx
then 949 xfy
and 800 xfy
or 750 xfy
confidence factor 725 xfy
= 700 xfx
of 595 xfy



Chapter 12

Advanced Features

advanced

We describe predicates provided for examining terms.
We show how to find all the solutions to a goal.
We describe difference lists and illustrate their use
We describe some aspects of good Prolog programming style.
We summarise the extent to which programming Prolog
is logic programming and mention some interesting develop-
ments.

We discuss some powerful features that Prolog offers then the important
subject of programming style. Finally, some aspects of Prolog are men-
tioned that demonstrate that the development of Logic Programming is by
no means over.

12.1 Powerful Features

12.1.1 Powerful Features —Typing

Prolog is a very weakly typed language. In some sense, the only type is the
term.

Not all these features are first order predicate logic. Nevertheless they give
great power into the hands of the programmer.

predicate/arity succeeds if the argument is
atom/1 atom
integer/1 integer
number/1 integer or real
atomic/1 atom or integer or real
var/1 uninstantiated variable
nonvar/1 not an uninstantiated variable

We demonstrate their use first by defining type/2 which has mode
type(+,-). It takes a term as its first argument and returns a type for
the term. On redoing, it will attempt to find another type. To compli-
cate the matter, we have specially distinguished lists —which are compound
terms.

122
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type(X,variable):-
var(X),!.

type(X,atom):-
atom(X).

type(X,integer):-
integer(X).

type(X,real):-
number(X),
\+(integer(X)).

type(X,list):-
nonvar(X),
X=[ | ].

type(X,compound term):-
\+(atomic(X)),
nonvar(X).

We have to use cut !/0 in the first clause because, otherwise, we can generate
spurious solutions for the goal type(X,Y). There is one bug in the above
—the goal type(X,X) succeeds with X=atom! This is not really wanted.
How would you guard against this?

12.1.2 Powerful Features —Splitting Up Clauses

The first predicate we look at is good for ‘picking up’ clauses from the current
Prolog database. The remainder are useful for destructing and constructing
arbitrary Prolog terms.

clause/2

happy(X):-
healthy(X),
wealthy(X).

happy(jim).

The goal clause(happy(X),Y) produces

Y = healthy(X), wealthy(X)

on redoing,

Y = true

Note the second answer returns a body of true for the clause happy(jim).

For SICStus (and Quintus), the first argument of clause/2 must specify at
least the principle functor. That is, a call such as clause(X,Y) will fail.
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However, for many Prolog systems, any calling pattern can be used: this
means that we can also extract all the clauses which are facts with the goal
clause(X,true).

Before we show how to get round this limitation in SICSTUS, we illustrate
with a simplified version of listing/0 which we name list/0:

list:-
clause(X,Y),
write clause(X,Y),
fail.

list.

write clause(X,Y):-
write((X:-Y)),
nl.

Now this can be made to work for SICStus by using predicate property/2.
This predicate can be called as in:

?- predicate property(X,interpreted).

and X will be bound to the head of the first clause found that is
“interpreted”1. So the amended code for list/0 is:

list:-
predicate property(X,interpreted),
clause(X,Y),
write clause(X,Y),
fail.

list.

Note however that this fails to print the final ‘.’ of a clause and that it also
prints facts as if they were rules with their body equal to true. We can
improve on this a little by changing write clause/2.

write clause(X,true):-
write(X),
write(’.’),nl.

write clause(X,Y):-
\+(Y=true),
write(X),
write((:-)),nl,
write body(Y).

write body(Y):-
write(’ ’),
write(Y),
write(’.’),nl.

Note that we have used \+/1 to make the code determinate. If we wanted to
put each subgoal on a separate line then we could rewrite write body/1.

1If you have compiled your program then you now have a problem!



125

functor/3

?- functor(fact(male(fred),23),F,N).
F=fact
N = 2

The predicate functor/3 can be used to find the principal functor of a
compound term together with its arity. It can also be used to generate
structures:

?- functor(X,example,2).
X = example(A,B)

except that the variables will be shown differently.

arg/3

?- arg(1,fact(male(fred),23),F).
F = male(fred)

The predicate arg/3 is used to access a specified argument for some Prolog
term.

As an example we will provide a predicate that uses side-effects, while taking
apart an arbitrary Prolog term, to print some information about the term.
It uses type/2 as defined previously.

analyse(Term):-
type(Term,Type),
\+(Type=compound term),
\+(Type=list),
write(Term,Type).

analyse(Term):-
type(Term,compound term),
write(Term,compound term),
functor(Term,N,A),
analyse bit(0,A,Term).

analyse bit(Counter,Counter, ):-
!.

analyse bit(Counter,Terminator,Term):-
NewCounter is Counter +1,
arg(NewCounter,Term,SubTerm),
analyse(SubTerm),
analyse bit(NewCounter,Terminator,Term).

write(Term,Type):-
write(Term),
write(’ is of type ’),
write(Type),nl.
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The predicate analyse/1 uses both functor/3 to find the arity of a term
and then uses arg/3 to work through the various argument of the term one
at a time. Note how we dive down into the substructure of a term before
finishing the description of each of the arguments in the term. Lists, by the
way, are not treated specially by analyse/1.

=../2

Now =.. is pronounced “univ”. It can be used to map a term onto a list in
this way:

Term → [ Functor, Arg1, Arg2, . . . Argn]

For example, =../2 can be used with mode =..(+,+) and mode =..(+,-
):

?- foo(12,fred)=.. [foo,12,fred].
yes

?- fact(male(fred),23)=.. X
X= [fact,male(fred),23]

The predicate can also be used with mode =..(-,+).

?- X=.. [fact,male(fred),23].
X = fact(male(fred),23)

Here are some more examples:

?- (a + b) =.. X.
X = [+, a, b]

?- [a,b,c] =.. X.
X = [’.’,a,[b,c]]

We demonstrate a real application where we have a predicate triple one/2
which takes as input an integer (first argument) and outputs (second argu-
ment) its triple. We are going to use =../2 to triple each element of an
input list. This will mimic the behaviour of a predicate triple/2 previously
used as an example. We define a predicate map/3 which takes a predicate
name as its first argument, the input list as the second argument and returns
the output list as the third argument as in:

?- map(triple,[1,2,3],X).
X=[3,6,9]

We give the special case with the first argument as triple and then generalise
it.
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map(triple,[],[]).
map(triple,[H1|T1],H2|T2]):-

X=.. [triple,H1,H2],
call(X),
map(triple,T1,T2).

The main trick is to assemble a term looking like triple(H1,H2) using
=../2 and then use call/1 to execute the goal.

Now we replace the specific reference to triple and provide a more general
version that can handle the task for arbitrary predicates of arity 2 —provided
that they are defined to work with mode predname(+,-).

map(Functor,[],[]).
map(Functor,[H1|T1],H2|T2]):-

X=.. [Functor,H1,H2],
call(X),
map(Functor,T1,T2).

The next task is to allow for an even more general version that can do the
same sort of thing for predicates with an arity of more than two!

For example, define a predicate npl/3 that takes a positive integer as first
argument and a number as its second argument, returning the third argu-
ment as the second argument ‘npled’ as in:

?- nple(7,5,X).
X=35

We define nple/3:

nple(Multiplier,In,Out):- Out is Multiplier*In.

Now to look at the code. Now, we need to give the new version of map/3
a first argument which contains the necessary info — viz the name of the
predicate and the constant multiplier.

We can do this as the term nple(N) where N is the multiplier. We transform
the term nple(N) into a list [nple,N] and then append the two arguments
H1 and H2 using the standard append/3. This list is then rebuilt as the
term nple(N,H1,H2) and then executed via call/1.

map(nple(N),[],[]).
map(nple(N),[H1|T1],[H2|T2]):-

nple(N)=.. List,
append(List,[H1,H2],NewList),
X=.. NewList,
call(X),
map(nple(N),T1,T2).
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Nowhere does this really depend on the arity of nple(N) —so we just replace
the term nple(N) by Term.

map(Term,[],[]).
map(Term,[H1|T1],[H2|T2]):-

Term=.. List,
append(List,[H1,H2],NewList),
X=.. NewList,
call(X),
map(Term,T1,T2).

12.1.3 Powerful Features —Comparisons of Terms

There is a standard order defined on Prolog terms —i.e. one Prolog term
can be compared with another and we can reach a decision about which
comes before which. The predicates that achieve this are not part of the
first order predicate logic. We only list them briefly here.

==/2

If you do not want to unify two Prolog terms but you want to know if the
terms are strictly identical:

?- X == Y.
no

?- X=Y, X == Y.
yes

\==/2

This is equivalent to the Prolog definition

X \== Y:-
\+ (X == Y).

@>/2, @>=/2, @</2 and @=</2

These are the predicates that can be used to decide on the ordering of terms.

12.1.4 Powerful Features —Finding All Solutions

Remember that a query foo(X) is really asking something akin to whether
(in predicate logic) ∃ X foo(X). How do we ask ∀ X foo(X)? The answer,
for situations where there are (obviously) a finite set of solutions is to use
one of two special built-in predicates.
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setof/3

The semantics for setof/3 are unpleasant. It has to be used with care. We
take this in three stages.

Stage 1

Suppose that we have these (and only these) facts about knows/2.

knows(jim,fred).
knows(alf,bert).

How do we find all the solutions of the form knows(X,Y)? Now the goal
knows(X,Y) is equivalent to asking “does there exist some X and some Y
such that knows(X,Y)”. For all solutions we want to ask something like
“for what set of values of X and set of values of Y is it true that for all X
and all Y then knows(X,Y)”.

setof([X,Y],knows(X,Y),Z).
Z = [[jim,fred],[alf,bert]]

where Z is the set of all solution pairs [X,Y] such that knows(X,Y).

Stage 2

Now suppose we only want to gather the first element of the pairs.

?- setof(X,Y^knows(X,Y),Z).
Z = [jim, alf]

Wait a minute . . . what is that Y^ bit? You have to existentially quantify
any variables in which you are not interested if you are to get the set of all
solutions and a reasonably clean semantics.

You have to read this as “find the set Z consisting of all values of X for which
there exists a value Y for which knows(X,Y)”. The Y^ is interpreted as
“there exists a Y” and is vital.

Stage 3

If you leave off the existential quantification the semantics of setof/3 be-
comes conditional on the status of Y at the time the predicate is called.

foo(2,3).
foo(3,4).
foo(4,3).

?- setof(X,foo(X,Y),Set).
Set = [2,4]
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In this case, Set is the set of all X for which there is a specific (but somewhat
arbitrary) Y such that foo(X,Y).

Note that the first argument is really a variable pattern which specifies which
variables get put into the list of solutions and how they are to appear. For
example:

?- setof(firstbit(X),Y^foo(X,Y),Set).
Set = [firstbit(2),firstbit(3),firstbit(4)]

Note also that any repeated solutions are removed and all the solutions are
placed in a standard ordering.

bagof/3

The only difference between bagof/3 and setof/3 is that bagof/3 leaves
repeated solutions in the answer. Note that bagof/3 is less expensive than
setof/3.

Also note that, if there are no solutions then both bagof/3 and setof/3
fail! If you want a predicate that behaves like setof/3 (or bagof/3) but
succeeds with an empty list if there are no solutions then write something
like:

all(X,Y,Z):-
setof(X,Y,Z),
!.

all(X,Y,[]).

which will behave in the desired way.

