
Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Java(TM) Look and Feel Design Guidelines (2nd Edition) 
Sun Microsystems Inc. (Editor), Inc. Sun Microsystems 

 

 
  

 Book Details 

 Paperback: 416 pages ; Dimensions (in inches): 1.07 x 9.29 x 7.40  

 Publisher: Addison Wesley Professional; ISBN: 0201725886; 2nd edition  

 Average Customer Review: Based on 10 reviews. 

 Amazon.com Sales Rank: 75,154  

 Made: By dotneter 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All 

rights reserved. Use is subject to License terms.  

This product or documentation is distributed under licenses restricting its use, copying, distribution, and 

decompilation. No part of this product or documentation may be reproduced in any form by any means 

without prior written authorization of Sun and its licensors, if any. Third-party software, including font 

technology, is copyrighted and licensed from Sun suppliers.  

Sun, Sun Microsystems, the Sun logo, Java, JavaHelp, Java 2D, JavaBeans, JDK, the Java Coffee Cup 

logo, Jini, Jiro, Forte, NetBeans, Solaris, iPlanet, StarOffice, and StarPortal are trademarks or registered 

trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Netscape Navigator is a trademark 

or registered trademark of Netscape Communications Corporation. Adobe is a registered trademark of 

Adobe Systems, Incorporated.  

UNIX is a registered trademark in the United States and other countries, exclusively licensed through 

X/Open Company, Ltd. All SPARC trademarks are used under license and are trademarks or registered 

trademarks of SPARC International, Inc. in the United States and other countries. Products bearing 

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.  

Federal Acquisitions: Commercial Software--Government Users Subject to Standard License Terms and 

Conditions.  

U.S. Government: If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. 

Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software 

and accompanying documentation shall be only as set forth in this license; this is in accordance with 48 

C.F.R. 227.7202-4 (for Department of Defense (DOD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 

(for non-DOD acquisitions).  

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, 

REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF 

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE 

DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY 

INVALID.  

The publisher offers discounts on this book when ordered in quantity for special sales. For more 

information, please contact:  

Addison-Wesley Professional 

75 Arlington Street, Suite 300 

Boston, Massachusetts 02116 

U.S.A.  

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. 

Tous droits reserves. Distribueé par des licences qui en restreignent l'utilisation.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Ce produit ou document est protegeé par un copyright et distribué avec des licences qui en restreignent 

l'utilisation, la copie, la distribution, et la decompilation. Aucune partie de ce produit ou document ne peut 

être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable eté 

écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la 

technologie relative aux polices de caractères, est protegeé par un copyright et licenciée par des 

fournisseurs de Sun.  

Sun, Sun Microsystems, le logo Sun, Java, JavaHelp, Java 2D, JavaBeans, JDK, Java Coffee Cup logo, 

Jini, Jiro, Forte, NetBeans, Solaris, iPlanet, StarOffice, et StarPortal sont des marques de fabrique ou 

des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Netscape 

Navigator est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres 

pays. Adobe est une marque enregistrée de Adobe Systems, Incorporated.  

UNIX est une marque déposé aux Etats-Unis et dans d'autres pays et licenciée exclusivement par 

X/Open Company Ltd. Toutes les marques SPARC sont utilisées sous licence et sont des marques de 

fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. 

Les produits portant les marques SPARC sont basés sur une architecture developpé par Sun 

Microsystems, Inc.  

L'accord du gouvernement americain est requis avant l'exportation du produit.  

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, 

DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, 

DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE 

GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION 

PARTICULIERE OU A L'ABSENCE DE CONTREFACON.  

Library of Congress Cataloging in Publication Data  

Java look and feel design guidelines / Sun Microsystems, Inc.--2nd ed. 

p. cm 

Includes bibliographical references and index. 

ISBN 0-201-72588-6 

1. Java (Computer program language) I. Sun Microsystems. 

QA76.73.J38 J373 2001 

005.13'3--dc21  

00-049607  

1 2 3 4 5 6 7 8 9-WCT-05 04 03 02 01 

First Printing, February 2001  

 
 
 
 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Contents 
Contents 
 
Foreword by James Gosling 
 
Preface 
 
Part I: Overview 
 
1: The Java Look and Feel 
Fundamentals of the Java Look and Feel 
Visual Tour of the Java Look and Feel 
   MetalEdit Application 
   Retirement Savings Calculator Applet 
 
2: The Java Foundation Classes 
Java 2 Software Development Kit 
   Java Foundation Classes 
   Support for Accessibility 
   Support for Internationalization 
User Interface Components of the JFC 
   Pluggable Look and Feel Architecture 
   Example Model and Interfaces 
   Client Properties 
   Major JFC User Interface Components 
Look and Feel Options 
   Java Look and Feel--the Recommended Design 
   Supplied Designs 
 
Part II: Fundamental Java Application Design 
 
3: Design Considerations 
Choosing an Application or an Applet 
   Distribution 
   Security Issues 
   Placement of Applets 
Designing for Accessibility 
   Benefits of Accessibility 
   Accessible Design 
Planning for Internationalization and Localization 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

   Benefits of Global Planning 
   Global Design 
 
4: Visual Design 
Themes 
   Colors 
   Fonts 
Layout and Visual Alignment 
   Design Grids 
   Text Layout 
   Between-Component Spacing Guidelines 
   Spacing Guidelines for Specific JFC Components 
Text in the Interface 
   Headline Capitalization in English 
   Sentence Capitalization in English 
Animation 
 
5:  Application Graphics 
Working With Cross-Platform Color 
   Working With Available Colors 
   Choosing Graphic File Formats 
   Choosing Colors 
   Maximizing Color Quality 
Categorizing Application Graphics 
Designing Icons 
   Working With Icon Styles 
   Drawing Icons 
Designing Button Graphics 
   Using Button Graphic Styles 
   Producing the Flush 3D Effect 
   Working With Button Borders 
   Determining the Primary Drawing Area 
   Drawing the Button Graphic 
Using Badges in Button Graphics 
   Menu Indicators 
   New Object Indicators 
   Add Object Indicators 
   Properties Indicators 
   Combining Indicators 
Designing Symbols 
Designing Graphics for Corporate and Product Identity 
   Designing Splash Screens 
   Designing Login Splash Screens 
   Designing About Boxes 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 
6:  Behavior 
Mouse Operations 
   Pointer Feedback 
   Mouse-over Feedback 
   Clicking and Selecting Objects 
   Displaying Contextual Menus 
Drag-and-Drop Operations 
   Typical Drag and Drop 
   Pointer and Destination Feedback 
Keyboard Operations 
   Keyboard Focus 
   Keyboard Navigation and Activation 
   Keyboard Shortcuts 
   Mnemonics 
Operational Feedback 
   Progress Animation 
   Status Animation 
Design for Smooth Interaction 
   Initial Focus 
   Navigation 
   Password Field 
   Status and Error Messages 
   Text Selection and Filled Text Fields 
 
Part III: The Components of the Java Foundation Classes 
 
7: Windows and Panes 
Anatomy of a Primary Window 
Constructing Windows 
   Primary Windows 
   Secondary Windows 
   Plain Windows 
   Utility Windows 
Organizing the Contents of Windows 
   Panels 
   Scroll Panes 
   Tabbed Panes 
   Split Panes 
Working With Multiple Document Interfaces 
   Backing Windows 
   Internal Windows 
   Secondary Windows 
   Internal Utility Windows 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Window Titles 
   Title Text in Primary Windows 
   Title Text in Secondary Windows 
   Title Text in Internal Windows 
 
8: Dialog Boxes and Alert Boxes 
Modal and Modeless Dialog Boxes 
Dialog Box Design 
   Tab Traversal Order 
   Single-Use and Multiple-Use Dialog Boxes 
   Command Buttons in Dialog Boxes 
Common Dialog Boxes 
   Find Dialog Boxes 
   Login Dialog Boxes 
   Preferences Dialog Boxes 
   Progress Dialog Boxes 
Color Choosers 
Alert Boxes 
   Info Alert Boxes 
   Warning Alert Boxes 
   Error Alert Boxes 
   Question Alert Boxes 
 
9: Menus and Toolbars 
Menu Elements 
   Menu Bars 
   Drop-down Menus 
   Submenus 
   Menu Items 
   Separators 
   Menu Item Graphics 
   Checkbox Menu Items 
   Radio Button Menu Items 
Common Menus 
   Typical File Menu 
   Typical Edit Menu 
   Typical Format Menu 
   Typical View Menu 
   Typical Help Menu 
 Contextual Menus 
 Toolbars 
   Toolbar Placement 
   Draggable Toolbars 
   Toolbar Buttons 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tool Tips 
 
10: Basic Controls 
Command Buttons 
   Default Command Buttons 
   Combining Graphics With Text in Command Buttons 
   Using Ellipses in Command Buttons 
Toggle Buttons 
   Independent Choice 
   Exclusive Choice 
Checkboxes 
Radio Buttons 
List Boxes 
   Scrolling 
   Selection Models for List Components 
Combo Boxes 
   Noneditable Combo Boxes 
   Editable Combo Boxes 
Sliders 
 
11: Text Components 
Labels 
   Labels That Identify Controls 
   Labels That Communicate Status and Other Information 
Text Fields 
   Noneditable Text Fields 
   Editable Text Fields 
Password Fields 
Text Areas 
Editor Panes 
   Default Editor Kit 
   Styled Text Editor Kit 
   RTF Editor Kit 
   HTML Editor Kit 
 
12: Selectable Lists, Tables, and Tree Components 
Selectable Lists 
   Selectable Lists and Associated Tables 
   Selectable Lists and Associated Text Fields 
Tables 
   Table Appearance 
   Table Scrolling 
   Column Reordering 
   Column Resizing 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

   Row Sorting 
   Selection Models for Tables 
Tree Components 
   Lines in Tree Components 
   Graphics in Tree Components 
   Editing in Tree Components 
 
Part IV:  Backmatter 
 
Appendix A: Keyboard Shortcuts, Mnemonics, and Other Keyboard  
Operations 
Common Keyboard Shortcuts 
Common Mnemonics 
Backing Windows and Internal Windows 
Checkboxes 
Combo Boxes 
Command Buttons 
HTML Editor Kits 
List Components 
Menus 
Radio Buttons 
Scrollbars 
Secondary Windows and Utility Windows 
Sliders 
Split Panes 
Tabbed Panes 
Tables 
Text Areas and Default and Styled Text Editor Kits 
Text Fields 
Toggle Buttons 
Tool Tips 
Toolbars 
Tree Components 
 
Appendix B: Graphics Repository 
General Graphics 
   Adding Objects 
   Saving Edits or Checkpoints 
   Stopping a Task 
   Updating the Screen Display 
   Changing Magnification Levels 
   Specifying Preferences and Properties 
   Printing 
   Displaying and Retrieving Previously Visited Locations 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

   Creating and Sending Electronic Mail 
   Aligning Objects 
   Justifying Objects 
   Searching 
   Editing Objects and Data 
   Importing and Exporting Objects 
   Providing Help and Information 
Navigation 
   Vertical Traversal 
   Horizontal Traversal 
   Returning to an Initial Location 
Table Graphics 
   Column Operations 
   Row Operations 
Text 
   Text Alignment and Justification 
   Type Style Graphics 
Media 
   Creating a Movie 
   Moving Through Time-Based Media 
Graphics for Development Tools 
   Creating and Deploying Applications and Applets 
   Creating and Adding Beans and Enterprise Beans 
   Creating Hosts and Servers 
   Creating and Adding Java Archive Files 
   Creating and Adding Web Archive Files and Web Components 
 
Appendix C:  Localization Word Lists 
European Languages 
Asian Languages 
 
Appendix D:  Switching Look and Feel Designs 
Pitfalls of User-Controlled Switching 
Guidelines for Switching Look and Feel Designs 
   How to Present the Choice 
   Nomenclature 
 
 Glossary 
 
 Index 
 
 Colophon 
 
 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Foreword  

User interfaces are hard. Both the original user interface toolkit, AWT, and its 
successor, the industrial-strength, all singing, all dancing Swing toolkit, 
sidestep the hard problem of defining a user interface by allowing it to be 
plugged in to the platform on which it's running. A Java application running on 
the Mac can have the Mac look and feel, the same one running on Microsoft 
Windows can use its look and feel, and that same program running on UNIX 
can use a UNIX look and feel.  

Although this pluggable interface strategy has lots of appeal, the down side is 
that the same application running on different platforms has a different 
appearance and behavior on each one. Documentation is difficult to write. 
Users get confused trying the same application on different platforms. This 
situation created a demand for a common look and feel that is lucid, easy to 
use, and runs harmoniously on many platforms.  

Coming up with the design for such a look and feel was quite a challenge. The 
real danger involved falling into a Tragedy of the Commons--giving in to 
everyone's wishes and ending up with a mess. The hardest task was striking a 
balance between all the conflicting concerns.  

I had the great privilege of working a staircase away from the team that 
designed the Java look and feel and the associated design 
guidelines--hallways covered with design ideas; field trips to survey developers; 
prototyping; trading off; balancing; testing; testing; testing. Out of this effort 
came a design that is clean and elegant.  

James A. Gosling 
Vice President, Sun Labs Research  

 
 
 
 
 
 
 
 
 
 
 
 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Preface  

Java Look and Feel Design Guidelines, second edition, provides essential 
information for anyone involved in creating cross-platform GUI (graphical user 
interface) applications and applets in the JavaTM programming language. In 
particular, this book offers design guidelines for software that uses the Swing 
classes together with the Java look and feel.  

This revised and expanded edition contains a collection of toolbar graphics, 
lists of terms localized for European and Asian languages, and an appendix on 
look and feel switching. New and revised guidelines are provided throughout, 
and new sections discuss smooth interaction, the use of badges in button 
graphics, and revised standards for window titles. Also included with this 
edition is a companion CD-ROM that contains code samples for many figures 
in the book, and a repository of graphics.  

Who Should Use This Book  

Although an application's human interface designer and software developer 
might well be the same person, the two jobs involve different tasks and require 
different skills and tools. Primarily, this book addresses the designer who 
chooses the interface elements, lays them out in a set of components, and 
designs the user interaction model for an application. (Unless specified 
otherwise, this book uses "application" to refer to both applets and 
applications.) This book should also prove useful for developers, technical 
writers, graphic artists, production and marketing specialists, and testers who 
participate in the creation of Java applications and applets.  

Java Look and Feel Design Guidelines focuses on design issues and 
human-computer interaction in the context of the Java look and feel. It also 
attempts to provide a common vocabulary for designers, developers, and other 
professionals. If you require more information about technical aspects of the 
Java Foundation Classes (JFC), visit the JFC and Swing Connection web sites 
at http://java.sun.com/products/jfc and 
http://java.sun.com/products/jfc/tsc.  

The guidelines provided in this book are appropriate for GUI applications and 
applets that run on personal computers and network computers. They do not 
address the needs of software that runs on consumer electronic devices.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

What Is in This Book  

Java Look and Feel Design Guidelines includes the following chapters:  

Part One, “Overview,” includes two introductory chapters about the Java look 
and feel and the JFC.  

• Chapter 1, “The Java Look and Feel,” introduces key design concepts 
and visual elements underlying the Java look and feel and offers a quick visual 
tour of an application and an applet designed with the JFC components and the 
Java look and feel.  

• Chapter 2, “The Java Foundation Classes,” provides an overview of the JavaTM 
2 SDK (software development kit) and the JFC, introduces the JFC components, 
discusses the concept of pluggable look and feel designs, and describes the 
currently available look and feel options. 

Part Two, “Fundamental Java Application Design,” describes some of the 
general issues facing professionals using the JFC to create cross-platform 
applications, including visual design, the creation of application graphics, and 
behavior.  

• Chapter 3, “Design Considerations,” discusses some of the fundamental 
challenges of designing Java look and feel applications and applets and of 
providing for accessibility, internationalization, and localization.  

• Chapter 4, “Visual Design,” describes the Java look and feel theme mechanism, 
suggests ways to change colors and fonts, gives recommendations for layout and 
visual alignment of components, and provides standards for the capitalization of 
text in the interface.  

• Chapter 5, “Application Graphics,” discusses the use of color for individually 
designed graphical elements (as opposed to components that rely on the theme 
mechanism), including cross-platform colors, the creation of graphics that suit the 
Java look and feel, the design of button graphics and icons, and the use of badges 
in the design of button graphics.  

• Chapter 6, “Behavior,” tells how users of Java look and feel applications utilize 
the mouse and keyboard, provides guidelines regarding user input and 
human-computer interaction, and discusses drag-and-drop operations and text 
field navigation. 

Part Three, “The Components of the Java Foundation Classes,” contains 
a description of the components and accompanying guidelines for their use.  

• Chapter 7, “Windows and Panes,” includes revised standards for window titles 
and makes recommendations for the use of primary, secondary, plain, and utility 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

windows as well as panels, scroll panes, tabbed panes, split panes, and internal 
windows.  

• Chapter 8, “Dialog Boxes and Alert Boxes,” describes dialog boxes and alert 
boxes, sets standards for dialog box design, and provides examples of typical 
dialog boxes and alert boxes in Java look and feel applications.  

• Chapter 9, “Menus and Toolbars,” defines and gives guidelines for the use of 
drop-down menus, contextual menus, toolbars, and tool tips and provides 
examples of typical menus in Java look and feel applications.  

• Chapter 10, “Basic Controls,” covers the use of controls such as command 
buttons, toggle buttons, checkboxes, radio buttons, combo boxes, list boxes, and 
sliders.  

• Chapter 11, “Text Components,” explains and makes recommendations for the 
use of the JFC components that control the display and editing of text in the 
interface: labels, text fields, text areas, and editor panes.  

• Chapter 12, “Selectable Lists, Tables, and Tree Components,” discusses and 
makes recommendations for the use of selectable lists, tables, and tree 
components. 

The remainder of the book consists of the appendixes, glossary, and index.  

• Appendix A, “Keyboard Shortcuts, Mnemonics, and Other Keyboard 
Operations,” contains tables that specify keyboard operations for the 
components of the JFC, including alphabetical listings of commonly used 
keyboard shortcuts and mnemonics.  

• Appendix B, “Graphics Repository,“ contains a collection of toolbar button 
graphics designed specifically for use with the recommendations set forth in this 
book.  

• Appendix C, “Localization Word Lists,” contains terms and phrases that might 
appear in Java look and feel applications; English terms appear with their French, 
Spanish, German, Swedish, Japanese, Simplified Chinese, Traditional Chinese, 
and Korean equivalents.  

• Appendix D, “Switching Look and Feel Designs,” presents some information 
about the pitfalls of changing the look and feel, along with guidelines on how to 
present this choice to users when you must.  

• Glossary defines important words and phrases found in this book. Glossary terms 
appear in boldface throughout the book. 

What Is Not in This Book  

This book does not provide detailed discussions of human interface design 
principles or the design process, nor does it present much general information 
about usability studies.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

For authoritative explications of human interface design principles and the 
design process, see Apple Computer's Macintosh Human Interface 
Guidelines.  

For a classic book on usability studies, see Jakob Nielsen's Usability 
Engineering.  

For details, see Related Books and Web Sites.  

Graphic Conventions  

The screen shots in this book illustrate the use of JFC components in 
applications with the Java look and feel. Because such applications typically 
run inside windows provided and managed by the native platform, the screen 
shots show assorted styles of windows and dialog boxes from the Microsoft 
Windows, Macintosh, and CDE (Common Desktop Environment) platforms.  

Throughout the text, symbols are used to call your attention to design 
guidelines. Each type of guideline is identified by a unique symbol.  

Java Look and Feel Standards  

Requirements for the consistent appearance and compatible behavior of Java 
look and feel applications.  

Java look and feel standards promote flexibility and ease of use in 
cross-platform applications. In addition, they support the creation of 
applications that are accessible to all users, including users with physical and 
cognitive limitations. These standards require you to take actions that go 
beyond the provided appearance and behavior of the JFC components.  

Occasionally, you might need to violate these standards. In such situations, 
use your discretion to balance competing requirements. Be sure to engage in 
usability studies to validate your judgments.  

Cross-Platform Delivery Guidelines  

Recommendations for dealing with colors, fonts, keyboard operations, and 
other issues that arise when you want to deliver your application to a variety of 
computers running a range of operating systems.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Internationalization Guidelines  

Advice for creating applications that can be adapted to the global marketplace.  

Implementation Tips  

Technical information and useful tips of particular interest to the programmers 
who are implementing your application design.  

CD-ROM Resources  

Code samples and graphics for Java look and feel applications, also available 
on the book's companion CD-ROM.  

Related Books and Web Sites  

Many excellent references are available on topics such as fundamental 
principles of human interface design, design issues for specific (or multiple) 
platforms, and issues relating to internationalization, accessibility, and applet 
design.  

Design Principles  

The resources in this section provide information on the fundamental concepts 
underlying human-computer interaction and interface design.  

Baecker, Ronald M., William Buxton, and Jonathan Grudin, eds. Readings in 
Human-Computer Interaction: Toward the Year 2000, 2d ed. Morgan Kaufman, 
1995. Based on research from graphic and industrial design and studies of 
cognition and group process, this volume addresses the efficiency and 
adequacy of human interfaces.  

Hurlburt, Allen. The Grid: A Modular System for the Design and Production of 
Newspapers, Magazines, and Books. John Wiley & Sons, 1997. This is an 
excellent starting text about graphical page layout. Although originally intended 
for print design, this book contains many guidelines that are applicable to 
software design.  

IBM Human-Computer Interaction Group. "IBM Ease of Use." Available: 
http://www.ibm.com/ibm/easy. This web site covers many fundamental 
aspects of human interface design.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Johnson, Jeff. GUI Bloopers: Don'ts and Do's for Software Developers and 
Web Designers. Morgan Kaufman, 2000. A new book that provides examples 
of poor design in windows, inconsistent use of labels, and lack of parallelism in 
visual layout and grammar. The writer develops principles for achieving lucidity 
and the harmony of look and feel.  

Laurel, Brenda, ed. Art of Human-Computer Interface Design. Addison-Wesley, 
1990. Begun as a project inside Apple, this collection of essays explores the 
reasoning behind human-computer interaction and looks at the future of the 
relationship between humans and computers.  

Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces: Communication 
Oriented Techniques. Prentice Hall, 1994. This volume covers fundamental 
design principles, common mistakes, and step-by-step techniques for handling 
the visual aspects of interface design.  

Nielsen, Jakob. Usability Engineering. AP Professional, 1994. This is a classic 
book on design for usability. It gives practical advice and detailed information 
on designing for usability and on assessment techniques and also includes a 
chapter on international user interfaces.  

Norman, Donald A. The Design of Everyday Things. Doubleday, 1990. A 
well-liked, amusing, and discerning examination of why some products satisfy 
while others only baffle or disappoint. Photographs and illustrations throughout 
complement the analysis of psychology and design.  

Shneiderman, Ben. Designing the User Interface: Strategies for Effective 
Human-Computer Interaction, 3d ed. Addison-Wesley, 1997. The third edition 
of this best-seller adds new chapters on the World Wide Web, information 
visualization, and cooperative work and expands earlier work on development 
methodologies, evaluation techniques, and tools for building user interfaces.  

Tognazzini, Bruce. Tog On Software Design. Addison-Wesley, 1995. A pivotal 
figure in computer design offers discerning, stimulating, argumentative, and 
amusing analysis for the lay reader and the computer professional. The work 
includes discussions of quality management and the meaning of standards.  

Tufte, Edward R. Envisioning Information. Graphics Press, 1990. One of the 
best books on graphic design, this volume catalogues instances of superb 
information design (with an emphasis on maps and cartography) and analyzes 
the concepts behind their implementation.  

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics 
Press, 1992. Tufte explores the presentation of statistical information in charts 
and graphs with apt graphical examples and elegantly interwoven text.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tufte, Edward R. Visual Explanations: Images and Quantities, Evidence and 
Narrative. Graphics Press, 1997. The third volume in Tufte's series on 
information display focuses on data that changes over time. Tufte explores the 
depiction of action and cause and effect through such examples as the 
explosion of the space shuttle Challenger, magic tricks, and a cholera 
epidemic in 19th-century London.  

Design for Specific Platforms  

The resources in this section cover application design for the CDE, IBM, Java, 
Macintosh, and Microsoft Windows platforms.  

CDE  

Three volumes address the needs of designers and related professionals who 
create applications using CDE and Motif 2.1.  

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide and Glossary.  

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Reference.  

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Certification Check 
List.  

These titles can be ordered from the Open Group at 
http://www.opengroup.org/public/pubs/catalog/mo.htm.  

IBM  

Object-Oriented Interface Design: IBM Common User Access Guidelines. Que 
Corp, 1992. Available: 
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/publish/586#143. This book is 
out of print but available from most IBM branch offices. A small portion of the 
printed book is intertwined with a modest amount of more current material at 
the IBM web site cited above.  

Java  

Campione, Mary, and Kathy Walrath. The Java Tutorial: Object-Oriented 
Programming for the Internet, 2d ed. Addison-Wesley, 1998. Full of examples, 
this task-oriented book introduces you to fundamental Java concepts and 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

applications. Walrath and Campione describe the Java language, applet 
construction, and the fundamental Java classes and cover the use of multiple 
threads and networking features.  

Campione, Mary, and Kathy Walrath. The JFC Swing Tutorial: A Guide to 
Constructing GUIs. Addison-Wesley, 1999. This readable technical description 
of some difficult subjects includes material on layout managers, events, 
listeners, and container hierarchy.  

Campione, Mary, et al. The Java Tutorial Continued: The Rest of the JDK. 
Addison-Wesley, 1998. The experts describe features added to the original 
core Java platform with many self-paced, hands-on examples. The book 
focuses on Java 2 APIs but also contains the information you need to use the 
JDK 1.1 version of the APIs.  

Chan, Patrick. The Java Developer's Almanac, 1999. Addison-Wesley, 1999. 
Organized to increase programming performance and speed, this book 
provides a quick but comprehensive reference to the JavaTM 2 Platform, 
Standard Edition, v. 1.2.  

Eckstein, Robert, Mark Loy, and Dave Wood. Java Swing. O'Reilly & 
Associates, 1998. An excellent introduction to the Swing components, this 
book documents the Swing and Accessibility application programming 
interfaces. An especially useful chapter explains how to create a custom look 
and feel.  

Geary, David M. Graphic Java 2: Mastering the JFC. Volume 2, Swing. 
Prentice Hall, 1998. This comprehensive volume describes the skills needed to 
build professional, cross-platform applications that take full advantage of the 
JFC. The volume includes chapters on drag and drop, graphics, colors and 
fonts, image manipulation, double buffering, sprite animation, and clipboard 
and data transfer.  

Sun Microsystems, Inc. J2EE Platform Specification. Available: 
http://java.sun.com/j2ee/download.html#platformspec. This web site 
provides a way to download current information on the Java 2 Platform, 
Enterprise Edition, v. 1.3 (J2EE).  

Sun Microsystems, Inc. Java 2 Platform, Standard Edition, Version 1.3 API 
Specification. Available: 
http://java.sun.com/j2se/1.3/docs/index.html#guide. This web site 
provides up-to-date technical documentation on the Java 2 API.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Sun Microsystems, Inc. Java Look and Feel Design Guidelines, 2d ed. 
Available: http://java.sun.com/products/jlf. This web site contains the 
HTML version of this book.  

Sun Microsystems, Inc. The Java Tutorial: A Practical Guide for Programmers. 
Available: http://java.sun.com/docs/books/tutorial/index.html. This web 
site is divided into four trails: a trail covering the basics of the Java language 
and writing applets; a trail on constructing graphical user interfaces with the 
Swing classes and the JFC; specialized trails addressing such topics as 
internationalization, 2D graphics, and security; and trails available only 
online--including a discussion of drag and drop.  

Topley, Kim. Core Java Foundation Classes. Prentice Hall Computer Books, 
1998. Topley explains how to build basic Swing applications, with an emphasis 
on layout managers and basic graphics programming. The book also 
describes the creation of multiple document interface (MDI) applications.  

Walker, Will. "The Multiplexing Look and Feel." Available: 
http://www.sun.com/access/articles/#articles. This article describes a 
special look and feel that provides a way to extend the features of a Swing GUI 
without having to create a new look and feel design. Walker describes an 
example application that can simultaneously provide audio output, Braille 
output, and the standard visual output of ordinary Swing applications.  

Macintosh  

Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-Wesley, 
1992. This volume is the official word on Macintosh user interface principles. It 
includes a superb bibliography with titles on animation, cognitive psychology, 
color, environmental design, graphic and information design, human-computer 
design and interaction, language, accessibility, visual thinking, and 
internationalization.  

Apple Computer, Inc. Mac OS 8 Human Interface Guidelines. Available: 
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html. This 
web site offers a supplement to Macintosh Human Interface Guidelines.  

Microsoft Windows  

Microsoft Windows User Experience. Microsoft Press, 1999. Available: 
http://www.msdn.microsoft.com/library/books/winguide/welcome.htm. The 
official book on Microsoft interface design contains specifications and 
principles for designers who would like to create effective interfaces. It 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

contains numerous examples of design successes and failures. These 
guidelines are available in print and on the web site.  

Design for Multiple Platforms  

The books in this section discuss the complex issues that arise when 
designing software that runs on many platforms.  

McFarland, Alan, and Tom Dayton (with others). Design Guide for 
Multiplatform Graphical User Interfaces (LP-R13). Bellcore, 1995. Available: 
http://telecom-info.telcordia.com/site-cgi/ido/index.html. This is an 
object-oriented style guide with extensive guidelines and a good explanation of 
object-oriented user interface style from the user's perspective.  

Marcus, Aaron, Nick Smilonich, and Lynne Thompson. The Cross-GUI 
Handbook: For Multiplatform User Interface Design. Addison-Wesley, 1995. 
This source describes the graphical user interfaces of Microsoft Windows and 
Windows NT, OSF/Motif, NeXTSTEP, IBM OS/2, and Apple Macintosh. The 
text includes design recommendations for portability and migration and 
recommendations for handling contradictory or inadequate human interface 
guidelines.  

Design for Internationalization  

The books in this section describe software design for the global marketplace.  

Fernandes, Tony. Global Interface Design: A Guide to Designing International 
User Interfaces. AP Professional, 1995. Fernandes addresses developers of 
Internet software designed for a global market. He explains cultural differences, 
languages and their variations, taboos, aesthetics, ergonomic standards, and 
other issues designers must research and understand.  

Guide to Macintosh Software Localization. Addison-Wesley, 1992. A thorough 
and thoughtful discussion of the internationalization and localization processes 
that should prove helpful for developers on any platform.  

Kano, Nadine. Developing International Software for Windows 95 and 
Windows NT. Microsoft Press, 1993. Kano targets Microsoft's guidelines for 
creating international software to an audience with knowledge of Microsoft 
Windows coding techniques and C++. The work contains information on 
punctuation, sort orders, locale-specific code-page data, DBCS/Unicode 
mapping tables, and multilingual API functions and structures.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Luong, Tuoc V., James S.H. Lok, and Kevin Driscoll. Internationalization: 
Developing Software for Global Markets. John Wiley & Sons, 1995. The 
Borland internationalization team describes its procedures and methods with a 
focus on testing and quality assurance for translated software. This hands-on 
guide tells how to produce software that runs anywhere in the world without 
requiring expensive recompiling of source code.  

Nielsen, Jakob, and Elisa M. Del Galdo, eds. International User Interfaces. 
John Wiley & Sons, 1996. This book discusses what user interfaces can and 
must do to become commercially viable in the global marketplace. 
Contributors discuss issues such as international usability engineering, cultural 
models, multiple-language documents, and multilingual machine translation.  

O'Donnell, Sandra Martin. Programming for the World: A Guide to 
Internationalization. Prentice Hall, 1994. This theoretical handbook explains 
how to modify computer systems to accommodate the needs of international 
users. O'Donnell describes many linguistic and cultural conventions used 
throughout the world and discusses how to design with the flexibility needed 
for the global marketplace.  

Uren, Emmanuel, Robert Howard, and Tiziana Perinotti. Software 
Internationalization and Localization: An Introduction. Van Nostrand Reinhold, 
1993. This guide to software adaptation encourages developers to aim at 
producing localized software with the same capabilities as the original software 
while meeting local requirements and conventions.  

Design for Accessibility  

These resources explore how to design software that supports all users, 
including those with physical and cognitive limitations.  

Bergman, Eric, and Earl Johnson. "Towards Accessible Human Interaction." In 
Advances in Human-Computer Interaction, edited by Jakob Nielsen, vol. 5. 
Ablex Publishing, 1995. Available: 
http://www.sun.com/access/developers/updt.HCI.advance.html. This article 
discusses the relevance of accessibility to human interface designers and 
explores the process of designing for ranges of user capabilities. It provides 
design guidelines for accommodating physical disabilities such as repetitive 
strain injuries (RSI), low vision, blindness, and hearing impairment. It also 
contains an excellent list of additional sources on accessibility issues.  

Dunn, Jeff. "Developing Accessible JFC Applications." Available: 
http://www.sun.com/access/developers/developing-accessible-apps. This 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

article covers the specifics of accessibility in Swing classes, including an 
assistive technology primer, nuts-and-bolts information, and test cases.  

Schwerdtfeger, Richard S. Making the GUI Talk. BYTE, 1991. Available: 
ftp://ftp.software.ibm.com/sns/sr-os2/sr2doc/guitalk.txt. This speech 
deals with off-screen model technology and GUI screen readers.  

Schwerdtfeger, Richard S. Special Needs Systems Guidelines. IBM 
Corporation, 1998. Available: http://www.austin.ibm.com/sns/access. html. 
This web site presents principles of accessibility, a checklist for software 
accessibility, and a list of references and resources. In addition, it provides 
discussions of accessibility for the web and for Java applications.  

Sun Microsystems, Inc. Accessibility Quick Reference Guide. Available: 
http://www.sun.com/access/developers/access.quick.ref.html. This site 
defines accessibility, lists steps to check and double-check your product's 
accessibility, and offers tips for making applications more accessible.  

Sun Microsystems, Inc. "Opening New Doors: Enabling Technologies." 
Available: http://www.sun.com/access. This web site includes a primer on the 
Java platform and accessibility and describes the support for assistive 
technologies now provided by the Swing components of the JFC.  

Design for Applets  

These books provide a range of information on designing applets.  

Gulbransen, David, Kenrick Rawlings, and John December. Creating Web 
Applets With Java. Sams Publishing, 1996. An introduction to Java applets, 
this book addresses nonprogrammers who want to incorporate 
preprogrammed Java applets into web pages.  

Hopson, K.C., Stephen E. Ingram, and Patrick Chan. Designing Professional 
Java Applets. Sams Publishing, 1996. An advanced reference for developing 
Java applets for business, science, and research.  

 
 
 
 
 
 
 
 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Part I: Overview  

This part consists of:  

• Chapter 1: The Java Look and Feel  

• Chapter 2: The Java Foundation Classes 

1: The Java Look and Feel  
As the Java platform has matured, designers and developers have recognized 
the need for consistent, compatible, and easy-to-use Java applications. The 
Java look and feel meets that need by providing a distinctive 
platform-independent appearance and standard behavior. The use of this 
single look and feel reduces design and development time and lowers training 
and documentation costs for all users.  

This book sets standards for the use of the Java look and feel. By following 
these guidelines, you can create Java applications that effectively support all 
users worldwide, including those with physical and cognitive limitations.  

Fundamentals of the Java Look and Feel  

The Java look and feel is the default interface for applications built with the 
JFC. The Java look and feel is designed for cross-platform use and can 
provide:  

• Consistency in the appearance and behavior of common design elements  
• Compatibility with industry-standard components and interaction styles  
• Aesthetic appeal that does not distract from application content 

Three distinctive visual elements are the hallmarks of the Java look and feel 
components: the flush 3D style, the drag texture, and the color model.  

In the Java look and feel, component surfaces with beveled edges appear to 
be at the same level as the surrounding canvas. This "flush 3D" style is 
illustrated in the following figure.  

Figure 1   Consistent Use of the Flush 3D Style  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

The clean, modern appearance reduces the visual noise associated with 
beveled edges. Flush 3D components fit in with a variety of applications and 
operating systems. For details on the flush 3D style, see Producing the Flush 
3D Effect.  

A textured pattern, used throughout the Java look and feel, indicates items that 
users can drag. Such an indication cues cross-platform users in a reliable way. 
The following figure demonstrates several uses of the drag texture.  

Figure 2   Consistent Use of the Drag Texture  

 

A simple and flexible color model ensures compatibility with platforms and 
devices capable of displaying quite different color depths. The default colors 
provide an aesthetically pleasing and comfortable scheme for interface 
elements, as shown in the following figure. For more on the Java look and feel 
default color theme, see Themes.  

Figure 3   Consistent Use of Color Across Design Elements  

 

Visual Tour of the Java Look and Feel  

The Java look and feel implements widely understood interface elements 
(windows, icons, menus, and pointers) and works in the same way on any 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

operating system that supports the JFC. The visual tour in this section shows 
off two JFC applications with the Java look and feel: MetalEdit and Retirement 
Savings Calculator. MetalEdit is a standalone, text-editing application; 
Retirement Savings Calculator is an applet displayed in a browser window.  

The following figure shows a Microsoft Windows desktop with MetalEdit and 
Retirement Savings Calculator (a Java applet). MetalEdit has a menu bar and 
toolbar as well as a text-editing area. As an applet, Retirement Savings 
Calculator is displayed inside a web browser within an HTML page. Other 
Microsoft Windows applications are also present; some are represented by 
minimized windows.  

Although the windows of many applications can be open on the desktop, only 
one can be the active window. In the figure, MetalEdit is the active window 
(indicated by the color of the title bar), whereas the Netscape NavigatorTM 
browser, which contains Retirement Savings Calculator, is inactive.  

Figure 4   Typical Desktop With Applications on the Microsoft Windows Platform  

 

MetalEdit Application  

This section uses the MetalEdit application to illustrate some of the most 
important visual characteristics of the Java look and feel, including its windows, 
menus, toolbars, editor panes, dialog boxes, and alert boxes.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Example Windows  

The windows in Java look and feel applications use the borders, title bars, and 
window controls of the platform they are running on. For instance, the 
MetalEdit document window shown in Figure 4 is running on a Microsoft 
Windows desktop and uses the standard Microsoft window frame and title bar.  

In Figure 5, the contents of the document window (menu bar, toolbar, and 
editor pane) use the Java look and feel. However, the window borders, title 
bars, and window controls have a platform-specific appearance.  

Click here to view the corresponding code for Figure 5 (also 

available on the book's companion CD-ROM). 

Figure 5   Exploded Document Window on Three Platforms  

 

Example Menus  

The menu bar, which is the horizontal strip under the window title, displays the 
titles of application menus, called "drop-down menus." Drop-down menus 
provide access to an application's primary functions. They also enable users to 
survey the features of the application by looking at the menu items. Chapter 9 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

contains discussions of drop-down menus, submenus, and contextual menus 
and provides guidelines for the creation of menus and menu items for your 
application.  

Figure 6   Example Menu Bar  

 

The menu items in Figure 7 (which shows the contents of the Edit and Format 
menus from the MetalEdit menu bar) are divided into logical groupings by 
menu separators (in the flush 3D style). For instance, in the Edit menu, the Cut, 
Copy, and Paste commands, which are related to the clipboard, are separated 
from Undo and Redo commands, which respectively reverse or restore 
changes in the document. For more information, see Typical Edit Menu. Titles 
of menus that are activated are highlighted in blue in the default Java look and 
feel theme.  

Click here to view the corresponding code for Figure 7 (also 

available on the book's companion CD-ROM). 

Figure 7   Example Drop-down Menus  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Keyboard shortcuts offer an alternative to using the mouse to choose a menu 
item. For instance, to copy a selection, users can press Control-C. For details, 
see Keyboard Shortcuts.  

Mnemonics provide yet another way to access menu items. For instance, to 
view the contents of the Edit menu, users press Alt-E. Once the Edit menu has 
keyboard focus, users can press C (or Alt-C) to copy a selection. These 
alternatives are designated by underlining the "E" in Edit and the "C" in Copy. 
For details, see Mnemonics.  

The menus shown in Figure 7 illustrate two commonly used menu titles, menu 
items, and menu item arrangements for Java look and feel applications. For 
details, see Drop-down Menus and Menu Items.  

Example Toolbar  

A toolbar displays command and toggle buttons that offer immediate access to 
the functions of many menu items.  

In Figure 8, the MetalEdit toolbar is divided into four areas for functions relating 
to file management, editing, font styles, and alignment. Note the flush 3D style 
of the command and toggle buttons and the textured drag area to the left of the 
toolbar. For details, see Toolbars. For a collection of toolbar buttons designed 
using the Java look and feel guidelines, see Appendix B.  

Click here to view the corresponding code for Figure 8 (also 

available on the book's companion CD-ROM). 

Figure 8   Example Toolbar  

 

Example Editor Pane  

The document text in the following figure is displayed in an editor pane with a 
styled text editor plug-in kit, which is embedded in a scroll pane. (Note the use 
of the drag texture in the scroll box.) For more on styled text editor plug-in kits, 
see Editor Panes. For details on scroll panes, see Scroll Panes.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 9   Example Editor Pane  

 

Example Dialog Boxes  

In the Java look and feel, dialog boxes use the borders and title bars of the 
platform they are running on. However, the dialog box contents have the Java 
look and feel. Chapter 8 describes dialog boxes in the Java look and feel and 
contains recommendations for their use.  

Figure 10 shows a preferences dialog box with the title bars, borders, and 
window controls of several platforms. The dialog box enables users to specify 
options in the MetalEdit application. Noneditable combo boxes are used to 
select ruler units and a font. Text fields are used to specify the margins. An 
editable combo box enables users to specify font size. Radio buttons and 
checkboxes are used to set other preferences. Clicking the Browse command 
button displays a file chooser in which users can select a stationery folder.  

Note the flush 3D borders of the combo boxes, text fields, radio buttons, 
checkboxes, and command buttons. Labels use the primary 1 color, one of 
eight colors in the default Java look and feel theme. (For more, see Colors.) 
For a thorough treatment of basic controls (including combo boxes, radio 
buttons, checkboxes, and command buttons), see Chapter 10. For a detailed 
discussion of text fields and labels, see Chapter 11.  

MetalEdit provides mnemonics and keyboard navigation and activation 
sequences for each of the interactive controls in the preferences dialog box. 
The dialog box in Figure 10 illustrates two ways to create a mnemonic: directly 
in a component, indicated by an underlined letter in the component text, or in a 
label associated with the component, indicated by an underlined letter in the 
label.  

Click here to view the corresponding code for Figure 10 (also 

available on the book's companion CD-ROM). 

Figure 10   Example Dialog Boxes on Microsoft Windows, Macintosh, and CDE Platforms  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Example Alert Boxes  

The alert boxes in a Java look and feel application use the borders, title bars, 
and window controls of the platform they are running on. However, the 
symbols, messages, and command buttons supplied by the JFC use the Java 
look and feel. (You provide the actual message and specify the number of 
command buttons and the button text. The JFC provides layouts for the 
symbol, the message, and the command buttons.)  

In Figure 11, MetalEdit's warning box asks users if they would like to save 
changes when they try to close a window that has unsaved changes. Of the 
three command buttons in the alert box, the default command button is Save. 
The Don't Save button closes the window without saving changes. The Cancel 
button closes the dialog box but leaves the unsaved document open. For 
details, see Alert Boxes.  

Click here to view the corresponding code for Figure 11 (also 

available on the book's companion CD-ROM). 

Figure 11   Example Alert Boxes on CDE, Microsoft Windows, and Macintosh Platforms  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Retirement Savings Calculator Applet  

The sample applet shown in Figure 12, Retirement Savings Calculator, is part 
of a web page displayed in the Netscape Navigator browser.  

This human resources applet enables employees of a fictitious company to 
determine their contributions to a retirement savings plan. To make it easy for 
all employees to access information on their retirement savings, the company 
provides the applet in a web page. (Note the boundaries of the applet. The 
HTML page also includes a banner in the GIF format as well as an HTML 
header with the title of the page.) All of the JFC components use the Java look 
and feel. However, the browser, its menu bar, toolbar, and scrollbars all use 
the platform's native look and feel (Microsoft Windows, in this case).  

Click here to view the corresponding code for Figure 12 (also 

available on the book's companion CD-ROM). 

Figure 12   Applet on an HTML Page in a Browser  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

The applet obtains an employee's current retirement savings contribution and 
other salary data from a database and fills a table with the relevant data. The 
employee can drag a slider to specify a salary contribution and click a radio 
button to specify whether new contributions go to a money market, bond, or 
stock market fund. A row of command buttons offers a choice of whether to 
save changes, reset the salary contribution and fund contributed to, or display 
help.  

Using the employee's input and databases, the applet calculates the 
employee's weekly and yearly gross salary, tax withholding, other deductions, 
retirement savings contribution, net paycheck, and the company's matching 
funds. Results are displayed in a table. Finally, the employee can type 
an assumed appreciation rate in an editable text field to see accumulated 
future savings or instruct the applet to use the nine-month fund history to 
project savings in the chart at the bottom of the applet.  

Click here to view the corresponding code for Figure 13 (also 

available on the book's companion CD-ROM). 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 13   Retirement Savings Calculator Applet  

 

For more information on the components used in this applet, see Text Fields, 
Sliders, Radio Buttons, Command Buttons, and Tables.  

2: The Java Foundation Classes  
This book assumes that you are designing software based on the Java 
Foundation Classes (JFC) and utilizing the Java look and feel. This chapter 
provides an overview of that technology: the JavaTM 2 SDK (software 
development kit), the user interface components of the Java Foundation 
Classes, the pluggable look and feel architecture, and available look and feel 
designs.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Java 2 Software Development Kit  

The APIs and tools that developers need to write, compile, debug, and run 
Java applications are included in the Java 2 SDK.  

The guidelines in this book pertain to GUI applications built with the Java 2 
SDK, Standard Edition, v. 1.3 (J2SE), and the Java 2 SDK, Enterprise Edition, 
v. 1.3 (J2EE), (both referred to hereafter as "Java 2 SDK"). The guidelines do 
not apply to applications built with the Java 2 SDK, Micro Edition.  

Java Foundation Classes  

The JFC includes the Swing classes, which define a complete set of GUI 
components for JFC applications. An extension to the original Abstract 
Window Toolkit (AWT), the JFC includes the Swing classes, pluggable look 
and feel designs, and the Java Accessibility API, which are all implemented 
without native code (code that refers to the functions of a specific operating 
system or is compiled for a specific processor). The JFC components include 
windows and frames, panels and panes, dialog boxes, menus and toolbars, 
buttons, sliders, combo boxes, text components, tables, list components, and 
trees.  

All the components have look and feel designs that you can specify. The 
cross-platform, default look and feel is the Java look and feel. For details on 
the design principles and visual elements underlying the Java look and feel, 
see Chapter 1.  

 In code, the Java look and feel is referred to as "Metal." 

The Java 2 SDK contains the AWT, the class library that provides the standard 
application programming interfaces for building GUIs for Java programs.  

In the Java 2 SDK, the JFC also includes the Java 2D API, drag and drop, and 
other enhancements. The Java 2D API provides an advanced two-dimensional 
imaging model for complex shapes, text, and images. Features include 
enhanced font and color support and a single, comprehensive rendering 
model.  

Support for Accessibility  

Several features of the Java 2 SDK support people with special needs: the 
Java Accessibility API, the Java Accessibility Utilities, keyboard navigation, 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

mnemonics, keyboard shortcuts (also called "accelerators"), customizable 
colors and fonts, and dynamic GUI layout.  

The Java Accessibility API provides ways for an assistive technology to 
interact and communicate with JFC components. A Java application that fully 
supports the Java Accessibility API is compatible with technologies such as 
screen readers and screen magnifiers.  

A separate set of utility classes, Java Accessibility Utilities, provides support in 
locating the objects that implement the Java Accessibility API. (These utilities 
are necessary for developers who develop only assistive technologies, not 
mainstream applications.)  

A pluggable look and feel architecture is used to build both visual and 
nonvisual designs, such as audio and tactile user interfaces. For more on the 
pluggable look and feel, see Pluggable Look and Feel Architecture.  

Keyboard navigation enables users to use the keyboard to move between 
components, open menus, highlight text, and so on. This support makes an 
application accessible to people who find it difficult or impossible to use a 
mouse. For details on keyboard operations, see Appendix A.  

Mnemonics show users which key to press (in conjunction with the Alt key) in 
order to activate a command or navigate to a component. (For details on 
mnemonics, see Mnemonics.)  

Keyboard shortcuts are keystroke combinations (usually a modifier key and a 
character key, like Control-C) that activate menu items from the keyboard even 
if the relevant menu is not currently displayed. (For more on keyboard 
shortcuts, see Keyboard Shortcuts.)  

Support for Internationalization  

The Java 2 SDK provides internationalized text handling and resource bundles. 
Text handling features include support for the bidirectional display of text 
lines--important for displaying documents that mix languages with a left-to-right 
text direction (for instance, English, German, or Japanese) and languages with 
a right-to-left direction (for instance, Arabic or Hebrew).  

The Java 2 SDK also provides resource bundles, locale-sensitive sorting, and 
support for localized numbers, dates, times, and messages.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

User Interface Components of the JFC  

The JFC includes Swing, a complete set of user interface components, 
including windows, dialog boxes, alert boxes, panels and panes, and basic 
controls. Each JFC component contains a model (the data structure) and a 
user interface (the presentation and behavior of the component), as shown in 
the following illustration.  

Figure 14   Structure of the JFC Components  

 

Pluggable Look and Feel Architecture  

Because both presentation and behavior are separate and replaceable 
("pluggable"), you can specify any of several look and feel designs for your 
application--or you can create your own look and feel. The separation of a 
component's model (data structure) from its user interface (display and 
interaction behavior) is the empowering principle behind the pluggable look 
and feel architecture of the JFC. A single JFC application can present a Java 
look and feel, a platform-specific look and feel, or a customized interface (for 
example, an audio interface).  

Example Model and Interfaces  

Consider the slider and the editable text field in the following figure as an 
example. The underlying model contains information about the current value 
as well as the minimum and maximum values. The slider's interface 
determines how users see or interact with the slider. The slider enforces the 
idea of a range of choices. However, an editable text field would be easier for 
keyboard users. The editable text field shares the data model with the slider. 
The text field's interface contains data about the position and color of the label 
and the text field and the response when users type in a new value.  

Figure 15   Pluggable Look and Feel Architecture of a Slider  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Client Properties  

You can use the client properties mechanism to display an alternate form of a 
specific Java user interface component. If a look and feel design does not 
support a property, it ignores the property and displays the component as 
usual. You can set alternate appearances for sliders, toolbars, trees, and 
internal windows. For instance, a nonfilling slider might be displayed by default. 
However, by using the client properties mechanism, you can display a filling 
slider, as shown in the preceding figure.  

Major JFC User Interface Components  

The following table illustrates (with icons intended for use in a GUI 
builder) the major user interface components in the JFC. Components 
are listed alphabetically by their names in code. Their English names 
are provided, followed by the location of more detailed information on 
each component.  

Table 1   Names of the JFC User Interface Components  

Component Code Name Common Name For Details 

 
JApplet Applet click here 

 
JButton  

Command button and toolbar 

button 

click here and 

here 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 JCheckBox Checkbox click here 

 JCheckBoxMenuItem Checkbox menu item click here 

 JColorChooser Color chooser  click here 

 
JComboBox 

Noneditable and editable combo 

boxes 
click here 

 JDesktopPane Backing window click here 

 
JDialog 

Dialog box, secondary window, and 

utility window 

click here, 

here, and here 

 JEditorPane Editor pane click here 

 JFrame Primary window click here 

 

JInternalFrame 

Internal window, minimized 

internal window, and internal utility 

window 

click here and 

here 

 
JLabel Label 

click here and 

here 

 
JList 

List components (list boxes and 

selectable lists) 

click here and 

here 

 JMenu Drop-down menu and submenu click here 

 JMenuBar  Menu bar click here 

 JMenuItem  Menu item click here 

 JOptionPane Alert box click here 

 JPanel  Panel click here 

 JPasswordField  Password field click here 

 JPopupMenu  Contextual menu click here 

 JProgressBar  Progress bar click here 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 JRadioButton  Radio button click here 

 JRadioButtonMenuItem Radio button menu item click here 

 JScrollBar  Scrollbar click here 

 JScrollPane  Scroll pane click here 

 JSeparator  Separator click here 

 JSlider  Slider click here 

 JSplitPane  Split pane click here 

 JTabbedPane  Tabbed pane click here 

 JTable  Table click here 

 JTextArea  Plain text area click here 

 
JTextField  

Noneditable and editable text fields 

(single line) 
click here 

 
JTextPane  

Editor pane with the styled editor 

kit plug-in 
click here 

 
JToggleButton  

Toggle button and toolbar toggle 

button 

click here and 

here 

 JToolBar  Toolbar click here 

 JToolTip  Tool tip click here 

 JTree  Tree component click here 

 JWindow  Plain (unadorned) window click here 

 

 In the JFC, the typical primary windows that users work with are 
based on the JFrame component. Unadorned windows that consist of 
a rectangular region without any title bar, close control, or other 
window controls are based on the JWindow component. Designers 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

and developers typically use the JWindow component to create 
windows without title bars, such as splash screens.  

For details on the use of windows, panels, and panes, see Chapter 7.  

Look and Feel Options  

You, the designer, have the first choice of a look and feel design. You can 
determine the look and feel you want users to receive on a specific platform, or 
you can choose a cross-platform look and feel.  

Java Look and Feel--the Recommended Design  

With a cross-platform look and feel, your application will appear and perform 
the same everywhere, simplifying the application's development and 
documentation.  

 Do not specify a look and feel explicitly. This way, the Java look 

and feel, which is a cross-platform look and feel, is used by default.  

 If an error occurs while specifying the name of any look and feel, 

the Java look and feel is used by default. 

Supplied Designs  

If you do not specify the Java look and feel, you can specify another look and 
feel--one that ships with the JFC or one that someone else has made. Note, 
however, that not all look and feel designs are available on every platform. For 
example, the Microsoft Windows look and feel is available only on the 
Microsoft Windows platform.  

Because there is far more to the design of an application than the look and feel 
of components, it is unwise to give end users the ability to swap look and feel 
designs while working in your application. Switching look and feel designs in 
this way only swaps the look and feel designs of the components from one 
platform to another. The layout and vocabulary do not change. Since layout 
conventions vary from platform to platform, this situation can result in an 
interface that looks inappropriate. For instance, swapping look and feel 
designs does not change the titles of the menus. (If you must provide users 
with the ability to switch look and feel designs, see Appendix D.)  

The look and feel designs available in the Java 2 SDK are:  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• Java look and feel. (Called "Metal" in the code.) The Java look and feel is 
designed for use on any platform that supports the JFC. This book provides 
recommendations on the use of the Java look and feel.  

• Microsoft Windows. (Called "Windows" in the code.) The Microsoft Windows 
style look and feel can be used only on Microsoft Windows platforms. It follows the 
behavior of components in applications that ship with Windows NT 4.0. For details, 
see Microsoft Windows User Experience, which is described in Microsoft 
Windows.  

• CDE. (Called "CDE/Motif" in the code.) The CDE style look and feel is designed 
for use on UNIX® platforms. It emulates OSF/Motif 1.2.5, which ships with the 
SolarisTM 2.6 operating system. For details, see the CDE 2.1/Motif 2.1--Style 
Guide and Glossary, which is described in CDE. 

Part II: Fundamental 
Java Application Design  

This part consists of:  

• Chapter 3: Design Considerations  

• Chapter 4: Visual Design  

• Chapter 5: Application Graphics  

• Chapter 6: Behavior 

3: Design Considerations  
When you begin a software project, ask yourself these three questions:  

• How do I want to deliver my software to users?  
• How can I design an application that is accessible to all potential users?  
• How can I design an application that suits a global audience and requires minimal 

effort to localize? 

Choosing an Application or an Applet  

Early in the development process, you must decide if you want to create a 
standalone application or an applet that is displayed in a web browser. The 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

following figure shows the different environments for running applications and 
applets.  

Figure 16   Environments for Applications and Applets  

 

When deciding between an application and an applet, the two main issues you 
need to consider are distribution and security, including read and write 
permissions. If you decide to use an applet, you must also decide whether to 
display your applet in the user's current browser window or in a separate 
browser window. (It is possible, with a moderate amount of effort, to ship a 
program as both an applet and an application.)  

For an example of an application that uses the Java look and feel, see 
MetalEdit Application. For an example of an applet, see Retirement Savings 
Calculator Applet. For a list of additional reading on applets, see Design for 
Applets.  

Distribution  

When deciding how to distribute your software, weigh the needs of both end 
users and administrators. Don't forget to consider ease-of-use issues for:  

• Initial distribution and installation of the software  
• Maintenance of the software  
• Updates to the software  
• Regular access to the software 

One solution is the standalone application, distributed on a CD-ROM disc or a 
floppy disk and installed on the end user's local hard disk. Once the application 
is installed, users can easily access it. In an enterprise environment, however, 
maintenance can be complicated because separate copies of the application 
exist on each user's local computer. Distribution of the original application and 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

subsequent updates require shipment of the software to, and installation by, 
multiple users.  

In contrast, applets are simpler to distribute and maintain because they are 
installed on a central web server. Using a web browser on their local machines, 
users can access the latest version of the applet from anywhere on the intranet 
or Internet. Users, however, must download the applet over the network each 
time they start the applet.  

If you are creating an applet, make sure that your users have a browser that 
contains the JFC or that they are using JavaTM Plug-In. That way, users will not 
have to download the JFC every time they run the applet. (The HTML required 
to run an applet differs for plug-in and non-plug-in configurations. Consider 
providing both options to the user.)  

Security Issues  

Another issue to consider is whether your software needs to read and write 
files. Standalone Java applications can read or write files on the user's hard 
disk just as other applications do. For example, the MetalEdit application reads 
and writes documents on the user's local disk.  

In contrast, applets usually cannot access a user's hard disk because they are 
intended for display on a web page. Generally, a user doesn't know the source 
of an applet that has been downloaded from the web, so standard security 
procedures include preventing all applets from reading and writing to the hard 
disk. Thus, applets are better suited for tasks that do not require access to the 
hard disk. For example, a web page for a bank might offer an applet that 
calculates home mortgage payments and prints results, but does not save files 
on the customer's hard disk.  

You can also use an applet as a front end to a central database. For example, 
the Retirement Savings Calculator applet enables company employees to 
select funds for their retirement contribution and update the amount of their 
contribution in the company database.  

Placement of Applets  

If you decide to design an applet, you can display your applet in the user's 
current browser window or in a separate browser window.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Applets in the User's Current Browser Window  

The current browser window is well suited for displaying applets in which users 
perform a single task. This approach enables users to perform the task and 
then resume other activities in the browser, such as surfing the web.  

An applet displayed in the current browser window should not include a menu 
bar--having a menu bar in both the applet and the browser confuses users.  

Applets generally cannot predict which mnemonics are (or are not) in use in 
the browser itself. Therefore, determine which top-level mnemonics are used 
in expected browsers and in their associated environments and avoid their use, 
so no conflicts occur. Examples of top-level mnemonics are menu title names 
(such as File and Edit).  

Applets in Separate Browser Windows  

If your applet involves more than one task or if users might want to visit other 
web pages before completing the task, launch a separate browser window and 
display the applet there. This approach enables users to interact with the 
applet and maintain the original browser window for other activities. Users can 
open multiple browser windows to do several tasks simultaneously. Navigating 
to another web page in the original browser window, however, does not affect 
the applet in its separate browser window.  

Designing an applet for a separate browser window is simpler if you remove 
the browser's normal menu and navigation controls. Doing so avoids confusion 
between the browser's menu and controls and the applet's menus and controls. 
You also avoid potential conflicts between mnemonics in the two windows.  

Designing for Accessibility  

Accessibility refers to the removal of barriers that prevent people with 
disabilities from participating in social, professional, and practical life activities. 
In software design, accessibility requires taking into account the needs of 
people with functional differences: for example, users who are unable to 
operate a conventional mouse or keyboard or users who cannot process 
information using traditional output methods.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Java Accessibility Helper, a utility to aid you in assessing how well 

your application supports the needs of people with disabilities, is 

available on the book's companion CD-ROM. 

Benefits of Accessibility  

Accessibility provides a competitive advantage, increasing sales as well as the 
opportunities for employment, independence, and productivity for the 
approximately 750 million people worldwide with disabilities. Moreover, 
designing for accessibility provides potential benefits beyond enabling people 
with disabilities:  

• Mnemonics and keyboard shortcuts, which are significantly faster than navigating 
using the mouse, make all users more productive.  

• Keyboard navigation is preferred by a significant number of users and is good for 
users with even minor RSI (repetitive stress injury) issues.  

• Customizable fonts enable users to pick fonts that reduce eye strain and display 
effectively on widely varying monitors.  

• Customizable colors enable applications to fit into the desktop seamlessly and 
work properly on systems with limited available colors. 

Consider the concept of electronic curb cuts: In the real world, cuts made in 
the sidewalk at intersections enable wheelchairs to exit the sidewalk and cross 
the intersection. Those curb cuts are also great for baby strollers, skateboards, 
and elderly people with only minor disabilities. In the same way, many software 
accessibility features make everyone more productive.  

Many countries are instituting legislation (such as the Americans With 
Disabilities Act in the United States) that makes access to information, 
products, and services mandatory for individuals with special needs. In these 
countries, government and academic institutions are required to purchase and 
support technologies that maximize accessibility. For example, in the United 
States, Section 508 of the Federal Rehabilitation Act requires all federal 
contracts to include solutions for employees with disabilities. The international 
community of people with disabilities is also successfully pressuring 
companies to sell accessible software.  

Accessible Design  

Five steps will put you on a path to an accessible product:  

• Follow the standards in this book  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• Provide accessible names and descriptions for your components  
• Employ mnemonics and keyboard shortcuts throughout your application  
• Provide proper keyboard navigation and activation  
• Perform usability studies with disabled users 

For a list of additional reading, see Design for Accessibility.  

Java Look and Feel Standards  

The Java look and feel standards in this book take into account the needs of 
users with functional limitations. The standards cover how to use colors, fonts, 
animation, and graphics. By following these standards, you will be able to meet 
the needs of most of your users.  

 Java look and feel standards are identified throughout the book by 

this symbol. 

Accessible Names and Descriptions  

An accessible name and description property should be provided for each 
component in your application. These properties enable an assistive 
technology, such as a screen reader, to interact with the component.  

As a developer, you usually do not have to set these properties directly. 
Commonly, the accessible name and descriptions are picked up automatically 
from a component's label or tool tip. (Furthermore, Java Accessibility Helper, 
the utility provided on the book's companion CD-ROM, checks for this 
information.) For details, see "Developing Accessible JFC Applications" at  
http://www.sun.com/access/developers/developing-accessible-apps.  

