Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Java(TM) Look and Feel Design Guidelines (2nd Edition)
Sun Microsystems Inc. (Editor), Inc. Sun Microsystems

& Sun

s rawslrime

Revised and expanoed
user interface guidelings
for designers of opplications

based on the fova™ K

JAVA"
LOOK AND FEEL
DESIGN GUIDELINES

SECOND EDITION

mith iade samglei

d

Book Details

e Paperback: 416 pages ; Dimensions (in inches): 1.07 x 9.29 x 7.40

e Publisher: Addison Wesley Professional; ISBN: 0201725886; 2nd edition
e Average Customer Review: 7 Based on 10 reviews.

¢ Amazon.com Sales Rank: 75,154

¢ Made: By dotneter

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All

rights reserved. Use is subject to License terms.

This product or documentation is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or documentation may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any. Third-party software, including font

technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaHelp, Java 2D, JavaBeans, JDK, the Java Coffee Cup
logo, Jini, Jiro, Forte, NetBeans, Solaris, iPlanet, StarOffice, and StarPortal are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Netscape Navigator is a trademark
or registered trademark of Netscape Communications Corporation. Adobe is a registered trademark of

Adobe Systems, Incorporated.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through
X/Open Company, Ltd. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the United States and other countries. Products bearing

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Federal Acquisitions: Commercial Software--Government Users Subject to Standard License Terms and

Conditions.

U.S. Government: If this Software is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software
and accompanying documentation shall be only as set forth in this license; this is in accordance with 48

C.F.R. 227.7202-4 (for Department of Defense (DOD) acquisitions) and with 48 C.F.R. 2.101 and 12.212

(for non-DOD acquisitions).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

The publisher offers discounts on this book when ordered in quantity for special sales. For more

information, please contact:

Addison-Wesley Professional

75 Arlington Street, Suite 300

Boston, Massachusetts 02116
U.S.A.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis.

Tous droits reserves. Distribueé par des licences qui en restreignent I'utilisation.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Ce produit ou document est protegeé par un copyright et distribué avec des licences qui en restreignent
l'utilisation, la copie, la distribution, et la decompilation. Aucune partie de ce produit ou document ne peut
étre reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable eté
écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractéres, est protegeé par un copyright et licenciée par des

fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaHelp, Java 2D, JavaBeans, JDK, Java Coffee Cup logo,
Jini, Jiro, Forte, NetBeans, Solaris, iPlanet, StarOffice, et StarPortal sont des marques de fabrique ou
des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Netscape
Navigator est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres

pays. Adobe est une marque enregistrée de Adobe Systems, Incorporated.

UNIX est une marque déposé aux Etats-Unis et dans d'autres pays et licenciée exclusivement par
X/Open Company Ltd. Toutes les marques SPARC sont utilisées sous licence et sont des marques de
fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays.
Les produits portant les marques SPARC sont basés sur une architecture developpé par Sun

Microsystems, Inc.

L'accord du gouvernement americain est requis avant I'exportation du produit.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION
PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

Library of Congress Cataloging in Publication Data

Java look and feel design guidelines / Sun Microsystems, Inc.--2nd ed.
p.cm

Includes bibliographical references and index.

ISBN 0-201-72588-6

1. Java (Computer program language) I. Sun Microsystems.
QA76.73.J38 J373 2001

005.13'3--dc21

00-049607

123456789-WCT-05 04 03 02 01
First Printing, February 2001

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Contents

Contents

Foreword by James Gosling

Preface
Part I: Overview

1: The Java Look and Feel
Fundamentals of the Java Look and Feel
Visual Tour of the Java Look and Feel
MetalEdit Application
Retirement Savings Calculator Applet

2: The Java Foundation Classes
Java 2 Software Development Kit
Java Foundation Classes
Support for Accessibility
Support for Internationalization
User Interface Components of the JFC
Pluggable Look and Feel Architecture
Example Model and Interfaces
Client Properties
Major JFC User Interface Components
Look and Feel Options

Java Look and Feel--the Recommended Design

Supplied Designs

Part Il: Fundamental Java Application Design

3: Design Considerations
Choosing an Application or an Applet
Distribution
Security Issues
Placement of Applets
Designing for Accessibility
Benefits of Accessibility
Accessible Design
Planning for Internationalization and Localization

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Benefits of Global Planning
Global Design

4: Visual Design
Themes
Colors
Fonts
Layout and Visual Alignment

Design Grids

Text Layout
Between-Component Spacing Guidelines

Spacing Guidelines for Specific JFC Components
Text in the Interface

Headline Capitalization in English

Sentence Capitalization in English
Animation

5: Application Graphics
Working With Cross-Platform Color
Working With Available Colors
Choosing Graphic File Formats
Choosing Colors
Maximizing Color Quality
Categorizing Application Graphics
Designing Icons
Working With Icon Styles
Drawing Icons
Designing Button Graphics
Using Button Graphic Styles
Producing the Flush 3D Effect
Working With Button Borders
Determining the Primary Drawing Area
Drawing the Button Graphic
Using Badges in Button Graphics
Menu Indicators
New Object Indicators
Add Obiject Indicators
Properties Indicators
Combining Indicators
Designing Symbols
Designing Graphics for Corporate and Product Identity
Designing Splash Screens
Designing Login Splash Screens
Designing About Boxes

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

6: Behavior
Mouse Operations
Pointer Feedback
Mouse-over Feedback
Clicking and Selecting Objects
Displaying Contextual Menus
Drag-and-Drop Operations
Typical Drag and Drop
Pointer and Destination Feedback
Keyboard Operations
Keyboard Focus
Keyboard Navigation and Activation
Keyboard Shortcuts
Mnemonics
Operational Feedback
Progress Animation
Status Animation
Design for Smooth Interaction
Initial Focus
Navigation
Password Field
Status and Error Messages
Text Selection and Filled Text Fields

Part lll: The Components of the Java Foundation Classes

7: Windows and Panes
Anatomy of a Primary Window
Constructing Windows
Primary Windows
Secondary Windows
Plain Windows
Utility Windows
Organizing the Contents of Windows
Panels
Scroll Panes
Tabbed Panes
Split Panes
Working With Multiple Document Interfaces
Backing Windows
Internal Windows
Secondary Windows
Internal Utility Windows

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Window Titles
Title Text in Primary Windows
Title Text in Secondary Windows
Title Text in Internal Windows

8: Dialog Boxes and Alert Boxes
Modal and Modeless Dialog Boxes
Dialog Box Design

Tab Traversal Order

Single-Use and Multiple-Use Dialog Boxes

Command Buttons in Dialog Boxes
Common Dialog Boxes

Find Dialog Boxes

Login Dialog Boxes

Preferences Dialog Boxes

Progress Dialog Boxes
Color Choosers
Alert Boxes

Info Alert Boxes

Warning Alert Boxes

Error Alert Boxes

Question Alert Boxes

9: Menus and Toolbars
Menu Elements
Menu Bars
Drop-down Menus
Submenus
Menu Items
Separators
Menu Item Graphics
Checkbox Menu Items
Radio Button Menu Items
Common Menus
Typical File Menu
Typical Edit Menu
Typical Format Menu
Typical View Menu
Typical Help Menu
Contextual Menus
Toolbars
Toolbar Placement
Draggable Toolbars
Toolbar Buttons

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Tool Tips

10: Basic Controls
Command Buttons
Default Command Buttons
Combining Graphics With Text in Command Buttons
Using Ellipses in Command Buttons
Toggle Buttons
Independent Choice
Exclusive Choice
Checkboxes
Radio Buttons
List Boxes
Scrolling
Selection Models for List Components
Combo Boxes
Noneditable Combo Boxes
Editable Combo Boxes
Sliders

11: Text Components
Labels
Labels That Identify Controls
Labels That Communicate Status and Other Information
Text Fields
Noneditable Text Fields
Editable Text Fields
Password Fields
Text Areas
Editor Panes
Default Editor Kit
Styled Text Editor Kit
RTF Editor Kit
HTML Editor Kit

12: Selectable Lists, Tables, and Tree Components
Selectable Lists

Selectable Lists and Associated Tables

Selectable Lists and Associated Text Fields
Tables

Table Appearance

Table Scrolling

Column Reordering

Column Resizing

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Row Sorting
Selection Models for Tables

Tree Components
Lines in Tree Components
Graphics in Tree Components
Editing in Tree Components

Part IV: Backmatter

Appendix A: Keyboard Shortcuts, Mnemonics, and Other Keyboard
Operations

Common Keyboard Shortcuts

Common Mnemonics

Backing Windows and Internal Windows
Checkboxes

Combo Boxes

Command Buttons

HTML Editor Kits

List Components

Menus

Radio Buttons

Scrollbars

Secondary Windows and Utility Windows
Sliders

Split Panes

Tabbed Panes

Tables

Text Areas and Default and Styled Text Editor Kits
Text Fields

Toggle Buttons

Tool Tips

Toolbars

Tree Components

Appendix B: Graphics Repository
General Graphics
Adding Objects
Saving Edits or Checkpoints
Stopping a Task
Updating the Screen Display
Changing Magnification Levels
Specifying Preferences and Properties
Printing
Displaying and Retrieving Previously Visited Locations

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Creating and Sending Electronic Mail

Aligning Obijects

Justifying Objects

Searching

Editing Objects and Data

Importing and Exporting Objects

Providing Help and Information
Navigation

Vertical Traversal

Horizontal Traversal

Returning to an Initial Location
Table Graphics

Column Operations

Row Operations
Text

Text Alignment and Justification

Type Style Graphics
Media

Creating a Movie

Moving Through Time-Based Media
Graphics for Development Tools

Creating and Deploying Applications and Applets

Creating and Adding Beans and Enterprise Beans

Creating Hosts and Servers
Creating and Adding Java Archive Files

Creating and Adding Web Archive Files and Web Components

Appendix C: Localization Word Lists
European Languages
Asian Languages

Appendix D: Switching Look and Feel Designs

Pitfalls of User-Controlled Switching
Guidelines for Switching Look and Feel Designs

How to Present the Choice
Nomenclature

Glossary

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Foreword

User interfaces are hard. Both the original user interface toolkit, AWT, and its
successor, the industrial-strength, all singing, all dancing Swing toolkit,
sidestep the hard problem of defining a user interface by allowing it to be
plugged in to the platform on which it's running. A Java application running on
the Mac can have the Mac look and feel, the same one running on Microsoft
Windows can use its look and feel, and that same program running on UNIX
can use a UNIX look and feel.

Although this pluggable interface strategy has lots of appeal, the down side is
that the same application running on different platforms has a different
appearance and behavior on each one. Documentation is difficult to write.
Users get confused trying the same application on different platforms. This
situation created a demand for a common look and feel that is lucid, easy to
use, and runs harmoniously on many platforms.

Coming up with the design for such a look and feel was quite a challenge. The
real danger involved falling into a Tragedy of the Commons--giving in to
everyone's wishes and ending up with a mess. The hardest task was striking a
balance between all the conflicting concerns.

| had the great privilege of working a staircase away from the team that
designed the Java look and feel and the associated design
guidelines--hallways covered with design ideas; field trips to survey developers;
prototyping; trading off; balancing; testing; testing; testing. Out of this effort
came a design that is clean and elegant.

James A. Gosling
Vice President, Sun Labs Research

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Preface

Java Look and Feel Design Guidelines, second edition, provides essential
information for anyone involved in creating cross-platform GUI (graphical user
interface) applications and applets in the Java™ programming language. In
particular, this book offers design guidelines for software that uses the Swing
classes together with the Java look and feel.

This revised and expanded edition contains a collection of toolbar graphics,
lists of terms localized for European and Asian languages, and an appendix on
look and feel switching. New and revised guidelines are provided throughout,
and new sections discuss smooth interaction, the use of badges in button
graphics, and revised standards for window titles. Also included with this
edition is a companion CD-ROM that contains code samples for many figures
in the book, and a repository of graphics.

Who Should Use This Book

Although an application's human interface designer and software developer
might well be the same person, the two jobs involve different tasks and require
different skills and tools. Primarily, this book addresses the designer who
chooses the interface elements, lays them out in a set of components, and
designs the user interaction model for an application. (Unless specified
otherwise, this book uses "application” to refer to both applets and
applications.) This book should also prove useful for developers, technical
writers, graphic artists, production and marketing specialists, and testers who
participate in the creation of Java applications and applets.

Java Look and Feel Design Guidelines focuses on design issues and
human-computer interaction in the context of the Java look and feel. It also
attempts to provide a common vocabulary for designers, developers, and other
professionals. If you require more information about technical aspects of the
Java Foundation Classes (JFC), visit the JFC and Swing Connection web sites
at http://java.sun.com/products/jfc and
http://java.sun.com/products/jfc/tsc.

The guidelines provided in this book are appropriate for GUI applications and
applets that run on personal computers and network computers. They do not
address the needs of software that runs on consumer electronic devices.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

What Is in This Book

Java Look and Feel Design Guidelines includes the following chapters:

Part One, “Overview,” includes two introductory chapters about the Java look
and feel and the JFC.

e Chapter 1, “The Java Look and Feel,” introduces key design concepts
and visual elements underlying the Java look and feel and offers a quick visual
tour of an application and an applet designed with the JFC components and the
Java look and feel.

e Chapter 2. “The Java Foundation Classes,” provides an overview of the Java™
2 SDK (software development kit) and the JFC, introduces the JFC components,
discusses the concept of pluggable look and feel designs, and describes the
currently available look and feel options.