12.1.5 Powerful Features —Find Out about Known Terms

It is occasionally useful to find out various aspects of the system’s knowledge
—e.g. the known atoms that are not used by the system, the predicates
defined by the user or the predicates defined by the system. We only mention
these facilities in passing.

current atom/1

?- current atom([]).
yes

current functor/2

Many Prolog systems implement this feature —but not SICStus.

?- current functor(atom,atom(fred)).
yes
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current predicate/2

knows(fred).

?- current predicate(knows,knows(fred)).
yes

current op/3

?- current op(1200,xfx,(:-)).
yes

Note the use of brackets around :- to allow the term to be parsed correctly.

All the above can be used to generate information as well!

12.2 Open Lists and Difference Lists

We now briefly describe a valuable technique for programming in Prolog.

Consider the list [a,b,c|X]. We know the structure of the list up to a point.

r r r X

a b c

If, at some point, we know that X is unbound then we say that we have an
open list. We also say (informally) that X is a ‘hole’.

Note that we are already familiar with what happens if we unify X with,
say, [d]:

?- List=[a,b,c|X], X=[d].
List=[a,b,c,d]

Here, we started with an open list and ‘filled’ in the hole with the structure:

r []

d

This results in a proper list (say) —the normal representation for a list. We
generally think of a list processing procedure as taking a proper list as input
and returning a proper list as output.

Now suppose that we realise that we do not have to represent the idea of a
list as a proper list. There is nothing to stop us saying that we will represent
a list of things as an open list. That is, we do this instead:
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?- List=[a,b,c|X], X=[d|X1].
List=[a,b,c,d|X1]

and partially ‘fill in’ the ‘hole’ at the end of the list.

r X

d

Now we can think of open list processing where we take an open list as input
and return an open list as output.

Of course, if we have an open list as output we can always convert it into
a proper list by ‘filling in’ the hole with the empty list (note that, in this
case, we could fill in the hole with any proper list) —as in:

?- List=[a,b,c|X], X=[d,e,f].
List=[a,b,c,d,e,f]

Hang on a minute! We seem to be doing what append/3 does here (with
mode append(+,+,-))! There is a difference, however, as the first argu-
ment is ‘input’ partially instantiated and is ‘output’ wholly instantiated!

If we had the first list expressed as an open list then all we have to do is to
define a predicate that fills in the hole with the second list. Here is a very
naive (and limited) definition of this sort of append/3 —we shall call it
open append/2.

open append([H1,H2,H3|Hole],L2):-
Hole=L2.

?- X=[a,b,c|Ho],open append(X,[d,e,f]).
X=[a,b,c,d,e,f]

We have turned an open list into a proper list alright but in a limited way
because our definition of open append/2 assumes that we have a list with
three elements and the hole. We must improve on this.

If we want to reason about open lists then we often want to say something
like “take the open list and fill in the hole with . . . ”. Consequently, we
would like to say that a certain term is an open list with such-and-such a
hole. This suggests a new representation for the idea of a list —we represent
a list of terms as an open list together with the hole.

This representation is known as a difference list —for a reason that will
become apparent. Such a representation might be that the list of the terms
a, b and c taken in order are represented by two terms —[a,b,c|Hole] and
Hole. Now let us rewrite open append/2 as difference append/3. We
input the open list, the hole and the list to be appended.

difference append(OpenList,Hole,L2):-
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Hole=L2.

?- X=[a,b,c|Ho],difference append(X,Ho,[d,e,f]).
X=[a,b,c,d,e,f]

This is better but we now will introduce a notation for difference lists. Since
the list we are really interested in is always the open list without the hole
we will represent difference lists like this:

[a,b,c,d|Hole] - Hole

Do not worry about the use of the minus operator —it carries connotations
of subtraction but it is just a convenient uninterpreted (in this context) infix
operator. We could easily define an operator of our own. Now the above
can be rewritten as:

difference append(OpenList-Hole,L2):-
Hole=L2.

?- X=[a,b,c|Ho]-Ho,difference append(X,[d,e,f]).
X=[a,b,c,d,e,f]-[d,e,f]

Whoops! Now we have returned a difference list but we are only really
interested in the open list part —we want to lop off the hole. We redefine
difference append/2 to be difference append/3.

difference append(OpenList-Hole,L2,OpenList):-
Hole=L2.

?- X=[a,b,c|Ho]-Ho,difference append(X,[d,e,f],Ans).
Ans=[a,b,c,d,e,f]

We are nearly there now. We have a strange version of append/3 which
takes a difference list as its first argument, a proper list as its second argu-
ment and returns a proper list.

We could live with this but let us be systematic and produce a version that
appends a difference list to a difference list to return a difference list. Here
is the first attempt to return a proper list given two difference lists:

difference append(OpenList1-Hole1,OpenList2-Hole2,OpenList1):-
Hole1=OpenList2.

?- X=[a,b,c|Ho]-Ho,difference append(X,[d,e,f|Hole2]-Hole2,Ans).
Ans=[a,b,c,d,e,f|Hole2]

Note that we had to change the form of the second argument in order to
represent the proper list [d,e,f ] as a difference list.

We have returned an open list but we want a difference list. The first list
has gained the hole of the second list. All we need to ensure is that we
return the hole of the second list. Here we go again!
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difference append(OpenList1-Hole1,OpenList2-Hole2,OpenList1-Hole2):-
Hole1=OpenList2.

?- X=[a,b,c|Ho]-Ho,difference append(X,[d,e,f|Hole2]-Hole2,Ans).
Ans=[a,b,c,d,e,f|Hole2] - Hole2

Now we can recover the proper list we want this way:

?- X=[a,b,c|Ho]-Ho,difference append(X,[d,e,f|Hole2]-Hole2,Ans-[]).
Ans=[a,b,c,d,e,f]

One more transformation can be made: you will note that all we are saying
in the body of difference append/3 is that the hole of the first difference
list has to be the open list of the second difference list.

difference append(OpenList1-Hole1,Hole1-Hole2,OpenList1-Hole2).

We now have an extremely neat way of appending two difference lists to-
gether to get a difference list. Now, why bother?

Consider the question about how to add an element to the front of a list.
This is easy because you can, for example, add X=a to the list Y=[b,c,d] as
in [X|Y]. Now try to write a predicate add to back/3 to take an element
and add it to the end of a list. This does not work.

add to back(El,List,Ans):-
Ans=[List|El].

?- add to back(a,[b,c,d],X).
X=[[b,c,d]|a]

Not only is this not even a proper list (it does not end in []) but it is not
equal to [b,c,d,a]! What we have to do is something like:

add to back(El,[],[El]).
add to back(El,[Head|Tail],[Head|NewTail);-

add to back(El,Tail,NewTail).

This is an expensive procedure. We have to do many computations before
getting to the back of the list. We can, however, use difference lists to do
this:

?- difference append([b,c,d|Hole1]-Hole1,[a|Hole2]-Hole2,Ans-[]).
Ans=[b,c,d,a]

This is a cheap computation. Now we could define a version of
add to back/3 for difference lists:
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add to back(El,OpenList-Hole,Ans):-
difference append(OpenList-Hole,[El|ElHole]-ElHole,Ans-[]).

?- add to back(a,[b,c,d|Hole]-Hole,Ans).
Ans=[b,c,d,a]

Exercise 12.1 This is a set of exercises on difference lists. The first two
exercises should be a rehearsal of examples from the previous notes.

1. Just for practice, define diff append/3 which takes two difference
lists and returns a third difference list which is the second appended to
the third. That is, you should get:

?- diff append([a,b|X]-X,[c,d,e|Y]-Y,Answer).
Answer = [a,b,c,d,e|Y] - Y

2. Again, just for practice, define add at end/3 which adds the first
argument to the end of a difference list (the second argument) and
returns the result (the third argument). That is, you should get:

?- add at end(e,[a,b,c,d|X]-X,Answer).
Answer = [a,b,c,d,e|Y] - Y

3. Now define a predicate diff reverse/2 which reverses the first list (1st
argument) to produce the second argument. That is:

?- diff reverse([a,b,c|X]-X,Answer).
Answer = [c,b,a|Y] - Y

The idea is that a difference list is both input and output.

4. Now write diff flatten/2 to flatten a proper list which consists of
integers or constants or lists of these.

?- diff flatten([1,2,[3,4,[5,4,[3],2],1],7],Ans).
Ans=[1,2,3,4,5,4,3,2,1,7|Z]-Z

5. Now write diff quicksort/2. This should take a difference list as its
first argument basically consisting of integers and return a difference
list as its second argument with the integers in order smallest to largest.

?- diff quicksort([3,1,2|X]-X,Ans).
Ans=[1,2,3|Y]-Y

Here is a version of quicksort in Prolog.
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quicksort([],[]).
quicksort([Head|Tail],Sorted):-

split(Head,Tail,Small,Big),
quicksort(Small,SortedSmall),
quicksort(Big,SortedBig),
append(SortedSmall,[Head|SortedBig],Sorted).

split( ,[],[],[]).
split(X,[Y|Tail],[Y|Small],Big):-

X > Y,
split(X,Tail,Small,Big).

split(X,[Y|Tail],Small,[Y|Big]):-
X =< Y,
split(X,Tail,Small,Big).

6. Now try to use a difference list to simulate a queue. The queue is
represented by a difference list. Arrivals are stuck on the back of the
list using add at end/3 and departures are removed from the front of
the list in the obvious way. You will have to write other predicates to
control the number of arrivals and the number of departures in some
suitable way. You might use the previously defined random number
generator.

Try to think about what happens if you try to remove the first element
of an empty queue!

12.3 Prolog Layout

We now make some comments on some aspects of good programming prac-
tice with particular reference to program layout.

12.3.1 Comments

All programs should be carefully commented. This is for the standard rea-
sons of making program maintenance easier. As Prolog has such a regular
underlying syntax, superficially similar programs can behave very differently.
Consequently, program comments can be very helpful in aiding program com-
prehension.

Program Headers It is sensible that a large program is divided up into
self contained chunks —or, at least, chunks with explicit references made to
the other chunks necessary for the program to run.

The main program is then built out of the various chunks. In SICStus
Prolog, the programmer has to use files to represent ‘program chunks’.
Indeed, it is quite common for a large program to be described by a single
file which loads all the necessary files in the right order.

Therefore, it is sensible to provide headers for each file as in:

% Program: pract2.pl
% Author: aidai
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% Updated: 27 October 1988
% Purpose: 2nd AI2 Practical
% Uses: append/3 from utils.pl

% Defines:
% foo(+,-)
% baz(+,+)

This header has several advantages which need no elaboration.

Section Comments There is a special form of comment which should be
used with great care. Here is an illustration:

\*
we now define append/3 so that
it can be used as a generator
*\

Everything between the “/* ... */” will be ignored by Prolog. It is best to
put this just before the code discussed.

The danger is that the programmer might forget to close off an opened
comment which normally has disastrous consequences. On the positive side,
it can be used to comment out chunks of code during program development.

End of Line Comments The use of the % sign to indicate a comment is
generally safer because the comment is terminated automatically by an end
of line. Consequently, this form of comment is preferred.

There are two forms of usage: as a descriptor for a predicate and as com-
ments on individual clauses and subgoals in a clause. As an illustration of
comments on predicate definitions:

Now for the use of % for clauses and subgoals:

append([],L,L). % the base case
append([H|L1],L2,[H|L3]) :-

append(L1,L2,L3). % recurse on the first argument

Everything on the line after “%” will be ignored by Prolog.

Code Layout Generally, separate different predicate definitions by at
least one blank line. The general structure is:

File Header
(space)
Predicate Header
Head of Clause1 :-
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Indented Subgoal1
. . .
Indented Subgoaln

Head of Clause2 :-
. . .
Head of Clausen :-

Indented Subgoal1
. . .
Indented Subgoaln

(space)
Predicate Header
. . .