Whenever possible, use tool tips and labels instead of setting accessibility 
properties directly. This practice makes it easy to extract accessibility 
information and localize the accessibility properties. If you set accessibility 
properties directly and add unique strings to your application, be sure to store 
the new information in your application's resource bundle. When the bundle is 
localized, the accessibility values are included.  

 The accessibleName property provides a name for a component and 

distinguishes it from other components of the same type. It enables 

assistive technologies to provide users with the name of the component 

that has input focus.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 For components such as labels, buttons, and menu items that contain 

noneditable text, the accessibleName property is set automatically to the 

text. Other types of components should have corresponding JLabel objects. 

Use the JLabel.setLabelFor method to instruct the target object to inherit 

its accessible name from the label. 

 All components should have tool tips. They automatically set the 

components' accessibleDescription property, which provides information 

such as how a component works. 

 The Java Accessibility Helper utility can be used to determine 

whether accessibleName properties and other API information are properly 

implemented in your application. Java Accessibility Helper v.0.3 is 

included on the book's companion CD-ROM. 

For more information on the Java Accessibility API and the Java Accessibility 
Utilities package, see Support for Accessibility.  

Mnemonics and Keyboard Shortcuts  

You should provide mnemonics and keyboard shortcuts throughout your 
application. A mnemonic is an underlined alphanumeric character that shows 
users which key to press (in conjunction with the Alt key) to activate a 
command or navigate to a component.  

The dialog box in Figure 17 shows the use of mnemonics for a text field, 
checkboxes, radio buttons, and command buttons. For example, if keyboard 
focus is within the dialog box, pressing Alt-W moves keyboard focus to the 
Whole Word checkbox and selects it.  

Click here to view the corresponding code for Figure 17 (also 

available on the book's companion CD-ROM). 

Figure 17   Mnemonics in a Dialog Box  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

In cases where you can't add a mnemonic to the component itself, as in the 
text field in the preceding figure, you can place the mnemonic in the 
component's label. For more information on mnemonics, see Mnemonics.  

 The labelFor property should always be used to associate a label 

with another component so that the component becomes active when the 

label's mnemonic is activated. This practice eliminates the need to set 

an accessibleName property programmatically. 

Keyboard shortcuts are keystroke combinations (usually a modifier key and a 
character key, like Control-C) that activate menu items from the keyboard even 
if the relevant menu is not currently displayed. (For more on keyboard 
shortcuts, see Keyboard Shortcuts.)  

Keyboard Focus and Tab Traversal  

You can also assist users who navigate via the keyboard by assigning initial 
keyboard focus and by specifying a tab traversal order. Keyboard focus 
indicates where the next keystrokes will take effect. For more information, see 
Keyboard Focus.  

Tab traversal order is the sequence in which components receive keyboard 
focus on successive presses of the Tab key. In most cases, the traversal order 
follows the reading order of the users' locale. For more information on tab 
traversal order, see Tab Traversal Order.  

Make sure you test your application to see if users can access all functions 
and interactive components from the keyboard. Unplug the mouse and use 
only the keyboard when you perform your test.  

Usability Studies  

You should try out the application with a variety of users to see how well it 
provides for accessibility. Low-vision users, for example, are sensitive to font 
sizes and color, as well as layout and context problems. Blind users are 
affected by interface flow, tab order, layout, and terminology. Users with 
mobility impairments can be sensitive to tasks that require an excessive 
number of steps or a wide range of movement.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Planning for Internationalization and Localization  

In software development, internationalization is the process of writing an 
application that is suitable for the global marketplace, taking into account 
variations in regions, languages, and cultures. A related term, localization, 
refers to the process of customizing an application for a particular language or 
region. The language, meaning, or format of the following types of data can 
vary with locale:  

• Colors  
• Currency formats  
• Date and time formats  
• Graphics  
• Icons  
• Labels  
• Messages  
• Number formats  
• Online help  
• Page layouts  
• Personal titles  
• Phone numbers  
• Postal addresses  
• Reading order  
• Sounds  
• Units of measurement 

Figure 18 shows a notification dialog box in both English and Japanese. Much 
of the localization of this dialog box involves the translation of text. The 
Japanese dialog box is bigger than the English dialog box because some text 
strings are longer. Note the differences in the way that mnemonics are 
displayed. In English, the mnemonic for the Sound File text field is S. In 
Japanese, the same mnemonic (S) is placed at the end of the label.  

Click here to view the corresponding code for Figure 18 (also 

available on the book's companion CD-ROM). 

Figure 18   English and Japanese Notification Dialog Boxes  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Benefits of Global Planning  

The main benefit of designing an application for the global marketplace is more 
customers. Many countries require that companies purchase applications that 
support their language and culture. Global planning ensures that your 
application is easier to translate and maintain. A well-designed application 
functions the same way in all locales.  

Global Design  

You can incorporate support for localization into your design by using 
JFC-supplied layout managers and resource bundles. In addition, you should 
take into account that differences exist around the world in reading order, word 
order, mnemonics, graphics, formats, sorting orders, and fonts.  

 Internationalization guidelines are identified throughout the book 

by this symbol. For a list of additional reading, see Design for 

Internationalization. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Layout Managers  

You can use a layout manager to control the size and location of the 
components in your application. For example, Figure 18 shows that the Sound 
File label becomes longer when it is translated from English to Japanese. The 
spacing between the Sound File label and its text field, however, is the same in 
both dialog boxes. For more information on layout managers, see The Java 
Tutorial at http://java.sun.com/docs/books/tutorial.  

Resource Bundles  

You should use resource bundles to store locale-specific data, such as text, 
colors, graphics, fonts, and mnemonics. A resource bundle makes your 
application easier to localize by isolating locale-specific data so that it can be 
translated without changing the application source code.  

If your application has a Cancel button, for example, the resource bundles in 
English, German, and Chinese would include the text shown in Figure 19.  

Click here to view the corresponding code for Figure 19 (also 

available on the book's companion CD-ROM). 

Figure 19   Cancel Buttons in English, German, and Chinese  

 

For translations of interface elements and concepts used in Java look and feel 
applications into selected European and Asian languages, see Appendix C. 
For more information on creating resource bundles, see The Java Tutorial. 
(The Java Tutorial is described in Java.)  

Reading Order  

When you lay out your application, place the components according to your 
users' reading order. This order will help users understand the components 
quickly as they read through them. Reading order varies among locales. The 
reading order in English, for example, is left to right and top to bottom. The 
reading order in Middle Eastern languages, on the other hand, is from right to 
left and top to bottom.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

In this book, you will find standards such as "put labels before the component 
they describe." The term "before" is determined by the reading order of the 
user's language. For example, in English, labels appear to the left of the 
component they describe.  

 In the JFC, component orientation features can be used to adapt your 

application to different reading orders. 

 In the Java 2 SDK, the layout managers FlowLayout and BorderLayout 

are sensitive to the reading order of the locale. 

Word Order  

Keep in mind that word order varies among languages, as shown in the 
following figure. A noneditable combo box that appears in the middle of an 
English sentence does not translate properly in French, where the adjective 
should come after the noun. (The correct French sentence is "Utilisez une 
Flèche Rouge.")  

Figure 20   Incorrect Adaptation of English Word Order into French  

 

The following figure corrects the problem by using a label before the 
noneditable combo box. This format works well in both English and French.  

Figure 21   Correct Adaptation of English Word Order into French  

 

Mnemonics  

You must be careful when choosing mnemonics, which might change in 
different languages. Store mnemonics in resource bundles with the rest of your 
application's text. In addition, make sure that the characters you choose for 
your mnemonics are available on keyboards in the target countries for your 
application.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Graphics  

You can make localization easier by using globally understood graphics 
whenever possible. Many graphics that are easily understood in one locale are 
puzzling in another locale. For example, using a mailbox to represent an email 
application is problematic because the shape and size of mailboxes vary by 
locale. Graphics that represent everyday objects, holidays, and seasons are 
difficult to localize, as are graphics that include text.  

Avoid using graphics that might be offensive in some locales, including:  

• Images that contain text. For example, if an image contains English text, the text 
(and graphic) must be localized for each locale.  

• Images that contain numbers. Numbers have different connotations in different 
locales. For example, just as the number 13 has an unlucky connotation in the 
United States, the number 4 connotes death in both Japan and Hong Kong.  

• Images containing hand gestures. A gesture that is appropriate or meaningful in 
one locale can be offensive or meaningless in another locale.  

• Images that represent a play on words. For instance, puns don't translate well.  
• Images of animals. Just as the image of a dog to represent food would be 

unsettling to most people in the United States, the image of a cow in the same 
context can offend people in India.  

• Images of people or faces. Depictions of certain facial expressions, nontraditional 
gender dynamics, and uncovered skin can be offensive to users in some locales. 

An example of a symbol that works well in all cultures is the use of an airplane 
to denote an airport.  

Like text, you can place graphics in resource bundles so that translators can 
change them without changing the application source code.  

Test your graphics by showing them to users in the target locales. A low-cost 
way to test graphics is to solicit feedback on the proposed icons from 
salespeople in different locales.  

Formats  

You can use the formatting classes provided in the Java 2 SDK to format 
numbers, currencies, dates, and times automatically for a specific locale. For 
example, in English, a date might appear as July 26, 1987, and the time as 
3:17 p.m. In German, the same date is written as 26. Juli 1987 and the time is 
15:17 Uhr.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 For numbers and currencies, the class is NumberFormat; for dates 

and times, the class is DateFormat; and for strings that contain variable 

data, the class is MessageFormat. The formatting classes are part of the 

java.text package. 

Sort Order  

You can use the collator classes provided in the Java 2 SDK to enable the 
sorting of strings by locale. For example, in Roman languages, sorting is 
commonly based on alphabetical order (which might vary from one language 
to another). In other languages, sorting might be based on phonetics, 
character radicals, the number of character strokes, and so on.  

 The Collator class in the java.text package enables 

locale-sensitive string sorting. 

Fonts  

You can place fonts in resource bundles so that they can be changed by the 
localizers. With the Java 2 SDK, the Lucida font (a cross-platform font) is 
available for use in your applications.  

 The size of fonts is also an important consideration for users with 

visual limitations (that is, anyone over the age of thirty). Be sure to 

provide user control over font size in your application. 

Usability Studies  

Two kinds of studies done early in the design process can show you how well 
your application works in the global marketplace. First, you can send draft 
designs of your application to your translators. Second, you can try out your 
application with users from the locales you are targeting (for example, test a 
Japanese version of the application with Japanese users). This research will 
help you to determine whether users understand how to use the product, if 
they perceive the graphics and colors as you intended them, and if there is 
anything offensive in the product.  

4: Visual Design  
Visual design and aesthetics affect user confidence in and comfort with your 
application. A polished and professional look without excess or 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

oversimplification is not easy to attain. This chapter discusses these high-level, 
visual aspects of Java look and feel applications:  

• Use of themes to control and change the colors and fonts of components to suit 
your requirements  

• Layout and alignment of interface elements to enhance clarity, ease of use, and 
aesthetic appeal  

• Capitalization of text in interface elements to ensure consistency and readability  
• Use of animation to provide effective emphasis and meaningful feedback 

Themes  

As a software developer, you can use the theme mechanism to control many 
of the fundamental attributes of the Java look and feel design, including colors 
and fonts. For instance, you might want to change the colors and fonts in your 
application to match your corporate identity. The theme mechanism enables 
you to specify alternative colors and fonts across an entire Java look and feel 
application.  

 For more information on using themes, see the description of the 

javax.swing.plaf.metal.DefaultMetalTheme class. 

Colors  

If you want to change the color theme of your application, be sure that your 
interface elements remain visually coherent. The Java look and feel uses a 
simple color model so that it can run on a variety of platforms and on devices 
capable of displaying various depths of color. Eight colors are defined for the 
interface:  

• Three primary colors to give the theme a color identity and to emphasize selected 
items  

• Three secondary colors, typically shades of gray, for neutral drawing and inactive 
or unavailable items  

• Two additional colors, usually defined as black and white, for the display of text 
and highlights 

Within the primary and secondary color groups in the default theme, there is a 
gradation from dark (primary 1 and secondary 1) to lighter (primary 2 and 
secondary 2) to lightest (primary 3 and secondary 3).  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Default Java Look and Feel Theme  

The following table summarizes the eight colors defined in the default Java 
look and feel theme. It provides swatches and numerical parameters 
representing each color in the default theme. It also gives details about the 
roles each color plays in basic drawing, three-dimensional effects, and text.  

Table 2   Colors of the Default Java Look and Feel Theme  

 
 

Name Basic Drawing 3D Effects Text 

 
Primary 1  

RGB 

102-102-153 

Hex #666699 

Active internal window 

borders 

Shadows of 

activated items 

System text (for 

example, labels) 

 Primary 2 

RGB 

153-153-204 

Hex #9999CC 

Highlighting to indicate 

activation (for example, of 

menu titles and menu 

items); indication of 

keyboard focus 

Shadows (color)  

 
Primary 3 

RGB 

204-204-255 

Hex #CCCCFF 

Large colored areas (for 

example, the active title 

bar) 

 Text selection 

 
Secondary 1 

RGB 

102-102-102 

Hex #666666 

 
Dark border for 

flush 3D style 
 

 Secondary 2 

RGB 

153-153-153 

Hex #999999 

Inactive internal window 

borders; dimmed button 

borders 

Shadows; 

highlighting of 

toolbar buttons 

upon mouse button 

down 

Dimmed text (for 

example, inactive 

menu items or 

labels) 

 
Secondary 3 

RGB 

204-204-204 

Hex 

#CCCCCC 

Canvas color (that is, 

normal background color); 

inactive title bar 

 

Background for 

noneditable text 

fields 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 
Black 

RGB 

000-000-000 

Hex #000000 

  

User text and 

control text 

(including items 

such as menu titles) 

 
White 

RGB 

255-255-255 

Hex #FFFFFF 

 Highlights 
Background for 

user text entry area 

 

 Unless you are defining a reverse-video theme, maintain a 

dark-to-light gradation like the one in the default theme so that 

interface objects are properly rendered. To reproduce three-dimensional 

effects correctly, make the secondary 1 color darker than secondary 2, 

which should be darker than secondary 3 (the background color). 

 Ensure that primary 1 (used for labels) has enough contrast with 

the background color (secondary 3) to make text labels easily readable. 

Primary Colors  

The visual elements of Java look and feel applications use the primary colors 
as follows:  

• Primary 1 for active internal window borders, shadows of activated items, and 
system text, such as labels  

• Primary 2 for highlighting of activated items, such as menu titles and menu items; 
keyboard focus; active scroll boxes; and progress bar fill  

• Primary 3 for large colored areas, such as the title bar of active internal windows 
and the background of selected text 

The usage is illustrated in the following figure.  

Figure 22   Primary Colors in Default Color Theme  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Secondary Colors  

The visual elements of Java look and feel applications use the secondary 
colors as follows:  

• Secondary 1 for the dark border that creates flush 3D effects for items such as 
command buttons  

• Secondary 2 for inactive internal window borders, shadows, pressed buttons, and 
dimmed command button text and borders  

• Secondary 3 for the background canvas, the background of noneditable text fields, 
and inactive title bars for internal windows 

The usage is shown in the following figure.  

Figure 23   Secondary Colors in Default Color Theme  
 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Black and White  

Black and white have defined roles in the Java look and feel color model. In 
particular, black appears in:  

• User text, such as the entry in an editable text field  
• Control text, such as menu titles and menu items  
• Title text in an internal window  
• Button text in command buttons  
• Tab text in tabbed panes  
• Text in noneditable text fields 

White is used for:  

• Highlighting the flush 3D appearance of such components as command buttons  
• Background of editable text fields 

Redefinition of Colors  

The simplest modification you can make to the color theme is to redefine the 
primary colors. For instance, you can substitute greens for the purple-blues 
used in the default theme, as shown in the following figure.  

Figure 24   Green Color Theme  

 

You can use the same value for more than one of the eight colors--for instance, 
a high-contrast theme might use only black, white, and grays. The following 
figure shows a theme that uses the same grays for primary 2 and secondary 2. 
White functions as primary 3 and secondary 3 as well as in its normal role.  

Figure 25   High-Contrast Color Theme  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Fonts  

As part of the theme mechanism and parallel to the color model, the Java look 
and feel provides a default font style model for a consistent look. You can use 
themes to redefine font typefaces, sizes, and styles in your application. The 
default Java look and feel theme defines four font categories, called "type 
styles": the control font, the system font, the user font, and the small font. The 
actual fonts used vary across platforms.  

The following table shows the mappings to Java look and feel components for 
the default theme.  

Table 3   Type Styles Defined by the Java Look and Feel 

Type Style Default Theme Use 

Control 12-point bold Buttons, checkboxes, menu titles, labels, and window titles 

Small 10-point plain Keyboard shortcuts in menus and tool tips 

System 12-point plain Tree components and tool tips 

User 12-point plain Text fields and tables 

 

 To ensure consistency, ease of use, and visual appeal, use the 

supplied default fonts unless there is compelling reason for an 

application-wide change (such as higher readability). Use the theme 

mechanism if you do make modifications. 

 Do not write font sizes or styles directly into your application 

source code (a programming practice that is also called "hardcoding"). 

Store font sizes and styles in resource bundles. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Use layout managers to ensure that the layout of your application 

can handle different font sizes.  

 Ensure that the font settings you choose are legible and can be 

rendered well on your target systems. 

 In the Java look and feel, six methods are used to return references 

to the four type styles. The getControlTextFont, getMenuTextFont, and 

getWindowTitleFont methods return the control font; getSystemTextFont 

returns the system font; getUserTextFont returns the user font; and 

getSubTextFont returns the small font. 

 All fonts in the Java look and feel are defined in the default Java 

look and feel theme as Dialog, which maps to a platform-specific font.  

Layout and Visual Alignment  

Give careful consideration to the layout of components in your windows and 
dialog boxes. A clear and consistent layout streamlines the way users move 
through an application and helps them utilize its features efficiently. The best 
designs are aesthetically pleasing and easy to understand. They organize 
components in the direction in which people read them, and they group 
together logically related components. When you lay out your components, 
remember that users might use the mouse, keyboard, or assistive 
technologies to navigate through them.  

The following sections specify the layout of text and components in your 
applications, including between-component spacing.  

 
Note — Throughout this book, the spacing illustrations for all user interface elements use 
pixels as the unit of measurement. A screen at approximately 72 to 100 pixels per inch is 
assumed.  

 

 Use a logical order when you lay out your components (for instance, 

place the most important elements within a dialog box first in reading 

order). 

 Use layout managers to allow for internationalized titles and 

labels in panels that use the JFC components. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Design Grids  

The most effective method for laying out user interface elements is to create a 
design grid that uses blank space to set apart logically related sets of 
components. The rows and columns in a grid divide the available space into 
areas that can help you to arrange and align components in a pleasing layout. 
Grids make it easy for users to see the logical sequence of tasks and to 
understand the relationships between sets of components.  

You can develop your grid with a pencil and paper, with a software tool, or 
even with a piece of graph paper. Once you have established the basic spatial 
relationships of your components, implement the design with a layout 
manager.  

Developing a grid is an ongoing process. Once you have figured out which 
components you need, their relationships, and the available space, work with 
the components to discover the most effective use of space and alignment. 
You might need to readjust your grid again and again, trying different 
arrangements until you find one that works well and has a polished 
appearance.  

A grid can also help you to determine how much space to allocate to a given 
set of components, for instance, choosers and dialog boxes, across the 
application. If you can define a grid that will work for a number of layouts, your 
application will have a more consistent appearance.  

 Design grids should not be confused with the AWT Grid Layout 

Manager. 

Layout and Spacing of a Simple Dialog Box  

This section illustrates how to use a grid to lay out a find dialog box.  

1. Determine the functional requirements for your dialog box and the type and 
importance of the dialog box components.  

2. Create 12-pixel margins between the border of the dialog box and its components. 
For example, in a find dialog box, you might need two command buttons, an 
editable text field and associated label, a set of checkboxes, and a set of radio 
buttons.  

3. Arrange the command button row and separate it vertically from the rest of the 
components.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

4. Use the number and width of the rest of the components to decide the number of 
columns and the column width for your design grid. (You might try several 
possibilities before you find the best horizontal separation.)  

5. Add the components to the dialog box in logical sequence. The components that 
you determined were most important in Step 1 should appear first in reading order. 
Add rows of blank space between the component groups.  

6. Align the related components using the columns as a guide.  

The following illustration shows the recommended 12-pixel margins around a 
dialog box.  

Figure 26   Spacing Between Border and Components of a Dialog Box  

 

 Include 12 pixels between the top and left borders of a dialog box 

and its components.  

The following figure shows the recommended spacing between the borders 
of the dialog box and the command button row in the dialog box. It also 
illustrates the vertical separation of the command buttons from the other 
components.  

Figure 27   Vertical Separation of Command Buttons  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Include 11 pixels between the bottom and right borders of a dialog 

box and its command buttons. (To the eye, the 11-pixel spacing appears 

to be 12 pixels because the white borders on the lower and right edges 

of the button components are not visually significant.) 

 In dialog boxes, right-align command buttons along the bottom 

margin. 

 In dialog boxes, place 17 pixels of vertical space between the 

command button row and the other components. 

You can use the number and width of components and their associated labels 
to determine the number of columns in your grid. At the beginning of the 
design process, vertical divisions are more difficult to set because they depend 
on the depth and grouping of component sets, which are not yet determined. In 
the following illustration, five columns have been created in the grid to 
accommodate the editable text field and its label, the checkbox and radio 
button sets, and the command buttons. Note the 11-pixel interval between the 
lines that delineate the columns.  

Figure 28   Horizontal Separation of User Interface Elements  

 

 Use the number and width of dialog box components and labels to 

determine the number of columns in the design grid. 

In Figure 29, the most important option--the text field for the search string--has 
been placed first. Component groups are set off in multiples of 6 pixels minus 
one. For instance, a row of 11 pixels of empty space separates the editable 
text box and the checkbox and radio button sets. Spacing between 
components (and groups of components) follows the Java look and feel 
standards. For details, see Between-Component Spacing Guidelines.  

Related options (for instance, the Match Case and Whole Word checkboxes) 
are aligned along a column guide. Additional options (for instance, the Start at 
Top and Wrap Around radio buttons) have been aligned with a secondary 
column guide.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 29   Alignment of Related Options and Vertical Separation of Component Groups  

 

 When designing a dialog box, place the most important options, or 

those you expect users to complete first, prior to others (in reading 

order). 

 For spacing between rows and columns of dialog box components, use 

multiples of 6 pixels minus 1, to allow for the flush 3D border. 

 Align related dialog box components using a design grid column. 

See Between-Component Spacing Guidelines for details.  

Text Layout  

Text is an important design element in your layouts. The way you align and lay 
out text is vital to the appearance and ease of use of your application. The 
most significant layout issues with respect to text are label placement and 
alignment.  

Label Placement  

You indicate a label's association with a component when you specify its 
relative position. In the following figure, the label appears before and at the top 
of the list in reading order.  

Figure 30   Label Placement  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 In general, place labels before the component to which they refer, 

in reading order for the current locale. For instance, in the U.S. locale, 

place labels above or to the left of the component. Positioning to the 

left is preferable, since it allows for separation of text and components 

into discrete columns. This practice helps users read and understand the 

options. 

Label Alignment and Spacing  

Between components, alignment of multiple labels becomes an issue. Aligning 
labels to a left margin can make them easier to scan and read. It also helps to 
give visual structure to a block of components, particularly if there is no 
immediate border (such as a window frame) surrounding them. If labels vary 
greatly in length, the use of right alignment can make it easier to determine the 
associated component; however, this practice also introduces large areas of 
negative space, which can be unattractive. The use of concise wording in 
labels can help to alleviate such difficulties.  

 Insert 12 pixels between the trailing edge of a label and any 

associated components. Insert 12 pixels between the trailing edge of a 

label and the component it describes when labels are right-aligned. When 

labels are left-aligned, insert 12 pixels between the trailing edge of 

the longest label and its associated component. 

 Align labels with the top of associated components. 

 Since the length and height of translated text varies, use layout 

managers to allow for differences in labels.  

The following figure shows the recommended spacing of labels in relationship 
to their associated components.  

Figure 31   Spacing Between a Label and a Component  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 The JLabel.setLabelFor() method should always be used to specify 

which component a label is associated with. This practice facilitates the 

setting of mnemonics and accessible names. 

For more information on capitalization, see Text in the Interface. For more 
information on labels, see Labels.  

Between-Component Spacing Guidelines  

Use multiples of 6 pixels for perceived spacing between components. If the 
measurement involves a component edge with a white border, subtract 1 pixel 
to arrive at the actual measurement between components (because the white 
border on available components is less visually significant than the dark 
border). In these cases, you should specify the actual measurement as 1 pixel 
less--that is, 5 pixels between components within a group and 11 pixels 
between groups of components.  

 
Note — Exceptions to these spacing guidelines are noted in the relevant component 
sections that follow. For instance, the perceived spacing between toolbar buttons is 
3 pixels, and the actual spacing is 2 pixels.  

 

In the following figure, a perceived 6-pixel vertical space is actually 5 pixels 
between checkbox components. The figure also shows how the perceived 
spacing between unavailable objects is preserved. Note that the dimensions of 
unavailable components are the same as those of available objects, although 
the white border of available objects is replaced by an invisible 1-pixel border 
on the bottom and right side of unavailable objects.  

Figure 32   Perceived and Actual Spacing of Available and Unavailable Components  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Insert 5 pixels (6 minus 1) between closely related items such as 

grouped checkboxes. Insert 11 pixels (12 minus 1) for greater separation 

between sets of components (such as between a group of radio buttons and 

a group of checkboxes). Insert 12 pixels between items that don't have 

the flush 3D border highlight (for instance, text labels and titled 

borders).  

Figure 33   Spacing of Multiple Groups of Components  

 

For guidelines on the spacing of specific JFC components with the Java look 
and feel, see the following section.  

Spacing Guidelines for Specific JFC Components  

This section specifies the horizontal and vertical spacing for individual 
instances and groups of:  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• Toolbar buttons  
• Command buttons  
• Toggle buttons  
• Checkboxes  
• Radio buttons 

 Struts and glue in the javax.swing.Box component can be used to 

adjust component spacing. 

Toolbar Button Spacing  

This section contains the vertical and horizontal spacing measurements for 
toolbar buttons. Figure 34 shows the spacing between individual toolbar 
buttons and groups of toolbar buttons.  

 Space individual toolbar buttons 2 pixels apart. Space groups of 

toolbar buttons 11 pixels apart. 

 Include 3 pixels of space above and below toolbar buttons. This 

actually means 2 pixels of space below the toolbar because of the white 

border on the buttons. 

Figure 34   Toolbar Button Spacing  

 

 When you use mouse-over feedback, space individual toolbar buttons 

zero pixels apart within a group. Space groups of toolbar buttons 

11 pixels apart. 

 The inset (that is, the padding between the button graphic and the 

button border) on toolbar buttons should be zero. 

For details on toolbars, see Toolbars.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Toggle Button Spacing  

Spacing recommendations differ for independent and exclusive toggle buttons 
in toolbars and outside of toolbars.  

 When toggle buttons are independent (like checkboxes) and used 

outside a toolbar, separate them with 5 pixels. Within a toolbar, separate 

independent toggle buttons by 2 pixels. 

Figure 35   Spacing Between Independent Toggle Buttons  

 

 When toggle buttons are exclusive (that is, they form a radio button 

set), separate them with 2 pixels. This rule applies whether the toggle 

buttons appear in a toolbar or elsewhere in the interface. 

Figure 36   Spacing of Exclusive Toggle Buttons  

 

For details on independent and exclusive toggle buttons, see Toggle Buttons.  

Command Button Spacing and Padding  

For a consistent appearance, follow the guidelines described in this section to 
create space within and between command buttons. The following figure 
shows button text (Help) centered in a command button.  

 Space buttons in a group 5 pixels apart. (Because of the white border 

on the right side of a button, the apparent spacing will be 6 pixels.) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Center the text within buttons. 

Figure 37   Command Button With Centered Text  

 

 Since the length and height of translated text varies, use layout 

managers to allow for differences in button text.  

The blank space between the button text and the button border is referred to 
as command button padding. Often command buttons appear in groups within 
a dialog box or an applet. In such a case, the button in the group with the 
widest text determines the inner padding, as shown in Figure 38. Here the 
Cancel button has the widest text. The perceived padding is 12 pixels on either 
side of the button text. The other buttons in the group (OK and Help) have the 
same width as the Cancel button. A space of 17 pixels should be left above 
command button rows in dialog boxes (see Figure 29).  

 Determine which button has the widest button text and insert 

12 pixels of padding on either side of the text. Make all the remaining 

buttons in the group the same size as the button with the longest text. 

 Use the default height for whatever font size you select for your 

command buttons. 

 Make all command buttons in a group (including buttons that contain 

graphics) the same width and height. 

 Since the button with the longest text might vary from locale to 

locale, enable any of the command buttons to determine the width of all 

the other buttons. 

Figure 38   Spacing and Padding in Command Button Groups  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

For details on command buttons, see Command Buttons.  

Checkbox and Radio Button Layout and Spacing  

This section provides layout and spacing guidelines for checkbox and radio 
button components.  

 Align the leading of edge of checkboxes with that of other 

components. 

Figure 39   Checkbox Layout  

 

As shown in the following figure, the height of the checkbox square doesn't 
change in an unavailable checkbox even though the white highlight border is 
not drawn. Although the checkbox is the same size, the last row and column of 
pixels on the bottom and right are the same color as the background canvas. 
The apparent spacing is 6 pixels between components; the actual spacing is 
5 pixels.  

Figure 40   Checkbox and Radio Button Spacing  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Space checkboxes in a group 5 pixels apart. 

 Use a layout manager to achieve consistent spacing in checkbox 

button groups. 

For details on checkboxes, see Checkboxes.  

The height of the radio button is 12 pixels, not counting the white highlight 
border. Unavailable radio buttons do not have white borders. Although the 
unavailable radio button is 12 pixels high, the last row and column of pixels on 
the bottom and right are the same color as the background canvas. As shown 
in the preceding figure, the apparent spacing is 6 pixels between components; 
the actual spacing is 5 pixels.  

 Space radio buttons in a group 5 pixels apart. 

 Use the appropriate layout manager to achieve consistent spacing 

in radio button groups. 

For more on radio buttons, see Radio Buttons.  

Titled Borders for Panels  

Sometimes you can group components using simple spacing and alignment, 
as described in Layout and Spacing of a Simple Dialog Box. Other times, 
particularly when you want to display multiple groupings of components, you 
might want to place the related sets into a labeled box. The JFC enables you to 
specify a titled border for panels (and many other components), which serves 
this purpose.  

Figure 41   Spacing for a Panel With Titled Border  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Since titled borders take up considerable space, do not use them 

to supply titles for individual components; use labels instead. 

 Use a titled border in a panel to group two or more sets of related 

components, but do not draw titled borders around a single set of 
checkboxes or radio buttons. Use labels instead. 

 Use titled borders sparingly: they are best when you must emphasize 

one group of components or separate one group of components from other 

components in the same window. Do not use multiple rows and columns of 

titled borders; they can be more confusing than simply grouping the 

elements with a design grid.  

 Never nest titled borders--that is, do not insert one titled border 

inside another. It becomes difficult to see the organizational structure 

of the panel and too many lines cause distracting optical effects.  

 Insert 12 pixels between the edges of the panel and the titled 

border. Insert 11 pixels between the top of the title and the component 

above the titled border. Insert 12 pixels between the bottom of the title 

and the top of the first label in the panel. Insert 11 pixels between 

component groups and between the bottom of the last component and the lower 

border. 

Text in the Interface  

Text is an important design element and appears throughout your application 
in such components as command buttons, checkboxes, radio buttons, alert 
box messages, and labels for groups of interface elements. Strive to be 
concise and consistent with language.  

 Use language that is clear, consistent, and concise throughout your 

application text. Moreover, ensure that the wording of your labels, 

component text, and instructions is readable and grammatically correct.  

 For all text that appears in the interface elements of your 

application, follow one of two capitalization conventions: headline 

capitalization or sentence capitalization. Use headline capitalization 

for most names, titles, labels, and short text. Use sentence 

capitalization for lengthy text messages. 

 Do not capitalize words automatically. You might encounter 

situations in your interface when capitalization is not appropriate, as 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

in window titles for documents that users have named without using 

capitalization.  

 Use standard typographical conventions for sentences and headlines 

in your application components. Let translators determine the standards 

in your target locales. 

 Place all text in resource bundles so that localization experts 

don't have to change your application's source code to accommodate 

translation. See Appendix C for lists of localized terms and phrases that 

might appear in your interface. 

Headline Capitalization in English  

Most items in your application interface should use headline capitalization, 
which is the style traditionally used for book titles (and the section titles in this 
book). Capitalize every word except articles ("a," "an," and "the"), coordinating 
conjunctions (for example, "and," "or," "but," "so," "yet," and "nor"), and 
prepositions with fewer than four letters (like "in"). The first and last words are 
always capitalized, regardless of what they are.  

Use headline capitalization for the following interface elements (examples are 
in parentheses):  

• Checkbox text (Automatic Save Every Five Minutes)  
• Combo box text (Centimeters)  
• Command button text (Don't Save)  
• Icon names (Trash Can)  
• Labels for buttons or controls (New Contribution To:)  
• Menu items (Save As...)  
• Menu titles (View)  
• Radio button text (Start at Top)  
• Slider text (Left)  
• Tab names (RGB Color)  
• Titles of windows, panes, and dialog boxes (Color Chooser)  
• Tool tips (Cut Selection)  

If your tool tips are longer than a few words, sentence capitalization is 
acceptable. Be consistent within your application.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Sentence Capitalization in English  

When text is in the form of full sentences, capitalize only the first word of each 
sentence (unless the text contains proper nouns, proper adjectives, or 
acronyms that are always capitalized). Observe proper punctuation within and 
at the end of full sentences. Avoid the use of long phrases that are not full 
sentences. If you determine that you must use a phrase that is not a full 
sentence, no punctuation is required at the end.  

Use sentence capitalization in the following interface elements (examples are 
in parentheses):  

• Alert box text (The document you are closing has unsaved changes.)  
• Error or help messages (The printer is out of paper.)  
• Labels that indicate changes in status (Operation is 75% complete.) 

Animation  

Animation can provide effective emphasis if used correctly, but give careful 
thought to whether animation is warranted. The human eye is attracted to 
animated elements. If the user's attention needs to be elsewhere, animation 
might increase user errors.  

Do not use animation when it:  

• Detracts from more important screen elements  
• Interferes with the user's work  
• Dazzles without purpose 

Useful animations include progress or status animations. For details, see 
Progress Animation and Status Animation. Other uses of animation include an 
animated graphic that activates when the user empties the trash or when the 
system state changes.  

You can also animate application graphics to call attention to user actions.  

 Limit animation to situations that provide meaningful feedback to 

the user. 

The following figure shows an interesting use of animation in a process control 
application. The progress bar does not track the progress of the operation; 
rather, it acts as a gauge to show the temperature of a vat in a candy factory. 
The progress bar indicates what proportion of the maximum temperature has 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

been reached (more than three-quarters), and the text message within the 
progress bar specifies the exact temperature (114 degrees) of the vat's 
contents.  

Figure 42   Text Inside a Progress Bar  

 

 If you write a message to display inside a progress bar, make it 

concise. Otherwise, localized text might outgrow the progress bar.  

5: Application Graphics  
This chapter provides details on:  

• The use of cross-platform color  
• The design of application graphics, such as icons, button graphics, and symbols  
• The use of graphics to enhance your product and corporate identity 

Because the quality of your graphics can affect user confidence and even the 
perceived stability of your application, it is wise to seek the advice of a 
professional visual designer.  

Working With Cross-Platform Color  

In a cross-platform delivery environment, you need to ensure that the visual 
components of your application reproduce legibly and aesthetically on all your 
target systems. You do not have control over which platforms will be used to 
run your software or what display capabilities users might have.  

Online graphics consist of the visual representations of JFC components in the 
Java look and feel, which are drawn for you by the toolkit, and application 
graphics such as icons and splash screens, which you supply.  

The Java look and feel components use a simple color model that reproduces 
well even on displays with a relatively small number of available colors.  

 Use themes to control the colors of Java look and feel 

components--for instance, to provide support for display devices with 

minimal available colors (fewer than 16 colors). 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

You need to supply icons, button graphics, pictures and logos for splash 
screens and About boxes. Since these graphics might be displayed on a 
number of different platforms and configurations, you must develop a strategy 
for ensuring a high quality of appearance. In addition, you need to ensure that 
your graphics are meaningful to color-blind users. Strategies for addressing 
color blindness are similar to those used for handling limited display colors.  

 Use color only as a secondary means of representing important 

information. Make use of other characteristics (shape, texture, size, or 

intensity contrast) that do not require color vision or a color monitor. 

Working With Available Colors  

The number of colors available on a system is determined by the bit depth, 
which is the number of bits of information used to represent a single pixel on 
the monitor. The lowest number of bits used for modern desktop color monitors 
is usually 8 bits (256 colors); 16 bits provide for thousands of colors (65,536, to 
be exact); and 24 bits, common on newer systems, provide for millions of 
colors (16,777,216). The specific colors available on a system are determined 
by the way in which the target platform allocates colors. Available colors might 
differ from application to application.  

Designers sometimes use predefined color palettes when producing images. 
For example, some web designers work within a set of 216 "web-safe" colors. 
These colors reproduce in many web browsers without dithering (as long as 
the system is capable of displaying at least 256 colors). Dithering occurs when 
a system or application attempts to simulate an unavailable color by using a 
pattern of two or more colors from the system palette. The main drawback of 
dithering is the striped (moiré) patterns that can result.  

Outside web browsers, available colors are not so predictable. Individual 
platforms have different standard colors or deal with palettes in a dynamic way. 
The web-safe colors might dither when running in a standalone application, or 
even in an applet within a browser that usually does not dither these colors. 
Since the colors available to a Java application can differ each time it is run, 
especially across platforms, you cannot always avoid dithering in your images.  

 Identify and understand the way that your target platforms handle 

colors at different bit depths. To achieve your desired effect, test your 

graphics on all target platforms at depths of 8 bits (that is, 256 colors).  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Choosing Graphic File Formats  

You can use two graphic file formats for images on the Java platform: GIF 
(Graphics Interchange Format) and JPEG (named after its developers, the 
Joint Photographic Experts Group).  

GIF is the common format for application graphics in the Java look and feel. 
GIF files tend to be smaller on disk and in memory than JPEG files. A GIF file 
includes a color table (or palette) of up to 256 colors. The number of colors in 
the table and the complexity of the image are two factors that affect the size of 
the graphic file.  

On 8-bit systems, some of the colors specified in a GIF file will be unavailable if 
they are not part of the system's current color palette. These unavailable colors 
will be dithered by the system. On 16-bit and 24-bit systems, more colors are 
available and different sets of colors can be used in different GIF files. Each 
GIF image, however, is still restricted to a set of 256 colors.  

JPEG graphics are generally better suited for photographs than for the more 
symbolic style of icons, button graphics, and corporate type and logos. JPEG 
graphics use a compression algorithm that yields varying image quality 
depending on the compression setting, whereas GIF graphics use lossless 
compression that preserves the appearance of the original 8-bit image.  

Choosing Colors  

At monitor depths greater than 8 bits, most concerns about how any particular 
color reproduces become less significant. Any system capable of displaying 
thousands (16 bits) or millions (24 bits) of colors can find a color very close to, 
or exactly the same as, each value defined in a given image. Newer systems 
typically display a minimum of thousands of colors. Since each system renders 
colors slightly differently, different monitors and different platforms might 
display the same color differently, however. For instance, a given color in one 
GIF file might look different to the eye from one system to another.  

Many older monitors or systems still display only 256 colors. For users with 
these systems, it might be advantageous to use colors known to exist in the 
system palette of the target platforms. Most platforms include a small set of 
"reserved" colors that are always available. Unfortunately, these reserved 
colors are often not useful for visual design purposes or for interface elements 
because they are highly saturated (the overpowering hues one might expect to 
find in a basic box of crayons). Furthermore, there is little overlap between the 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

reserved color sets of different platforms, so reserved colors are not 
guaranteed to reproduce without dithering across platforms.  

 Select colors that do not overwhelm the content of your application 

or distract users from their tasks. Stay away from saturated hues. For 

the sake of visual appeal and ease of use, choose groups of muted tones 

for your interface elements. 

Since there is no lowest-common-denominator solution for choosing common 
colors across platforms (or even colors that are guaranteed to reproduce on a 
single platform), some of the colors in your application graphics will dither 
when running in 8-bit color. The best strategy is to design images that dither 
gracefully, as described in the following section.  

Maximizing Color Quality  

Images with fine color detail often reproduce better on 8-bit systems than 
those images that are mapped to a predefined palette (such as the web-safe 
palette) and use large areas of solid colors. Dithering is less noticeable in small 
areas, and, for isolated pixels of a given color, dithering simply becomes color 
substitution. Often colors in the system palette can provide a fair-to-good 
match with those specified in a GIF file. The overall effect of color substitution 
in small areas can be preferable to the dithering patterns produced for single 
colors, or to the limited number of colors resulting from pre-mapping to a given 
color palette.  

There are no absolutely safe cross-platform colors. Areas of solid color often 
dither, producing distracting patterns. One effective way to avoid coarse 
dithering patterns is to "pre-dither" your artwork intentionally. This approach 
minimizes obvious patterned dithering on 8-bit systems while still permitting 
very pleasing effects on systems capable of displaying more than 256 colors.  

To achieve this effect, overlay a semitransparent checkerboard pattern on your 
graphics. The following figure shows how to build a graphic using this 
technique.  

Figure 43   Adding a Pattern to Avoid Coarse Dithering Patterns  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

To build the graphic:  

1. Use a graphics application with layers.  

2. Make a 1 x 1 pixel checkerboard pattern with the default secondary 3 color 
(RGB 204-204-204).  

3. Apply the pattern only to areas that might dither badly. Leave borders and other 
detail lines as solid colors.  

4. Adjust the transparency setting for the pattern layer until the pattern is dark 
enough to mix with the color detail without overwhelming it visually. A 25% 
transparency with the default secondary 2 color (RGB 153-153-153) produces a 
good result for most graphics.  

5. Test your results on your target 8-bit platforms.  

6. If a pattern does not solve your problems, try using additional graphics techniques, 
such as a gradient.  

The following table shows the results of graphic reproduction in 8-bit color on 
different operating systems.  

Table 4   Variations in Reproduction of 8-Bit Color  

Styles 
Original 

Graphic 

Microsoft 

Windows 

(8 bits) 

Mac OS 

(8 bits) 

CDE 
(8 bits) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Plain 

    

Dithering added 

    

Gradient added 

    

Dithering added 

to gradient 

    

 

The plain graphic in the preceding table, which uses a large area of a single 
web-safe color, dithers badly on Microsoft Windows and CDE. A gradient 
effect is added to the original graphic to add some visual interest; this 
produces a banding effect on Mac OS. Adding the dithered pattern along with 
the gradient produces good results on all three platforms with 8-bit color. In 
16-bit and 24-bit color, the graphic reproduction is very close to, or exactly the 
same as, the originals.  

Categorizing Application Graphics  

Application graphics that you design fall into three broad categories:  

• Icons, which represent objects that users can select, open, or drag  
• Button graphics, which identify actions, settings, and tools (modes of the 

application)  
• Symbols, which are used for general identification and labeling (for instance, as 

indicators of conditions or states) 

Table 5   Examples of Application Graphics  

Graphic Type Examples Flush 3D Style
Pre-Dithered
(With Added
Gradients)



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Icons  

  

Button 

graphics 
 

  

Symbols  

  

 
 

 Use the GIF file format for application graphics. It usually results in a 
smaller file size than the JPEG format and uses lossless compression. 

 To facilitate localization, place all application graphics in resource 

bundles. 

 Where possible, use globally understood icons, button graphics, and 

symbols. Where none exist, create them with input from international sources. 
If you can't create a single symbol that works in all cultures, define appropriate 
graphics for different locales (but try to minimize this task). 

Designing Icons  

Icons typically represent containers, documents, network objects, or other data 
that users can open or manipulate within an application. An icon usually 
appears with identifying text.  

Sizes for icons vary from platform to platform. Two common sizes are 16 x 16 
pixels and 32 x 32 pixels. In the Java look and feel, the smaller size is used in 
the title bar of windows (to identify the contents of the window or minimized 
window) and inside tree components (for container and leaf nodes). You can 
use 32 x 32 icons for the desktop representation of Microsoft Windows 
applications and for components in applications designed for users with visual 
impairments, or for objects in a diagram, such as a network topology.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Design icons to identify clearly the objects or concepts they 

represent. Keep the drawing style symbolic, as opposed to photo-realistic. 

Too much detail can make it more difficult for users to recognize what 

the icon represents. 

 When designing large and small icons that represent the same object, 

make sure that they have similar shape, color, and detail. 

 Specify tool tips for each icon so that assistive technologies can 

use the accessibleDescription property to find out how to use the icon. 

 Specify the accessibleName property for each icon so that assistive 

technologies can find out what the icon is. 

 Consider providing an option that enables users to switch from 

smaller to larger icons. 

 Since sizes of icons vary across platforms, determine the size 

requirements of your target platform and provide suitably sized icons. 

Working With Icon Styles  

Icons can appear as flat drawings or as perspective drawings. The flush 3D 
style is a unique effect that can be applied to either flat (2D) or perspective (3D) 
icons.  

The following figure shows flush 3D icons for files and folders drawn in the 
perspective and flat styles. Icons drawn in the flush 3D style fit best with the 
Java look and feel. For information on how to create the flush 3D style, see 
Drawing Icons and Producing the Flush 3D Effect. Three visual elements 
appear in the sample icons: an interior highlight (to preserve the flush style 
used throughout the Java look and feel), a pattern to minimize dithering 
(described in Working With Available Colors), and a dark border.  

Figure 44   Two Families of Flush 3D Icons  

 

 Use a single style to create a "family" of icons that utilize common 

visual elements to reflect similar concepts, roles, and identity. Icons 

in families might use a similar palette, size, and style. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Don't mix two- and three-dimensional styles in the same icon family.  

 Use the flush 3D style so that your icons suit the Java look and 

feel. 

For more on the flush 3D style, see Producing the Flush 3D Effect.  

Because icons must appear on various backgrounds across platforms, the 
borders of graphics must maintain consistent color. Changing the appearance 
of an object's border to look smoother at screen resolution in relationship to a 
specific color is called anti-aliasing. In most application development cases, 
anti-aliasing is not desirable because you are unlikely to be sure what 
background color the object will appear against. However, within an icon, 
anti-aliasing can provide smoother interior lines.  

 For satisfactory display on a wide range of background colors and 

textures, use a clear, dark exterior border and ensure that there is no 

anti-aliasing or other detail around the perimeter of the graphic. 

Drawing Icons  

The following section uses a simple folder as an example of how to draw an 
icon. Before you start, decide on a general design for the object. In this 
example, a hanging file folder is used to represent a directory.  

1. Draw a basic outline shape 

first.  

Icons can use as much of the available 

space as possible because they are 

displayed without borders. Icons 

should usually be centered 

horizontally in the available space. 

 

For vertical spacing, consider aligning 

to the lower edge of other icons in the 

set, or aligning with the baseline of 

text, as shown in the figure. 

 

If multiple sizes of an icon are 

required, work on them at the same 

time rather than trying to scale down 

a large icon later; all sizes then can 

evolve into designs that are 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

recognizable as the same object. 

2. Add some basic color (green is 

used here).  

 

3. Draw a highlight on the inside 

top and left using white or a 

lighter shade of the existing 

color.  

This practice creates the flush 3D 

style of the Java look and feel. 

 

4. Add some detail to the icon.  

In this case, the crease or "fold" mark 

in the hanging folder is drawn. 

 

5. Try a gradient that produces a 

"shining" effect instead of the flat 

green.  

Here a dark green has replaced the 

black border on the right and bottom; 

black is not a requirement as long as 

there is a well-defined border. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 6. Add a pattern to prevent coarse 

dithering.  

This technique minimizes banding and 

dithering on displays with 256 or 

fewer colors (see Maximizing Color 

Quality).  

The first graphic is an exploded view 

of an icon that shows how the pattern 

is added. 

The next graphic shows an icon in 

which a pattern has been added to the 

color detail. 

 

7. Define the empty area around 

the icon graphic (in which you 

have not drawn anything) as 

transparent pixels in the GIF file. 

This practice ensures that the 

background color shows through; if 

the icon is dragged to or displayed on 

a different background, the area 

surrounding it matches the color or 

pattern of the rest of the background. 

 

8. Test your icon on target platforms.  

Designing Button Graphics  

Button graphics appear inside buttons--most often in toolbar buttons. Such 
graphics identify the action, setting, mode, or other function represented by the 
button. For instance, clicking the button might carry out an action (creating a 
new file) or set a state (boldfaced text).  

For a collection of button graphics designed in the Java look and 

feel, see Appendix B. The graphics in this repository can also be found 

on the book's companion CD-ROM. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

The two standard sizes for button graphics are 16 x 16 pixels and 24 x 24 
pixels. You can use either size (but not both at the same time) in toolbars or 
tool palettes, depending on the amount of space available. For details on 
toolbars, see Toolbars.  

It might be appropriate to use toolbar buttons that display text in addition to or 
instead of graphics. Consider this approach if your usability studies establish 
that the action, state, or mode represented by the button graphic is difficult for 
users to comprehend.  

If you include both text and graphics in a button, the size of the button will 
exceed 16 x 16 or 24 x 24 pixels. Consider using tool tips instead, or let users 
choose between displaying button text or using tool tips. For details, see Tool 
Tips for Toolbar Buttons.  

 Use tool tips to help clarify the meaning of toolbar buttons. 

 When designing your button graphics, clearly show the action, state, 

or mode that the button initiates.  

 Keep the drawing style symbolic; too much detail can make it more 

difficult for users to understand what a button does.  

 Use a flush 3D border to indicate that a button is clickable. 

 Draw a distinct dark border without anti-aliasing or other exterior 

detail (except the flush 3D highlight) around the outside of a button 

graphic. 

 Do not include text as part of your button graphics (GIF files). 

Use button text instead. Keep the button text in a resource bundle to 

facilitate localization. 

 Setting tool tips automatically sets the accessibleDescription of 

an object, which in turn, greatly benefits users with physical and 

cognitive limitations.  

Using Button Graphic Styles  

The following figure shows sample button graphics designed for toolbars and 
for the contents of an internal utility window.  

Figure 45   Button Graphics for a Toolbar and an Internal Utility Window  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Use a single style to create a "family" of button graphics with 

common visual elements. You might use a similar color palette, size, and 

style for all button groups across your GUI, such as toolbar buttons, 

toggle buttons, or command buttons. Review the graphics in context before 

finalizing them. 

Producing the Flush 3D Effect  

The flush 3D effect simulates the appearance of beveled buttons or shapes 
inset at the same level as the background. To achieve this effect, you need to 
create a shadow and a highlight for both the background and the button 
graphic. In smaller button graphics, you can achieve this effect by placing 
highlights at the correct locations along the edges of the icon. (The shadows 
are already provided by the darker outline of the button graphic.) In a larger 
24 x 24 or 32 x 32 pixel graphic, you can use a graduated highlight within the 
button graphic to simulate a more smoothly rounded edge.  

With the flush 3D effect, the button graphic appears to have a light beveling 
around the edges.  

To produce the flush 3D effect on button graphics, add:  

• An exterior white highlight on the outside right and bottom of the button graphic 
itself  

• An interior white highlight on the inside left and top of the button graphic  
• A dark shadow inside the exterior white highlight and outside of the interior white 

highlight (both shadows are already present if you created a button graphic with a 
dark outline in the first place) 

Figure 46   Flush 3D Effect in a Button Graphic  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Working With Button Borders  

The size of a button graphic includes all the pixels within the border. As shown 
in the following illustration, horizontal and vertical dimensions are both either 
16 or 24 pixels. The border abuts the button graphic (that is, there are no pixels 
between the border and the graphic).  

Figure 47   Button Graphics With Borders  

 

Determining the Primary Drawing Area  

Leave an apparent two pixels between the button border and the graphic. 
Because the white pixels in both the button border and the button graphic are 
less visually significant than the darker borders, the area used for most of the 
drawing is offset within the 16 x 16 or 24 x 24 space. Actually, 1 pixel is 
reserved on the left and top, and 2 pixels are reserved on the right and bottom 
(but highlights are allowed to extend in this area). The following illustration 
shows the standard drawing area for both button sizes.  

Figure 48   Primary Drawing Area in Buttons  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

The following illustration shows 16 x 16 and 24 x 24 button graphics that 
use the maximum recommended drawing area. On all four sides, there are 
2 pixels between the dark border of the button graphic and the dark portion of 
the button border.  

Figure 49   Maximum-Size Button Graphics  
 

 

Drawing the Button Graphic  

When drawing a button graphic, first decide on a general design that 
represents the action or setting activated by the button. In the following 
examples, a clipboard represents the Paste command.  

When drawing a button graphic, first decide on a general design that 
represents the action or setting activated by the button. In the following 
examples, a clipboard represents the Paste command.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

1. Decide which sizes 

you want to use for the 

button or toolbar 

graphic and identify 

your primary drawing 

area. 

 

2. Draw a basic outline 

shape, taking care to 

remain within the 

primary drawing area. 

 

3. Add some basic 

color.  

    



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

4. Add the flush 3D 

effect by drawing 

highlights on the 

inside left and top, and 

on the outside bottom 

and right of the 

outline. Note that the 

highlights can extend 

beyond the primary 

drawing area. 

This is a good basic 

design, but because of 

the large area using a 

single color, the graphic 

lacks visual interest and 

might not reproduce well 

on some systems. 

    

5. Try a gradient 

instead of the flat 

color.  

    



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

6. Add a pattern. This 

technique minimizes 

banding and dithering 

on displays with 256 or 

fewer colors (see 

Maximizing Color 

Quality).  

Here is an exploded view 

of the button graphic and 

its color overlay. 

This figure shows the 

effect of the pattern on 

the color detail of the 

button graphic. 

 

    

7. Define the empty 

area around your 

button graphic (in 

which you have not 

drawn anything) as 

transparent pixels in 

the GIF file.  

This practice ensures that 

the background color 

shows through; if the 

theme changes, the area 

around the button 

graphic will match the 

rest of the background 

canvas in the interface. 

 

8. Test your button graphic on target platforms.  

Using Badges in Button Graphics  

Badges are a kind of visual shorthand used extensively in toolbar button 
design. The presence of a menu, the creation of a new object, the addition of 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

an object to a collection, and the review or editing of properties and settings 
are typically represented by incorporating a badge into an existing button 
graphic. This section suggests standard ways for you to incorporate badges 
into the design of your toolbar button graphics.  

The badges in the button graphics in this chapter appear in several 

of the graphics discussed in Appendix B and are included in the graphics 

on the book's companion CD-ROM. 

Menu Indicators  

An arrow in a button graphic indicates that a click (or a press) of the mouse 
button displays a menu of choices. The following illustration shows the volume 
toolbar button with a menu indicator.  

Figure 50   Menu Indicator in a Volume Toolbar Button  

 

 To indicate that a click or press of the mouse button displays a 

menu, provide an arrow menu indicator in the lower-right corner of toolbar 

button graphics.  

Badges can extend as far as one pixel from the button border, and their 
highlights can touch the border. Use a 1-pixel-wide transparent area between 
a badge and the main button graphic to set off the badge visually. The 
following illustration shows the buffer area around the menu indicator. The 
buffer area placed around the indicator shows the background of the toolbar 
button, not the background of the volume graphic. For details, see Drawing the 
Button Graphic.  

Figure 51   Menu Indicator and Transparent Buffer Area  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Use transparent pixels around the menu indicator arrow to set it 

off from the rest of the button graphic.  

 Add the standard highlight below or to the right of the badge in 

a button graphic. 

The following figure shows the volume toolbar button with the menu indicator 
at actual size (16 x 16 pixels).  

Figure 52   Volume Toolbar Button (Actual Size)  

 

The lower-right corner is the standard location for the arrow graphic (in locales 
with left-to-right reading order). The following illustration shows the arrows for 
16 x 16 and 24 x 24 pixel graphics.  

Figure 53   Position and Space Around Menu Indicators  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

New Object Indicators  

Some buttons create new objects. You can use a twinkle graphic to indicate 
this button feature. In 16 x 16 pixel graphics, the twinkle graphic might touch 
the lower edge of the button border, as shown in the following illustration.  

Figure 54   New Object Indicator and Transparent Buffer Area  

 

 To indicate the creation of a new object, provide a twinkle graphic 

in the lower-right corner of toolbar button graphics. 

The following illustration shows a twinkle graphic incorporated into a document 
toolbar button to indicate that clicking the button creates a new document.  

Figure 55   Document Toolbar Button With a New Object Indicator  

 

The following figure shows the toolbar button with the new object indicator at 
its actual size (16 x 16 pixels).  

Figure 56   New Document Toolbar Button (Actual Size)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Add Object Indicators  

Some buttons add objects to a group. You can incorporate an addition symbol 
into your button, as shown in the following figure, to indicate this aspect of the 
button's features.  

Figure 57   Add Object Indicator and Transparent Buffer Area  

 

 To indicate the addition of a new object to a group, provide an 

addition symbol in the lower-right corner of toolbar button graphics. 

The following figure provides an example of the symbol incorporated into a 
document toolbar button.  

Figure 58   Document Toolbar Button With an Add Object Indicator  

 

The following figure shows the toolbar button with the add object indicator at its 
actual size (16 x 16 pixels).  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 59   Add Document Toolbar Button (Actual Size)  

 

Properties Indicators  

Some buttons open a properties or settings window for the object or action 
indicated by the main part of the button graphic. You can use a small check 
mark to represent this action, as shown in the following illustration.  

Figure 60   Properties Indicator and Transparent Buffer Area  

 

 To indicate the opening of a properties or settings window or panel 

for the object or action represented by the main part of a button graphic, 

provide a small check mark in the lower-right corner of toolbar button 

graphics. 

The following figure shows a page setup button with the properties indicator at 
its actual size (16 x 16 pixels).  

Figure 61   Page Setup Toolbar Button (Actual Size)  

 

Combining Indicators  

As a general rule, you should not need to combine the functions represented 
by these indicators.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Design toolbar buttons with badges individually rather than adding 

badges programmatically. This practice ensures that the transparent 

buffer area is tuned for each indicator. 

 Do not use more than one of the Java look and feel badges (that is, 

the menu, new object, add object, or properties indicators) in a single 

button graphic. 

 If the button graphic needs to indicate that more choices are 

available, use a menu indicator and drop-down menu. Ensure that menu items 

are closely related and parallel. 

 Do not overload toolbar buttons with features. Ensure that the 

button graphic and its tool tip clearly indicate the function of the 

toolbar button. 

Designing Symbols  

Symbols include any graphic (typically 48 x 48 pixels or smaller) that stands for 
a state or a concept but has no directly associated action or object. Symbols 
might appear within dialog boxes, system status alert boxes, and event logs.  

The examples in the following figure show the graphics from an Info alert box 
and a Question alert box and a caution symbol superimposed on a folder icon 
to indicate a hypothetical state.  

The style for symbols is not as narrowly defined as that for icons and button 
graphics. The examples in the following figure use a flush effect for interior 
detail but not for the border of the graphic.  

Figure 62   Symbols  

 

The question symbol is used in an input alert box, as shown in the following 
figure.  

Figure 63   Question Symbol in Alert Box  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Ensure adequate contrast between a caution symbol and the icon or 

background it appears against. 

Designing Graphics for Corporate and Product Identity  

Application graphics present an excellent opportunity for you to heighten your 
corporate or product identity. This section presents information about splash 
screens, About boxes, and login splash screens.  

 
Note — The examples presented in this section use the sample text-editing and mail 
applications, MetalEdit and MetalMail. They are not appropriate for third-party use.  

 

 Use the JPEG file format for any photographic elements in your 

splash screens and About boxes. 

Designing Splash Screens  

A splash screen is a plain window that appears briefly in the time between the 
launch of a program and the appearance of its main application window. 
Splash screens disappear when the application is ready to run. Nothing other 
than a blank space is included with a JFC-supplied plain window; you must 
provide the border and the contents of the splash screen. For instance, the 
black border on the window in the following figure is part of the file supplied by 
the splash screen designer.  

Figure 64   Splash Screen for MetalEdit  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Although not required, splash screens are included in most commercial 
products. Splash screens typically have the following elements:  

• Company logo  
• Product name (trademarked, if appropriate)  
• Visual identifier of the product or product logo 

Check with your legal adviser about requirements for placing copyright notices 
or other legal information in your splash screens.  

 To get the black border that is recommended for splash screens, you 

must include a 1-pixel black border as part of the image you create. (You 

can get a black border with a border object instead of putting a black 

line in the image itself.) 

 The JWindow component, not the JFrame component, is typically used 

to implement the plain window that provides the basis for splash screens. 

Designing Login Splash Screens  

If your application requires users to log in, you might consider replacing the 
traditional splash screen with a simple login window or a combination login and 
splash screen.  

Figure 65 shows the login splash screen for the MetalMail application.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Click here to view the corresponding code for Figure 65 (also 

available on the book's companion CD-ROM). 

Figure 65   Login Splash Screen for MetalMail  

 

The elements of this screen might include:  

• Label and text field for a login user name  
• Label and password field  
• Labels and interactive components (such as editable combo boxes) for any other 

information required by the system  
• Buttons for logging in and canceling the login splash screen 

If you want to increase the chance of users viewing your splash screen, it is a 
good idea to combine the login window and splash screen.  

 Provide a way for users to exit the login splash screen without first 

logging in (if it is possible for users to do anything on the system without 

first logging in). 

 The JDialog component, not the JWindow component, is typically used 

to implement a login splash screen. 

Designing About Boxes  

An About box is a dialog box that contains basic information about your 
application.  

Figure 66 shows the About box for the MetalMail application.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 66   About Box for MetalEdit  

 

An About box might contain the following elements:  

• Product name (trademarked, if appropriate)  
• Version number  
• Company logo  
• Product logo or a visual reminder of the product logo  
• Copyright, trademarks, and other legal notices  
• Names of contributors to the product 

Users typically display About boxes by choosing the About Application item 
from the Help menu.  

 Because the dialog box title bar might not include a Close button 

on all platforms, always include a Close button in your About boxes so 

that users can dismiss them after reading them. Follow the guidelines for 

button placement described in Command Buttons in Dialog Boxes. 