Part Two, “Fundamental Java Application Design,” describes some of the
general issues facing professionals using the JFC to create cross-platform
applications, including visual design, the creation of application graphics, and
behavior.

e Chapter 3, “Design Considerations,” discusses some of the fundamental
challenges of designing Java look and feel applications and applets and of
providing for accessibility, internationalization, and localization.

e Chapter 4, “Visual Design,” describes the Java look and feel theme mechanism,
suggests ways to change colors and fonts, gives recommendations for layout and
visual alignment of components, and provides standards for the capitalization of
text in the interface.

e Chapter 5, “Application Graphics,” discusses the use of color for individually
designed graphical elements (as opposed to components that rely on the theme
mechanism), including cross-platform colors, the creation of graphics that suit the
Java look and feel, the design of button graphics and icons, and the use of badges
in the design of button graphics.

e Chapter 6, “Behavior,” tells how users of Java look and feel applications utilize
the mouse and keyboard, provides guidelines regarding user input and
human-computer interaction, and discusses drag-and-drop operations and text
field navigation.

Part Three, “The Components of the Java Foundation Classes,” contains
a description of the components and accompanying guidelines for their use.

e Chapter 7, “Windows and Panes,” includes revised standards for window titles
and makes recommendations for the use of primary, secondary, plain, and utility

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

windows as well as panels, scroll panes, tabbed panes, split panes, and internal
windows.

e Chapter 8, “Dialog Boxes and Alert Boxes,” describes dialog boxes and alert
boxes, sets standards for dialog box design, and provides examples of typical
dialog boxes and alert boxes in Java look and feel applications.

e Chapter 9, “Menus and Toolbars,” defines and gives guidelines for the use of
drop-down menus, contextual menus, toolbars, and tool tips and provides
examples of typical menus in Java look and feel applications.

e Chapter 10, “Basic Controls,” covers the use of controls such as command
buttons, toggle buttons, checkboxes, radio buttons, combo boxes, list boxes, and
sliders.

e Chapter 11, “Text Components,” explains and makes recommendations for the
use of the JFC components that control the display and editing of text in the
interface: labels, text fields, text areas, and editor panes.

e Chapter 12, “Selectable Lists, Tables, and Tree Components,” discusses and
makes recommendations for the use of selectable lists, tables, and tree
components.

The remainder of the book consists of the appendixes, glossary, and index.

e Appendix A, “Keyboard Shortcuts, Mnemonics, and Other Keyboard
Operations,” contains tables that specify keyboard operations for the
components of the JFC, including alphabetical listings of commonly used
keyboard shortcuts and mnemonics.

e Appendix B, “Graphics Repository,* contains a collection of toolbar button
graphics designed specifically for use with the recommendations set forth in this
book.

e Appendix C, “Localization Word Lists,” contains terms and phrases that might
appear in Java look and feel applications; English terms appear with their French,
Spanish, German, Swedish, Japanese, Simplified Chinese, Traditional Chinese,
and Korean equivalents.

e Appendix D, “Switching Look and Feel Designs,” presents some information
about the pitfalls of changing the look and feel, along with guidelines on how to
present this choice to users when you must.

e Glossary defines important words and phrases found in this book. Glossary terms
appear in boldface throughout the book.

What Is Not in This Book

This book does not provide detailed discussions of human interface design
principles or the design process, nor does it present much general information
about usability studies.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

For authoritative explications of human interface design principles and the
design process, see Apple Computer's Macintosh Human Interface
Guidelines.

For a classic book on usability studies, see Jakob Nielsen's Usability
Engineering.

For details, see Related Books and Web Sites.

Graphic Conventions

The screen shots in this book illustrate the use of JFC components in
applications with the Java look and feel. Because such applications typically
run inside windows provided and managed by the native platform, the screen
shots show assorted styles of windows and dialog boxes from the Microsoft
Windows, Macintosh, and CDE (Common Desktop Environment) platforms.

Throughout the text, symbols are used to call your attention to design
guidelines. Each type of guideline is identified by a unique symbol.

Java Look and Feel Standards

Requirements for the consistent appearance and compatible behavior of Java
look and feel applications.

Java look and feel standards promote flexibility and ease of use in
cross-platform applications. In addition, they support the creation of
applications that are accessible to all users, including users with physical and
cognitive limitations. These standards require you to take actions that go
beyond the provided appearance and behavior of the JFC components.

Occasionally, you might need to violate these standards. In such situations,
use your discretion to balance competing requirements. Be sure to engage in
usability studies to validate your judgments.

28 Cross-Platform Delivery Guidelines

Recommendations for dealing with colors, fonts, keyboard operations, and
other issues that arise when you want to deliver your application to a variety of
computers running a range of operating systems.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

@ Internationalization Guidelines

Advice for creating applications that can be adapted to the global marketplace.

== Implementation Tips

Technical information and useful tips of particular interest to the programmers
who are implementing your application design.

® CD-ROM Resources

Code samples and graphics for Java look and feel applications, also available
on the book's companion CD-ROM.

Related Books and Web Sites

Many excellent references are available on topics such as fundamental
principles of human interface design, design issues for specific (or multiple)
platforms, and issues relating to internationalization, accessibility, and applet
design.

Design Principles

The resources in this section provide information on the fundamental concepts
underlying human-computer interaction and interface design.

Baecker, Ronald M., William Buxton, and Jonathan Grudin, eds. Readings in
Human-Computer Interaction: Toward the Year 2000, 2d ed. Morgan Kaufman,
1995. Based on research from graphic and industrial design and studies of
cognition and group process, this volume addresses the efficiency and
adequacy of human interfaces.

Hurlburt, Allen. The Grid: A Modular System for the Design and Production of
Newspapers, Magazines, and Books. John Wiley & Sons, 1997. This is an
excellent starting text about graphical page layout. Although originally intended
for print design, this book contains many guidelines that are applicable to
software design.

IBM Human-Computer Interaction Group. "IBM Ease of Use." Available:
http://www. ibm.com/ibm/easy. This web site covers many fundamental
aspects of human interface design.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Johnson, Jeff. GUI Bloopers: Don'ts and Do's for Software Developers and
Web Designers. Morgan Kaufman, 2000. A new book that provides examples
of poor design in windows, inconsistent use of labels, and lack of parallelism in
visual layout and grammar. The writer develops principles for achieving lucidity
and the harmony of look and feel.

Laurel, Brenda, ed. Art of Human-Computer Interface Design. Addison-Wesley,
1990. Begun as a project inside Apple, this collection of essays explores the
reasoning behind human-computer interaction and looks at the future of the
relationship between humans and computers.

Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces: Communication
Oriented Techniques. Prentice Hall, 1994. This volume covers fundamental
design principles, common mistakes, and step-by-step techniques for handling
the visual aspects of interface design.

Nielsen, Jakob. Usability Engineering. AP Professional, 1994. This is a classic
book on design for usability. It gives practical advice and detailed information
on designing for usability and on assessment techniques and also includes a
chapter on international user interfaces.

Norman, Donald A. The Design of Everyday Things. Doubleday, 1990. A
well-liked, amusing, and discerning examination of why some products satisfy
while others only baffle or disappoint. Photographs and illustrations throughout
complement the analysis of psychology and design.

Shneiderman, Ben. Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 3d ed. Addison-Wesley, 1997. The third edition
of this best-seller adds new chapters on the World Wide Web, information
visualization, and cooperative work and expands earlier work on development
methodologies, evaluation techniques, and tools for building user interfaces.

Tognazzini, Bruce. Tog On Software Design. Addison-Wesley, 1995. A pivotal
figure in computer design offers discerning, stimulating, argumentative, and
amusing analysis for the lay reader and the computer professional. The work
includes discussions of quality management and the meaning of standards.

Tufte, Edward R. Envisioning Information. Graphics Press, 1990. One of the
best books on graphic design, this volume catalogues instances of superb
information design (with an emphasis on maps and cartography) and analyzes
the concepts behind their implementation.

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics
Press, 1992. Tufte explores the presentation of statistical information in charts
and graphs with apt graphical examples and elegantly interwoven text.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Tufte, Edward R. Visual Explanations: Images and Quantities, Evidence and
Narrative. Graphics Press, 1997. The third volume in Tufte's series on
information display focuses on data that changes over time. Tufte explores the
depiction of action and cause and effect through such examples as the
explosion of the space shuttle Challenger, magic tricks, and a cholera
epidemic in 19th-century London.

Design for Specific Platforms

The resources in this section cover application design for the CDE, IBM, Java,
Macintosh, and Microsoft Windows platforms.

CDE

Three volumes address the needs of designers and related professionals who
create applications using CDE and Motif 2.1.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide and Glossary.
The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Reference.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Certification Check
List.

These titles can be ordered from the Open Group at
http://www.opengroup.org/public/pubs/catalog/mo.htm.

IBM

Object-Oriented Interface Design: IBM Common User Access Guidelines. Que
Corp, 1992. Available:

http://www-3.ibm.com/ibm/easy/eou ext.nsf/publish/586#143. This book is
out of print but available from most IBM branch offices. A small portion of the
printed book is intertwined with a modest amount of more current material at
the IBM web site cited above.

Java

Campione, Mary, and Kathy Walrath. The Java Tutorial: Object-Oriented
Programming for the Internet, 2d ed. Addison-Wesley, 1998. Full of examples,
this task-oriented book introduces you to fundamental Java concepts and

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

applications. Walrath and Campione describe the Java language, applet
construction, and the fundamental Java classes and cover the use of multiple
threads and networking features.

Campione, Mary, and Kathy Walrath. The JFC Swing Tutorial: A Guide to
Constructing GUIs. Addison-Wesley, 1999. This readable technical description
of some difficult subjects includes material on layout managers, events,
listeners, and container hierarchy.

Campione, Mary, et al. The Java Tutorial Continued: The Rest of the JDK.
Addison-Wesley, 1998. The experts describe features added to the original
core Java platform with many self-paced, hands-on examples. The book
focuses on Java 2 APIs but also contains the information you need to use the
JDK 1.1 version of the APIs.

Chan, Patrick. The Java Developer's Almanac, 1999. Addison-Wesley, 1999.
Organized to increase programming performance and speed, this book
provides a quick but comprehensive reference to the Java™ 2 Platform,
Standard Edition, v. 1.2.

Eckstein, Robert, Mark Loy, and Dave Wood. Java Swing. O'Reilly &
Associates, 1998. An excellent introduction to the Swing components, this
book documents the Swing and Accessibility application programming
interfaces. An especially useful chapter explains how to create a custom look
and feel.

Geary, David M. Graphic Java 2: Mastering the JFC. Volume 2, Swing.
Prentice Hall, 1998. This comprehensive volume describes the skills needed to
build professional, cross-platform applications that take full advantage of the
JFC. The volume includes chapters on drag and drop, graphics, colors and
fonts, image manipulation, double buffering, sprite animation, and clipboard
and data transfer.

Sun Microsystems, Inc. J2EE Platform Specification. Available:
http://java.sun.com/j2ee/download.html#platformspec. This web site
provides a way to download current information on the Java 2 Platform,
Enterprise Edition, v. 1.3 (J2EE).

Sun Microsystems, Inc. Java 2 Platform, Standard Edition, Version 1.3 API
Specification. Available:
http://java.sun.com/j2se/1.3/docs/index.html#guide. This web site
provides up-to-date technical documentation on the Java 2 API.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Sun Microsystems, Inc. Java Look and Feel Design Guidelines, 2d ed.
Available: http://java.sun.com/products/jlIf. This web site contains the
HTML version of this book.

Sun Microsystems, Inc. The Java Tutorial: A Practical Guide for Programmers.
Available: http://java.sun.com/docs/books/tutorial/index.html. This web
site is divided into four trails: a trail covering the basics of the Java language
and writing applets; a trail on constructing graphical user interfaces with the
Swing classes and the JFC; specialized trails addressing such topics as
internationalization, 2D graphics, and security; and trails available only
online--including a discussion of drag and drop.

Topley, Kim. Core Java Foundation Classes. Prentice Hall Computer Books,
1998. Topley explains how to build basic Swing applications, with an emphasis
on layout managers and basic graphics programming. The book also
describes the creation of multiple document interface (MDI) applications.

Walker, Will. "The Multiplexing Look and Feel." Available:
http://www.sun.com/access/articles/#articles. This article describes a
special look and feel that provides a way to extend the features of a Swing GUI
without having to create a new look and feel design. Walker describes an
example application that can simultaneously provide audio output, Braille
output, and the standard visual output of ordinary Swing applications.

Macintosh

Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-Wesley,
1992. This volume is the official word on Macintosh user interface principles. It
includes a superb bibliography with titles on animation, cognitive psychology,
color, environmental design, graphic and information design, human-computer
design and interaction, language, accessibility, visual thinking, and
internationalization.

Apple Computer, Inc. Mac OS 8 Human Interface Guidelines. Available:
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html. This
web site offers a supplement to Macintosh Human Interface Guidelines.

Microsoft Windows

Microsoft Windows User Experience. Microsoft Press, 1999. Available:
http://www.msdn.microsoft.com/library/books/winguide/welcome.htm. The
official book on Microsoft interface design contains specifications and
principles for designers who would like to create effective interfaces. It

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

contains numerous examples of design successes and failures. These
guidelines are available in print and on the web site.

Design for Multiple Platforms

The books in this section discuss the complex issues that arise when
designing software that runs on many platforms.

McFarland, Alan, and Tom Dayton (with others). Design Guide for
Multiplatform Graphical User Interfaces (LP-R13). Bellcore, 1995. Available:
http://telecom-info.telcordia.com/site-cgi/ido/index.html. This is an
object-oriented style guide with extensive guidelines and a good explanation of
object-oriented user interface style from the user's perspective.

Marcus, Aaron, Nick Smilonich, and Lynne Thompson. The Cross-GUI
Handbook: For Multiplatform User Interface Design. Addison-Wesley, 1995.
This source describes the graphical user interfaces of Microsoft Windows and
Windows NT, OSF/Motif, NeXTSTEP, IBM OS/2, and Apple Macintosh. The
text includes design recommendations for portability and migration and
recommendations for handling contradictory or inadequate human interface
guidelines.

Design for Internationalization

The books in this section describe software design for the global marketplace.

Fernandes, Tony. Global Interface Design: A Guide to Designing International
User Interfaces. AP Professional, 1995. Fernandes addresses developers of
Internet software designed for a global market. He explains cultural differences,
languages and their variations, taboos, aesthetics, ergonomic standards, and
other issues designers must research and understand.