12.4 Prolog Style

Now for some very short comments on improving your style. For more detail,
read [Bratko, 1986, pp184–186].

12.4.1 Side Effect Programming

Avoid (where possible). Most of the time it is possible to avoid the worst
offences. If forced to use side-effect ing predicates then try to limit their
distribution throughout the code. It is a good idea to have one user-defined
predicate within which a clause is asserted, one in which a clause is re-
tracted, one to write out a term on the screen etc.

Modifying the Program at Runtime

Prolog permits this but it is bad programming style —unless you are in-
tending to write programs to modify themselves.

It is usually better to consider carrying around the wanted information as
an extra argument in all the relevant clauses.

The cut (!/0)

Where possible (and reasonable), use \+/1 instead.

Use cuts with great care.

Think about every cut (!/0) you want to place in terms of the effect you
are trying to achieve.

Always try to put them “as low as possible” in the structure of the program.

;/2

The predicate ;/2 is defined as an infix operator. It is used to express
disjunctive subgoals. For example, member/2 can be rewritten as:

member(X,[H|T]):-
(
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X=H
;

member(X,T)
).

The semantics of ;/2 are roughly equivalent to logical or. Best to avoid its
use.

The predicate definition

a:- b ; c.

is better written as:

a:- b.
a:- c.

If you do use this construct then avoid nesting it deeply as this makes code
very hard to read and understand.

if . . . then & if . . . then . . . else

Prolog can be made to obey control structures of this form.

The if . . . then form makes use of the infix operator ->/2.

The extension to if . . . then . . . else is achieved with the help of the ;/2
predicate.

You may be comfortable with such constructs but it is usually better, if
more cumbersome, to avoid them. Here is how one might define Prolog’s
“if ...then ...else”.

(A -> B ; C) :-
call(A),
!,
call(B).

(A -> B ; C) :-
call(C).

There are great dangers in using this construction in conjunction with the
cut (!/0)

Just to illustrate its application, we can rewrite the predicate analyse/1
used earlier.

analyse(Term):-
type(Term,Type),
( (Type=compound term ; Type = list) ->

(write(Term,Type),
functor(Term,N,A),
analyse bit(0,A,Term))

;
write(Term,Type)).
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To repeat, it can be very difficult to understand programs using nested ;/2
or the if . . . then (. . . else) construct.

It is almost always preferable to use auxillary predicates to tidy up the
‘mess’.

analyse(Term):-
type(Term,Type),
( non simple(Type) ->

analyse non simple(Term,Type)
;

write(Term,Type)).

non simple(compound term):-
!.

non simple(list).

analyse non simple(Term,Type):-
write(Term,Type),
functor(Term,N,A),
analyse bit(0,A,Term).

12.5 Prolog and Logic Programming

12.5.1 Prolog and Resolution

There are many different Prologs but they are all based on a technique
from theorem proving known as SLD Resolution.

SLD resolution can be guaranteed to be complete in that if a solution exists
then it can be found using some search strategy.

SLD resolution can be guaranteed to be sound in that if an answer is obtained
then it is a solution to the original problem for some search strategy.

It is a research goal to study Prolog implementations and check that their
search strategy preserves the completeness and soundness of the underlying
method of SLD resolution.

Note that the cut can affect completeness but not soundness.

Note also that there is no theoretical way of determining whether or not an
attempt to solve a problem will terminate. If there is a solution then it can
be shown that it can be found in a finite number of steps.

12.5.2 Prolog and Parallelism

Various people are working on strategies for parallel execution of Prolog.

This includes Clarke and Gregory at Imperial College, London where much
work has been done in developing PARLOG.

Ehud Shapiro of the Weizmann Institute, Israel has produced Concurrent
Prolog (CP).
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12.5.3 Prolog and Execution Strategies

John Lloyd and others have produced MU-Prolog at the University of Mel-
bourne in an attempt, inter alia, to replace the standard Prolog left-right
execution strategy for subgoals with a strategy which can reorder the execu-
tion sequence depending on which subgoals have enough information to pro-
ceed with their execution. Their new implementation is called NU-Prolog.

12.5.4 Prolog and Functional Programming

Many attempts are being made to combine Prolog with functional pro-
gramming features.

12.5.5 Other Logic Programming Languages

Prolog is not a pure logic programming language. It may be the best we
have but there is some interest in building better languages.

As Prolog is less expressive than first order predicate calculus, a fair amount
of work is going on to produce systems that permit the user to exploit the
expressivity of full first order predicate logic —and other logics too!

12.6 What You Should Be Able To Do

You should be able to determine the type of a term (using the
basic types provided by Prolog).
You should be able to take a Prolog term and transform it.
You should be able to construct arbitrary terms.
You should be able to determine whether two terms have iden-
tical bindings.
You should be able to find all the solutions of a goal.
You should understand the rudiments of good programming
style.
You should know something about the notion of logic pro-
gramming and the ways in which progress has been made with
Prolog towards meeting the goal of using logic to develop
programs.
You should be ready to read [Sterling & Shapiro, 1986].
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A Short Prolog Bibliography

At the moment of writing, the most suitable books to use in conjunction
with these notes are [Clocksin & Mellish, 1984] and [Bratko, 1986] (both
now exist in new versions). The manual for the version of Prolog actually
used is [SICStus, 1988] which is very similar to [Bowen, 1981].

For those with a more am-
bitious turn of mind then [Sterling & Shapiro, 1986] must be very highly
recommended. The book by Richard O’Keefe is also highly recommended
but quite hard work [O’Keefe, 1990]. Slightly less useful but worth a read
is [Kluźniak & Szpakowicz, 1985].

A simpler approach can be found in [Burnham & Hall, 1985].

A number of books exist outlining the Imperial College variant of Prolog
known as micro-Prolog. Generally, it is wiser to stay with the DEC-10 family
of Prologs until you are more confident. The useful books are [Ennals, 1982]
for a very simple introduction and [Clark & McCabe, 1984] for a more am-
bitious and determined student. The best book on the market is probably
[Conlon, 1985].

For reading further afield then [Kowalski, 1979] is probably the classic. Also,
[Hogger, 1984] is a very worthwhile introduction to logic programming. The
work of Lloyd provides those interested in theory with a very thorough
analysis of the foundations of logic programming [Lloyd, 1987]. Further
ideas for reading can be gleaned from [Balbin & Lecot, 1985].
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[Kluźniak & Szpakowicz, 1985] Kluźniak, F. and Szpakowicz, S. (1985).
Prolog for Programmers. Academic Press.

[Kowalski, 1979] Kowalski, R. (1979). Logic for Problem
Solving. Artificial Intelligence Series, North
Holland.

[Lloyd, 1987] Lloyd, J.W. (1987). Foundations of Logic
Programming. Springer-Verlag, 2 edition.

[O’Keefe, 1990] O’Keefe, R.A. (1990). The Craft of Prolog.
MIT Press.

143



144 Advanced Features

[SICStus, 1988] SICStus. (1988). SICStus Prolog User’s
Guide and Reference Manual. Swedish In-
stitute of Computer Science, Sweden.

[Sterling & Shapiro, 1986] Sterling, L. and Shapiro, E.Y. (1986). The
Art of Prolog. MIT Press, Cambridge, MA.



Appendix B

Details of the SICStus
Prolog Tracer

The description of the SICStus Prolog tracer follows closely the description
of the Quintus Prolog tracer since these two Prolog systems are very similar.
We consider version 0.6 here as defined in [SICStus, 1988].

The SICStus debugger is a development of the DEC-10 debugger. It is
described in terms of the so-called four port model of Prolog execution.
The four ports are call, exit, redo and fail. Full tracing only applies to
non-compiled code but some limited tracing can be done for compiled code.
The behaviour is similar to the treatment of system predicates.

Monitor Execution: Different kinds of control are provided. The differ-
ence between debug and trace is that trace goes into creep mode
directly whereas debug waits for some decision from the user to start
offering the standard range of debugging options. Both otherwise cause
the system to save relevant information.

The predicate nodebug/0 switches off debugging and the predicate
debugging/0 shows the action on finding an unknown predicate,
whether debugging is in action or not, which predicates are spied and
what mode of leashing is in force.

Control of Information Shown:

Controlling Amount of Execution Information:
Spypoints can be set for any number of relations via the
predicate spy/1. The argument of spy might be a predicate
name or a name/arity or a list of such. Undefined predicates
can be spied by using the name/arity form of argument.

Controlling Amount of Interaction: The leash/1 predicate
is provided to control the amount of interaction with the
programmer. The options are: full (prompt on call, exit
redo and fail), tight (prompt on call, redo and fail), half
(prompt on call and redo), and loose (prompt on call)1.

Controlling Amount of Term Visible: Representing a com-
plex term by ellipsis is done automatically in the debugger
but the user can control the complexity of displayed terms.

1The off (no prompt) choice provided by Quintus does not seem to be supported.
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There do not appear to be any supplied procedures to man-
age the depth when using write/1 etc. There is also a way
of examining subterms via the set subterm option within
the debugger.

Going Forwards: There are several different versions of the ‘next
interesting event’.

A Step at a Time: The user is able to single step through the
code using the creep option.

On to Next Spy Point: The user is able to jump to the next
predicate that is spied using the leap option.

Skip: The skip option jumps to the exit/fail port of the proce-
dure or the first procedure encountered that has a spy-point.
Only available at the call/redo ports. It does not stop at
spy points.

Going Backwards: Single stepping backwards versus jumping back
to the last choice point.

Retry a Previous Goal: The retry command transfers con-
trol back to the call port of the current box. Everything is
as it was unless any assert/retracts have taken place. It is
possible to give an argument to retry the computation from
much further back —this gets messed up usually by cut (!).
Side effects are, inevitably, not undone. This includes clauses
asserted etc.

Interfering with Execution: Different ways of handling this.

Forcing Failure: While tracing, the programmer is able to force a
failure even though a goal would succeed. This can be done via
the unify option. Just try to unify the current goal with some
impossible term.

Forcing Success: This feature is provided via the unify choise at
the Call port for a goal. This could be badly abused.

Find Another Solution: This does not seem to be possible.

Examining a Goal: Different ways of looking at Prolog terms.

Writing a Goal: Printing the goal with the syntax obtained by ap-
plying any operator declarations in force.

Pretty Printing a Goal: Printing the goal possibly using the user
defined portray/1, if possible.

Displaying Underlying Syntax: Showing the regular syntax of
some goal using display/1

Showing Context: Details of the execution in terms of what has hap-
pened, what has yet to be done and the source code.

Ancestors: Looking at some possibly user-defined number of ances-
tor goals. Equivalent to the ancestors/0 command.

Breaking Out: Providing the facility to access Prolog while tracing —
with sometimes irreversible consequences.

Single Command: A single command can be executed.
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New Interpreter: A new incarnation of Prolog is initiated via a
call to break which will be in force until either another break
command is given, or an abort or an end of file character.

Aborting Execution Calls the command abort/0 which aborts
the execution back to top level, throwing all incarnations of the
interpreter away.
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Solutions and Comments on
Exercises for Chapter ??

C.1 Exercise 2.1

1. likes(bill,ice cream).

The predicate likes has the declarative reading that the first named
object (first argument) ‘likes’ the second named object.

We could, of course, have defined likes in the reverse way. This would
lead to the representation likes(ice cream,bill) and the reading, in
this case, that ‘ice cream’ is ‘liked’ by ‘bill’.