6: Behavior  
Users interact with the computer by means of the mouse, the keyboard, and 
the screen. (Throughout this book, "mouse" refers to any pointing device, 
including standard mouse devices, trackballs, track pads, and so forth.) Such 
interaction constitutes the "feel" portion of the Java look and feel.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

This chapter describes mouse operations, pointers, and drag-and-drop 
operations. It discusses keyboard operations, including the use of keyboard 
focus, keyboard shortcuts, and mnemonics in Java look and feel applications. 
It also offers guidance on how to provide feedback regarding application 
progress or status.  

Mouse Operations  

In Java look and feel applications, the following common mouse operations are 
available to users:  

• Moving the mouse changes the position of the onscreen pointer (often called the 
"cursor").  

• Clicking (pressing and releasing a mouse button) selects or activates the object 
beneath the pointer. The object is usually highlighted when the mouse button is 
pressed and then selected or activated when the mouse button is released. For 
example, users click to activate a command button, to select an item from a list, or 
to set an insertion point in a text area.  

• Double-clicking (clicking a mouse button twice in rapid succession without moving 
the mouse) is used to select larger units (for example, to select a word in a text 
field) or to select and open an object.  

• Triple-clicking (clicking a mouse button three times in rapid succession without 
moving the mouse) is used to select even larger units (for instance, to select an 
entire line in a text field).  

• Pressing (holding down a mouse button) is used to display drop-down menus, 
including those marked by menu indicators on buttons.  

• Dragging (pressing a mouse button, moving the mouse, and releasing the mouse 
button) is used to select a range of objects, to choose items from drop-down or 
contextual menus, or to move objects in the interface. For example, users drag to 
select a range of text in a document. 

 In your design, assume a two-button mouse. Use mouse button 1 

(usually the left button) for selection, activation of components, 

dragging, and the display of drop-down menus. Use mouse button 2 (usually 

the right button) to display contextual menus. Do not use the middle mouse 

button; it is not available on most target platforms. 

 Provide keyboard equivalents for all mouse operations, including 

multiple selections. 

 Be aware that Macintosh systems usually have a one-button mouse, 

other personal computers and network computers usually have a two-button 

mouse, and UNIX systems usually have a three-button mouse. Macintosh users 

can simulate mouse button 2 by holding down the Control key while mousing. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

The following figure shows the relative placement of mouse buttons 1 and 2 on 
Macintosh, PC, and UNIX mouse devices.  

Figure 67   Mouse Buttons and Their Default Assignments  

 

Pointer Feedback  

The pointer can assume a variety of shapes. For instance, in a text-editing 
application, the pointer might assume an I-beam shape (called a "text pointer" 
in the Java 2 platform) to indicate where the insertion point will be if the user 
presses the mouse button. The insertion point is the location where typed text 
or a dragged or pasted selection will appear. When the pointer moves out of 
the editor pane, its appearance changes in accordance with the new 
component the pointer rests over.  

The Java look and feel defines a set of pointer types that map to the 
corresponding native platform pointers; therefore, the appearance of pointers 
can vary from platform to platform, as shown in the following table. When no 
corresponding pointer exists in the native platform toolkit, the pointer is 
supplied by the JFC.  

Table 6   Pointer Types Available for the Java 2 Platform  

Pointer Macintosh 
MIcrosoft 
Windows 

CDE Usage in Java Look and Feel Applications 

Default    Pointing or selecting 

Crosshair    Interacting with graphic objects 

Hand    Panning objects by direct manipulation 

Move    Moving objects 

Text     Selecting or inserting text 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Wait    
Indicating that an operation is in progress and 

the user cannot do other tasks 

N Resize    
Adjusting the upper (northern) border of an 

object  

S Resize    
Adjusting the lower (southern) border of an 

object 

E Resize    
Adjusting the right (eastern) border of an 

object 

W Resize    
Adjusting the left (western) border of an 

object  

NW 

Resize    
Adjusting the upper-left (northwest) corner of 

an object 

NE Resize    
Adjusting the upper-right (northeast) corner 

of an object 

SE Resize    
Adjusting the lower-right (southeast) corner 

of an object 

SW 

Resize    
Adjusting the lower-left (southwest) corner of 

an object 

 

 In addition to the shapes in Table 6, a pointer graphic can be 

defined as an image and created using Toolkit.createCustomCursor if you 

are using the Java 2 platform. 

Mouse-over Feedback  

Mouse-over feedback is a visual effect that occurs when users move the 
pointer over an area of an application window without pressing the mouse 
button.  

In the Java look and feel, mouse-over feedback can be used to show borders 
on toolbar buttons when the pointer moves over them. A slightly different effect 
is used to display tool tips. For details, see Toolbars and Tool Tips.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Clicking and Selecting Objects  

In the JFC, the selection of objects with the mouse is similar to the standard 
practice for other graphical user interfaces. Users select an object by clicking it. 
Clicking an unselected object also deselects any previous selection.  

 Follow the general JFC-provided rules for text selection:  

• A single click deselects any existing selection and sets the insertion point.  
• A double click on a word deselects any existing selection and selects the word.  
• A triple click in a line of text deselects any existing selection and selects the line.  
• A Shift-click extends a selection using the same units as the previous selection 

(character, word, line, and so forth).  
• Dragging (that is, moving the mouse while holding down mouse button 1) through 

a range of text deselects any existing selection and selects the range. 

 Follow the general JFC-provided rules for selection in selectable 

lists and tables: 

• A click on an object deselects any existing selection and selects the object.  
• A Shift-click on an object extends the selection from the most recently selected 

object to the current object.  
• A Control-click on an object toggles its selection without affecting the selection of 

any other objects. This operation can result in disjoint selections. 

Displaying Contextual Menus  

It can be difficult for users to find and access desired features given all the 
commands in the menus and submenus of a complex application. Contextual 
menus (sometimes called "pop-up menus") enable you to make functions 
easily accessible by associating them with appropriate objects.  

Users can open contextual menus in two ways:  

• To pull down the menu, users can press and hold mouse button 2 over a relevant 
object. Then they can drag to the desired menu item and release the mouse 
button to choose the item.  

• To post the menu (that is, to pull down the menu and leave it open), users can 
click mouse button 2 over a relevant object. Then they can click the desired menu 
item to choose it. The menu is dismissed when a menu item is chosen or the area 
outside the menu is clicked. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Click here to view the corresponding code for Figure 68 (also 

available on the book's companion CD-ROM). 

Figure 68   Contextual Menu for a Text Selection  

 

 Because users often have difficulty knowing whether contextual 

menus are available and what is in them, ensure that the items in your 

contextual menu also appear in the menu bar or toolbar of the primary 

windows in your application.  

 Users on the Microsoft Windows and UNIX platforms display a 

contextual menu by clicking or pressing mouse button 2. Macintosh users 

hold down the Control key while clicking.  

Drag-and-Drop Operations  

Drag-and-drop operations include moving, copying, or linking selected objects 
by dragging them from one location and dropping them over another. These 
operations provide a convenient and intuitive way to perform many tasks using 
direct manipulation. Common examples of drag and drop in the user interface 
are moving files by dragging file icons between folders or dragging selected 
text from one document to another. The Java 2 platform supports drag and 
drop within an application, between two Java applications, or between a Java 
application and a native application. For example, on a Microsoft Windows 
system, users can drag a text selection from a Java application and drop it into 
a Microsoft Word document.  

 Provide keyboard equivalents for all drag-and-drop operations 

(such as Cut, Copy, and Paste). 

Typical Drag and Drop  

Drag and drop in Java applications is similar to dragging behavior on other 
platforms. Users press mouse button 1 while the pointer is over a source 
object and then drag the object by moving the pointer while holding down the 
mouse button. To drop the object, users release the button when the pointer is 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

over a suitable destination. A successful drop triggers an action that depends 
on the nature of the source and destination. If the drag source is part of a 
range selection, the entire selection (for example, several file icons or a range 
of text) is dragged. To cancel a drag-and-drop operation after it has started, 
users drop the object over an invalid destination or press the Escape key.  

Pointer and Destination Feedback  

During any drag-and-drop operation, your Java look and feel application needs 
to give visual feedback using the pointer and the destination.  

 Provide the user with feedback that a drag operation is in progress 

by changing the shape of the pointer when the drag is initiated. Use 

different pointers to distinguish operations (such as copying or moving).  

 Provide destination feedback so users know where the dragged object 

can be dropped. Use one or both of the following methods to provide 

destination feedback: 

• Change the shape of the pointer to reflect whether the object is over a possible 
drop target.  

• Highlight drop targets when the pointer is over them to indicate that they can 
accept the selection or source. 

 Java objects are specified by their MIME (Multipurpose Internet 

Mail Extensions) types, and the JavaTM runtime environment automatically 

translates back and forth between MIME types and system-native types as 

needed. As an object is dragged over potential targets, each potential 

target can query the drag source to obtain a list of available data types 

and then compare that with the list of data types that it can accept. For 

example, when dragging a range of text, the source might be able to deliver 

the text in a number of different encodings such as plain text, styled 

text, or HTML text. If there is a match in data types, potential targets 

should be highlighted as the pointer passes over them to indicate that 

they can accept the dragged object.  

Keyboard Operations  

The Java look and feel assumes a PC-style keyboard. The standard ASCII 
keys are used, along with the following modifier keys: Shift, Control, and Alt 
(Option on the Macintosh); the function keys F1 through F12; the four arrow 
keys; Delete, Backspace, Home, End, Page Up, and Page Down. Enter and 
Return are equivalent. (Return does not appear on PC keyboards.)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

A modifier key is a key that does not produce an alphanumeric character but 
can be used in combination with other keys to alter the meaning of those keys. 
Typical modifier keys in Java look and feel applications are Shift, Control, and 
Alt.  

This section provides recommendations for the use of keyboard operations, 
which include keyboard shortcuts, mnemonics, and other forms of navigation, 
selection, and activation that utilize the keyboard instead of the mouse. (See 
Appendix A for more on keyboard operations.)  

A mnemonic is an underlined letter that typically appears in a menu title, menu 
item, or the text of a button or other component. The underlined letter reminds 
users how to activate the equivalent command by pressing the Alt key and the 
character key that corresponds to the underlined letter. For instance, you could 
use a mnemonic to give keyboard focus to a text area or to activate a 
command button. A keyboard shortcut (sometimes called an "accelerator") is a 
keystroke combination (such as Control-A) that activates a menu item from the 
keyboard even if the relevant menu is not currently displayed.  

Keyboard Focus  

The keyboard focus (sometimes called "input focus") designates the active 
window or component where the user's next keystrokes will take effect. Focus 
typically moves when users click a component with a pointing device or move 
to the next component using keyboard equivalents. Either way, users 
designate the window, or component within a window, that receives input. 
(Many toolbar buttons are exceptions: for instance, a left-alignment button on a 
toolbar should not take focus away from the text area where the actual work is 
taking place.)  

 When a window is first opened, assign initial keyboard focus to the 

component that would normally be used first. Often, this is the component 

appearing in the upper-left portion of the window. If keyboard focus is 

not assigned to a component in the active window, the keyboard navigation 

and control mechanisms cannot be used. The assignment of initial keyboard 

focus is especially important for people who use only a keyboard to 

navigate through your application--for instance, those with visual or 

mobility impairments and many power users. 

In the Java look and feel, many components (including command buttons, 
checkboxes, radio buttons, toggle buttons, list boxes, combo boxes, tabbed 
panes, editable cells, and tree components) indicate keyboard focus by 
displaying a rectangular border (blue, in the default color theme).  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 69   Keyboard Focus Indicated by Rectangular Border 

 

Editable text components, such as text fields, indicate keyboard focus by 
displaying a blinking bar at the insertion point.  

Figure 70   Keyboard Focus Indicated by Blinking Bar at Insertion Point 

 

Menus indicate focus with a colored background for menu titles or menu items 
(blue, in the default color theme).  

Click here to view the corresponding code for Figure 71 (also 

available on the book's companion CD-ROM). 

Figure 71   Keyboard Focus Indicated by Colored Background  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Split panes and sliders indicate focus by darkening the zoom buttons and 
slider indicator (blue, in the default color theme) respectively.  

Figure 72   Keyboard Focus Indicated by Drag Texture  

 

Keyboard Navigation and Activation  

Keyboard navigation enables users to move keyboard focus from one user 
interface component to another using the keyboard. Navigation does not 
necessarily affect the selection and does not, by itself, cause activation. 
Keyboard activation, on the other hand, enables users to cause an action by 
using the keyboard.  

In general, pressing the Tab key moves focus through the major components; 
Shift-Tab moves through the components in the reverse direction. Control-Tab 
and Control-Shift-Tab work in a similar fashion and are necessary when 
keyboard focus is in an element that accepts tabs, such as a text area. Arrow 
keys are often used to move within groups of components--for example, Tab 
puts focus in a list box and then the arrow keys move focus among the list box 
items. The Tab key is used to move among checkboxes.  

Once an element has focus, pressing the spacebar typically activates its 
function, such as selecting or deselecting a checkbox. In a list component, 
pressing Shift-spacebar extends the selection; pressing Control-spacebar 
toggles the selection state of the current item without affecting any other 
selections. (Using the up and down arrow keys actually changes the selection 
in a list component.)  

Some components do not need explicit keyboard focus to be operated. For 
example, users activate the default button in a dialog box by pressing the Enter 
or Return key. Similarly, scrollbars can be operated from the keyboard using 
keys such as Page Up and Page Down if focus is anywhere within the scroll 
pane.  

Keyboard navigation can be useful not only for accessibility purposes but also 
for power users or users who choose alternative input methods like voice input 
or touch screens.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Ensure that all application functions are accessible from the 

keyboard by unplugging the mouse and testing the application's keyboard 

operations.  

 Some of the keyboard operations in the tables in Appendix A are 

temporarily incomplete or unimplemented. However, the key sequences 

listed in this appendix should be reserved for future versions of the JFC 

and the Java 2 platform.  

Common keyboard navigation and activation operations are summarized in the 
following table.  

Table 7   Common Navigation and Activation Keys  

Keyboard 
Operation 

Action 

Tab1 Navigates to the next focusable component 

Control-Tab1 
Navigates to the next focusable component (works even if the component 
that previously had focus accepts tabs) 

Left arrow Moves focus left one character or component 

Right arrow Moves focus right one character or component 

Up arrow Moves focus up one line or component 

Down arrow Moves focus down one line or component 

Page Up Moves up one pane of information 

Page Down Moves down one pane of information 

Home 
Moves to the beginning of the data; in a table, moves to the beginning of a 
row 

End Moves to the end of the data; in a table, moves to the last cell in a row 

Enter or Return Activates the default command button 

Escape 
Dismisses a menu or dialog box without changes; cancels a drag-and-drop 
operation in progress 

Spacebar Activates the component that has keyboard focus 

1 With Shift key, reverses direction 

 

 
Note — The keyboard operations described in the previous table generally have separate 
actions for navigation and activation. For the keyboard shortcuts and mnemonics 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

described in the following sections, however, the same action performs both navigation 
and activation.  

 

Keyboard Shortcuts  

Keyboard shortcuts are keystroke combinations that activate a menu item from 
the keyboard even if the menu for that command is not currently displayed. 
Keyboard shortcuts usually consist of a modifier key and a character key, like 
Control-Z, plus a few special keys such as F1 and Delete. Unlike mnemonics, 
keyboard shortcuts do not post menus; rather, they perform the indicated 
actions directly. Since all keyboard shortcuts are available at all times, you 
cannot reuse them as you do mnemonics.  

Figure 73 shows an example of keyboard shortcuts and mnemonics on a 
typical Edit menu.  

Click here to view the corresponding code for Figure 73 (also 

available on the book's companion CD-ROM).  

Figure 73   Edit Menu With Keyboard Shortcuts and Mnemonics  

 

To use a keyboard shortcut in Java look and feel applications, users typically 
hold down the Control key (and optionally, an additional modifier key, such as 
Shift) and press the character key that is shown after the menu item; in some 
cases, they press the single key that corresponds to the shortcut, such as the 
Delete key in the previous figure. Typing a keyboard shortcut has the same 
effect as choosing the corresponding menu item. For instance, to undo an 
action, users can either choose the Undo item from the Edit menu or hold 
down the Control key and press Z.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Specify keyboard shortcuts for frequently used menu items to 

provide an alternative to mouse operation. You do not need to provide a 

shortcut for all commands.  

 Display keyboard shortcuts using the standard abbreviations for key 

names (such as Ctrl for the Control key), separated by hyphens. 

 Be aware of and use the common shortcuts across platforms. If your 

application doesn't use a particular command, you can use that common 

shortcut for some other command. However, if a later version of your 

application is likely to contain the common command, reserve the shortcut 

so future users won't have to relearn your shortcuts.  

 Do not use the Meta key (the Command key on the Macintosh platform) 

for a keyboard shortcut, except as an alternate for Control. It is not 

available on some target platforms.  

The common keyboard shortcuts (in the order of their use in menus) are 
summarized in the following table. For an alphabetical listing of the shortcuts in 
this table, see Common Keyboard Shortcuts.  

Table 8  Common Keyboard Shortcuts (Organized by Menus)  

Sequence Equivalent 

Ctrl-N New (File menu) 

Ctrl-O Open (File menu) 

Ctrl-W Close (File menu) 

Ctrl-S Save (File menu) 

Ctrl-P Print (File menu) 

Ctrl-Z Undo (Edit menu) 

Ctrl-Y Redo (Edit menu) 

Ctrl-X Cut (Edit menu) 

Ctrl-C Copy (Edit menu) 

Ctrl-V Paste (Edit menu) 

Delete Delete (Edit menu) 

Ctrl-F Find (Edit menu) 

Ctrl-G Find Again (Edit menu) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Ctrl-A Select All (Edit menu) 

Ctrl-H Replace (Edit menu) 

Ctrl-B Bold (Format menu) 

Ctrl-I Italic (Format menu) 

Ctrl-U Underline (Format menu) 

Ctrl-L Align Left (Format menu) 

Ctrl-E Align Center (Format menu) 

Ctrl-R Align Right (Format menu) 

F1 Help 

Shift-F1 Contextual help 

F5 Refresh 

 

 Because each platform has its own standard keyboard shortcuts, 

ensure that any new keyboard shortcuts you have created are compatible 

with existing shortcuts on all your target platforms. 

 To ease the localization process, place keyboard shortcuts in 

resource bundles. If it turns out that something needs to be localized 

because of a situation specific to a particular language, resource bundles 

facilitate the process.  

Mnemonics  

Mnemonics provide yet another keyboard alternative to the mouse. A 
mnemonic is an underlined alphanumeric character in a menu title, menu item, 
or other interface component. It reminds the user how to activate the 
equivalent command by simultaneously pressing the Alt key and the character 
key that corresponds to the underlined letter or numeral.  

Click here to view the corresponding code for Figure 74 (also 

available on the book's companion CD-ROM). 

Figure 74   File Menu With Mnemonics and Keyboard Shortcuts  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

When keyboard focus is not in a text element, the Alt modifier is not always 
required. Menus are an example. For instance, to choose the Exit command 
from the File menu, the user can hold down the Alt key and press F to post the 
File menu, release the Alt key, and then press X.  

Unlike keyboard shortcuts, mnemonics can be reused from one context to 
another. Once users have displayed a menu with a keyboard sequence, the 
subsequent keypress can activate a command only from that menu. Hence, 
users can press Alt-F to display the File menu and then type A to activate the 
Save As command, or press Alt-E to display the Edit menu, and then type A to 
activate the Select All command.  

You should provide mnemonics for components within the dialog boxes in your 
application. In dialog boxes, users must press a modifier key to activate the 
associated component. For instance, within a dialog box, you might have a 
mnemonic for the Help button. Once keyboard focus is within the dialog box, 
users press Alt and then H to activate the Help button.  

 Provide a mnemonic for all menu titles, menu items, and dialog box 

components in your application. 

 Do not associate mnemonics with the default button or the Cancel 

button in a dialog box. Use Enter or Return for the default button and 

Escape for the Cancel button instead. 

 Choose mnemonics that avoid conflicts within a context. For 

instance, you should not use the letter P as the mnemonic for both the 

Print and Page Setup commands in the File menu. 

 Ensure that the mnemonics associated with menu titles are not reused 

in any context in which the menus are active. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 When you assign mnemonics, follow these guidelines in the specified 

order.  

1. Use common mnemonics as they appear in Table 9. (For an alphabetical listing of 
the mnemonics, see Table 13.)  

2. If the mnemonic does not appear in the table of common mnemonics, choose the 
first letter of the menu item. (For instance, choose J for Justify.)  

3. If the first letter of the menu item conflicts with the mnemonics of other items, 
choose a prominent consonant. (For instance, the letter S may have already been 
designated as the mnemonic for the Style command. Therefore, choose the letter 
Z as the mnemonic for the Size command.)  

4. If the first letter of the menu item and the prominent consonant conflict with those 
of other menu items, choose a prominent vowel.  

 Place mnemonics in resource bundles to facilitate the localization 

process.  

Table 9   Common Mnemonics (Organized by Menu) 

Menu 

Titles 
Menu Items 

File New, Open, Close, Save, Save As, Page Setup, Print, Exit 

Edit Undo, Redo, Cut, Copy, Paste, Delete, Find, Find Again, Select All 

Format Font, Style, Size, Bold, Italic, Underline, Align Left, Align Center, Align Right 

View 
Large Icons, Small Icons, List, Details, Sort By, Filter, Zoom In, Zoom Out, 

Refresh 

Help Contents, Tutorial, Index, Search, About Application 

 

 

 Enable users to use the Tab key to navigate to components without 

their own text or labels. For instance, a text field might be dependent 

on a checkbox or a radio button, as shown in the following figure.  

Figure 75   Navigating to a Component Without Associated Text  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Mnemonics vary by locale, so use letters that occur in the localized 

strings. However, for nonalphabetic languages, use the English mnemonic 

at the trailing edge of the string. For an example, see Figure 18. 

 The setMnemonic method can be used to specify mnemonics for buttons, 

checkboxes, radio buttons, toggle buttons, and menu titles. For 

components such as text fields, list boxes, and combo boxes that do not 

have text of their own, mnemonics can be specified on associated labels. 

The setDisplayedMnemonic method can be used for labels, and the 

setMnemonic method for menu items. The labelFor property is used to 

associate the label and its mnemonic with the appropriate component. 

 The Java language underlines the first instance of a letter that 

appears in the string regardless of whether that instance of the letter 

led the designer to choose it as the mnemonic. Hence, it would display 

the mnemonic for the Save As command as Save As, not Save As.  

Operational Feedback  

Users interact more smoothly with your application if you keep them informed 
about the application's state. The information you provide can include a 
response to an action that a user is intentionally controlling (such as changing 
the shape of the pointer), or you can offer feedback about actions that the 
application is performing on its own (such as a long copying operation). This 
section focuses on feedback about operations that the application performs on 
its own once the user initiates them.  

You can use three kinds of visual feedback for operations that take a long time 
to complete:  

• Pointer feedback--changes the shape of the pointer (which tracks the mouse or 
other pointing device)  

• Progress animation--an indicator such as a progress bar that shows what 
percentage of an operation is complete  

• Status animation--an animation that shows an operation is ongoing 

Animation is especially beneficial when you want to communicate that the 
system is busy. Progress indication shows users the state of an operation; 
status animation lets users know that an application or a part of an application 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

is not available until an operation is done. For more about animation in your 
interface, see Animation.  

 When your application is processing a long operation and users can 

continue to work in other areas of the application, provide them with 

information regarding the state of the process.  

 During a long operation, when users must wait until the operation 

is complete, change the shape of the pointer. For example, an 

application's pointer might change to the wait pointer after the user 

selects a file and before the file opens.  

For information on the JFC-supplied pointer shapes available in the Java look 
and feel, see Table 6.  

 Use a wait pointer whenever users are (or could be) blocked from 

interaction with the application for more than 2 seconds. 

 Use a progress bar whenever users are blocked from interacting with 

the application for more than 6 seconds. 

 Use a progress bar when users want to know when or whether the 

operation has been completed, and the absolute or approximate proportion 

of completion can be determined. 

 Use a status animation when an activity will take 6 or more seconds 

and you can communicate only whether the process is live or not. 

Progress Animation  

Progress animation consists of a progress bar or percentage indicator that is 
generated by an application. You can use progress animation to describe any 
job in progress.  

The most useful form of progress animation, a progress bar, is an interface 
element that indicates one or more operations are in progress and shows 
users what proportion of the operation has been completed. The progress bar 
consists of a rectangular bar that fills as the operation progresses, as shown in 
the following figure.  

Figure 76   Progress Bar  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

You can orient the progress bar horizontally, so it fills from left to right, or 
vertically, so it fills from bottom to top. Within the bounds of the progress bar, 
you can display a text message that is updated as the bar fills. By default, the 
message shows the percentage of the process completed--for example, 25%.  

 If you know the estimated length of an operation (for example, if 

the user is copying files) or the number of operations, use the Java look 

and feel progress bar. This bar fills as the operation progresses. 

 When the user performs an operation whose function can be accurately 

estimated, show the time remaining as part of the progress bar. For example, 

you might use the message, "Two hours and 18 minutes remaining." In most 

cases, you will need to base your estimate on typical throughput and adjust 

your estimate as you determine how the current system load or network delay 

affects throughput. These calculations sometimes result in an increase 

in the remaining time. 

 When the user performs an operation on objects of known size, or 

when only the number of objects is known, equate the length of the progress 

bar to the total units of work to be performed. 

 Update the progress bar to show the proportion completed at least 

every 4 seconds. If you overestimate how much is already done, the progress 

bar can remain at 99 percent until the task is complete. If you 

underestimate how much is already done, fill the remaining portion of the 

progress bar when the operation completes. The percentage done should 

never decrease. 

 Use the most accurate form of progress bar (time remaining, 

proportion remaining, objects remaining) available, given the data you 

are trying to time.  

 Users cannot interact with a progress bar. If you would like to 

enable users to set a value in a range, use the slider (implemented with 

the JSlider component). 

Figure 77 shows the use of progress animation in a progress dialog box.  

Click here to view the corresponding code for Figure 77 (also 

available on the book's companion CD-ROM).  

Figure 77   Animation in a Progress Dialog Box  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Status Animation  

When you have no numeric information on which to base your progress 
estimates, use a status animation to reassure the user that an otherwise 
invisible activity is still in progress and the system has not crashed.  

A status animation is a sequence of images designed to inform users that 
an operation is in progress. A status animation loops endlessly until the 
operation finishes or the user acts to stop the operation. The animation 
reassures users that an otherwise invisible activity is still in progress and the 
system has not crashed. Because the display duration of any status animation 
is often unknown, you should design the loop to run continuously until the 
operation completes.  

For each status animation, include a still image and an animation. The still 
image indicates that a process has stopped or that the system is inactive. 
Make the still image different from the animation sequence so that users can 
easily tell whether an activity is in progress (though possibly stalled) or the 
system is quiescent.  

 When creating system status animation, consider the target users 

and their environment. If the animation needs to be visible from across 

the room, a bolder animation coupled with sound might be effective. On 

the other hand, that same animation viewed by a user sitting at the 

workstation would be annoying.  

 When feasible, let users configure system status animation, so they 

can adapt their systems to the environment. 

 In your status animations, provide two files, one an animation 

sequence to display the active status and the other a still image to 

display the inactive status.  

 Screen readers, which are used by people with visual impairments, 

do not recognize images. Use the accessibleDescription field to describe 

what is represented by the animation and change the description 

appropriately when the status of the animation changes. Make sure that 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

this information results in a propertyChange event so that the user can 

be notified of the change.  

Design for Smooth Interaction  

As a human interface designer, you do more than assemble the proper 
interface components in a window. You also lay out the components to help 
users understand the tasks they face and to foster a natural flow through the 
activities. Good interface design frequently goes unnoticed because 
everything works as expected. Users notice a poorly designed application that 
puts GUI obstacles in their way. Thought, attention to detail, and testing with 
real users can eliminate these difficulties.  

This section examines the interaction flow in a simple login dialog box, 
showing how careful attention to detail makes a significant difference in the 
user experience. For more information, see Login Dialog Boxes. For a 
discussion of password fields, see Password Fields.  

Initial Focus  

The login dialog box in Figure 78 is for MetalManage, a hypothetical 
management application. This particular application requires users to type 
both a login name and a password. When the dialog box initially appears, the 
Login Name and Password fields are empty, and keyboard focus is in the 
Login Name field, which is typically the first place that users type information. 
The Log In button is unavailable because the application requires a login name 
and password, and those fields are currently empty.  

Click here to view the corresponding code for Figure 78 (also 

available on the book's companion CD-ROM). 

Figure 78   Simple Login Dialog Box in Its Initial Configuration  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Whenever possible, design an interaction flow that prevents users 

from making errors. For instance, make the Log In button unavailable until 

the text fields of a login dialog box are filled in because pressing the 

button earlier would result in an error. 

Navigation  

This login dialog box is designed with a standard tab traversal order. As shown 
in the following figure, keyboard focus starts in the Login Name text field, 
progresses to the Password field, then moves to the buttons in the command 
button row, and finally loops back to the first text field. (The Log In button is 
automatically dropped from the traversal order when it is unavailable.) Users 
can navigate through the dialog box by:  

• Using the mouse  
• Pressing the Tab key (or Ctrl-Tab) to move forward through the components  
• Pressing Shift-Tab (or Ctrl-Shift-Tab) to move backward through the components  
• Using mnemonics 

Most users find that their interaction with login dialog boxes becomes habitual.  

Figure 79   Standard Tab Traversal in a Login Dialog Box  

 

 Ensure that keyboard navigation works smoothly in all dialog boxes. 

Many users want to perform operations such as logging in using only the 

keyboard. 

The typical login sequence for most users involves typing a login name, 
pressing Tab to advance focus to the Password field, typing a password, 
and pressing Enter (or Return) to activate the Log In button.  

This sequence works work well if the Log In button is the default command 
button. However, making the Log In button the default button creates a 
possible annoyance. Some users, particularly in login dialog boxes, habitually 
press the Enter key to advance to the next text field.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

In a quick usability study conducted with this dialog box, about 25 percent of 
users pressed the Enter key after typing their login names. Therefore, the 
design was changed so that if users press Enter in the Login Name field, 
keyboard focus advances to the Password field. Although this behavior is not 
standard for the Enter key, it allows for very smooth use by the minority of 
users who want to type their login names, press Enter, type their passwords, 
and press Enter to get logged in. Furthermore, it does not interfere with the 
typical use of the Tab key by most users.  

If the Log In button had been the default button, pressing Enter after typing a 
login name would activate the Log In button. An error would occur because the 
user had not typed in a password. As a result, the new design made the Log In 
button unavailable until both the Login Name and Password fields contain text.  

Password Field  

As soon as both the Login Name and Password fields contain text, the Log In 
button becomes available and becomes the default button (as shown in the 
following figure). Users can then press Enter to activate the Log In button.  

Figure 80   Standard Login Dialog Box With Filled-in Text Fields  

 

If your application allows null passwords, the interaction is a little more 
complex. In that case, make the Log In button available as soon as users type 
a character in the Login Name field, so that they can attempt to log in without 
typing a password. However, do not make the Log In button the default button 
until keyboard focus moves to the Password field. Then users who press Enter 
to move to the Password field cannot activate the Log In button by mistake. 
Instead, move the focus to the Password field and only then make the Log In 
button the default command button. Users can type in a password, if any, and 
then press Enter to activate the Log In button.  

Figure 81   Login Dialog Box With Null Passwords  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Status and Error Messages  

The login dialog box has more than the recommended 17 pixels between the 
Password field and the command button row. That extra space is used for 
displaying status messages, such as the progress notification shown in the 
following figure.  

Figure 82   Status Message in a Login Dialog Box  

 

A status message appears in the form of a label while the system is verifying 
the login attempt. Dots are added to the label at about 1 dot per second to 
indicate that the system is still working.  

You can use this same extra space to display short error messages--for 
example, if the login attempt fails. You could display such error messages in a 
standard error alert box. However, as long as the error message is brief, as 
shown in the following figure, the status area in the login dialog box provides a 
simple alternative that doesn't require users to dismiss a separate dialog box.  

Figure 83   Error Message in a Login Dialog Box  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Note that the text in the Login Name field is automatically selected when the 
login fails, enabling users to type in a new login name easily or to press Tab or 
Enter to navigate to the Password field (which then appears with its contents 
selected).  

Users typically observe the status area during the login attempt, so an error 
message displayed there is easily seen, especially with the accompanying 
graphic. Nevertheless, it is also advisable to play a sound when the error 
message appears. The sound helps distracted users as well as visually 
impaired people. Be sure to offer users the option to turn off the sound.  

Text Selection and Filled Text Fields  

When keyboard focus enters a text field (unless it does so because of a user 
click in the field), select any existing text in the field and place the insertion 
point at the end of the text, as shown in the following figure. Users can then 
start typing characters to replace the existing text or they can press the Tab 
key to move to the next field, leaving the original text intact.  

When the text is selected, pressing the left or right arrow key deselects the text 
and moves the insertion point (if possible), enabling users to correct the text 
using only the keyboard. Of course, if users click in a text field, place the 
insertion point as close to the click point as possible, without selecting text. For 
more information on editable text field navigation, see Editable Text Fields.  

Figure 84   Entering a Filled Text Field  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Part III: The 
Components of the Java 
Foundation Classes  

This part consists of:  

• Chapter 7: Windows and Panes  

• Chapter 8: Dialog Boxes and Alert Boxes  

• Chapter 9: Menus and Toolbars  

• Chapter 10: Basic Controls  

• Chapter 11: Text Components  

• Chapter 12: Selectable Lists, Tables, and Tree Components 

7: Windows and Panes  
A window is a user interface element and container that designers use to 
organize the information that users see in an application. The information in a 
window consists of objects (and their properties) that enable users to perform 
actions or to report information about actions. Primary windows, secondary 
windows, utility windows, and plain windows provide the top-level containers 
for your application. A primary window is a window in which the user's main 
interaction with the data or document takes place. An application can use any 
number of primary windows, which can be opened, closed, minimized, or 
resized independently. A secondary window is a supportive window that is 
dependent on a primary window (or another secondary window). A utility 
window is a window whose contents affect an active primary window. Unlike 
secondary windows, utility windows remain open when primary windows are 
closed or minimized. An example of a utility window is a tool palette that is 
used to select a graphic tool. A plain window is a window with no title bar or 
window controls, typically used for splash screens.  

Figure 85   Primary, Utility, Plain, and Secondary Windows  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Panels, panes, and internal windows are lower-level containers for use within 
primary and secondary windows. A panel is a container for organizing the 
contents of a window, dialog box, or applet. A pane is a collective term for 
scroll panes, split panes, and tabbed panes, which are described in this 
chapter. (You can place panels in panes or panes in panels.) An internal 
window is a container used in MDI applications to create windows that users 
cannot drag outside of the main backing window.  

Figure 86   Scroll Pane, Tabbed Pane, Split Pane, and Internal Window  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

When you begin to organize the information in an application, ask yourself 
these questions:  

• Should information appear in a primary window or a secondary window?  
• Which information goes in which kind of window?  
• How are different kinds of windows titled? 

This chapter uses the concept of an object, an entity your application 

presents in its interface and that users manipulate. While an object can 

be logical to the user, it might have little relationship to the 

implementation of the application. Objects have properties or sets of 

values that users can view or change. Objects also have actions or 

operations that can be performed on them.  

Objects might be documents, the computers that an application monitors, or 
even log entries--for example, a word processor works with documents, 
chapters, and paragraphs. A mail program works with mail servers, mailboxes, 
and mail messages.  

Anatomy of a Primary Window  

Primary windows act as top-level containers for the user interface elements 
that appear inside them. A primary window might hold a series of embedded 
containers. For example, a primary window in your application could have this 
organization:  

• The window frame contains a menu bar and a panel  
• The menu bar contains menus  
• The panel contains a toolbar and a scroll pane and scrollbar  
• The toolbar contains toolbar buttons  
• The scroll pane contains an editor pane with a plug-in editor kit for styled text 

Figure 87   Components Contained in a Primary Window  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Note the appearance of the embedded containers in an actual primary window 
and their relationship to the underlying structure, as shown in Figure 88.  

Figure 88   Anatomy of a Primary Window  

 

Constructing Windows  

A primary window, secondary window, utility window, or plain window can 
serve as a top-level container for interface elements in your application.  

Figure 89   Top-Level Containers  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Primary windows are implemented using the JFrame component. 

Secondary windows and utility windows are implemented using the JDialog 

component (for dialog boxes and utility windows) or the JOptionPane 

component (for alert boxes). Plain windows are implemented using the 

JWindow component. 

Primary Windows  

Primary windows are provided by the operating system of the platform on 
which the application is running--for instance, UNIX, Microsoft Windows, OS/2, 
or Macintosh.  

Specifically, you cannot alter the appearance of the window border and title 
bar, including the window controls that affect the state of a window (for 
example, the Maximize button in Microsoft Windows title bars). Window 
behavior, such as resizing, dragging, minimizing, positioning, and layering, is 
controlled by the operating system.  

The content provided by your application, however, takes on the Java look and 
feel, as shown in Figure 90 (which depicts a MetalEdit document window as it 
appears on the Microsoft Windows platform).  

Click here to view the corresponding code for Figure 90 (also 

available on the book's companion CD-ROM). 

Figure 90   Primary Window on the Microsoft Windows Platform  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Typically, when users close or minimize a window, any associated secondary 
windows are closed as well. However, the operating system does not take care 
of this behavior automatically for JFC applications.  

 Keep track of the secondary windows in your application; close them 

if the primary window is closed or hide them if their primary window is 

minimized. 

 Although native operating systems typically display a close control 

on the title bar of windows, provide a Close item or Exit item in your 

File menu as well. 

 In the JFC, primary windows are created using the JFrame component. 

This component appears with the border, title bar, and window controls 

of the platform on which it is running. This is the JFC component you are 

most likely to use as the top-level container for a primary window. 

Secondary Windows  

Secondary windows (dialog boxes and alert boxes) are displayed in a window 
supplied by the native operating system. In the JFC, the component for dialog 
boxes is called JDialog, and the component for alert boxes is JOptionPane. 
These windows appear with the borders and title bars of the platform on which 
they are running. Chapter 8 provides more guidelines for the design of dialog 
boxes and alert boxes.  

Figure 91 shows a JFC-supplied Warning alert box for the sample text-editing 
application, MetalEdit.  

Click here to view the corresponding code for Figure 91 (also 

available on the book's companion CD-ROM). 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 91   Alert Box on the Macintosh Platform  

 

Dialog and alert box behavior, such as dragging and closing, is controlled by 
the native operating system. For keyboard operations that are appropriate to 
dialog and alert boxes, see Table 23.  

 Keep in mind that some platforms do not provide close controls in 

the title bar for dialog boxes. Always provide a way to close the window 

in the dialog box or alert box itself. 

 The JOptionPane component is used to implement an alert box. If the 

box supplied by the JFC does not suit your needs, you can use the JDialog 

component. 

Plain Windows  

You can create a window that is a blank plain rectangle. The window contains 
no title bar or window controls, as shown in the following figure. (Note that the 
black border shown around this plain window is not provided by the JFC.)  

Figure 92   Plain Window Used as the Basis for a Splash Screen  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

A plain window does not provide dragging, closing, minimizing, or maximizing. 
You can use a plain window as the container for a splash screen, which 
appears and disappears without user interaction, as shown in the preceding 
figure.  

 The JWindow component is used to implement plain windows. (The 

JFrame component is used to implement primary windows.) 

Utility Windows  

A utility window is often used to display a collection of tools, colors, or patterns. 
Figure 93 shows a utility window that displays a collection of objects.  

Figure 93   Utility Window  

 

Unlike secondary windows, which should close automatically when their 
associated windows are closed, utility windows should remain open when 
primary windows are closed.  

User choices made in a utility window refer to and affect the active primary 
window. A utility window remains on screen for an extended period of time 
while users go back and forth between the utility window and primary windows. 
In contrast, a secondary window is designed to enable users to resolve an 
issue in an associated primary window and is usually dismissed once users 
have resolved the issue.  

The same keyboard operations that apply in dialog boxes and alert boxes 
apply to utility windows. For information on keyboard operations appropriate 
for utility windows, see Table 14 and Table 23.  

 Because utility windows are not dependent on a primary window, do 

not automatically dismiss utility windows when primary windows are 

closed. 

 Ensure that the same initial focus and keyboard navigation features 

available in secondary windows are available in utility windows. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Utility windows in a non-MDI application are implemented using the 

JDialog component, whereas in an MDI application, internal utility 

windows are a specific style of the JInternalFrame component. Therefore, 

internal utility windows can be used only within a backing window. Use 

the client properties mechanism to set the JInternalFrame.isPalette to 

true. 

Organizing the Contents of Windows  

The JFC provides a number of user interface elements you can use for 
organizing the contents of windows: panels, tabbed panes, split panes, and 
scroll panes. Panels and panes can be used to organize windows into one or 
more viewing areas. A panel is a JFC component that you can use for 
grouping other components inside windows or other panels.  

A pane is a collective term used for scroll panes, split panes, and tabbed 
panes, among others. Panes provide a client area where you can offer 
control over which user interface elements users see. For instance, a scroll 
pane enables the viewing of different parts of a client area; a tabbed pane 
enables users to choose among screen-related client areas; and a split 
pane enables users to allocate the proportions of a larger viewing area 
between two client areas.  

Figure 94   Lower-Level Containers  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Panels  

In contrast to scroll panes and tabbed panes, which typically play an 
interactive role in an application, a panel simply groups components within a 
window or another panel. Layout managers enable you to position 
components visually within a panel. For a thorough treatment of the visual 
layout and alignment of components, see Layout and Visual Alignment. For 
more information on layout managers, see The Java Tutorial at 
http://java.sun.com/docs/books/tutorial.  

Scroll Panes  

A scroll pane is a specialized container offering vertical or horizontal scrollbars 
(or both) that enable users to change the visible portion of the window 
contents.  

Figure 95 provides an example of a scroll pane with a vertical scrollbar. The 
size of the scroll box indicates the proportion of the content currently 
displayed.  

Figure 95   Scroll Pane in a Document Window  

 

You can choose whether a scroll pane always displays scrollbars or whether 
they appear only when needed.  

 Unless you have a compelling reason to do otherwise, use the default 

setting for horizontal scrollbars, which specifies that they appear only 

when needed. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Display a horizontal scrollbar if users can't see all the 

information in the window pane--for instance, in a word-processing 

application that prepares printed pages, users might want to look at the 

margins as well as the text. 

 If the data in a list is known and appears to fit in the available 

space (for example, a predetermined set of colors), you still need to place 

the list in a scroll pane. Specify that a vertical scrollbar should appear 

only if needed. For instance, if users change the font, the list items 

might become too large to fit in the available space, and a vertical 

scrollbar would be required. 

 If the data in a scroll pane sometimes requires a vertical scrollbar 

in the normal font, specify that the vertical scrollbar always be present. 

This practice prevents the distracting reformatting of the display 

whenever the vertical scrollbar appears or disappears. 

 Scrollbars are obtained by placing the component, such as a text 

area, inside a scroll pane. 

Scrollbars  

A scrollbar is a component that enables users to control what portion of a 
document or list (or similar information) is visible on screen. In locales with 
left-to-right writing systems, scrollbars appear along the bottom and the right 
sides of a scroll pane, a list, a combo box, a text area, or an editor pane. In 
locales with right-to-left writing systems, such as Hebrew and Arabic, 
scrollbars appear along the bottom and left sides of the relevant component. 
By default, scrollbars appear only when needed to view information that is not 
currently visible, although you can specify that the scrollbar is always present.  

The size of the scroll box represents the proportion of the window content that 
is currently visible. The position of the scroll box within the scrollbar represents 
the position of the visible material within the document. As users move the 
scroll box, the view of the document changes accordingly. If the entire 
document is visible, the scroll box fills the entire channel.  

Both horizontal and vertical scroll boxes have a minimum size of 16 x 16 pixels 
so that users can still manipulate them when viewing very long documents or 
lists.  

At either end of the scrollbar is a scroll arrow, which is used for controlling 
small movements of the data.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

The following figure shows horizontal and vertical scrollbars. Each scrollbar is 
a rectangle consisting of a textured scroll box, a recessed channel, and scroll 
arrows.  

Figure 96   Vertical and Horizontal Scrollbars  

 

Do not confuse the scrollbar with a slider, which is used to select a value. For 
details, see Sliders.  

Users drag the scroll box, click the scroll arrows, or click in the channel to 
change the contents of the viewing area. When users click a scroll arrow, more 
of the document or list scrolls into view. The contents of the pane or list move 
in increments based on the type of data. When users hold down the mouse 
button, the pane or list scrolls continuously.  

For a description of keyboard operations for scrollbars, see Table 22.  

 Scroll the content approximately one pane at a time when users click 

in the scrollbar's channel. Leave one small unit of overlap from the 

previous information pane to provide context for the user. For instance, 

in scrolling through a long document, help users become oriented to the 

new page by providing one line of text from the previous page. 

 Scroll the content one small unit at a time when users click a scroll 

arrow. (The smallest unit might be one line of text, one row in a table, 

or 10 to 20 pixels of a graphic.) The unit controlled by the scroll arrows 

should be small enough to enable precise positioning of the text or 

graphic but not so small that users must spend an impractical amount of 

time using the scroll arrow. 

 Ensure that the scroll speed is fairly constant when users click 

the scroll arrows. Ensure that scrollbar controls run quickly yet enable 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

users to perform the operation without overshooting the intended location. 

The best way to determine the appropriate scrolling rate is to test the 

scrolling rate with users who are unfamiliar with your application.  

 Ensure that the scrolling rate is appropriate across different 

processor speeds.  

 Place scrollbars in the orientation that is suitable for the writing 

system of your target locale. For example, in the left-to-right writing 

systems (such as English and other European languages), the scrollbars 

appear along the right side of the scroll pane or other component. In other 

locales, they might appear along the left side of the scroll pane. 

Tabbed Panes  

A tabbed pane is a container that enables users to switch between several 
content panes that appear to share the same space on screen. (The panes are 
implemented as JPanel components.) The tabs themselves can contain text or 
images or both.  

A typical tabbed pane appears with tabs displayed at the top, but the tabs can 
be displayed on any of the four sides. If the tabs cannot fit in a single row, 
additional rows are created automatically. Note that tabs do not change 
position when they are activated. For the first row of tabs, there is no separator 
line between the active tab and the pane.  

The following figure shows the initial content pane in the JFC-supplied color 
chooser. Note that the tabbed pane is displayed within a dialog box that uses 
the borders, title bar, and window controls of the platform on which its 
associated application is running.  

Figure 97   Swatches Content Pane in the JFC Color Chooser  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Users choose which content pane to view by clicking the corresponding tab. 
The content pane changes accordingly, as shown in the following figure of the 
content pane associated with the RGB tab.  

For a list of keyboard operations appropriate for tabbed panes, see Table 26.  

Figure 98   RGB Content Pane in the JFC Color Chooser  

 

You can use tabbed panes to good advantage in secondary windows, such as 
a preferences dialog box, that require you to fit a lot of information into a small 
area.  

You can also use tabbed panes to provide a way for users to switch between 
content panes that represent:  

• Different ways to view the same information, like a color chooser's RGB and HSB 
panes  

• Different parts of an informational unit, like worksheets that are part of a workbook 
in a spreadsheet application 

 Use headline capitalization for tab names. 

 Provide mnemonics so users can navigate from tab to tab and from 

tabs to associated content panes using keyboard operations. 

 Do not nest tabbed panes. 

 If your tabbed pane requires multiple rows of tabs, consider 

dividing the content among several dialog boxes or other components. 

Multiple rows of tabs can be confusing. You might also consider displaying 

the tabs vertically so more could be displayed in a single column. 

 Place any dialog box buttons outside the tabbed pane because they 

apply to the whole dialog box (that is, all the panes) at once. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Split Panes  

A split pane is a container that divides a larger pane into resizable panes. 
Split panes enable users to adjust the relative sizes of two adjacent panes. 
The Java look and feel drag texture (along with a pointer change when the 
pointer is over the splitter bar) indicates that users can resize split panes.  

To adjust the size of the split panes, users drag the splitter bar, as shown in 
the following figure.  

Figure 99   Split Pane (Horizontal Orientation)  

 

Users can also control the splitter bar by clicking one of the optional zoom 
buttons shown in the following figure. Clicking a button moves the splitter bar 
to its extreme (upper, lower, left, or right) position. If the splitter bar is already 
at its extreme position, clicking a zoom button in the direction of the split 
restores the panes to the size they had before the zoom operation (or before 
the user dragged the splitter bar to close one of the panes).  

For a list of keyboard operations appropriate for split panes, see Table 25.  

Figure 100   Zoom Buttons in a Split Pane (Vertical Orientation)  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Include zoom buttons in split panes because they are very convenient 

for users. 

Nested Split Panes  

In addition to splitting panes either horizontally or vertically, you can nest one 
split pane inside another. The following figure portrays a mail application in 
which the top pane of a vertically split pane has a horizontally split pane (in 
blue in the lower schematic diagram) embedded in it.  

Figure 101   Nested Split Panes  

 

Working With Multiple Document Interfaces  

A multiple document interface (MDI) application provides a way to manage 
multiple windows that are confined inside a main window called a backing 
window (previously called a "desktop pane"). To support MDI designers, the 
JFC provides the internal window and internal utility window.  

Backing Windows  

In an MDI application, a large window, called the backing window, contains 
other windows. The menus and toolbars for the application are usually 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

displayed in the backing window rather than in each internal (primary) window. 
For more on menus and toolbars, see Chapter 9.  

 The JDesktopPane component is used to implement backing windows. 

Internal Windows  

Primary windows in MDI applications must stay inside the main backing 
window and so are called "internal windows." The main backing window is a 
native platform window with the native look and feel. However, in an MDI that 
uses the Java look and feel, internal windows have window borders, title bars, 
and standard window controls with the Java look and feel.  

The following figure shows examples of internal windows for an MDI 
application.  

Figure 102   Internal Windows in an MDI Application  

 

Users can use the mouse to:  

• Activate a window (and deactivate the previously activated window) by clicking 
anywhere in the window  

• Adjust the size of a resizable internal window by dragging from any side or corner  
• Drag the internal window (by the title bar) within the backing window  
• Minimize, maximize, restore, and close the internal window by clicking the 

appropriate window controls 

For keyboard operations appropriate to internal windows, see Table 14.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

A minimized internal window is a horizontally oriented component (shown in 
the following figure) that represents an internal window that has been 
minimized. The width of these minimized internal windows is sized to 
accommodate the window title. Minimized internal windows consist of a drag 
area followed by an area containing an application-specific icon and the text of 
the window title.  

Figure 103   Minimized Internal Window  

 

Users can rearrange minimized internal windows by dragging the textured 
area. Users can click the icon and text area in a minimized internal window to 
restore the window to its previous location and size.  

For details on the keyboard operations appropriate for minimized internal 
windows, see Table 14.  

Secondary Windows  

In MDI applications, secondary windows have the same appearance and 
behavior as they do in non-MDI applications. Unlike internal windows, 
secondary windows can move outside the backing window.  

 If you are working with an MDI application using the Java look and 

feel, the JDialog component can be used to create secondary windows. 

Internal Utility Windows  

An internal utility window (previously called a "palette window") is a type of 
internal window that floats above other internal windows within the backing 
window for an MDI application.  

The following figure shows an internal utility window from a hypothetical 
graphical interface builder. A set of buttons enables users to construct menus.  

Figure 104   Internal Utility Window  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Internal utility windows can contain any component. Users can close internal 
windows, but they cannot resize, minimize, or maximize them. The title bars of 
internal utility windows cannot contain text.  

For keyboard operations for internal utility windows, see Table 14.  

 Provide a close control on all internal utility windows. 

 An internal utility window is a specific style of JInternalFrame 

and, therefore, can be used only within a backing window. Use the client 

properties mechanism to set the JInternalFrame.isPalette to true. 

Window Titles  

This section discusses conventions for window titles of both primary and 
secondary windows. Italics indicate text you must replace; window titles 
themselves do not use the italic font style.  

Title Text in Primary Windows  

The title text in a primary window should use the format Document or Object 
Name - Application Name. Figure 105 shows the proper format for the window 
title, with the document title appearing first. If the title is truncated, the most 
important part of the title remains visible.  

Figure 105   Proper Format for Window Title  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 In primary windows, begin the window title text with a name 

describing the contents of the window, followed by a space, a hyphen, 

another space, and the application name.  

Title Text in Secondary Windows  

The title text in secondary windows should use the format Descriptive Name - 
Application Name. The Application Name is optional but should be included if 
users might not otherwise recognize the source of the secondary window.  

 In secondary windows, begin the window title with a name describing 

the contents of the window. Follow that text with the application name 

when users might be unclear which application is associated with the 

window. 

The secondary window in the following figure is often displayed by the 
MetalButler calendar program while users are focused on some other task. 
Therefore, its window title includes the application name.  

Figure 106   Secondary Window Title With Optional Application Name  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

The secondary window shown in Figure 107 is displayed immediately after a 
user tries to save a new file with an existing name. The source of the alert box 
is clear. Therefore, the window title does not include the application name.  

Click here to view the corresponding code for Figure 107 (also 

available on the book's companion CD-ROM). 

Figure 107   Secondary Window Title Without Optional Application Name  

 

Title Text in Internal Windows  

The title text in internal windows should use the format Descriptive Name or 
Descriptive Name - Tool Name. For an example of the title text in an internal 
window, see Figure 102.  

 In an internal window, provide the window title with a name 

describing the contents of the window. Since the backing window makes the 

application name clear, you can omit the application name. If there is 

a tool within the application, you can use the format Descriptive Name 
- Tool Name.  

8: Dialog Boxes and Alert Boxes  
A dialog box is a secondary window in which users perform a task that is 
supplemental to the task in the primary window. For example, a dialog box 
might enable users to set preferences or choose a file from the hard disk. A 
dialog box can contain panes and panels, text, graphics, controls (such as 
checkboxes, radio buttons, or sliders), and one or more command buttons. 
Dialog boxes use the native window frame of the platform on which they are 
running (in both non-MDI and MDI applications).  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

An alert box is a secondary window that provides for brief interaction with 
users. Alert boxes present error messages, warn of potentially harmful actions, 
obtain a small amount of information from users, or display messages. The 
basic alert box has a symbol that identifies the type of the alert, a textual 
message, and one or more command buttons. The layout of these 
components is determined by the JFC.  

Figure 108   Dialog Box and Alert Box  

 

 If you are designing an MDI application, use the JFC-supplied dialog 

boxes and alert boxes. Because these secondary windows use the platform's 

native windows (and not the JFC-supplied internal window), they are free 

to move outside the backing window. 

Modal and Modeless Dialog Boxes  

Dialog boxes can be modal or modeless. A modal dialog box prevents users 
from interacting with the application until the dialog box is dismissed. However, 
users can move a modal dialog box and interact with other applications while 
the modal dialog box is open. This behavior is sometimes called 
"application-modal."  

A modeless dialog box does not prevent users from interacting with the 
application they are in or with any other application. Users can go back and 
forth between a modeless dialog box and other application windows.  

 Use modeless dialog boxes whenever possible. The order in which 

users perform tasks might vary, or users might want to check information 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

in other windows before dismissing the dialog box. Users might also want 

to go back and forth between the dialog box and the primary window.  

 Use modal dialog boxes when interaction with the application cannot 

proceed while the dialog box is displayed. For example, a progress dialog 

box that appears while your application is loading its data might be a 

modal dialog box if users can do nothing useful during the loading process. 

Dialog Box Design  

Figure 109 illustrates dialog box design guidelines for the Java look and feel.  

The dialog box in the figure has a title in the window's title bar, a series of user 
interface elements, and a row of command buttons. The default command 
button is the OK button, indicated by its heavy border. The underlined letters 
are mnemonics, which remind users how to activate components by pressing 
the Alt key and the appropriate character key. The Ruler Units noneditable 
combo box has initial keyboard focus, indicating that the user's next 
keystrokes will take effect in that component. For a discussion of the text that 
should appear in dialog box titles, see Title Text in Secondary Windows.  

Click here to view the corresponding code for Figure 109 (also 

available on the book's companion CD-ROM). 

Figure 109   Sample Dialog Box  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 In dialog boxes, include mnemonics for all user interface elements 

except the default button and the Cancel button.  

 When opening a dialog box, provide initial keyboard focus to the 

component that you expect users to operate first. This focus is especially 

important for users who must use a keyboard to navigate your application. 

 Consider the effect of internationalization on your design. Use a 

layout manager, which allows for text strings to become bigger or smaller 

when translated to another language. 

For guidelines for the spacing between JFC components, see Layout and 
Visual Alignment. For more information on internationalization, see Planning 
for Internationalization and Localization. For details on keyboard support for 
navigating through dialog boxes, see Table 23. For information on how to 
capitalize text in dialog boxes, see Text in the Interface.  

Tab Traversal Order  

Tab traversal order is the order in which the components in a dialog box 
receive keyboard focus on successive presses of the Tab key. If users press 
the Tab key when keyboard focus is on the last component in the dialog box, 
you should return keyboard focus to the first component.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 110 shows the tab traversal order that the designer has set for this 
preferences dialog box.  

Click here to view the corresponding code for Figure 110 (also 

available on the book's companion CD-ROM). 

Figure 110   Tab Traversal Order in the Sample Dialog Box  

 

 Specify a logical tab traversal order for the user interface 

elements in a dialog box. The traversal order should match the reading 

order for your application's specified locale. For example, in English, 

the traversal order is left to right, top to bottom. By default, the 

traversal order is the sequence in which you added the components to the 

dialog box. 

 The setNextFocusableComponent method from JComponent can be used 

to specify the next component to receive keyboard focus. If a component 

is unavailable, it is skipped in the tab traversal order. 

Single-Use and Multiple-Use Dialog Boxes  

Dialog boxes can be designed for single or multiple use. This usage 
determines the combinations of command buttons that should appear in the 
dialog box.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• If users are likely to perform one operation with the dialog box and then dismiss it, 
a single-use dialog box is appropriate. The command buttons (except Help) in a 
single-use dialog box perform their operations and then close the window. An 
example of a single-use dialog box is a systems settings dialog box.  

• If users might want to perform several operations with the dialog box before 
dismissing it, a multiple-operation dialog box is appropriate. The command 
buttons (except Close) in a multiple-use dialog box perform their operations and 
leave the window open. An example of a multiple- use dialog box is a 
sophisticated find-and-replace dialog box that provides command buttons for Find, 
Find Next, Replace, and Replace All. 

Command Buttons in Dialog Boxes  

In dialog boxes, you can place command buttons alone or in a command 
button row at the bottom of the dialog box, as shown in Figure 109. This 
section provides some general guidelines about the uses and placement of 
command buttons in dialog boxes.  

 Place command buttons that apply to the dialog box as a whole in 

the command button row at the bottom of the dialog box. This includes all 

buttons that dismiss the dialog box as one of their actions. 

 Align buttons in the command button row along the lower-right edge 

of the dialog box. (The alignment of the command button row in alert boxes, 

including those supplied by the JFC, is different from the alignment in 

dialog boxes.) 

 Place command buttons that apply to one or a few components next 

to their associated components. For instance, place a Browse button at 

the trailing edge of the text field it fills in. 

For general information on command buttons, see Command Buttons. For 
guidelines on the spacing of command buttons, see Command Button Spacing 
and Padding. For keyboard operations appropriate to command buttons, see 
Table 17.  

OK and Cancel Buttons  

The OK and Cancel buttons work well in single-use dialog boxes (for instance, 
those in which users specify options or settings). OK instructs the system to 
apply and save the settings, whereas Cancel instructs the system to ignore 
any changed settings. In most cases, OK is the default button. OK and Cancel 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

are appropriate in both modal and modeless dialog boxes. The following figure 
shows a preferences dialog box with OK, Cancel, and Help buttons.  

Figure 111   Dialog Box With OK, Cancel, and Help Buttons  

 

 When users click the OK button in a dialog box, save the settings 

or carry out the commands specified and close the dialog box. Whenever 

possible, provide the button with a command name that describes the action 

(such as Print or Find) instead of OK. 

 When users click the Cancel button in a dialog box, close the window 

and restore the settings in the dialog box to the state they were in when 

the dialog box was opened.  

 Do not add a mnemonic to the Cancel button. 

 The Cancel button should be activated when users press the Escape 

key. The Cancel button does not need keyboard focus for this interaction. 

The Cancel button and its keyboard equivalent (Escape) are not built into 

the JFC; you must implement them yourself. 

Apply and Close Buttons  

The Apply and Close buttons work well in multiple-use dialog boxes (those that 
remain open for repeated use), as shown in the properties dialog box in the 
following figure. Apply and Close often appear together in modeless dialog 
boxes.  

Figure 112   Dialog Box With Apply and Close Buttons  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Use the Apply button to carry out the changes users specify in a 

dialog box without closing the window.  

 In a multiple-use dialog box that is used to perform an action, use 

a specific action name (such as "Find") instead of "Apply." More than one 

kind of action or apply button might be appropriate--for instance, "Find" 

and "Replace." 

 Use a Reset button to restore the values in a dialog box to the values 

specified by the last Apply command. If users have not activated Apply, 

restore the values in effect when the dialog box was opened. Do not close 

the dialog box when users choose Reset. Place a Reset button between the 

Apply and Close buttons. 

 Include a Close button in a dialog box with an Apply (or other action) 

button. Close dismisses the dialog box without applying changes. 

 Because a Cancel button might make users think they can apply 

changes temporarily and then rescind them, do not use a Cancel button in 

a dialog box that includes an Apply button. Use a Close button instead. 

 If the user has made changes in a dialog box and clicks Close before 

clicking the Apply button, display a Warning alert box. The alert box 

should ask the user whether to apply the changes before closing, discard 

changes, or cancel the close operation. 

Close Buttons  

The Close button is commonly used to dismiss simple secondary windows, 
such as an Info alert box. The Close button is also commonly used to dismiss 
dialog boxes in which user actions take effect immediately. A Close button is 
appropriate in both modal and modeless dialog boxes.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

The following dialog box enables users to specify properties such as the width 
and height of a rectangle. Changes take effect immediately. The dialog box 
includes a Close button that users can click to dismiss the dialog box.  

Even though the Close button has a mnemonic (usually C), you can also have 
the Close button respond to the Escape key.  

Figure 113   Dialog Box With a Close Button  

 

 Never use an OK button in a window that has a Close button. 

 When users click the Close button, dismiss the dialog box and do 

not make additional changes to the system. 

Help Buttons  

You can include a Help button in any dialog box. A Help button enables users 
to obtain additional information about the dialog box. For example, when users 
click Help in the Error alert box in Figure 124, the application opens a window 
with additional information on the cause of the error.  

 When users click the Help button, open an additional window that 

displays the help information. Avoid removing or obscuring information 

in the window where users clicked Help. 