Guide to Macintosh Software Localization. Addison-Wesley, 1992. A thorough
and thoughtful discussion of the internationalization and localization processes
that should prove helpful for developers on any platform.

Kano, Nadine. Developing International Software for Windows 95 and
Windows NT. Microsoft Press, 1993. Kano targets Microsoft's guidelines for
creating international software to an audience with knowledge of Microsoft
Windows coding techniques and C++. The work contains information on
punctuation, sort orders, locale-specific code-page data, DBCS/Unicode
mapping tables, and multilingual API functions and structures.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Luong, Tuoc V., James S.H. Lok, and Kevin Driscoll. Internationalization:
Developing Software for Global Markets. John Wiley & Sons, 1995. The
Borland internationalization team describes its procedures and methods with a
focus on testing and quality assurance for translated software. This hands-on
guide tells how to produce software that runs anywhere in the world without
requiring expensive recompiling of source code.

Nielsen, Jakob, and Elisa M. Del Galdo, eds. International User Interfaces.
John Wiley & Sons, 1996. This book discusses what user interfaces can and
must do to become commercially viable in the global marketplace.
Contributors discuss issues such as international usability engineering, cultural
models, multiple-language documents, and multilingual machine translation.

O'Donnell, Sandra Martin. Programming for the World: A Guide to
Internationalization. Prentice Hall, 1994. This theoretical handbook explains
how to modify computer systems to accommodate the needs of international
users. O'Donnell describes many linguistic and cultural conventions used
throughout the world and discusses how to design with the flexibility needed
for the global marketplace.

Uren, Emmanuel, Robert Howard, and Tiziana Perinotti. Software
Internationalization and Localization: An Introduction. Van Nostrand Reinhold,
1993. This guide to software adaptation encourages developers to aim at
producing localized software with the same capabilities as the original software
while meeting local requirements and conventions.

Design for Accessibility

These resources explore how to design software that supports all users,
including those with physical and cognitive limitations.

Bergman, Eric, and Earl Johnson. "Towards Accessible Human Interaction.” In
Advances in Human-Computer Interaction, edited by Jakob Nielsen, vol. 5.
Ablex Publishing, 1995. Available:
http://www.sun.com/access/developers/updt.HCl.advance.html. This article
discusses the relevance of accessibility to human interface designers and
explores the process of designing for ranges of user capabilities. It provides
design guidelines for accommodating physical disabilities such as repetitive
strain injuries (RSI), low vision, blindness, and hearing impairment. It also
contains an excellent list of additional sources on accessibility issues.

Dunn, Jeff. "Developing Accessible JFC Applications.” Available:
http://www.sun.com/access/developers/developing-accessible-apps. This

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

article covers the specifics of accessibility in Swing classes, including an
assistive technology primer, nuts-and-bolts information, and test cases.

Schwerdtfeger, Richard S. Making the GUI Talk. BYTE, 1991. Available:
ftp://ftp.software. ibm.com/sns/sr-o0s2/sr2doc/guitalk. txt. This speech
deals with off-screen model technology and GUI screen readers.

Schwerdtfeger, Richard S. Special Needs Systems Guidelines. IBM
Corporation, 1998. Available: http://www.austin. ibm.com/sns/access. html.
This web site presents principles of accessibility, a checklist for software
accessibility, and a list of references and resources. In addition, it provides
discussions of accessibility for the web and for Java applications.

Sun Microsystems, Inc. Accessibility Quick Reference Guide. Available:
http://www.sun.com/access/developers/access.quick.ref.html. This site
defines accessibility, lists steps to check and double-check your product's
accessibility, and offers tips for making applications more accessible.

Sun Microsystems, Inc. "Opening New Doors: Enabling Technologies."”
Avalilable: http://www.sun.com/access. This web site includes a primer on the
Java platform and accessibility and describes the support for assistive
technologies now provided by the Swing components of the JFC.

Design for Applets

These books provide a range of information on designing applets.

Gulbransen, David, Kenrick Rawlings, and John December. Creating Web
Applets With Java. Sams Publishing, 1996. An introduction to Java applets,
this book addresses nonprogrammers who want to incorporate
preprogrammed Java applets into web pages.

Hopson, K.C., Stephen E. Ingram, and Patrick Chan. Designing Professional
Java Applets. Sams Publishing, 1996. An advanced reference for developing
Java applets for business, science, and research.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Part I: Overview

This part consists of:

e Chapter 1: The Java Look and Feel

e Chapter 2: The Java Foundation Classes

1: The Java Look and Feel

As the Java platform has matured, designers and developers have recognized
the need for consistent, compatible, and easy-to-use Java applications. The
Java look and feel meets that need by providing a distinctive
platform-independent appearance and standard behavior. The use of this
single look and feel reduces design and development time and lowers training
and documentation costs for all users.

This book sets standards for the use of the Java look and feel. By following
these guidelines, you can create Java applications that effectively support all
users worldwide, including those with physical and cognitive limitations.

Fundamentals of the Java Look and Feel

The Java look and feel is the default interface for applications built with the
JFC. The Java look and feel is designed for cross-platform use and can
provide:

e Consistency in the appearance and behavior of common design elements
e Compatibility with industry-standard components and interaction styles
e Aesthetic appeal that does not distract from application content

Three distinctive visual elements are the hallmarks of the Java look and feel
components: the flush 3D style, the drag texture, and the color model.

In the Java look and feel, component surfaces with beveled edges appear to
be at the same level as the surrounding canvas. This "flush 3D" style is
illustrated in the following figure.

Figure 1 Consistent Use of the Flush 3D Style

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

| ok || cancel || Help | Size: 10 v

i1 Left ¥ Normal -
i Right = 1 Bold @
[Z] alic

The clean, modern appearance reduces the visual noise associated with
beveled edges. Flush 3D components fit in with a variety of applications and
operating systems. For details on the flush 3D style, see Producing the Flush
3D Effect.

A textured pattern, used throughout the Java look and feel, indicates items that
users can drag. Such an indication cues cross-platform users in a reliable way.
The following figure demonstrates several uses of the drag texture.

Figure 2 Consistent Use of the Drag Texture

4
I
. Divider between panes
: c@n be dmgged left
and right
I [m} ; Draggable slider

[« [EE

- w——+——— Drmggable scroll box

A simple and flexible color model ensures compatibility with platforms and
devices capable of displaying quite different color depths. The default colors
provide an aesthetically pleasing and comfortable scheme for interface
elements, as shown in the following figure. For more on the Java look and feel
default color theme, see Themes.

Figure 3 Consistent Use of Color Across Design Elements

= Jawva Look and Feel Crezign
Java Look and Feel oo R Edit
T o Guidelines provides essential
ndo rl- ; ;
= farrnation for anyone
Java Look and Feel n
Eedo Cirl-| inwolved in the process of
Cut Cirlow | creating cross-platform
Cn;y ChoC lawva applications and
= applets. In particular, this
Lawiis DLl bk offers design guidelines

Visual Tour of the Java Look and Feel

The Java look and feel implements widely understood interface elements
(windows, icons, menus, and pointers) and works in the same way on any

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

operating system that supports the JFC. The visual tour in this section shows
off two JFC applications with the Java look and feel: MetalEdit and Retirement
Savings Calculator. MetalEdit is a standalone, text-editing application;
Retirement Savings Calculator is an applet displayed in a browser window.

The following figure shows a Microsoft Windows desktop with MetalEdit and
Retirement Savings Calculator (a Java applet). MetalEdit has a menu bar and
toolbar as well as a text-editing area. As an applet, Retirement Savings
Calculator is displayed inside a web browser within an HTML page. Other
Microsoft Windows applications are also present; some are represented by
minimized windows.

Although the windows of many applications can be open on the desktop, only
one can be the active window. In the figure, MetalEdit is the active window
(indicated by the color of the title bar), whereas the Netscape Navigator™
browser, which contains Retirement Savings Calculator, is inactive.

Figure 4 Typical Desktop With Applications on the Microsoft Windows Platform

Active window running Inactive window running
MetalEdit browser with |ava applet
!E L Helirm o] Leving © ki et - Helle ape § SES
Jus o] Ed: E yew Go Comvesskeln D
o U Gl Foyral i fiwip
Iﬁﬂ (D (P R Dels b (e [E S

J——
- presiim—
{1 LIy e o s &
bl |

CIRPI VIM B S
grooier Triey sod com e
FApET. TR E oAl phen g

|| pese 1 - — Retirement
|t dow v — . — . Savings
e i | s e Caleulator
e | A AR BN - LEEEE) LLE-211)
L ol 00 w1
Astramal Swre 23T 1,040
o B Jhal [FEE]
i — Fe W :
I & = @ S —— s
e e Smtess LSO |t e e A sl P :
M = Thnss e s gy 15 5P
A 8 =
Tast vl Fabowd Modew I
% % B B o
al =
o o = | e ich e CEl
| | R | HET b o b | A P e B | B v o | flEsima - Bmratien | Bl sRERT) 2xm
Inactive window Minimized window

MetalEdit Application

This section uses the MetalEdit application to illustrate some of the most
important visual characteristics of the Java look and feel, including its windows,
menus, toolbars, editor panes, dialog boxes, and alert boxes.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Example Windows

The windows in Java look and feel applications use the borders, title bars, and
window controls of the platform they are running on. For instance, the
MetalEdit document window shown in Figure 4 is running on a Microsoft
Windows desktop and uses the standard Microsoft window frame and title bar.

In Figure 5, the contents of the document window (menu bar, toolbar, and
editor pane) use the Java look and feel. However, the window borders, title
bars, and window controls have a platform-specific appearance.

) Click here to view the corresponding code for Figure 5 (also

available on the book®"s companion CD-ROM).

Figure 5 Exploded Document Window on Three Platforms

File E[dil Forisal View Help Jaf.'a ook and feel
CEa w6 e e BEE window contents —
menu bar, toalbar,
THTRODIICT INH

and editor pane

Although computer-humen interfece design has been recognized as o distino
feeld for litike more then & decade, there i 8 loag hisory of designing
interfeces to conirol mechendcal devices. [n general, human interfaces for
compuriers Sffer from these for mechandcel demces o two wayrs. Firm,
comparad wiih mast mechanicsl dewicer, computers of%sn conftral functons of
gresisr yaniety end complexity - the same coaputer may be used for vriting
papers, finsnsel planning and kssping track of appoiniments. Sscand, there
#re Pevwer inhersnl Sonsiraints on the design of intesfaces for amputess
Uik the irter Daces for mecksgicsl Jevacas thet ses lanited 1y the ralstive
inflaritdlity of @machanicsl and slecerical conrrolz. Honerhaless, design modeds
play rimilar roiee in Both Sommpuner and meshaniconl ornems

[a] EEE v |

IH Engineering Models — MetalEdit : I.
= Engineering Models - MetslEdit DE Platform —_s.pecific
barders, title bar,
' and window
AT ook

Example Menus

The menu bar, which is the horizontal strip under the window title, displays the
titles of application menus, called "drop-down menus." Drop-down menus

provide access to an application's primary functions. They also enable users to
survey the features of the application by looking at the menu items. Chapter 9

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

contains discussions of drop-down menus, submenus, and contextual menus
and provides guidelines for the creation of menus and menu items for your
application.

Figure 6 Example Menu Bar

File Edit Format Yiew Help
L Menu titles

The menu items in Figure 7 (which shows the contents of the Edit and Format
menus from the MetalEdit menu bar) are divided into logical groupings by
menu separators (in the flush 3D style). For instance, in the Edit menu, the Cut,
Copy, and Paste commands, which are related to the clipboard, are separated
from Undo and Redo commands, which respectively reverse or restore
changes in the document. For more information, see Typical Edit Menu. Titles
of menus that are activated are highlighted in blue in the default Java look and
feel theme.

© Click here to view the corresponding code for Figure 7 (also

available on the book"s companion CD-ROM).

Figure 7 Example Drop-down Menus

ilenu title —{Edit |
reny itern —— 1 Undo Ztrl-Z
Inactive menu itermn —— CLrl-y
Keyboard shortout Lt el
Copy Ctrl-C
Paste ZErl-4
Delete Delete
Menu separator
Find... Ztrl-F
Find Again trl-G
Select All Ctrl-A,
Format
Checkboy — L # Bold Ctrl-B
menu item [talic Ctrl
[J Underline Ctrl-1
Fadio button —— Lm0 Align Left Ctrl-L
menu item O Align Center Crrl-E
Z Align Right Ctrl-R

Mnemonic I

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Keyboard shortcuts offer an alternative to using the mouse to choose a menu
item. For instance, to copy a selection, users can press Control-C. For details,
see Keyboard Shortcuts.

Mnemonics provide yet another way to access menu items. For instance, to
view the contents of the Edit menu, users press Alt-E. Once the Edit menu has
keyboard focus, users can press C (or Alt-C) to copy a selection. These
alternatives are designated by underlining the "E" in Edit and the "C" in Copy.
For details, see Mnemonics.

The menus shown in Eigure 7 illustrate two commonly used menu titles, menu
items, and menu item arrangements for Java look and feel applications. For
details, see Drop-down Menus and Menu ltems.

Example Toolbar

A toolbar displays command and toggle buttons that offer immediate access to
the functions of many menu items.

In Eigure 8, the MetalEdit toolbar is divided into four areas for functions relating
to file management, editing, font styles, and alignment. Note the flush 3D style
of the command and toggle buttons and the textured drag area to the left of the
toolbar. For details, see Toolbars. For a collection of toolbar buttons designed
using the Java look and feel guidelines, see Appendix B.