Note that we have renamed ice-cream systematically to ice cream.

The term ice-cream is a syntactically correct Prolog term but it is
not an atom since the rules for atoms do not allow for the use of the
- character.

This could be got round in other ways than the above —e.g. ’ice-
cream’.

Also note that we could get away with a one argument ‘relation’ —
viz likes ice cream(bill). Or even a zero argument ‘relation’ —
bill likes ice cream.

We could try the representation that bill(likes,ice cream). Usually,
predicates are associated with verbs.

2. is(bill,tall).

This might be chosen but there is are problems: first, with the word
‘is’. Here, it is associated with the idea that bill possesses an attribute
which has the value ‘tall’.

We could represent this as height(bill,tall).

Another reason for not using is(bill,tall) is that there may be many
such statements in a database. Prolog would then have to sort
through a large number of is/2 clauses such as is(bill,rich). If we
choose height(bill,tall) then we only search through the clauses that
deal with height.

Finally, the predicate is/2 is a system predicate and cannot be rede-
fined by the user!
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By the way, after all this, note that tall(bill) is quite acceptable and
probably the one most people will prefer. However, we should note
that this representation will make it harder to pick up any relation
between tall(bill) and, for example, short(fred) whereas this is easy
for heigh(bill,tall) and height(fred,short).

3. hits(jane,jimmy,cricket bat).

The declarative reading for hits/3 is that the ‘hit’ action is carried
out by the first named object on the second named object with the
aid of the third object.

Note that nowhere in this reading is there any sense in which there
is insistence on the first (or second) object being the identifier for a
person, nor that the third object should be a ‘blunt instrument’ etc.
We could be much more rigid about the meaning.

As before, there are many variants as to how this could be done. The
main point is to stick to one reading throughout the development of a
program.

And again, we have mapped ‘cricket-bat’ to ‘cricket bat’.

4. travels(john,london,train).

The declarative reading is that the ‘travels’ relation holds for the first
object travelling to the second object with the means of transport
described by the third object.

5. takes(bill,jane,cheese,edam).

This is a fairly unattractive way to do things —but is easiest for now.

The reading is that the ‘takes’ relation holds for the first object trans-
porting a specimen of the third object (which is or sort described by
the fourth object) to the second object.

(Later we will see that we can tidy this up by writing
takes(bill,jane,cheese(edam)) where cheese(edam) is a legiti-
mate Prolog term.)

6. lives at(freddy,16,throgmorton,street,london).

Again, the reading is that the ‘lives at’ relation holds for the first
object ‘living’ at an address described by the second, third, fourth
and fifth objects.

This is ugly but is needed if we want to access bits of the address.
If we don’t want to access bits of the address then we can get away
with lives at(freddy,’16 throgmorton street, london’). Now we
have a simpler relation and the second argument stands for the whole
address.

The first representation of lives at/5 has its own problems. For ex-
ample, what happens if someone doesn’t require a descriptor such as
street or road? This has not been specified.

C.2 Execise 2.2

1. eats(bill,chocolate).
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eats(bill,bananas).
eats(bill,cheese).

Here, eats/2 is read as being a relation that holds when the first
named object is willing to consume samples of the second named ob-
ject.

2. square root(16,-4).
square root(16,4).

3. country(wales).
country(ireland).
country(scotland).

The reading is that the one-place ‘relation’ holds when the named
object has the status of a country. Here, in our informal description
of the semantics of the predicate, we have said nothing about the
meaning of what it is to be a country.

C.3 Exercise 2.3

1. eat(X,custard):- animal(X).

This can be paraphrased as ‘if X is an animal then X eats custard’.

We ought also to provide the informal semantics for eat/2 and ani-
mal/1. Let us assume that this can be done.

By the way, we could also, but less satisfactorily, write cus-
tard eater(X):- animal(X).

2. loves(X,Y):- directed by(bergman,Y).

The relation ‘loves’ holds between any two objects if the second object
is related to bergman via the directed by relation.

Note that nowhere have we said that the first argument of the loves/2
relation should be a person. This is implicit in the original statement
and, strictly, ought to be enforced.

3. likes(jim,X):- belongs to(X,fred).

The relation ‘likes’ holds between ‘jim’ and some other object if this
object is related to ‘fred’ through the ‘belongs to’ relation.

Again note that the declarative readings for both likes/2 and be-
longs to/2 are not provided by this statement.

4. may borrow(X,bike,jane):- need(X,bike).

The relation ‘may borrow’ holds between the first argument and the
second (where the third is the owner of the second) if these two argu-
ments are related via the ‘need’ relation.

C.4 Exercise 2.4

1. liable for fine(X):- owns car(X,Y), untaxed(Y).

We assume that liable for fine/1 holds when its argument is (a per-
son) liable for a fine, that owns car/2 holds when the first argument
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possesses the object named in the second argument (and this object
is a car), and that untaxed/1 holds for all those objects that are
required by law to be taxed and are not!

2. same house(X,Y):- address(X,Z), address(Y,Z).

The same house/2 relation holds between two arguments (people) if
the address/2 relation holds between one of these arguments and a
third object and between the other and the same third object.

Note that this makes same house(fred,fred) true.

3. siblings(X,Y):- mother(X,M), mother(Y,M), father(X,P), fa-
ther(Y,P).

The siblings/2 relation holds between the two arguments when each
is related via the mother/2 relation to a common object and via the
father/2 relation to a (different) common object.

This is not correct if the intended meaning is to prevent one person
being their own sibling. We would revise this by adding a subgoal such
as not same(X,Y).

Note that we could have designed a parents/3 predicate (relation)
such that, for example, the second argument is the mother and
the third is the father of the first argument. This would result in
siblings(X,Y):- parents(X,M,P), parents(Y,M,P).

C.5 Exercise 2.5

1.
british(X):- welsh(X).
british(X):- english(X).
british(X):- scottish(X).
british(X):- northern irish(X).

Note that we have preserved the order of nationalities as described in
the statement. This has no logical significance.

2. eligible social security(X):- earnings(X,Y), less than(Y,28).
eligible social security(X):- oap(X).

In the first part of the disjunction, we have introduced an additional
predicate less than/2 which has the reading that the relation holds
when the first argument is less than the second.

Also, note that the original statement does not make it clear whether
or not someone could qualify both as an old age pensioner (oap) and
as someone earning very little. This could become an important issue.

3. sportsperson(X):- plays(X,football).
sportsperson(X):- plays(X,rugger).
sportsperson(X):- plays(X,hockey).
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C.6 Exercise 2.6

1. b:- a.

Note that b is true if a is true.

2. c:- a.
c:- b.

Here we have a straight use of disjunction.

3. c:- a, b.

Here is a straightforward example of a conjunction.

4. d:- a, b.
d:- a, c.

This is a hard one. We cannot (yet) write what we want to write:
that is, d:- a, (b or c). Here, we can use de Morgan’s law: this is the
equivalence: a ∧ (b ∨ c) ⇒ d ⇔ (a ∧ b) ∨ (a ∧ c) ⇒ d.

5. b:- a.

This is hard too. The obvious solution is:

not a.
b.

but this is not allowed. Consequently, we have to transform the ex-
pression using the logical equivalence ¬ a ∨ b ⇔ b ⇒ a.

C.7 Exercise 2.7

1. studies(bill,ai2).

We have revised ‘AI2’ to ‘ai2’. We could have simply put quotes around
as in studies(bill,’AI2’).

2. population(france,50).

where the reading is that the population of the first object in the
relation population/2 is the second object expressed in millions of
people.

Note we have changed ‘France’ to ‘france’.

3. rich country(italy).

Here, the statement has been expressed as a unary ‘relation’ of some-
thing being a rich country.

4. height(jane,tall).

We have covered a similar example previously.

5. prime(2).

We have asserted that the attribute of primeness belongs to the number
2.
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6. british(X):- welsh(X).

The statement has been turned into the equivalent ‘everybody who
is welsh is british’. This is an alternative to the statement sub-
set(welsh,british). We read this as meaning that the subset/2
relation holds between the set of welsh people and the set of british
people.

As usual, we have lower-cased the words ‘Welsh’ and ‘British’.

7. author(hamlet,someone).

This is a trick question. You cannot answer this one from the notes.
Why not? Well, let me give the meaning of the above: the author/2
relation holds between ‘hamlet’ (which stands for the famous play
called “Hamlet: Prince of Denmark”) and the unique atom ‘someone’
which has been conjured from thin air.

The problem lies in expressing existential statements such as “someone
likes ice-cream” and so on. This is informally recast as there exists
some person such that this person likes ice-cream. In first order pred-
icate logic, we would formalise this as ∃ x likes(x,ice cream). This
can be turned into likes(whatshisname,ice cream) (this is known
as Skolemisation). Without going into technicalities, we give a legit-
imate context when this ‘trick’ can be done —whenever we have no
universal quantifiers (i.e. indicated by words such as all, everyone, etc)
then we may introduce a unique atom (we should be able to guarantee
its uniqueness) to stand for the ‘someone’.

8. mortal(X):- human(X).

This is an example of a universally quantified statement. It is equiva-
lent to ∀ x human(x) ⇒ mortal(x).

Note that, in the Prolog version, this ‘universal quantification’ is
implicit.

9. pays taxes(X):- person(X), rich(X).

Again, the universal quantification is implicit in the Prolog version.

Here, we have a body with a conjunction of two goals. This could be
avoided with pays taxes(X):- rich person(X). Which you prefer
depends on the way other relevant information is to be used or, how
it is provided.

10. takes(bill,umbrella):- raining.

This is a version where it is true that ‘Bill’ takes his umbrella whenever
it is raining.

Note that in many of these examples, there is no mention of how the
truth of various statements change with time.

11. no supper(X):- naughty(X).

Here, we might have tried to write ¬ supper(X):- naughty(X). This
is, however, illegal in Prolog but not for syntactic reasons.

Another way of doing this might be eats supper(X,false):-
naughty(X). This allows for a more uniform treatment of both those
who are ‘naughty’ and those who aren’t.
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12. employs(firebrigade,X):- man(X), height(X,Y),
more than(Y,6.0).

Again, we have gone for the representation ‘most likely’ to be useful.

We could hide much of this as
firebrigade employs(X):- over six foot(X).



Appendix D

Solutions and Comments on
Exercises for Chapter ??

D.1 Exercise 3.1

In this set of exercises, the solutions are slightly abbreviated. Even so, it
is likely that your solution is a subset of the solutions proposed here. The
most difficult issue is what happens on failure.

1.

Subgoals Comment Result
a(1) uses 1st clause new subgoals
b(1,Y) uses 1st clause succeeds with Y=2
c(2) uses 1st clause succeeds
a(1) using 1st clause succeeds

The goal is solved in a very straightforward way. There is no back-
tracking.

2.

Subgoals Comment Result
a(2) uses 1st clause new subgoals
b(2,Y) uses 1st clause fails
b(2,Y) uses 2nd clause succeeds with Y=2
c(2) uses 1st clause succeeds
a(2) using 1st clause succeeds

Here, we have a simple case where a failure forces the use of the second
half of the definition for b/2.

3.
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Subgoals Comment Result
a(3) uses 1st clause new subgoals
b(3,Y) tries 1st clause fails
b(3,Y) tries 2nd clause fails
b(3,Y) tries 3rd clause succeeds with Y=3
c(3) tries 1st clause fails
c(3) tries 2nd clause fails
b(3,Y) tries 4th clause succeeds with Y=4
c(4) tries 1st clause fails
c(4) tries 2nd clause fails
b(3,Y) no more clauses fails
a(3) uses 2nd clause new subgoal
c(3) tries 1st clause fails
c(3) tries 2nd clause fails
a(3) no more clauses fails

This is much harder because in trying to solve b(3,Y),c(Y) we have
the first subgoal succeed then the second fail twice over before running
out of options. We then backtrack to try the remaining option for
solving the top level goal which is the subgoal c(3) but this also fails.