 Place the Help button at the trailing edge of a group of command 

buttons. For languages that read from left to right, the Help button should 

be the rightmost button. 

Default Command Buttons  

The default command button is the button that the application activates when 
users press Enter (or Return). The JFC gives the default command button a 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

heavier border than other command buttons. In most cases, you should make 
the action that users are most likely to perform the default button, as shown 
with the OK button in the following figure. The default button does not need to 
have keyboard focus when users press Enter.  

Figure 114   Dialog Box With a Default Command Button  

 

When keyboard focus is on a component that accepts the Enter key, such as a 
multiline text area, the default button is not activated when users press the key. 
Instead, the insertion point moves to the beginning of a new line. To operate 
the default button, users must move focus to a component that does not 
accept Enter or press Ctrl-Enter.  

 If a dialog box has a default button, make it the first command 

button in the group. For example, in languages that read from left to right, 

the default button is the leftmost button. 

 Since the Enter (and Return) key is already supplied by the JFC for 

keyboard access, do not add a mnemonic for the default command button.  

You are not required to have a default command button in every dialog box 
and alert box. A command that might cause users to lose data should never be 
the default button, even if it is the action that users are most likely to perform. 
The alert box in Figure 115 asks users if they want to replace an existing file. 
The alert box has Replace and Cancel buttons, neither of which is the default 
command button. Even though the Replace button has focus, it cannot be 
activated with the Enter key; it must be activated with the spacebar. This 
approach gives the user time to reconsider a hasty, automatic confirmation.  

Click here to view the corresponding code for Figure 115 (also 

available on the book's companion CD-ROM). 

Figure 115   Alert Box Without a Default Button  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Common Dialog Boxes  

The find, login, preferences, and progress dialog boxes are common in many 
applications. These dialog boxes are not supplied by the JFC. The following 
sections show simple versions of these dialog boxes that are consistent with 
the Java look and feel. You can adapt the designs for these dialog boxes to 
suit your needs.  

Find Dialog Boxes  

A find dialog box is a multiple-use window that enables users to search for a 
specified text string. In most cases, you should make this dialog box modeless 
so users can perform multiple searches in succession. An example is shown in 
Figure 116.  

Click here to view the corresponding code for Figure 116 (also 

available on the companion book's CD-ROM). 

Figure 116   Sample Find Dialog Box  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Login Dialog Boxes  

A login dialog box (shown in Figure 117) enables users to identify themselves 
and enter a password. Depending on where you use this single-use dialog box 
in your application, you can make it modal or modeless.  

Click here to view the corresponding code for Figure 117 (also 

available on the book's companion CD-ROM). 

Figure 117   Sample Login Dialog Box  

 

For a discussion of effective interaction in login dialog boxes, see Design for 
Smooth Interaction.  

Preferences Dialog Boxes  

A preferences dialog box (as shown in Figure 118) enables users to view and 
modify the characteristics of an application.  

As a general rule, you should make this single-use dialog box modeless.  

Click here to view the corresponding code for Figure 118 (also 

available on the book's companion CD-ROM). 

Figure 118   Sample Preferences Dialog Box  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

If your preferences dialog box is very complex, you can simplify it by using a 
tabbed pane to organize the options, as shown in Figure 111.  

Progress Dialog Boxes  

A progress dialog box provides feedback for long operations and lets users 
know that the system is working on the previous command.  

The progress dialog box in Figure 119 monitors the progress of a file copy 
operation. The dialog box includes the JFC progress bar, a command button 
that users can click to stop the process, and labels to further explain the 
progress of the operation. If users can perform other tasks while the operation 
is in progress, you should make a progress dialog box modeless.  

Click here to view the corresponding code for Figure 119 (also 

available on the book's companion CD-ROM). 

Figure 119   Sample Progress Dialog Box  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Display a progress dialog box (or supply a progress bar elsewhere 

in your application) if an operation takes longer than 6 seconds. 

 If a progress bar dialog box includes a button to stop the process, 

place it after the progress bar. (In languages that read from left to right, 

the button appears to the right of the progress bar.) If the state will 

remain as it was before the process started, use a Cancel button. If the 

process might alter the state as it progresses (for example, deleted 

records will not be restored), use a Stop button. If stopping the process 

could lead to data loss, give users a chance to confirm the Stop command 

by displaying a Warning alert box. 

 Close a progress dialog box automatically when the operation is 

complete. 

 If delays are a common occurrence in your application (for example, 

a web browser), build a progress bar into the primary window so that you 

don't have to keep displaying a progress dialog box. 

 Because translation of the word "Stop" can result in words with 

subtly different meanings, point out to your translators the specialized 

meaning of the Stop button in a progress dialog box. Stop indicates that 

the process might leave the system in an altered state, whereas Cancel 

means that no change in the system state will occur. 

Color Choosers  

A color chooser provides one or more content panes from which users can 
select colors and a preview mechanism by which users can view the selected 
colors in context. You can display a color chooser in a dialog box, as shown in 
the following figure. The three command buttons (OK, Cancel, and Help) are 
part of the dialog box, not the color chooser. (A color chooser can also be 
implemented in a multiple-use dialog box.)  

Figure 120   JFC-Supplied Color Chooser  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

As supplied by the JFC, the color chooser offers users three methods for 
selecting a color:  

• Swatches. Users can select a color from a palette (as shown in the preceding 
figure).  

• HSB. Users can choose the hue, saturation, and brightness values for a color.  
• RGB. Users can choose the red, green, and blue values for a color. 

In addition, the color chooser offers a preview panel within the dialog box.  

If your application requires a different method for choosing colors, you can add 
a content pane with that feature. You can also remove existing content panes. 
If you use only one content pane, the tabs disappear. In addition, you can 
specify your own preview panel or alter the supplied one.  

 The color chooser is a panel. The color panel can be inserted in 

a dialog box by using the JDialog container. This operation is 

accomplished with the static method CreateDialog on the JColorChooser 

container. Alternately, this can be done with the ShowDialog method, which 

creates, displays, and dismisses the dialog box.  

Alert Boxes  

An alert box, which conveys a message or warning to users, provides an easy 
way for you to create a secondary window. The JFC provides four types of 
alert boxes: Info, Warning, Error, and Question. Each alert box is provided with 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

a symbol that indicates its type. You provide the title, the message, and the 
command buttons and their labels.  

The layout of an alert box is provided in the JFC, so you don't have to worry 
about the spacing and alignment of the message, symbol, and command 
buttons. If you provide additional components, such as a text field, follow the 
guidelines in Between-Component Spacing Guidelines. You can make an alert 
box modal or modeless.  

Figure 121   Standard Components in an Alert Box  

 

 In an alert box, begin your message with a brief heading in boldface. 

Start the body of the message on a separate line. 

 If appropriate, provide a Help button in an alert box that opens 

an additional window with more information. Do not close the alert box 

when users click the Help button. 

 In the message for an alert box, the <B>...</B> tags can be used 

to render a heading in boldface. The <BR> tag can be used to create a line 

break between the heading and the message body. 

 An alert box is created using the JOptionPane component. 

For guidance on window title text for alert boxes, see Title Text in Secondary 
Windows.  

Info Alert Boxes  

An Info alert box presents general information to users. The symbol in the Info 
alert box is a blue circle with the letter i. The following dialog box, which 
contains a schedule reminder, provides information about a meeting.  

Figure 122   Info Alert Box  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Provide a Close button to dismiss an Info alert box. Provide 

additional command buttons, such as a Help button, if needed. 

Warning Alert Boxes  

A Warning alert box warns users about the possible consequences of an 
action and asks users for a response. The symbol in the Warning alert box is a 
yellow triangle with an exclamation point. The alert box in Figure 123 warns 
users that a file save operation will replace an existing file.  

Click here to view the corresponding code for Figure 123 (also 

available on the book's companion CD-ROM). 

Figure 123   Warning Alert Box  

 

 Keep the message in a Warning alert box brief, and use terms that 

are familiar to users.  

 Include at least two buttons in a Warning alert box: one button to 

perform the action and the other to cancel the action. Provide the command 

buttons with labels that describe the action they perform. 

 Do not make a command button whose action might cause loss of data 

the default button. Users might press the Enter (or Return) key without 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

reading the message. If the action that could result in data loss is the 

most common action, do not provide a default button. (For an example of 

a dialog box with this situation, see Figure 115.) 

Error Alert Boxes  

An Error alert box reports system and application errors to users. The symbol 
in the Error alert box is a red octagon with a rectangle. The following Error alert 
box reports that a printer is out of paper and provides users with three options. 
Clicking the Continue button resumes printing and dismisses the alert box. 
Clicking the Cancel button terminates the print job and dismisses the alert box. 
Clicking the Help button opens a secondary window that gives background 
information about the error.  

Figure 124   Error Alert Box  

 

 Include an error number in the title bar of an Error alert box. The 

error number is helpful for users in obtaining technical assistance, 

especially if the error message is localized in a language not spoken by 

the technical support personnel. 

 In the message of an Error alert box, explain what happened, the 

cause of the problem, and what the user can do about it. Keep the message 

brief and use terms that are familiar to users.  

 If appropriate, provide a Help button in an Error alert box to open 

a separate window that gives background information about the error. Do 

not close the alert box when users click the Help button. 

 If possible, provide buttons or other controls to resolve the error 

noted in the Error alert box. Label the buttons according to the action 

they perform. If users cannot resolve the error from the alert box, provide 

a Close button. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Question Alert Boxes  

A Question alert box requests information from users. You can add 
components to this alert box (for example, a text field, list box, or combo box) 
in which users can type a value or make a selection. The layout of the standard 
components (the symbol, message, and command buttons) is provided by the 
JFC. If you add components, follow the guidelines in Between-Component 
Spacing Guidelines. The symbol in the Question alert box is a green rectangle 
with a question mark.  

The following Question alert box includes a label and text field in addition to 
the standard components.  

Figure 125   Question Alert Box  

 

 When you add components to a Question alert box, align them with 

the leading edge of the message. For languages that read from left to right, 

the leading edge is the left edge.  

9: Menus and Toolbars  
A menu displays a list of options (menu items) for users to choose or browse 
through. Typically, menus are logically grouped and displayed by an 
application so that a user need not memorize all available commands. Menus 
in the Java look and feel can appear "sticky"--that is, they remain posted on 
screen after users click the menu title. Usually the primary means to access 
your application's features, menus also provide a quick way for users to see 
what those features are.  

In Java look and feel applications, you can provide three kinds of menus: 
drop-down menus, submenus, and contextual menus. A drop-down menu 
is a menu whose titles appear in the menu bar. A submenu appears adjacent 
to a menu item in a drop-down menu; its presence is indicated by an arrow 
next to the item. A contextual menu displays lists of commands, settings, or 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

attributes that apply to the selected item or items under the pointer. Contextual 
menus can also have submenus.  

Figure 126   Drop-down Menu, Submenu, Contextual Menu, and Toolbar  

 

A toolbar is a collection of frequently used commands or options that appear 
as a row of toolbar buttons. Toolbars normally appear horizontally beneath a 
primary window's menu bar, but they can be dragged anywhere in the window 
or into their own window. Toolbars typically contain buttons, but you can 
provide other components (such as text fields and combo boxes) as well. 
Toolbar buttons can contain menu indicators, which denote the presence of a 
menu. Toolbars are provided as shortcuts to features available elsewhere in 
the application, often in the menus.  

Menu Elements  

Figure 127 shows an example of a drop-down menu that is activated and 
displayed. Within the Format menu, the Style item is activated; a submenu 
appears that includes the Bold, Italic, and Underline checkbox menu items. 
(The Italic checkbox menu item is highlighted as if the pointer is positioned 
over it.) In the Java look and feel, menus use a highlight color (primary 2) for 
the background of activated menu titles and menu items.  

A separator divides the menu items for specifying font, style, and size from the 
alignment radio button items. Keyboard shortcuts appear to the right of the 
frequently used menu items, and mnemonics are included for each menu title 
and menu item.  

Click here to view the corresponding code for Figure 127 (also 

available on the book's companion CD-ROM). 

Figure 127   Menu Elements  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Menu Bars  

The menu bar appears at the top of a primary window and contains menu titles, 
which describe the content of each menu. Menu titles usually appear as text; 
however, it is possible to use a graphic or a graphic with text as a menu title. 
Each menu title needs a mnemonic. See Mnemonics for details.  

A drop-down menu appears when users choose a menu title in the menu bar.  

 Use a single word for each menu title. 

 Use menu titles that make it easy for users to determine which menu 

contains the items of interest to them. For example, the Format menu 

typically contains commands that enable users to change the formatting 

of their documents or data. 

 Be sure to include mnemonics for every menu title in your menu bar. 

 Do not display menu bars in secondary windows.  

 If you are writing an applet that runs in the user's current browser 

window (with the browser menu bar), do not display your own menu bar in 

the applet. Although applets displayed inside a browser window can have 

their own menu bars in the JFC, users are often confused when both the 

browser window and the applet have menu bars. If your applet requires a 

menu bar, display the applet in a separate browser window that does not 

have its own menu bar or navigation controls. 

 Even on Macintosh systems, which ordinarily place a menu bar only 

at the top of the screen, menu bars are displayed in windows for a Java 

look and feel application. On the Macintosh, the screen-top menu bar 

remains, but, since all the application menus are in the windows, the only 

command in the screen-top menu bar is Quit in the File menu. (Exit also 

appears in the File menu of primary windows.) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Drop-down Menus  

The menu bar contains all of the drop-down menus and submenus in your 
application. Each menu in the menu bar is represented by its menu title. The 
titles describe the content of each menu.  

Users can display menus in two ways:  

• To post a menu (that is, to display it and have it stay open until the next click), 
users click the menu title. Users can then move the pointer over other menu titles 
to view other menus.  

• To pull down a menu, users press the mouse button when the pointer is over the 
menu title. The menu title is highlighted, and the menu drops down. When users 
choose a command and release the mouse button, the menu closes. 

For details on keyboard operations in menus, see Table 20.  

Submenus  

A submenu is a menu that users open by highlighting a menu item in a 
higher-level menu. The title for a submenu is its menu item in the higher level 
drop-down menu. Sometimes you can shorten a menu by moving related 
choices to a submenu. Submenus (such as the Style submenu shown in the 
following figure) appear adjacent to the submenu indicator. For instance, the 
Style item opens a submenu consisting of three items: Bold, Italic, and 
Underline. Note that the items in the Style submenu include both keyboard 
shortcuts and mnemonics.  

Users display submenus by clicking or by dragging over the menu item in the 
higher-level menu item that is the submenu's title. In Figure 128, the first item 
in the submenu aligns with the submenu indicator, slightly overlapping the 
higher-level drop-down menu. Just as in other menus, items in the submenu 
are highlighted when the user moves the pointer over them.  

Click here to view the corresponding code for Figure 128 (also 

available on the book's companion CD-ROM). 

Figure 128   Menu Item With Its Submenu  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

For a list of keyboard operations in submenus, see Table 20.  

 Because many people (especially novice users, children, and older 

people) find submenus difficult to use, minimize the use of submenus, 

especially with these populations. If at all possible, avoid using a 

second level of submenus. If you want to present a large or complex set 

of choices, display them in a dialog box. 

 Submenus are created using the JMenu component. 

Menu Items  

A simple menu item consists of the command name, such as Undo.  

When a menu item is available for use, its text is displayed in black, as shown 
in Figure 129.  

Click here to view the corresponding code for Figure 129 (also 

available on the book's companion CD-ROM). 

Figure 129   Typical Menu Items  

 

When users position the pointer over an individual item within a menu, the 
menu item (if available) is highlighted.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Users can activate menu items in two ways:  

• In a posted menu, users click a menu item to activate it and close the menu.  
• In a pulled-down menu, users drag over a menu item to highlight it. Releasing the 

mouse button activates the command and closes the menu. 

Keyboard shortcuts and mnemonics can also be used to activate menu items. 
For details, see Keyboard Shortcuts and Mnemonics.  

For a list of keyboard operations for menu items, see Table 20.  

Available and Unavailable Items  

When menu items do not apply to the current context, they are dimmed and 
cannot be activated. Keyboard navigation skips over them. Here are some 
guidelines for handling available and unavailable menu items in your 
application.  

 If an application feature is not currently applicable, make the 

corresponding menu item unavailable and dim its text. For example, the 

Undo command might not be available until the user has made a change in 

a document window. 

 If all the items in a menu are unavailable, do not make the menu 

unavailable. If the menu itself is still available, users can display the 

menu and view all its (unavailable) items. Similarly, if all the items 

in a submenu are currently not available, do not make the original menu 

title unavailable. 

Composition and Construction of Items  

Here are some recommendations for the use of concise language, consistent 
capitalization, and keyboard operations in menu items.  

 Make your menu items brief. Menu items can be verb phrases, such 

as Align Left. They can also be nouns, such as Font, particularly when 

they display a submenu or a dialog box. 

 Never give a menu item the same name as its menu title. For example, 

an Edit menu should not contain an Edit menu item. 

 Use headline capitalization for menu items. 

 Include mnemonics for all menu items.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Offer keyboard shortcuts for frequently used menu items.  

 Use the same keyboard shortcut if a menu item appears in multiple 

menus-- for instance, if a Cut item appears in a contextual menu as well 

as in a drop- down Edit menu, use Ctrl-X for both.  

 Use the same mnemonic if a menu item appears in several menus--for 

instance, if a Copy item appears in a contextual menu as well as in a drop- 

down Edit menu, use Copy for both. 

Commonly used keyboard shortcuts and mnemonics are described in Table 12 
and Table 13.  

Ellipses in Items  

Ellipses (...) are punctuation marks that indicate the omission of one or more 
words that must be supplied in order to make a construction complete. In your 
menus, you can use ellipses in a similar way: to indicate that the command 
issued by a menu item needs more specification in order to make it complete.  

 If a menu item does not fully specify a command and users need a 

dialog box to finish the specification, use an ellipsis after the menu 

item. For example, after choosing Save As..., users are presented with 

a file chooser to specify a file name and location.  

 Do not use an ellipsis mark simply to indicate that a secondary or 

utility window will appear. For example, choosing Preferences displays 

a dialog box; because that display is the entire effect of the command, 

however, Preferences is not followed by an ellipsis. 

Separators  

A separator is a line graphic that is used to divide menu items into logical 
groupings.  

Two separators are shown in Figure 130.  

Click here to view the corresponding code for Figure 130 (also 

available on the book's companion CD-ROM). 

Figure 130   Separators in a Menu  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Users can never choose a separator.  

You can use separators to make lengthy menus easier to read. For instance, in 
the typical File menu, shown in Figure 134, the commands that affect saving 
are separated from those that are relevant to printing.  

 Use separators to group similar menu items in a way that helps users 

find items and better understand their range of choices.  

 While separators serve important functions on menus, avoid using 

them elsewhere in your application. Instead, use blank space or an 

occasional titled border to delineate areas in dialog boxes or other 

components. 

 If a menu is or has the potential to become very long (for instance, 

in menus that present lists of bookmarks or email recipients), display 

the menu choices in multiple columns. 

Menu Item Graphics  

You can add application graphics before the leading edge of menu items in 
your application, as shown in the following figure. Such graphics should 
correspond to toolbar button graphics in your application.  

Figure 131   Menu Item Graphics in a Menu  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Provide menu item graphics when there are corresponding toolbar 

button graphics in your application. The graphics help users associate 

the toolbar button with the corresponding menu command. 

Checkbox Menu Items  

A checkbox menu item is a menu item that appears with a checkbox next to it 
to represent an on or off setting. A check mark in the adjacent checkbox 
graphic indicates that the attribute associated with that menu item is turned on. 
A dimmed checkbox menu item shows a gray box (checked or unchecked) that 
indicates that the setting cannot be changed. The following figure shows 
checked, unchecked, and unavailable menu items.  

Figure 132   Checkbox Menu Items  

 

You can use checkbox menu items to present users with a nonexclusive 
choice.  

For a list of keyboard operations for checkbox menu items, see Table 20.  

 Use the standard checkbox graphic for checkbox menu items. 

 Use checkbox menu items with restraint. As with all menu items, 

after users choose a checkbox menu item, the menu is dismissed. To choose 

another item, users must reopen the menu. If users must set more than one 

or two related attributes, place the checkboxes in a dialog box (or provide 

a utility window or toolbar buttons for the attributes). 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Use checkbox menu items instead of the toggle menu items often used 

on other platforms to indicate choices you can turn on or off. These toggle 

menu items (for instance, commands like Italics On and Italics Off) 

confuse users. It is unclear if the commands are telling users the current 

state of the selected object or the state they can change the object to 

by choosing the menu item.  

Radio Button Menu Items  

A radio button menu item is a menu item that appears with a radio button next 
to it to represent an off or on setting. Each radio button menu item offers users 
a single choice within a set of radio button menu items, as illustrated in the 
following set of alignment options.  

Figure 133   Radio Button Menu Items  

 

For a list of keyboard operations for radio button menu items, see Table 20.  

 To indicate that the radio button items are part of a set, group 

them and use separators to separate them from other menu items. 

Common Menus  

Several drop-down menus, such as File, Edit, Format, View, and Help, occur in 
many applications. These menus are not supplied by the JFC. The following 
sections show simple versions of these menus that are consistent with the 
Java look and feel. You can adapt these menus to suit your needs.  

 If your application needs the commonly used menus, place the menu 

titles in this order: File, Edit, Format, View, and Help. If needed, insert 

other menus between the View and Help menus (and sometimes between Edit 

and View). 

Typical File Menu  

The first menu in the menu bar displays commands that apply to an entire 
document or the application as a whole. (The first menu it the leftmost in 
locales with left-to-right reading order.) Typically, this is called the File menu, 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

but in some cases another title might be more appropriate. Figure 134 
illustrates common File menu items in order, with mnemonics and keyboard 
shortcuts.  

You can add or remove menu items as needed.  

Click here to view the corresponding code for Figure 134 (also 

available on the book's companion CD-ROM). 

Figure 134   Typical File Menu  

 

 Place commands that apply to the document or the main object (or 

the application as a whole) in the File menu.  

 If your application manipulates objects that your users might not 

think of as "files," give the File menu another name. Ensure that the name 

corresponds to the type of object or procedure represented by an entire 

window in your application. For example, a project management application 

could have Project as its first menu, or a mail application could have 

a Mailbox menu. 

 When the Close item dismisses the active window, close any dependent 

windows at the same time.  

 Provide an Exit item, which closes all associated windows and 

terminates the application. (Be sure to use Exit, not Quit.)  

Typical Edit Menu  

The Edit menu displays items that enable users to change or edit the contents 
of their documents or other data. These items give users typical editing 
features that apply to multiple data types, like graphics and text.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 135 shows common Edit menu items in order, with mnemonics and 
keyboard shortcuts.  

Figure 135   Typical Edit Menu  

 

 Place commands that modify the contents of documents or other data 

in the Edit menu, including Undo, Redo, Cut, Copy, Paste, and Find. 

 The Swing Undo package can be used to provide Undo and Redo features. 

Typical Format Menu  

The Format menu displays items that enable users to change such elements in 
their documents as font, size, styles, and other attributes.  

Figure 136 shows some common Format menu items with their mnemonics.  

Click here to view the corresponding code for Figure 136 (also 

available on the book's companion CD-ROM). 

Figure 136   Typical Format Menu  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Typical View Menu  

The View menu provides ways for users to adjust the presentation of data in 
the active window. For instance, the View menu in a network management 
application might have items that enable users to view large or small icons for 
network objects. Other applications might offer list views and details views. 
The possibilities for view names depend on the objects in your application.  

Figure 137   Typical View Menu  

 

 Because the View menu enables users to change only the view of the 

data (and not the content) in the current primary window, ensure that the 

commands in the View menu alter the presentation of the underlying data 

without changing it.  

Typical Help Menu  

The Help menu provides access to online information about the features of 
your application. This menu also provides access to the application's About 
box, which displays basic information about the application. For details, see 
Designing About Boxes.  

Help menu items vary according to the needs of the application. If the help 
system you are using includes a built-in search feature, you might want to 
include an Index or a Search item. Additional items might include a tutorial, 
bookmarks for your product's home page, a bug database, release notes, a 
Send Comments item, and so forth.  

Figure 138 shows common Help menu items (in the typical order) with their 
mnemonics.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Click here to view the corresponding code for Figure 138 (also 

available on the book's companion CD-ROM). 

Figure 138   Typical Help Menu  

 

 In your Help menu, allow access to online information about the 

features of the application.  

 Place a separator before an About Application item that displays 

a window with the product name, version number, company logo, product logo, 

legal notices, and names of contributors to the product. 

 JavaHelpTM, a standard extension to the Java 2 SDK, can be used to 

build a help system for your applications. 

Contextual Menus  

Contextual menus, sometimes called "pop-up menus," offer only menu items 
that are applicable or relevant to the object or region at the location of the 
pointer. The appearance of contextual menus in the Java look and feel is 
similar to that of drop-down menus, including the display of mnemonics, 
keyboard shortcuts, and submenus. Contextual menus do not have a menu 
title.  

Click here to view the corresponding code for Figure 139 (also 

available on the book's companion CD-ROM). 

Figure 139 shows a contextual menu offering editing commands.  

Figure 139   Contextual Menu  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Users can display a contextual menu by clicking or pressing mouse button 2 
while the pointer is over an object or area that is associated with that menu. 
(On the Macintosh platform, users click or press the mouse button while 
holding down the Control key.)  

For keyboard operations appropriate to contextual menus, see Table 20.  

 Ensure that any features you present in contextual menus are also 

available in more visible and accessible places, such as drop-down menus. 

Users might not know contextual menus are available, especially if you 

do not use contextual menus consistently throughout your application. 

 Display keyboard shortcuts and mnemonics in contextual menus that 

are consistent with their usage in any corresponding drop-down menus. 

 If no object is selected when a contextual menu is displayed, select 

the object under the pointer and display the contextual menu appropriate 

to that object. For instance, if the object under the pointer is text, 

display the contextual menu with editing commands. 

 If the pointer is over an existing selection at the time the user 

opens the contextual menu, display the menu that is associated with that 

selection.  

 If the pointer is not over the currently selected object when the 

user opens the contextual menu, create a new selection at the point where 

the user pressed the mouse button. Display the contextual menu that is 

appropriate to the object that is beneath the pointer. 

 If the user opens a contextual menu when the pointer is over an area 

that cannot be selected, such as the background of a container, remove 

any existing selection and display the contextual menu for the container. 

 Contextual menus are created using the JPopupMenu component.  

Toolbars  

A toolbar provides quick and convenient access to a set of frequently used 
commands or options. Toolbars typically contain buttons, but other 
components (such as text fields and combo boxes) can be placed in the 
toolbar as well. An optional, textured "drag area" on the toolbar indicates that 
users can drag the toolbar anywhere in the window or into a separate window. 
The drag area is on the leading edge when the toolbar is horizontal and on the 
top when it is vertical.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 140 shows a toolbar with a drag area on the leading edge. For another 
example, see Figure 8.  

Click here to view the corresponding code for Figure 140 (also 

available on the book's companion CD-ROM). 

Figure 140   Horizontal Toolbar  

 

Users typically access the components in the toolbar by clicking. For 
information on the keyboard operations that are appropriate for toolbars, see 
Table 32.  

 Include commonly used menu items as buttons (or other components) 

in your toolbar. 

 Even if your window has a toolbar, make all toolbar commands 

accessible from menus.  

 Be sure to provide tool tips for all toolbar buttons.  

 Consider providing text on toolbar buttons as a user option. This 

feature makes the meaning of the button clear to new users. It also enables 

low- vision users to utilize large fonts. 

 Because toolbars can be difficult for users with motor impairments 

and are not always regarded as a good use of space, provide a way to hide 

each toolbar in your application. 

 Provide large and small graphics (such as 24 x 24 and 16 x 16 pixels) 

in your application and enable users to select the large graphics in all 

parts of the application, including the toolbars. 

Toolbar Placement  

In general, a toolbar is located at the edge of the window or area on which it 
operates.  

 If your window has a menu bar, place the toolbar horizontally 

immediately under the menu bar. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 If you use multiple toolbars, provide a way for users to control 

their display and organize their contents within logical groupings of 

features. 

Draggable Toolbars  

You can specify that your toolbar be draggable. Users can then move the 
toolbar or display it in a separate window. Users drag the toolbar by holding 
down the mouse button while the pointer is over the drag area. An outline of 
the toolbar moves as the user moves the pointer. The outline provides an 
indication of where the toolbar will appear if the user releases the mouse 
button.  

When the pointer is over a "hot spot," the outline has a dark border, indicating 
the toolbar will anchor to an edge of the container, as shown in Figure 141. 
The toolbar automatically changes its orientation between horizontal and 
vertical depending on the edge of the window where it anchors.  

Click here to view the corresponding code for Figure 141 (also 

available on the book's companion CD-ROM). 

Figure 141   Outline of a Toolbar Being Dragged  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

If the pointer is outside a hot spot, the outline has a light border, indicating that 
the toolbar will be displayed in a separate window. The following figure shows 
the toolbar in a separate window. When the user closes the toolbar window, 
the toolbar returns to its original location in the primary window.  

Figure 142   Toolbar in a Separate Window  

 

 A toolbar can dock (attach) along the interior top, bottom, left, 

or right edge of a container. (The relocated toolbar does not obscure the 

container contents; rather, the contents of the container are 

repositioned to compensate for the new placement of the toolbar.) 

Toolbar Buttons  

A toolbar button is a command button or toggle button that appears in a toolbar, 
typically as part of a set of such buttons. Toolbar buttons can also act as titles 
to display menus. In other contexts, command buttons typically use text to 
specify the operation or state they represent, but toolbar buttons typically use 
graphics.  

Toolbar graphics can be difficult for users to understand. Weigh the 
comprehensibility of your graphics against the space taken up by button text 
before deciding whether to use button text in addition to the button graphics. 
Consider giving users the choice of whether to display button text.  

 Use button graphics that are either 16 x 16 or 24 x 24 pixels (but 

not both in the same toolbar), depending on the space available in your 

application. 

 Provide optional text-only toolbar buttons to enable viewing by 

low-vision users.  

 If you use text on the toolbar buttons, provide a user setting to 

display only the graphics. Using graphics only, you can conserve space 

and display more commands and settings in the toolbar.  

 To create functional groupings of toolbar buttons in your 

application, provide a separate toolbar for each. Using this technique, 

the drag area serves as both a visual separator and a way to move the 

toolbar button groups to convenient locations. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

For guidelines on the vertical and horizontal measurements for toolbar buttons 
in toolbars, see Toolbar Button Spacing.  

For more information on command buttons, see Command Buttons. For details 
on toggle buttons, see Toggle Buttons.  

Mouse-over Borders  

To conserve space, you can use mouse-over borders (also called "rollover 
borders") on toolbar buttons. This border appears around a button when users 
move the pointer over it; otherwise, the border is invisible.  

The following figure shows a toolbar button with a mouse-over border activated 
for the Open button.  

Figure 143   Mouse-over Border on a Toolbar Button  

 

For specifications on spacing between toolbar buttons with mouse-over 
borders, see Toolbar Button Spacing.  

 The JToolBar.isRollover client property is set to true to enable 

mouse-over borders. 

Drop-down Menus in Toolbar Buttons  

You can attach a drop-down menu to a toolbar button. The menu appears 
when the user clicks (or presses and holds the mouse button over) the toolbar 
button.  

Figure 144 shows the drop-down menu indicated by a drop-down arrow on the 
Open button. The menu shows a list of recently used files that users can open. 
The mnemonics use numbers because the menu items are likely to change 
often.  

Figure 144   Toolbar Button With a Drop-down Menu  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

For a discussion of how to use drop-down arrows as menu indicators, see 
Using Badges in Button Graphics.  

 Provide a menu indicator (the drop-down arrow) in the graphic for 

any toolbar button that has a drop-down menu. 

 The behavior of drop-down arrows in toolbar buttons is unlike that 

of some applications that do not use the Java look and feel. In the toolbar 

buttons of these other applications, a click activates a default command, 

whereas a press displays a menu. 

Tool Tips for Toolbar Buttons  

You can provide tool tips for the toolbar components. The tool tip displays 
information about the component whenever the user rests the pointer over that 
component. If you specify a keyboard shortcut for a toolbar component, the 
JFC displays the shortcut in the tool tip. Figure 145 shows a tool tip that 
describes the Cut button.  

Click here to view the corresponding code for Figure 145 (also 

available on the book's companion CD-ROM). 

Figure 145   Tool Tip for a Toolbar Button  

 

 Ensure that the keyboard shortcuts for toolbar buttons match the 

keyboard shortcuts for the corresponding menu items. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Attach tool tips to all toolbar components that do not include text 

identifiers. 

 If your application does not have menus, attach tool tips to the 

toolbar buttons in order to display keyboard shortcuts. 

Tool Tips  

A tool tip provides information about a component or area whenever the user 
moves the pointer to that area (and does not press a mouse button). These 
small rectangles of text can be used anywhere in your application.  

A tool tip is commonly associated with an interface element, where it provides 
a short description of the component's function. If a component has a keyboard 
shortcut, the shortcut is automatically displayed in the tool tip.  

Figure 146 shows a tool tip that describes a slider.  

Figure 146   Tool Tip for a Slider  

 

You can also use tool tips with application graphics. A chart might have one 
tool tip that provides the name and size of the graphic or several tool tips that 
describe different areas of the graphic.  

Figure 147 shows a tool tip on an area of the bar chart in the sample applet, 
Retirement Savings Calculator.  

Figure 147   Tool Tip on an Area Within a Chart  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

You can adjust the timing of the tool tips in your application. By default, a tool 
tip appears after the user rests the pointer on the component or area for 
750 milliseconds. It disappears after 4 seconds or when the user activates the 
component or moves the pointer away from the component.  

For keyboard operations in tool tips, see Table 31.  

 Allow for the possibility that tool tips might become lengthy in 

some locales. Always use an onset of 250 milliseconds for tool tips and 

leave them displayed for 15 seconds. 

 Make tool tips active by default, but provide users a way to turn 

them off for the entire application. For example, you might provide a 

checkbox either in the View menu or in a preferences dialog box.  

 Use headline capitalization for short tool tips and sentence 

capitalization for longer ones. Try to be consistent within your 

application. 

 A tool tip is specified in its associated component (and not by 

calling the JToolTip class directly). 

 If a component has a tool tip, the AccessibleDescription for that 

component is automatically set to the tool tip text. 

For details on the Java 2 Accessibility API, see Support for Accessibility.  

10: Basic Controls  
Buttons, combo boxes, and sliders are examples of controls--interface 
elements users can manipulate to perform an action, select an option, or set a 
value. A button is a control that users click to perform an action, set or toggle a 
state, or set an option. In the Java look and feel, buttons include command and 
toggle buttons, toolbar buttons, checkboxes, and radio buttons. A combo box 
is a control that enables users to select one option from an associated list; 
users can also type an option into an editable combo box. A list box is a control 
that presents a set of choices from which a user can select one or more items; 
items in a list box can be text, graphics, or both. (A related list component, 
called a selectable list, is described in Chapter 12.) A slider is a control that 
enables users to set a value in a range.  

Figure 148   Buttons, Combo Box, List Box, and Slider  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 For text in buttons, sliders, and combo boxes, use headline 

capitalization. 

 Make sure you use layout managers to lay out your controls so they 

allow for the longer text strings frequently associated with 

localization.  

Command Buttons  

A command button is a button with a rectangular border that contains text, a 
graphic, or both. These buttons typically use button text, often a single word, to 
identify the action or setting that the button represents. See Command Buttons 
in Dialog Boxes for a list of commonly used command button names and their 
recommended usage.  

Command buttons in a dialog box can stand alone or appear in a row, as 
shown in Figure 149.  

Click here to view the corresponding code for Figure 149 (also 

available on the book's companion CD-ROM). 

Figure 149   Command Buttons in a Dialog Box 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Command buttons that appear in toolbars are called "toolbar buttons." 
Typically, they use button graphics instead of button text.  

Figure 150 shows toolbar buttons for a text-editing application.  

Click here to view the corresponding code for Figure 150 (also 

available on the book's companion CD-ROM). 

Figure 150   Toolbar Buttons  

 

See Toolbar Buttons for details on toolbar buttons. For a discussion of badges 
in toolbar buttons, see Using Badges in Button Graphics.  

When a command button is unavailable, the dimmed appearance indicates 
that it cannot be used. The following figure shows the appearance of available, 
pressed, and unavailable command buttons.  

Figure 151   Available, Pressed, and Unavailable Command Buttons  

 

Users can click command buttons to specify a command or initiate an action, 
such as Save, Cancel, or Submit Changes.  

For a list of keyboard operations for the activation of command buttons, see 
Table 17.  

 Display mnemonics in button text, with the exception of default 

command buttons and the Cancel button in dialog boxes.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 To make command buttons without text more accessible, create tool 

tips that describe or name the functions of the buttons. 

 Make your button text easier to localize by using resource bundles. 

A resource bundle stores text separately so that localizers don't have 

to change the application's source code to accommodate translation.  

For more on resource bundles in the localization process, see Resource 
Bundles.  

For general details on keyboard operations and mnemonics, see Keyboard 
Operations and Mnemonics. For details on displaying a command button's tool 
tip, see Table 31.  

For details on the layout and spacing of command buttons, see Command 
Button Spacing and Padding.  

Default Command Buttons  

One of the buttons in a window can be the default command button. The JFC 
gives default command buttons a heavier border.  

Default command buttons typically appear in dialog boxes. The default 
command button is activated when users press Enter (or Return).  

A default command button (such as Save in Figure 152) should represent the 
action most often performed (if that action does not lead to loss of user data).  

Click here to view the corresponding code for Figure 152 (also 

available on the book's companion CD-ROM).  

Figure 152   Default and Nondefault Command Buttons  

 

The Enter and Return equivalents activate the default command button unless 
keyboard focus is currently on a component that accepts the Enter or Return 
key. For instance, if the insertion point is in a multiline text area and the user 
presses Enter, the insertion point moves to the beginning of a new line rather 
than activating a default button. In this case, users can press Ctrl-Enter to 
activate the default button. Alternatively, they can press Ctrl-Tab to move the 
focus out of the current component and then press Enter.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Since you are not required to have a default button in every circumstance, you 
can use discretion about including them in your interface elements.  

 In most situations, make OK the default button. 

 Never make an unsafe choice the default button. For instance, a 

button that would result in the loss of unsaved changes should not be the 

default command button. 

 The JFC does not automatically implement the Escape key as the 

keyboard equivalent for the Cancel button, so this behavior must be 

implemented. As with the Enter and Return keys for the default command 

button, the Cancel button should not require keyboard focus to be 

activated by the Escape key. 

Combining Graphics With Text in Command Buttons  

In some circumstances, you might use a graphic along with text to identify the 
action or setting represented by a command button.  

Figure 153 shows a Print button with a graphic on the leading edge of the text 
and a Delete button with a graphic above the button text.  

Click here to view the corresponding code for Figure 153 (also 

available on the book's companion CD-ROM).  

Figure 153   Command Buttons Containing Both Text and Graphics  

 

 In command buttons containing both text and graphics, place the text 

after or below the image. 

 When adding graphics to buttons that typically use text, such as 

dialog box command buttons, place the graphic on the leading edge of the 

button text (that is, to the left of the text in left-to-right locales). 

Include the graphic in such contexts, for instance, if the graphic serves 

as a reminder of the toolbar button that initially displayed the dialog 

box. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 In contexts that typically use graphical buttons, such as toolbars, 

place button text beneath the graphic or on the trailing edge (right in 

left-to-right locales) of the button. Consider giving users the choice 

of what to display and where to display it. 

 Use mnemonics in your command buttons--with the exception of the 

default and Cancel buttons. 

 Provide a way to display text in command buttons as an aid to 

low-vision users. 

For a list of commonly used mnemonics organized by menus, see Table 9. For 
an alphabetical list of commonly used mnemonics, see Table 13. Try to use 
these mnemonics if possible. Do not duplicate mnemonics.  

Using Ellipses in Command Buttons  

When a command button does not fully specify an operation but instead that 
operation is completed by a dialog box, notify the user by placing an ellipsis 
mark after the button text. (Note that this applies only to text in buttons. No 
ellipsis is used in graphics-only buttons.) For example, after clicking a Print... 
button, users are presented with a dialog box in which to specify printer 
location, how many copies to print, and so forth. By contrast, a Print command 
that prints one copy to the default printer without displaying a dialog box would 
not require an ellipsis mark.  

 When users must interact with a dialog box to finish the 

specification of a command initiated in a command button, use an ellipsis 

mark (...) after the button text. (Do not use an ellipsis with 

graphics-only buttons.) When a full specification of the command is made 

in the button text, do not use ellipses. 

 The button text added to a command button that uses ellipses must 

contain three periods. 

Toggle Buttons  

A toggle button is a button that represents a setting with two states--on and off. 
Toggle buttons look similar to command buttons and display a graphic or text 
(or both) to identify the button. The graphic or button text should remain the 
same whether the button is in the on or off state. The state is indicated by 
highlighting the background of the buttons.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Users can click toggle buttons to turn a setting on or off--for instance, to switch 
between italic and plain style in selected text.  

You can use toggle buttons to represent an independent choice, like 
checkboxes (click here), or an exclusive choice within a set, like radio buttons 
(click here).  

 Toggle buttons can be placed in a button group to get radio button 

behavior. 

Independent Choice  

An independent toggle button behaves like a checkbox. Whether it appears 
alone or with other buttons, its setting is independent of other controls. An 
example of an independent toggle button is a Bold button on a toolbar, as 
shown in the following illustration.  

Figure 154   Independent Toggle Buttons in a Toolbar  

 

When users click the Bold button, it is highlighted to indicate that the bold style 
has been applied to the selection or that text to be entered will be bold. If the 
button is clicked again, it reverts to the normal button appearance and the bold 
style is removed from the selection.  

 Although checkboxes and independent toggle buttons have the same 

function, as a general rule, use checkboxes in dialog boxes and menus and 

use toggle buttons with a graphic in toolbars.  

 Use toggle buttons (instead of checkboxes) in dialog boxes if you 

need consistency with a toolbar. 

For recommendations on the spacing of toggle buttons, see Toggle Button 
Spacing.  

Exclusive Choice  

A toggle button can work as part of a group to represent an exclusive choice 
within the set. A common example is a set of toolbar toggle buttons 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

representing left, centered, and right text alignment, as shown in the following 
figure.  

Figure 155   Exclusive Toggle Buttons  

 

If users click the button representing left alignment, the button is highlighted to 
indicate that text is aligned flush with the left border of the document. If users 
then click the button representing centered alignment, the appearance of the 
Align Left button reverts to the normal button appearance and the Center 
button is highlighted to indicate centered alignment of the selected text.  

You can use grouped toggle buttons with labels equally well in toolbars or 
dialog boxes. In the example in Figure 156, the label identifies the 
abbreviations in the button text within a dialog box.  

Click here to view the corresponding code for Figure 156 (also 

available on the book's companion CD-ROM).  

Figure 156   Grouped Toggle Buttons With a Label  

 

For spacing guidelines for exclusive toggle buttons, see Checkbox and Radio 
Button Layout and Spacing.  

Checkboxes  

A checkbox is a control that represents a setting or value with an on or off 
choice. The setting of an individual checkbox is independent of other 
checkboxes--that is, more than one checkbox in a set can be checked at any 
given time.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

A check mark within the checkbox indicates that the setting is selected. The 
following figure shows both available and unavailable checkboxes in selected 
and unselected states.  

Figure 157   Checkboxes  

 

The user clicks a checkbox to switch its setting from off to on, or on to off. 
When a checkbox is unavailable, the user cannot change its setting.  

For a list of keyboard operations for checkboxes, see Table 15.  

 Use the checkbox graphic that is supplied with the component (the 

square box with or without the check mark inside). 

 Although checkboxes and independent toggle buttons have the same 

function, as a general rule, use checkboxes in dialog boxes and menus, 

and use toggle buttons with a graphic in toolbars. 

 Display checkbox text to the right of the graphic unless the 

application is designed for locales with right-to-left writing systems, 

such as Arabic and Hebrew. In this case, display the text to the left of 

the graphic. 

 The setMnemonic method can be used to specify mnemonics in 

checkboxes. 

In addition to standard checkboxes, the JFC includes a component that is the 
functional equivalent of the checkbox for use in menus. See Checkbox Menu 
Items for more information.  

See Checkbox and Radio Button Layout and Spacing for specific 
measurement guidelines.  

Radio Buttons  

A radio button represents an exclusive choice within a set of related options. 
Within a set of radio buttons, only one button can be on at any given time. The 
following figure shows active radio buttons and inactive radio buttons in both 
on and off states.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 158   Radio Buttons  

 

When users click a radio button, its setting is always set to on. An inner filled 
circle within the round button graphic indicates that the setting is selected. If 
another button in the set has previously been selected, its state changes to off. 
When a radio button is unavailable, users cannot change its setting.  

For a list of keyboard operations for radio buttons, see Table 21.  

 Use the supplied radio button graphics (the open buttons with inner 

filled and unfilled circles).  

 Provide mnemonics for each radio button choice, or place a mnemonic 

on the label for the radio button group. In the latter case, the user 

navigates among the individual radio buttons with Tab and Shift-Tab. 

Putting the mnemonics on each radio button choice is preferable, since 

that makes navigation easier for users. 

 Although radio buttons and toggle buttons in a radio button group 

have the same function, use radio buttons in dialog boxes and use grouped 

toggle buttons with graphics in toolbars. Grouped toggle buttons with text 

identifiers work well in either situation.  

 Display radio button text to the right of the graphic unless the 

application is designed for locales with right-to-left writing systems, 

such as Arabic and Hebrew. In those locales, place the text to the left 

of the graphic. 

The JFC includes a component that is the functional equivalent of the radio 
button for use in menus. See Radio Button Menu Items for more information.  

See Checkbox and Radio Button Layout and Spacing for specifications on 
spacing between radio button choices.  

List Boxes  

A list box is a one-column arrangement of items (text, graphics, or both) that 
enables users to set a variable or a property somewhere in the application. List 
boxes can be used as an alternative to combo boxes, radio buttons, and 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

checkboxes. A similar control, also implemented with the JList component, is 
the selectable list. For details, see Selectable Lists.  

You can use a list box to present users with a set of exclusive or nonexclusive 
choices. For example, you might use a list box to present the days of the week, 
from which users could select one day on which to start their calendars, as 
shown in the following figure.  

Figure 159   Exclusive List Box  

 

Or, you might use a list box to display pizza toppings, from which users could 
make several choices, as shown in the following figure.  

Figure 160   Nonexclusive List Box  

 

 
Note — Throughout this section, list boxes and selectable lists are referred to as list 
components when their behavior and appearance is the same.  

 

 Use headline capitalization in list components.  

 Provide a label with a mnemonic to enable keyboard navigation into 

list components.  

 When resizing a list component, be sure that it always displays a 

whole number of lines.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Scrolling  

You can provide vertical and horizontal scrolling of the items in list components 
by placing the list inside a scroll pane. Users can then scroll the list as 
described in Scroll Panes.  

 If you place a list component in a scroll pane, set the vertical 

and horizontal scrollbars to appear only when needed. This behavior is 

the default behavior of scroll panes. If at all possible, display the list 

component with a width that makes horizontal scrolling unnecessary.  

Selection Models for List Components  

The JFC provides three selection models that you can use to enable users to 
select list items: single item, single range, and multiple ranges. Single-item 
selection provides users with an exclusive choice. Single-range and 
multiple-range selection provide users with nonexclusive choices.  

When the user clicks an item in the list box, that item is chosen: the choice 
persists even when the user has moved on to the next component. When a 
user clicks an item in a selectable list, it is selected. If the user later selects 
another object, this selection disappears.  

Despite the different selection models for the two kinds of list components, the 
methods for making those choices are the same. For simplicity, in the rest of 
this section, the word "selection" is used to encompass both behaviors.  

For the keyboard operations appropriate for list boxes and selectable lists, see 
Table 19.  

Single Item  

You can enable users to select a single item by clicking it. The item gets 
keyboard focus. The prior selection, if any, is deselected. In the following figure, 
the user has selected Thursday.  

Figure 161   Single-Item Selection in a List Component  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Single Range of Items  

You can enable users to select a single item or a range of items. Users select 
an item by clicking it. The item gets keyboard focus and becomes the anchor 
point of the selection. Users extend the selection by dragging or by moving the 
pointer to another item and Shift-clicking.  

In Figure 162, the user first clicked Pineapple and then Shift-clicked Sausage.  

Click here to view the corresponding code for Figure 162 (also 

available on the book's companion CD-ROM).  

Figure 162   Range of Selected Items in a List Component  

 

Multiple Ranges of Items  

You can enable users to select a single item, a range of items, or multiple 
ranges of items (also known as "discontinuous," "discontiguous," or "disjoint" 
ranges). Users select a single item by clicking it and extend the selection by 
Shift-clicking. To start another range, users Control-click an item. That item 
then gets keyboard focus and becomes the anchor point of the new range. In 
addition, the selection of the item is toggled--if the item was initially selected, it 
is deselected, and vice versa. Shift-clicking extends the new range.  

In the following figure, the user chose the first range by clicking Bell Pepper 
and then Shift-clicking Mushroom. The user chose additional ranges by 
Control-clicking Pepperoni and extending to Sausage with a Shift-click. Finally, 
the user deselected an item in the range by Control-clicking Pineapple.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Figure 163   Multiple Ranges of Selected Items in a List Component  

 

Combo Boxes  

A combo box is a component with a drop-down arrow that users click to display 
an associated list of choices. If the list is too long to display fully, a vertical 
scrollbar appears. The current selection appears in an editable or noneditable 
text field next to the drop-down arrow. The user displays the list by clicking or 
dragging the drop-down arrow.  

The currently selected item appears in the pulled-down combo box. As a user 
moves the pointer over the list, each option under the pointer is highlighted. If 
the user selects an option from the list, that option replaces the current 
selection. In the following figure, the currently selected item is Vanilla, and the 
Guanabana option will replace Vanilla when the mouse button is lifted or the 
spacebar is pressed.  

Figure 164   Combo Box Display  

 

Users can close editable or noneditable combo boxes by clicking the 
drop-down arrow in the combo box again, selecting an item from the list, or 
clicking anywhere outside the combo box.  

For a list of keyboard operations appropriate for combo boxes, see Table 16.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

You can use combo boxes to provide a way for users to indicate a choice from 
a set of mutually exclusive options. Noneditable combo boxes enable users to 
select one item from a limited set of items. Editable combo boxes provide 
users the additional option of typing in an item that might or might not be on the 
list.  

 Use headline capitalization for the text in the combo box list. 

 To facilitate keyboard access, provide labels with mnemonics for 

combo boxes. 

 You can specify the maximum number of items to be displayed in a 

combo box before a scrollbar appears. The default is 8; however, if you 

know that your list contains 9 or 10 items, it is good practice to display 

all the items so users don't have to scroll to see just one or two 

additional items. 

 In the JFC, the term "combo box" includes both of what Microsoft 

Windows applications call "list boxes" and "combo boxes." 

Noneditable Combo Boxes  

Noneditable combo boxes (sometimes called "list boxes" or "pop-up menus") 
display a list from which users can select one item.  

The following figure shows a noneditable combo box with a drop-down arrow 
to the right of the currently selected item. (Note the gray background in the 
default Java look and feel theme, indicating that users cannot edit text.)  

Figure 165   Noneditable Combo Box  

 

To make a selection, users have two options:  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• They can click the combo box to post the list, position the pointer over the desired 
option to highlight it, and click.  

• They can press the mouse button in the combo box (which posts the list), drag 
through the list to the desired choice and release the mouse button. 

In either case, the currently selected item changes to reflects the choice.  

 Use a noneditable combo box instead of a group of radio buttons or 

a list box if space is limited in your application. 

Editable Combo Boxes  

Editable combo boxes combine an editable text field with a drop-down arrow 
that users click to display an associated list of options.  

As shown in Figure 166, editable combo boxes initially appear as editable text 
fields with a drop-down arrow. The white background of the editable combo 
box indicates that users can type, select, and edit text.  

Click here to view the corresponding code for Figure 166 (also 

available on the book's companion CD-ROM). 

Figure 166   Editable Combo Box  

 

To make a selection, users have three options:  

• They can click the drop-down arrow to display the list, position the pointer over the 
desired option to highlight it, and click.  

• They can drag from the drop-down arrow to the desired selection and release the 
mouse button.  

• To make a customized selection, they can type text in the field and press Enter (or 
move focus to another component). If the list is open, it will close. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

You can use an editable combo box to save users time by making the most 
likely menu choices available while still enabling users to type other values in 
the text field. An example might be the specification of a font size. The combo 
box might initially display a current size of 11. Users could select from a list of 
standard sizes (8, 9. 10, 12, 14, 16, or 18 points) or type in their own 
values--for instance, 22 points.  

 Whenever possible, interpret user input into an editable combo box 

in a case- insensitive way. For example, it should not matter whether the 

user types Blue, blue, or BLUE. 

Sliders  

A slider is a control that is used to select a value from a continuous or 
discontinuous range. The position of the indicator reflects the current value. 
Major tick marks indicate large divisions along the range of values (for instance, 
every ten units); minor tick marks indicate smaller divisions (for instance, every 
five units).  

The default slider in the Java look and feel is a nonfilling slider. An example is 
a slider that adjusts left-right balance in a stereo speaker system, as shown in 
the following figure.  

Figure 167   Nonfilling Slider  

 

A filling slider is also available. The filled portion of the channel, shown in the 
following figure, represents the range of values below the current value--in this 
case, the percentage of a paycheck allotted to a retirement savings plan.  

Figure 168   Filling Slider  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Users can drag the indicator to set a specific value or click the channel to move 
back and forth by one unit. Sliders can represent a series of discrete values, in 
which case the indicator snaps to the value closest to the end point of the drag 
operation.  

For a list of keyboard operations for sliders, see Table 24.  

 If the slider represents a continuous range or a large number of 

discrete values and the exact value that is chosen is important, provide 

a text field where the chosen value can be displayed. For instance, a user 

might want to specify an annual retirement savings contribution of 2.35%. 

In such a situation, consider making the text field editable to give users 

the option of typing in the value directly. Be sure to link the slider 

and the text field so that each is automatically updated when the user 

alters the other.  

 The JSlider.isFilled client property can be used to enable the 

optional filling slider. 

11: Text Components  

Text components enable users to view and edit text in an application. The 
simplest text component you can provide is a label, which presents read-only 
information. A label is usually associated with another component and 
describes its function. A text field is a rectangular area that displays a single 
line of text, which can be editable or noneditable. A password field is an 
editable text field that displays masking characters in place of the characters 
that the user types.  

Other text components display multiple lines of text. A text area displays text in 
a single font, size, and style. You can configure an editor pane to display 
different types of text through the use of a plug-in editor. The JFC editors 
include a plain text editor, a styled text editor, an RTF (rich text format) editor, 
and an HTML (Hypertext Markup Language) editor.  

Figure 169   Text Components  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Make your text easier to localize by using resource bundles. A 

resource bundle stores text separately so that localizers don't have to 

change the application's source code to accommodate translation.  

For guidelines on translating text, see Planning for Internationalization and 
Localization.  

Labels  

A label consists of read-only text, graphics, or both. Labels serve two functions 
in an application:  

• To identify components and enable navigation to components that don't have their 
own text strings  

• To communicate status and other information 

Users cannot select a label or any of its parts.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Labels That Identify Controls  

You can associate a label with a component (such as a text field, slider, or 
checkbox) to describe the use of the component.  

In Figure 170, the Salary Contribution label lets users know they can use the 
slider to adjust their salary contribution.  

Click here to view the corresponding code for Figure 170 (also 

available on the book's companion CD-ROM). 

Figure 170   Label That Describes the Use of a Slider  

 

You can also use a label to describe a group of components.  

In Figure 171, the Color label describes a group of three radio buttons. The 
other text (Red, Yellow, and Blue) is part of the radio buttons and not a 
separate component. The Color label is not a separate component for the 
purpose of navigation.  

Click here to view the corresponding code for Figure 171 (also 

available on the book's companion CD-ROM). 

Figure 171   Label That Describes a Radio Button Group  

 

 Keep label text brief, and use terminology that is familiar to 

users.  

 Use headline capitalization in the label text and place a colon at 

the end of the text. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Available and Unavailable Labels  

You can make a label available or unavailable so that its state is the same as 
that of the component it describes. Available labels are drawn in the primary 1 
color defined in the application's color theme. Unavailable labels are drawn in 
the secondary 2 color defined in the application's color theme. The following 
figure shows an available and unavailable label.  

Figure 172   Available and Unavailable Labels  

 

 Make a label unavailable when the component it describes is 

unavailable. 

Mnemonics in Labels  

You can specify a mnemonic for a label. When the mnemonic is activated, it 
gives focus to the component that the label describes. This technique is often 
used with a label that accompanies an editable text field. In the following figure, 
the text field gets focus when users press Alt-N.  

Figure 173   Label With a Mnemonic  

 

 If you can't add a mnemonic directly to the component that requires 

one, as in the case of an editable text field, place the mnemonic in the 

component's label. 

 The displayedMnemonic property can be used to specify the mnemonic 

in a label. 

 The labelFor property can be used to associate a label with another 

component so that the component gains focus when the label's mnemonic is 

activated. This practice automatically sets the target's accessible name. 

The labelFor property is most easily set by using the JLabel.setLabelFor() 

method. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

For a description of the alignment of labels and the spacing between a label 
and its components, see Label Alignment and Spacing.  

Labels That Communicate Status and Other 

Information  

You can use a label to communicate status or give information to users. In 
addition, you can instruct your application to alter a label to show a change in 
state.  

The progress bar in Figure 174 uses two labels that change as the operation 
progresses. The application changes the top label to reflect the file currently 
being copied, and it updates the bottom label as the progress bar fills.  

Click here to view the corresponding code for Figure 174 (also 

available on the book's companion CD-ROM). 

Figure 174   Labels That Clarify the Meaning of a Progress Bar  

 

 Use sentence capitalization in the text of a label that communicates 

status. Do not provide end punctuation unless the text is a complete 

sentence. 

 To ensure that the information in a status label is accessible to 

all users, the accessibleDescription property of the window containing 

the label should be set to the text of the label. Whenever the label changes, 

a VISIBLE_PROPERTY_CHANGE event should be generated to cue assistive 

technology to read the label again.  

Text Fields  

A text field is a rectangular area that displays a single line of text. A text field 
can be editable or noneditable.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Noneditable Text Fields  

In a noneditable text field, users can select and copy text to paste elsewhere 
(something they cannot do with labels), but they cannot change the text in the 
fields. Only the application can change the contents of a noneditable text field. 
The background of a noneditable text field is the secondary 3 color defined in 
the application's color theme. In the default theme, the background color is 
gray, as shown in the following figure.  

Figure 175   Noneditable Text Field  

 

Editable Text Fields  

In an editable text field, users can type or edit a single line of text. For example, 
a find dialog box has a text field in which users type a string for which they 
want to search.  

When a text field has keyboard focus, it displays a blinking bar that indicates 
the insertion point. When users type in text that is too long to fit in the field, the 
text scrolls horizontally. By default, the background of an editable text field is 
white.  

The following figure shows an editable text field with keyboard focus. The 
Language label is a separate component from the text field.  

Figure 176   Editable Text Field With Blinking Bar  

 

In an editable text field, users can:  

• Insert characters at the insertion point and replace selected text by typing  
• Cut, copy, and paste text by using menu commands or keyboard shortcuts (Ctrl-X 

for Cut, Ctrl-C for Copy, and Ctrl-V for Paste)  
• Set the insertion point by single-clicking  
• Select a word by double-clicking  
• Select the entire line of text by triple-clicking  
• Select a range of characters by dragging  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• Select everything by navigating to the text field using the Tab key or the label's 
mnemonic 

The following figure shows a text field with the letters Jeffer selected. The 
insertion point is at the end of the selected text and indicates that the text field 
has keyboard focus. The selected text is overwritten when the user types or 
pastes new text.  

Figure 177   Editable Text Field With Selected Text  

 

When keyboard focus enters a text field by some means other than a user's 
mouse click, select the entire contents of the text field. (This situation might 
occur if the user navigated into the text field with a mnemonic or with the Tab 
key, or if the initial focus when a dialog box opens is in the text field. (Figure 84 
shows an example of such a situation.) Users can then start typing characters 
to replace the existing text, or they can press the Tab key to move to the next 
field, leaving the original text intact. When the text is selected, pressing the left 
or right arrow keys deselects the text and moves the insertion point (if 
possible), enabling users to correct the text using only the keyboard. Of course, 
if users click in a text field, place the insertion point as close to the click point 
as possible, without selecting text.  

To associate a mnemonic with a text field, you must give the text field a label. 
You can then assign a mnemonic to the label, and make the mnemonic give 
focus to the text field. For details, see Mnemonics in Labels. For keyboard 
operations appropriate to text fields, see Table 29.  

 Depending on the type of data, you might be able to check individual 

characters for errors as they are typed--for example, if users try to type 

a letter into a text field that should contain only numbers. In this case, 

do not display the character in the field. Instead, sound the system beep. 

If the user types three illegal characters in a row, display an Error alert 

box that explains the legal entries for the text field. 

 If you plan an action based on the string in the text field (such 

as searching for the string or performing a calculation), start the action 

when users signify that they have completed the entry by pressing Enter 

or by moving keyboard focus outside the text field. Do not start the action 

before the user has completed the text entry. 

For keyboard operations for editable text fields, see Table 29.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Password Fields  

The password field is an editable text field that displays a masking character 
instead of the characters that users type. Asterisks are displayed in the 
password field by default. You can designate any Unicode character as the 
masking (also called "secure") character, but make sure the character is 
available in the current font.  

The password field is commonly used in a login dialog box, as shown in 
Figure 178. The Password label is a separate component from the password 
field.  

Click here to view the corresponding code for Figure 178 (also 

available on the book's companion CD-ROM). 

Figure 178   Password Field  

 

A password field provides users with some of the editing capabilities of an 
editable text field, but not the cut and copy operations. For keyboard 
operations appropriate to password fields, see Table 29.  

 The setEchoChar method can be used to change the masking character-- 

for example, from asterisks to pound signs.  

Text Areas  

A text area provides a rectangular space in which users can view, type, and 
edit multiple lines of text. The JFC renders such text in a single font, size, and 
style, as shown in the following figure.  

Figure 179   Text Area  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Users can type and replace text in a text area. See Text Fields for a description 
of text-editing features supplied by the JFC. For keyboard operations 
appropriate to text areas, see Table 28.  

You can enable word wrap so that the text wraps to the next line when it 
reaches the edge of the text area, as shown in the preceding figure. You can 
enable scrolling by placing the text area inside a scroll pane. In this case, the 
text scrolls horizontally or vertically when it is too long to fit in the text area.  