) Click here to view the corresponding code for Figure 8 (also
available on the book®"s companion CD-ROM).
Figure 8 Example Toolbar

Group of related
buttons

5%@@@ @I@@@l !EIEIE @E@l

Textured drag area Command buttons Toggle buttons

Example Editor Pane

The document text in the following figure is displayed in an editor pane with a

styled text editor plug-in kit, which is embedded in a scroll pane. (Note the use
of the drag texture in the scroll box.) For more on styled text editor plug-in Kits,
see Editor Panes. For details on scroll panes, see Scroll Panes.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 9 Example Editor Pane

INTRODUCTION

Althowzh compaser-human interfece design hes teen recognized o o distinet
field for little more than a decade, there iz a long hizstory of derigning
interfaces to control mechanical devices. In general, humen interfaces for
computers differ from thoze for mechanical devices in w0 ways. First,
comparad with most mechanical devioss, computers often control funciions of
grester variety and complexity - the same computer may be uged for writing
pepers, financial planning and Essping track of appaintments, S=cond, there
ar= fewer inheren! conmstrainis on the design of interfaces for computers,
unlike the interfaces for mechanical devices that are limited by the relative
inflexitility of mechanical and electrical controls. Honetheless, design models
play similar roles in both computer and mechanical syrtems

Drag texture
in scroll box

Example Dialog Boxes

In the Java look and feel, dialog boxes use the borders and title bars of the
platform they are running on. However, the dialog box contents have the Java
look and feel. Chapter 8 describes dialog boxes in the Java look and feel and
contains recommendations for their use.

Figure 10 shows a preferences dialog box with the title bars, borders, and
window controls of several platforms. The dialog box enables users to specify
options in the MetalEdit application. Noneditable combo boxes are used to
select ruler units and a font. Text fields are used to specify the margins. An
editable combo box enables users to specify font size. Radio buttons and
checkboxes are used to set other preferences. Clicking the Browse command
button displays a file chooser in which users can select a stationery folder.

Note the flush 3D borders of the combo boxes, text fields, radio buttons,
checkboxes, and command buttons. Labels use the primary 1 color, one of
eight colors in the default Java look and feel theme. (For more, see Colors.)
For a thorough treatment of basic controls (including combo boxes, radio
buttons, checkboxes, and command buttons), see Chapter 10. For a detailed
discussion of text fields and labels, see Chapter 11.

MetalEdit provides mnemonics and keyboard navigation and activation
sequences for each of the interactive controls in the preferences dialog box.
The dialog box in Figure 10 illustrates two ways to create a mnemonic: directly
in a component, indicated by an underlined letter in the component text, or in a
label associated with the component, indicated by an underlined letter in the
label.

© Click here to view the corresponding code for Figure 10 (also

available on the book"s companion CD-ROM).

Figure 10 Example Dialog Boxes on Microsoft Windows, Macintosh, and CDE Platforms

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

L
[
e [! | Preferences |
Left
- Ridler L P — I
Sho Preferences
Left Mz)
fouler Units: | Centimeters | Moneditable combo box
Dep{ Show: .)
Left BMargin: | 25 cm Right Margin: | 25ecm — Editable text field
Tiirrl . . .
Defaur| Show: [Hidden Text | Checkboxes (with mnemonics)
| Margins
Time Fi
Drefaull Font: | Palatino - | Sire: 12 |'
Stat) L 1 i
2 ImeFormat: O 1:15 PM. Editable combo box
1315 PM.] Label {with mnemonic)
Station B L Radio buttons
—_ 0131520 PRL
Stationery: | gramaMetalEdibStatoneny | Browse.. Standalone command button
L = Noneditable text field
OK cancel || Help | Command button row
Default button

Example Alert Boxes

The alert boxes in a Java look and feel application use the borders, title bars,
and window controls of the platform they are running on. However, the
symbols, messages, and command buttons supplied by the JFC use the Java
look and feel. (You provide the actual message and specify the number of
command buttons and the button text. The JFC provides layouts for the
symbol, the message, and the command buttons.)

In Figure 11, MetalEdit's warning box asks users if they would like to save
changes when they try to close a window that has unsaved changes. Of the
three command buttons in the alert box, the default command button is Save.
The Don't Save button closes the window without saving changes. The Cancel
button closes the dialog box but leaves the unsaved document open. For
details, see Alert Boxes.

© Click here to view the corresponding code for Figure 11 (also

available on the book"s companion CD-ROM).

Figure 11 Example Alert Boxes on CDE, Microsoft Windows, and Macintosh Platforms

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Warning
4 Save Changes?
‘

Save Changes?

i P | FETCCUNTE SRR 1 iy b L PR I S

Warning

Save Changes?

The document you are closing has unsaved changes.
=S g woL want o save the chandes hefare closing the
document?

Save | DomtSave || Cancel

Default command
button

Retirement Savings Calculator Applet

The sample applet shown in Figure 12, Retirement Savings Calculator, is part
of a web page displayed in the Netscape Navigator browser.

This human resources applet enables employees of a fictitious company to
determine their contributions to a retirement savings plan. To make it easy for
all employees to access information on their retirement savings, the company
provides the applet in a web page. (Note the boundaries of the applet. The
HTML page also includes a banner in the GIF format as well as an HTML
header with the title of the page.) All of the JFC components use the Java look
and feel. However, the browser, its menu bar, toolbar, and scrollbars all use
the platform’'s native look and feel (Microsoft Windows, in this case).

© Click here to view the corresponding code for Figure 12 (also

available on the book®"s companion CD-ROM).

Figure 12 Applet on an HTML Page in a Browser

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

L Retirement Sarings Caloulster - Hetiaps

Eile Edit Yiew Go Communicaisr Halp
S B e e =

T e—
- HUMAN Rssouﬂﬁg '

_PEOPLE AZINDEX SEARCH | Browser

|

{with
cantrols)
Salary Connstinn
M Comtrilnons To:) Mnney Market Fund HTML page
I Boted Fund with banner
i Sinci Mars Fund and applet
S Besel | Hel |
S B o] i
IGress Sabary 41,039 .47 152 23800 |
Tice witbhaleing 322 44 16,824.63 | Applet
Hithuar Daductioe 200 460,58 |
Asranied Sarcinet £237 125408 on an
Mt Papchect $5.50 $33.609.51 | HTML
Rearananl Mufching §31.19 §1427.04| page in
Projotad Ratinairsd Smings a browser
Appreciabion Halps: 1 Assumeed Appreciation Hale: |

‘@ Thres ¥ ear Fund Histong 16.5%

120,908 ———————— e ——
LR L
FR0A0E

FR0LA08 -

F40.208 =
$20.208 - II
o mmll

Y OTOF 01 0 0E 4 0% ke oy

| I-IEl_

. LT EES-E N

The applet obtains an employee's current retirement savings contribution and
other salary data from a database and fills a table with the relevant data. The
employee can drag a slider to specify a salary contribution and click a radio
button to specify whether new contributions go to a money market, bond, or
stock market fund. A row of command buttons offers a choice of whether to
save changes, reset the salary contribution and fund contributed to, or display
help.

Using the employee's input and databases, the applet calculates the
employee's weekly and yearly gross salary, tax withholding, other deductions,
retirement savings contribution, net paycheck, and the company's matching
funds. Results are displayed in a table. Finally, the employee can type

an assumed appreciation rate in an editable text field to see accumulated
future savings or instruct the applet to use the nine-month fund history to
project savings in the chart at the bottom of the applet.

) Click here to view the corresponding code for Figure 13 (also

available on the book®"s companion CD-ROM).

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Figure 13 Retirement Savings Calculator Applet

Salary Contribution:

%

Hewe Contributions To: 7 Moy Market Fund

-3 4% B E% 10%

Label
Slider

. Bovel Furd
) S1ock Market Fund

sow || meset || pw |

Radio button group

Command button row

Effect on Paycheck:

Appreciation Rates:

Projecied Retirement Sadngs

Weekly [Tearly N
Gross Salary £1,039.47 $54,236,00
Ta Withhalding 3244 16,324,635
Other Deductions 2.00 46956 Table
Retramert Savings £2.37 5,254.28
Mt Pa bk 645 66 $53 68951
Retrament Matching £31.19 $1,627.14

Editable text field

_ Assumed Appreciation Rate:

Moneditable text field

(® Three Year Fund Histony: 16.3%

F120,000 =
W actus)
$100,000 - W rrcjected|

80,000 -

L T e S———

40,000 -

TR [——

ko

00 01 0z 93 ‘04 ‘05 06 0T

Chart

For more information on the components used in this applet, see Text Fields,
Sliders, Radio Buttons, Command Buttons, and Tables.

2: The Java Foundation Classes

This book assumes that you are designing software based on the Java
Foundation Classes (JFEC) and utilizing the Java look and feel. This chapter
provides an overview of that technology: the Java™ 2 SDK (software
development kit), the user interface components of the Java Foundation
Classes, the pluggable look and feel architecture, and available look and feel

designs.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Java 2 Software Development Kit

The APIs and tools that developers need to write, compile, debug, and run
Java applications are included in the Java 2 SDK.

The guidelines in this book pertain to GUI applications built with the Java 2
SDK, Standard Edition, v. 1.3 (J2SE), and the Java 2 SDK, Enterprise Edition,
v. 1.3 (J2EE), (both referred to hereafter as "Java 2 SDK"). The guidelines do
not apply to applications built with the Java 2 SDK, Micro Edition.

Java Foundation Classes

The JFC includes the Swing classes, which define a complete set of GUI
components for JFC applications. An extension to the original Abstract
Window Toolkit (AWT), the JFC includes the Swing classes, pluggable look
and feel designs, and the Java Accessibility API, which are all implemented
without native code (code that refers to the functions of a specific operating
system or is compiled for a specific processor). The JFC components include
windows and frames, panels and panes, dialog boxes, menus and toolbars,
buttons, sliders, combo boxes, text components, tables, list components, and
trees.

All the components have look and feel designs that you can specify. The
cross-platform, default look and feel is the Java look and feel. For details on
the design principles and visual elements underlying the Java look and feel,

see Chapter 1.

E= |In code, the Java look and feel is referred to as "Metal."

The Java 2 SDK contains the AWT, the class library that provides the standard
application programming interfaces for building GUIs for Java programs.

In the Java 2 SDK, the JFC also includes the Java 2D API, drag and drop, and
other enhancements. The Java 2D API provides an advanced two-dimensional
imaging model for complex shapes, text, and images. Features include
enhanced font and color support and a single, comprehensive rendering
model.

Support for Accessibility

Several features of the Java 2 SDK support people with special needs: the
Java Accessibility API, the Java Accessibility Utilities, keyboard navigation,

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

mnemonics, keyboard shortcuts (also called "accelerators"), customizable
colors and fonts, and dynamic GUI layout.

The Java Accessibility API provides ways for an assistive technology to
interact and communicate with JFC components. A Java application that fully
supports the Java Accessibility APl is compatible with technologies such as
screen readers and screen magnifiers.

A separate set of utility classes, Java Accessibility Utilities, provides support in
locating the objects that implement the Java Accessibility API. (These utilities
are necessary for developers who develop only assistive technologies, not
mainstream applications.)

A pluggable look and feel architecture is used to build both visual and
nonvisual designs, such as audio and tactile user interfaces. For more on the
pluggable look and feel, see Pluggable Look and Feel Architecture.

Keyboard navigation enables users to use the keyboard to move between
components, open menus, highlight text, and so on. This support makes an
application accessible to people who find it difficult or impossible to use a
mouse. For details on keyboard operations, see Appendix A.

Mnemonics show users which key to press (in conjunction with the Alt key) in
order to activate a command or navigate to a component. (For details on
mnemonics, see Mnemonics.)

Keyboard shortcuts are keystroke combinations (usually a modifier key and a
character key, like Control-C) that activate menu items from the keyboard even
if the relevant menu is not currently displayed. (For more on keyboard
shortcuts, see Keyboard Shortcuts.)

Support for Internationalization

The Java 2 SDK provides internationalized text handling and resource bundles.
Text handling features include support for the bidirectional display of text
lines--important for displaying documents that mix languages with a left-to-right
text direction (for instance, English, German, or Japanese) and languages with
a right-to-left direction (for instance, Arabic or Hebrew).

The Java 2 SDK also provides resource bundles, locale-sensitive sorting, and
support for localized numbers, dates, times, and messages.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

User Interface Components of the JFC

The JFC includes Swing, a complete set of user interface components,
including windows, dialog boxes, alert boxes, panels and panes, and basic
controls. Each JFC component contains a model (the data structure) and a
user interface (the presentation and behavior of the component), as shown in
the following illustration.

Figure 14 Structure of the JFC Components

Change ralues

* <

Model Digplay User inter face

C :T: 1
Contribution = 20 i1 1 o0 0 o0 o0 o o0 1 o1 1 1 g1
0% 2% 4 3% EE 10% 12%

Pluggable Look and Feel Architecture

Because both presentation and behavior are separate and replaceable
("pluggable™), you can specify any of several look and feel designs for your
application--or you can create your own look and feel. The separation of a
component's model (data structure) from its user interface (display and
interaction behavior) is the empowering principle behind the pluggable look
and feel architecture of the JFC. A single JEC application can present a Java
look and feel, a platform-specific look and feel, or a customized interface (for
example, an audio interface).

Example Model and Interfaces

Consider the slider and the editable text field in the following figure as an
example. The underlying model contains information about the current value
as well as the minimum and maximum values. The slider's interface
determines how users see or interact with the slider. The slider enforces the
idea of a range of choices. However, an editable text field would be easier for
keyboard users. The editable text field shares the data model with the slider.
The text field's interface contains data about the position and color of the label
and the text field and the response when users type in a new value.

Figure 15 Pluggable Look and Feel Architecture of a Slider

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

1B daippliedd by Siaciur:

Dt el
WK = 0
| wmhig = 57
i v =
Eolifalrbe |
el bkl Al dider
Taaml webps | 17 ¥ .I ¥
i 3

Cambornizable weer inferiace elemenis

Look and el of slider

Shiage sad color of Ysder and chennel
Fasponseto dmg of dides
Besponsito click in chan el
Fesponse to Page Diown

ool il e ol it et el

Positon and color of bel and tert field
PiE pofkie 10 Eypin) ol e valiig

Client Properties

You can use the client properties mechanism to display an alternate form of a
specific Java user interface component. If a look and feel design does not
support a property, it ignores the property and displays the component as
usual. You can set alternate appearances for sliders, toolbars, trees, and
internal windows. For instance, a nonfilling slider might be displayed by default.
However, by using the client properties mechanism, you can display a filling
slider, as shown in the preceding figure.