4.

Subgoals Comment Result
a(4) uses 1st clause new subgoals
b(4,Y) tries 1st clause fails
b(4,Y) tries 2nd clause fails
b(4,Y) tries 3rd clause fails
b(4,Y) tries 4th clause fails
a(4) uses 2nd clause new subgoal
c(4) tries 1st clause fails
c(4) tries 2nd clause fails
a(4) no more clauses fails

A little simpler because no subgoal succeeds at all.

D.2 Exercise 3.2

1.

Subgoals Comment Result
a(1,X) uses 1st clause new subgoals
b(1,X) tries 1st clause succeeds with X=2
a(1,X) using 1st clause succeeds with X=2

Another straightforward solution.

2.

Subgoals Comment Result
a(2,X) uses 1st clause new subgoals
b(2,X) tries 1st clause fails
b(2,X) tries 2nd clause succeeds with X=3
a(2,X) using 1st clause succeeds with X=3



157

Again, not too difficult.

3.

Subgoals Comment Result
a(3,X) uses 1st clause new subgoal
b(3,X) tries 1st clause fails
b(3,X) tries 2nd clause fails
a(3,X) uses 2st clause new subgoals
c(3,X1) tries 1st clause fails
c(3,X1) tries 2nd clause fails
c(3,X1) tries 3rd clause fails
c(3,X1) tries 4th clause succeeds with X1=4
a(4,X) uses 1st clause new subgoal
b(4,X) tries 1st clause fails
b(4,X) tries 2nd clause fails
a(4,X) uses 2nd clause new subgoals
c(4,X2) tries 1st clause fails
c(4,X2) tries 2nd clause fails
c(4,X2) tries 3rd clause fails
c(4,X2) tries 4th clause fails
a(4,X2) no more clauses fails
a(3,X) no more clauses fails

This is a challenging one. First, because we get involved with the
unpleasant second clause for a/2. In general, when using the second
clause for a/2, the goal a(X,Y) requires that we set up two new
subgoals c(X,Z),a(Z,Y). This introduces a new variable. Textually,
it is the ‘Z’ but every time we introduce a variable we have to use a
different name. Here, we have provided a suffixed ‘X’ each time we
introduce the new variable.

4.
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Subgoals Comment Result
a(X,4) uses 1st clause new subgoal
b(X,4) tries 1st clause fails
b(X,4) tries 2nd clause fails
a(X,4) uses 2st clause new subgoals
c(X,X1) tries 1st clause succeeds with X=1, X1=2
a(2,4) uses 1st clause new subgoal
b(2,4) tries 1st clause fails
b(2,4) tries 2nd clause fails
a(2,4) uses 2nd clause new subgoals
c(2,X2) tries 1st clause fails
c(2,X2) tries 2nd clause succeeds with X2=4
a(4,4) uses 1st clause new subgoal
b(4,4) tries 1st clause fails
b(4,4) tries 2nd clause fails
a(4,4) uses 2nd clause new subgoals
c(4,X3) tries 1st clause fails
c(4,X3) tries 2nd clause fails
c(4,X3) tries 3rd clause fails
c(4,X3) tries 4th clause fails
a(4,4) no more clauses fails
a(2,4) no more clauses fails
c(X,X1) tries 2nd clause succeeds with X=1, X1=4
a(4,4) uses 1st clause new subgoal
b(4,4) tries 1st clause fails
b(4,4) tries 2nd clause fails
a(4,4) uses 2nd clause new subgoals
c(4,X3) tries 1st clause fails
c(4,X3) tries 2nd clause fails
c(4,X3) tries 3rd clause fails
c(4,X3) tries 4th clause fails
a(4,4) no more clauses fails
c(X,X1) tries 3rd clause succeeds with X=2, X1=4
a(4,4) uses 1st clause new subgoal
b(4,4) tries 1st clause fails
b(4,4) tries 2nd clause fails
a(4,4) uses 2nd clause new subgoals
c(4,X3) tries 1st clause fails
c(4,X3) tries 2nd clause fails
c(4,X3) tries 3rd clause fails
c(4,X3) tries 4th clause fails
a(4,4) no more clauses fails
c(X,X1) tries 4th clause succeeds with X=3, X1=4
a(4,4) uses 1st clause new subgoal
b(4,4) tries 1st clause fails
b(4,4) tries 2nd clause fails
a(4,4) uses 2nd clause new subgoals
c(4,X3) tries 1st clause fails
c(4,X3) tries 2nd clause fails
c(4,X3) tries 3rd clause fails
c(4,X3) tries 4th clause fails
a(4,4) no more clauses fails
c(X,X1) no more clauses fails
a(X,4) no more clauses fails

This is even worse —mainly because the first time we use the second
clause for a/2 we get involved in a subgoal c(X,X1. This can be solved
in four different ways —but in each case the next subgoal (a(X1,4))
fails. Hence c(X,X1) fails and therefore, because there are no more
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clauses for a/2, a(X,4) fails as well.

Note that each time we attempted a new subgoal c/2 we said we would
creat a new variable: we do not need a new name for a variable if we
are trying to resatisfy a goal. Look at the references to c(...,X3):
there are three different places in the above where we try to solve such
a goal and fail.

5.

Subgoals Comment Result
a(1,3) uses 1st clause new subgoal
b(1,3) tries 1st clause fails
b(1,3) tries 2nd clause fails
a(1,3) uses 2st clause new subgoals
c(1,X1) tries 1st clause succeeds with X1=2
a(2,3) uses 1st clause new subgoal
b(2,3) tries 1st clause fails
b(2,3) tries 2nd clause succeeds
a(2,3) using 1st clause new subgoal
a(1,3) using 2nd clause succeeds

So, with this example, we end with a simpler case.



Appendix E

Solutions and Comments on
Exercises for Chapter ??

E.1 Exercise 4.1

1. 2+1=3 fails.

We can tell immediately that 3 is an atom but what about 2+1? This
does not look like an atom —indeed it is not. The only way that
2+1=3 is if Prolog were to automatically try to evaluate any ‘sum’
it finds before trying to do the unification. Prolog does not do this.

2. f(X,a)=f(a,X) succeeds with X=a.

Here, the predicates are the same (so far so good). Now we match the
first arguments: they can be made the same if X=a (so far so good).
Now we look at the second argument: does a match with X? yes.

3. fred=fred succeeds.

4. likes(jane,X)=likes(X,jim) fails.

Here, the predicates are the same (so far so good). Now we match
the first arguments: they can be made the same if X=jane (so far so
good). Now we look at the second argument: does X match with jim?
Well, X is bound to jane and jane does not match with jim. So the
unification fails.

5. f(X,Y)=f(P,P) succeeds with X=Y=P.

Here, the predicates are the same. Now we match the first arguments:
they can be made the same if X=P. Now we look at the second ar-
gument: does Y match with P? yes, and since X=P we get our final
result.

E.2 Exercise 4.2

1. [a,b|X]=[A,B,c] succeeds with A=a, B=b and X=[c].

First, the left and right hand terms are both lists. Now to match their
1st elements: A matches with a. The second elements B matches with
b. What happens now? Let us discard the first two elements of each
list. We are left with matching X=[c] —this succeeds.
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Quite a few think the result should be X=c. Remember that the syntax
[H|T] means that the term following the | symbol is a list —so, the
X in the problem is a list. Therefore we cannot have X=c.

2. [a,b]=[b,a] fails.

Look at the first elements: does a match with b? No —so the unifi-
cation fails. Some may see lists as ‘bags’ of things where the order of
occurrence is immaterial. This is not so.

3. [a|[b,c]]=[a,b,c] succeeds.

The first elements of the two lists are identical. Throw them away and
we are left with [b,c]=[b,c] which succeeds. The main point to note
is again that the term following the | symbol is a list and that it is
specifically [b,c].

4. [a,[b,c]]=[a,b,c] fails.

We can tell quickly that the unification must fail because the first list
has two elements and the second has three. Therefore they cannot
unify.

If we discard the (equal) heads we have [[b,c]]=[b,c]. The left hand
side is a list consisting of a single element (which just happens to be
a list itself). The right hand side is a list of two elements. Going on,
what is the first element of each of these two lists? On the left we have
[b,c] and on the right we have b. These terms are not unifiable.

5. [a,X]=[X,b] fails.

The first element of each list (the heads) can be unified —with X=a.
Looking at the second elements, we need to unify X with b —but X=a
so the process fails.

6. [a|[]]=[X] succeeds with X=a.

The list [a|[]] is exactly equivalent to [a]. Therefore the problem
becomes [a]=[X]. This unifies with X=a.

7. [a,b,X,c]=[A,B,Y] fails.

The simple answer is that the left hand list has four elements and the
right has three —therefore these two lists will not unify.

To see why, we match the head elements —we get A=a. Throwing
away the heads, we end up with [b,X,c]=[B,y]. Repeating, we have
B=b. Again, discarding the heads, we have [X,c]=[y]. Repeating we
get X=y. We now end up with [c]=[]. Fails.

8. [H|T]=[[a,b],[c,d]] succeeds with H=[a,b] and T=[[c,d]].

The right hand list has two elements: the first (head) is [a,b] and the
second element is [c,d]. The head elements unify with H=[a,b]. If we
now discard the head elements we are left with deciding whether T
unifies with [[c,d]]. Succeeds with T=[[c,d]].

9. [[X],Y]=[a,b] fails.

If we try to unify the head elements of these lists we have the problem
[X]=a. This fails.
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E.3 Exercise 4.3

1.

print every second([]).
print every second([X]).
print every second([X,Y|T]):-

write(Y),
print every second(T).

The trick is to realise that the notation for the general list actually
allows a fixed number of elements to be ripped off/stuck on the front
of a list. Here, we destruct the list by specifying that we take the first
two elements off the front of any list with more than one element and
then print the second of these two elements.

Note that this does not do anything clever with nested lists: i.e.
print every second([a,[b],c,[d]]) will print [b][d]!

2.

deconsonant([]).
deconsonant([A|B]):-

vowel(A),
write(A),
deconsonant(B).

deconsonant([A|B]):-
deconsonant(B).

vowel(a).
vowel(e).
vowel(i).
vowel(o).
vowel(u).

Note that we need three clauses to cover the three basic cases: either
the list has no elements or we want to print the first element (because
it is a vowel) or we don’t want to print the first element.

Provided the list is not empty then, for either of the remaining cases,
we want to take off the first element and process the remaining list
—we have described this procedurally as there is no good declarative
reading.

Observant readers will note that the logic of the case analysis is
none too good. The third clause should really be something like

deconsonant([A|B]:-
consonant(A),
deconsonant(B).

But it would be very tedious to write out all the clauses for con-
sonant/1 —e.g. consonant(b) etc. There is another way of doing
this, however, which we meet in chapter ??.
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3.

head([H|T],H).

The reading is that the second argument is related to the first via the
‘head’ relation if the first element of the first argument (a list) is the
second argument.

4.

tail([H|T],T).

A straightforward adaption of the previous case.

5.

vowels([],[]).
vowels([H|T],[H|Rest]):-

vowel(H),
vowels(T,Rest).

vowels([H|T],Rest):-
vowels(T,Rest).

vowel(a).
vowel(e).
vowel(i).
vowel(o).
vowel(u).