The following figure shows a text area inside a scroll pane. For information on 
scrolling, see Scroll Panes.  

Figure 180   Text Area in a Scroll Pane  

 

 If you place text in a scroll pane, ensure that the vertical 

scrollbar is always there and provide a horizontal scrollbar only as 

needed. This is not the default behavior of scroll panes. 

 If the text area contains prose, enable word wrap. If the text area 

contains information for which exact line breaks are important, such as 

code or poetry, enable horizontal scrolling. 

 The lineWrap and wrapStyleWord properties of the text area can be 

set to true to enable word wrap on word boundaries.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Editor Panes  

An editor pane is a multiline text pane that uses a plug-in editor kit to display a 
specific type of text, such as RTF (rich text format) or HTML (Hypertext Markup 
Language). An editor kit is capable of displaying all fonts included with the 
AWT. The JFC provides four kits that you can plug into an editor pane:  

• Default editor kit  
• Styled text editor kit  
• RTF editor kit  
• HTML editor kit 

You can also create your own editor kit or use a third-party editor kit. For an 
example of how to create an editor kit, see Java Swing, described in Java.  

 The setEditable method can be used to turn text editing on or off 

in an editor kit. 

Default Editor Kit  

You can use the default editor kit to edit and display text in a single font, size, 
and style. This kit is functionally equivalent to a text area.  

Styled Text Editor Kit  

You can embed images and components (such as tables) in a styled text editor 
kit.  

You can use a styled text editor kit to edit and display multiple fonts, sizes, and 
styles, as shown in Figure 181.  

Click here to view the corresponding code for Figure 181 (also 

available on the book's companion CD-ROM). 

Figure 181   Styled Text Editor Kit  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

RTF Editor Kit  

You can use an RTF editor kit to read, write, and display RTF text, as shown in 
the following figure. The RTF editor kit offers all the capabilities provided by the 
styled editor kit, and more.  

Figure 182   RTF Editor Kit  

 

HTML Editor Kit  

You can use an HTML editor kit to display text in HTML 3.2. Users can click a 
link on the HTML page to generate an event, which you can use to replace the 
contents in the pane.  

Figure 183   HTML Editor Kit  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

12: Selectable Lists, Tables, and 
Tree Components  
A selectable list is a one-column arrangement of items in which the items users 
select are designated for a subsequent action, usually in an associated 
component such as a table or a text field. Tables and trees provide a way to 
organize related information so that users can easily compare the data. A table 
is a two-dimensional arrangement of data. A tree component is an outline of 
hierarchical relationships.  

Figure 184   Selectable List, Table, and Tree Component  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

Selectable Lists  

Selectable lists are one-column collections of data in which selected items are 
designated for a subsequent action. Command buttons can operate on this 
selection. When users make another selection, any previous selection is 
deselected. This is the same way selection works for many other objects, 
including text. List boxes, which are also implemented with the JList 
component, have a different selection model. In list boxes, the choices that the 
user makes are persistent.)  

In selectable lists, as in list boxes, a single item, a single range, or multiple 
ranges can be selected. See Selection Models for List Components for details.  

 Provide users with as much flexibility in making selections as makes 

sense for your application. 

 Selectable lists are created using the JList component. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Selectable Lists and Associated Tables  

Selectable lists are appropriate when you want a user to select a few items 
from a long list so that your application can then display details of the selected 
items in a table. The user selects an item in the list on the left (in left-to-right 
locales) and presses the Add button. The selected item is removed from the 
list on the left and appears (with additional detail) in the table on the right. The 
most recently moved item appears selected in the table, as shown in the 
following figure.  

Figure 185   Selectable List and Associated Table  

 

Selectable Lists and Associated Text Fields  

Selectable lists are also typically used in file choosers. Users select an item 
from a list of files, and an editable text field reflects the choice, as shown in the 
following figure.  

Figure 186   Selectable List in File Chooser at Time of Selection  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

When keyboard focus moves to the editable text field, the selected item 
remains in the list, but the highlighting is removed, as shown in the following 
figure.  

Figure 187   Selectable List in File Chooser After Change in Keyboard Focus  

 

 
Note — Typically, double-clicking in a selectable list activates a dialog box's default 
command. You must program this behavior explicitly; the JFC does not provide it 
automatically.  

 

Except for selection behavior, selectable lists are the same as list boxes, 
described in List Boxes.  

 Be sure to put your selectable list in a scroll pane if it contains 

too many items to display all at once.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 Always display a whole number of lines in scrolling lists. 

Tables  

A table organizes related information into a series of rows and columns. Each 
field in the table is called a "cell." By default, a cell contains a text field, but you 
can replace it with graphics and other components, such as a checkbox or 
combo box. The cell with keyboard focus has an inner border, which is drawn 
in the primary 1 color in the application's color theme.  

The following figure illustrates the use of a table to display the records of 
employees in a company database. The cell with the value 377 is selected and 
has keyboard focus, but cannot be edited. The table lets you change an 
employee's project, but not the first or last name or employee ID.  

Figure 188   Table in a Scroll Pane  

 

The background color of a cell depends on:  

• Whether the cell is selected  
• Whether the cell is editable or noneditable  
• The background color of the table 

The following table shows how a cell gets its background color.  

Table 10   Background Color of Table Cells  

Type of Cell Background Color Example 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

An unselected cell 
(editable) 

The background color of the table, which is white 
by default.   

An unselected cell 
(noneditable) 

The secondary 3 color, which is gray in the default 
color scheme.  

A selected cell that is 
editable and currently has 
keyboard focus 

White. The inner border is drawn in the primary 1 
color to indicate that the cell has keyboard focus. 
(For information on color themes in the Java look 
and feel, see Colors.) 

 

A selected cell that is 
noneditable and currently 
has keyboard focus 

The primary 3 color, which is light blue in the 
default color theme. The inner border is primary 1.  

Any other selected cell 
The primary 3 color, which is light blue in the 
default color theme.   

 

Users can select a cell and edit its contents if the component in that cell 
supports editing. For example, if a cell contains a text field, users can type, cut, 
copy, and paste text. For more information on editing text in a table, see 
Editable Text Fields.  

Users can press Tab to advance to the next cell and select its contents. For the 
keyboard operations that are appropriate for tables, see Table 27.  

 The gray background of noneditable cells is not a default JFC 

behavior, but it is a recommended practice. You must explicitly specify 

the color. 

Table Appearance  

The JFC provides several options that enable you to define the appearance of 
your table. You can turn on the display of horizontal and vertical lines that 
define the table cells, as shown in Figure 188. You can set the horizontal and 
vertical padding around the content of a cell. You can also set the width of the 
columns.  

 When resizing a table vertically, make sure that it always displays 

a whole number of rows. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Table Scrolling  

You can provide scrolling of your table by placing the table inside a scroll pane. 
A table has column headers only when it is in a scroll pane. For information on 
scrolling, see Scroll Panes.  

Column Reordering  

You can enable users to rearrange the columns in the table. When users drag 
the column header to the right or left, the entire column moves. Releasing the 
mouse button places the column at the new location.  

The following figure shows the Last Name column being dragged to the right. 
In this case, the column is selected (although users can also drag an 
unselected column).  

Figure 189   Reordering Columns by Dragging a Column Header  

 

Column Resizing  

You can enable users to resize the columns in a table. Users drag the border 
of the column header to the right to make the column wider and to the left to 
make the column narrower. When users resize a column, you must decide 
whether to change the width of the entire table or adjust the other columns so 
that the overall width is preserved. The JFC-supplied resize options are 
described in the following table. (Numbers represent relative widths.)  

Table 11   Table Resize Options  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

The original table. The double arrow shows the 
east resize pointer before the columns are 
resized.  

Resize next 
Resizes the columns on either side of the 
border being moved. One column becomes 
bigger, while the other becomes smaller. 

Resize subsequent 
Resizes the column whose border was moved 
and all columns to its right. This option is the 
default option.  

Resize last 
Resizes the column whose border was moved 
and the last (rightmost) column. 

 

Resize all 
Resizes all other columns, distributing the 
remaining space proportionately. 

 

Resize off 
Resizes the column whose border was moved 
and makes the table wider or narrower to adjust 
the space added or removed from the column. 
This is the only option that changes the overall 
width of the table. 

 

 Use either the Resize Next or Resize Off options (described in 

Table 11) to avoid unexpected results in your tables. 

Row Sorting  

You can give users the ability to sort the rows in a table by clicking the column 
headers. An email application, which displays a list of messages in a table, is 
well suited for row sorting. As shown in the following figure, users can sort the 
messages by date, sender, or subject. The header of the From column 
appears in bold to indicate that the messages are currently sorted 
alphabetically by sender.  

Figure 190   Row Sorting in an Email Application  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Put column header text in bold to indicate the table column that 

currently determines the sort order. If something happens to invalidate 

the sort order, remove the visual indicator. 

 If your application has a menu bar, provide row sorting as a set 

of menu items as well (for example, include "Sort by Sender" in the View 

menu). This practice makes sorting available through the keyboard. 

 Row sorting is not included with the table component. However, the 

JFC contains sample code that can be used to implement row sorting. See 

The Java Tutorial (described in Java) for more information. 

Selection Models for Tables  

When designing a table, you must decide which objects (cells, rows, or 
columns) users can select. The JFC provides 24 models for selecting objects 
in tables, but they are not all distinct.  

 The following nine selection models are recommended for use in the 

Java look and feel: 

• No selection  
• Single cell  
• Single range of cells  
• Single row  
• Single range of rows  
• Multiple ranges of rows  
• Single column  
• Single range of columns  
• Multiple ranges of columns 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

No Selection  

You can turn off selection in a table. Nothing is selected when users click in a 
cell.  

SIngle Cell  

You can enable users to select a cell by clicking it. The cell gets keyboard 
focus, which is indicated by an inner border. Any previous selection is 
deselected.  

In the following figure, the cell containing 377 is selected and has keyboard 
focus. The cell cannot be edited, as indicated by the primary 3 background 
color.  

Figure 191   Single-Cell Selection  

 

Range of Cells  

You can enable users to select a single cell or a rectangular range of cells. 
Users select a cell by clicking it. That cell gets keyboard focus and becomes 
the anchor point of the selection. Users extend the selection by moving the 
pointer to a new cell and Shift-clicking. Users can also select a range of cells 
by dragging through the range.  

In the following figure, the user has selected the range by clicking Sophia and 
then Shift-clicking 1273. The cell containing Sophia is noneditable, as 
indicated by its blue background.  

Figure 192   Range of Selected Cells  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

In range selection, the selection always extends from the cell with the anchor 
point to the cell where the user Shift-clicked. If users move the pointer within 
the selection and Shift-click, the selection becomes smaller. For example, 
if the user Shift-clicks Stewart in the preceding figure, the selection is reduced 
to four cells (Sophia, Amann, Samuel, and Stewart).  

Single Row  

You can enable users to select an entire row by clicking any cell in the row. 
The clicked cell gets keyboard focus, which is indicated by an inner border. 
Any previous selection is deselected.  

In the following figure, the user has clicked the cell containing 811. This cell is 
not editable, as indicated by its background color.  

Figure 193   Single-Row Selection  

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Single Range of Rows  

You can enable users to select one row or a range of rows. Users select a row 
by clicking any cell in the row. The cell that has been clicked gets keyboard 
focus and becomes the anchor point of the selection. Users extend the 
selection by moving the pointer to a new row and Shift-clicking. Users can also 
select a range of rows by dragging through the range.  

In the following figure, the user has clicked Krakatoa and then Shift-clicked the 
FireDog in Mary Dole's row. The cell containing Amann is editable, as 
indicated by its white background.  

Figure 194   Range of Selected Rows  

 

In range selection, the selection always extends from the row with the anchor 
point to the row where the user has Shift-clicked. If users Shift-click within an 
existing selection, the selection becomes smaller. For example, if the user 
Shift-clicks Butler in the preceding figure, the selection is reduced to the two 
rows containing Krakatoa and Butler.  

Multiple Ranges of Rows  

You can enable users to select a single row, a range of rows, or multiple row 
ranges (also known as "discontinuous," "discontiguous," or "disjoint" ranges). 
Users select a single row by clicking any cell in the row and extend the 
selection by Shift-clicking. To start another range, users Control-click any cell 
in a row. The cell gets keyboard focus and becomes the anchor point of the 
new range. The selection of the row toggles as follows:  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

• If the row is not already selected, it is selected. A subsequent Shift-click selects all 
rows from the anchor point to the row where the user has Shift-clicked.  

• If the row is within an existing selection, the row is deselected. A subsequent 
Shift-click deselects all rows from the anchor point to the row where the user has 
Shift-clicked. 

Users can also select another range by dragging through the range while 
holding down the Control key.  

In Figure 195, the user has selected the first range by clicking Winter and then 
Shift-clicking Amann. The user has created another range by Control-clicking 
Mary and then Shift-clicking Roscoe. The cell containing Mary has keyboard 
focus and is noneditable.  

Click here to view the corresponding code for Figure 195 (also 

available on the book's companion CD-ROM). 

Figure 195   Multiple Ranges of Selected Rows  

 

Multiple-range selection is well suited for an email application that uses a table 
to display message headers, as shown in Figure 190. Users can select one or 
more message headers (especially useful for deleting, moving, or forwarding 
messages).  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Single Column  

You can enable users to select an entire column by clicking any cell in the 
column. The cell that was clicked gets keyboard focus, which is indicated by an 
inner border. Any previous selection is deselected.  

In the following figure, the user has clicked Krakatoa in the Project column. 
The white background indicates that the cell can be edited.  

Figure 196   Single-Column Selection  

 

Single Range of Columns  

You can enable users to select one column or a range of columns. Users 
select a column by clicking any cell in the column. The cell that was clicked 
gets keyboard focus and becomes the anchor point of the selection. Users 
extend the selection by moving the pointer to a new column and Shift-clicking. 
Users can also select a range of columns by dragging through the range.  

In the following figure, the user has clicked 1273 and then Shift-clicked Amann. 
The cell containing 1273 cannot be edited, as indicated by its background 
color.  

Figure 197   Range of Selected Columns  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

In range selection, the selection always extends from the column with the 
anchor point to the column where the user has Shift-clicked. If users Shift-click 
within an existing selection, the selection becomes smaller.  

Multiple Ranges of Columns  

You can enable users to select a single column, a range of columns, or 
multiple-column ranges (also known as "discontinuous," "discontiguous," or 
"disjoint" ranges). Users select a single column by clicking any cell in the 
column and extend the selection by Shift-clicking. To start another range, 
users Control-click any cell in the column. The cell gets keyboard focus and 
becomes the anchor point of the range. The selection of the column toggles as 
follows:  

• If the column is not already selected, it is selected. A subsequent Shift-click 
selects all columns from the anchor point to the column where the user 
Shift-clicked.  

• If the column is within an existing selection, the column is deselected. A 
subsequent Shift-click deselects all columns from the anchor point to the column 
where the user Shift-clicked.  

Users can also select or deselect another range by dragging through the range 
while holding down the Control key.  

In the following figure, the user has clicked Peter and then Shift-clicked Amann. 
The user has selected another range by Control-clicking Krakatoa, which has 
keyboard focus and can be edited, as indicated by its white background.  

Figure 198   Multiple Ranges of Selected Columns  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

 Give your users as much flexibility in your selection scheme as 

makes sense for your application. Enable selection of a range or multiple 

ranges if you can. 

Tree Components  

A tree component represents a set of hierarchical data in the form of an 
indented outline, which users can expand and collapse. Tree components are 
useful for displaying data such as the folders and files in a file system or the 
table of contents in a help system.  

A tree component consists of nodes. The top-level node, from which all other 
nodes branch, is the root node. Nodes that might have subnodes are called 
"containers." All other nodes are called "leaves." The default icon for a 
container is a folder, and the default icon for a leaf is a file. Each node is 
accompanied by text.  

Turners appear next to each container in the tree component. The turner 
points right when the container is collapsed and down when the container is 
expanded.  

In the following figure, the Projects, Fire station, First floor, and Landscaping 
nodes are expanded containers; all the other containers are collapsed. 
Landscaping is a container without subnodes. Communications, Garage, and 
Shop are leaves.  

The turner, container, and leaf graphics shown in Figure 199 are the default 
graphics provided by the JFC.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Click here to view the corresponding code for Figure 199 (also 

available on the book's companion CD-ROM). 

Figure 199   Tree Component With Top-Level Lines  

 

Users can click a right-pointing turner to expand its container so that the 
contents are visible in the tree component. The turner rotates to point 
downward. Clicking a downward-pointing turner collapses its container so that 
the contents are no longer visible. For the keyboard operations that are 
appropriate for tree components, see Table 33.  

 In most tree components, display the second level of the hierarchy 

as your highest level. Your outline will be easier to use if you do not 

display the root node. 

 Display turners for all containers in the tree component, including 

the containers at the highest level. Turners remind users that they can 

expand and collapse the node. 

 Setting the rootVisible property of the tree component to false 

turns off the display of the root node. 

 Setting the showsRootHandles of the tree component to true turns 

on the display of turners for the highest-level containers. 

Lines in Tree Components  

The JFC provides three options for including lines in a tree component. The 
first option is not to include any lines. The second option is to draw lines that 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

separate the top-level nodes, as shown in Figure 199. The third option is to 
draw lines that define the hierarchical relationships of the nodes, as shown in 
the following figure.  

Figure 200   Tree Component With Hierarchy Lines  

 

 If your tree component contains three or more levels, use lines to 

delineate the hierarchical relationships of the nodes. 

 The client property JTree.lineStyle can be set to None to display 

no lines, to Horizontal to display top-level lines, and to Angled to 

display hierarchy lines. 

Graphics in Tree Components  

You can substitute your own graphics for the JFC-supplied container and leaf 
node graphics. For example, if your hierarchy represents the clients and 
servers in a network, you might include graphic representations of the clients 
and servers. In Figure 200, a custom music graphic is used for the leaf nodes. 
You might also use separate graphics to show when a container is expanded 
and when it is collapsed.  

Editing in Tree Components  

You can enable users to edit the text in a tree component. When editing is 
enabled, users can change text using the same editing commands that they 
use for text fields. These commands are described in Editable Text Fields.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

To start editing a node in a tree component, users can:  

• Click, pause, click, and wait 1200 milliseconds  
• Triple-click  
• Press F2 when a node is selected 

 Setting the editable property to true enables editing of all nodes 

in the tree.  

Part IV: Backmatter  
This part consists of:  

• Appendix A: Keyboard Shortcuts, Mnemonics, and Other Keyboard 
Operations  

• Appendix B: Graphics Repository  

• Appendix C: Localization Word Lists  

• Appendix D: Switching Look and Feel Designs  

• Glossary 

A: Keyboard Shortcuts, 
Mnemonics, and Other Keyboard 
Operations  
This appendix presents common keyboard shortcuts and mnemonics in 
alphabetical order and summarizes JFC-supplied keyboard navigation, 
activation, and selection operations in a series of tables (arranged 
alphabetically by component). The left column describes a keyboard operation 
(for example, left arrow key) and the right column of each table describes the 
corresponding action (for example, moving focus to the left).  

Navigating means to move the input focus from one user interface component 
to another; activating refers to operating the component; selecting means to 
choose one or more user objects such as text or icons, typically for a 
subsequent action. For an overview of these concepts, see Keyboard 
Navigation and Activation.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

In general, navigating between components uses these keys:  

• Tab. Moves keyboard focus to the next component or to the first member of the next 
group of components (the upper-left component in left-to-right reading order).  

• Ctrl-Tab. Moves keyboard focus to the next component or to the first member of the next 
group of components when the current component accepts a tab (as in text fields, tables, 
text areas, and tabbed panes).  

• Shift-Tab. Moves keyboard focus to the previous component or to the last component in 
the previous group of components in precisely the reverse order of the navigation 
specified by pressing Tab.  

• Ctrl-Shift-Tab. Moves keyboard focus to the previous component or to the last 
component in the previous group of components in precisely the reverse order of the 
navigation specified by pressing Tab. Ctrl-Shift-Tab works when the current component 
accepts tabs.  

• Arrow keys. Move keyboard focus between the individual components within a group of 
components--for example, between menu items in a menu, between tabs in a tabbed pane, 
or from character to character in a text field or text component. 

Some actions in the table list several possible keyboard operations, 

separated by a comma. For example, both Home and Ctrl-Home move focus to 

the beginning of a list.  

 Ensure that you provide multiple operations that take into account 

the differences between operating environments if your application runs 

on several.  

 Some of the keyboard operations described in the following tables 

might be temporarily incomplete or not implemented. However, these key 

sequences should be reserved for future versions of the JFC and the Java 2 

platform.  

 The arrow keys are insensitive to the component orientation feature 

in the Java 2 SDK. (Component orientation is the automatic positioning 

of components to reflect the writing system of a locale--for instance, 

left to right, or right to left.) For example, the right arrow moves the 

action right regardless of the orientation of the locale.  

Common Keyboard Shortcuts  

The following table provides an alphabetically sorted list of common keyboard 
shortcuts. Use this table to see which keyboard shortcuts are used and which 
are available. (You can use these shortcuts for other purposes if your 
application does not provide the associated function and will not add that 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

function in the foreseeable future.) For a table of keyboard shortcuts organized 
according to menus, see Table 8.  

Table 12   Alphabetical List of Common Keyboard Shortcuts 

Sequence Equivalent 

Ctrl-A Select All (Edit menu) 

Ctrl-B Bold (Format menu) 

Ctrl-C Copy (Edit menu) 

Ctrl-E Align Center (Format menu) 

Ctrl-F Find (Edit menu) 

Ctrl-G Find Again (Edit menu) 

Ctrl-H Replace (Edit menu) 

Ctrl-I Italic (Format menu) 

Ctrl-L Align Left (Format menu) 

Ctrl-N New (File menu) 

Ctrl-O Open (File menu) 

Ctrl-P Print (File menu) 

Ctrl-R Align Right (Format menu) 

Ctrl-S Save (File menu) 

Ctrl-U Underline (Format menu) 

Ctrl-V Paste (Edit menu) 

Ctrl-W Close (File menu) 

Ctrl-X Cut (Edit menu) 

Ctrl-Y Redo (Edit menu) 

Ctrl-Z Undo (Edit menu) 

Delete Delete (Edit menu) 

F1 Help 

F5 Refresh 

Shift-F1 Contextual help 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Common Mnemonics  

The following table provides an alphabetically sorted list of common 
mnemonics for menu items within the common menus. Use this table to 
determine which mnemonics are used and which are available. For a list of 
common mnemonics organized by the common order in menus, see Table 9.  

Table 13   Alphabetical List of Common Mnemonics  

Letter Menu Items 

A Select All (Edit menu), Save As (File menu), About Application (Help menu) 

B Bold (Format menu) 

C 
Copy (Edit menu), Close (File menu), Align Center (Format menu), Contents 

(Help menu) 

D Delete (Edit menu), Details (View menu) 

E Edit menu 

F File menu, Find (Edit menu), Filter (View menu) 

G Large Icons (View menu) 

H Help menu 

I Index (Help menu), Italic (Format menu) 

L Align Left (Format menu), List (View menu) 

M Small Icons (View menu) 

N Find Again (Edit menu), New (File menu) 

O Open (File menu), Zoom Out (View menu) 

P Paste (Edit menu), Print (File menu) 

R Format menu, Redo (Edit menu), Align Right (Format menu), Refresh (View menu) 

S Save (File menu), Search (Help menu), Sort By (View menu) 

T Cut (Edit menu), Tutorial (Help menu) 

U Undo (Edit menu), Page Setup (File menu), Underline (Format menu) 

V View menu 

X Exit (File menu) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Z Zoom In (View menu) 

Checkboxes  

The following table lists the keyboard operation for checkboxes. For more 
information on this component, see Checkboxes. 

Table 15   Keyboard Operation for Checkboxes 

Keyboard Operation Action 

Spacebar Switches the setting of the checkbox 

Combo Boxes  

The following table lists the keyboard operations for combo boxes. For details 
on this component, see Combo Boxes. 

Table 16   Keyboard Operations for Combo Boxes 

Keyboard Operation Action 

Spacebar, down arrow, 

Alt-down arrow 
Posts associated list 

Up arrow, down arrow 
When menu is posted, moves highlight up or down within list, 

selecting highlighted item 

Enter, Return, spacebar Closes list, maintaining latest selection 

Escape Closes list, returning to prior selection 

Command Buttons  

The following table lists the keyboard operations for command buttons. For 
more information on this component, see Command Buttons. 

Table 17   Keyboard Operations for Command Buttons  

Keyboard Operation Action 

Spacebar Activates command button that has keyboard focus 

Enter, Return Activates default button (does not require keyboard focus) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Escape Activates Cancel button (does not require keyboard focus) 

HTML Editor Kits  

HTML editor kits use the navigation, selection, and activation sequences 
described in Table 28, plus the two listed here. For details on the appearance 
and behavior of this component, see HTML Editor Kit. 

Table 18   Keyboard Operations for HTML Panes 

Keyboard Operation Action 

Tab, Ctrl-Tab, Shift-Tab, 

Ctrl-Shift-Tab 

Navigates to link and other focusable elements (click here for a 

description of the directions associated with these keyboard 

operations) 

Enter, Return, spacebar Activates link 

List Components  

The actions listed in the following table assume multiple selection in list boxes 
and selectable lists. For more information on the appearance, behavior, and 
selection of these components, see List Boxes and Selectable Lists. 

Table 19   Keyboard Operations for Lists  

Keyboard 

Operation 
Action 

Up arrow Moves focus up one row or line and selects the item 

Down arrow Moves focus down one row or line and selects the item 

Page Up 
Moves focus up one information pane minus one line, selecting the first 

line in the information pane 

Page Down 
Moves focus down one information pane minus one line, selecting the 

last line in the information pane 

Home, Ctrl-Home Moves focus to beginning of list 

End, Ctrl-End Moves focus to end of list 

Ctrl-A, Ctrl-/ Selects all items in list 

Ctrl-\ Deselects all items in list 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Spacebar Makes a selection and deselects any previous selection 

Ctrl-spacebar Switches selection without affecting previous selections 

Shift-spacebar Extends selection 

Shift-down arrow Extends selection down one item 

Shift-up arrow Extends selection up one item 

Shift-Home Extends selection to beginning of list 

Shift-End Extends selection to end of list 

Shift-PgUp Extends selection up one information pane 

Shift-PgDn Extends selection down one information pane 

Menus  

The keyboard operations in this table apply to menu bars, drop-down menus, 
submenus, contextual menus, menu items, radio button menu items, and 
checkbox menu items. For a discussion of menus, see Chapter 9.  

 In the Java 2 SDK, contextual menus cannot be posted from the 

keyboard. 

Table 20   Keyboard Operations for Menus  

Keyboard 

Operation 
Action 

F10 Moves focus to menu bar and posts first menu 

Shift-F10 Displays contextual menu 

Right arrow and 

left arrow 

Navigates right or left among titles in menu bar, posting current menu, 

displaying submenus (right arrow), and navigating back from submenu to 

higher-level menu 

Up arrow Navigates within menus, displaying submenus 

Down arrow 
Navigates within menus, moving to the next item without displaying a 

submenu 

Enter, Return, 

spacebar 

Activates menu item, dismisses menu, and goes to last window item that 

had focus 

Escape Dismisses menu without taking action and returns focus to last component 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

that had focus; when in submenu, dismisses submenu and returns to 

higher-level drop-down or contextual menu 

Radio Buttons  

The following table lists the keyboard operation for radio buttons. For a 
discussion of the appearance and behavior of this component, see Radio 
Buttons.  

Table 21   Keyboard Operation for Radio Buttons 

Keyboard Operation Action 

Spacebar Turns on radio button 

Scrollbars  

Users can operate scrollbars from the keyboard when keyboard focus is 
anywhere in the scroll pane. If there are scroll panes within scroll panes, the 
keyboard operates the innermost scrollbar. For a discussion of the appearance 
and behavior of this component, see Scrollbars.  

Table 22   Keyboard Operations for Scrollbars  

Keyboard Operation Action 

Up arrow Moves information pane up one line 

Down arrow Moves information pane down one line  

Page Up Moves up one information pane minus one line 

Page Down Moves down one information pane minus one line 

Ctrl-Home Moves to beginning of data 

Ctrl-End Moves to end of data 

Ctrl-PgDn Moves right one information pane minus one column  

Ctrl-Pg Up Moves left one information pane minus one line or column 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Secondary Windows and Utility Windows  

The following table lists the keyboard operations for secondary windows 
(dialog boxes and alert boxes). Utility windows use the same operations. For 
comprehensive treatment of dialog boxes and alert boxes, see Chapter 8. For 
a discussion of utility windows, see Utility Windows.  

 Keyboard navigation support for the JDialogPane component is not 

fully operational in the Java 2 SDK. The action specified for the Escape 

key must be programmed by the developer.  

Table 23   Keyboard Operations for Dialog Boxes  

Keyboard 

Operation 
Action 

Alt-F6 
Navigates into secondary window; when in secondary window, navigates 

to the associated higher-level window 

Escape Activates Cancel button (no need for keyboard focus) 

Enter, Return Activates default command button (no need for keyboard focus) 

Sliders  

The following table lists the keyboard operations for sliders. Sliders can be 
either vertical or horizontal, so keyboard operations are provided for each case. 
For details on this component, see Sliders.  

Table 24   Keyboard Operations for Sliders 

Keyboard 

Operation 
Action 

Arrow keys Changes value of slider 

Home 
Moves to leading-edge value (in left-to-right reading order, the value at 

the left edge or bottom) 

End 
Moves to the trailing-edge value (in left-to-right reading order, the value 

at the right edge or top of the slider) 

Page Up, 

Ctrl-PgUp 
Jumps towards right or top (approximately 20% of the scale) 

Page Down, Jumps towards left or bottom direction (approximately 20% of the scale) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Ctrl-PgDn 

Split Panes  

The following table lists the keyboard operations for split panes. After users 
enter a split pane, pressing Tab cycles the focus to the components within the 
split pane. For a description of the appearance and behavior of this component, 
see Split Panes.  

Table 25   Keyboard Operations for Split Panes  

Keyboard 

Operation 
Action 

Tab, F6 
Navigates between split panes and gives focus to last element that 

had focus  

F8 Gives focus to splitter bar 

Arrow keys, Home, 

End 
Changes location of splitter bar in splitter pane  

Tabbed Panes  

The following table lists the keyboard operations for tabbed panes. For a 
description of the appearance and behavior of this component, see Tabbed 
Panes. When a tabbed pane initially gets focus, the focus goes to one of the 
tabs, not to one of the content panes.  

Table 26   Keyboard Operations for Tabbed Panes 

Keyboard Operation Action 

Arrow keys Navigates through tabs 

Ctrl-down arrow Moves from tab to its associated content pane 

Ctrl-up arrow Moves from content pane to its associated tab 

Ctrl-PgDn Moves to next content pane (changing the corresponding tab) 

Ctrl-PgUp Moves to previous content pane (changing the corresponding tab) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tables  

The following table lists the keyboard operations for tables. For a description of 
the appearance and behavior of this component, see Tables.  

Table 27   Keyboard Operations for Tables  

Keyboard 

Operations 
Action 

Enter (or Return) Deselects current selection and moves focus down one cell 

Shift-Enter (or 

Shift-Return) 
Deselects current selection and moves focus up one cell 

Tab Deselects current selection and moves focus right one cell 

Shift-Tab Deselects current selection and moves focus left one cell 

Down arrow Deselects current selection and moves focus down one cell 

Up arrow Deselects current selection and moves focus up one cell 

Page Down 
Deselects current selection, scrolls down one information pane, and 

selects the last visible cell in the current column 

Page Up 
Deselects current selection, scrolls up one information pane, and 

gives focus to first visible cell in the current column 

Ctrl-PgUp 
Deselects current selection, scrolls left one information pane, and 

gives focus to first visible cell in the current row 

Ctrl-PgDn 
Deselects current selection, scrolls right one information pane, and 

selects the last visible cell in the current row 

Home Moves focus and information pane to first cell in the current row 

End Moves focus and information pane to last cell in the current row 

Ctrl-Home Moves focus and information pane to first cell in the current column 

Ctrl-End Moves focus and information pane to last cell in the current column 

F2 Enables editing in a cell 

Escape Resets cell to the state it was in before it was edited 

Ctrl-A Selects entire table 

Shift-down arrow Extends selection down one row 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Shift-up arrow Extends selection up one row 

Shift-left arrow Extends selection left one column 

Shift-right arrow Extends selection right one column 

Shift-Home Extends selection to beginning of row 

Shift-End Extends selection to end of row 

Ctrl-up arrow Navigates up one row without affecting the selection 

Ctrl-down arrow Navigates down one row without affecting the selection 

Ctrl-Shift-up arrow 
Navigate up one row and select the new item without deselecting 

any current selections 

Ctrl-Shift-down arrow 
Navigate down one row and select the new item without deselecting 

any current selections 

Ctrl-Shift-Home Extends selection to beginning of column 

Ctrl-Shift-End Extends selection to end of column 

Shift-PgDn Extends selection down one information pane 

Shift-PgUp Extends selection up one information pane 

Ctrl-Shift-PgDn Extends selection right one information pane 

Ctrl-Shift-PgUp Extends selection left one information pane 

Text Areas and Default and Styled Text Editor Kits  

The following table lists the keyboard operations for text areas and the default 
and styled text editor kits. For details on the appearance and behavior of these 
components, see Text Areas, Default Editor Kit, and Styled Text Editor Kit.  

Table 28   Keyboard Operations for Text Areas and Default and Styled Text 
Editor Kits  

Keyboard Operation Action 

Up arrow Moves insertion point up one line 

Down arrow Moves insertion point down one line 

Left arrow Moves insertion point to the left one component or character 

Right arrow Moves insertion point to the right one component or character 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Page Up Moves up one information pane 

Page Down Moves down one information pane 

Ctrl-PgUp Moves left one information pane 

Ctrl-PgDn Moves right one information pane 

Home Moves to beginning of line 

End Moves to end of row or line 

Ctrl-Home Moves to beginning of data 

Ctrl-End Moves to end of data 

Ctrl-left arrow Moves to beginning of previous word 

Ctrl-right arrow Moves to beginning of next word 

Ctrl-A, Ctrl-/ Selects all 

Ctrl-\ Deselects all 

Shift-up arrow Extends selection up one line 

Shift-down arrow Extends selection down one line 

Shift-left arrow Extends selection left one character 

Shift-right arrow Extends selection right one character 

Shift-PgUp Extends selection up one information pane 

Shift-PgDn Extends selection down one information pane 

Ctrl-Shift-PgUp Extends selection to the left one information pane 

Ctrl-Shift-PgDn Extends selection to the right one information pane 

Shift-Home Extends selection to beginning of line 

Shift-End Extends selection to end of line 

Ctrl-Shift-Home Extends selection to beginning of data 

Ctrl-Shift-End Extends selection to end of data 

Ctrl-Shift-right arrow Extends selection to next word 

Ctrl-Shift-left arrow Extends selection to previous word 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Text Fields  

The following table lists the keyboard operations for text fields. For details on 
this component, see Text Fields.  

Table 29   Keyboard Operations for Text Fields  

Keyboard 

Operation 
Action 

Right arrow Moves insertion point one character to the right 

Left arrow Moves insertion point one character to the left 

Ctrl-right arrow Moves insertion point to beginning of next word 

Ctrl-left arrow 

Moves insertion point to beginning of current word, or, if insertion point 

is already at the beginning of the current word, moves it to the beginning 

of the previous word 

Home Moves insertion point to beginning of text field 

End Moves insertion point to end of text field 

Shift-Home Extends selection to beginning of line 

Shift-End Extends selection to end of line 

Shift-left arrow Extends selection one character to the left 

Shift-right arrow Extends selection one character to the right 

Ctrl-Shift--left 

arrow 
Extends selection to previous word 

Ctrl-Shift--right 

arrow 
Extends selection to next word 

Ctrl-A Selects all characters in the text field 

Toggle Buttons  

The following table lists the keyboard operation for toggle buttons. For details 
on this component, see Toggle Buttons.  

 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Table 30   Keyboard Operation for Toggle Buttons 

Keyboard Operation Action 

Spacebar Switches button on or off 

Tool Tips  

The following table lists the keyboard operations for tool tips. For details on this 
component, see Tool Tips.  

Table 31   Keyboard Operations for Tool Tips 

Keyboard Operation Action 

Ctrl-F1 Displays or dismisses tool tip 

Escape  Dismisses tool tip 

Toolbars  

The following table lists the keyboard operations for toolbars. For details on the 
appearance and behavior of this component, see Toolbars.  

Table 32   Keyboard Operations for Toolbars 

Keyboard Operation Action 

Arrow keys Navigates within toolbar 

Spacebar Activates toolbar button 

Tree Components  

The following table lists the keyboard operations for tree components. For 
details on the appearance and behavior of this component, see Tree 
Components.  

Table 33   Keyboard Operations for Tree Components  

Keyboard 

Operation 
Action 

Right arrow Expands current node 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Left arrow Collapses current node 

Up arrow Moves selection up one node 

Down arrow Moves selection down one node 

Home Moves selection to first node in tree 

End Moves selection to last node in tree 

Page Up Scrolls up one information pane 

Page Down Scrolls down one information pane 

Ctrl-PgUp 
Moves left one information pane, if not everything is visible in a 

horizontal orientation 

Ctrl-PgDn 
Moves right one information pane, if not everything is visible in a 

horizontal orientation 

Ctrl-A, Ctrl-/ Selects all nodes in tree 

Ctrl-\ Deselects all 

Shift-up arrow Extends selection up 

Shift-down arrow Extends selection down 

Shift-Home Extends selection to beginning of tree 

Shift-End Extends selection to end of tree 

Shift-PgUp Extends selection up one information pane 

Shift-PgDn Extends selection down one information pane 

Ctrl-Shift-PgDn Extends selection right one information pane 

Ctrl-Shift-PgUp Extends selection left one information pane 

B: Graphics Repository  
This appendix presents toolbar button and menu item graphics designed 
specifically for use in Java look and feel applications. The information is based 
on the Java Look and Feel Graphics Repository, which is available at 
http://java.sun.com/products/jfc/tsc.  

The contents of this appendix are available on the book's companion 

CD-ROM. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 As a general rule, use 16 x 16 pixel graphics for menu items and 

24 x 24 pixel graphics for toolbar buttons. 

These professional-quality graphics can save valuable development time and 
ensure consistent graphics and terminology across Java look and feel 
applications.  

The graphics are organized into six functional groups:  

• General  
• Navigation  
• Text  
• Tables  
• Media  
• Development tools 

The repository provides:  

• Small and large graphics. The 16 x 16 and 24 x 24 pixel graphics.  
• Description. Explanation of the concept underlying each pair of graphics. Use 

this information to help you decide whether these graphics are appropriate to 
represent a specific feature of your application. You might use a modified, 
context-driven version of this explanation to describe the feature in your status 
bar.  

• Name. Title to be used in corresponding menu items or button text. Variables, set 
off by curly braces, appear in some name fields. If the runtime value of this 
parameter is available, provide it for users.  

• Tool tip. Brief phrase appearing next to the pointer when the pointer is over one of 
these graphics. Variables, set off by curly braces, appear in some of the tool tip 
fields. If the runtime value of this parameter is available, provide it for users.  

• Keyboard shortcut. Keystroke combination (usually a modifier key and a 
character key) that activates the related menu item. Attach shortcuts to simple and 
constantly used features (like Ctrl-X for Cut). Ensure that each shortcut is unique 
within your application. For more information and guidelines on shortcuts, see 
Keyboard Shortcuts. For a summary of shortcuts, see Table 8.  

• Mnemonic. A mnemonic shows users which key to press (in conjunction with the 
Alt key) to activate a command or another GUI component. This section suggests 
appropriate letters to underline (in order of preference) in the related menu item or 
button. Choose from among the suggested mnemonics to aid consistency. For 
rules on choosing mnemonics for your toolbar buttons and menu items, see 
Mnemonics.  

• File name. The relative path name for the specified graphic in the Java Archive. 
The online file name follows this format: 

.../toolbarButtonGraphics/groupName/NameSize.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

All of the graphics reside in the toolbarButtonGraphics folder of the Java 
Archive. Therefore, the file-name information includes only the groupName 
subdirectory and NameSize.gif file name. Because the graphics are located in 
subdirectories, the path information is necessary. For instance, the repository 
contains two graphics for Stop--one for media transport and one for general use.  

 

• Other notes. Miscellaneous information about the graphics, including 
cross-references to related graphics or concepts. 

 Provide both graphics and text in a toolbar when you deem it 

appropriate--for instance, to accommodate novice or occasional users and 

those with poor vision. If you decide to display both button text and 

graphics, provide a way for end users to indicate their preferences for 

button text only, graphics only, or button text and graphics.  

 You can use the information in this appendix to create Swing actions. 

For more on Swing actions, see the Java 2 Platform, Standard Edition, v 
1.3 API Specification by visiting 
http://java.sun.com/j2se/1.3/docs/api/javax/swing/Action.html. 

General Graphics  

This section provides general-purpose graphics that represent:  

• Adding objects  
• Saving edits or checkpoints  
• Stopping tasks or processes  
• Adjusting the screen display  
• Changing magnification levels  
• Specifying preferences and properties  
• Printing  
• Displaying and retrieving previously visited locations  
• Creating and sending electronic mail  
• Aligning and justifying objects  
• Searching  
• Editing objects and data  
• Importing and exporting objects  
• Providing help and information 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Adding Objects  

This section contains graphics that represent the addition of an object 
to an existing set of objects.  

Add  

Graphics  

Description 
Adds an object to an 
existing set of objects 

Name Add {Object Name} 

Tool Tip Add {Object Name} 

Mnemonic A, D 

File Name 
.../general/Add16.gif 
.../general/Add24.gif 

Other 
Notes 

For more information on 
the plus symbol in the 
lower- right corner of the 
document graphic, see 
Add Object Indicators. 

 

New  

Graphics  

Description Creates a new object 

Name New {Object Name} 

Tool Tip New {Object Name} 

Shortcut Ctrl-N  

Mnemonic N, W 

File Name .../general/New16.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

.../general/New24.gif 

Other 
Notes 

For more information on 
the twinkle symbol on the 
lower-right corner of the 
document graphic, see 
New Object Indicators. 

 

Open  

Graphics  

Description 
Opens the specified 
object 

Name Open {Object Name} 

Tool Tip Open {Object Name} 

Shortcut Ctrl-O 

Mnemonic O, P, N 

File Name 
.../general/Open16.gif 
.../general/Open24.gif 

 

Saving Edits or Checkpoints  

The graphics in this section provide representations for saving edits or 
checkpoints for a specified object or group of objects.  

Save  

Graphics  

Description 

Commits all interim edits 
or checkpoints for an 
object to a permanent 
storage area 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Name Save 

Tool Tip Save 

Shortcut Ctrl-S 

Mnemonic S, V 

File Name 
.../general/Save16.gif 
.../general/Save24.gif 

 

Save All  

Graphics  

Description 
Commits all interim changes 
of a group of objects to a 
permanent storage area 

Name Save All 

Tool Tip Save All 

Mnemonic A, S, V, L 

File Name 
.../general/SaveAll16.gif 
.../general/SaveAll24.gif 

 

Save As  

Graphics  

Description 
Saves the object being 
edited to a different, 
permanent storage area 

Name Save As 

Tool Tip Save As 

Mnemonic A, S, V 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

File Name .../general/SaveAs16.gif 
.../general/SaveAs24.gif 

 

Stopping a Task  

The graphic in this section represents stopping an action or a process. 
Compare this section to Stop, which is for media transport processes.  

Stop  

Graphics  

Description 
Halts the execution of a 
task 

Name Stop {Action or Process} 

Tool Tip Stop {Action or Process} 

Mnemonic S, T, P 

File Name 
.../general/Stop16.gif 
.../general/Stop24.gif 

Other 
Notes 

The Stop feature should 
be available only when 
there is an activity to halt. 

 

Updating the Screen Display  

This section provides graphics to represent updating the screen 
display with new data.  

Refresh  

Graphics  

Description Updates screen display with 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

new data 

Name Refresh {Object Name} 

Tool Tip Refresh {Object Name} 

Mnemonic R, F, S, H 

File Name 
.../general/Refresh16.gif 
.../general/Refresh24.gif 

 

Changing Magnification Levels  

This section provides graphics to represent changing the 
magnification level used to view an object.  

Zoom  

Graphics  

Description 
Changes the 
magnification level used 
to view an object 

Name Zoom 

Tool Tip Zoom 

Mnemonic Z, M 

File Name 
.../general/Zoom16.gif 
.../general/Zoom24.gif 

 

Zoom In  

Graphics  

Description 
Increases the magnification 
level used (to view the 
details of an object) 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Name Zoom In 

Tool Tip Zoom In 

Mnemonic I, Z, N, M 

File Name 
.../general/ZoomIn16.gif 
.../general/ZoomIn24.gif 

 

Zoom Out  

Graphics  

Description 
Decreases the magnification 
level used (to view more of an 
object) 

Name Zoom Out 

Tool Tip Zoom Out 

Mnemonic O, Z, T, M 

File Name 
.../general/ZoomOut16.gif 
.../general/ZoomOut24.gif 

 

Specifying Preferences and Properties  

This section provides graphics to represent the display of:  

• Global attributes of the current application that might be set by users 
(preferences)  

• Local characteristics of a selected object that might be specified by users 
(properties) 

Preferences  

Graphics  

Description Displays global attributes of the 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

current application that might be 
set by users  

Name Preferences 

Tool Tip Preferences 

Mnemonic P, R, F  

File Name 
.../general/Preferences16.gif 
.../general/Preferences24.gif 

Other 
Notes 

See Properties Indicators. 

 

Properties  

Graphics  

Description 
Displays local characteristics of 
a selected object that might be 
edited by users  

Name Properties 

Tool Tip Properties 

Mnemonic P, R, T, S 

File Name 
.../general/Properties16.gif 
.../general/Properties24.gif 

Other 
Notes 

See Properties Indicators. 

 

Printing  

This section provides graphics that represent operations such as page 
setup, printing, and print previews.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Page Setup  

Graphics  

Description 
Enables users to specify 
properties for the current print 
job 

Name Page Setup 

Tool Tip Page Setup 

Mnemonic G, S, P 

File Name 
.../general/PageSetup16.gif 
.../general/PageSetup24.gif 

Other 
Notes 

See Properties Indicators. Page 
setup properties might include 
printer selection, paper 
orientation, size, and so forth.  

 

Print  

Graphics  

Description 
Sends an object or set of 
objects to be printed  

Name Print 

Tool Tip Print 

Shortcut Ctrl-P 

Mnemonic P, R, N 

File Name 
.../general/Print16.gif 
.../general/Print24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Print Preview  

Graphics  

Description 

Provides a preliminary 
representation of the output that 
would be generated by the Print 
menu item 

Name Print Preview 

Tool Tip Print Preview 

Mnemonic R, P, V, W 

File Name 
.../general/PrintPreview16.gif 
.../general/PrintPreview24.gif 

 

Displaying and Retrieving Previously Visited 

Locations  

This section provides graphics that represent bookmarks and history 
files.  

A bookmark is a saved URL (uniform resource locator) for a web 
page that has been added to a list of saved URLs. When users view a 
particular web site and want to return to it subsequently, they can 
create a bookmark for the site.  

On the other hand, a history file displays a list of previously visited 
locations (or opened files).  

Bookmarks  

Graphics  

Description 
Displays a list of documents 
marked for later retrieval 

Name Bookmarks  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tool Tip Bookmarks 

Mnemonic B, K, M, R 

File Name 
.../general/Bookmarks16.gif 
.../general/Bookmarks24.gif 

 

History  

Graphics  

Description 
Displays a list of previously 
visited locations (or opened 
files) 

Name History 

Tool Tip History 

Mnemonic H, S, T, Y 

File Name 
.../general/History16.gif 
.../general/History24.gif 

Creating and Sending Electronic Mail  

This section provides graphics that represent the creation and sending 
of electronic mail messages.  

Compose Mail  

Graphics  

Description 
Creates a new electronic mail 
message 

Name Compose Mail 

Tool Tip Compose Mail 

Mnemonic M, L, C 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

File Name .../general/ComposeMail16.gif 
.../general/ComposeMail24.gif 

 

Send Mail  

Graphics  

Description 
Sends the specified electronic 
mail message 

Name Send Mail 

Tool Tip Send Mail 

Mnemonic S, M, L, N 

File Name 
.../general/SendMail16.gif 
.../general/SendMail24.gif 

 

Aligning Objects  

This section contains graphics that represent the alignment of objects. 
Compare these graphics with the graphics in Justifying Objects.  

Do not use these graphics for textual objects. Instead use the 
graphics described in Text Alignment and Justification.  

Aligning Objects  

This section contains graphics that represent the alignment of objects. 
Compare these graphics with the graphics in Justifying Objects.  

Do not use these graphics for textual objects. Instead use the 
graphics described in Text Alignment and Justification.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Align Bottom  

Graphics  

Description 
Positions an object so that it lines 
up with the lower horizontal edge 
of its container 

Name Align Bottom {Object Name} 

Tool Tip Align Bottom {Object Name} 

Mnemonic B, T, M 

File Name 
.../general/AlignBottom16.gif 
.../general/AlignBottom24.gif 

 

Align Center  

Graphics  

Description 
Positions an object so that it is in 
the middle of its container along 
both horizontal and vertical axes 

Name Align Center {Object Name} 

Tool Tip Align Center {Object Name} 

Shortcut Ctrl-E 

Mnemonic C, N, T, R  

File Name 
.../general/AlignCenter16.gif 
.../general/AlignCenter24.gif 

Other 
Notes 

Do not use these graphics for 
textual objects; see Align Center. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Align Left  

Graphics  

Description 
Positions an object to line up 
with the leading vertical edge 
of its container 

Name Align Left {Object Name} 

Tool Tip Align Left {Object Name} 

Shortcut Ctrl-L 

Mnemonic L, F, T 

File Name 
.../general/AlignLeft16.gif 
.../general/AlignLeft24.gif 

Other 
Notes 

Do not use these graphics for 
textual objects; see Align 
Left. 

 

Align Right  

Graphics  

Description 
Positions an object to line up 
with the trailing vertical edge of 
its container 

Name Align Right {Object Name} 

Tool Tip Align Right {Object Name} 

Shortcut Ctrl-R 

Mnemonic R, G, H, T 

File Name 
.../general/AlignRight16.gif 
.../general/AlignRight24.gif 

Other 
Notes 

Do not use these graphics for 
textual objects; see Align 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Right. 

 

Align Top  

Graphics  

Description 
Positions an object to line up 
with the upper horizontal 
edge of its container 

Name Align Top {Object Name} 

Tool Tip Align Top {Object Name} 

Mnemonic T, P 

File Name 
.../general/AlignTop16.gif 
.../general/AlignTop24.gif 

Justifying Objects  

This section provides graphics to represent the justification of objects. 
Compare these graphics to those described in Text Alignment and 
Justification.  

Horizontally Justify  

Graphics  

Description 
Positions an object so that it fills the middle 
of its container evenly all the way to either 
vertical edge 

Name Horizontally Justify {Object Name} 

Tool Tip Horizontally Justify {Object Name} 

Mnemonic H, R, Z 

File Name 
.../general/AlignJustifyHorizontal16.gif 
.../general/AlignJustifyHorizontal24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Other 
Notes 

Do not use these graphics for textual 
objects; see Justify. 

Vertically Justify  

Graphics  

Description 
Positions an object to fill the middle of its 
container evenly all the way to either 
horizontal edge 

Name Vertically Justify {Object Name} 

Tool Tip Vertically Justify {Object Name} 

Mnemonic V, R, T 

File Name 
.../general/AlignJustifyVertical16.gif 
.../general/AlignJustifyVertical24.gif 

Other 
Notes 

Do not use these graphics for textual 
objects; see Justify. 

Searching  

This section provides graphics that represent search operations 
ranging from simple find-and-replace features within a document or a 
web page to a more comprehensive search feature with a scope as 
broad as one or more web sites or the entire World Wide Web.  

Find In  

Graphics  

Description 

Displays a window that 
enables the user to 
specify criteria to search 
for a specified object 

Name Find In {Scope} 

Tool Tip Find In {Scope} 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Shortcut Ctrl-F 

Mnemonic F, N, D 

File Name 
.../general/Find16.gif 
.../general/Find24.gif 

Other 
Notes 

Compare to Search. Find 
is used within an object 
(such as a document), 
whereas Search is used 
for more extensive 
operations across objects 
(for instance, multiple 
documents within a 
folder). 

Find Again  

Graphics  

Description 
Searches for the next instance 
of the object specified by the 
previous Find In command 

Name Find Again {Object Name} 

Tool Tip Find Again {Object Name} 

Shortcut Ctrl-G 

Mnemonic A, G, N  

File Name 
.../general/FindAgain16.gif 
.../general/FindAgain24.gif 

Other 
Notes 

Compare to Find In and 
Search. 

 

Replace  

Graphics  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Description 
Substitutes one object for 
another 

Name Replace 

Tool Tip Replace 

Shortcut Ctrl-H 

Mnemonic R, P, L, C 

File Name 
.../general/Replace16.gif 
.../general/Replace24.gif 

 

Search  

Graphics  

Description 
Searches for a specified 
object  

Name 
Search {Object Name} {in 
Scope} 

Tool Tip 
Search {Object Name} {in 
Scope} 

Mnemonic S, R, C, H 

File Name 
.../general/Search16.gif 
.../general/Search24.gif 

Other 
Notes 

Compare to Find In. 

Editing Objects and Data  

The graphics in this section represent common editing features such 
as copying, cutting, pasting, undoing, and redoing.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Copy  

Graphics  

Description 

Duplicates the selected 
object and makes it 
available to be pasted 
elsewhere 

Name Copy 

Tool Tip Copy 

Shortcut Ctrl-C 

Mnemonic C, P, Y 

File Name 
.../general/Copy16.gif 
.../general/Copy24.gif 

 

Cut  

Graphics  

Description 

Removes the selected 
object from its current 
location and makes it 
available to be pasted 
elsewhere 

Name Cut 

Tool Tip Cut 

Shortcut Ctrl-X 

Mnemonic T, C 

File Name 
.../general/Cut16.gif 
.../general/Cut24.gif 

Other 
Notes 

See also Delete and 
Remove. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Delete  

Graphics  

Description 
Removes the selected 
object from its current 
location 

Name Delete 

Tool Tip Delete 

Shortcut Delete 

Mnemonic D, L, T 

File Name 
.../general/Delete16.gif 
.../general/Delete24.gif 

Other 
Notes 

See also Remove and Cut. 

Remove  

Graphics  

Description 
Removes the selected item 
from its current context 

Name Remove 

Tool Tip Remove 

Mnemonic R, M, V 

File Name 
.../general/Remove16.gif 
.../general/Remove24.gif 

Other 
Notes 

See also Delete and Cut. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Paste  

Graphics  

Description 
Inserts an object or data 
previously placed in a 
temporary holding area 

Name Paste 

Tool Tip Paste 

Shortcut Ctrl-V 

Mnemonic P, S, T 

File Name 
.../general/Paste16.gif 
.../general/Paste24.gif 

Other 
Notes 

The object or data is 
usually placed in the 
temporary holding area 
by the Cut or Copy 
command. Compare to 
Copy and Cut. 

 

Edit  

Graphics  

Description 
Enables users to modify 
the selected object 

Name Edit 

Tool Tip Edit 

Mnemonic E, D, T 

File Name 
.../general/Edit16.gif 
.../general/Edit24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Undo  

Graphics  

Description 
Reverses the last 
transaction 

Name Undo {Action} 

Tool Tip Undo {Action} 

Shortcut Ctrl-Z 

Mnemonic U, N, D 

File Name 
.../general/Undo16.gif 
.../general/Undo24.gif 

 

Redo  

Graphics  

Description 
Reverses the effect of the 
last undone transaction 

Name Redo {Action} 

Tool Tip Redo {Action} 

Shortcut Ctrl-Y 

Mnemonic R, D 

File Name 
.../general/Redo16.gif 
.../general/Redo24.gif. 

Importing and Exporting Objects  

The graphics in this section represent the importing and exporting of 
objects. To import involves bringing objects or data (for example, 
documents created in another application, text files, and graphics files) 
into your application. To export means to save an object or data in a 
format other than your application's native format.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Import  

Graphics  

Description 

Opens an object or data 
that is in a format other 
than the application's 
native format 

Name Import 

Tool Tip Import 

Mnemonic I, M, P, T  

File Name 
.../general/Import16.gif 
.../general/Import24.gif 

 

Export  

Graphics  

Description 
Saves an object or data in a 
format other than the 
application's native format 

Name Export 

Tool Tip Export 

Mnemonic X, E, P, T 

File Name 
.../general/Export16.gif 
.../general/Export24.gif 

 

Providing Help and Information  

This section contains graphics that represent standard and contextual 
help, information about an object or a task, About boxes, and tips of 
the day.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Help  

Graphics  

Description 
Provides instructions and 
information to aid users 
in completing tasks  

Name Help 

Tool Tip Help 

Shortcut F1 

Mnemonic H, L, P 

File Name 
.../general/Help16.gif 
.../general/Help24.gif 

Other 
Notes 

As a general rule, help 
provides a system for 
browsing, searching, 
viewing, and reading 
information. It has more 
options than contextual 
help but might require 
activity that is tangential 
to the user's task.  

 

Contextual Help  

Graphics  

Description 
Displays information to users based 
on their working location in a piece of 
software 

Name Contextual Help 

Tool Tip Contextual Help 

Shortcut Shift-F1 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Mnemonic C, T, X, H 

File Name 
.../general/ContextualHelp16.gif 
.../general/ContextualHelp24.gif 

Other 
Notes 

Compare to the previous section. 

 

Information  

Graphics  

Description 
Displays information about an 
object or task 

Name Information 

Tool Tip Information 

Mnemonic I, N, F, O 

File Name 
.../general/Information16.gif 
.../general/Information24.gif 

 

About  

Graphics  

Description 
Provides information 
about the application as a 
whole 

Name About {Application Name} 

Tool Tip About {Application Name} 

Mnemonic A, B, T 

File Name 
.../general/About16.gif 
.../general/About24.gif 

Other For more information on 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Notes About boxes, see 
Designing About Boxes. 

 

Tip of the Day  

Graphics  

Description 
Provides a short hint about a 
feature of the application 

Name Tip of the Day 

Tool Tip Tip of the Day 

Mnemonic T, D, P 

File Name 
.../general/TipOfTheDay16.gif 
.../general/TipOfTheDay24.gif 

Navigation  

This section contains graphics that represent vertical and horizontal 
traversal as well as traversal to an initial, well-known location.  

Vertical Traversal  

The graphics in this section apply to navigation through objects with a 
vertical orientation.  

Down To  

Graphics  

Description Moves to the next location 

Name Down to {Location} 

Tool Tip Down to {Location} 

Shortcut Alt-down arrow 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Mnemonic D, W, N 

File Name 
.../navigation/Down16.gif 
.../navigation/Down24.gif 

Other 
Notes 

Use Down To when the 
orientation of the object 
being traversed is vertical. 
For horizontally oriented 
objects, use Forward To. 

 

Up  

Graphics  

Description 
Moves to the previous 
location 

Name Up to {Location} 

Tool Tip Up to {Location} 

Shortcut Alt-up arrow 

Mnemonic U, P 

File Name 
.../navigation/Up16.gif 
.../navigation/Up24.gif 

Other 
Notes 

Use Up when the 
orientation of the object 
being traversed is vertical. 
For horizontally oriented 
objects, use Back To. 

 

Horizontal Traversal  

The graphics in this section apply to navigation through objects with a 
horizontal orientation, such as web pages in a web site.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Back To  

Graphics  

Description 
Moves to the previous 
location 

Name Back to {Location} 

Tool Tip Back to {Location} 

Shortcut Alt-left arrow 

Mnemonic B, C, K 

File Name 
.../navigation/Back16.gif 
.../navigation/Back24.gif 

Other 
Notes 

Use Back To when the 
orientation of the object 
being traversed is 
horizontal. For vertically 
oriented objects, see Up. 

 

Forward To  

Graphics  

Description Moves to the next location 

Name Forward to {Location} 

Tool Tip Forward to {Location} 

Shortcut Alt-right arrow 

Mnemonic F, R, W, D 

File Name 
.../navigation/Forward16.gif 
.../navigation/Forward24.gif 

Other 
Notes 

Use Forward To when the 
orientation of the object being 
traversed is horizontal. For 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

vertically oriented objects, use 
Down To. 

 

Returning to an Initial Location  

This graphic represents movement to an initial location--for instance, 
the first page in a web site.  

Home To  

Graphics  

Description Moves to an initial location 

Name Home To {Location} 

Tool Tip Home To {Location} 

Shortcut Home 

Mnemonic H, M, O 

File Name 
.../navigation/Home16.gif 
.../navigation/Home24.gif 

Table Graphics  

The graphics in this section represent frequently used table features, 
including operations on columns and tables.  

Column Operations  

This section contains graphics for operations on table columns.  

Delete Column  

Graphics  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Description 
Removes the current column in a 
table 

Name Delete Column 

Tool Tip Delete Column 

Mnemonic C, D, L, T 

File Name 
.../table/ColumnDelete16.gif 
.../table/ColumnDelete24.gif 

 

Insert Column After  

Graphics  

Description 
Adds a new column after the current 
column in a table 

Name Insert Column After 

Tool Tip Insert Column After 

Mnemonic C, I, A 

File Name 
.../table/ColumnInsertAfter16.gif 
.../table/ColumnInsertAfter24.gif 

 

Insert Column Before  

Graphics  

Description 
Adds a new column before the current 
column in a table 

Name Insert Column Before 

Tool Tip Insert Column Before 

Mnemonic C, I, B 

File Name .../table/ColumnInsertBefore16.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

.../table/ColumnInsertBefore24.gif 

 

Row Operations  

This section contains graphics for operations on table rows.  

Delete Row  

Graphics  

Description 
Removes the current row of a 
table 

Name Delete Row 

Tool Tip Delete Row 

Mnemonic R, D, W, L 

File Name 
.../table/RowDelete16.gif 
.../table/RowDelete24.gif 

 

Insert Row After  

Graphics  

Description 
Adds a new row after the current 
row in a table 

Name Insert Row After 

Tool Tip Insert Row After 

Mnemonic R, I, A 

File Name 
.../table/RowInsertAfter16.gif 
.../table/RowInsertAfter24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Insert Row Before  

Graphics  

Description 
Adds a new row before the current 
row in a table 

Name Insert Row Before 

Tool Tip Insert Row Before 

Mnemonic R, I, B 

File Name 
.../table/RowInsertBefore16.gif 
.../table/RowInsertBefore24.gif 

Text  

This section presents graphics for the alignment and justification of 
textual objects as well as the use of type styles for text.  