Major JFC User Interface Components

The following table illustrates (with icons intended for use in a GUI
builder) the major user interface components in the JFC. Components
are listed alphabetically by their names in code. Their English names
are provided, followed by the location of more detailed information on
each component.

Table 1 Names of the JFC User Interface Components

Component Code Name Common Name For Details
Tk .
JApplet Applet click here
Command button and toolbar | click here and
Ok | JButton

button here

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

T

nijl:

€
0

4]

i =

HEH

|

JCheckBox

JCheckBoxMenultem

JColorChooser

JComboBox

JDesktopPane

JDialog

JEditorPane

JFrame

JinternalFrame

JLabel

JList

JMenu

JMenuBar

JMenultem

JOptionPane

JPanel

JPasswordField

JPopupMenu

JProgressBar

Checkbox

Checkbox menu item

Color chooser

Noneditable and editable combo

boxes

Backing window

Dialog box, secondary window, and

utility window

Editor pane
Primary window
minimized

Internal window,

internal window, and internal utility

window

Label

List components (list boxes and
selectable lists)

Drop-down menu and submenu

Menu bar

Menu item

Alert box

Panel

Password field

Contextual menu

Progress bar

click here

click here

click here

click here

click here

click here,

here, and here

click here

click here

click here and

here

click here and

here

click here and
here

click here

click here

click here

click here

click here

click here

click here

click here

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

(0 — JRadioButton Radio button click here
C JRadioButtonMenultem | Radio button menu item click here
e JScrollBar Scrollbar click here
' JScrollPane Scroll pane click here
JSeparator Separator click here
Jslider Slider click here
:||: JSplitPane Split pane click here
JTabbedPane Tabbed pane click here
||

JTable Table click here

text ; .
JTextArea Plain text area click here

Noneditable and editable text fields

| JTextField]) click here
(single line)
T Editor pane with the styled editor)
JTextPane . . click here
kit plug-in
= Toggle button and toolbar toggle | click here and
= JToggleButton 99 99
button here
g || JToolBar Toolbar click here
JToolTip Tool tip click here
o — i
[JTree Tree component click here
Jwindow Plain (unadorned) window click here

== In the JFC, the typical primary windows that users work with are
based on the JFrame component. Unadorned windows that consist of
a rectangular region without any title bar, close control, or other
window controls are based on the JWindow component. Designers

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

and developers typically use the JWindow component to create
windows without title bars, such as splash screens.

For details on the use of windows, panels, and panes, see Chapter 7.

Look and Feel Options

You, the designer, have the first choice of a look and feel design. You can
determine the look and feel you want users to receive on a specific platform, or
you can choose a cross-platform look and feel.

Java Look and Feel--the Recommended Design

With a cross-platform look and feel, your application will appear and perform
the same everywhere, simplifying the application's development and
documentation.

> Do not specify a look and feel explicitly. This way, the Java look
and feel, which is a cross-platform look and feel, is used by default.

=== If an error occurs while specifying the name of any look and feel,
the Java look and feel is used by default.

Supplied Designs

If you do not specify the Java look and feel, you can specify another look and
feel--one that ships with the JFC or one that someone else has made. Note,
however, that not all look and feel designs are available on every platform. For
example, the Microsoft Windows look and feel is available only on the
Microsoft Windows platform.

Because there is far more to the design of an application than the look and feel
of components, it is unwise to give end users the ability to swap look and feel
designs while working in your application. Switching look and feel designs in
this way only swaps the look and feel designs of the components from one
platform to another. The layout and vocabulary do not change. Since layout
conventions vary from platform to platform, this situation can result in an
interface that looks inappropriate. For instance, swapping look and feel
designs does not change the titles of the menus. (If you must provide users
with the ability to switch look and feel designs, see Appendix D.)

The look and feel designs available in the Java 2 SDK are:

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e Javalook and feel. (Called "Metal" in the code.) The Java look and feel is
designed for use on any platform that supports the JFC. This book provides
recommendations on the use of the Java look and feel.

e Microsoft Windows. (Called "Windows" in the code.) The Microsoft Windows
style look and feel can be used only on Microsoft Windows platforms. It follows the
behavior of components in applications that ship with Windows NT 4.0. For details,
see Microsoft Windows User Experience, which is described in Microsoft
Windows.

e CDE. (Called "CDE/Matif" in the code.) The CDE style look and feel is designed
for use on UNIX® platforms. It emulates OSF/Motif 1.2.5, which ships with the
Solaris™ 2.6 operating system. For details, see the CDE 2.1/Motif 2.1--Style
Guide and Glossary, which is described in CDE.

Part Il: Fundamental
Java Application Design

This part consists of:

e Chapter 3: Design Considerations

e Chapter 4: Visual Design

e Chapter 5: Application Graphics

e Chapter 6: Behavior

3: Design Considerations

When you begin a software project, ask yourself these three questions:

e How do | want to deliver my software to users?

¢ How can | design an application that is accessible to all potential users?

¢ How can | design an application that suits a global audience and requires minimal
effort to localize?

Choosing an Application or an Applet

Early in the development process, you must decide if you want to create a
standalone application or an applet that is displayed in a web browser. The

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

following figure shows the different environments for running applications and
applets.

Figure 16 Environments for Applications and Applets

Mgt i Applicatian

di

JAVA

Beuvusers Flatlonim:
Mexsraps Mavag atar i roeodr Windows

et et Laploser Lidi
Plolariz, HPYUK, AR, Lims

Clpara
0543

Blacaosh

When deciding between an application and an applet, the two main issues you
need to consider are distribution and security, including read and write
permissions. If you decide to use an applet, you must also decide whether to
display your applet in the user's current browser window or in a separate
browser window. (It is possible, with a moderate amount of effort, to ship a
program as both an applet and an application.)

For an example of an application that uses the Java look and feel, see
MetalEdit Application. For an example of an applet, see Retirement Savings
Calculator Applet. For a list of additional reading on applets, see Design for

Applets.

Distribution

When deciding how to distribute your software, weigh the needs of both end
users and administrators. Don't forget to consider ease-of-use issues for:

e |Initial distribution and installation of the software
¢ Maintenance of the software

e Updates to the software

e Regular access to the software

One solution is the standalone application, distributed on a CD-ROM disc or a
floppy disk and installed on the end user's local hard disk. Once the application
is installed, users can easily access it. In an enterprise environment, however,
maintenance can be complicated because separate copies of the application

exist on each user's local computer. Distribution of the original application and

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

subsequent updates require shipment of the software to, and installation by,
multiple users.

In contrast, applets are simpler to distribute and maintain because they are
installed on a central web server. Using a web browser on their local machines,
users can access the latest version of the applet from anywhere on the intranet
or Internet. Users, however, must download the applet over the network each
time they start the applet.

If you are creating an applet, make sure that your users have a browser that
contains the JFC or that they are using Java™ Plug-In. That way, users will not
have to download the JFC every time they run the applet. (The HTML required
to run an applet differs for plug-in and non-plug-in configurations. Consider
providing both options to the user.)

Security Issues

Another issue to consider is whether your software needs to read and write
files. Standalone Java applications can read or write files on the user's hard
disk just as other applications do. For example, the MetalEdit application reads
and writes documents on the user's local disk.

In contrast, applets usually cannot access a user's hard disk because they are
intended for display on a web page. Generally, a user doesn't know the source
of an applet that has been downloaded from the web, so standard security
procedures include preventing all applets from reading and writing to the hard
disk. Thus, applets are better suited for tasks that do not require access to the
hard disk. For example, a web page for a bank might offer an applet that
calculates home mortgage payments and prints results, but does not save files
on the customer's hard disk.

You can also use an applet as a front end to a central database. For example,
the Retirement Savings Calculator applet enables company employees to
select funds for their retirement contribution and update the amount of their
contribution in the company database.

Placement of Applets

If you decide to design an applet, you can display your applet in the user's
current browser window or in a separate browser window.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Applets in the User's Current Browser Window

The current browser window is well suited for displaying applets in which users
perform a single task. This approach enables users to perform the task and
then resume other activities in the browser, such as surfing the web.

An applet displayed in the current browser window should not include a menu
bar--having a menu bar in both the applet and the browser confuses users.

Applets generally cannot predict which mnemonics are (or are not) in use in
the browser itself. Therefore, determine which top-level mnemonics are used
in expected browsers and in their associated environments and avoid their use,
so no conflicts occur. Examples of top-level mnemonics are menu title names
(such as File and Edit).

Applets in Separate Browser Windows

If your applet involves more than one task or if users might want to visit other
web pages before completing the task, launch a separate browser window and
display the applet there. This approach enables users to interact with the
applet and maintain the original browser window for other activities. Users can
open multiple browser windows to do several tasks simultaneously. Navigating
to another web page in the original browser window, however, does not affect
the applet in its separate browser window.

Designing an applet for a separate browser window is simpler if you remove
the browser's normal menu and navigation controls. Doing so avoids confusion
between the browser's menu and controls and the applet's menus and controls.
You also avoid potential conflicts between mnemonics in the two windows.

Designing for Accessibility

Accessibility refers to the removal of barriers that prevent people with
disabilities from participating in social, professional, and practical life activities.
In software design, accessibility requires taking into account the needs of
people with functional differences: for example, users who are unable to
operate a conventional mouse or keyboard or users who cannot process
information using traditional output methods.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

© Java Accessibil ity Helper, a utility to aid you in assessing how well

your application supports the needs of people with disabilities, is
available on the book®"s companion CD-ROM.

Benefits of Accessibility

Accessibility provides a competitive advantage, increasing sales as well as the
opportunities for employment, independence, and productivity for the
approximately 750 million people worldwide with disabilities. Moreover,
designing for accessibility provides potential benefits beyond enabling people
with disabilities:

¢ Mnemonics and keyboard shortcuts, which are significantly faster than navigating
using the mouse, make all users more productive.

e Keyboard navigation is preferred by a significant number of users and is good for
users with even minor RSI (repetitive stress injury) issues.

e Customizable fonts enable users to pick fonts that reduce eye strain and display
effectively on widely varying monitors.

e Customizable colors enable applications to fit into the desktop seamlessly and
work properly on systems with limited available colors.

Consider the concept of electronic curb cuts: In the real world, cuts made in
the sidewalk at intersections enable wheelchairs to exit the sidewalk and cross
the intersection. Those curb cuts are also great for baby strollers, skateboards,
and elderly people with only minor disabilities. In the same way, many software
accessibility features make everyone more productive.

Many countries are instituting legislation (such as the Americans With
Disabilities Act in the United States) that makes access to information,
products, and services mandatory for individuals with special needs. In these
countries, government and academic institutions are required to purchase and
support technologies that maximize accessibility. For example, in the United
States, Section 508 of the Federal Rehabilitation Act requires all federal
contracts to include solutions for employees with disabilities. The international
community of people with disabilities is also successfully pressuring
companies to sell accessible software.

Accessible Design

Five steps will put you on a path to an accessible product:

e Follow the standards in this book

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e Provide accessible names and descriptions for your components

¢ Employ mnemonics and keyboard shortcuts throughout your application
e Provide proper keyboard navigation and activation

e Perform usability studies with disabled users

For a list of additional reading, see Design for Accessibility.

Java Look and Feel Standards

The Java look and feel standards in this book take into account the needs of
users with functional limitations. The standards cover how to use colors, fonts,
animation, and graphics. By following these standards, you will be able to meet
the needs of most of your users.

—# Java look and feel standards are identified throughout the book by
this symbol.

Accessible Names and Descriptions

An accessible name and description property should be provided for each
component in your application. These properties enable an assistive
technology, such as a screen reader, to interact with the component.

As a developer, you usually do not have to set these properties directly.
Commonly, the accessible name and descriptions are picked up automatically
from a component's label or tool tip. (Furthermore, Java Accessibility Helper,
the utility provided on the book's companion CD-ROM, checks for this
information.) For details, see "Developing Accessible JFC Applications” at
http://ww.sun.com/access/developers/developing-accessible-apps.

Whenever possible, use tool tips and labels instead of setting accessibility
properties directly. This practice makes it easy to extract accessibility
information and localize the accessibility properties. If you set accessibility
properties directly and add unique strings to your application, be sure to store
the new information in your application's resource bundle. When the bundle is
localized, the accessibility values are included.

E=> The accessibleName property provides a name for a component and
distinguishes i1t from other components of the same type. It enables
assistive technologies to provide users with the name of the component
that has input focus.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

=== For components such as labels, buttons, and menu items that contain
noneditable text, the accessibleName property is set automatically to the
text. Other types of components should have corresponding JLabel objects.
Use the JLabel .setLabelFor method to instruct the target object to inherit
its accessible name from the label.

=== All components should have tool tips. They automatically set the
components® accessibleDescription property, which provides information
such as how a component works.

=== The Java Accessibility Helper utility can be used to determine
whether accessibleName properties and other API information are properly
implemented in your application. Java Accessibility Helper v.0.3 is
included on the book®s companion CD-ROM.

For more information on the Java Accessibility APl and the Java Accessibility
Utilities package, see Support for Accessibility.

Mnemonics and Keyboard Shortcuts

You should provide mnemonics and keyboard shortcuts throughout your
application. A mnemonic is an underlined alphanumeric character that shows
users which key to press (in conjunction with the Alt key) to activate a
command or navigate to a component.

The dialog box in Figure 17 shows the use of mnemonics for a text field,
checkboxes, radio buttons, and command buttons. For example, if keyboard
focus is within the dialog box, pressing Alt-W moves keyboard focus to the
Whole Word checkbox and selects it.

© Click here to view the corresponding code for Figure 17 (also

available on the book"s companion CD-ROM).