This is quite a different style of program from the very procedural
deconsonant/1.

The same case analysis has been done but now we have to think what
these clauses mean. Procedurally, we can tell quite similar story: the
first case is that whenever we encounter an empty list then we will
return an empty list.

The second case is that whenever we have a list with a vowel at the
front then we return a list with that vowel at the front —the rest of
the list has to be determined by gathering up all the vowels from the
tail of the input list.

The third case is that whenever the previous two cases fail then we
discard the first element and go off to pick up all the vowels in the tail.

The second clause could have been written as:

vowels([H|T],Ans):-
vowel(H),
vowels(T,Rest),
Ans=[H|Rest].
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if you really wanted to do so. You might find this easier to understand
but the two versions are logically identical here.

The declarative reading runs something like this: for the first clause,
the list of vowels in the empty list is the empty list.

The second case has the meaning that the list of vowels in another list
with a vowel at the front has that vowel at the front and its tail is the
list of vowels found in the other list.

The third case has the meaning that the list of vowels in another list
with a consonant at the front is the list of vowels in the tail of that
list.

6.

find every second([],[]).
find every second([X],[]).
find every second([X,Y|T],[Y|Rest]):-

write(Y),
find every second(T,Rest).

The first clause states that the list of every second element in the empty
list is the empty list. The second states the corresponding thing for a
list with a single element.

The third clause is the interesting one: the list of every second element
of another list is the second element together with the list of every
second element of the remainder of the other list.



Appendix F

Solutions and Comments on
Exercises for Chapter ??

F.1 Exercise 6.1

All the programs in these examples can be done by selecting the right schema
and then instantiating it correctly.

1. We now produce solutions making use of the schema Test For Exis-
tence.

list existence test(Info,[Head|Tail]):-
element has property(Info,Head).

list existence test(Info,[Head|Tail]):-
list existence test(Info,Tail).

(a) We discard all the parameters from the schema (Info). We re-
name list existence test to an integer and element has property
to integer. We will not show how the others programs are writ-
ten using the schema.

an integer([H|T]):-
integer(H).

an integer([H|T]):-
an integer(T).

If the head of the list is an integer then the list contains an integer
(this describes the first clause) —otherwise we require that the
tail of the list has an integer somewhere (the second clause).

Note that the second clause does not strictly have to be sec-
ond. The two clauses could be the other way round.

an integer([H|T]):-
an integer(T).

an integer([H|T]):-
integer(H).
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If this were so, however, the program would execute much
less efficiently. You could try defining the program both ways
round and look at what happens using the trace command.
What is going on? Either way round, we have the same declar-
ative reading but the procedural reading is not so straight
forward.
For the first way, it goes roughly like this: examine the head of
the list and stop with success if this is an integer —otherwise
discard the head of the list and examine the remainder for
whether it contains an integer. For the second way: throw
away the head of the list and examine the remainder to see
whether it has an integer in it —otherwise look at the head
of the list to see whether it is an integer. This sounds very
peculiar but it works. What happens is that Prolog throws
away all the elements, gets to the empty list and then fails.
Backtracking now leads it to try showing that the list consist-
ing of the last element in the original list is an integer: if this
is not so then further backtracking will lead Prolog to try the
list consisting of the last two elements of the original list has
an integer at the front of the list. This keeps on until either
an integer is found (working back through the list) or there is
no way to backtrack.

(b) has embedded lists([H|T]):-
H=[Embeddedhead| Tail].

has embedded lists([H|T]):-
has embedded lists(T).

A list has an element which is itself a (non-empty) list if the head
of the list is a non-empty list (the first clause) or else the list’s
tail has an element in it that is a (non-empty) list (the second
clause).
We can also rewrite this to perform implicit unification rather
than the explicit unification H=[Embeddedhead| Tail]:

has embedded lists([[Embeddedhead| Tail]|T]).
has embedded lists([H|T]):-

has embedded lists(T).

Does the order of these clauses matter? The same issues apply
as with the previous example.

Note that if we want to fix the problem of extending the code
to handle the empty list as well we need:

has embedded lists([H|T]):-
H=[].

has embedded lists([H|T]):-
H=[Embeddedhead| Tail].

has embedded lists([H|T]):-
has embedded lists(T).

That is, another clause to handle the case where the head of
the list is an empty list.
By the way, this can be rewritten as:

has embedded lists([[]|T]).
has embedded lists([[Embeddedhead| Tail]|T]).
has embedded lists([H|T]):-
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has embedded lists(T).

That is, we can rewrite
the explicit unification (H=[Embeddedhead| Tail] as an
implicit unification.
Why does this solution become dubious for e.g. the query
?- has embedded lists([a,X,b])? The check that the head
element is a list will eventually encounter the equivalent of
X=[Embeddedhead| Tail] (or X=[]) —which will suc-
ceed! Is this what is wanted? For then, a list containing a
variable will always have an embedded list in it. This may be
OK but we would want to know a little more before making
a decision.

2. We now produce solutions for the schema Test All Elements.

test all have property(Info,[]).
test all have property(Info,[Head|Tail]):-

element has property(Info,Head),
test all have property(Info,Tail).

(a) We discard all the parameters from the schema (Info).
We rename test all have property to all integers and ele-
ment has property to integer. We will not show how the others
programs are written using this schema.

all integers([]).
all integers([H|T]):-

integer(H),
all integers(T).

We now require that every member of the input list has a common
property —viz that of being an integer.
We note that the reading of the first clause is that every element
of the empty list is an integer. The second clause states that for
every list, every element is an integer if the head of the list is an
integer and every element of the remaining list is an integer.

(b) no consonants([]).
no consonants([H|T]):-

vowel(H),
no consonants(T).

vowel(a).
vowel(e).
vowel(i).
vowel(o).
vowel(u).

Again, the empty list is such that every element in it is not a
consonant. And, again, a list has no consonants if the head of
the list (first element) is not a consonant and the remainder (tail)
of the list has no consonants in it.
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We could have done this a little differently with the help of the
predicate \+/1.

no consonants([]).
no consonants([H|T]):-

\+ consonant(H),
no consonants(T).

consonant(b).
consonant(c).
(etc.)

The need to specify 26 consonants is a little tedious but accept-
able.

3. We now produce the solutions that make use of the schema Return a
Result —Having Processed One Element.

We use this schema:

return after event(Info,[H|T],Result):-
property(Info,H),
result(Info,H,T,Result).

return after event(Info,[Head|Tail],Ans):-
return after event(Info,Tail,Ans).

(a) This one can be shown to be an example of the schema but the
‘obvious’ solution doen’t fit exactly.

nth(1,[H|T],H).
nth(N,[H|T],Ans):-

NewN is N-1,
nth(NewN,T,Ans).

The first clause has the declarative reading that the first element
of the list is its head. The second clause has the declarative
reading that the nth element of the list is the n-1th element of
the list’s tail.
It can be difficult to appreciate how this works. So the procedural
reading for the second clause can be taken as: to find the nth
element of the list, lop off the first element (the head) and then
look for the n-1th element in the remainder of the list (the tail).
Note that the order of the subgoals is important here. If an
attempt is made to write this as:

nth(1,[H|T],H).
nth(N,[H|T],Ans):-

nth(NewN,T,Ans),
NewN is N-1.

then we get into trouble: when the first subgoal (assuming the
first argument is an integer greater than 1) is executed then the
variable NewN will not be bound to an integer. This will mean
that once we have recursed down the list until the first clause suc-
ceeds then we will have a number of subgoals awaiting execution
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—the first of which will be 1 is Variable -1. This fails with an
error message as the is/2 predicate requires that the right hand
side (second argument) be an arithmetical expression and it is
not.

We can generate another solution with a little bit of trickery.
nth2(N,[H|T],H):-

1 is N.
nth2(N,[H|T],Ans):-

nth2(N-1,T,Ans).
This, if you trace the execution, generates a series of subgoals
of the form nth2(somenumber-1-1-1-1-1...,list,variable. The
first clause succeeds when the first argument evaluates to 1.
Note that the second clause is much neater as a consequence.
The observant will notice that these various versions of nth/3
do not fit the schema that well. This is partly because the
recursion variable is the first argument and is on the natural
numbers rather than lists.

(b) next(PossibleElement,[PossibleElement,NextElement|T],NextElement).
next(PossibleElement,[H|T],Ans):-

next(PossibleElement,T,Ans).

This program has a straightforward (declarative) reading: the
first clause states that the next element (third argument) after
the named one (first argument) is when the list (second argument)
begins with the named element and followed by the desired next
element. Note the flexible use of the list notation which allows
the user to specify a fixed number of elements at the front of a
list (here, two).

(c)
This solution fits the desired schema exactly (and also makes use
of the schema Building Structure in the Clause Head).
We use one parameter from the schema (Info). We rename re-
turn after event to del 1st1, property to =, result to =. This
results in:

del 1st1(ToGo,[H|T],Ans):-H=ToGo,
Ans=T.

del 1st1(ToGo,[H|T],[H|NewT]):-
del 1st1(ToGo,T,NewT).

which can be rewritten to

del 1st1(ToGo,[ToGo|T],T).
del 1st1(ToGo,[H|T],[H|NewT]):-

del 1st1(ToGo,T,NewT).

The declarative reading is that when the first argument is the
head of the list (which is the second argument) then the third
argument is the tail (remainder) of the list —otherwise, the third
argument is a list with the first element the same as that of the
second argument and the tail is the list with the desired element
deleted.
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We can also describe this procedurally, but we will assume that
it is intended that the third argument is output and the other
two are inputs.
When we find the desired element at the head of the input list
(the second argument) then we return the tail of that list. When
we do not find this, we copy over the head into the output list
and go looking for the result of deleting the desired element from
the remainder (tail) of the input list.
Now here is a ‘solution’ using the schema Building Structure in
the Clause Body.

del 1st2(ToGo,L,Ans):-
del 1st2(ToGo,L,[],Ans).

del 1st2(ToGo,[ToGo|T],Acc,Ans):-
append(Acc,T,Ans).

del 1st2(ToGo,[H|T],Acc,Ans):-
del 1st2(ToGo,T,[H|Acc],Ans).

append([],L,L).
append([H|L1],L2,[H|L3]):-

append(L1,L2,L3).

Note that we have defined a predicate del 1st2/3 which inter-
faces to del 1st2/4 and initialises the accumulator (third argu-
ment) to the empty list.
The two clauses have a procedural reading: when we find the
desired element then we glue the accumulator onto the front of
the remainder (tail) of the list found in the second argument using
append/3 —otherwise, we copy the head of the list to the head
of the accumulator and then try to delete the desired element
from the tail of the list using the new accumulator.

4. For each of these examples, we use the schema Return a Result —
Having Processed All Elements. We have, however, two ways of writ-
ing each with each way corresponding to a different (list processing)
schema. These are, namely, Building Structure in the Clause Head and
Building Structure in the Clause Body.

Here is the schema making use of the Building Structure in the Clause
Head:

process all(Info,[],[]).
process all(Info,[H1|T1],[H2|T2]):-

process one(Info,H1,H2),
process all(Info,T1,T2).

where process one/1 takes Info and H1 as input and outputs H2

(a) We keep one parameter from the schema (Info). We rename
process all to nple1 and process one to is. We will not show how
the others programs are written using the schema.
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nple1(N,[],[]).
nple1(N,[H|T],[NewH|NewT]):-

NewH is N*H,
nple1(N,T,NewT).