Text Alignment and Justification  

These graphics represent the alignment of text objects. For the 
alignment of graphical objects, see Aligning Objects.  

Align Center  

Graphics  

Description 
Places the selected text in 
the middle of the specified 
unit  

Name Align Center 

Tool Tip Align Center 

Shortcut Ctrl-E 

Mnemonic C, N, T, R 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

File Name .../text/AlignCenter16.gif 
.../text/AlignCenter24.gif 

Other 
Notes 

An example of the unit 
specified in the description is 
a line or paragraph. Use this 
graphic only for text. The 
generic Align Center graphic 
might be more appropriate 
for other uses. See Align 
Center for details. 

 

Justify  

Graphics  

Description 

Spaces selected lines of text 
to come out evenly at both 
margins, including the last 
line (called "forced justify") 

Name Justify 

Tool Tip Justify 

Mnemonic J, S, T, F 

File Name 
.../text/AlignJustify16.gif 
.../text/AlignJustify24.gif 

Other 
Notes 

Use these graphics only for 
text. The generic 
Horizontally Justify and 
Vertically Justify might be 
more appropriate for other 
uses. 

 

Align Left  

Graphics  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Description 
Places the selected text 
along the left edge of the 
specified unit  

Name Align Left 

Tool Tip Align Left 

Shortcut Ctrl-L 

Mnemonic L, F, T 

File Name 
.../text/AlignLeft16.gif 
.../text/AlignLeft24.gif 

Other 
Notes 

An example of the unit 
specified in the 
description is a line or 
paragraph. Use the Align 
Left graphic only for text. 
See Align Left for graphics 
that might be more 
appropriate for other 
needs. 

 

Align Right  

Graphics  

Description 
Places the selected text 
along the right edge of the 
specified unit 

Name Align Right 

Tool Tip Align Right 

Shortcut Ctrl-R 

Mnemonic R, G, H, T 

File Name 
.../text/AlignRight16.gif 
.../text/AlignRight24.gif 

Other 
Notes 

An example of the unit 
specified in the description 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

is a line or paragraph. Use 
this graphic only for text. 
See Align Right for graphics 
that might be more 
appropriate for other 
needs. 

 

Type Style Graphics  

This section contains graphics that represent frequently used type 
styles for text.  

Bold  

Graphics  

Description 
Displays text in boldface 
type style 

Name Bold 

Tool Tip Bold 

Shortcut Ctrl-B 

Mnemonic B, L, D 

File Name 
.../text/Bold16.gif 
.../text/Bold24.gif 

 

Italic  

Graphics  

Description 
Displays text in an italic 
type style 

Name Italic 

Tool Tip Italic 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Shortcut Ctrl-I 

Mnemonic I, T, L, C 

File Name 
.../text/Italic16.gif 
.../text/Italic24.gif 

 

Normal  

Graphics  

Description 
Displays text without any 
deviations from the 
regular style  

Name Normal 

Tool Tip Normal 

Mnemonic N, R, M, L 

File Name 
.../text/Normal16.gif 
.../text/Normal24.gif 

 

Underline  

Graphics  

Description 
Displays text with a thin 
line underneath each 
character 

Name Underline 

Tool Tip Underline 

Shortcut Ctrl-U 

Mnemonic U, N, D, R 

File Name 
.../text/Underline16.gif 
.../text/Underline24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Media  

The graphics in this section represent:  

• Creation, selection, or opening of a movie (that is, a full-motion video 
with sound that is formatted for inclusion in an application)  

• Movement through time-sensitive data 

Creating a Movie  

The graphics in this section represent the creation, selection, or 
opening of a movie.  

Movie  

Graphics  

Description 
Creates, selects, or opens 
a movie 

Name Movie 

Tool Tip Movie 

Mnemonic M, V, O 

File Name 
.../media/Movie16.gif 
.../media/Movie24.gif 

 

Moving Through Time-Based Media  

This section contains graphics that represent movement through 
time-based media including spoken audio, music, images, animation, 
and video.  

Several of these graphics use the concept of the play head, which 
defines the location in the media stream where the time-based media 
recommences its presentation once an action is carried out. For 
instance, Pause stops the media display temporarily without changing 
the position of the play head. On the other hand, Stop halts the 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

presentation of the time-based media and moves the play head to the 
beginning of the media object.  

Fast Forward  

Graphics  

Description 
Advances rapidly through 
time-based media 

Name Fast Forward 

Tool Tip Fast Forward 

Mnemonic F, S, T 

File Name 
.../media/FastForward16.gif 
.../media/FastForward24.gif 

 

Pause  

Graphics  

Description 

Stops the media display 
temporarily without 
changing the position of 
the play head 

Name Pause 

Tool Tip Pause 

Mnemonic P, S, A 

File Name 
.../media/Pause16.gif 
.../media/Pause24.gif 

Other 
Notes 

When play is continued, 
Pause does not return to 
the beginning of the 
media object, but 
resumes where it left off. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Play  

Graphics  

Description 
Renders time-based 
media 

Name Play 

Tool Tip Play 

Mnemonic P, L, Y 

File Name 
.../media/Play16.gif 
.../media/Play24.gif 

 

Rewind  

Graphics  

Description 
Moves quickly backward 
through time-based media 

Name Rewind 

Tool Tip Rewind 

Mnemonic R, W, N, D 

File Name 
.../media/Rewind16.gif 
.../media/Rewind24.gif 

Other 
Notes 

Use these graphics only 
for media transport or 
other temporal events. 

 

Step Back  

Graphics  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Description 
Moves the play head back 
one unit 

Name Step Back 

Tool Tip Step Back 

Mnemonic B, C, K, S 

File Name 
.../media/StepBack16.gif 
.../media/StepBack24.gif 

 

Step Forward  

Graphics  

Description 
Moves the play head forward one 
unit 

Name Step Forward 

Tool Tip Step Forward 

Mnemonic F, R, W, D 

File Name 
.../media/StepForward16.gif 
.../media/StepForward24.gif 

Other 
Notes 

Use these graphics only for 
media transport or other 
temporal events. 

 

Stop  

Graphics  

Description 

Halts the presentation 
and returns to the 
beginning of the media 
object 

Name Stop 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tool Tip Stop 

Mnemonic S, T, P 

File Name 
.../media/Stop16.gif 
.../media/Stop24.gif 

Other 
Notes 

Use these graphics only 
for media transport or 
other temporal events. 
The generic graphic 
described in Stop is more 
appropriate for other 
uses. 

 

Volume  

Graphics  

Description 
Provides a way to adjust 
the sound volume 

Name Volume 

Tool Tip Volume 

Mnemonic V, L, M 

File Name 
.../media/Volume16.gif 
.../media/Volume24.gif 

Other 
Notes 

Use these graphics only for 
audio media. 

Navigation  

This section contains graphics that represent vertical and horizontal 
traversal as well as traversal to an initial, well-known location.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Vertical Traversal  

The graphics in this section apply to navigation through objects with a 
vertical orientation.  

Down To  

Graphics  

Description Moves to the next location 

Name Down to {Location} 

Tool Tip Down to {Location} 

Shortcut Alt-down arrow 

Mnemonic D, W, N 

File Name 
.../navigation/Down16.gif 
.../navigation/Down24.gif 

Other 
Notes 

Use Down To when the 
orientation of the object 
being traversed is vertical. 
For horizontally oriented 
objects, use Forward To. 

Up  

Graphics  

Description 
Moves to the previous 
location 

Name Up to {Location} 

Tool Tip Up to {Location} 

Shortcut Alt-up arrow 

Mnemonic U, P 

File Name .../navigation/Up16.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

.../navigation/Up24.gif 

Other 
Notes 

Use Up when the 
orientation of the object 
being traversed is vertical. 
For horizontally oriented 
objects, use Back To. 

 

Horizontal Traversal  

The graphics in this section apply to navigation through objects with a 
horizontal orientation, such as web pages in a web site.  

Back To  

Graphics  

Description 
Moves to the previous 
location 

Name Back to {Location} 

Tool Tip Back to {Location} 

Shortcut Alt-left arrow 

Mnemonic B, C, K 

File Name 
.../navigation/Back16.gif 
.../navigation/Back24.gif 

Other 
Notes 

Use Back To when the 
orientation of the object 
being traversed is 
horizontal. For vertically 
oriented objects, see Up. 

Forward To  

Graphics  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Description Moves to the next location 

Name Forward to {Location} 

Tool Tip Forward to {Location} 

Shortcut Alt-right arrow 

Mnemonic F, R, W, D 

File Name 
.../navigation/Forward16.gif 
.../navigation/Forward24.gif 

Other 
Notes 

Use Forward To when the 
orientation of the object being 
traversed is horizontal. For 
vertically oriented objects, use 
Down To. 

 

Returning to an Initial Location  

This graphic represents movement to an initial location--for instance, 
the first page in a web site.  

Home To  

Graphics  

Description Moves to an initial location 

Name Home To {Location} 

Tool Tip Home To {Location} 

Shortcut Home 

Mnemonic H, M, O 

File Name 
.../navigation/Home16.gif 
.../navigation/Home24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Table Graphics  

The graphics in this section represent frequently used table features, 
including operations on columns and tables.  

Column Operations  

This section contains graphics for operations on table columns.  

Delete Column  

Graphics  

Description 
Removes the current column in a 
table 

Name Delete Column 

Tool Tip Delete Column 

Mnemonic C, D, L, T 

File Name 
.../table/ColumnDelete16.gif 
.../table/ColumnDelete24.gif 

 

Insert Column After  

Graphics  

Description 
Adds a new column after the current 
column in a table 

Name Insert Column After 

Tool Tip Insert Column After 

Mnemonic C, I, A 

File Name 
.../table/ColumnInsertAfter16.gif 
.../table/ColumnInsertAfter24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Insert Column Before  

Graphics  

Description 
Adds a new column before the current 
column in a table 

Name Insert Column Before 

Tool Tip Insert Column Before 

Mnemonic C, I, B 

File Name 
.../table/ColumnInsertBefore16.gif 
.../table/ColumnInsertBefore24.gif 

 

Row Operations  

This section contains graphics for operations on table rows.  

Delete Row  

Graphics  

Description 
Removes the current row of a 
table 

Name Delete Row 

Tool Tip Delete Row 

Mnemonic R, D, W, L 

File Name 
.../table/RowDelete16.gif 
.../table/RowDelete24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Insert Row After  

Graphics  

Description 
Adds a new row after the current 
row in a table 

Name Insert Row After 

Tool Tip Insert Row After 

Mnemonic R, I, A 

File Name 
.../table/RowInsertAfter16.gif 
.../table/RowInsertAfter24.gif 

 

Insert Row Before  

Graphics  

Description 
Adds a new row before the current 
row in a table 

Name Insert Row Before 

Tool Tip Insert Row Before 

Mnemonic R, I, B 

File Name 
.../table/RowInsertBefore16.gif 
.../table/RowInsertBefore24.gif 

Text  

This section presents graphics for the alignment and justification of 
textual objects as well as the use of type styles for text.  

Text Alignment and Justification  

These graphics represent the alignment of text objects. For the 
alignment of graphical objects, see Aligning Objects.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Align Center  

Graphics  

Description 
Places the selected text in 
the middle of the specified 
unit  

Name Align Center 

Tool Tip Align Center 

Shortcut Ctrl-E 

Mnemonic C, N, T, R 

File Name 
.../text/AlignCenter16.gif 
.../text/AlignCenter24.gif 

Other 
Notes 

An example of the unit 
specified in the description is 
a line or paragraph. Use this 
graphic only for text. The 
generic Align Center graphic 
might be more appropriate 
for other uses. See Align 
Center for details. 

 

Justify  

Graphics  

Description 

Spaces selected lines of text 
to come out evenly at both 
margins, including the last 
line (called "forced justify") 

Name Justify 

Tool Tip Justify 

Mnemonic J, S, T, F 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

File Name .../text/AlignJustify16.gif 
.../text/AlignJustify24.gif 

Other 
Notes 

Use these graphics only for 
text. The generic 
Horizontally Justify and 
Vertically Justify might be 
more appropriate for other 
uses. 

 

Align Left  

Graphics  

Description 
Places the selected text 
along the left edge of the 
specified unit  

Name Align Left 

Tool Tip Align Left 

Shortcut Ctrl-L 

Mnemonic L, F, T 

File Name 
.../text/AlignLeft16.gif 
.../text/AlignLeft24.gif 

Other 
Notes 

An example of the unit 
specified in the 
description is a line or 
paragraph. Use the Align 
Left graphic only for text. 
See Align Left for graphics 
that might be more 
appropriate for other 
needs. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Align Right  

Graphics  

Description 
Places the selected text 
along the right edge of the 
specified unit 

Name Align Right 

Tool Tip Align Right 

Shortcut Ctrl-R 

Mnemonic R, G, H, T 

File Name 
.../text/AlignRight16.gif 
.../text/AlignRight24.gif 

Other 
Notes 

An example of the unit 
specified in the description 
is a line or paragraph. Use 
this graphic only for text. 
See Align Right for graphics 
that might be more 
appropriate for other 
needs. 

 

Type Style Graphics  

This section contains graphics that represent frequently used type 
styles for text.  

Bold  

Graphics  

Description 
Displays text in boldface 
type style 

Name Bold 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tool Tip Bold 

Shortcut Ctrl-B 

Mnemonic B, L, D 

File Name 
.../text/Bold16.gif 
.../text/Bold24.gif 

 

Italic  

Graphics  

Description 
Displays text in an italic 
type style 

Name Italic 

Tool Tip Italic 

Shortcut Ctrl-I 

Mnemonic I, T, L, C 

File Name 
.../text/Italic16.gif 
.../text/Italic24.gif 

 

Normal  

Graphics  

Description 
Displays text without any 
deviations from the 
regular style  

Name Normal 

Tool Tip Normal 

Mnemonic N, R, M, L 

File Name .../text/Normal16.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

.../text/Normal24.gif 

 

Underline  

Graphics  

Description 
Displays text with a thin 
line underneath each 
character 

Name Underline 

Tool Tip Underline 

Shortcut Ctrl-U 

Mnemonic U, N, D, R 

File Name 
.../text/Underline16.gif 
.../text/Underline24.gif 

Media  

The graphics in this section represent:  

• Creation, selection, or opening of a movie (that is, a full-motion video 
with sound that is formatted for inclusion in an application)  

• Movement through time-sensitive data 

Creating a Movie  

The graphics in this section represent the creation, selection, or 
opening of a movie.  

Movie  

Graphics  

Description Creates, selects, or opens 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

a movie 

Name Movie 

Tool Tip Movie 

Mnemonic M, V, O 

File Name 
.../media/Movie16.gif 
.../media/Movie24.gif 

 

Moving Through Time-Based Media  

This section contains graphics that represent movement through 
time-based media including spoken audio, music, images, animation, 
and video.  

Several of these graphics use the concept of the play head, which 
defines the location in the media stream where the time-based media 
recommences its presentation once an action is carried out. For 
instance, Pause stops the media display temporarily without changing 
the position of the play head. On the other hand, Stop halts the 
presentation of the time-based media and moves the play head to the 
beginning of the media object.  

Fast Forward  

Graphics  

Description 
Advances rapidly through 
time-based media 

Name Fast Forward 

Tool Tip Fast Forward 

Mnemonic F, S, T 

File Name 
.../media/FastForward16.gif 
.../media/FastForward24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Pause  

Graphics  

Description 

Stops the media display 
temporarily without 
changing the position of 
the play head 

Name Pause 

Tool Tip Pause 

Mnemonic P, S, A 

File Name 
.../media/Pause16.gif 
.../media/Pause24.gif 

Other 
Notes 

When play is continued, 
Pause does not return to 
the beginning of the 
media object, but 
resumes where it left off. 

 

Play  

Graphics  

Description 
Renders time-based 
media 

Name Play 

Tool Tip Play 

Mnemonic P, L, Y 

File Name 
.../media/Play16.gif 
.../media/Play24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Rewind  

Graphics  

Description 
Moves quickly backward 
through time-based media 

Name Rewind 

Tool Tip Rewind 

Mnemonic R, W, N, D 

File Name 
.../media/Rewind16.gif 
.../media/Rewind24.gif 

Other 
Notes 

Use these graphics only 
for media transport or 
other temporal events. 

 

Step Back  

Graphics  

Description 
Moves the play head back 
one unit 

Name Step Back 

Tool Tip Step Back 

Mnemonic B, C, K, S 

File Name 
.../media/StepBack16.gif 
.../media/StepBack24.gif 

 

Step Forward  

Graphics  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Description 
Moves the play head forward one 
unit 

Name Step Forward 

Tool Tip Step Forward 

Mnemonic F, R, W, D 

File Name 
.../media/StepForward16.gif 
.../media/StepForward24.gif 

Other 
Notes 

Use these graphics only for 
media transport or other 
temporal events. 

 

Stop  

Graphics  

Description 

Halts the presentation 
and returns to the 
beginning of the media 
object 

Name Stop 

Tool Tip Stop 

Mnemonic S, T, P 

File Name 
.../media/Stop16.gif 
.../media/Stop24.gif 

Other 
Notes 

Use these graphics only 
for media transport or 
other temporal events. 
The generic graphic 
described in Stop is more 
appropriate for other 
uses. 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Volume  

Graphics  

Description 
Provides a way to adjust 
the sound volume 

Name Volume 

Tool Tip Volume 

Mnemonic V, L, M 

File Name 
.../media/Volume16.gif 
.../media/Volume24.gif 

Other 
Notes 

Use these graphics only for 
audio media. 

Graphics for Development Tools  

The development graphics represent objects or processes in the 
software development process.  

Creating and Deploying Applications and 

Applets  

The graphics in this section represent:  

• The creation, selection, and opening of an application, an applet, a J2EE 
application, a J2EE application client, and a J2EE server  

• The addition of a J2EE application client to a J2EE application  
• The deployment (that is, installation in an operational environment) of an 

application 

A J2EE application consists of J2EE components (application clients, 
applets, HTML pages, JSP pages (JavaServer Pages), servlets, and 
enterprise beans) that run on the J2EE platform. J2EE applications are 
typically designed for distribution across multiple computing tiers.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

A J2EE application client is a first-tier client program that executes in 
its own Java virtual machine, but might access J2EE components in 
the web or business tier.  

A J2EE server is a collection of runtime services provided by the J2EE 
platform. These include HTTP (Hypertext Transfer Protocol), HTTPS 
(Secure Hypertext Transfer Protocol), JTA (Java Transaction API), 
RMI-IIOP (Remote Method Invocation-Internet Inter-ORB Protocol), 
Java IDL (Java Interface Definition Language), JDBC (Java Database 
Connectivity), JMS (Java Message Service), JNDI (Java Naming and 
Directory Interface), JavaMail, and JAF (JavaBeans Activation 
Framework). Although J2EE servers usually come packaged with web 
and EJB containers, they are not required to. For example, an OS 
vendor could supply the runtime services while a separate vendor 
supplied the J2EE containers.  

For deployment, a J2EE application is packaged in an EAR (Enterprise 
Archive) file.  

 

Note — You can use a twinkle badge with these graphics to indicate a new 
applet, application, J2EE application, J2EE application client, J2EE server, bean, 
enterprise bean, host, and server. For details, see New Object Indicators.  

 

Applet  

Graphics  

Description 
Creates, selects, or opens an 
applet 

Name Applet 

Tool Tip Applet 

Mnemonic A, P, L, T  

File Name 
.../development/Applet16.gif 
.../development/Applet24.gif 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Application  

Graphics  

Description 
Creates, selects, or opens an 
application 

Name Application 

Tool Tip Application 

Mnemonic A, P, L, N 

File Name 
.../development/Application16.gif 
.../development/Application24.gif 

Applet  

Graphics  

Description 
Creates, selects, or opens an 
applet 

Name Applet 

Tool Tip Applet 

Mnemonic A, P, L, T  

File Name 
.../development/Applet16.gif 
.../development/Applet24.gif 

 

Application  

Graphics  

Description 
Creates, selects, or opens an 
application 

Name Application 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Tool Tip Application 

Mnemonic A, P, L, N 

File Name 
.../development/Application16.gif 
.../development/Application24.gif 

J2EE Application  

Graphics  

Description Creates, selects, or opens a J2EE application 

Name J2EE Application 

Tool Tip J2EE Application 

Mnemonic E, A, P, L, C 

File Name 
.../development/J2EEApplication16.gif 
.../development/J2EEApplication24.gif 

J2EE Application Client 

Graphics  

Description Creates, selects, or opens a J2EE application client 

Name J2EE Application Client 

Tool Tip J2EE Application Client 

Mnemonic C, L, N, T 

File Name 
.../development/J2EEApplicationClient16.gif 
.../development/J2EEApplicationClient24.gif 

Add J2EE Application Client 

Graphics  

Description Adds a J2EE application client to a J2EE application 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Name Add J2EE Application Client 

Tool Tip Add J2EE Application Client 

Mnemonic C, L, N, T, A 

File Name 
.../development/J2EEApplicationClientAdd16.gif 
.../development/J2EEApplicationClientAdd24.gif 

J2EE Server  

Graphics  

Description 
Creates, selects, or opens a J2EE 
server 

Name J2EE Server 

Tool Tip J2EE Server 

Mnemonic S, R, V  

File Name 
.../development/J2EEServer16.gif 
.../development/J2EEServer24.gif 

Deploy Application  

Graphics  

Description Deploys a J2EE application to a J2EE server  

Name Deploy Application 

Tool Tip Deploy Application 

Mnemonic D, P, L, Y, A  

File Name 
.../development/ApplicationDeploy16.gif 
.../development/ApplicationDeploy24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Creating and Adding Beans and Enterprise 

Beans  

The graphics in this section represent the creation, selection, and 
opening of a bean (a component using the JavaBeans specification) 
and an enterprise bean (a component based on the EJB architecture 
for development and deployment of object-oriented, distributed, 
enterprise-level applications).  

Bean  

Graphics  

Description 
Creates, selects, or opens a 
bean 

Name Bean 

Tool Tip Bean 

Mnemonic B, N, E 

File Name 
.../development/Bean16.gif 
.../development/Bean24.gif 

 

Add Bean  

Graphics  

Description 
Adds a bean to an existing set of 
objects 

Name Add Bean 

Tool Tip Add Bean 

Mnemonic B, N, D  

File Name 
.../development/BeanAdd16.gif 
.../development/BeanAdd24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Enterprise JavaBean 

Graphics  

Description Creates, selects, or opens an enterprise bean 

Name Enterprise JavaBean 

Tool Tip Enterprise Bean 

Mnemonic E, J, B, N, T, P 

File Name 
.../development/EnterpriseJavaBean16.gif 
.../development/EnterpriseJavaBean24.gif 

Creating Hosts and Servers  

The graphics in this section represent the creation, selection, or 
opening of a host (a computer system that is accessed by one or more 
computers and workstations at remote locations) and a server (a 
network device that manages resources and supplies services to a 
client).  

Host  

Graphics  

Description 
Creates, selects, or opens a 
host 

Name Host 

Tool Tip Host 

Mnemonic H, S, T 

File Name 
.../development/Host16.gif 
.../development/Host24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Server  

Graphics  

Description 
Creates, selects, or opens a 
server 

Name Server 

Tool Tip Server 

Mnemonic S, R, V  

File Name 
.../development/Server16.gif 
.../development/Server24.gif 

Creating and Adding Java Archive Files  

The graphics in this section represent the creation, selection, and 
opening of:  

• JAR (Java Archive) files  
• Enterprise JavaBeans JAR files (a Java Archive file for an enterprise bean)  
• EAR (Enterprise Archive) files 

It also provides graphics to represent the addition of a Java Archive 
file to an existing set of objects.  

JAR  

Graphics  

Description 
Creates, selects, or opens a 
JAR file 

Name Java Archive 

Tool Tip Java Archive 

Mnemonic J, R, A 

File Name 
.../development/Jar16.gif 
.../development/Jar24.gif 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Enterprise JavaBean JAR 

Graphics  

Description 
Creates, selects, or opens an Enterprise JavaBeans 
JAR 

Name Enterprise JavaBean JAR 

Tool Tip Enterprise JavaBean JAR 

Mnemonic E, J, B, N, T, P 

File Name 
.../development/EnterpriseJavaBeanJar16.gif 
.../development/EnterpriseJavaBeanJar24.gif 

Add JAR  

Graphics  

Description 
Adds a JAR to an existing set of 
archives 

Name Add Java Archive 

Tool Tip Add Java Archive 

Mnemonic J, R, A, D  

File Name 
.../development/JarAdd16.gif 
.../development/JarAdd24.gif 

Creating and Adding Web Archive Files and 

Web Components  

The graphics in this section represent the:  

• Creation, selection, and opening of a J2EE Web Archive file (WAR)  
• Addition of a WAR to an existing set of objects  
• Creation, selection, and opening of a web component (an executable file 

that is contained in a WAR file)  
• Addition of a web component to a WAR file 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

WAR  

Graphics  

Description 
Creates, selects, or opens a 
J2EE WAR file 

Name J2EE Web Archive 

Tool Tip J2EE Web Archive 

Mnemonic W, R, A 

File Name 
.../development/War16.gif 
.../development/War24.gif 

Add WAR  

Graphics  

Description 
Adds a WAR to an existing set of 
objects 

Name Add J2EE Web Archive 

Tool Tip Add J2EE Web Archive 

Mnemonic W, B, R, C 

File Name 
.../development/WarAdd16.gif 
.../development/WarAdd24.gif 

Web Component  

Graphics  

Description Creates, selects, or opens a web component 

Name Web Component 

Tool Tip Web Component 

Mnemonic W, B, C, M 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

File Name .../development/WebComponent16.gif 
.../development/WebComponent24.gif 

Add Web Component  

Graphics  

Description Adds a web component to a WAR file 

Name Add J2EE Web Component 

Tool Tip Add J2EE Web Component 

Mnemonic W, B, C, A, D 

File Name 
.../development/WebComponentAdd16.gif 
.../development/WebComponentAdd24.gif 

C: Localization Word Lists  

This appendix contains a list of words and phrases encountered in 
using or developing standard Java applications with the Java look and 
feel. The tables provide translations for interface elements and 
concepts in French, German, Spanish, Italian, Swedish, Japanese, 
Simplified Chinese, Traditional Chinese, and Korean. The terms 
appear in two tables--one for European and another for Asian 
languages. The tables follow these conventions:  

• Terms that are intended for use as menu names, menu items, or button 
text are boldfaced.  

• Parenthetical explanations of terms in English are not necessarily 
translated into other languages.  

• Synonyms are separated by commas in some languages. 

European Languages  

Table 34   Word List for European Languages  

 

 
English French German Spanish  Italian  Swedish  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

1 

About 

{Application} 

(item in Help 

menu) 

A propos de 

l'application 
Anwendungsinfo Acerca de (la aplicación) 

Informazioni 

sull'applicazione 
Om prognamn 

2 About boxes 
Boîtes de dialogue A 

propos de 
Feldinfo Cuadros de diálogo Acerca de finestre Informazioni su Om-rutor 

3 
Abstract Window 

Toolkit 

Outils de fenêtre 

abstraite 
Abstract Window Toolkit 

Caja de herramientas de 

ventanas abstractas 
Abstract Window Toolkit Abstract Window Toolkit 

4 accessibility accessibilité Eingabehilfe accesibilidad accessibilità åtkomlighet 

5 active components composants actifs aktive Komponenten componentes activos componenti attivi aktiva komponenter 

6 active windows fenêtres actives aktive Fenster ventanas activas finestre attive aktiva fönster 

7 alert boxes boîtes d'alerte Warnfelder cuadros de diálogo de alerta finestre di avviso varningsrutor 

8 

Align Center 

(item in Format 

menu) 

Centrer Zentriert Centrar Centra Centrera 

9 
Align Left (item in 

Format menu) 
Aligner à gauche Linksbündig Alinear a la izquierda Allinea a sinistra Vänsterjustera 

10 
Align Right (item 

in Format menu) 
Aligner à droite Rechtsbündig Alinear a la derecha Allinea a destra Högerjustera 

11 alignment alignement Ausrichtung alineación allineamento 
justering, 

blankettinpassning 

12 anchor point point d'ancrage Ankerpunkt punto de anclaje punto di ancoraggio förankringspunkt 

13 animation animation Animation animación animazione animering 

14 applet applet Applet subprograma applet miniprogram 

15 application application Anwendung aplicación applicazione program, tillämpning 

16 Apply (button) Appliquer Übernehmen Aplicar Applica Använd 

17 arrow keys 
touches de 

défilement 
Pfeiltasten teclas de flecha tasti freccia piltangenter 

18 
assistive 

technologies 

technologies 

d'assistance 
Hilfstechnologien tecnología de asistencia tecnologie di assistenza hjälpmeddelande 

19 background arrière-plan Hintergrund fondo sfondo 
bakgrund, arbeta i 

bakgrunden 

20 backing windows fenêtres auxiliaires Notizblockfenster ventanas de apoyo finestre ausiliarie underliggande fönster 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

21 

Beeps (label in 

notification dialog 

box) 

Bips (libellé dans la 

boîte de dialogue 

d'avertissement) 

Signaltöne 

(Bezeichnung im 

Benachrichtigungsdialo

gfeld) 

Señales acústicas (etiqueta 

del cuadro de diálogo de 

notificaci ón) 

Segnali acustici 

(etichetta nella finestra 

di dialogo di notifica) 

ljudsignaler 

22 bit depth profondeur de bits Bit-Tiefe profundidad de bit profondità di bit bitdjup 

23 
Bold (item in 

Format menu) 
Gras Fett Negrita Grassetto Fetstil 

24 bold text texte gras fettgedruckter Text texto en negrita testo in grassetto fetstil 

25 borders bordures Rahmen bordes bordi konturlinjer 

26 Browse (button) Parcourir Durchsuchen Explorar Sfoglia Bläddra 

27 browser navigateur Browser navegador browser (webb)läsare 

28 button border bordure du bouton 
Schaltflächenumrandun

g 
borde de botón bordo del pulsante knappens kant 

29 button graphics 
graphiques du 

bouton 
Schaltflächengrafik gráfico de botón grafica del pulsante bild för knapp 

30 button text texte du bouton Schaltflächentext texto de botón testo del pulsante knappens text 

31 Cancel (button) Annuler Abbrechen Cancelar Annulla Avbryt 

32 capitalization mise en majuscules Großschreibung uso de mayúsculas lettere maiuscole versaler, gör till versaler 

33 caution symbol symbole d'attention Warnsymbol símbolo de precaución simbolo di attenzione varningssymbol 

34 
CDE style look and 

feel 

apparence de type 

CDE 

Erscheinungsbild im 

CDE-Stil 
apariencia del estilo de CDE aspetto stile CDE CDE-känsla 

35 cells (in tables) 
cellules (d'un 

tableau) 
Zellen (in Tabellen) celdas (en tablas) celle (nelle tabelle) celler 

36 
channels (in 

scrollbars) 

canaux (dans les 

barres de 

défilement) 

Kanäle (in 

Bildlaufleisten) 

canales (en barras de 

desplazamiento) 

canali (nelle barre di 

scorrimento) 
kanaler 

37 
checkbox menu 

items 

options de menu 

avec case à cocher 

Kontrollkästchen-Menü

elemente 

opciones de menú con casillas 

de verificación 

voci di menu con casella 

di selezione  
kryssrutealternativ 

38 checkboxes cases à cocher Kontrollkästchen casillas de verificación caselle di selezione kryssrutor 

39 choosers sélecteurs Auswahl selectores selettori väljare 

40 clicking cliquer klicken hacer clic clic del mouse klicka 

41 client properties propriétés du client Client-Eigenschaften propiedades de cliente proprietà client klientegenskaper 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

42 
Close (button or 

item in File menu) 
Fermer Schließen Cerrar Chiudi Stäng 

43 close control 
commande de 

fermeture 

Steuerelement 

schließen 
control de cierre controllo di chiusura stängningsknapp 

44 color choosers 
sélecteurs de 

couleurs 
Farbauswahl selectores de color selettori dei colori färgväljare 

45 column (in tables) 
colonne (d'un 

tableau) 
Spalte (in Tabellen) columna (en tablas) colonne (nelle tabelle) kolumn 

46 
column header (in 

tables) 

en-tête de colonne 

(d'un tableau) 

Spaltenüberschrift (in 

Tabellen) 

cabecera de columna (en 

tablas) 

intestazione delle 

colonne (nelle tabelle) 
kolumnrubrik 

47 combo boxes 
boîtes de dialogue 

mixtes 
Kombinationsfelder cuadros combinados caselle combinate kombinationsruta 

48 
command button 

row 

rangée de boutons 

de commande 

Befehlsschaltflächen-Z

eile 
fila de botones de comando 

riga dei pulsanti di 

comando 
knapprad 

49 command buttons 
boutons de 

commande 
Befehlsschaltflächen botones de comando pulsanti di comando kommandoknapp 

50 components composants Komponenten componentes componenti komponent 

51 containers conteneurs Container contenedores contenitori behållare 

52 
content panel (in a 

color chooser) 

panneau de 

contenu (dans un 

sélecteur de 

couleurs) 

Inhaltbedienfeld (in 

einer Farbauswahl) 

panel de contenido (en un 

selector de color) 

pannello del contenuto 

(in un selettore del 

colore) 

innehållspanel 

53 content panes 
sous-fenêtres de 

contenu 
Inhaltteilfenster paneles de contenido pannelli del contenuto innehållsfönster 

54 
Contents (item in 

Help menu) 
Contenu Inhalt Contenido Sommario Innehåll 

55 contextual menus menus contextuels Kontextmenüs menús contextuales menu contestuali 
sammanhangsberoende 

meny 

56 
Continue (button 

in Error alert box) 
Continuer Weiter Continuar Continua Fortsätt 

57 control type style 
caractères de type 

contrôle 
Steuerelementtyp-Stil estilo del tipo de control 

stile di caratteri di 

controllo 
teckensnitt för styrtecken 

58 Control-clicking Ctrl + clic 
Klicken bei gedrückter 

Umschalttaste 
Control + clic Ctrl + clic del mouse Ctrl-klicka 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

59 controls contrôles Steuerelemente controles controlli reglage 

60 Control-Tab Ctrl + Tab STRG + Tab Control + Tab Ctrl + Tab Ctrl-Tabb 

61 
Copy (item in Edit 

menu) 
Copier Kopieren Copiar Copia Kopiera 

62 crosshair pointer pointeur en croix Kreuzzeiger puntero en forma de cruz puntatore a croce hårkorsmarkör 

63 
cross-platform 

color 

couleur 

multi-plateforme 

plattformübergreifende 

Farbe 

color para múltiples 

plataformas 
colore multipiattaforma plattformsoberoende färg 

64 
cross-platform 

delivery 

visualisation 

multi-plateforme 

plattformübergreifende 

Übermittlung 

entrega en múltiples 

plataformas 
utilizzo multipiattaforma 

plattformsoberoende 

sändning 

65 currency formats formats de devise Währungsformat formatos de divisa formati di valuta valutaformat 

66 
Cut (item in Edit 

menu) 
Couper Ausschneiden Cortar Taglia Klipp ut 

67 data structure 
structure de 

données 
Datenstruktur estructura de datos struttura dei dati datastruktur 

68 

Date Format (label 

in preferences 

dialog box) 

Format de date 

(libellé dans la boîte 

de dialogue de 

préférences) 

Datumsformat 

(Bezeichnung im 

Dialogfeld 

Einstellungen) 

Formato de fecha (etiqueta en 

cuadro de diálogo de 

preferencias) 

Formato della data 

(etichetta nella finestra 

di dialogo delle 

preferenze) 

Datumformat 

69 default par défaut Standardeinstellung 
predeterminado, de forma 

predeterminada 
valore predefinito standard 

70 
default command 

buttons 

boutons de 

commande par 

défaut 

Standardbefehlsschaltfl

ächen 

botones de comando 

predeterminados 

pulsanti di comando 

predefiniti 
standardkommandoknapp 

71 

Default Font (label 

in preferences 

dialog box) 

police par défaut 

(libellé dans la boîte 

de dialogue de 

préférences) 

Standardschriftart 

(Bezeichnung in 

Dialogfeld 

Einstellungen)  

Fuente predeterminada 

(etiqueta en cuadro de 

diálogo de preferencias) 

Carattere predefinito 

(etichetta nella finestra 

di dialogo delle 

preferenze) 

Standardteckensnitt 

72 
default Java look 

and feel theme 

apparence Java par 

défaut 

Standard-Java-Erschei

nungsbild 

tema con apariencia Java 

predeterminada 

tema predefinito 

dell'aspetto Java 

standardtema för 

Java-känsla 

73 default pointer pointeur par défaut Standardzeiger puntero predeterminado puntatore predefinito standardmarkör 

74 delay indication 
indication de 

temporisation 
Verzögerungsanzeige indicación de retraso indicazione di ritardo fördröjningsvarning 

75 
destination 

feedback 

réaction de 

destination 
Ziel-Feedback información de destino feedback di destinazione målåterkoppling 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

76 dialog boxes boîtes de dialogue Dialogfelder cuadros de diálogo  finestre di dialogo dialogrutor 

77 dimmed text texte en grisé grau dargestellter Text texto atenuado testo non disponibile nedtonad text 

78 disabilities invalidités Behinderungen incapacidades, minusvalías accesso facilitato handikapp 

79 disjoint selection sélection disjointe 
nichtzusammenhängen

de Auswahl 
selección discontinua selezione discontinua bruten markering 

80 distribution distribution Verteilung distribución distribuzione distribution 

81 dithering réduction Rasterung interpolación dithering nyansutjämning 

82 dockable toolbars 
barres d'outils 

ancrables 

verankerbare 

Symbolleisten 

barras de herramientas 

acoplables 

barre degli strumenti 

ancorabili 

dockningsbara 

verktygsfält 

83 
Document (item 

in Format menu) 
Document 

Dokument (Element 

im Menü "Format")  
Documento Documento Dokument 

84 

Don't Save 

(button in Warning 

alert boxes) 

Ne pas 

enregistrer 
Nicht Speichern No guardar Non salvare Spara inte 

85 double-clicking double-cliquer doppelklicken hacer doble clic doppio clic del mouse dubbelklicka 

86 drag and drop glisser-déposer Ziehen und Ablegen arrastrar y soltar trascinare e rilasciare dra och släpp 

87 drag area 
zone de 

déplacement 
Ziehbereich área de arrastre area di trascinamento dragruta 

88 drag texture 
texture de 

déplacement 
Textur beim Ziehen textura de arrastre trascinamento trama dra struktur 

89 dragging déplacement Ziehen arrastre trascinamento dra 

90 drop-down arrows 

flèches de 

défilement vers le 

bas 

Dropdown-Pfeile flechas de lista desplegable frecce di selezione nedrullningspil 

91 drop-down menus menus déroulants Dropdown-Menüs menús desplegables menu a discesa nedrullningsbara menyer 

92 Edit (menu) Editer Bearbeiten Editar Modifica Redigera 

93 
editable combo 

boxes 

boîtes de dialogue 

mixtes modifiables 

bearbeitbare 

Kombinationsfelder 
cuadros combinados editables 

caselle combinate 

modificabili 

redigerbar 

kombinationsruta 

94 editable text fields 
champs de texte 

modifiables 
bearbeitbare Textfelder campos de texto editables 

campi di testo 

modificabili 
redigerbara textfält 

95 editor panes 
sous-fenêtres 

d'éditeur 
Editorteilfenster paneles del editor riquadri dell'editor redigeringsfönster 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

96 ellipsis marks 
points de 

suspension 
Auslassungszeichen puntos suspensivos puntini di sospensione punkter, tre punkter 

97 Error alert boxes 
boîtes d'alerte 

d'erreur 

Warnfelder mit 

Fehlermeldungen 
cuadros de alerta de error 

finestre di avviso di 

errore 
felrutor 

98 error messages messages d'erreur Fehlermeldungen mensajes de error messaggi di errore felmeddelanden 

99 
exclusive choice (in 

toggle buttons) 

choix exclusif (dans 

un bouton à 

bascule) 

exklusive Auswahl (in 

Umschaltschaltflächen) 

selección exclusiva (en 

botones de conmutación) 

scelta esclusiva (negli 

interruttori) 
envalsinställning 

100 
Exit (item in File 

menu) 
Quitter Beenden Salir Esci Avsluta 

101 extended selection sélection étendue erweiterte Auswahl selección ampliada selezione estesa utökad markering 

102 feedback réaction Feedback retroalimentación feedback bekräftelse 

103 fields champs Felder campos campi  fält, rutor 

104 File (menu) Fichier Datei Archivo File Arkiv 

105 filling slider 
curseur de 

remplissage 
Füll-Schieberegler deslizador de relleno cursore di riempimento dragrelage för utfyllnad 

106 
Find (item in Edit 

menu) 
Rechercher Suchen Buscar Trova Sök 

107 find dialog boxes 
boîtes de dialogue 

de recherche 
Dialogfelder "Suchen" cuadros de diálogo Buscar 

finestre di dialogo di 

ricerca 
sök-dialogrutor 

108 
Find Next (item in 

Edit menu) 

Rechercher 

suivant 
Weitersuchen Buscar siguiente Trova successivo Sök nästa 

109 

Flashes (label in 

notification dialog 

box) 

Clignotement 

(libellé dans la boîte 

de dialogue 

d'avertissement) 

Blinksignal 

(Bezeichnung in 

Dialogfenster 

Benachrichtigung) 

Parpadea (etiqueta del cuadro 

de diálogo de notificación) 

Segnali luminosi 

(etichetta nella finestra 

di dialogo di notifica) 

blinkar 

110 flush 3D effects 
supprimer les effets 

3D 
3D-Effekte löschen vaciar efectos 3D elimina effetti 3D töm 3D-effekter 

111 

Font (menu or 

item in Format 

menu) 

Police Zeichen Fuentes Carattere Teckensnitt 

112 fonts polices Schriftarten fuentes caratteri teckensnitt 

113 Format (menu) Format Format Formato Formato Format 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

114 
formatted text 

panes 

sous-fenêtres de 

texte formaté 

formatierte 

Textteilfenster 
paneles de texto con formato 

riquadri di testo 

formattato 

fönster med formaterad 

text 

115 function keys touches de fonction Funktionstasten teclas de función tasti funzione funktionstangenter 

116 

GIF (Graphics 

Interchange 

Format) 

GIF (abréviation de 

«Graphics 

Interchange 

Format») 

GIF (Graphics 

Interchange Format) 

GIF (Graphics Interchange 

Format) 

GIF (Graphics 

Interchange Format) 

GIF (Graphics 

Interchange Format) 

117 grids grilles Raster rejillas griglie stödlinjer, rutnät 

118 hand pointers pointeurs à main Handzeiger punteros de mano 
puntatori a forma di 

mano 
hand-markör 

119 
headline 

capitalization 

mise en majuscule 

de la première 

lettre des mots 

dans les titres 

Großschreibung in 

Überschriften 

uso de mayúsculas en la 

primera letra de los títulos 

titolo con iniziale 

maiuscola 
versal rubrik 

120 
Help (button or 

menu) 
Aide Hilfe Ayuda Guida Hjälp 

121 

Hidden Text 

(checkbox in 

preferences dialog 

box) 

Texte masqué (case 

à cocher dans la 

boîte de dialogue 

préférences) 

verborgener Text 

(Kontrollkästchen in 

Dialogfenster 

Einstellungen) 

Texto oculto (casilla de 

verificación del cuadro de 

diálogo de preferencias) 

Testo nascosto (casella 

di selezione nella 

finestra di dialogo delle 

preferenze) 

dold text 

122 highlighting mise en surbrillance Hervorhebung resaltar evidenziazione markering 

123 horizontal scrollbar 
barre de défilement 

horizontale 
horizontaler Rollbalken 

barra de desplazamiento 

horizontal 

barra di scorrimento 

orizzontale 
horisontell rullningslist 

124 hot spot point de repère Hotspot zona activa punto focale aktiv punkt 

125 

HSB (tab for hue, 

saturation, and 

brightness in color 

choosers) 

HSB (onglet de 

réglage de la teinte, 

de la saturation et 

de la luminosité 

dans un sélecteur 

de couleurs) 

HSB (Register für 

Farbton, Sättigung und 

Helligkeit in 

Farbauswahl) 

HSB (pestaña de tono, 

saturación y brillo en los 

selectores de color) 

TSL (scheda per 

tonalità, saturazione e 

luminosità nei selettori 

del colore) 

HSB 

126 HTML editor kits éditeurs HTML HTML-Editor-Kits kits de edición de HTML kit dell'editor HTML HTML-redigeringsprogram 

127 I-beam pointer pointeur en I Einfügemarke, I-Zeiger Puntero en forma de I puntatore a forma di l 
I-markör, 

insättningspunkt 

128 icons icônes Symbole iconos icone bilder 

129 inactive composants inactifs inaktive Komponenten componentes inactivos componenti non attivi inaktiva komponenter 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

components 

130 
inactive menu 

items 

options de menu 

inactives 
inaktive Menüelemente opciones de menú inactivas voci di menu non attive inaktiva menyalternativ 

131 inactive windows fenêtres inactives inaktive Fenster ventanas inactivas finestre non attive inaktiva fönster 

132 
independent choice 

(in toggle buttons) 

choix indépendant 

(dans un bouton à 

bascule) 

unabhängige Auswahl 

(in 

Umschaltschaltflächen) 

selección independiente (en 

botones de conmutación) 

scelta indipendente 

(negli interruttori) 
oberoende val 

133 
Index (item in 

Help menu) 
Index Index Índice Indice Innehåll 

134 indicators indicateurs Anzeigen indicadores indicatori indikatorer 

135 Info alert box 
boîte d'alerte 

d'informations 
Info-Warnfeld 

cuadro de alerta de 

información 

finestra di avviso di 

informazioni 
informationsruta 

136 information symbol 
symbole 

d'information 
Informationssymbol símbolo de información simbolo informazioni informaitonssymbol 

137 
initial keyboard 

focus 

zone d'entrée 

clavier initiale 
Anfangstastaturfokus orientación inicial del teclado 

immissione iniziale da 

tastiera 

preliminär 

tangentbordsaktivering 

138 insertion point point d'insertion Einfügemarke punto de inserción punto di inserimento insättningspunkt 

139 installation screens écrans d'installation 
Installationsbildschirm

e 
pantallas de instalación 

schermate di 

installazione 
installationsskärmbilder 

140 
internal utility 

windows 

fenêtres d'utilitaires 

internes 

internes 

Hilfsprogramm-Fenster 
ventanas de utilidad internas finestre di utility interne interna verktygsfönster 

141 internal windows fenêtres internes interne Fenster ventanas internas finestre interne interna fönster 

142 internationalization internationalisation Internationalisierung internacionalización internazionalizzazione 
språkanpassa, 

internationalisera 

143 
Italic (item in 

Format menu) 
Italique Kursiv Cursiva Corsivo Kursiv 

144 italic text texte en italique kursiver Text texto en cursiva testo in corsivo kursiv text 

145 Java 2 SDK Java 2 SDK Java 2 SDK Java 2 SDK Java 2 SDK Java 2 SDK 

146 Java 2D API API Java 2D Java 2D API Java 2D API Java 2D API Java 2D API 

147 
Java Accessibility 

API 

API d'accessibilité 

Java 
Java-Zugriffs-API 

Java Accessibility API (API de 

accesibilidad de Java) 
API di Java Accessibility Java-åtkomst-API 

148 
Java Accessibility 

Utilities 

utilitaires 

d'accessibilité Java 

Java-Zugriffs-Hilfsprogr

amme 

Java Accessibility Utilities 

(Utilidades de accesibilidad de 

Utility di Java 

Accessibility 
Verktyg för Java-åtkomst 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Java) 

149 
Java Development 

Kit 

environnement de 

développement 

Java 

Java Development Kit 
Java Development Kit (Kit de 

desarrollo de Java) 
Java Development Kit Java Development Kit 

150 
Java Foundation 

Classes 

classes de base 

Java 

Java Foundation 

Classes 

Java Foundation Classes 

(Clases básicas de Java) 
Java Foundation Classes Java Foundation Classes 

151 JavaHelp JavaHelp JavaHelp JavaHelp JavaHelp JavaHelp 

152 Java look and feel apparence Java Java-Erscheinungsbild apariencia Java aspetto Java Java-känsla 

153 JFC application application JFC JFC-Anwendung 
aplicación JFC (Java 

Foundation Classes) 
applicazione JFC JFC-tillämpning 

154 

JPEG (Joint 

Photographic 

Experts Group) 

JPEG (abréviation 

de «Joint 

Photographic 

Experts Group») 

JPEG (Joint 

Photographic Experts 

Group) 

JPEG (Joint Photographic 

Experts Group) 

JPEG (Joint Photographic 

Experts Group) 

JPEG (Joint Photographic 

Experts Group) 

155 
Justify (item in 

Format menu) 
Justifié Blocksatz Justificar Giustifica Raka marginaler 

156 
keyboard 

activation 
activation clavier Tastaturaktivierung activación de teclado attivazione della tastiera 

aktiver ing med 

tangetbordet 

157 keyboard focus 
zone d'entrée 

clavier 
Tastaturfokus orientación del teclado immissione da tastiera tangentbordsaktiverat 

158 
keyboard 

navigation 
navigation clavier Tastaturnavigation navegación por teclado 

spostamento tramite 

tastiera 

navigering med 

tangentbordet 

159 
keyboard 

operations 
opérations clavier Tastenbefehle operaciones del teclado operazioni da tastiera 

tangentbordsfunktioner, 

-arbete 

160 keyboard shortcuts raccourcis clavier Tastenkombinationen teclas de método abreviado tasti di scelta rapida kortkommandon 

161 labels libellés Bezeichnungen etiquetas etichette etiketter 

162 layout managers 
gestionnaires de 

disposition 
Layout-Manager 

administradores de 

distribución 
gestori di layout layouthanterare 

163 
leaf (in tree 

component) 

noeud terminal 

(dans une 

arborescence) 

Blatt (in 

Baumkomponente) 

hoja (en componente de 

árbol) 

foglia (riferito a un 

componente di una 

struttura ad albero) 

löv 

164 

Left Margin (label 

in preferences 

dialog box) 

Marge gauche 

(libellé dans la boîte 

de dialogue de 

Linker Rand 

(Bezeichnung in 

Dialogfenster 

Margen izquierdo (etiqueta 

del cuadro de diálogo de 

preferencias) 

Margine sinistro 

(etichetta nella finestra 

di dialogo delle 

Vänstermarginal 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

préférences) Einstellungen) preferenze) 

165 legal notices notices légales rechtlicher Hinweis advertencias legales note legali jurdisk text 

166 links liens Verknüpfungen enlaces collegamenti länkar 

167 lists listes Listen listas elenchi listor 

168 localization localisation Lokalisierung localización localizzazione 
lokal anpassning, 

översättning 

169 

Log In (button in 

login splash 

screen) 

Connexion Anmelden Iniciar sesión Login Logga in 

170 login dialog boxes 
boîtes de dialogue 

de connexion 
Anmeldedialogfelder 

cuadros de diálogo de 

conexión 

finestre di dialogo di 

login 
dialogrutor för inloggning 

171 
Login Name text 

field 

champ de texte 

Nom de connexion 

Textfeld 

"Anmeldename" 

campo de texto Nombre de 

inicio de sesión 

campo di testo Nome di 

login 
textfältet Användarnamn 

172 
login splash 

screens 

écrans de 

connexion 
Begrüßungsbildschirme pantalla de bienvenida 

schermate iniziali di 

login 

välkomstbild vid 

inloggning 

173 
look and feel 

designs 
apparences 

Erscheinungsbild-Desig

ns 
diseños de apariencia strutture di aspetto design av utseende 

174 
major tick marks 

(in sliders) 

marques de 

graduation 

principales (dans un 

curseur de 

sélection) 

Hauptmarkierungen (in 

Schiebereglern) 

marcas de comprobación 

principales (en los 

deslizadores) 

segni di graduazione 

principali (nei cursori di 

scorrimento) 

stora skalstreck 

175 

Margins (checkbox 

in preferences 

dialog box) 

Marges (libellé dans 

la boîte de dialogue 

de préférences) 

Ränder 

(Kontrollkästchen im 

Dialogfenster 

Einstellungen) 

Márgenes (casilla de 

verificación del cuadro de 

diálogo de preferencias) 

Margini (casella di 

selezione nella finestra 

di dialogo delle 

preferenze) 

marginaler 

176 

Match Case 

(checkbox in find 

dialog box) 

Respecter la casse 

(case à cocher dans 

la boîte de dialogue 

Rechercher) 

Kontrollkästchen 

"Groß-/Kleinschreibung 

beachten" 

Coincidir mayúsculas y 

minúsculas (casilla de 

verificación del cuadro de 

diálogo Buscar) 

Maiuscole/minuscole 

(casella di selezione 

nella finestra di dialogo 

Trova) 

matcha 

gemena/VERSALER 

177 menu bars barre de menus Menüleisten barras de menú barre dei menu menyrad 

178 menu items options de menu Menüelemente opciones de menú voci di menu menyalternativ 

179 menu separators 
séparateurs de 

menu 
Menütrennlinien separadores de menú separatori dei menu menyavskiljare 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

180 menu titles titres de menu Menütitel títulos de menú titoli dei menu menyrubrik 

181 menus menus Menüs menús menu menyer 

182 
message (in alert 

dialog box) 

message (dans une 

boîte de dialogue 

d'alerte) 

Meldung (in 

Dialogfenster 

Warnmeldung) 

mensaje (en cuadro de 

diálogo de alerta) 

messaggio (in una 

finestra di avviso) 
meddelande 

183 
Microsoft Windows 

style look and feel 

apparence de style 

Microsoft Windows 

Erscheinungsbild im 

Microsoft Windows-Stil 

apariencia de estilo Microsoft 

Windows 

aspetto di stile Microsoft 

Windows 
Microsoft Windows-känsla 

184 
middle mouse 

button 

bouton central de la 

souris 
mittlere Maustaste botón central del ratón 

pulsante centrale del 

mouse 
mellersta musknappen 

185 

MIME 

(Multipurpose 

Internet Mail 

Extensions) 

MIME (abréviation 

de «Multipurpose 

Internet Mail 

Extensions») 

MIME (Multipurpose 

Internet Mail 

Extensions) 

MIME (Multipurpose Internet 

Mail Extensions) 

MIME (Multipurpose 

Internet Mail 

Extensions) 

MIME (Multipurpose 

Internet Mail Extensions) 

186 
minimized internal 

windows 

fenêtres internes 

réduites 

minimierte interne 

Fenster 

ventanas internas 

minimizadas 

finestre interne ridotte 

ad icona 

minimerade interna 

fönster 

187 
minimized 

windows 
fenêtres réduites minimierte Fenster ventanas minimizadas finestre ridotte ad icona 

minimerade fönster, 

fönsterikon 

188 
minor tick marks 

(in sliders) 

marques de 

graduation 

secondaires (dans 

un curseur de 

sélection) 

untergeordnete 

Markierungen (in 

Schiebereglern) 

marcas de comprobación 

secundarias (en deslizadores) 

segni di graduazione 

secondari (nei cursori di 

scorrimento) 

små skalstreck 

189 mnemonics 
touches 

mnémotechniques 
Mnemo-Technik mnemotecnia (caratteri) mnemonici memosymbol 

190 modal dialog boxes 
boîtes de dialogue 

modales 
modale Dialogfenster cuadros de diálogo modales 

finestre di dialogo 

modali 

tillståndsberoende 

dialogrutor 

191 model modèle Modell modelo modello modell 

192 
modeless dialog 

boxes 

boîtes de dialogue 

amodales 

moduslose 

Dialogfenster 
cuadros de diálogo sin modo 

finestre di dialogo non 

modali 

tillståndsoberoende 

dialogrutor 

193 modifier keys 
touches 

modificatrices 
Zusatztaste teclas modificadoras tasti modificatori modifieringstangent 

194 
Modify (command 

button) 
Modifier Ändern Modificar Modifica  Ändra 

195 mouse button 1 
bouton 1 de la 

souris 
Maustaste 1 botón 1 del ratón pulsante 1 del mouse musknapp 1 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

196 mouse button 2 
bouton 2 de la 

souris 
Maustaste 2 botón 2 del ratón pulsante 2 del mouse musknapp 2 

197 mouse buttons  boutons de souris  Maustasten botones del ratón pulsanti del mouse musknappar 

198 mouse devices souris Mausgeräte dispositivos de ratón dispositivi mouse musenheter 

199 mouse operations 
opérations à la 

souris 
Mausbefehle operaciones de ratón operazioni del mouse 

mushantering, arbete 

med musen 

200 
mouse-over 

feedback 

réaction au passage 

de la souris 

Darstellungsänderung 

bei Berührung mit dem 

Maus-Cursor 

información contextual del 

puntero 

informazioni al 

passaggio del mouse 

bekräftelse av 

markörposition 

201 move pointers 
pointeurs de 

déplacement 
Bewegungszeiger punteros de movimiento 

puntatori di 

spostamento 
förflyttningsmarkör 

202 
multiple document 

interface (MDI) 
interface MDI 

Multiple Document 

Interface (MDI) 

Interfaz de documentos 

múltiples (MDI) 

MDI (Multiple Document 

Interface) 

Multiple Document 

Interface (MDI) 

203 multiple selection sélection multiple Mehrfachauswahl selección múltiple selezione multipla flerval 

204 native code code natif nativer Code código nativo codice nativo egen kod 

205 navigation navigation Navigation navegación navigazione navigering 

206 nested split panes 
sous-fenêtres 

divisées emboîtées 

verschachtelte geteilte 

Fenster 
divisiones de panel anidadas 

riquadri di divisione 

nidificati 
kapslade delfönster 

207 
New (item in File 

menu) 
Nouveau Neu Nuevo Nuovo Nytt 

208 
nodes (in tree 

components) 

noeuds (dans une 

arborescence) 

Knoten (in 

Baumkomponente) 

nodos (en componentes de 

árbol) 

nodi (riferito a 

componenti di una 

struttura ad albero) 

noder 

209 
noneditable combo 

boxes 

boîtes de dialogue 

mixtes non 

modifiables 

nichtbearbeitbare 

Kombinationsfelder 

cuadros combinados no 

editables 

caselle combinate non 

modificabili 

icke redigerbar 

kombinaionsruta 

210 
noneditable text 

fields 

champs de texte 

non modifiables 

nichtbearbeitbare 

Textfelder 
campos de texto no editables 

campi di testo non 

modificabili 
icke redigerbara textfält 

211 nonfilling slider 
curseur de sélection 

sans remplissage 

nichtfüllende 

Schieberegler 
deslizador de no relleno 

cursore senza 

riempimento 

skjutreglage utan 

utfyllnad 

212 
Normal (item in 

Format menu) 
Normal Normal Normal Normale Normal 

213 
notification dialog 

box 

boîte de dialogue 

d'avertissement 

Dialogfeld 

"Benachrichtigung" 

cuadro de diálogo de 

notificación 

finestra di dialogo di 

notifica 
meddelanderuta 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

214 Object (menu) Objet Objekt Objeto Oggetto Objekt 

215 OK (button) OK OK Aceptar OK OK 

 

216 

padding (command 

buttons) 

remplissage 

(boutons de 

commande) 

Füllen 

(Befehlsschaltflächen) 

margen interior (botones de 

comando) 

riempimento (pulsanti di 

comando) 
utfyllning 

217 
Page Setup (item 

in File menu) 
Mise en page Seite einrichten Configuración de página Imposta pagina Utskriftsformat 

218 panels panneaux Bedienfelder paneles pannelli fönster med flikar 

219 panes sous-fenêtres Teilfenster panel, división riquadri 
delfönster som kan 

förstoras eller förminskas 

220 
Paragraph (item 

in Format menu) 
Paragraphe Absatz Párrafo Paragrafo Stycke 

221 password fields 
champs de mot de 

passe 
Paßwortfelder campos de contraseña 

campi di immissione 

password 
lösenordsfält 

222 
Paste (item in Edit 

menu) 
Coller Einfügen Pegar Incolla Klistra in 

223 pixels pixels Pixel píxeles pixel pixel, bildpunkt 

224 plain text texte ordinaire Nur-Text texto sin formato testo normale endast text 

225 plain text area 
zone de texte 

ordinaire 
Nur-Text-Bereich área de texto sin formato area di testo normale ruta med text  

226 plain windows fenêtres ordinaires normale Fenster ventanas normales finestre normali vanliga fönster  

227 platforms plateformes Plattformen plataformas piattaforme plattformar 

228 plug-in editor kit 
kit d'édition de 

plug-ins 
Plug-in-Editor-Kit módulo del kit de edición kit dell'editor plug-in 

insticksprogram för 

redigering 

229 
pluggable look and 

feel 

apparence 

modulaire 

leicht zu erfassendes 

Erscheinungsbild  
apariencia conectable aspetto innestabile 

inskicksmodul för 

utseende (känsla) 

230 pointers pointeurs Zeiger punteros puntatori pekare, markörer 

231 posted menus menus postés 
ständig sichtbare 

Menüs 
menús publicados menu pubblicati fasta menyer 

232 posting menus menus de postage 
Menüs ständig sichtbar 

machen 
publicar menús pubblicazione dei menu fästa menyer 

233 
Preferences (item 

in File menu) 
Préférences Einstellungen Preferencias Preferenze Inställningar 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

234 
preferences dialog 

boxes 

boîte de dialogue de 

préférences 

Dialogfelder 

"Einstellungen" 

cuadros de diálogo de 

preferencias 

finestre di dialogo delle 

preferenze 

dialogrutor för 

inställningar 

235 pressing a key 
appuyer sur une 

touche 
eine Taste drücken pulsar una tecla premere un tasto trycka på en tangent 

236 
preview panel (in a 

color chooser) 

panneau de 

prévisualisation 

(dans un sélecteur 

de couleurs) 

Vorschauteilfenster (in 

einer Farbauswahl) 

panel de vista previa (en 

selector de color) 

pannello di anteprima 

(in un selettore del 

colore) 

granskningsruta 

237 primary colors couleurs primaires Grundfarben colores primarios  colori primari grundfärger 

238 primary windows fenêtres principales Basisfenster ventana principal finestra primaria huvudfönster 

239 
Print (item in File 

menu) 
Imprimer Drucken Imprimir Stampa Skriv ut 

240 print dialog boxes 
boîtes de dialogue 

d'impression 
Dialogfelder "Drucken" 

cuadros de diálogo de 

impresión 

finestre di dialogo di 

stampa 
dislogrutor för utskrift 

241 printer imprimante Drucker impresora stampante skrivare 

242 product name nom du produit Produktbezeichnung nombre de producto nome del prodotto produktnamn 

243 progress bars 
barres de 

progression 
Statusanzeige barras de progreso barre di avanzamento förloppsindikator 