Figure 17 Mnemonics in a Dialog Box

Find H|

Find: || |

[v¥| Match Case () Start at Top

[WholeWord @ Wrap Around
[

| Find || Close |

fInermonics

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

In cases where you can't add a mnemonic to the component itself, as in the
text field in the preceding figure, you can place the mnemonic in the
component's label. For more information on mnemonics, see Mnemonics.

=== The labelFor property should always be used to associate a label
with another component so that the component becomes active when the
label"s mnemonic is activated. This practice eliminates the need to set
an accessibleName property programmatically.

Keyboard shortcuts are keystroke combinations (usually a modifier key and a
character key, like Control-C) that activate menu items from the keyboard even
if the relevant menu is not currently displayed. (For more on keyboard
shortcuts, see Keyboard Shortcuts.)

Keyboard Focus and Tab Traversal

You can also assist users who navigate via the keyboard by assigning initial
keyboard focus and by specifying a tab traversal order. Keyboard focus
indicates where the next keystrokes will take effect. For more information, see
Keyboard Focus.

Tab traversal order is the sequence in which components receive keyboard
focus on successive presses of the Tab key. In most cases, the traversal order
follows the reading order of the users' locale. For more information on tab
traversal order, see Tab Traversal Order.

Make sure you test your application to see if users can access all functions
and interactive components from the keyboard. Unplug the mouse and use
only the keyboard when you perform your test.

Usability Studies

You should try out the application with a variety of users to see how well it
provides for accessibility. Low-vision users, for example, are sensitive to font
sizes and color, as well as layout and context problems. Blind users are
affected by interface flow, tab order, layout, and terminology. Users with
mobility impairments can be sensitive to tasks that require an excessive
number of steps or a wide range of movement.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Planning for Internationalization and Localization

In software development, internationalization is the process of writing an
application that is suitable for the global marketplace, taking into account
variations in regions, languages, and cultures. A related term, localization,
refers to the process of customizing an application for a particular language or
region. The language, meaning, or format of the following types of data can
vary with locale:

e Colors
e Currency formats
e Date and time formats

e Graphics
e |cons
e Labels

e Messages

e Number formats

e Online help

e Page layouts

e Personal titles

e Phone numbers

e Postal addresses

e Reading order

e Sounds

e Units of measurement

Figure 18 shows a notification dialog box in both English and Japanese. Much
of the localization of this dialog box involves the translation of text. The
Japanese dialog box is bigger than the English dialog box because some text
strings are longer. Note the differences in the way that mnemonics are
displayed. In English, the mnemonic for the Sound File text field is S. In
Japanese, the same mnemonic (S) is placed at the end of the label.

© Click here to view the corresponding code for Figure 18 (also

available on the book"s companion CD-ROM).

Figure 18 English and Japanese Notification Dialog Boxes

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Mail Notification E|

Signal Mew Mail With:
Beeps: 2 j

Flashes: 0 j

Sound File: | || Browse... |

| OK || Cancel || Help |

inernonics

B o — I SR
E—TFE(EN 2

R

e F D 7 A LG | ERL..

=

ENIEN

THE KZHEL ~ 2P (H)

inernonics

Benefits of Global Planning

The main benefit of designing an application for the global marketplace is more
customers. Many countries require that companies purchase applications that
support their language and culture. Global planning ensures that your
application is easier to translate and maintain. A well-designed application
functions the same way in all locales.

Global Design

You can incorporate support for localization into your design by using
JFC-supplied layout managers and resource bundles. In addition, you should
take into account that differences exist around the world in reading order, word
order, mnemonics, graphics, formats, sorting orders, and fonts.

& Internationalization guidelines are identified throughout the book

by this symbol. For a list of additional reading, see Design for
Internationalization.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Layout Managers

You can use a layout manager to control the size and location of the
components in your application. For example, Figure 18 shows that the Sound
File label becomes longer when it is translated from English to Japanese. The
spacing between the Sound File label and its text field, however, is the same in
both dialog boxes. For more information on layout managers, see The Java
Tutorial at http://java.sun.com/docs/books/tutorial.

Resource Bundles

You should use resource bundles to store locale-specific data, such as text,
colors, graphics, fonts, and mnemonics. A resource bundle makes your
application easier to localize by isolating locale-specific data so that it can be
translated without changing the application source code.

If your application has a Cancel button, for example, the resource bundles in
English, German, and Chinese would include the text shown in Figure 19.

& Click here to view the corresponding code for Figure 19 (also

available on the book"s companion CD-ROM).

Figure 19 Cancel Buttons in English, German, and Chinese

Cancel | | Abbrechen | | AiE |

For translations of interface elements and concepts used in Java look and feel
applications into selected European and Asian languages, see Appendix C.
For more information on creating resource bundles, see The Java Tutorial.
(The Java Tutorial is described in Java.)

Reading Order

When you lay out your application, place the components according to your
users' reading order. This order will help users understand the components
quickly as they read through them. Reading order varies among locales. The
reading order in English, for example, is left to right and top to bottom. The
reading order in Middle Eastern languages, on the other hand, is from right to
left and top to bottom.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

In this book, you will find standards such as "put labels before the component
they describe.” The term "before" is determined by the reading order of the
user's language. For example, in English, labels appear to the left of the
component they describe.

=== In the JFC, component orientation features can be used to adapt your
application to different reading orders.

=== |In the Java 2 SDK, the layout managers FlowLayout and BorderLayout
are sensitive to the reading order of the locale.

Word Order

Keep in mind that word order varies among languages, as shown in the
following figure. A noneditable combo box that appears in the middle of an
English sentence does not translate properly in French, where the adjective
should come after the noun. (The correct French sentence is "Utilisez une
Fléche Rouge.")

Figure 20 Incorrect Adaptation of English Word Order into French

Usea | Red w | Arrow Utilisez une | Rouge w | Fleche
Adjective \— MHoun Adjective \— MHoun

The following figure corrects the problem by using a label before the
noneditable combo box. This format works well in both English and French.

Figure 21 Correct Adaptation of English Word Order into French

Arrow Color: | Red - Couleur de la Fléche: | Rouge -
\— Property setting \— Property setting

Mnemonics

You must be careful when choosing mnemonics, which might change in
different languages. Store mnemonics in resource bundles with the rest of your
application's text. In addition, make sure that the characters you choose for
your mnemonics are available on keyboards in the target countries for your
application.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Graphics

You can make localization easier by using globally understood graphics
whenever possible. Many graphics that are easily understood in one locale are
puzzling in another locale. For example, using a mailbox to represent an email
application is problematic because the shape and size of mailboxes vary by
locale. Graphics that represent everyday objects, holidays, and seasons are
difficult to localize, as are graphics that include text.

Avoid using graphics that might be offensive in some locales, including:

¢ Images that contain text. For example, if an image contains English text, the text
(and graphic) must be localized for each locale.

e Images that contain numbers. Numbers have different connotations in different
locales. For example, just as the number 13 has an unlucky connotation in the
United States, the number 4 connotes death in both Japan and Hong Kong.

¢ Images containing hand gestures. A gesture that is appropriate or meaningful in
one locale can be offensive or meaningless in another locale.

e Images that represent a play on words. For instance, puns don't translate well.

¢ Images of animals. Just as the image of a dog to represent food would be
unsettling to most people in the United States, the image of a cow in the same
context can offend people in India.

e Images of people or faces. Depictions of certain facial expressions, nontraditional
gender dynamics, and uncovered skin can be offensive to users in some locales.

An example of a symbol that works well in all cultures is the use of an airplane
to denote an airport.

Like text, you can place graphics in resource bundles so that translators can
change them without changing the application source code.

Test your graphics by showing them to users in the target locales. A low-cost
way to test graphics is to solicit feedback on the proposed icons from
salespeople in different locales.

Formats

You can use the formatting classes provided in the Java 2 SDK to format
numbers, currencies, dates, and times automatically for a specific locale. For
example, in English, a date might appear as July 26, 1987, and the time as
3:17 p.m. In German, the same date is written as 26. Juli 1987 and the time is
15:17 Uhr.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

=== For numbers and currencies, the class is NumberFormat; for dates
and times, the class is DateFormat; and for strings that contain variable
data, the class is MessageFormat. The formatting classes are part of the
Java.text package.

Sort Order

You can use the collator classes provided in the Java 2 SDK to enable the
sorting of strings by locale. For example, in Roman languages, sorting is
commonly based on alphabetical order (which might vary from one language
to another). In other languages, sorting might be based on phonetics,
character radicals, the number of character strokes, and so on.

=== The Collator class in the java.text package enables
locale-sensitive string sorting.

Fonts

You can place fonts in resource bundles so that they can be changed by the
localizers. With the Java 2 SDK, the Lucida font (a cross-platform font) is
available for use in your applications.

= The size of fonts is also an important consideration for users with
visual limitations (that is, anyone over the age of thirty). Be sure to
provide user control over font size in your application.

Usability Studies

Two kinds of studies done early in the design process can show you how well
your application works in the global marketplace. First, you can send draft
designs of your application to your translators. Second, you can try out your
application with users from the locales you are targeting (for example, test a
Japanese version of the application with Japanese users). This research will
help you to determine whether users understand how to use the product, if
they perceive the graphics and colors as you intended them, and if there is
anything offensive in the product.

4: Visual Design

Visual design and aesthetics affect user confidence in and comfort with your
application. A polished and professional look without excess or

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

oversimplification is not easy to attain. This chapter discusses these high-level,
visual aspects of Java look and feel applications:

e Use of themes to control and change the colors and fonts of components to suit
your requirements

e Layout and alignment of interface elements to enhance clarity, ease of use, and
aesthetic appeal

e Capitalization of text in interface elements to ensure consistency and readability

e Use of animation to provide effective emphasis and meaningful feedback

Themes

As a software developer, you can use the theme mechanism to control many
of the fundamental attributes of the Java look and feel design, including colors
and fonts. For instance, you might want to change the colors and fonts in your
application to match your corporate identity. The theme mechanism enables
you to specify alternative colors and fonts across an entire Java look and feel
application.

=== For more information on using themes, see the description of the
jJavax.swing.plaf.metal .DefaultMetal Theme class.

Colors

If you want to change the color theme of your application, be sure that your
interface elements remain visually coherent. The Java look and feel uses a
simple color model so that it can run on a variety of platforms and on devices
capable of displaying various depths of color. Eight colors are defined for the
interface:

e Three primary colors to give the theme a color identity and to emphasize selected
items

e Three secondary colors, typically shades of gray, for neutral drawing and inactive
or unavailable items

e Two additional colors, usually defined as black and white, for the display of text
and highlights

Within the primary and secondary color groups in the default theme, there is a
gradation from dark (primary 1 and secondary 1) to lighter (primary 2 and
secondary 2) to lightest (primary 3 and secondary 3).

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Default Java Look and Feel Theme

The following table summarizes the eight colors defined in the default Java
look and feel theme. It provides swatches and numerical parameters

representing each color in the default theme. It also gives details about the
roles each color plays in basic drawing, three-dimensional effects, and text.

Table 2 Colors of the Default Java Look and Feel Theme

Name

Primary 1
RGB
102-102-153
Hex #666699

Primary 2
RGB
153-153-204
Hex #9999CC

Primary 3
RGB
204-204-255
Hex #CCCCFF

Secondary 1
RGB
102-102-102
Hex #666666

Secondary 2
RGB
153-153-153
Hex #999999

Secondary 3
RGB
204-204-204
Hex
#CCCCCC

Basic Drawing

Active internal

borders

Highlighting to indicate
activation (for example, of
and menu

menu titles

items); indication of

keyboard focus

Large colored areas (for
example, the active title
bar)

Inactive internal window
borders; dimmed button
borders

Canvas color (that is,

normal background color);

inactive title bar

window

3D Effects

Shadows of

activated items

Shadows (color)

Dark border
flush 3D style

for

Shadows;
highlighting of
toolbar buttons

upon mouse button

down

Text

System text (for

example, labels)

Text selection

Dimmed text (for

example, inactive
menu items or
labels)

Background for

noneditable text

fields

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

. Black User text and
RGB control text
000-000-000 (including items
Hex #000000 such as menu titles)

[1 white
RGB o Background for

Highlights
255-255-255 user text entry area

Hex #FFFFFF

== Unless you are defining a reverse-video theme, maintain a
dark-to-light gradation like the one in the default theme so that
interface objects are properly rendered. To reproduce three-dimensional
effects correctly, make the secondary 1 color darker than secondary 2,
which should be darker than secondary 3 (the background color).

= Ensure that primary 1 (used for labels) has enough contrast with
the background color (secondary 3) to make text labels easily readable.

Primary Colors

The visual elements of Java look and feel applications use the primary colors
as follows:

e Primary 1 for active internal window borders, shadows of activated items, and
system text, such as labels

e Primary 2 for highlighting of activated items, such as menu titles and menu items;
keyboard focus; active scroll boxes; and progress bar fill

e Primary 3 for large colored areas, such as the title bar of active internal windows
and the background of selected text

The usage is illustrated in the following figure.

Figure 22 Primary Colors in Default Color Theme

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Primary 1—

Java Look and Feel oo
—

—User Mame: | Chris Ryan | oiens
Primary 2— ':ul |:t|"|-::l:_-
Paste Ctrl-W Em

Secondary Colors

The visual elements of Java look and feel applications use the secondary
colors as follows:

e Secondary 1 for the dark border that creates flush 3D effects for items such as
command buttons

e Secondary 2 for inactive internal window borders, shadows, pressed buttons, and
dimmed command button text and borders

e Secondary 3 for the background canvas, the background of noneditable text fields,
and inactive title bars for internal windows

The usage is shown in the following figure.

Figure 23 Secondary Colors in Default Color Theme

.lml.mummllga

Tah 2

b rriE dary

Tacoredmny 3

- Llose | $1,432.27

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Black and White

Black and white have defined roles in the Java look and feel color model. In
particular, black appears in:

User text, such as the entry in an editable text field
Control text, such as menu titles and menu items
Title text in an internal window

Button text in command buttons

Tab text in tabbed panes

Text in noneditable text fields

White is used for:

e Highlighting the flush 3D appearance of such components as command buttons
e Background of editable text fields

Redefinition of Colors

The simplest modification you can make to the color theme is to redefine the
primary colors. For instance, you can substitute greens for the purple-blues
used in the default theme, as shown in the following figure.