The declarative reading: every element in the empty list (third ar-
gument) is the given multiple (first argument) of the correspond-
ing element in the empty list (second argument) —otherwise, the
list found in the third argument position is in the desired relation
to the list found in the second argument position if the head of
one list is the desired multiple of the head of the other list and
the desired relation holds between the tails of these two lists.

nple2(N,L,Ans):-
nple2(N,L,[],Ans).

nple2(N,[],Ans,Ans).
nple2(N,[H|T],Acc,Ans):-

NewN is N*H,
nple2(N,T,[NewN|Acc],Ans).

Again, when using the schema Building Structure in the Clause
Body together with an accumulator, we define a predicate
nple2/3 which initialises the accumulator for nple2/4.
Now we have the procedural reading for nple2/4 assuming that
the output list is the fourth argument, and the other argument
positions are inputs.
We return the result found in the accumulator once the input
list is empty —otherwise we remove the head from the input
list, multiply it by the desired amount, place the result in the
accumulator and repeat the process for the tail of the input list
and the new accumulator.

(b)
For this predicate, we need three cases to handle: the empty list,
when the head of the list matches the element to be deleted and
the case where these two elements do not match.
The first clause results from the observation that the empty list
with all the occurrences of the named element removed is the
empty list.

del all1(ToGo,[],[]).
del all1(ToGo,[ToGo|T],Ans):-

del all1(ToGo,T,Ans).
del all1(ToGo,[H|T],[H|Ans]):-

del all1(ToGo,T,Ans).

The second clause is read declaratively as being true when the
element to be deleted unifies with the head of the list (second
argument) then the result of deleting all occurrences will be the
same as deleting all occurrences from the tail of that list.
The third clause is the “otherwise” case: the result of deleting
all occurrences from the list will is the head of the list together
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with the result of deleting all undesired occurrences from the tail
of that list.

There is a serious problem here. If a program which makes use
of del all1/3 backtracks to redo the call to del all1/3 then
we will get some undesirable behaviour as this definition will
generate false solutions (we assume here that we always call
del all1/3 with the second argument a list, the first argument
some ground term (i.e. a term containing no variable) and the
third argument a variable).
Consider the query del all1(a,[b,a,n,a,n,a],X). The first so-
lution will result in X=[b,n,n]. Fine. But the last ‘a’
was removed through a use of the second clause —the sub-
goal would be del all1(a,[a],X 1) and originally produced
X=[]. Now, on redoing, we try to satisfy the goal with the
third clause. The query del all1(a,[a],X 1) matches with the
head of the clause —del all1(ToGo,[H|T],[H|Ans])— re-
sulting in ToGo=a, H=a, T=[] and X 1=[H|Ans] with
a subgoal of del all1(a,[],Ans).. This gets satisfied with
Ans=[] and therefore we have another solution for the query
del all1(a,[a],X 1) —viz X 1=[a] and this is wrong.
The problem arises because any query for which the second
argument is a non-empty list such that its head is the element-
to-be-deleted will also be guaranteed to match the head of the
third clause. This means that there are ways of resatisfying
the query which result in undesired (and wrong) solutions.
How do we solve this? There are two basic ways —one of
which is fairly easy to read and the other relies on the use of
the ‘cut’.

i. add an extra test condition to the third clause to ensure
that attempts to backtrack will fail. We make it impossi-
ble for a goal to simultaneously match against the same
goal.

del all1(ToGo,[],[]).
del all1(ToGo,[ToGo|T],Ans):-

del all1(ToGo,T,Ans).
del all1(ToGo,[H|T],[H|Ans]):-

\+(H=ToGo),
del all1(ToGo,T,Ans).

This is straightforward but does effectively require that
unification between the element-to-be-deleted and the
head of the list is done twice. Fine for simple checks but
this rapidly gets more expensive in more complex situa-
tions. Now for the cut.

ii. a cut (!/0) can be placed to say that once clause 2 has
been used then never look for another match...this means:

del all1(ToGo,[],[]).
del all1(ToGo,[ToGo|T],Ans):-

del all1(ToGo,T,Ans),!.
del all1(ToGo,[H|T],[H|Ans]):-

del all1(ToGo,T,Ans).

This is much less easy to read but is generally more ef-
ficient. Beginners, however, tend to spray cuts around
producing code like this:

del all1(ToGo,[],[]):-!.
del all1(ToGo,[ToGo|T],Ans):-

del all1(ToGo,T,Ans),!.
del all1(ToGo,[H|T],[H|Ans]):-
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del all1(ToGo,T,Ans),!.

They do this because they do not understand the way the
cut works. Because of this, the code written has effects
they can’t predict or understand. Extra, useless cuts also
means a loss of efficiency. Therefore, we strongly recom-
mend the first version.

Every program you write that is intended to succeed once and
once only should be checked to make sure that this will happen
at the time you write the predicate.

The second version making use of the schema Building Structure
in the Clause Body:

del all2(ToGo,L,Ans):-
del all2(ToGo,L,[],Ans).

del all2(ToGo,[],Ans,Ans).
del all2(ToGo,[ToGo|T],Acc,Ans):-

del all2(ToGo,T,Acc,Ans).
del all2(ToGo,[H|T],Acc,Ans):-

del all2(ToGo,T,[H|Acc],Ans).

Again, we use del all2/3 to initialise the accumulator for
del all2/4.

Again, note that we would need protection against unexpected
backtracking if this program is to be used in another program.
Again, we would want a cut in the second clause of del all2/4.

(c)
Here we have the version making use of the schema Building
Structure in the Clause Head:

sum1([X],X).
sum1([H|T],Ans):-

sum1(T,RestAns),
Ans is RestAns+H.

In this first version, we have a straightforward declarative reading.
The first clause reads that the sum of integers in a list with a
single (assumed) integer is that single integer. The second clause
states that the sum of integers in a list is found by summing the
integers in the tail of the list and then adding the head of the list
to the result.
Now for the version making use of an accumulator.

sum2(X,Y):-
sum2(X,0,Y).

sum2([],Ans,Ans).
sum2([H|T],Acc,Ans):-

NewAcc is Acc+H,
sum2(T,NewAcc,Ans).

The second version uses an accumulator. Here, we make use of
sum2/2 to call sum3 with the accumulator initialised to 0. In
this case, the first clause can br read procedurally as saying that
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once we have an empty list then the answer desired (third argu-
ment) is the accumulated total (second argument). The second
clause states that we find the answer (third argument) by adding
the head of the list (first argument) to the accumulator (second
argument) and then repeating the process on the remainder of
the list (with the accumulator set appropriately).



Appendix G

Solutions and Comments on
Exercises for Chapter ??

G.1 Exercise 8.1

1.

[the,clever,boy,buys,a,sweet]
[the,clever,sweet,buys,a,clever,clever,boy]
(etcetera)

These are legitimate inputs produced by the query

?- s([the,clever,boy,buys,a,sweet],[]).
?- s([the,clever,sweet,buys,a,clever,clever,boy],[]).
(etcetera)

It is not so immediately apparent that this grammar can generate
sentences as well. What is the order in which sentences are generated?

[a,boy,buys,a,boy]
[a,boy,buys,a,sweet]
[a,boy,buys,the,boy]
[a,boy,buys,the,sweet]
[a,boy,buys,a,clever,boy]
[a,boy,buys,a,clever,sweet]
[a,boy,buys,a,clever,clever,boy]
[a,boy,buys,a,clever,clever,sweet]
[a,boy,buys,a,clever,clever,clever,boy]
(and so on)

2. Here is just one example —there are various ways of doing this.

s(sentence(NP-VP)) --> np(NP),
vp(VP).

np(nounphrase(Det-N)) --> det(Det),
noun(N).
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np(nounphrase(Det-Adjs-N)) --> det(Det),
adjs(Adjs),
noun(N).

vp(verbphrase(V-NP)) --> verb(V),
np(NP).

det(determiner(a)) --> [a].
det(determiner(the)) --> [the].
adjs(adjectives(Adj)) --> adj(Adj).
adjs(adjectives(Adj-Adjs)) --> adj(Adj),

adjs(Adjs).
adj(adjective(clever)) --> [clever].
noun(noun(boy)) --> [boy].
noun(noun(sweet)) --> [sweet].
verb(verb(buys)) --> [buys].

which produces (in a much less readable form than the following):

X = sentence(
nounphrase(

determiner(a)
-
adjectives(adjective(clever))
-
noun(boy))

-
verbphrase(

verb(buys)
-
nounphrase(

determiner(a)
-
adjectives(adjective(clever)-adjectives(adjective(clever)))
-
noun(boy))))

3. This is very hard to do in general. The issue here is one of ‘robust
parsing’ and it is a major research topic. Consequently, there is no
complete answer but a first attempt might look like:

s(sentence(NP-VP)) --> np(NP),
vp(VP).

np(nounphrase(Det-N)) --> det(Det),
noun(N).

np(nounphrase(Det-Adjs-N)) --> det(Det),
adjs(Adjs),
noun(N).

vp(verbphrase(V-NP)) --> verb(V),
np(NP).

det(determiner(a)) --> [a].
det(determiner(the)) --> [the].
det(unknown det(X)) --> [X],
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{\+(known(X))}.
adjs(adjectives(Adj)) --> adj(Adj).
adjs(adjectives(A-Adjs)) --> adj(A),

adjs(Adjs).
adj(adjective(clever)) --> [clever].
adj(unknown adj(X)) --> [X],

{\+(known(X))}.
noun(noun(boy)) --> [boy].
noun(noun(sweet)) --> [sweet].
noun(unknown noun(X)) --> [X],

{\+(known(X))}.
verb(verb(buys)) --> [buys].
verb(unknown verb(X)) --> [X],

{\+(known(X))}.
known(X):-noun(noun(X), , ).
known(X):-verb(verb(X), , ).
known(X):-det(determiner(X), , ).
known(X):-adj(adjective(X), , ).

Some points to note:

(a) It cannot cope with missing words so this goal fails badly. We
could try to extend it to meet this problem. For example, we
might like the following query to succeed:

s(X,[the,clever,buys,a,sweet],[]).

(b) It does cope quite well with more than one misspelling provided
the sentence structure is acceptable —as in the query:

s(X,[the,clever,silly,buoy,buys,a,sweet],[]).

(c) The known/1 predicate is not at all clever.
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Solutions and Comments on
Exercises for Chapter ??

H.1 Exercise 9.1

1. First, we examine the execution of the query female author. We
take the first clause for female author/0 and solve for author(X).
We use the first clause of author/1 and solve the resulting subgoal,
name(X), using the first clause of name/1 to get X=sartre. The
subgoals write(X), write(’ is an author’) and nl succeed with the
side-effect of writing:

sartre is an author

on the screen. Then we solve the subgoal female(X) with X still
bound to sartre. Neither of the heads of the clauses for female/1
match the goal female(sartre) so Prolog fails and backtracks. We
keep backtracking until we get to redo the subgoal author(X). This
means that we now try to redo name(X) and we satisfy this with
X=calvino. Again, we generate the side-effect on the screen of

calvino is an author

and try to satisfy female(X) with X bound to calvino. Again, this
fails and we backtrack. Again, the subgoal name(X) can be satisfied
—this time, for the last time, with X=joyce. On the screen we get

joyce is an author

and another attempt to prove that female(X) with X=joyce (which
fails). This time, on backtracking, there are no more solutions for
name(X). We now move on to resatisfy author(X) by using its sec-
ond clause. This generates, on the screen,

no more found!

then fails. We now backtrack and, since there are no more ways of
satisfying author(X), we are through with the first clause of fe-
male author/0. The second succeeds by writing
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no luck!

and succeeds.