244 
progress dialog 

boxes 

boîtes de dialogue 

de progression 
Dialogfelder "Status" 

cuadros de diálogo de 

progreso 

finestre di dialogo di 

avanzamento 
dialgrutor för status 

245 progress feedback 
réaction de 

progression 
Status-Feedback información de progreso 

informazioni sullo stato 

di avanzamento 
statusruta 

246 progress indication 
indication de 

progression 
Statusanzeige indicación de progreso 

indicazione di 

avanzamento 
statusmeddelande 

247 
Question alert 

boxes 

boîtes d'alerte de 

question 
Fragewarnhinweise 

cuadros de alerta de 

interrogación 

finestre di avviso di 

richiesta 
frågeruta 

248 radio button group 
groupe de boutons 

radio 
Optionsfeldgruppe grupo de botones de radio 

gruppo di pulsanti di 

scelta 
(envals)knappgrupp 

249 
radio button menu 

items 

options de menu 

avec boutons radio 

Optionsfeld-Menüelem

ente 

opciones de menú de botón de 

radio 

voci di menu con 

pulsanti di scelta 
knappalternativ 

250 radio buttons boutons radio Optionsfelder botones de radio pulsanti di scelta envalsknapp 

251 
Redo (item in Edit 

menu) 
Refaire Wiederholen Rehacer Ripeti Gör om 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

252 
Replace (button in 

Warning alert box) 
Remplacer Ersetzen Sustituir Sostituisci Ersätt 

253 Reset (button) Restaurer Zurücksetzen Restablecer Reimposta Återställ 

254 resize pointers 
pointeurs de 

redimensionnement 

Größenänderungszeige

r 
punteros de redimensión 

puntatori di 

ridimensionamento 

pekare som ändrar 

storleken 

255 resource bundles 
ensembles de 

ressources 
Ressourcenpaket grupos de recursos bundle di risorse resursmängder  

256 
reverse video 

theme 

thème vidéo 

inverse 

umgekehrtes 

Videomotiv 
tema de vídeo inverso tema di video inverso 

skrivbordstemat omvänd 

video 

257 

RGB (tab for red, 

green, and blue 

values in a color 

chooser) 

RGB (onglet de 

réglage des niveaux 

de rouge, vert et 

bleu dans un 

sélecteur de 

couleurs) 

RGB (Register für Rot-, 

Grün- und Blauwerte in 

einer Farbauswahl) 

RGB (pestaña de los valores 

rojo, verde y azul en el 

selector de color)  

RGB (scheda per i valori 

di rosso, verde e blu in 

un selettore del colore) 

RGB 

258 

Right Margin (label 

in preferences 

dialog box) 

Marge droite (libellé 

dans la boîte de 

dialogue de 

préférences) 

rechter Rand 

(Bezeichnung im 

Dialogfenster 

Einstellungen) 

Margen derecho (etiqueta del 

cuadro de diálogo de 

preferencias) 

Margine destro 

(etichetta in una finestra 

di dialogo delle 

preferenze) 

Högermarginal 

259 row (in tables) 
ligne, rangée (d'un 

tableau) 
Zeile (in Tabellen) fila (en tablas) righe (nelle tabelle) rader i tabeller 

260 

Ruler Units (label in 

preferences dialog 

box) 

Graduations de la 

règle (libellé dans la 

boîte de dialogue de 

préférences) 

Linealeinheiten 

(Bezeichnung im 

Dialogfenster 

Einstellungen) 

Unidades de la regla (etiqueta 

del cuadro de diálogo de 

preferencias) 

Unità righello (etichetta 

nella finestra di dialogo 

delle preferenze) 

linjalens gradering 

261 
Save (button or 

item in File menu) 
Enregistrer Speichern Guardar Salva Spara 

262 
Save As (item in 

File menu) 
Enregistrer sous Speichern unter Guardar como Salva con nome Spara som 

263 scale mettre à l'échelle skalieren escalar scalare skala 

264 scroll faire défiler rollen desplazar scorrere bläddra, rulla 

265 scroll arrows 
flèches de 

défilement 
Bildlaufpfeile flechas de desplazamiento frecce di scorrimento rullningspilar 

266 scroll box 
curseur de 

défilement 
Bildlauffeld cuadro de desplazamiento casella di scorrimento 

bläddringsruta, 

rullningsruta 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

267 scroll channels 
canaux de 

défilement 
Bildlaufkanäle canales de desplazamiento canali di scorrimento bläddra bland kanaler 

268 scroll panes 
sous-fenêtres de 

défilement 
Bildlaufteilfenster paneles de desplazamiento riquadri di scorrimento rullningsfönster 

269 scrollbars 
barres de 

défilement 
Bildlaufleisten barras de desplazamiento barre di scorrimento rullningslist 

270 
Search (item in 

Help menu) 
Rechercher Suchen Búsqueda Ricerca Sök 

271 secondary colors 
couleurs 

secondaires 
sekundäre Farben colores secundarios colori secondari sekundära färger 

272 
secondary 

windows 

fenêtres 

secondaires 
untergeordnete Fenster ventanas secundarias finestre secondarie sekundärfönster 

273 
Section (item in 

Format menu) 
Section Abschnitt Sección Sezione Avsnitt 

274 select sélectionner  auswählen seleccionar selezionare markera, välj(a) 

275 

Select (button in 

notification dialog 

box) 

Sélectionner Auswählen Seleccionar Seleziona Markera 

276 
Select All (item in 

Edit menu) 
Sélectionner tout Alles markieren Seleccionar todo Seleziona tutto Markera alla 

277 selected items 
éléments 

sélectionnés 
markierte Elemente elementos seleccionados voci selezionate markerade objekt 

278 selection sélection Auswahl selección selezione markerat, val 

279 
sentence 

capitalization 

mise en majuscules 

de phrases 

Großschreibung des 

Satzes 

uso de mayúsculas en una 

frase 

frase con iniziale 

maiuscola 
gör mening versal 

280 separators séparateurs Trennzeichen separadores separatori avskiljare 

281 Shift-clicking Maj + clic 
Klicken bei gedrückter 

Umschalttaste 
Mayús + clic Maiusc + clic del mouse Skift-klicka 

282 Shift-Tab Maj + Tab STRG + Tab Mayús + Tab Maiusc + Tab Skift-Tabb 

283 

Show (label in 

preferences dialog 

box) 

Afficher (libellé 

dans la boîte de 

dialogue de 

préférences) 

Anzeigen (Bezeichnung 

im Dialogfenster 

Einstellungen) 

Mostrar (etiqueta del cuadro 

de diálogo de preferencias) 

Mostra (etichetta nella 

finestra di dialogo delle 

preferenze) 

Visa 

284 single-clicking cliquer une fois einmal klicken un solo clic singolo clic del mouse enkelklicka 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

285 
Size (item in 

Format menu) 
Taille Größe Tamaño Dimensioni Storlek 

286 sliders 
curseurs de 

sélection 
Schieberegler deslizadores cursori di scorrimento reglage 

287 small type style petits caractères kleiner Schriftstil estilo pequeño de fuente stile a caratteri piccoli liten stil 

288 sort order ordre de tri Sortierreihenfolge orden de clasificación criterio di ordinamento sorteringsordning 

289 

Sound File (label in 

notification dialog 

box) 

Fichier son (libellé 

dans la boîte de 

dialogue 

d'avertissement) 

Sounddatei 

(Bezeichnung in 

Dialogfenster 

Benachrichtigung) 

Archivo de sonido (etiqueta 

del cuadro de diálogo de 

notificación) 

File sonori (etichetta 

nella finestra di dialogo 

di notifica) 

Ljudfil 

290 spacing espacement Abstand espaciar spaziatura avstånd 

291 splash screens 
écrans de 

présentation 
Eröffnungsbildschirme pantallas de bienvenida schermate iniziali välkomstskärm 

292 split panes 
sous-fenêtres 

divisées 
geteilte Fenster paneles de división riquadri di divisione delade fönster, delfönster 

293 splitter bars barres de division Trennbalken barras de división barre di divisione delningslist 

294 

Start at Top (radio 

button in find 

dialog box) 

Commencer en 

haut (bouton radio 

dans la boîte de 

dialogue 

Rechercher) 

Abwärts (Optionsfeld 

im Dialogfenster 

Suchen) 

Iniciar en parte superior 

(botón de radio del cuadro de 

diálogo Buscar) 

Cerca in basso (pulsante 

di scelta nella finestra di 

dialogo Trova) 

radioknappen Sökriktning 

nedåt 

295 

Stationery (label in 

preferences dialog 

box) 

Papier à lettres 

(libellé dans la boîte 

de dialogue de 

préférences) 

Stationär (Bezeichnung 

im Dialogfenster 

Einstellungen) 

Material de papelería 

(etiqueta del cuadro de 

diálogo de preferencias) 

Elementi decorativi 

(etichetta nella finestra 

di dialogo delle 

preferenze) 

Brevpapper 

296 Stop (button) Arrêter abbrechen Detener Stop Stopp 

297 
Style (item in 

Format menu) 
Style Schriftstil Estilo Stile Stil 

298 

styled text editor 

(styled text plug-in 

kit) 

éditeur de texte 

stylisé (ensemble 

de plug-ins de style 

de texte) 

Schriftart-Editor 

editor de texto con estilo (kit 

del complemento de estilos de 

texto) 

editor di testo con stile 

(kit dei plug-in per testo 

con stile) 

typografiprogram, 

typografiskt 

redigeringsprogram 

299 submenus sous-menus Untermenüs submenús menu secondari undermeny 

300 
Submit (command 

button) 
Soumettre Senden Enviar Inoltra Skicka 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

301 
Swatches (tab in 

color choosers) 

Echantillons (onglet 

dans un sélecteur 

de couleurs) 

Muster (Register in 

Farbauswahl) 

Muestras (pestaña en 

selectores de color) 

Campioni (scheda nel 

selettore dei colori) 
färgprov 

302 Swing class classe Swing Swing-Klasse clase Swing classe Swing Swing-klass 

303 symbols symboles Symbole símbolos simboli symboler 

304 
system status 

animation 

animation d'état du 

système 
Systemstatusanimation 

animación del estado del 

sistema 

animazione dello stato 

del sistema 

animering av 

systemstatus 

305 system type style 
caractères de type 

système 
Systemtypstil estilo de fuente del sistema 

stile di caratteri del 

sistema 
systemsteckensnitt 

306 tab traversal parcours d'onglet Registerdurchlauf secuencias con la tecla Tab 
spostamento tramite 

tasto Tab 
tabbförflyttning 

307 tabbed panes 
sous-fenêtres à 

onglets 

Teilfenster im 

Registerformat 
paneles con pestañas riquadri a schede fönster med flikar 

308 tables tables Tabellen tablas tabelle tabeller 

309 text areas zones de texte Textbereiche áreas de texto aree di testo textområden 

310 text fields champs de texte Textfelder campos de texto campi di testo textfält, textrutor 

311 text pointers pointeurs de texte Textzeiger punteros de texto puntatori del testo textmarkör 

312 theme mechanism 
mécanisme de 

thème 
Motivmechanismus mecanismo de tema meccanismo dei temi tema-mekanism 

313 themes thèmes Motive temas temi skrivbordsteman 

314 
title bars (in 

windows) 

barres de titre 

(dans une fenêtre) 

Titelleisten (in 

Fenstern) 
barras de título (en ventanas) 

barre dei titoli (in 

windows) 
namnlist 

315 toggle buttons boutons à bascule Umschaltflächen botones de conmutación interruttori växlingsknappar 

316 tool tips info-bulles Quickinfo 
información sobre 

herramientas 
descrizione comandi hjälpmeddelande 

317 toolbar buttons 
boutons de barre 

d'outils 

Symbolleisten-Schaltflä

chen 

botones de barra de 

herramientas  

pulsanti della barra degli 

strumenti 
knappar i verktygsfält 

318 toolbars barres d'outils Symbolleisten barras de herramientas barre degli strumenti verktygsfält 

319 
trademark 

information 

information sur les 

marques 

commerciales 

Warenzeicheninformati

onen 

información sobre marcas 

comerciales 

informazioni sui marchi 

di fabbrica 

information om 

varumärke 

320 tree components 
composants d'une 

arborescence 
Baumkomponenten componentes de árbol 

componenti di una 

struttura ad albero 
trädkomponenter 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

321 triple-clicking triple-cliquer dreimal klicken hacer clic tres veces triplo clic del mouse trippelklicka 

322 
turners (in tree 

components) 

symbole +/- 

permettant de 

développer ou de 

réduire une 

arborescence 

Symbol +/- zum 

Ein-/Ausblenden (in 

Baumstrukturkompone

nten) 

giradores (en componentes 

de árbol) 

commutatori (riferito a 

componenti di una 

struttura ad albero) 

nodpunkt 

323 
Tutorial (item in 

Help menu) 
Didacticiel Lernprogramm Tutorial Esercitazione Självstudier 

324 unavailable items 
options non 

disponibles 

nichtverfügbare 

Elemente 
elementos no disponibles opzioni non disponibili ej tillgängliga alternativ 

325 
Underline (item in 

Format menu)  
Souligner Unterstreichen Subrayar Sottolinea Understruken 

326 
Undo (item in Edit 

menu) 
Défaire Rückgängig Deshacer Annulla Ångra 

327 usability testing essai d'utilisation 
Verwendbarkeitsprüfun

g 
prueba de uso test d'uso funktionstest 

328 
user interface 

elements 

éléments 

d'interface 

utilisateur 

Elemente der 

Benutzeroberfläche 

elementos de la interfaz de 

usuario 

elementi dell'interfaccia 

utente 

användargränssnittets 

delar 

329 user type style 
caractères de type 

utilisateur 

benutzerspezifisches 

Schriftformat 
estilo de fuente del usuario 

stile di carattere 

dell'utente 
användarens typsnitt 

330 utility windows fenêtres d'utilitaire 
Dienstprogrammfenste

r 
ventanas de utilidades finestre di utilità verktygsfönster 

331 version numbers numéros de version Versionsnummern números de versión numeri di versione versionsnummer 

332 vertical scrollbar 
barre de défilement 

verticale 
vertikale Bildlaufleiste 

barra de desplazamiento 

vertical 

barra di scorrimento 

verticale 
vertikal rullningslist 

333 View (menu) Affichage Ansicht Ver Visualizza Visa 

334 visual design conception visuelle visueller Entwurf diseño visual progettazione visiva grafisk layout 

335 visual identifier identificateur visuel visueller Bezeichner identificador visual identificatore visivo synlig identifierare 

336 wait pointers pointeurs d'attente Wartezeiger punteros de espera puntatori di attesa vänta-markör, timglas 

337 
Warning alert 

boxes 

boîtes d'alerte 

d'avertissement 
Warnfelder cuadros de Advertencia 

finestre di avviso 

Avvertenza 
varningsruta 

338 Whole Word 

(checkbox in find 

Mot entier (case à 

cocher dans la boîte 

Kontrollkästchen 

"Ganzes Wort" 

Palabras completas (casilla de 

verificación del cuadro de 

Parola intera (casella di 

selezione nella finestra 
Hela ord 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

dialog box) de dialogue 

Rechercher) 

diálogo Buscar) di dialogo Trova) 

339 window borders bordures de fenêtre Fensterrand bordes de ventana bordi della finestra 
fönsterkant, 

fönsterkontur 

340 window controls contrôles de fenêtre Fenstersteuerelemente controles de ventana controlli della finestra fönsterreglage 

341 window frame cadre de fenêtre Fensterrahmen marco de ventana cornice della finestra fönsterram 

342 windows fenêtres Fenster ventanas finestre fönster 

343 word order ordre des mots Wortstellung orden de palabras ordine delle parole ordföljd 

344 word wrap renvoi à la ligne Wortumbruch ajuste de línea a capo automatico radbrytning 

345 zoom buttons boutons de zoom Zoom-Schaltflächen 
botones de 

ampliación/reducción 

pulsanti di 

ingrandimento/riduzione 

zoom-knappar, knappar 

för att förstora eller 

förminska 

346 zooming panes 
sous-fenêtres de 

zoom 
Zoom-Bereiche 

paneles de 

ampliación/reducción 

riquadri di 

ingrandimento/riduzione 

zoom-rutor, delfönster 

som kan förstoras eller 

förminskas 

Asian Languages: Japanese  

Table 35   Word List for Asian Languages  

 

 
English Japanese 

1 
About {Application} (item in 
Help menu) 

 

2 About boxes  

3 Abstract Window Toolkit Abstract Window Toolkit 

4 accessibility  

5 active components  

6 active windows  

7 alert boxes  

8 
Align Center (item in Format 
menu) 

 

9 Align Left (item in Format  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

menu) 

10 
Align Right (item in Format 
menu) 

 

11 alignment  

12 anchor point  

13 animation  

14 applet  

15 application  

16 Apply (button)  

17 arrow keys  

18 assistive technologies  

19 background  

20 backing windows  

21 
Beeps (label in notification 
dialog box) 

 

22 bit depth  

23 Bold (item in Format menu)  

24 bold text  

25 borders  

26 Browse (button)  

27 browser  

28 button border  

29 button graphics  

30 button text  

31 Cancel (button)  

32 capitalization  

33 caution symbol  

34 CDE style look and feel  

35 cells (in tables)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

36 channels (in scrollbars)  

37 checkbox menu items  

38 checkboxes  

39 choosers  

40 clicking  

41 client properties  

42 
Close (button or item in File 
menu)  

43 close control  

44 color choosers  

45 column (in tables)  

46 column header (in tables)  

47 combo boxes  

48 command button row  

49 command buttons  

50 components  

51 containers  

52 
content panel (in a color 
chooser) 

 

53 content panes  

54 Contents (item in Help menu)  

55 contextual menus  

56 
Continue (button in Error alert 
box) 

 

57 control type style  

58 Control-clicking  

59 controls  

60 Control-Tab  

61 Copy (item in Edit menu)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

62 crosshair pointer  

63 cross-platform color  

64 cross-platform delivery  

65 currency formats  

66 Cut (item in Edit menu)  

67 data structure  

68 
Date Format (label in 
preferences dialog box) 

 

69 default  

70 default command buttons  

71 
Default Font (label in 
preferences dialog box) 

 

72 default Java look and feel theme  

73 default pointer  

74 delay indication  

75 destination feedback  

76 dialog boxes  

77 dimmed text  

78 disabilities  

79 disjoint selection  

80 distribution  

81 dithering  

82 dockable toolbars  

83 
Document (item in Format 
menu) 

 

84 
Don't Save (button in Warning 
alert boxes) 

 

85 double-clicking  

86 drag and drop  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

87 drag area  

88 drag texture  

89 dragging  

90 drop-down arrows  

91 drop-down menus  

92 Edit (menu)  

93 editable combo boxes  

94 editable text fields  

95 editor panes  

96 ellipsis marks  

97 Error alert boxes  

98 error messages  

99 
exclusive choice (in toggle 
buttons) 

 

100 Exit (item in File menu)  

101 extended selection  

102 feedback  

103 fields  

104 File (menu)  

105 filling slider  

106 Find (item in Edit menu)  

107 find dialog boxes  

108 Find Next (item in Edit menu)  

109 
Flashes (label in notification 
dialog box) 

 

110 flush 3D effects  

111 
Font (menu or item in Format 
menu) 

 

112 fonts  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

113 Format (menu)  

114 formatted text panes  

115 function keys  

116 
GIF (Graphics Interchange 
Format) 

GIF (Graphics Interchange Format) 

117 grids  

118 hand pointers  

119 headline capitalization  

120 Help (button or menu)  

121 
Hidden Text (checkbox in 
preferences dialog box) 

 

122 highlighting  

123 horizontal scrollbar  

124 hot spot  

125 
HSB (tab for hue, saturation, 
and brightness in color 
choosers) 

 

126 HTML editor kits  

127 I-beam pointer  

128 icons  

129 inactive components  

130 inactive menu items  

131 inactive windows  

132 
independent choice (in toggle 
buttons) 

 

133 Index (item in Help menu)  

134 indicators  

135 Info alert box  

136 information symbol  

137 initial keyboard focus  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

138 insertion point  

139 installation screens  

140 internal utility windows  

141 internal windows  

142 internationalization  

143 Italic (item in Format menu)  

144 italic text  

145 Java 2 SDK Java 2 SDK 

146 Java 2D API Java 2D API 

147 Java Accessibility API Java Accessibility API 

148 Java Accessibility Utilities  

149 Java Development Kit Java Development Kit 

150 Java Foundation Classes Java Foundation Classes 

151 JavaHelp JavaHelp 

152 Java look and feel Java Look & Feel 

153 JFC application  

154 
JPEG (Joint Photographic 
Experts Group) 

JPEG (Joint Photographic Experts 
Group)  

155 Justify (item in Format menu)  

156 keyboard activation  

157 keyboard focus  

158 keyboard navigation  

159 keyboard operations  

160 keyboard shortcuts  

161 labels  

162 layout managers  

163 leaf (in tree component)  

164 
Left Margin (label in 
preferences dialog box) 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

165 legal notices  

166 links  

167 lists  

168 localization  

169 
Log In (button in login splash 
screen) 

 

170 login dialog boxes  

171 Login Name text field  

172 login splash screens  

173 look and feel designs  

174 major tick marks (in sliders)  

175 
Margins (checkbox in 
preferences dialog box) 

 

176 
Match Case (checkbox in find 
dialog box) 

 

177 menu bars  

178 menu items  

179 menu separators  

180 menu titles  

181 menus  

182 message (in alert dialog box)  

183 
Microsoft Windows style look 
and feel 

 

184 middle mouse button  

185 
MIME (Multipurpose Internet 
Mail Extensions) 

MIME (Multipurpose Internet Mail 
Extensions) 

186 minimized internal windows  

187 minimized windows  

188 minor tick marks (in sliders)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

189 mnemonics  

190 modal dialog boxes  

191 model  

192 modeless dialog boxes  

193 modifier keys  

194 Modify (command button)  

195 mouse button 1  

196 mouse button 2  

197 mouse buttons   

198 mouse devices  

199 mouse operations  

200 mouse-over feedback  

201 move pointers  

202 
multiple document interface 
(MDI) 

multiple document interface (MDI) 

203 multiple selection  

204 native code  

205 navigation  

206 nested split panes  

207 New (item in File menu)  

208 nodes (in tree components)  

209 noneditable combo boxes  

210 noneditable text fields  

211 nonfilling slider  

212 Normal (item in Format menu)  

213 notification dialog box  

214 Object (menu)  

215 OK (button)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

216 padding (command buttons)  

217 Page Setup (item in File menu)  

218 panels  

219 panes  

220 
Paragraph (item in Format 
menu) 

 

221 password fields  

222 Paste (item in Edit menu)  

223 pixels  

224 plain text  

225 plain text area  

226 plain windows  

227 platforms  

228 plug-in editor kit  

229 pluggable look and feel  

230 pointers  

231 posted menus  

232 posting menus  

233 
Preferences (item in File 
menu) 

 

234 preferences dialog boxes  

235 pressing a key  

236 
preview panel (in a color 
chooser) 

 

237 primary colors  

238 primary windows  

239 Print (item in File menu)  

240 print dialog boxes  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

241 printer  

242 product name  

243 progress bars  

244 progress dialog boxes  

245 progress feedback  

246 progress indication  

247 Question alert boxes  

248 radio button group  

249 radio button menu items  

250 radio buttons  

251 Redo (item in Edit menu)  

252 
Replace (button in Warning 
alert box) 

 

253 Reset (button)  

254 resize pointers  

255 resource bundles  

256 reverse video theme  

257 
RGB (tab for red, green, and 
blue values in a color chooser) 

 

258 
Right Margin (label in 
preferences dialog box) 

 

259 row (in tables)  

260 
Ruler Units (label in preferences 
dialog box) 

 

261 
Save (button or item in File 
menu) 

 

262 Save As (item in File menu)  

263 scale  

264 scroll  

265 scroll arrows  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

266 scroll box  

267 scroll channels  

268 scroll panes  

269 scrollbars  

270 Search (item in Help menu)  

271 secondary colors  

272 secondary windows  

273 Section (item in Format menu)  

274 select  

275 
Select (button in notification 
dialog box) 

 

276 Select All (item in Edit menu)  

277 selected items  

278 selection  

279 sentence capitalization  

280 separators  

281 Shift-clicking  

282 Shift-Tab  

283 
Show (label in preferences 
dialog box) 

 

284 single-clicking  

285 Size (item in Format menu)  

286 sliders  

287 small type style  

288 sort order  

289 
Sound File (label in notification 
dialog box) 

 

290 spacing  

291 splash screens  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

292 split panes  

293 splitter bars  

294 
Start at Top (radio button in find 
dialog box) 

 

295 
Stationery (label in preferences 
dialog box) 

 

296 Stop (button)  

297 Style (item in Format menu)  

298 
styled text editor (styled text 
plug-in kit) 

 

299 submenus  

300 Submit (command button)  

301 
Swatches (tab in color 
choosers) 

 

302 Swing class  

303 symbols  

304 system status animation  

305 system type style  

306 tab traversal  

307 tabbed panes  

308 tables  

309 text areas  

310 text fields  

311 text pointers  

312 theme mechanism  

313 themes  

314 title bars (in windows)  

315 toggle buttons  

316 tool tips  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

317 toolbar buttons  

318 toolbars  

319 trademark information  

320 tree components  

321 triple-clicking  

322 turners (in tree components)  

323 Tutorial (item in Help menu)  

324 unavailable items  

325 
Underline (item in Format 
menu)  

 

326 Undo (item in Edit menu)  

327 usability testing  

328 user interface elements  

329 user type style  

330 utility windows  

331 version numbers  

332 vertical scrollbar  

333 View (menu)  

334 visual design  

335 visual identifier  

336 wait pointers  

337 Warning alert boxes  

338 Whole Word (checkbox in find 
dialog box) 

 

339 window borders  

340 window controls  

341 window frame  

342 windows  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

343 word order  

344 word wrap  

345 zoom buttons  

346 zooming panes  

Asian Languages: Simplified Chinese  

Table 36   Word List for Asian Languages  

 

 
English Simplified Chinese 

1 
About {Application} (item in Help 
menu)  

2 About boxes  

3 Abstract Window Toolkit  

4 accessibility  

5 active components  

6 active windows  

7 alert boxes  

8 
Align Center (item in Format 
menu) 

 

9 Align Left (item in Format menu)  

10 Align Right (item in Format menu)  

11 alignment  

12 anchor point  

13 animation  

14 applet  

15 application  

16 Apply (button)  

17 arrow keys  

18 assistive technologies  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

19 background  

20 backing windows  

21 
Beeps (label in notification dialog 
box) 

 

22 bit depth  

23 Bold (item in Format menu)  

24 bold text  

25 borders  

26 Browse (button)  

27 browser  

28 button border  

29 button graphics  

30 button text  

31 Cancel (button)  

32 capitalization  

33 caution symbol  

34 CDE style look and feel  

35 cells (in tables)  

36 channels (in scrollbars)  

37 checkbox menu items  

38 checkboxes  

39 choosers  

40 clicking  

41 client properties  

42 Close (button or item in File menu)  

43 close control  

44 color choosers  

45 column (in tables)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

46 column header (in tables)  

47 combo boxes  

48 command button row  

49 command buttons  

50 components  

51 containers  

52 content panel (in a color chooser)  

53 content panes  

54 Contents (item in Help menu)  

55 contextual menus  

56 Continue (button in Error alert box)  

57 control type style  

58 Control-clicking  

59 controls  

60 Control-Tab  

61 Copy (item in Edit menu)  

62 crosshair pointer  

63 cross-platform color  

64 cross-platform delivery  

65 currency formats  

66 Cut (item in Edit menu)  

67 data structure  

68 
Date Format (label in preferences 
dialog box) 

 

69 default  

70 default command buttons  

71 
Default Font (label in preferences 
dialog box) 

 

72 default Java look and feel theme  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

73 default pointer  

74 delay indication  

75 destination feedback  

76 dialog boxes  

77 dimmed text  

78 disabilities  

79 disjoint selection  

80 distribution  

81 dithering  

82 dockable toolbars  

83 Document (item in Format menu)  

84 
Don't Save (button in Warning alert 
boxes) 

 

85 double-clicking  

86 drag and drop  

87 drag area  

88 drag texture  

89 dragging  

90 drop-down arrows  

91 drop-down menus  

92 Edit (menu)  

93 editable combo boxes  

94 editable text fields  

95 editor panes  

96 ellipsis marks  

97 Error alert boxes  

98 error messages  

99 exclusive choice (in toggle buttons)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

100 Exit (item in File menu)  

101 extended selection  

102 feedback  

103 fields  

104 File (menu)  

105 filling slider  

106 Find (item in Edit menu)  

107 find dialog boxes  

108 Find Next (item in Edit menu)  

109 
Flashes (label in notification dialog 
box) 

 

110 flush 3D effects  

111 
Font (menu or item in Format 
menu)  

112 fonts  

113 Format (menu)  

114 formatted text panes  

115 function keys  

116 GIF (Graphics Interchange Format)  

117 grids  

118 hand pointers  

119 headline capitalization  

120 Help (button or menu)  

121 
Hidden Text (checkbox in 
preferences dialog box)  

122 highlighting  

123 horizontal scrollbar  

124 hot spot  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

125 
HSB (tab for hue, saturation, and 
brightness in color choosers)  

126 HTML editor kits  

127 I-beam pointer  

128 icons  

129 inactive components  

130 inactive menu items  

131 inactive windows  

132 
independent choice (in toggle 
buttons) 

 

133 Index (item in Help menu)  

134 indicators  

135 Info alert box  

136 information symbol  

137 initial keyboard focus  

138 insertion point  

139 installation screens  

140 internal utility windows  

141 internal windows  

142 internationalization  

143 Italic (item in Format menu)  

144 italic text  

145 Java 2 SDK Java 2 SDK 

146 Java 2D API Java 2D API 

147 Java Accessibility API  

148 Java Accessibility Utilities  

149 Java Development Kit  

150 Java Foundation Classes  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

151 JavaHelp JavaHelp 

152 Java look and feel  

153 JFC application  

154 
JPEG (Joint Photographic Experts 
Group) 

 

155 Justify (item in Format menu)  

156 keyboard activation  

157 keyboard focus  

158 keyboard navigation  

159 keyboard operations  

160 keyboard shortcuts  

161 labels  

162 layout managers  

163 leaf (in tree component)  

164 
Left Margin (label in preferences 
dialog box) 

 

165 legal notices  

166 links  

167 lists  

168 localization  

169 
Log In (button in login splash 
screen) 

 

170 login dialog boxes  

171 Login Name text field  

172 login splash screens  

173 look and feel designs  

174 major tick marks (in sliders)  

175 
Margins (checkbox in preferences 
dialog box) 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

176 
Match Case (checkbox in find dialog 
box)  

177 menu bars  

178 menu items  

179 menu separators  

180 menu titles  

181 menus  

182 message (in alert dialog box)  

183 
Microsoft Windows style look and 
feel 

 

184 middle mouse button  

185 
MIME (Multipurpose Internet Mail 
Extensions)  

186 minimized internal windows  

187 minimized windows  

188 minor tick marks (in sliders)  

189 mnemonics  

190 modal dialog boxes  

191 model  

192 modeless dialog boxes  

193 modifier keys  

194 Modify (command button)  

195 mouse button 1  

196 mouse button 2  

197 mouse buttons   

198 mouse devices  

199 mouse operations  

200 mouse-over feedback  

201 move pointers  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

202 multiple document interface (MDI)  

203 multiple selection  

204 native code  

205 navigation  

206 nested split panes  

207 New (item in File menu)  

208 nodes (in tree components)  

209 noneditable combo boxes  

210 noneditable text fields  

211 nonfilling slider  

212 Normal (item in Format menu)  

213 notification dialog box  

214 Object (menu)  

215 OK (button)  

216 padding (command buttons)  

217 Page Setup (item in File menu)  

218 panels  

219 panes  

220 Paragraph (item in Format menu)  

221 password fields  

222 Paste (item in Edit menu)  

223 pixels  

224 plain text  

225 plain text area  

226 plain windows  

227 platforms  

228 plug-in editor kit  

229 pluggable look and feel  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

230 pointers  

231 posted menus  

232 posting menus  

233 Preferences (item in File menu)  

234 preferences dialog boxes  

235 pressing a key  

236 preview panel (in a color chooser)  

237 primary colors  

238 primary windows  

239 Print (item in File menu)  

240 print dialog boxes  

241 printer  

242 product name  

243 progress bars  

244 progress dialog boxes  

245 progress feedback  

246 progress indication  

247 Question alert boxes  

248 radio button group  

249 radio button menu items  

250 radio buttons  

251 Redo (item in Edit menu)  

252 
Replace (button in Warning alert 
box) 

 

253 Reset (button)  

254 resize pointers  

255 resource bundles  

256 reverse video theme  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

257 
RGB (tab for red, green, and blue 
values in a color chooser)  

258 
Right Margin (label in preferences 
dialog box) 

 

259 row (in tables)  

260 
Ruler Units (label in preferences 
dialog box) 

 

261 Save (button or item in File menu)  

262 Save As (item in File menu)  

263 scale  

264 scroll  

265 scroll arrows  

266 scroll box  

267 scroll channels  

268 scroll panes  

269 scrollbars  

270 Search (item in Help menu)  

271 secondary colors  

272 secondary windows  

273 Section (item in Format menu)  

274 select  

275 
Select (button in notification dialog 
box) 

 

276 Select All (item in Edit menu)  

277 selected items  

278 selection  

279 sentence capitalization  

280 separators  

281 Shift-clicking  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

282 Shift-Tab  

283 
Show (label in preferences dialog 
box) 

 

284 single-clicking  

285 Size (item in Format menu)  

286 sliders  

287 small type style  

288 sort order  

289 
Sound File (label in notification 
dialog box) 

 

290 spacing  

291 splash screens  

292 split panes  

293 splitter bars  

294 
Start at Top (radio button in find 
dialog box)  

295 
Stationery (label in preferences 
dialog box) 

 

296 Stop (button)  

297 Style (item in Format menu)  

298 
styled text editor (styled text 
plug-in kit)  

299 submenus  

300 Submit (command button)  

301 Swatches (tab in color choosers)  

302 Swing class  

303 symbols  

304 system status animation  

305 system type style  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

306 tab traversal  

307 tabbed panes  

308 tables  

309 text areas  

310 text fields  

311 text pointers  

312 theme mechanism  

313 themes  

314 title bars (in windows)  

315 toggle buttons  

316 tool tips  

317 toolbar buttons  

318 toolbars  

319 trademark information  

320 tree components  

321 triple-clicking  

322 turners (in tree components)  

323 Tutorial (item in Help menu)  

324 unavailable items  

325 Underline (item in Format menu)   

326 Undo (item in Edit menu)  

327 usability testing  

328 user interface elements  

329 user type style  

330 utility windows  

331 version numbers  

332 vertical scrollbar  

333 View (menu)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

334 visual design  

335 visual identifier  

336 wait pointers  

337 Warning alert boxes  

338 Whole Word (checkbox in find dialog 
box)  

339 window borders  

340 window controls  

341 window frame  

342 windows  

343 word order  

344 word wrap  

345 zoom buttons  

346 zooming panes  

Asian Languages: Traditional Chinese  

Table 37   Word List for Asian Languages  

 

 
English Traditional Chinese 

1 
About {Application} (item in Help 
menu) 

 

2 About boxes  

3 Abstract Window Toolkit  

4 accessibility  

5 active components  

6 active windows  

7 alert boxes  

8 
Align Center (item in Format 
menu) 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

9 Align Left (item in Format menu) 
 

10 Align Right (item in Format menu) 
 

11 alignment  

12 anchor point  

13 animation  

14 applet applet 

15 application  

16 Apply (button)  

17 arrow keys  

18 assistive technologies  

19 background  

20 backing windows  

21 
Beeps (label in notification dialog 
box) 

 

22 bit depth  

23 Bold (item in Format menu)  

24 bold text  

25 borders  

26 Browse (button)  

27 browser  

28 button border  

29 button graphics  

30 button text  

31 Cancel (button)  

32 capitalization  

33 caution symbol  

34 CDE style look and feel  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

35 cells (in tables)  

36 channels (in scrollbars)  

37 checkbox menu items  

38 checkboxes  

39 choosers  

40 clicking  

41 client properties  

42 Close (button or item in File menu) 
 

43 close control  

44 color choosers  

45 column (in tables)  

46 column header (in tables)  

47 combo boxes  

48 command button row  

49 command buttons  

50 components  

51 containers  

52 content panel (in a color chooser)  

53 content panes  

54 Contents (item in Help menu) 
 

55 contextual menus  

56 Continue (button in Error alert box)  

57 control type style  

58 Control-clicking  

59 controls  

60 Control-Tab  

61 Copy (item in Edit menu)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

62 crosshair pointer  

63 cross-platform color  

64 cross-platform delivery  

65 currency formats  

66 Cut (item in Edit menu)  

67 data structure  

68 
Date Format (label in preferences 
dialog box) 

 

69 default  

70 default command buttons  

71 
Default Font (label in preferences 
dialog box) 

 

72 default Java look and feel theme  

73 default pointer  

74 delay indication  

75 destination feedback  

76 dialog boxes  

77 dimmed text  

78 disabilities  

79 disjoint selection  

80 distribution  

81 dithering  

82 dockable toolbars  

83 Document (item in Format menu)  

84 
Don't Save (button in Warning alert 
boxes) 

 

85 double-clicking  

86 drag and drop  

87 drag area  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

88 drag texture  

89 dragging  

90 drop-down arrows  

91 drop-down menus  

92 Edit (menu)  

93 editable combo boxes  

94 editable text fields  

95 editor panes  

96 ellipsis marks  

97 Error alert boxes  

98 error messages  

99 exclusive choice (in toggle buttons)  

100 Exit (item in File menu)  

101 extended selection  

102 feedback  

103 fields  

104 File (menu)  

105 filling slider  

106 Find (item in Edit menu)  

107 find dialog boxes  

108 Find Next (item in Edit menu) 
 

109 
Flashes (label in notification dialog 
box) 

 

110 flush 3D effects  

111 
Font (menu or item in Format 
menu)  

112 fonts  

113 Format (menu)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

114 formatted text panes  

115 function keys  

116 GIF (Graphics Interchange Format)  

117 grids  

118 hand pointers  

119 headline capitalization  

120 Help (button or menu)  

121 
Hidden Text (checkbox in 
preferences dialog box)  

122 highlighting  

123 horizontal scrollbar  

124 hot spot  

125 
HSB (tab for hue, saturation, and 
brightness in color choosers) 

 

126 HTML editor kits  

127 I-beam pointer  

128 icons  

129 inactive components  

130 inactive menu items  

131 inactive windows  

132 
independent choice (in toggle 
buttons) 

 

133 Index (item in Help menu) 
 

134 indicators  

135 Info alert box  

136 information symbol  

137 initial keyboard focus  

138 insertion point  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

139 installation screens  

140 internal utility windows  

141 internal windows  

142 internationalization  

143 Italic (item in Format menu)  

144 italic text  

145 Java 2 SDK Java 2 SDK 

146 Java 2D API Java 2D API 

147 Java Accessibility API  

148 Java Accessibility Utilities  

149 Java Development Kit  

150 Java Foundation Classes  

151 JavaHelp JavaHelp 

152 Java look and feel  

153 JFC application  

154 
JPEG (Joint Photographic Experts 
Group) 

 

155 Justify (item in Format menu)  

156 keyboard activation  

157 keyboard focus  

158 keyboard navigation  

159 keyboard operations  

160 keyboard shortcuts  

161 labels  

162 layout managers  

163 leaf (in tree component)  

164 
Left Margin (label in preferences 
dialog box)  

165 legal notices  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

166 links  

167 lists  

168 localization  

169 
Log In (button in login splash 
screen) 

 

170 login dialog boxes  

171 Login Name text field  

172 login splash screens  

173 look and feel designs  

174 major tick marks (in sliders)  

175 
Margins (checkbox in preferences 
dialog box)  

176 
Match Case (checkbox in find dialog 
box) 

 

177 menu bars  

178 menu items  

179 menu separators  

180 menu titles  

181 menus  

182 message (in alert dialog box)  

183 
Microsoft Windows style look and 
feel 

 

184 middle mouse button  

185 
MIME (Multipurpose Internet Mail 
Extensions) 

 

186 minimized internal windows  

187 minimized windows  

188 minor tick marks (in sliders)  

189 mnemonics  

190 modal dialog boxes  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

191 model  

192 modeless dialog boxes  

193 modifier keys  

194 Modify (command button)  

195 mouse button 1  

196 mouse button 2  

197 mouse buttons   

198 mouse devices  

199 mouse operations  

200 mouse-over feedback  

201 move pointers  

202 multiple document interface (MDI)  

203 multiple selection  

204 native code  

205 navigation  

206 nested split panes  

207 New (item in File menu) 
 

208 nodes (in tree components)  

209 noneditable combo boxes  

210 noneditable text fields  

211 nonfilling slider  

212 Normal (item in Format menu)  

213 notification dialog box  

214 Object (menu)  

215 OK (button)  

216 padding (command buttons)  

217 Page Setup (item in File menu) 
 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

218 panels  

219 panes  

220 Paragraph (item in Format menu)  

221 password fields  

222 Paste (item in Edit menu)  

223 pixels  

224 plain text  

225 plain text area  

226 plain windows  

227 platforms  

228 plug-in editor kit  

229 pluggable look and feel  

230 pointers  

231 posted menus  

232 posting menus  

233 Preferences (item in File menu) 
 

234 preferences dialog boxes  

235 pressing a key  

236 preview panel (in a color chooser)  

237 primary colors  

238 primary windows  

239 Print (item in File menu)  

240 print dialog boxes  

241 printer  

242 product name  

243 progress bars  

244 progress dialog boxes  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

245 progress feedback  

246 progress indication  

247 Question alert boxes  

248 radio button group  

249 radio button menu items  

250 radio buttons  

251 Redo (item in Edit menu)  

252 
Replace (button in Warning alert 
box) 

 

253 Reset (button)  

254 resize pointers  

255 resource bundles  

256 reverse video theme  

257 
RGB (tab for red, green, and blue 
values in a color chooser) 

 

258 
Right Margin (label in preferences 
dialog box)  

259 row (in tables)  

260 
Ruler Units (label in preferences 
dialog box)  

261 Save (button or item in File menu) 
 

262 Save As (item in File menu) 
 

263 scale  

264 scroll  

265 scroll arrows  

266 scroll box  

267 scroll channels  

268 scroll panes  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

269 scrollbars  

270 Search (item in Help menu) 
 

271 secondary colors  

272 secondary windows  

273 Section (item in Format menu)  

274 select  

275 
Select (button in notification dialog 
box) 

 

276 Select All (item in Edit menu) 
 

277 selected items  

278 selection  

279 sentence capitalization  

280 separators  

281 Shift-clicking  

282 Shift-Tab  

283 
Show (label in preferences dialog 
box) 

 

284 single-clicking  

285 Size (item in Format menu)  

286 sliders  

287 small type style  

288 sort order  

289 
Sound File (label in notification 
dialog box)  

290 spacing  

291 splash screens  

292 split panes  

293 splitter bars  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

294 
Start at Top (radio button in find 
dialog box) 

 

295 
Stationery (label in preferences 
dialog box) 

 

296 Stop (button)  

297 Style (item in Format menu)  

298 
styled text editor (styled text 
plug-in kit)  

299 submenus  

300 Submit (command button)  

301 Swatches (tab in color choosers)  

302 Swing class  

303 symbols  

304 system status animation  

305 system type style  

306 tab traversal  

307 tabbed panes  

308 tables  

309 text areas  

310 text fields  

311 text pointers  

312 theme mechanism  

313 themes  

314 title bars (in windows)  

315 toggle buttons  

316 tool tips  

317 toolbar buttons  

318 toolbars  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

319 trademark information  

320 tree components  

321 triple-clicking  

322 turners (in tree components)  

323 Tutorial (item in Help menu) 
 

324 unavailable items  

325 Underline (item in Format menu)   

326 Undo (item in Edit menu)  

327 usability testing  

328 user interface elements  

329 user type style  

330 utility windows  

331 version numbers  

332 vertical scrollbar  

333 View (menu)  

334 visual design  

335 visual identifier  

336 wait pointers  

337 Warning alert boxes  

338 Whole Word (checkbox in find dialog 
box) 

 

339 window borders  

340 window controls  

341 window frame  

342 windows  

343 word order  

344 word wrap  

345 zoom buttons  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

346 zooming panes  

Asian Languages: Korean  

Table 38   Word List for Asian Languages  

 

 
English Korean 

1 
About {Application} (item in 
Help menu) 

 

2 About boxes  

3 Abstract Window Toolkit  

4 accessibility  

5 active components  

6 active windows  

7 alert boxes  

8 
Align Center (item in Format 
menu) 

 

9 
Align Left (item in Format 
menu) 

 

10 
Align Right (item in Format 
menu) 

 

11 alignment  

12 anchor point  

13 animation  

14 applet  

15 application  

16 Apply (button)  

17 arrow keys  

18 assistive technologies  

19 background  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

20 backing windows  

21 
Beeps (label in notification dialog 
box) 

 

22 bit depth  

23 Bold (item in Format menu)  

24 bold text  

25 borders  

26 Browse (button)  

27 browser  

28 button border  

29 button graphics  

30 button text  

31 Cancel (button)  

32 capitalization  

33 caution symbol  

34 CDE style look and feel  

35 cells (in tables)  

36 channels (in scrollbars)  

37 checkbox menu items  

38 checkboxes  

39 choosers  

40 clicking  

41 client properties  

42 
Close (button or item in File 
menu) 

 

43 close control  

44 color choosers  

45 column (in tables)  

46 column header (in tables)  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

47 combo boxes  

48 command button row  

49 command buttons  

50 components  

51 containers  

52 
content panel (in a color 
chooser) 

 

53 content panes  

54 Contents (item in Help menu)  

55 contextual menus  

56 
Continue (button in Error alert 
box) 

 

57 control type style  

58 Control-clicking  

59 controls  

60 Control-Tab  

61 Copy (item in Edit menu)  

62 crosshair pointer  

63 cross-platform color  

64 cross-platform delivery  

65 currency formats  

66 Cut (item in Edit menu)  

67 data structure  

68 
Date Format (label in 
preferences dialog box) 

 

69 default  

70 default command buttons  

71 
Default Font (label in preferences 
dialog box) 

 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

72 default Java look and feel theme  

73 default pointer  

74 delay indication  

75 destination feedback  

76 dialog boxes  

77 dimmed text  

78 disabilities  

79 disjoint selection  

80 distribution  

81 dithering  

82 dockable toolbars  

83 
Document (item in Format 
menu) 

 

84 
Don't Save (button in Warning 
alert boxes) 

 

85 double-clicking  

86 drag and drop  

87 drag area  

88 drag texture  

89 dragging  

90 drop-down arrows  

91 drop-down menus  

92 Edit (menu)  

93 editable combo boxes  

94 editable text fields  

95 editor panes  

96 ellipsis marks  

97 Error alert boxes  

98 error messages  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

99 
exclusive choice (in toggle 
buttons) 

 

100 Exit (item in File menu)  

101 extended selection  

102 feedback  

103 fields  

104 File (menu)  

105 filling slider  

106 Find (item in Edit menu)  

107 find dialog boxes  

108 Find Next (item in Edit menu)  

109 
Flashes (label in notification 
dialog box) 

 

110 flush 3D effects  

111 
Font (menu or item in Format 
menu) 

 

112 fonts  

113 Format (menu)  

114 formatted text panes  

115 function keys  

116 
GIF (Graphics Interchange 
Format) 

GIF (Graphics Interchange Format) 

117 grids  

118 hand pointers  

119 headline capitalization  

120 Help (button or menu)  

121 
Hidden Text (checkbox in 
preferences dialog box) 

 

122 highlighting  

123 horizontal scrollbar  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

124 hot spot  

125 
HSB (tab for hue, saturation, and 
brightness in color choosers) 

 

126 HTML editor kits  

127 I-beam pointer  

128 icons  

129 inactive components  

130 inactive menu items  

131 inactive windows  

132 
independent choice (in toggle 
buttons) 

 

133 Index (item in Help menu)  

134 indicators  

135 Info alert box  

136 information symbol  

137 initial keyboard focus  

138 insertion point  

139 installation screens  

140 internal utility windows  

141 internal windows  

142 internationalization  

143 Italic (item in Format menu)  

144 italic text  

145 Java 2 SDK Java 2 SDK 

146 Java 2D API Java 2D API 

147 Java Accessibility API  

148 Java Accessibility Utilities  

149 Java Development Kit  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

150 Java Foundation Classes  

151 JavaHelp JavaHelp 

152 Java look and feel  

153 JFC application  

154 
JPEG (Joint Photographic Experts 
Group) 

JPEG (Joint Photographic Experts 
Group) 

155 Justify (item in Format menu)  

156 keyboard activation  

157 keyboard focus  

158 keyboard navigation  

159 keyboard operations  

160 keyboard shortcuts  

161 labels  

162 layout managers  

163 leaf (in tree component)  

164 
Left Margin (label in preferences 
dialog box)  

165 legal notices  

166 links  

167 lists  

168 localization  

169 
Log In (button in login splash 
screen) 

 

170 login dialog boxes  

171 Login Name text field  

172 login splash screens  

173 look and feel designs  

174 major tick marks (in sliders)  

175 Margins (checkbox in  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

preferences dialog box) 

176 
Match Case (checkbox in find 
dialog box) 

 

177 menu bars  

178 menu items  

179 menu separators  

180 menu titles  

181 menus  

182 message (in alert dialog box)  

183 
Microsoft Windows style look and 
feel 

 

184 middle mouse button  

185 
MIME (Multipurpose Internet Mail 
Extensions) 

MIME (Multipurpose Internet Mail 
Extensions) 

186 minimized internal windows  

187 minimized windows  

188 minor tick marks (in sliders)  

189 mnemonics  

190 modal dialog boxes  

191 model  

192 modeless dialog boxes  

193 modifier keys  

194 Modify (command button)  

195 mouse button 1  

196 mouse button 2  

197 mouse buttons   

198 mouse devices  

199 mouse operations  

200 mouse-over feedback  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

201 move pointers  

202 
multiple document interface 
(MDI) 

 

203 multiple selection  

204 native code  

205 navigation  

206 nested split panes  

207 New (item in File menu)  

208 nodes (in tree components)  

209 noneditable combo boxes  

210 noneditable text fields  

211 nonfilling slider  

212 Normal (item in Format menu)  

213 notification dialog box  

214 Object (menu)  

215 OK (button)  

216 padding (command buttons)  

217 Page Setup (item in File menu)  

218 panels  

219 panes  

220 
Paragraph (item in Format 
menu) 

 

221 password fields  

222 Paste (item in Edit menu)  

223 pixels  

224 plain text  

225 plain text area  

226 plain windows  

227 platforms  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

228 plug-in editor kit  

229 pluggable look and feel  

230 pointers  

231 posted menus  

232 posting menus  

233 Preferences (item in File menu)  

234 preferences dialog boxes  

235 pressing a key  

236 
preview panel (in a color 
chooser) 

 

237 primary colors  

238 primary windows  

239 Print (item in File menu)  

240 print dialog boxes  

241 printer  

242 product name  

243 progress bars  

244 progress dialog boxes  

245 progress feedback  

246 progress indication  

247 Question alert boxes  

248 radio button group  

249 radio button menu items  

250 radio buttons  

251 Redo (item in Edit menu)  

252 
Replace (button in Warning alert 
box) 

 

253 Reset (button)  

254 resize pointers  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

255 resource bundles  

256 reverse video theme  

257 
RGB (tab for red, green, and blue 
values in a color chooser) 

 

258 
Right Margin (label in 
preferences dialog box) 

 

259 row (in tables)  

260 
Ruler Units (label in preferences 
dialog box) 

 

261 
Save (button or item in File 
menu) 

 

262 Save As (item in File menu)  

263 scale  

264 scroll  

265 scroll arrows  

266 scroll box  

267 scroll channels  

268 scroll panes  

269 scrollbars  

270 Search (item in Help menu)  

271 secondary colors  

272 secondary windows  

273 Section (item in Format menu)  

274 select  

275 
Select (button in notification 
dialog box) 

 

276 Select All (item in Edit menu)  

277 selected items  

278 selection  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

279 sentence capitalization  

280 separators  

281 Shift-clicking  

282 Shift-Tab Shift-Tab 

283 
Show (label in preferences dialog 
box) 

 

284 single-clicking  

285 Size (item in Format menu)  

286 sliders  

287 small type style  

288 sort order  

289 
Sound File (label in notification 
dialog box) 

 

290 spacing  

291 splash screens  

292 split panes  

293 splitter bars  

294 
Start at Top (radio button in find 
dialog box) 

 

295 
Stationery (label in preferences 
dialog box) 

 

296 Stop (button)  

297 Style (item in Format menu)  

298 
styled text editor (styled text 
plug-in kit) 

 

299 submenus  

300 Submit (command button)  

301 Swatches (tab in color choosers)  

302 Swing class  

303 symbols  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

304 system status animation  

305 system type style  

306 tab traversal  

307 tabbed panes  

308 tables  

309 text areas  

310 text fields  

311 text pointers  

312 theme mechanism  

313 themes  

314 title bars (in windows)  

315 toggle buttons  

316 tool tips  

317 toolbar buttons  

318 toolbars  

319 trademark information  

320 tree components  

321 triple-clicking  

322 turners (in tree components)  

323 Tutorial (item in Help menu)  

324 unavailable items  

325 
Underline (item in Format 
menu)  

 

326 Undo (item in Edit menu)  

327 usability testing  

328 user interface elements  

329 user type style  

330 utility windows  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

331 version numbers  

332 vertical scrollbar  

333 View (menu)  

334 visual design  

335 visual identifier  

336 wait pointers  

337 Warning alert boxes  

338 Whole Word (checkbox in find 
dialog box) 

 

339 window borders  

340 window controls  

341 window frame  

342 windows  

343 word order  

344 word wrap  

345 zoom buttons  

346 zooming panes  

D: Switching Look and Feel 

Designs  

As a developer, you might want to provide users with the ability to 
switch the appearance of components within applications. This 
appendix contains some information about the pitfalls of letting users 
change the look and feel, along with guidelines on how to present the 
choice to users when necessary. The ability to switch look and feel 
designs is intended for use as a design- time feature rather than a 
runtime feature.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Pitfalls of User-Controlled Switching  

The Swing components and the pluggable look and feel mechanism 
enable users to select the look and feel of an application. This choice 
is misleading, however, since a significant portion of the feel of an 
application is its general design, layout, and terminology.  

It is usually unwise to give end users the ability to swap look and feel 
designs while working in your application. Switching look and feel 
designs in this way primarily swaps the appearance of the 
components. The layout and vocabulary used are programmed in and 
do not change. For instance, swapping look and feel designs does not 
change the titles of the menus.  

The JFC has no special provisions that enable users to select a look 
and feel on the fly. The look and feel switching seen in many demos 
shows some of the power of the JFC, but on-the-fly look and feel 
switching was not a core design goal. As a result, there is no 
guarantee that user interfaces designed properly in one look and feel 
can migrate cleanly to another look and feel.  

Successful user-controlled switching requires that the infrastructure 
behind the components have an understanding of each platform's 
design, layout, and nomenclature. In practice, there is more to a 
Microsoft Windows, Mac OS, or CDE application than the appearance 
and behavior of individual components.  

 Do not enable user-controlled look and feel switching in your 
application without careful consideration.  

The following figure illustrates a file chooser built in the CDE style, 
using Swing components.  

Figure 201   CDE File Chooser  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

 

The next figure shows what a component-level switch from the CDE to 
the Macintosh look and feel might look like.  

Figure 202   Macintosh File Chooser (Simple Look and Feel Switch)  

 

The component-level look and feel switch has not created a Macintosh 
file chooser. A higher level of understanding of the design principles 
for the Macintosh platform would be needed for this transformation to 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

occur correctly. The following figure shows what a correct 
transformation to the Macintosh file chooser might look like.  

Figure 203   Macintosh File Chooser (Following Macintosh Style)  

 

While the JFC does not provide a general solution to complete 
user-controlled look and feel switching, a specific application could 
ensure the correct layout and nomenclature for each look and feel 
that it supports. However, this would likely entail a significant amount 
of work.  

If you are developing an application with more than a single target 
platform, consider using a cross-platform look and feel design, such 
as the Java look and feel.  

Guidelines for Switching Look and Feel 

Designs  

If you absolutely must switch look and feel designs, follow these 
guidelines.  

How to Present the Choice  

 Place the choice of look and feel designs inside your application's 
preferences dialog box. 

 List your application's default look and feel first. If the default is 
the Java look and feel, it should be followed by the look and feel of the 
platform your application is most likely to run on. Make these choices 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

radio button menu items because only one main look and feel can be 
active at any time. 

Nomenclature  

 Always use "Java look and feel," not "Java" or "Metal." (Metal is 
the package name for the Java look and feel.)  

Glossary  
Abstract Window 
Toolkit 

See AWT.  

accessibility The degree to which software can be used 
comfortably by a wide variety of people, 
including those who require assistive 
technologies or those who use the keyboard 
instead of a pointing device. An accessible 
JFC application employs the Java 
Accessibility API and provides keyboard 
operations for all actions that can be carried 
out by use of the mouse. See also assistive 
technology, Java Accessibility API, Java 
Accessibility Utilities, keyboard operations. 

activation Starting the operation of a component. See 
also available, choose, navigation, select. 

alert box A secondary window used by an application 
to convey a message or warning or to gather 
a small amount of information from the 
user. Four standard alert boxes (Info, 
Warning, Error, and Question) are supplied 
for JFC applications. Alert boxes are created 
using the JOptionPane component. See also 
dialog box. 

anti-aliasing A change in the appearance of the border of 
an application graphic such as an icon, so 
that it looks smoother at screen resolution 
and in relationship to a specific color. 

applet A program, written in the Java language, 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

that a user can interact with in a web 
browser. See also application, browser. 

application A program that combines all the functions 
necessary for a user to accomplish a 
particular set of tasks (for instance, word 
processing or inventory tracking). Unless 
stated otherwise, this book uses 
"application" to refer to both applets and 
standalone applications. See also applet. 

assistive technology Hardware or software that helps people with 
disabilities use a computer (or provides 
alternative means of use to all users). 
Examples include pointing devices other 
than the mouse, audio or text-only 
browsers, and screen readers that translate 
the contents of the screen into Braille, voice 
output, or audible cues. See also 
accessibility. 

available Able to be interacted with. When a 
component is unavailable, it is dimmed and 
is unable to receive keyboard focus. 

AWT (Abstract Window Toolkit) The class library 
that provides the standard API for building 
GUIs for Java programs. The Abstract 
Window Toolkit (AWT) includes imaging 
tools, data transfer classes, GUI 
components, containers for GUI 
components, an event system for handling 
user and system events among parts of the 
AWT, and layout managers for managing 
the size and position of GUI components in 
platform-independent designs. (The GUI 
components in the AWT are implemented as 
native-platform versions of the 
components, and they have largely been 
supplanted by the Swing components.) See 
also JFC, Swing classes. 

backing window A container, a sort of "virtual desktop," for 
an MDI application. Backing windows are 
created using the JDesktopPane 
component. See also internal window, MDI. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

badge A graphic added to existing toolbar buttons 
that indicates a change in the action of the 
button--for instance, the display of a menu, 
the creation of a new object, the addition of 
an object to a collection, or the review or 
editing of settings and properties.  

bean A reusable software component written to 
the JavaBeans specification. See also 
JavaBeans. 

bit depth The amount of information (in bits) used to 
represent a pixel. A bit depth of 8 supports 
up to 256 colors; a bit depth of 24 supports 
up to 16,777,216 colors. 

bookmark A URL (uniform resource locator) that has 
been added to a list of saved links. When 
users view a particular web site and want to 
return to it subsequently, they can create a 
bookmark for it.  

browser An application that enables users to view, 
navigate through, and interact with HTML 
documents and applets. Also called a "web 
browser." See also applet. 

button A collective term for the various controls 
whose on-screen appearance typically 
simulates a push button or a radio button. 
The user clicks buttons to specify commands 
or set options. See also checkbox, command 
button, radio button, toggle button, toolbar 
button. 

checkbox A control, consisting of a graphic and 
associated text, that a user clicks to turn an 
option on or off. A check mark in the 
checkbox graphic indicates that the option is 
turned on. Checkboxes are created using 
the JCheckBox component. See also radio 
button. 

checkbox menu item A menu item that appears with a checkbox 
next to it to represent an on or off setting. A 
check mark in the checkbox graphic 
indicates that the menu item is turned on. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Checkbox menu items are created using the 
JCheckBoxMenuItem component. See also 
checkbox, menu item. 

choose (1) In human interface design, refers 
narrowly to turning on a value in a 
component that offers a set of possible 
values, such as a combo box or a list box.  
(2) In technical documentation, refers 
generally to the action of clicking a menu 
title or menu item. See also activation, 
select. 

click To press and release a mouse button. 
Clicking selects or activates the object 
beneath the button.  

client In the client-server model of 
communications, a process that requests 
the resources of a remote server, such as 
computation and storage space. See also 
server. 

color chooser A component that enables a user to select a 
color. Color choosers are created using the 
JColorChooser component. See also HSB, 
RGB, utility window. 

combo box A component with a drop-down arrow that 
the user clicks to display a list of options. 
Noneditable combo boxes have a list from 
which the user can choose one item. 
Editable combo boxes offer a text field as 
well as a list of options. The user can make a 
choice by typing a value in the text field or 
by choosing an item from the list. Combo 
boxes are created using the JComboBox 
component. 

command button A button with a rectangular border that 
contains text, a graphic, or both. A user 
clicks a command button to specify a 
command to initiate an action. Command 
buttons are created using the JButton 
component. See also button, toggle button, 
toolbar button. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

component A subclass of java.awt.component or, by 
extension, the interface element 
implemented by that subclass. See also 
control, object, Swing classes. 

container A component (such as an applet, window, 
pane, or internal window) that holds other 
components. 

contextual menu A menu that is displayed when a user 
presses mouse button 2 while the pointer is 
over an object or area associated with that 
menu. A contextual menu offers only menu 
items that are applicable to the object or 
region at the location of the pointer. 
Contextual menus are created using the 
JPopupMenu component. See also menu. 

control An interface element that a user can 
manipulate to perform an action, choose an 
option, or set a value. Examples include 
buttons, sliders, list boxes, and combo 
boxes. See also component, object. 