Figure 24 Green Color Theme

B clack B Engineering Models - MetalEdit [Ei[=] E3
White File [Edit| Format View Help
B Frirmary 1 @]| Undo trl-2 =l
I Frimary 2 o3 Redo Ctrly
Primarny 3
o3 Cut Ctrl-¥
B Gecondary 1 Copy Ctrl-C
seconda2 | @
sSecondary 3
Find... Ctrl-F —]
& -

———= Find Again Ctrl-G
Select Al Corl-2A

You can use the same value for more than one of the eight colors--for instance,
a high-contrast theme might use only black, white, and grays. The following
figure shows a theme that uses the same grays for primary 2 and secondary 2.
White functions as primary 3 and secondary 3 as well as in its normal role.

Figure 25 High-Contrast Color Theme

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

[Blﬁgzk B Engineering Models - MetalEdit =] E3
White]
File | Edit| Format View Help
W Frimary 1 o3| Undo Ctrl-Z |~
F'rin'lar_-.-' 2 R.Edﬂ -y
Prirnary 3 & 7 —
-] Cut CErl-H g
B Gecondary 1 Copy Cr-C B
secondary 2 ¢ 3 st Ry
secondary 3 A Ll
Find... Ztrl-F |
Lo ; . -
=——= Find Again Ctrl-G
Select Al Ctrl-A

Fonts

As part of the theme mechanism and parallel to the color model, the Java look
and feel provides a default font style model for a consistent look. You can use
themes to redefine font typefaces, sizes, and styles in your application. The
default Java look and feel theme defines four font categories, called "type
styles": the control font, the system font, the user font, and the small font. The
actual fonts used vary across platforms.

The following table shows the mappings to Java look and feel components for
the default theme.

Table 3 Type Styles Defined by the Java Look and Feel

Type Style Default Theme Use

Control 12-point bold Buttons, checkboxes, menu titles, labels, and window titles
Small 10-point plain Keyboard shortcuts in menus and tool tips

System 12-point plain Tree components and tool tips

User 12-point plain Text fields and tables

To ensure consistency, ease of use, and visual appeal, use the
supplied default fonts unless there i1s compelling reason for an
application-wide change (such as higher readability). Use the theme
mechanism 1f you do make modifications.

= Do not write font sizes or styles directly into your application
source code (a programming practice that is also called "hardcoding™).
Store font sizes and styles in resource bundles.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Use layout managers to ensure that the layout of your application
can handle different font sizes.

= Ensure that the font settings you choose are legible and can be
rendered well on your target systenms.

=== In the Java look and feel, six methods are used to return references
to the four type styles. The getControlTextFont, getMenuTextFont, and
getWindowTitleFont methods return the control font; getSystemTextFont
returns the system font; getUserTextFont returns the user font; and
getSubTextFont returns the small font.

=== All fonts in the Java look and feel are defined in the default Java
look and feel theme as Dialog, which maps to a platform-specific font.

Layout and Visual Alignment

Give careful consideration to the layout of components in your windows and
dialog boxes. A clear and consistent layout streamlines the way users move
through an application and helps them utilize its features efficiently. The best
designs are aesthetically pleasing and easy to understand. They organize
components in the direction in which people read them, and they group
together logically related components. When you lay out your components,
remember that users might use the mouse, keyboard, or assistive
technologies to navigate through them.

The following sections specify the layout of text and components in your
applications, including between-component spacing.

Note — Throughout this book, the spacing illustrations for all user interface elements use
pixels as the unit of measurement. A screen at approximately 72 to 100 pixels per inch is
assumed.

“x Use a logical order when you lay out your components (for instance,
place the most important elements within a dialog box first in reading
order).

@& Use layout managers to allow for internationalized titles and

labels in panels that use the JFC components.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Design Grids

The most effective method for laying out user interface elements is to create a
design grid that uses blank space to set apart logically related sets of
components. The rows and columns in a grid divide the available space into
areas that can help you to arrange and align components in a pleasing layout.
Grids make it easy for users to see the logical sequence of tasks and to
understand the relationships between sets of components.

You can develop your grid with a pencil and paper, with a software tool, or
even with a piece of graph paper. Once you have established the basic spatial
relationships of your components, implement the design with a layout
manager.

Developing a grid is an ongoing process. Once you have figured out which
components you need, their relationships, and the available space, work with
the components to discover the most effective use of space and alignment.
You might need to readjust your grid again and again, trying different
arrangements until you find one that works well and has a polished
appearance.

A grid can also help you to determine how much space to allocate to a given
set of components, for instance, choosers and dialog boxes, across the
application. If you can define a grid that will work for a number of layouts, your
application will have a more consistent appearance.

=== Design grids should not be confused with the AWT Grid Layout
Manager .

Layout and Spacing of a Simple Dialog Box

This section illustrates how to use a grid to lay out a find dialog box.

1. Determine the functional requirements for your dialog box and the type and
importance of the dialog box components.

2. Create 12-pixel margins between the border of the dialog box and its components.
For example, in a find dialog box, you might need two command buttons, an
editable text field and associated label, a set of checkboxes, and a set of radio
buttons.

3. Arrange the command button row and separate it vertically from the rest of the
components.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

4. Use the number and width of the rest of the components to decide the number of
columns and the column width for your design grid. (You might try several
possibilities before you find the best horizontal separation.)

5. Add the components to the dialog box in logical sequence. The components that
you determined were most important in Step 1 should appear first in reading order.
Add rows of blank space between the component groups.

6. Align the related components using the columns as a guide.

The following illustration shows the recommended 12-pixel margins around a
dialog box.

Figure 26 Spacing Between Border and Components of a Dialog Box

1‘—;-—
1

T

= Include 12 pixels between the top and left borders of a dialog box
and its components.

The following figure shows the recommended spacing between the borders
of the dialog box and the command button row in the dialog box. It also
illustrates the vertical separation of the command buttons from the other
components.

Figure 27 \Vertical Separation of Command Buttons

Insert spacing to sepamte
command buttons
+ vertically from other
17 — cornponents
t Find Close I
) I

L] 11
] T
1 _
Align buttons toright and
bottom margins

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Include 11 pixels between the bottom and right borders of a dialog
box and 1ts command buttons. (To the eye, the 11-pixel spacing appears
to be 12 pixels because the white borders on the lower and right edges
of the button components are not visually significant.)

= In dialog boxes, right-align command buttons along the bottom
margin.

> In dialog boxes, place 17 pixels of vertical space between the
command button row and the other components.

You can use the number and width of components and their associated labels
to determine the number of columns in your grid. At the beginning of the
design process, vertical divisions are more difficult to set because they depend
on the depth and grouping of component sets, which are not yet determined. In
the following illustration, five columns have been created in the grid to
accommodate the editable text field and its label, the checkbox and radio
button sets, and the command buttons. Note the 11-pixel interval between the
lines that delineate the columns.

Figure 28 Horizontal Separation of User Interface Elements

11
RS

Find Close

—# Use the number and width of dialog box components and labels to
determine the number of columns in the design grid.

In Figure 29, the most important option--the text field for the search string--has
been placed first. Component groups are set off in multiples of 6 pixels minus
one. For instance, a row of 11 pixels of empty space separates the editable
text box and the checkbox and radio button sets. Spacing between
components (and groups of components) follows the Java look and feel
standards. For details, see Between-Component Spacing Guidelines.

Related options (for instance, the Match Case and Whole Word checkboxes)
are aligned along a column guide. Additional options (for instance, the Start at
Top and Wrap Around radio buttons) have been aligned with a secondary
column guide.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 29 Alignment of Related Options and Vertical Separation of Component Groups

11

- |

+ Fird; 4+ Place most important
17 -~ option near the top

+ v| Match [Case | | §tartaJTup

+ _| WholeWord | | Wrap Around
17

.+ B

N Find Close

Align related option s
along column guide

When designing a dialog box, place the most important options, or
those you expect users to complete first, prior to others (in reading
order).

“» For spacing between rows and columns of dialog box components, use
multiples of 6 pixels minus 1, to allow for the flush 3D border.

2 Align related dialog box components using a design grid column.

See Between-Component Spacing Guidelines for details.

Text Layout

Text is an important design element in your layouts. The way you align and lay
out text is vital to the appearance and ease of use of your application. The
most significant layout issues with respect to text are label placement and
alignment.

Label Placement

You indicate a label's association with a component when you specify its
relative position. In the following figure, the label appears before and at the top
of the list in reading order.

Figure 30 Label Placement

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Label

Month: | January -
February
March
April

B
June -

= In general, place labels before the component to which they refer,
in reading order for the current locale. For instance, in the U.S. locale,
place labels above or to the left of the component. Positioning to the
left is preferable, since it allows for separation of text and components
into discrete columns. This practice helps users read and understand the
options.

Label Alignment and Spacing

Between components, alignment of multiple labels becomes an issue. Aligning
labels to a left margin can make them easier to scan and read. It also helps to
give visual structure to a block of components, particularly if there is no
immediate border (such as a window frame) surrounding them. If labels vary
greatly in length, the use of right alignment can make it easier to determine the
associated component; however, this practice also introduces large areas of
negative space, which can be unattractive. The use of concise wording in
labels can help to alleviate such difficulties.

<> Insert 12 pixels between the trailing edge of a label and any
associated components. Insert 12 pixels between the trailing edge of a
label and the component it describes when labels are right-aligned. When
labels are left-aligned, insert 12 pixels between the trailing edge of
the longest label and i1ts associated component.

= Align labels with the top of associated components.
@& Since the length and height of translated text varies, use layout
managers to allow for differences in labels.

The following figure shows the recommended spacing of labels in relationship
to their associated components.

Figure 31 Spacing Between a Label and a Component

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

12
-

Find

=== The JlLabel.setLabelFor() method should always be used to specify
which component a label is associated with. This practice facilitates the
setting of mnemonics and accessible names.

For more information on capitalization, see Text in the Interface. For more
information on labels, see Labels.

Between-Component Spacing Guidelines

Use multiples of 6 pixels for perceived spacing between components. If the
measurement involves a component edge with a white border, subtract 1 pixel
to arrive at the actual measurement between components (because the white
border on available components is less visually significant than the dark
border). In these cases, you should specify the actual measurement as 1 pixel
less--that is, 5 pixels between components within a group and 11 pixels
between groups of components.

Note — Exceptions to these spacing guidelines are noted in the relevant component
sections that follow. For instance, the perceived spacing between toolbar buttons is
3 pixels, and the actual spacing is 2 pixels.

In the following figure, a perceived 6-pixel vertical space is actually 5 pixels
between checkbox components. The figure also shows how the perceived
spacing between unavailable objects is preserved. Note that the dimensions of
unavailable components are the same as those of available objects, although
the white border of available objects is replaced by an invisible 1-pixel border
on the bottom and right side of unavailable objects.

Figure 32 Perceived and Actual Spacing of Available and Unavailable Components

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Perceived L F‘ EDI[:I J’ Actual

measurerment B measurement

alic

—-

Percemved — 4‘ Actual
measurernent ° % measurement

<> Insert 5 pixels (6 minus 1) between closely related items such as
grouped checkboxes. Insert 11 pixels (12 minus 1) for greater separation
between sets of components (such as between a group of radio buttons and
a group of checkboxes). Insert 12 pixels between items that don"t have
the flush 3D border highlight (for instance, text labels and titled
borders).

Figure 33 Spacing of Multiple Groups of Components

. |¥| Bold
] Halic
. | Underline

@ Align Left
_ Align Center

5

For guidelines on the spacing of specific JFC components with the Java look
and feel, see the following section.

Spacing Guidelines for Specific JFC Components

This section specifies the horizontal and vertical spacing for individual
instances and groups of:

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e Toolbar buttons

e Command buttons
e Toggle buttons

e Checkboxes

e Radio buttons

=== Struts and glue iIn the javax.swing.Box component can be used to
adjust component spacing.

Toolbar Button Spacing

This section contains the vertical and horizontal spacing measurements for
toolbar buttons. Figure 34 shows the spacing between individual toolbar
buttons and groups of toolbar buttons.

—# Space individual toolbar buttons 2 pixels apart. Space groups of
toolbar buttons 11 pixels apart.

== Include 3 pixels of space above and below toolbar buttons. This
actually means 2 pixels of space below the toolbar because of the white
border on the buttons.

Figure 34 Toolbar Button Spacing
2 1
o R B
ST ENET
4,
| =t

Inset

<> When you use mouse-over feedback, space individual toolbar buttons
zero pixels apart within a group. Space groups of toolbar buttons
11 pixels apart.

=== The iInset (that is, the padding between the button graphic and the
button border) on toolbar buttons should be zero.

For details on toolbars, see Toolbars.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Toggle Button Spacing

Spacing recommendations differ for independent and exclusive toggle buttons
in toolbars and outside of toolbars.

When toggle buttons are independent (like checkboxes) and used
outside a toolbar, separate themwith 5 pixels. Within a toolbar, separate
independent toggle buttons by 2 pixels.

Figure 35 Spacing Between Independent Toggle Buttons

2
—

bl i|ul b

within toolbar Cutside of toolbar

u|

= \When toggle buttons are exclusive (that is, they form a radio button
set), separate them with 2 pixels. This rule applies whether the toggle
buttons appear in a toolbar or elsewhere in the interface.

Figure 36 Spacing of Exclusive Toggle Buttons

2
..H.

For details on independent and exclusive toggle buttons, see Toggle Buttons.

Command Button Spacing and Padding

For a consistent appearance, follow the guidelines described in this section to
create space within and between command buttons. The following figure
shows button text (Help) centered in a command button.

ﬁ? Space buttons in agroup 5 pixels apart. (Because of the white border
on the right side of a button, the apparent spacing will be 6 pixels.)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Center the text within buttons.