We now explain how to place the cuts to get the desired outputs.

(a) The first solution requires the use of one cut to produce the side-
effect:

sartre is an author
no more found!
no luck!

Note that, compared with before, we have much the same but we
infer that there is only one solution for name(X). This suggests
that we place the cut so that name(X) succeeds once only. This
can be done by rewriting the first clause of name/1 as

name(sartre):-!.

(b) The next solution requires the use of one cut to produce the side-
effect:

sartre is an author
calvino is an author
joyce is an author
no more found!

Compared with the original output, we observe that the phrase
‘no luck!’ is not generated. This suggests that we want to commit
ourselves to the first clause of female author and not use the
second at all. Hence we have the solution:

female author:- !,author(X),write(X),and so on

but note that now the original query fails after producing the
desired side-effect.
Also note that we have to put the cut before the call to author/1
—otherwise we would only generate one of the names rather than
all three.

(c) The next solution requires the use of one cut to produce the side-
effect:

sartre is an author
no luck!

This time we observe that we only get one name and we don’t
generate the phrase ‘no more found!’. This suggest that we want
author(X) to succeed once and once only —and go on to use the
second clause of female author (this suggests that the cut can-
not be one of the subgoals in the first clause of female author).
We don’t want to generate the phrase ‘no more found’ —so this
suggests that we commit to the first clause of author/1. We will
put a cut in the body of this clause —but where? If we put it
thus:

author(X):- !,name(X).
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then we would generate all three names by backtracking. Hence
the desired solution is:

author(X):- name(X),!.

We can read this as being committed to the first, and only the
first, solution for name(X).

(d) The next solution requires the use of one cut to produce the side-
effect:

sartre is an author

Now we don’t want to generate either ‘no more found!’ or ‘no
luck!’ —and we only want one of the names generated.
So we definitely want to be committed to the first clause of fe-
male author/0. This suggests putting the cut in the body of
the first clause of this predicate —but where? If we put it after
the subgoal female(X) then we would get all three solutions to
name(X) and their associated side-effects. If we put it before
author(X) we also get roughly the same. Therefore we want
something like:

female author:- author(X),!,write(X),and so on

(e) The next solution requires the use of one cut to produce the side-
effect:

sartre is an author
calvino is an author
joyce is an author
no luck!

Now we don’t get the message ‘no more found!’. This suggests
that we want to commit to the first clause of author/1. If we put
the cut after the subgoal name(X) then we will commit to the
first solution and not be able to generate the other two. Hence
we must put the cut before as in:

author(X):- !,name(X).

2. We will assume a mode of mode delete(+,+,?). i.e. the first two
arguments are always completely instantiated and the third argument
can be either instantiated or a variable.

delete([], , []).
delete([Kill|Tail], Kill, Rest) :-

delete(Tail, Kill, Rest),!.
delete([Head|Tail], Kill, [Head|Rest]):-

delete(Tail, Kill, Rest).

The cut is placed in the body of the second clause. This is needed be-
cause, in the code given in the probem, any usage of the second clause
to delete an element allows the query to be resatisfied on redoing.
This is caused by the fact that any query matching the head of the
second clause will also match the head of the third clause.
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3. To define disjoint/2, here is the solution found in the standard DEC-
10 library.

% disjoint(+Set1, +Set2)
% is true when the two given sets have no elements in common.
% It is the opposite of intersect/2.

disjoint(Set1, Set2) :-
member(Element, Set1),
memberchk(Element, Set2),
!, fail.

disjoint( , ).

member(X,[X|Rest]).
member(X,[Y|Rest]):-

member(X,Rest).

memberchk(X,[X|Rest]):- !.
memberchk(X,[Y|Rest]):-

memberchk(X,Rest).

Note the definition is quite interesting: First, note that we make use of
the generate—test schema: the first clause of disjoint/2 uses mem-
ber/2 as a (finite) generator to generate each of the elements in the
first list one by one. Next, the solution is tested using memberchk/2
for the second set. Second, if the element is in both sets then we meet
the cut—fail schema. This means the call to disjoint/2 fails. If the
generated element never passes the test, then the attempt tosatisfy the
call to disjoint/2 using the first clause fails and we use the second
clause which makes use of a catch-all condition.

Other solutions are possible:

disjoint(Set1, Set2) :-
\+(member(Element, Set1), member(Element, Set2)).

Here, disjoint succeeds whenever it is impossible to find a common
element for both lists. If such an element exists then it fails.

4. To define plus/3:

plus(A, B, S) :-
integer(A),
integer(B),
!,
S is A+B.

plus(A, B, S) :-
integer(A),
integer(S),
!,
B is S-A.

plus(A, B, S) :-
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integer(B),
integer(S),
!,
A is S-B. plus(A, B, S) :-
plus error message(A, B, C).

The first three clauses cope with the cases where two or more of the
arguments to plus/3 are instantiated to integers.

We need the cut to implement a commit schema as we don’t have
disjoint cases.

The last clause is intended to point out to the programmer that an
instantiation fault has occurred. The exact form of the message is up
to you.
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Solutions and Comments on
Exercises for Chapter ??

I.1 Exercise 11.1

1. Here is the answer in Prolog Form:

:(rule31,
if(then(and(=(of(colour,wine),white),

and(or(=(of(body,wine),light), =(of(body,wine),medium)),
or(=(of(sweetness,wine),sweet),=(of(sweetness,wine),medium)))),

then confidence factor(=(wine,riesling),1000))))

The tree is up to you!
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Solutions and Comments on
Exercises for Chapter ??

J.1 Exercise 12.1

1. We want the following behaviour:

?- diff append([a,b|X]-X,[c,d,e|Y]-Y,Answer).
Answer = [a,b,c,d,e|Y] - Y

Here is the solution:

diff append(List1-Tail1,Tail1-Tail2,List1-Tail2).

2. We want the following behaviour:

?- add at end(e,[a,b,c,d|X]-X,Answer).
Answer = [a,b,c,d,e|Y] - Y

Here is the solution:

add at end(X,List-Tail,List-NewTail):-
Tail=[X|NewTail],!.

add at end(X,List-[X|NewTail],List-NewTail).

Note the need to add the cut (!/0) to prevent unwanted behaviour on
backtracking to redo a call to this predicate.

3. We want the following behaviour:

?- diff reverse([a,b,c|X]-X,Answer).
Answer = [c,b,a|Y] - Y
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There are two cases: the first covers the case where we have the dif-
ference list equivalent of the empty list.

The second case covers every other situation: we have to take off the
head element, reverse the remaining difference list and then stick the
element at the end of the difference list. We use add at end/3 that
we have already defined.

Here is a solution:

diff reverse(X-X,Y-Y):-
var(X),!.

diff reverse([H|List]-Tail,Answer):-
diff reverse(List-Tail,NewDiffList),
add at end(H,NewDiffList,Answer).

Note that, for the first clause, we state that the tail of the input is
a variable (via var/1). The use of cut (!/0) is necessary to stop
unwanted behaviour if we ever backtrack to redo this goal.

Also note that we will get nasty behaviour if the predicate
add at end/3 has not been defined to prevent unwanted behaviour
on backtracking.

4. We want the following behaviour —assuming that the list is composed
of integers or atoms or lists of these. This means that every element is
either the empty list, a list or some Prolog term that is atomic. i.e.
the term satisfies atomic/1.

?- diff flatten([1,2,[3,4,[5,4,[3],2],1],7|X]-X,Ans).
Ans=[1,2,3,4,5,4,3,2,1,7|Z]-Z

We have three cases: we are going to flatten the empty list by out-
putting the difference list version of [] —i.e. X-X. We flatten an
‘atomic’ element other than the empty list by returning a difference
list with a single element —viz [someelement|X]-X. The third case
is designed to handle the case where the head of the first argument is
a list. In this case, we flatten the head, and then flatten the tail.

Here is a solution:

diff flatten([H|T],X-Y):-
diff flatten(H,X-Z),
diff flatten(T,Z-Y).

diff flatten(X,[X|T]-T):-
atomic(X),
\+(X=[]).

diff flatten([],X-X).

Note how the result of flattening the head is a difference list with a hole.
We get the same for flattening the tail and join the lists together by
identifying the hole for the flattened head with the open list resulting
from flattening the tail.
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5. We want the following behaviour:

?- diff quicksort([3,1,2|X]-X,Ans).
Ans=[1,2,3|Z]-Z

We should note that the obvious advantage in using difference lists
here is in avoiding the various calls to append/3 which can get very
expensive. On the other hand, we have to realise that there is an
overhead in carrying difference lists around in this form.

Here is a solution:

diff quicksort(X-X,Y-Y):-
var(X).

diff quicksort([H|T]-Hole1,Ans-Hole2):-
diff split(H,T-Hole1,SmallDiffList,BigDiffList),
diff quicksort(SmallDiffList,Ans-[H|Z]),
diff quicksort(BigDiffList,Z-Hole2).

diff split( ,X-X,Y-Y,Z-Z):-
var(X).

diff split(X,[Y|Tail]-Hole1,[Y|Small]-Hole2,BigDiffList):-
X > Y,
diff split(X,Tail-Hole1,Small-Hole2,BigDiffList).

diff split(X,[Y|Tail],SmallDiffList,[Y|Big]-Hole2):-
X =< Y,
diff split(X,Tail,SmallDiffList,Big-Hole2).

The correspondence between the difference and proper list versions is
close.

Wherever we have an empty list ([]) we introduce the difference
list version (X-X). We have to be careful to distinguish unrelated
empty lists. For example, consider the first clause of quicksort/2
in the notes: quicksort([],[]). The correspondence might suggest
diff quicksort(X-X,X-X). But in this case, there can be very un-
pleasant consequences as we are forcing certain variables to be identi-
cal that might have been distinct up to the point of solving the goal
diff quicksort(A,B). Consequently, we introduce different version of
the difference list ‘empty list’ and write diff quicksort(X-X,Y,Y).

Note that the ‘stopping condition’ is that we have run out of elements
to sort by reaching the ‘hole’. This means the test is for having en-
countered a variable. So the procedural reading of the first clause is
effectively: return a difference list equivalent to the ‘empty list’ when
we find that we have consumed all the non-variable elements from the
front of the list. To do this, we use var/1 which takes a Prolog term
as input and is true whenever that term is an uninstantiated variable
(it can be bound to another uninstantiated variable though).

The remaining two clauses are structurally very similar to the last two
clauses for quicksort/2 as in the notes. The main difference is the
loss of the call to append/3 and the means by which we can partially
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‘fill in’ the hole of the Small difference list with the result of sorting
the Big difference list.

As for, diff split/4, we have a very similar situation which we not
explain further here.

What about the efficiency? Is diff quicksort/2 faster than quick-
sort/2? And are we comparing like with like? The empirical answer is
that quicksort/2 is faster (there are ways of improving the efficiency
of the above version of diff quicksort/2 but they are not sufficient)!

One reason why this version of diff quicksort/2 is slower than quick-
sort/2 is that the former predicate transforms a difference list into a
difference list while the latter transforms a proper list to a proper list.
An improvement is achieved by writing a version that takes a proper
list to a difference list as with:

diff quicksort v2([],[]).
diff quicksort v2([H|T],Ans-Hole2):-

split(H,T,SmallProperList,BigProperList),
diff quicksort v2(SmallProperList,Ans-[H|Z]),
diff quicksort v2(BigProperList,Z-Hole2).

Note that we can now use the same split/4 as for quicksort/2.

The efficiency of this version is now better than the performance of
quicksort/2.

6. This one is up to you!