CORBA (Common Object Request Broker 
Architecture) An architecture for the 
creation, exchange, and management of 
distributed program objects in a network. 
CORBA enables programs on different 
platforms to communicate in a distributed 
environment. 

cross-platform Pertaining to heterogeneous computing 
environments. For example, a 
cross-platform application is one that has a 
single code base for multiple operating 
systems. 

cursor See pointer. 

default command 
button 

The command button that the application 
activates if a user presses Enter or Return. 
Default buttons in Java look and feel 
applications have a heavier border than 
other command buttons. See also command 
button. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

deployment The process of installing software into an 
operational environment. 

designer A professional who specifies the way that 
users will interact with an application, 
chooses the interface components, and lays 
them out in a set of views. The designer 
might or might not be the same person as 
the developer who writes the application 
code. 

dialog box A secondary window displayed by an 
application to gather information from 
users. Examples of dialog boxes include 
windows that set properties of objects, set 
parameters for commands, and set 
preferences for use of the application. 
Dialog boxes can also present information, 
such as displaying a progress bar. A dialog 
box can contain panes, lists, buttons, and 
other components. Dialog boxes are created 
using the JDialog component. See also alert 
box, color chooser, internal utility window, 
secondary window, utility window. 

dithering Simulating unavailable colors in a displayed 
graphic by using a pattern of two or more 
available colors. 

drag To move the mouse while holding down a 
mouse button. See also drag and drop. 

drag and drop To drag an interface element to a new 
location in order to move, copy, or link it. 
See also drag. 

drop-down arrow The triangular indicator that a user clicks to 
view more options than are visible on 
screen--such as the list attached to a combo 
box or the menu provided by some toolbar 
buttons. See also badge. 

drop-down menu A menu that is displayed when a user 
activates a menu title in the menu bar or 
toolbar. Drop-down menus are created 
using the JMenu component. See also menu, 
menu bar. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

EAR (Enterprise Archive) A file format used for 
deploying a J2EE application. An.ear 
(Enterprise Archive) file consists of one or 
more J2EE modules and a deployment 
descriptor. Within the .ear file, components 
are grouped into separate module 
types--JSP pages, servlets, and HTML pages 
are grouped into web archive files (.war 
files) while enterprise beans are grouped 
into EJB modules (EJB .jar files). See also 
EJB, J2EE application, JSP, WAR. 

editable combo box See combo box. 

editor pane A text component that supports a variety of 
plug-in editor kits. The JFC includes editor 
kits that can display plain, styled, HTML, and 
RTF data. Editor panes are created using the 
JEditorPane component. See also plug-in 
editor kit. 

EJB (Enterprise JavaBeans) A component 
architecture for development and 
deployment of object-oriented, distributed, 
enterprise-level applications. Applications 
written using the Enterprise JavaBeans 
architecture are scalable, transactional, 
multiuser, and secure. See also JavaBeans. 

export To save an object or data in a format other 
than the application's native format. See 
also import. 

flush 3D style In the Java look and feel, the effect created 
by rendering on-screen graphics whose 
surfaces appear to be in the same plane as 
the surrounding canvas and whose border 
has a bevel. 

focus See keyboard focus. 

GIF (Graphics Interchange Format) An 8-bit 
graphics format developed by CompuServe 
and commonly used on the World Wide Web. 
GIF files are limited to 256 colors, and they 
compress without loss of information. The 
GIF format is typically used for graphics in 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

the Java look and feel. See also bit depth, 
JPEG. 

host A computer system that is accessed by one 
or more computers and workstations at 
remote locations. 

HSB For "hue, saturation, brightness." In 
computer graphics, a color model in which 
hue refers to a color's light frequency, 
saturation is the amount or strength of the 
hue (its purity), and brightness is the 
amount of black in the color (its lightness or 
darkness). See also RGB. 

HTTP (Hypertext Transfer Protocol) An application 
protocol that governs the exchange of files 
(including text, images, sound, and video) 
on the World Wide Web. See also HTTPS. 

HTTPS (Secure Hypertext Transfer Protocol) A web 
protocol that governs encryption and 
decryption (including user page requests 
and pages sent back by web servers). 
Developed by Netscape, HTTPS is 
nonproprietary. See also HTTP. 

icon An on-screen graphic representing an 
interface element that a user can select or 
manipulate--for example, an application, 
document, or disk. 

IIOP (Internet Inter-ORB Protocol) A protocol 
used for communication between CORBA 
common object request brokers. See also 
CORBA. 

import To bring an object or data file (for instance, 
a document created in another application, 
a text file, or a graphics file) into an 
application. See also export. 

input focus See keyboard focus. 

insertion point The place, usually indicated by a blinking 
bar, where typed text or a dragged or 
pasted selection will appear. See also 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

pointer. 

internal window A window used in MDI applications that a 
user cannot drag outside of the backing 
window. In an MDI application that uses the 
Java look and feel, internal windows have a 
window border, title bar, and standard 
window controls with the Java look and feel. 
Internal windows correspond to a non-MDI 
application's primary windows. Internal 
windows are created using the 
JInternalFrame component. See also 
backing window, MDI, primary window. 

internal utility 
window 

In an MDI application with the Java look and 
feel, a modeless window that typically 
displays a collection of tools, colors, or 
patterns. Internal utility windows float on 
top of document (internal) windows. User 
choices made in an internal utility window 
affect whichever internal window is active. 
Internal utility windows are created using 
the JInternalFrame component. See also 
internal window, utility window. 

internationalization The process of preparing software so that it 
is suitable for the global marketplace, taking 
into account wide variations in regions, 
languages, and cultures. 
Internationalization usually requires the 
separation of component text from code to 
ease the process of translation. See also 
localization, resource bundle. 

J2EE (Java 2 Platform, Enterprise Edition) The 
edition of the Java 2 platform that combines 
a number of technologies (such as 
enterprise beans, JSP pages, CORBA, and 
XML) in one architecture with a 
comprehensive application programming 
model and compatibility test suite for 
building enterprise-class server-side 
applications. See also CORBA, EJB, JSP. 

J2EE application An application that consists of J2EE 
components (application clients, applets, 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

HTML pages, JSP pages, servlets, and 
enterprise beans) that run on the J2EE 
platform. J2EE applications are typically 
designed for distribution across multiple 
computing tiers. For deployment, a J2EE 
application is packaged in an .ear 
(Enterprise Archive) file. See also EAR, 
J2EE. 

J2EE application 
client 

A first-tier client program that executes in 
its own Java virtual machine but might 
access J2EE components in the web or 
business tier. 

J2EE server The collection of runtime services provided 
by the J2EE platform. These include HTTP, 
HTTPS, JTA, RMI-IIOP, Java IDL, JDBC, JMS, 
JNDI, JavaMail, and JAF. Although J2EE 
servers usually come packaged with web 
and EJB containers, they are not required to. 
For example, an OS vendor could supply the 
runtime services while a separate vendor 
supplied the J2EE containers. 

J2SE (Java 2 Platform, Standard Edition) The 
standard edition of the essential Java 2 
platform, which includes tools, runtime 
services, and APIs for developers who are 
writing, deploying, and running applets and 
applications in the Java programming 
language. See also Java 2 SDK. 

JAF (JavaBeans Activation Framework) A 
standard extension to the J2SE and J2EE 
platforms. JAF enables developers to use 
standard services to determine the type of 
an arbitrary piece of data, gain access to 
and discover available operations, and 
instantiate the appropriate bean to perform 
those operations. See also JavaBeans. 

JAR (Java Archive) A platform-independent file 
format that bundles classes, images, and 
other files into one compressed file, 
speeding download time. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Java 2D API A programming interface (part of the JFC in 
the Java 2 SDK) that provides an advanced 
two-dimensional imaging model for complex 
shapes, text, and images. Features include 
enhanced font and color support and a 
single, comprehensive rendering model. 
See also JFC. 

Java 2 Platform, 
Enterprise Edition 

See J2EE. 

Java 2 Platform, 
Standard Edition 

See J2SE. 

Java 2 SDK The software development kit that 
developers need to build applications for the 
Java 2 Platform, Standard Edition, v. 1.3, 
and the Java 2 Platform, Enterprise Edition. 
See also JDK, J2EE, J2SE. 

Java Accessibility 
API 

A programming interface (part of the JFC) 
that enables assistive technologies to 
interact and communicate with JFC 
components. A Java application that fully 
supports the Java Accessibility API is 
compatible with such technologies as screen 
readers and screen magnifiers. See also 
accessibility, assistive technology, Java 
Accessibility Utilities, JFC. 

Java Accessibility 
Utilities 

A set of classes (provided in the Java 2 SDK) 
for use by the vendors who create assistive 
technologies or automated tool tests. They 
enable assistive technologies to locate and 
query user interface objects inside a Java 
application. See also accessibility, assistive 
technology, Java Accessibility API, JFC. 

JavaBeans An architecture that defines a portable, 
platform-independent, reusable component 
model. Beans are the basic unit in this 
model. You can deploy beans in a network 
on any major operating system. See also 
EJB. 

JavaBeans 
Activation 

See JAF. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Framework 

Java Development 
Kit 

See JDK. 

Java Foundation 
Classes 

See JFC. 

Java IDL An interface definition language that 
provides CORBA interoperability and 
connectivity capabilities for the J2EE 
platform. See also CORBA, J2EE. 

Java look and feel The default appearance and behavior for JFC 
applications, designed for cross-platform 
use. The Java look and feel works in the 
same way on any platform that supports the 
JFC. See also JFC, pluggable look and feel 
architecture. 

JavaMail An API for sending and receiving email. 

JavaServer Pages See JSP. 

JDBC (Java Database Connectivity) An industry 
standard for database-independent 
connectivity between the Java platform and 
a wide range of databases. The JDBC 
interface provides a call-level API for 
SQL-based database access. 

JDK (Java Development Kit) Software that 
includes the APIs and tools that developers 
need to build applications for those versions 
of the Java platform that preceded the Java 
2 platform. See also Java 2 SDK. 

JFC (Java Foundation Classes) A part of the Java 
2 platform that includes the Swing classes, 
pluggable look and feel designs, and the 
Java Accessibility API. The JFC also includes 
the Java 2D API, drag and drop, and other 
enhancements. See also AWT, pluggable 
look and feel architecture, Swing classes. 

JFC application An application built with the JFC. See also 
JFC. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

JMS (Java Message Service) An API for 
enterprise messaging systems. 

JNDI (Java Naming and Directory Interface) An 
interface to multiple naming and directory 
services. As part of the Java Enterprise API 
set, JNDI enables seamless connectivity to 
heterogeneous enterprise naming and 
directory services. Developers can build 
powerful and portable directory-enabled 
Java applications using this 
industry-standard interface. 

JPEG A graphics format developed by the Joint 
Photographic Experts Group. The JPEG 
format is frequently used for photographs 
and other complex images that benefit from 
a larger color palette than a GIF image can 
provide. JPEG compression is "lossy"; 
decompressed images are not identical to 
uncompressed images. See also GIF.  

JSP (JavaServer Pages) An extensible web 
technology that uses template data, custom 
elements, scripting languages, and 
server-side Java objects to return dynamic 
content to a client. Typically, the template 
data consists of HTML or XML elements, and, 
in many cases, the client is a web browser. 
JSP technology is an extension of servlet 
technology. It facilitates the addition of 
dynamic data to an otherwise static web 
page. See also servlets. 

JTA (Java Transaction API) An API that enables 
applications and J2EE servers to access 
transactions. 

keyboard focus The active window or component where the 
user's next keystrokes will take effect. 
Sometimes called the "input focus." See 
navigation, select. 

keyboard operations A collective term for keyboard shortcuts, 
mnemonics, and other forms of navigation 
and activation that utilize the keyboard 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

instead of the mouse. See also keyboard 
shortcut, mnemonic. 

keyboard shortcut A keystroke combination (usually a modifier 
key and a character key, like Control-C) that 
activates a menu item from the keyboard 
even if the relevant menu is not currently 
displayed. See also keyboard operations, 
mnemonic. 

label Static text that appears in the interface. For 
example, a label might identify a group of 
checkboxes. (The text that accompanies 
each checkbox within the group, however, is 
specified in the individual checkbox 
component and is therefore not considered 
a label.) Labels are created using the JLabel 
component. 

layout manager Software that assists the designer in 
determining the size and position of 
components within a container. Each 
container type has a default layout 
manager. See also AWT. 

list box A set of choices from which a user can 
choose one or more items. Items in a list can 
be text, graphics, or both. List boxes can be 
used as an alternative to radio buttons and 
checkboxes. The choices that users make 
last as long as the list is displayed. List 
boxes are created using the JList 
component. See also combo box, selectable 
list. 

list components A collective term for the two components 
that provide a one-column arrangement of 
data. See also list box, selectable list. 

localization The process of customizing software for a 
particular locale. Localization usually 
involves translation and often requires 
changes to colors, fonts, keyboard usage, 
number formats, and date and time 
formats. See also internationalization, 
resource bundle. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

look and feel The appearance and behavior of a complete 
set of GUI components. See also Java look 
and feel. 

MDI (multiple document interface) An interface 
style that confines all of an application's 
internal windows inside a backing window. 
See also backing window, internal window, 
internal utility window. 

menu A list of choices (menu items) logically 
grouped and displayed by an application so 
that a user need not memorize all available 
commands or options. Menus in the Java 
look and feel are "sticky"--that is, they 
remain posted on screen after the user 
clicks the menu title. Menus are created 
using the JMenu component. See also 
contextual menu, drop-down menu, menu 
bar, menu item, submenu. 

menu bar The horizontal strip at the top of a window 
that contains the titles of the application's 
drop-down menus. Menu bars are created 
using the JMenuBar component. See also 
drop-down menu. 

menu item A choice in a menu. Menu items (text or 
graphics) are typically commands or other 
options that a user can select. Menu items 
are created using the JMenuItem 
component. See also checkbox menu item, 
radio button menu item. 

menu separator See separator. 

middle mouse button The central button on a three-button mouse 
(typically used in UNIX environments). The 
Java look and feel does not utilize the middle 
mouse button. See also mouse button 2. 

MIME  (Multipurpose Internet Mail Extensions) An 
Internet standard for sending and receiving 
non-ASCII email attachments (including 
video, audio, and graphics). Web browsers 
also use MIME types to assign applications 
that interpret and display files that are not 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

formatted in HTML. 

minimized internal 
window 

A reduced representation of an internal 
window in an MDI application. Minimized 
internal windows look like horizontally 
oriented tags that appear at the lower-left 
corner of the backing window. The user can 
drag minimized internal windows to 
rearrange them. See also MDI. 

mnemonic An underlined alphanumeric character, 
typically in a menu title, menu item, or the 
text of a button or component. A mnemonic 
shows the user which key to press (in 
conjunction with the Alt key) to activate a 
command or navigate to a component. See 
also keyboard operations, keyboard 
shortcut. 

modal dialog box In a JFC application, a dialog box that 
prevents the user's interaction with other 
windows in the current application. Modal 
dialog boxes are created using the JDialog 
component. See also dialog box, modeless 
dialog box. 

modeless dialog box In a JFC application, a dialog box whose 
presence does not prevent the user from 
interacting with other windows in the 
current application. Modeless dialog boxes 
are created using the JDialog component. 
See also dialog box, modal dialog box. 

modifier key A key (for example, the Control or the Shift 
key) that does not produce an alphanumeric 
character but rather modifies the meaning 
of other keys. 

mouse button 1 The primary button on a mouse (the only 
button, for Macintosh users). By default, 
mouse button 1 is the leftmost button, 
though users might switch the button 
settings so that the rightmost button 
becomes mouse button 1. See also middle 
mouse button, mouse button 2. 

mouse button 2 On a two-button or three-button mouse, the 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

button that is used to display contextual 
menus. By default, mouse button 2 is the 
rightmost button on the mouse, though 
users might switch the settings so that the 
leftmost button becomes mouse button 2. 
On mouse devices with only one button, 
users get the effect of mouse button 2 by 
holding down the Control key when pressing 
mouse button 1. See also contextual menu, 
middle mouse button, mouse button 1. 

mouse-over 
feedback 

A change in the visual appearance of an 
interface element that occurs when the user 
moves the pointer over it--for example, the 
display of a button border when the pointer 
moves over a toolbar button. 

movie A full-motion video with sound that is 
formatted for inclusion in an application. 

multiple document 
interface 

See MDI. 

native code Code that refers to the methods of a specific 
operating system or is compiled for a 
specific processor. 

navigation The movement of input focus from one user 
interface component to another via the 
mouse or the keyboard. Navigation by itself 
doesn't result in activation of a component 
or selection of an object. See also activation, 
keyboard focus, select. 

noneditable combo 
box 

See combo box. 

object (1) In user interfaces, a logical entity that an 
application presents in an interface and that 
users manipulate--for instance, a 
document, chapter, or paragraph in a word- 
processing application, or a mail server, 
mailbox, or mail message in a mail program. 
(2) In programming, the principal building 
block of object-oriented applications. Each 
object is a programming unit consisting of 
data (instance variables) and functions 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

(instance classes). A component is a 
particular type of object. See component. 

padding The empty space between the text and the 
border of command buttons. (Padding is 
also used to denote the spaces between the 
contents of table cells and cell borders.) 

pane A collective term for scroll panes, split 
panes, and tabbed panes. 

panel A container for organizing the contents of a 
window, dialog box, or applet. Panels are 
created using the JPanel component. See 
also tabbed pane. 

password field A special text field in which the user types a 
password. The field displays a masking 
character for each typed character. 
Password fields are created using the 
JPasswordField component. 

plain window An unadorned window with no title bar or 
window controls, typically used for splash 
screens. Plain windows are created using 
the JWindow component. See also primary 
window, window controls. 

pluggable look and 
feel architecture 

An architecture that separates the 
implementation of interface elements from 
their presentation, enabling an application 
to dynamically choose how its interface 
elements interact with users. When a 
pluggable look and feel is used for an 
application, the designer can select from 
several look and feel designs. 

plug-in editor kit An editor that can be used by the editor 
pane. The JFC supplies plug-in editor kits for 
plain, styled, RTF, and HTML data. 

pointer A small graphic that moves around the 
screen as the user manipulates the mouse 
(or another pointing device). Depending on 
its location and the active application, the 
pointer can assume various shapes, such as 
an arrowhead, crosshair, or clock. By 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

moving the pointer and pressing mouse 
buttons, a user can select objects, set the 
insertion point, and activate windows. 
Sometimes called the "cursor." See also 
insertion point. 

primary window A top-level window of an application, where 
the principal interaction with the user 
occurs. The title bar and borders of primary 
windows always retain the look and feel of 
the user's native platform. Primary windows 
are created using the JFrame component. 
See also dialog box, secondary window. 

progress bar An interface element that indicates one or 
more operations are in progress and shows 
the user what proportion of the operations 
has been completed. Progress bars are 
created using the JProgressBar component. 
See also control, slider. 

radio button A button that a user clicks to set an option. 
Unlike checkboxes, radio buttons are 
mutually exclusive--choosing one radio 
button turns off all other radio buttons in the 
group. Radio buttons are created using the 
JRadioButton component. See also 
checkbox. 

radio button menu 
item 

A menu item that appears with a radio 
button next to it. Separators indicate which 
radio button menu items are in a group. 
Choosing one radio button menu item turns 
off all others in that group. Radio button 
menu items are created using the 
JRadioButtonMenuItem component. 

resource bundle The place where an application retrieves its 
locale-specific data (isolated from source 
code). See internationalization, localization. 

RGB For "red, green, blue." In computer 
graphics, a color model that represents 
colors as amounts of red, green, and blue. 
See also HSB. 

RMI (Remote Method Invocation) A distributed 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

object model for Java programs in which the 
methods of remote objects written in the 
Java programming language can be called 
from other virtual machines, possibly on 
different hosts. 

scroll arrow In a scrollbar, one of the arrows that a user 
can click to move through displayed 
information in the corresponding direction 
(up or down in a vertical scrollbar, left or 
right in a horizontal scrollbar). See also 
scrollbar. 

scroll box A box that a user can drag in the channel of 
a scrollbar to cause scrolling in the 
corresponding direction. The scroll box's 
position in the scrollbar indicates the user's 
location in the list, window, or pane. In the 
Java look and feel, the scroll box's size 
indicates what proportion of the total 
information is currently visible on screen. A 
large scroll box, for example, indicates that 
the user can peruse the contents with just a 
few clicks in the scrollbar. See also scrollbar. 

scroll pane A container that provides scrolling with 
optional vertical and horizontal scrollbars. 
Scroll panes are created using the 
JScrollPane component. See also scrollbar. 

scrollbar A component that enables a user to control 
what portion of a document or list (or similar 
information) is visible on screen. A scrollbar 
consists of a vertical or horizontal channel, a 
scroll box that moves through the channel of 
the scrollbar, and two scroll arrows. 
Scrollbars are created using the JScrollBar 
component. See also scroll arrow, scroll 
box, scroll pane. 

secondary window A modal or modeless window created from 
and dependent upon a primary window. 
Secondary windows set options or supply 
additional details about actions and objects 
in the primary window. Secondary windows 
are dismissed when their associated primary 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

window is dismissed. Secondary windows 
are created using either the JDialog 
component (for dialog boxes and utility 
windows) or the JOptionPane component 
(for alert boxes). See also alert box, dialog 
box, primary window. 

selectable list A one-column arrangement of data in which 
the items that users select from the list are 
designated for a subsequent action. 
Command buttons can operate on this 
selection. When another selection is made, 
any previous selection in the selectable list 
is deselected. Selectable lists are created 
using the JList component. See also list box. 

select (1) In human interface design, refers 
narrowly to designating one or more 
objects, typically for a subsequent action. UI 
components are activated while user objects 
are selected.  
(2) In technical documentation, refers 
generally to the action of clicking list items, 
checkboxes, radio buttons, and so forth. See 
also activation, choose, navigation. 

separator A line graphic that is used to divide menu 
items into logical groupings. Separators are 
created using the JSeparator component. 

server A network device that manages resources 
and supplies services to a client. See also 
client. 

servlets Server-side programs that give Java 
technology-enabled servers additional 
features. Servlets provide web developers 
with a simple, consistent mechanism for 
extending the features of a web server and 
for gaining access to existing business 
systems. See also JSP. 

slider A control that enables the user to set a value 
in a range--for example, the RGB values for 
a color. Sliders are created using the JSlider 
component.  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

splash screen A plain window that appears briefly in the 
time between the launch of a program and 
the appearance of its main application 
window. 

split pane A container that enables the user to adjust 
the relative size of two adjacent panes. Split 
panes are created using the JSplitPane 
component. 

submenu A menu that is displayed when a user 
chooses an associated menu item in a 
higher-level menu. (Such menu items are 
identified by a rightward-facing triangle.) 
Submenus are created using the JMenu 
component. 

Swing classes A set of GUI components, featuring a 
pluggable look and feel, that are included in 
the JFC. The Swing classes implement the 
Java Accessibility API and supply code for 
interface elements such as windows, dialog 
boxes and choosers, panels and panes, 
menus, controls, text components, tables, 
lists, and tree components. See also AWT, 
JFC, pluggable look and feel architecture. 

tabbed pane A container that enables the user to switch 
between several components (usually 
JPanel components) that appear to share 
the same space on screen. The user can 
view a particular panel by clicking its tab. 
Tabbed panes are created using the 
JTabbedPane component. 

table A two-dimensional arrangement of data in 
rows and columns. Tables are created using 
the JTable component. 

text area A multiline region for displaying (and 
sometimes editing) text. Text in such areas 
is restricted to a single font, size, and style. 
Text areas are created using the JTextArea 
component. See also editor pane. 

text field An area that displays a single line of text. In 
a noneditable text field, a user can copy, but 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

not change, the text. In an editable text 
field, a user can type new text or edit the 
existing text. Text fields are created using 
the JTextField component. See also 
password field. 

theme mechanism A feature that enables a designer to specify 
alternative colors and fonts across an entire 
Java look and feel application. See also Java 
look and feel. 

time-based media Information that is time sensitive, including 
spoken audio, music, animation, and video. 

title bar The strip at the top of a window that 
contains its title and window controls. See 
also window controls. 

toggle button A button that alternates between two states. 
For example, a user might click one toggle 
button in a toolbar to turn italics on and off. 
A single toggle button has checkbox 
behavior; a programmatically grouped set 
of toggle buttons can be given the mutually 
exclusive behavior of radio buttons. Toggle 
buttons are created using the JToggleButton 
component. See also checkbox, radio 
button, toolbar button. 

tool tip A short text string that appears on screen to 
describe the interface element beneath the 
pointer. 

toolbar A collection of frequently used commands or 
options. Toolbars typically contain buttons, 
but other components (such as text fields 
and combo boxes) can be placed in toolbars 
as well. Toolbars are created using the 
JToolBar component. See also toolbar 
button. 

toolbar button A button that appears in a toolbar, typically 
a command or toggle button. A toolbar 
button can also display a menu. Toolbar 
buttons are created using the JButton or 
JToggleButton component. See also 
command button, toggle button. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

top-level container The highest-level container for a Java 
application. The top-level containers are 
JWindow, JFrame, and JDialog. 

tree component A representation of hierarchical data (for 
example, directory and file names) as a 
graphical outline. Clicking expands or 
collapses elements of the outline. Tree 
components are created using the JTree 
component. 

turner A graphic used in the tree component. The 
user clicks a turner to expand or collapse a 
container in the hierarchy. 

unavailable Not applicable in the current system state. 
When a component is unavailable, it 
appears dimmed and is skipped by keyboard 
navigation. 

utility window A modeless window that typically displays a 
collection of tools, colors, fonts, or patterns. 
Unlike internal utility windows, utility 
windows do not float. User choices made in a 
utility window affect whichever primary 
window is active. A utility window is not 
dismissed when a primary window is 
dismissed. Utility windows are created using 
the JDialog component. See also internal 
utility window, secondary window. 

WAR (Web Archive) A file format used for files 
that contain the web content of a J2EE 
application. See J2EE application, web 
component. 

web browser See browser. 

web component An executable file (for instance, a servlet or 
JSP page) that is contained in a WAR (Web 
Archive) file. See also WAR. 

window A user interface element that organizes and 
contains the information that users see in an 
application. See also dialog box, internal 
utility window, plain window, primary 
window, secondary window, utility window. 



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

window controls Controls that affect the state of a window 
(for example, the Maximize button in 
Microsoft Windows title bars). 

Index  

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W-Y | Z 

 

Numerals  

8-bit colors, 1—2  
256-color displays, 1—2  

A  

About Application item (Help menu), 1  
About boxes  
designing, 1  
supplied graphics for, 1  
Abstract Window Toolkit (AWT), 1  
accelerator keys. See keyboard shortcuts  
access keys. See mnemonics  
accessibility, 1—2  
accessible names and descriptions, 1  
color and, 1—2  
ease of use and, 1  
icon size and, 1  
JFC support for, 1  
keyboard focus and, 1, 2—3  
keyboard shortcuts and, 1—2  
labels and, 1, 2  
legal requirements, 1  
mnemonics and, 1—2, 3—4  
multiplexing look and feel, 1  
recommended reading, 1  
tab traversal and, 1, 2  
tool tips and, 1, 2, 3  
usability studies for, 1  
activation, 1—2  
active components. See available components, spacing of  
active windows  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

color design for borders, 1, 2  
example, 1  
add object indicators, 1—2  
addition symbol (badge), 1—2  
alert boxes, 1—2  
See also dialog boxes  
capitalization of text in, 1  
Error, 1—2, 3  
Info, 1  
keyboard operations for, 1  
platform-specific examples, 1  
Question, 1  
Warning, 1, 2—3  
alignment. See spacing and alignment  
Alt key, 1, 2—3  
Americans With Disabilities Act, 1  
animation, 1—2  
See also mouse-over feedback  
progress, 1—2  
status, 1—2  
supplied graphics for, 1—2  
anti-aliasing, 1  
applets, 1—2  
browser windows and, 1—2  
examples, 1, 2—3  
JFC downloads with, 1  
menus in, 1  
mnemonics in, 1  
recommended reading, 1  
security issues, 1  
supplied graphics for, 1  
application graphics, 1—2  
See also button graphics; colors; icons  
About boxes, 1  
badges in, 1—2  
corporate and product identity and, 1—2  
GIF files and, 1—2  
internationalization, 1—2, 3  
Java look and feel style, 1  
JPEG files and, 1—2, 3  
splash screens, 1—2  
supplied with JFC, 1—2  
symbols, 1—2  
tree components, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

application windows. See primary windows  
applications  
compared with applets, 1, 2, 3—4  
supplied graphics for, 1—2  
Apply button, 1  
arrow keys, 1, 2, 3, 4, 5, 6  
arrows. See arrow keys; indicators; scroll arrows  
assistive technologies, 1, 2  
See also accessibility  
audience for this book, 1  
available components, spacing of, 1—2  
AWT (Abstract Window Toolkit), 1  

Return to the top of the index.  

B  

background canvas, color design for, 1, 2  
backing windows, 1—2  
keyboard operations, 1  
secondary windows and, 1  
Backspace key, 1  
badges  
add object indicators, 1—2  
combining indicators, 1  
menu indicators, 1—2  
new object indicators, 1—2  
properties indicators, 1—2  
beans, supplied graphics for, 1—2  
behavioral design, 1—2  
bibliography, 1—2  
bit depth, 1  
black, use in Java look and feel, 1, 2  
blinking. See animation  
blues, use in Java look and feel, 1, 2  
borders  
in button graphics, 1, 2  
color design for, 1  
in icons, 1  
boxes. See About boxes; alert boxes; checkboxes; combo boxes; 
dialog boxes; list boxes  
branding, for products, 1—2  
browser windows, 1, 2—3, 4—5  
button controls, 1, 2—3  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

See also button graphics; checkboxes; command buttons; 
mouse buttons; radio buttons; toggle buttons; toolbar buttons  
button graphics, 1—2  
See also spacing and alignment  
badges in, 1—2  
borders in, 1, 2  
defined, 1  
drop-down arrows in, 1  
supplied with JFC, 1—2  
use with text, 1, 2, 3—4  

Return to the top of the index.  

C  

Cancel button, 1, 2  
capitalization, 1—2  
cascading menus. See submenus  
case-sensitivity, in user input, 1  
caution symbols, 1  
CDE look and feel, 1, 2  
CD-ROM resources, 1  
cells in tables, 1—2, 3, 4  
channels (for scrollbars), 1  
check mark graphics, 1—2  
checkbox menu items, 1—2  
example, 1  
keyboard operations for, 1—2  
checkboxes, 1  
example, 1  
font design for, 1  
keyboard operations for, 1  
in menus, 1, 2—3  
spacing of, 1—2, 3  
text with, 1, 2  
choosers, color, 1—2, 3—4  
choosing menu items, 1  
clicking, 1—2  
See also dragging  
Control-clicking, 1  
double-clicking, 1, 2  
as selection technique, 1  
Shift-clicking, 1  
triple-clicking, 1, 2  
client, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

client properties, 1  
Close button, 1, 2—3  
close controls, 1, 2, 3, 4  
See also window controls  
Close item (File menu), 1, 2  
collapse box. See window controls  
color choosers, 1—2, 3—4  
color model, 1, 2—3  
colors, 1—2  
See also application graphics  
black, 1, 2, 3, 4  
blues, 1, 2, 3  
cross-platform, 1—2  
dithering, 1, 2—3  
graphic file formats and, 1—2  
grays, 1, 2, 3, 4  
Java look and feel model, 1—2  
primary, 1, 2, 3  
redefining, 1—2  
secondary, 1, 2, 3, 4  
table of Java look and feel colors, 1—2  
web-safe, 1, 2  
white, 1, 2, 3  
columns in tables  
reordering, 1  
resizing, 1—2  
selecting, 1—2  
supplied graphics for, 1  
combo boxes, 1—2  
capitalization of text with, 1  
defined, 1  
editable, 1—2  
example, 1  
internationalization, 1  
keyboard operations for, 1  
noneditable, 1—2  
command buttons, 1—2  
See also button graphics; default command buttons; toolbar 
buttons  
in alert boxes, 1  
Cancel, 1, 2  
Close, 1, 2  
color design for, 1  
default, 1, 2—3  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

ellipsis mark in, 1  
examples, 1, 2, 3  
font design for, 1  
graphics in, 1  
Help, 1  
keyboard operations for, 1  
OK, 1  
Reset, 1  
spacing of, 1, 2, 3  
text with, 1, 2, 3, 4—5  
Command key, 1  
commands, menu. See menu items  
common dialog boxes, 1—2  
common menus, 1—2  
company logos, 1—2  
components, 1—2  
spacing between, 1—2  
spacing for JFC, 1—2  
specifying look and feel of, 1—2  
table of major JFC components, 1—2  
containers, 1—2  
See also dialog boxes; windows  
content panes, 1—2  
contextual help, supplied graphics for, 1  
contextual menus, 1—2  
See also menus  
defined, 1  
displaying, 1  
keyboard operations for, 1—2  
Control key, 1, 2, 3—4, 5  
control type style, in Java look and feel, 1, 2  
controls, 1—2  
See also checkboxes; combo boxes; command buttons; list 
boxes; radio buttons; sliders; toggle buttons; window controls  
capitalization of text with, 1  
in menus, 1—2  
Copy item (Edit menu), supplied graphics for, 1  
copyright information, 1, 2  
corporate identity, graphics and, 1—2  
crosshair pointers, 1  
cross-platform colors, 1—2  
See also colors  
cross-platform delivery guidelines, defined, 1  
cursors. See pointers  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Cut item (Edit menu), supplied graphics for, 1  

Return to the top of the index.  

D  

data loss and alert boxes, 1  
default colors, 1—2  
See also colors  
default command buttons, 1—2  
See also command buttons  
behavior of, 1—2  
examples, 1, 2  
examples of, 1  
mnemonics with, 1  
default editor kit, 1, 2—3  
default fonts, 1  
default pointers, 1  
delay feedback, 1—2  
Delete key, 1, 2  
design principles. See principles of design  
destination feedback, 1—2  
development graphics, supplied, 1—2  
dialog boxes, 1—2  
See also alert boxes; command buttons; spacing and alignment; 
utility windows  
capitalization of titles and text in, 1  
command buttons in, 1—2  
default command buttons in, 1  
find, 1  
initial keyboard focus in, 1  
international considerations, 1, 2  
keyboard operations for, 1  
login, 1—2, 3  
mnemonics in, 1  
modes, 1  
multiple-use, 1  
platform-specific examples, 1—2  
preferences, 1—2, 3—4, 5—6  
progress, 1—2  
single-use, 1  
tab traversal in, 1, 2  
as top-level containers, 1—2  
Dialog font, 1  
dimmed text, color design for, 1, 2  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

disabilities. See accessibility  
dithering, 1, 2—3  
in button graphics, 1  
in icons, 1  
prevention of, 1—2  
dockable toolbars, 1—2  
dots in menus. See ellipsis mark  
double-clicking, 1, 2  
downloading applets, 1  
drag texture, 1, 2  
drag-and-drop operations, 1—2  
dragging  
and dropping, 1—2  
as selection technique, 1, 2  
title bars, 1  
toolbars, 1—2  
drop-down arrows  
See also indicators  
for combo boxes, 1—2  
for submenus, 1—2  
for toolbar buttons, 1—2, 3—4  
drop-down menus, 1  
See also menus  
common, 1—2  
defined, 1  
displaying, 1  
examples, 1—2  
keyboard operations for, 1—2  
titles of, 1  
toolbar buttons and, 1—2  

Return to the top of the index.  

E  

EAR files, supplied graphics for, 1—2  
ease of use. See principles of design  
Edit menu, 1  
example, 1  
keyboard shortcuts in, 1, 2  
mnemonics in, 1, 2—3  
supplied graphics for, 1—2  
editable combo boxes, 1—2  
See also combo boxes  
example, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

in login splash screens, 1  
editable text fields, 1, 2—3  
editing  
password fields, 1  
selection techniques, 1—2, 3  
supplied graphics for, 1—2  
tables, 1  
text, 1—2  
text fields, 1—2  
tree components, 1  
editor panes, 1—2  
example, 1  
keyboard operations for, 1—2  
8-bit colors, 1—2  
ellipsis mark  
in command buttons, 1  
in menu items, 1  
email, supplied graphics for, 1  
End key, 1, 2  
Enter key, 1, 2, 3, 4, 5  
enterprise beans, supplied graphics for, 1—2  
Error alert boxes, 1—2  
error messages  
capitalization of, 1  
in Error alert boxes, 1—2  
in login dialog boxes, 1  
Escape key, 1, 2, 3, 4  
Exit item (File menu), 1, 2  
exporting objects, supplied graphics for, 1—2  

Return to the top of the index.  

F  

Federal Rehabilitation Act, 1  
feedback  
while dragging, 1  
mouse-over, 1, 2  
operational, 1—2  
pointer style as, 1, 2, 3, 4  
progress bars, 1  
progress dialog boxes, 1—2  
fields. See password fields; text fields  
File menu, 1  
Close item in, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Exit item in, 1  
keyboard shortcuts in, 1, 2  
mnemonics in, 1, 2—3  
supplied graphics for, 1—2, 3, 4—5  
Find Again (Edit menu), supplied graphics for, 1  
find dialog boxes, 1  
Find item (Edit menu), supplied graphics for, 1  
flush 3D effects  
See also application graphics  
button graphics and, 1—2, 3  
component spacing and, 1—2  
default theme and, 1, 2  
example, 1  
icons and, 1—2, 3  
symbols and, 1  
folders, supplied graphics for, 1  
fonts  
See also text  
international considerations, 1  
redefining, 1—2  
size, 1  
table of default fonts, 1  
Format menu, 1  
example, 1  
keyboard shortcuts in, 1, 2, 3  
mnemonics in, 1—2  
supplied graphics for, 1—2  
formatted text panes. See editor panes  
formatting classes, 1  
function keys, 1  

Return to the top of the index.  

G  

GIF (Graphics Interchange Format), 1—2  
glossary, 1—2  
gradients  
See also application graphics  
in button graphics, 1—2  
dithering added to, 1  
in icons, 1  
graphic conventions in this book, 1—2  
graphic file formats, 1—2  
Graphics Interchange Format (GIF), 1—2  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Graphics Repository, 1—2  
graphics. See application graphics; button graphics; colors  
grays, use in Java look and feel, 1, 2, 3  
grids, 1—2  

Return to the top of the index.  

H  

hand pointers, 1  
handicaps. See accessibility  
headline capitalization style, 1—2  
Help button, 1  
Help menu, 1—2  
About Application item in, 1  
mnemonics in, 1, 2—3  
supplied graphics for, 1—2  
help messages, capitalization of, 1  
hierarchical menus. See submenus  
highlighting, color design for, 1  
history files, supplied graphics for, 1  
Home key, 1, 2  
home location, supplied graphics for, 1  
horizontal traversal, supplied graphics for, 1—2  
hosts, supplied graphics for, 1  
HTML banners, 1—2  
HTML editor kits, 1, 2, 3—4  
HTTP (Hypertext Transfer Protocol), 1  
HTTPS (Secure Hypertext Transfer Protocol), 1  
human interface principles. See principles of design  

Return to the top of the index.  

I  

I-beam pointer. See pointers  
icons, 1—2  
See also application graphics  
accessibility and, 1  
borders in, 1  
capitalization of text with, 1  
drawing, 1—2  
internationalization, 1—2, 3  
selection, 1, 2  
text in, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

tool tips for, 1  
implementation tips, defined, 1  
importing objects, supplied graphics for, 1  
inactive windows  
color design for, 1, 2  
example, 1  
indicators, 1—2  
add object, 1—2  
combining, 1  
for combo boxes, 1—2  
menu, 1—2  
new object, 1—2  
properties, 1—2  
in sliders, 1—2  
for submenus, 1—2  
for toolbar buttons, 1—2, 3—4  
in tree components, 1  
Info alert boxes, 1  
informational symbols, 1  
input focus. See keyboard focus  
insertion point, 1, 2, 3  
interaction, design for smooth, 1—2  
internal frames. See internal windows  
internal utility windows, 1—2  
internal windows, 1—2  
color design for, 1, 2  
keyboard operations for, 1  
title text in, 1  
internationalization, 1—2  
fonts and, 1  
formatting classes and, 1  
graphics and, 1—2, 3  
layout managers and, 1  
mnemonics and, 1, 2  
placement of checkbox text, 1  
placement of radio button text, 1  
recommended reading, 1  
resource bundles and, 1, 2, 3  
scrollbars and, 1  
sort order and, 1  
Stop button and, 1  
studying different locales, 1  
text handling and, 1—2, 3  
word lists for, 1—2  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

word order and, 1  
internationalization guidelines, defined, 1  

Return to the top of the index.  

J  

J2EE application clients  
defined, 1  
supplied graphics for, 1  
J2EE applications  
defined, 1  
supplied graphics for, 1  
J2EE components, 1  
J2EE servers  
defined, 1  
supplied graphics for, 1  
JAF (JavaBeans Activation Framework), 1  
JApplet component. See applets  
JAR files, supplied graphics for, 1—2  
Java 2 SDK (Java 2 Software Development Kit), 1—2  
Java 2D API, 1  
Java Accessibility API, 1  
See also accessibility  
Java Accessibility Helper, 1, 2  
Java Accessibility Utilities, 1  
Java applets. See applets  
Java Foundation Classes. See JFC  

Java IDL (interface definition language), 1  
Java look and feel  
color model, 1—2  
compared to other designs, 1  
defined, 1  
design fundamentals, 1—2  
fonts in, 1  
keyboard operations in, 1—2  
mouse operations in, 1—2  
visual tour of, 1—2  
Java look and feel standards, defined, 1  
JavaHelp, 1  
JavaMail, 1  
JButton component. See command buttons; toolbar buttons  
JCheckbox component. See checkboxes  
JCheckboxMenuItem component. See checkbox menu items  
JColorChooser component. See color choosers  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

JComboBox component. See combo boxes  
JDBC (Java Database Connectivity), 1  
JDesktopPane component. See backing windows  
JDialog component. See dialog boxes; utility windows  
JEditorPane component. See editor panes  
JFC (Java Foundation Classes)  
downloading with applets, 1  
features of, 1—2  
table of major JFC components, 1—2  
JFrame component. See primary windows  
JInternalFrame component. See internal windows  
JLabel component. See labels  
JList component. See list components  
JMenu component. See drop-down menus; submenus  
JMenuBar component. See menu bars  
JMenuItem component. See menu items  
JMS (Java Message Service), 1  
JNDI (Java Naming and Directory Interface), 1  
Joint Photographic Experts Group (JPEG), 1, 2  
JOptionPane component. See alert boxes  
JPanel component. See panels  
JPasswordField component. See password fields  
JPEG (Joint Photographic Experts Group), 1, 2  
JPopupMenu component. See contextual menus  
JProgressBar component. See progress bars  
JRadioButton component. See radio buttons  
JRadioButtonMenuItem component. See radio button menu items  
JScrollBar component. See scrollbars  
JScrollPane component. See scroll panes  
JSeparator component. See separators  
JSlider component. See sliders  
JSP (JavaServer Pages), 1  
JSplitPane component. See split panes  
JTA (Java Transaction API), 1  
JTabbedPane component. See tabbed panes  
JTable component. See tables  
JTextArea component. See text areas  
JTextField component. See text fields  
JTextPane component. See editor panes  
JToggleButton component. See toggle buttons  
JToolBar component. See toolbars  
JTooltip component. See tool tips  
JTree component. See tree components  
justification of objects, supplied graphics for, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

JWindow component. See plain windows  

Return to the top of the index.  

K  

key bindings. See keyboard operations  
keyboard focus, 1—2  
accessibility and, 1, 2—3  
defined, 1  
initial, 1—2  
in selectable lists, 1  
utility windows and, 1  
keyboard navigation, 1—2  
See also keyboard operations  
keyboard operations, 1—2  
See also keyboard shortcuts; mnemonics  
for navigation and activation, 1—2  
tables of, 1—2  
keyboard shortcuts, 1—2  
See also keyboard operations; mnemonics  
alphabetical list of, 1—2  
defined, 1  
duplicates in contextual menus, 1  
duplicates in toolbar buttons, 1  
example, 1  
font design for, 1  
in tool tips, 1  
style in menus, 1, 2  
and supplied graphics, 1  
table of common sequences, 1  
keys  
Alt, 1, 2—3  
arrow, 1, 2, 3, 4, 5, 6  
Backspace, 1  
Command, 1  
Control, 1, 2, 3—4, 5, 6  
Delete, 1  
End, 1, 2  
Enter and Return, 1, 2, 3, 4, 5  
Escape, 1, 2, 3, 4  
function, 1  
Home, 1, 2  
Meta, 1  
modifier, 1, 2—3  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Option, 1  
Page Down, 1, 2  
Page Up, 1, 2  
Shift, 1, 2, 3, 4, 5  
spacebar, 1, 2  
Tab, 1, 2, 3, 4  

Return to the top of the index.  

L  

labels, 1—2  
See also text  
and accessibility, 1  
available and unavailable, 1  
capitalization of, 1—2  
color design for, 1, 2—3  
communicating status with, 1  
example, 1  
font design for, 1  
identifying controls with, 1—2  
internationalization and, 1  
mnemonics in, 1  
spacing and alignment of, 1, 2  
layers. See containers  
layout managers, 1, 2  
layout. See spacing and alignment  
legal requirements  
About boxes, 1  
accessibility and, 1  
splash screens, 1  
list boxes, 1—2  
See also combo boxes; list components  
list components  
keyboard operations for, 1—2  
list boxes, 1—2  
scrolling in, 1  
selectable lists, 1—2  
selection in, 1, 2—3  
lists. See list components  
localization, 1—2  
See also internationalization  
application graphics and, 1  
button graphics and, 1  
word lists for, 1—2  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

login dialog boxes, 1—2, 3  
login splash screens, 1—2  
look and feel designs, 1—2, 3—4  
See also Java look and feel  
lower-level containers, 1—2  
See also panels; scroll panes; split panes; tabbed panes  
Lucida font, 1  

Return to the top of the index.  

M  

Macintosh look and feel, 1  
MDI (multiple document interface), 1—2  
media, supplied graphics for, 1—2  
menu bars, 1—2  
in applets, 1  
example, 1  
keyboard operations for, 1—2  
menu indicators. See drop-down arrows  
menu items, 1—2  
See also keyboard shortcuts; menus; mnemonics  
About Application (Help menu), 1  
available and unavailable, 1, 2  
capitalization of, 1  
checkbox, 1—2  
choosing, 1  
Close (File menu), 1, 2  
color design for, 1, 2, 3, 4, 5  
ellipsis mark in, 1  
example, 1  
Exit (File menu), 1, 2  
graphics in, 1  
highlighted, 1  
keyboard operations for, 1—2  
radio button, 1  
in submenus, 1  
table of common keyboard shortcuts, 1  
table of common mnemonics, 1  
menu separators, 1, 2  
menu titles, 1  
See also keyboard shortcuts; menu items; menus; mnemonics  
capitalization of, 1  
color design for, 1, 2, 3, 4, 5  
example, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

font design for, 1  
order of, 1  
menus, 1—2  
See also contextual menus; drop-down menus; keyboard 
shortcuts; menu bars; menu items; menu titles; mnemonics; 
submenus  
applets and, 1  
choosing items, 1  
color design for, 1, 2, 3, 4, 5  
common in Java look and feel, 1—2  
displaying, 1  
Edit, 1, 2, 3, 4  
ellipsis mark in, 1  
File, 1, 2, 3  
Format, 1, 2  
Help, 1, 2—3  
keyboard operations for, 1—2  
order of, 1  
separators, 1, 2  
types of, 1  
View, 1  
Meta key, 1  
Metal. See Java look and feel  
MetalEdit application, 1—2  
Microsoft Windows look and feel, 1, 2  
MIME (Multipurpose Internet Mail Extensions), 1  
minimized internal utility windows, 1, 2  
minimized windows, example, 1  
mnemonics, 1—2  
See also keyboard operations; keyboard shortcuts  
accessibility and, 1—2, 3—4  
alphabetical list, 1—2  
in applets, 1  
defined, 1  
in dialog boxes, 1, 2  
examples, 1, 2  
international considerations, 1, 2  
in labels, 1, 2  
and supplied graphics, 1  
table of common assignments, 1  
modal dialog boxes, 1  
modeless dialog boxes, 1  
models (in components), 1—2  
modifier keys, 1, 2—3  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

See also keyboard shortcuts; mnemonics  
mouse buttons, 1—2  
mouse operations, 1—2  
See also dragging  
clicking, 1—2, 3  
displaying contextual menus, 1  
mouse-over feedback, 1, 2  
move pointers, 1  
movies, supplied graphics for, 1  
moving through time-based media, supplied graphics for, 1—2  
multiplatform design, recommended reading, 1  
multiple document interface (MDI), 1—2  

Return to the top of the index.  

N  

native code, 1  
navigation, 1—2  
See also keyboard operations  
accessibility considerations, 1, 2  
between components, 1  
defined, 1  
keyboard, 1—2  
supplied graphics for, 1—2  
tab traversal, 1, 2, 3  
tables of keyboard operations, 1—2  
through text fields, 1—2  
nested panes, 1, 2, 3  
New item (File menu), supplied graphics for, 1  
new object indicators, 1—2  
nodes, in tree components, 1—2  
noneditable combo boxes, 1—2  
See also combo boxes  
noneditable text fields, 1  
See also text fields  
null passwords, 1  

Return to the top of the index.  

O  

object-oriented graphics, supplied, 1—2  
OK button, 1, 2  
Open item (File menu), supplied graphics for, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

operational feedback, 1—2  
option buttons. See radio buttons  
Option key, 1  

Return to the top of the index.  

P  

padding. See spacing and alignment  
Page Down key, 1, 2  
Page Setup item (File menu), supplied graphics for, 1  
Page Up key, 1, 2  
palette windows. See internal utility windows; utility windows  
palettes, color, 1, 2, 3  
See also color choosers; colors  
panels, 1—2, 3  
panes. See scroll panes; split panes; tabbed panes  
password fields, 1—2, 3—4  
Paste item (Edit menu), supplied graphics for, 1  
plain windows, 1—2, 3—4  
platform-specific design, recommended reading, 1—2  
pluggable look and feel architecture, 1—2  
See also Java look and feel  
plug-in editor kits. See editor panes  
pointers, 1—2  
changing shape of, 1, 2, 3, 4  
table of Java 2 platform types, 1  
pop-up menus. See combo boxes; contextual menus  
pop-up windows. See dialog boxes  
posting menus, 1, 2  
pre-dithered gradients, 1—2, 3, 4—5  
See also application graphics  
preferences dialog boxes, 1—2, 3—4, 5—6, 7  
preferences indicators, 1—2  
primary colors, in Java look and feel, 1, 2  
primary windows, 1—2  
See also windows  
defined, 1  
platform-specific examples, 1, 2  
principles of design, 1—2  
accessibility, 1—2  
applets and, 1—2  
internationalization and, 1—2  
recommended reading, 1—2  
Print item (File menu), supplied graphics for, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

product names, 1, 2  
progress animation, 1—2  
progress bars, 1, 2—3  
color design for, 1, 2  
defined, 1  
progress dialog boxes, 1, 2—3  
progress feedback, 1—2  
See also feedback  
properties indicators, 1—2  
Properties item, supplied graphics for, 1  

Return to the top of the index.  

Q  

Question alert boxes, 1  
question symbols, 1  
Quit. See Exit item  

Return to the top of the index.  

R  

radio button menu items, 1  
example, 1  
keyboard operations for, 1—2  
radio buttons, 1  
capitalization of text with, 1  
example, 1  
keyboard operations for, 1—2  
in menus, 1  
spacing of, 1  
reading order and localization, 1—2  
recommended reading, 1—2  
Redo item (Edit menu), supplied graphics for, 1  
Reset button, 1  
resize pointers, 1  
resource bundles, 1, 2, 3  
Retirement Savings Calculator applet, 1—2  
Return key, 1, 2, 3, 4, 5, 6  
reverse video, 1  
RMI-IIOP (Remote Method Invocation-Internet Inter-ORB 
Protocol), 1  
rollovers. See mouse-over feedback  
rows in tables  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

selecting, 1—2  
sorting, 1  
supplied graphics for, 1  
RTF editor kit, 1  

Return to the top of the index. 

S  

Save As item (File menu), supplied graphics for, 1  
Save item (File menu), supplied graphics for, 1  
screen display updates, supplied graphics for, 1—2  
screen readers, 1, 2  
See also accessibility  
scroll arrows, 1—2  
scroll boxes, 1  
color design for, 1, 2  
example, 1  
scroll panes, 1, 2—3, 4—5  
scrollbars, 1—2  
example, 1  
internationalization considerations, 1  
keyboard operations for, 1—2  
in list components, 1  
in tables, 1  
search operations, supplied graphics for, 1—2  
secondary colors, in Java look and feel, 1, 2, 3, 4, 5  
secondary menus. See submenus  
secondary windows, 1, 2—3  
See also alert boxes; dialog boxes  
security of information, in applets, 1  
selectable lists, 1—2  
See also list components  
selection, 1—2, 3  
of items in list components, 1—2  
of items in selectable lists, 1  
of table cells, 1—2  
of table columns, 1—2  
of table rows, 1—2  
of text fields, 1—2  
sentence capitalization style, 1  
separators, 1, 2  
servers, supplied graphics for, 1  
servlets, 1  
settings indicators, 1—2  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

shadows, color design for, 1, 2  
Shift key, 1, 2, 3, 4, 5  
shortcut keys. See keyboard shortcuts  
shortcut menus. See contextual menus  
sliders, 1—2  
capitalization of text with, 1  
defined, 1  
drag texture in, 1  
example, 1  
keyboard operations for, 1  
small type style, in Java look and feel, 1, 2  
sorting order and localization, 1  
spacebar, 1, 2  
spacing and alignment, 1—2  
in alert boxes, 1  
inside button graphics, 1  
of checkboxes, 1, 2  
of command buttons, 1—2, 3  
between components, 1—2  
design grids and, 1—2  
in dialog boxes, 1—2  
of labels, 1, 2  
layout managers and, 1, 2  
in login dialog boxes, 1  
of radio buttons, 1  
in tables, 1  
of text, 1—2, 3  
of titled borders, 1—2  
of toggle buttons, 1—2  
of toolbar buttons, 1  
splash screens, 1—2, 3—4  
split panes, 1—2  
drag texture in, 1  
keyboard operations for, 1  
splitter bars, 1  
standard menus. See drop-down menus  
status animation, 1—2  
status messages, 1—2  
Stop button, 1  
styled text editor kit, 1, 2—3  
submenus, 1—2  
See also menus  
defined, 1  
keyboard operations for, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

Swing classes, 1  
Swing. See JFC  

switching look and feel designs, 1—2  
symbols, 1, 2—3  
system colors, 1  
system type style, in Java look and feel, 1, 2  

Return to the top of the index.  

T  

Tab key, 1, 2, 3, 4  
tab traversal, 1, 2  
tabbed panes, 1—2  
capitalization of tab names, 1  
keyboard operations for, 1  
tables, 1—2  
cell background color, 1  
editing cells, 1  
example, 1  
font design for, 1  
format options, 1  
keyboard operations for, 1—2  
reordering columns, 1  
resizing columns, 1—2  
scrolling in, 1  
selectable lists and, 1  
selecting cells, 1—2  
selecting columns, 1—2  
selecting rows, 1—2  
selection techniques in, 1  
sorting rows, 1  
supplied graphics for, 1—2  
text, 1—2  
See also editor panes; fonts; labels; password fields; text areas; 
text fields  
in buttons, 1—2, 3, 4  
capitalization in interface, 1—2  
color design for, 1  
internationalization and, 1, 2, 3  
pointers, 1  
selection, 1, 2  
spacing and alignment, 1—2, 3  
supplied graphics for, 1—2  
use in labels, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

text areas, 1—2, 3—4  
text fields, 1—2  
in combo boxes, 1, 2  
design for smooth interaction, 1—2  
examples, 1, 2  
font design for, 1  
keyboard operations for, 1  
selectable lists and, 1—2  
in sliders, 1  
themes, 1—2  
three-dimensional effects. See flush 3D effects  
thumbs. See scroll boxes; sliders  
tip of the day, supplied graphics for, 1  
title bars  
See also window titles  
alert box examples, 1  
capitalization of text in, 1  
color design for, 1, 2  
dialog box examples, 1  
dragging, 1  
text in, 1—2  
window examples, 1  
titled borders, 1—2  
toggle buttons, 1—2  
See also button graphics; command buttons; toolbar buttons  
example, 1  
keyboard operations for, 1  
tool tips, 1—2  
and accessibility, 1, 2  
capitalization of, 1  
font design for, 1  
keyboard operations for, 1  
timing of, 1  
for toolbar buttons, 1  
toolbar buttons, 1—2  
See also button graphics; command buttons; toggle buttons  
badges in, 1—2  
examples, 1, 2  
graphics in, 1—2  
with menus, 1—2  
spacing of, 1  
text in, 1  
tool tips for, 1  
toolbars, 1—2  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

docking, 1—2  
examples, 1, 2  
keyboard operations for, 1  
spacing of buttons in, 1  
tool tips for, 1  
top-level containers, 1—2  
See also dialog boxes; plain windows; primary windows; utility 
windows  
trademarks, 1, 2  
translated text, 1—2  
for Stop button, 1  
word lists for localization, 1—2  
tree components, 1—2  
font design for, 1  
keyboard operations for, 1—2  
tree views. See tree components  
triangles. See drop-down arrows  
triple-clicking, 1, 2  
turners, 1—2  
twinkle graphics, 1—2  
type styles  
in Java look and feel, 1  
supplied graphics for, 1—2  
typography. See fonts; text  

Return to the top of the index.  

U  

unavailable components, spacing of, 1—2  
unavailable menu items, 1, 2  
Undo item (Edit menu), supplied graphics for, 1  
usability studies  
accessibility issues, 1  
interaction issues, 1  
internationalization, 1  
user type style, in Java look and feel, 1, 2  
utility windows, 1—2  
defined, 1  
keyboard operations for, 1  

Return to the top of the index.  

V  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

version numbers, in About box, 1  
vertical spacing. See spacing and alignment  
vertical traversal, supplied graphics for, 1—2  
View menu, 1  
keyboard shortcut in, 1  
mnemonics in, 1—2  
visual design, 1—2  
See also application graphics; colors; spacing and alignment  
visual identifiers, product, 1, 2  

Return to the top of the index.  

W  

wait pointers, 1, 2  
WAR files, supplied graphics for, 1—2  
Warning alert boxes, 1, 2—3  
warning symbols, 1  
web components, supplied graphics for, 1—2  
web. See applets  
web-safe colors, 1, 2  
white, use in Java look and feel, 1, 2  
window controls  
close controls, 1, 2, 3, 4  
in internal windows, 1  
in plain windows, 1—2  
platform-specific examples, 1  
in primary windows, 1—2  
window titles  
capitalization of text in, 1, 2  
font design for, 1  
for internal windows, 1  
for primary windows, 1  
for secondary windows, 1  
for user documents, 1  
windows, 1—2  
See also alert boxes; dialog boxes  
active, 1, 2, 3  
browser, 1, 2—3, 4—5  
capitalization of titles, 1, 2  
color design for, 1, 2, 3  
frames and, 1  
internal, 1  
internal utility, 1—2  
keyboard focus, 1  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

keyboard operations for, 1—2  
in MDIs, 1  
panels and panes in, 1—2, 3—4  
plain, 1—2, 3—4  
platform-specific examples, 1, 2  
primary, 1, 2—3  
secondary, 1, 2—3  
title text in, 1, 2, 3, 4—5  
as top-level containers, 1—2  
utility, 1, 2—3  
Windows. See Microsoft Windows look and feel  
word lists for localization, 1—2  
word order and localization, 1  
word wrap, in text areas, 1—2  

Return to the top of the index.  

Z  

zoom box. See window controls  
zoom buttons, 1—2  
zooming panes, 1  
zooming, supplied graphics for, 1—2  

Colophon 

Second Edition 

LEAD WRITER  
Patria Brown  

LEAD HUMAN INTERFACE DESIGNER  

Teresa Roberts  

MANAGING EDITOR  

Sue Factor  

GRAPHIC DESIGNER AND COVER ART  
Bruce Lee  

PRODUCTION EDITOR  

Bob Silva  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

MANAGEMENT TEAM  

Anant Kartik Mithal, Teresa Roberts, Lynn Weaver  

GUIDELINE CONTRIBUTORS  
Michael Albers, David-John Burrowes, Jeff Dunn, Don Gentner, Robin Jeffries, 
Bruce Lee, Teresa Roberts, Harry Vertelney  

CODE SAMPLE CONTRIBUTORS  
Jeff Dunn and Peter Zavadsky  

CD-ROM WRITER  

Jason Duran  

Special thanks to Don Gentner for his work on the first edition and for 
considerable contributions to the second edition before his retirement.  

Grateful acknowledgments to Susanne Andersson, Marney Beard, Jim Dibble, 
Jeff Dunn, Earl Johnson, Dave Mendenhall, Mike Mohageg, Lynn Monsanto, 
Jennifer Ofiana, Raj Premkumar, Moazam Raja, Luke Shi, Young Song, Terri 
Walton, and the SOLVE team.  

This book was written on Sun Microsystems workstations using Adobe® 
FrameMaker software. PostScript files were digitally imposed and then printed 
computer-to-plate on a Creo iMPAct system. Line art was created using Adobe 
Illustrator. Screen shots were edited in Adobe Photoshop.  

Text type is SunSans and bullets are ITC Zapf Dingbats. Courier is used for 
computer voice.  

The online version was created using WebWorks Publisher Professional 
Edition.  
   

First Edition 

LEAD WRITER  
Patria Brown WRITERS  
Patria Brown, Gail Chappell  

LEAD HUMAN INTERFACE DESIGNER  

Don Gentner  

JAVA LOOK AND FEEL CREATOR  

Chris Ryan  



Sun - Java Look and Feel Design Guidelines, 2nd Edition         made by dotneter@teamfly 

MANAGING EDITOR  

Sue Factor  

GRAPHIC DESIGNER  

Gary Ashcavai  

ILLUSTRATORS  

Gary Ashcavai, Don Gentner, Chris Ryan  

PRODUCTION EDITOR  

Bob Silva  

PRODUCT MARKETING MANAGER  

Christine Bodo  

MANAGEMENT TEAM  

Laine Yerga, Lynn Weaver, Rob Patten  

GUIDELINE CONTRIBUTORS  

Don Gentner, Chris Ryan, Michael C. Albers, Brian Beck, David-John 

Burrowes, Carola Fellenz, Robin Jeffries, Earl Johnson, Jeff Shapiro, 

Dena Shumila  

Special thanks to Jonathan Schwartz  

and the Enterprise Products Group in Java Software  

Grateful acknowledgments to Ruth Anderson, Maria Capucciati, Tom Dayton, 

Martine Freiberger, Janice Gelb, Dale Green, Mary Hamilton, George Kaempf, 

Andrea Mankoski, Anant Kartik Mithal, Moggy O'Donovan, Ray Ryan, Scott 

Ryder, Tom Santos, the Swing Team, Harry Vertelney, Willie Walker, Steve 

Wilson, and all our internal and external reviewers 

 