Figure 37 Command Button With Centered Text

| Help

@& Since the length and height of translated text varies, use layout

managers to allow for differences in button text.

The blank space between the button text and the button border is referred to
as command button padding. Often command buttons appear in groups within
a dialog box or an applet. In such a case, the button in the group with the
widest text determines the inner padding, as shown in Figure 38. Here the
Cancel button has the widest text. The perceived padding is 12 pixels on either
side of the button text. The other buttons in the group (OK and Help) have the
same width as the Cancel button. A space of 17 pixels should be left above
command button rows in dialog boxes (see Figure 29).

Determine which button has the widest button text and insert
12 pixels of padding on either side of the text. Make all the remaining
buttons in the group the same size as the button with the longest text.

—# Use the default height for whatever font size you select for your
command buttons.

2~ Make all command buttons in a group (including buttons that contain
graphics) the same width and height.

@ Since the button with the longest text might vary from locale to

locale, enable any of the command buttons to determine the width of all
the other buttons.

Figure 38 Spacing and Padding in Command Button Groups

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

oK ‘l Fance\ ‘ Help

11 12

For details on command buttons, see Command Buttons.

Checkbox and Radio Button Layout and Spacing

This section provides layout and spacing guidelines for checkbox and radio
button components.

= Align the leading of edge of checkboxes with that of other
components.

Figure 39 Checkbox Layout

Find: |

As shown in the following figure, the height of the checkbox square doesn't
change in an unavailable checkbox even though the white highlight border is
not drawn. Although the checkbox is the same size, the last row and column of
pixels on the bottom and right are the same color as the background canvas.
The apparent spacing is 6 pixels between components; the actual spacing is

5 pixels.

Figure 40 Checkbox and Radio Button Spacing

_| Check 1

¥| Check 3
_| Check 4) Radio

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

=~ Space checkboxes in a group 5 pixels apart.

—# Use a layout manager to achieve consistent spacing in checkbox
button groups.

For details on checkboxes, see Checkboxes.

The height of the radio button is 12 pixels, not counting the white highlight
border. Unavailable radio buttons do not have white borders. Although the
unavailable radio button is 12 pixels high, the last row and column of pixels on
the bottom and right are the same color as the background canvas. As shown
in the preceding figure, the apparent spacing is 6 pixels between components;
the actual spacing is 5 pixels.

Space radio buttons in a group 5 pixels apart.

<> Use the appropriate layout manager to achieve consistent spacing
in radio button groups.

For more on radio buttons, see Radio Buttons.

Titled Borders for Panels

Sometimes you can group components using simple spacing and alignment,
as described in Layout and Spacing of a Simple Dialog Box. Other times,
particularly when you want to display multiple groupings of components, you
might want to place the related sets into a labeled box. The JFC enables you to
specify a titled border for panels (and many other components), which serves
this purpose.

Figure 41 Spacing for a Panel With Titled Border

12 Titled bard er
l. — - *.
n) 1z
13 3 Options T
T Checkboxes | |v] Check 1
¥l Check 2
[Check 3 + n
Radio Buttons @ Radio X r
) Radio ¥
) Radio Z +
+ 11
13 $
12 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Since titled borders take up considerable space, do not use them
to supply titles for individual components; use labels instead.

= Use a titled border in a panel to group two or more sets of related
components, but do not draw titled borders around a single set of
checkboxes or radio buttons. Use labels instead.

== Use titled borders sparingly: they are best when you must emphasize
one group of components or separate one group of components from other
components in the same window. Do not use multiple rows and columns of
titled borders; they can be more confusing than simply grouping the
elements with a design grid.

= Never nest titled borders--that is, do not insert one titled border
inside another. It becomes difficult to see the organizational structure
of the panel and too many lines cause distracting optical effects.

<= Insert 12 pixels between the edges of the panel and the titled
border. Insert 11 pixels between the top of the title and the component
above the titled border. Insert 12 pixels between the bottom of the title
and the top of the first label in the panel. Insert 11 pixels between
component groups and between the bottom of the last component and the lower
border.

Text in the Interface

Text is an important design element and appears throughout your application
in such components as command buttons, checkboxes, radio buttons, alert
box messages, and labels for groups of interface elements. Strive to be
concise and consistent with language.

—# Use language that is clear, consistent, and concise throughout your
application text. Moreover, ensure that the wording of your labels,
component text, and instructions is readable and grammatically correct.

—# For all text that appears in the interface elements of your
application, follow one of two capitalization conventions: headline
capitalization or sentence capitalization. Use headline capitalization
for most names, titles, labels, and short text. Use sentence
capitalization for lengthy text messages.

2 Do not capitalize words automatically. You might encounter
situations in your interface when capitalization is not appropriate, as

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

in window titles for documents that users have named without using
capitalization.

& Use standard typographical conventions for sentences and headlines

in your application components. Let translators determine the standards
in your target locales.

@ Place all text in resource bundles so that localization experts

don"t have to change your application®s source code to accommodate
translation. See Appendix C for lists of localized terms and phrases that
might appear in your interface.

Headline Capitalization in English

Most items in your application interface should use headline capitalization,
which is the style traditionally used for book titles (and the section titles in this
book). Capitalize every word except articles ("a," "an," and "the"), coordinating
conjunctions (for example, "and,” "or,” "but,” "so," "yet," and "nor"), and
prepositions with fewer than four letters (like "in"). The first and last words are
always capitalized, regardless of what they are.

Use headline capitalization for the following interface elements (examples are
in parentheses):

e Checkbox text (Automatic Save Every Five Minutes)
e Combo box text (Centimeters)

e Command button text (Don't Save)

e Icon names (Trash Can)

e Labels for buttons or controls (New Contribution To:)
e Menu items (Save As...)

e Menu titles (View)

e Radio button text (Start at Top)

e Slider text (Left)

e Tab names (RGB Color)

e Titles of windows, panes, and dialog boxes (Color Chooser)
e Tool tips (Cut Selection)

If your tool tips are longer than a few words, sentence capitalization is
acceptable. Be consistent within your application.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Sentence Capitalization in English

When text is in the form of full sentences, capitalize only the first word of each
sentence (unless the text contains proper nouns, proper adjectives, or
acronyms that are always capitalized). Observe proper punctuation within and
at the end of full sentences. Avoid the use of long phrases that are not full
sentences. If you determine that you must use a phrase that is not a full
sentence, no punctuation is required at the end.

Use sentence capitalization in the following interface elements (examples are
in parentheses):

e Alert box text (The document you are closing has unsaved changes.)
e Error or help messages (The printer is out of paper.)
e Labels that indicate changes in status (Operation is 75% complete.)

Animation

Animation can provide effective emphasis if used correctly, but give careful
thought to whether animation is warranted. The human eye is attracted to
animated elements. If the user's attention needs to be elsewhere, animation
might increase user errors.

Do not use animation when it:

e Detracts from more important screen elements
e Interferes with the user's work
e Dazzles without purpose

Useful animations include progress or status animations. For details, see
Progress Animation and Status Animation. Other uses of animation include an
animated graphic that activates when the user empties the trash or when the
system state changes.

You can also animate application graphics to call attention to user actions.

2~ Limit animation to situations that provide meaningful feedback to
the user.

The following figure shows an interesting use of animation in a process control
application. The progress bar does not track the progress of the operation;
rather, it acts as a gauge to show the temperature of a vat in a candy factory.
The progress bar indicates what proportion of the maximum temperature has

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

been reached (more than three-quarters), and the text message within the
progress bar specifies the exact temperature (114 degrees) of the vat's
contents.

Figure 42 Text Inside a Progress Bar

Vat 17 - Chocolate Walnut Fudoge
| |

—# If you write a message to display inside a progress bar, make it
concise. Otherwise, localized text might outgrow the progress bar.

5: Application Graphics

This chapter provides details on:

e The use of cross-platform color
e The design of application graphics, such as icons, button graphics, and symbols
e The use of graphics to enhance your product and corporate identity

Because the quality of your graphics can affect user confidence and even the
perceived stability of your application, it is wise to seek the advice of a
professional visual designer.

Working With Cross-Platform Color

In a cross-platform delivery environment, you need to ensure that the visual
components of your application reproduce legibly and aesthetically on all your
target systems. You do not have control over which platforms will be used to
run your software or what display capabilities users might have.

Online graphics consist of the visual representations of JFC components in the
Java look and feel, which are drawn for you by the toolkit, and application
graphics such as icons and splash screens, which you supply.

The Java look and feel components use a simple color model that reproduces
well even on displays with a relatively small number of available colors.

—# Use themes to control the colors of Java look and feel
components--for instance, to provide support for display devices with
minimal available colors (fewer than 16 colors).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

You need to supply icons, button graphics, pictures and logos for splash
screens and About boxes. Since these graphics might be displayed on a
number of different platforms and configurations, you must develop a strategy
for ensuring a high quality of appearance. In addition, you need to ensure that
your graphics are meaningful to color-blind users. Strategies for addressing
color blindness are similar to those used for handling limited display colors.

—# Use color only as a secondary means of representing important
information. Make use of other characteristics (shape, texture, size, or
intensity contrast) that do not require color vision or a color monitor.

Working With Available Colors

The number of colors available on a system is determined by the bit depth,
which is the number of bits of information used to represent a single pixel on
the monitor. The lowest number of bits used for modern desktop color monitors
is usually 8 bits (256 colors); 16 bits provide for thousands of colors (65,536, to
be exact); and 24 bits, common on newer systems, provide for millions of
colors (16,777,216). The specific colors available on a system are determined
by the way in which the target platform allocates colors. Available colors might
differ from application to application.

Designers sometimes use predefined color palettes when producing images.
For example, some web designers work within a set of 216 "web-safe" colors.
These colors reproduce in many web browsers without dithering (as long as
the system is capable of displaying at least 256 colors). Dithering occurs when
a system or application attempts to simulate an unavailable color by using a
pattern of two or more colors from the system palette. The main drawback of
dithering is the striped (moiré) patterns that can result.

Outside web browsers, available colors are not so predictable. Individual
platforms have different standard colors or deal with palettes in a dynamic way.
The web-safe colors might dither when running in a standalone application, or
even in an applet within a browser that usually does not dither these colors.
Since the colors available to a Java application can differ each time it is run,
especially across platforms, you cannot always avoid dithering in your images.

2 1dentify and understand the way that your target platforms handle
colors at different bit depths. To achieve your desired effect, test your
graphics on all target platforms at depths of 8 bits (that is, 256 colors).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Choosing Graphic File Formats

You can use two graphic file formats for images on the Java platform: GIF
(Graphics Interchange Format) and JPEG (named after its developers, the
Joint Photographic Experts Group).

GIF is the common format for application graphics in the Java look and feel.
GIF files tend to be smaller on disk and in memory than JPEG files. A GIF file
includes a color table (or palette) of up to 256 colors. The number of colors in
the table and the complexity of the image are two factors that affect the size of
the graphic file.

On 8-bit systems, some of the colors specified in a GIF file will be unavailable if
they are not part of the system's current color palette. These unavailable colors
will be dithered by the system. On 16-bit and 24-bit systems, more colors are
available and different sets of colors can be used in different GIF files. Each
GIF image, however, is still restricted to a set of 256 colors.

JPEG graphics are generally better suited for photographs than for the more
symbolic style of icons, button graphics, and corporate type and logos. JPEG
graphics use a compression algorithm that yields varying image quality
depending on the compression setting, whereas GIF graphics use lossless
compression that preserves the appearance of the original 8-bit image.

Choosing Colors

At monitor depths greater than 8 bits, most concerns about how any particular
color reproduces become less significant. Any system capable of displaying
thousands (16 bits) or millions (24 bits) of colors can find a color very close to,
or exactly the same as, each value defined in a given image. Newer systems
typically display a minimum of thousands of colors. Since each system renders
colors slightly differently, different monitors and different platforms might
display the same color differently, however. For instance, a given color in one
GIF file might look different to the eye from one system to another.

Many older monitors or systems still display only 256 colors. For users with
these systems, it might be advantageous to use colors known to exist in the
system palette of the target platforms. Most platforms include a small set of
"reserved" colors that are always available. Unfortunately, these reserved
colors are often not useful for visual design purposes or for interface elements
because they are highly saturated (the overpowering hues one might expect to
find in a basic box of crayons). Furthermore, there is little overlap between the

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

reserved color sets of different platforms, so reserved colors are not
guaranteed to reproduce without dithering across platforms.

> Select colors that do not overwhelm the content of your application
or distract users from their tasks. Stay away from saturated hues. For
the sake of visual appeal and ease of use, choose groups of muted tones
for your interface elements.

Since there is no lowest-common-denominator solution for choosing common
colors across platforms (or even colors that are guaranteed to reproduce on a
single platform), some of the colors in your application graphics will dither
when running in 8-bit color. The best strategy is to design images that dither
gracefully, as described in the following section.

Maximizing Color Quality

Images with fine color detail often reproduce better on 8-bit systems than
those images that are mapped to a predefined palette (such as the web-safe
palette) and use large areas of solid colors. Dithering is less noticeable in small
areas, and, for isolated pixels of a given color, dithering simply becomes color
substitution. Often colors in the system palette can provide a fair-to-good
match with those specified in a GIF file. The overall effect of color substitution
in small areas can be preferable to the dithering patterns produced for single
colors, or to the limited number of colors resulting from pre-mapping to a given
color palette.

There are no absolutely safe cross-platform colors. Areas of solid color often
dither, producing distracting patterns. One effective way to avoid coarse
dithering patterns is to "pre-dither" your artwork intentionally. This approach
minimizes obvious patterned dithering on 8-bit systems while still permitting
very pleasing effects on systems capable of displaying more than 256 colors.

To achieve this effect, overlay a semitransparent checkerboard pattern on your
graphics. The following figure shows how to build a graphic using this
technique.

Figure 43 Adding a Pattern to Avoid Coarse Dithering Patterns

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.

Lines

Pattern

Color detail

To build the graphic:
1. Use a graphics application with layers.

2. Make a1 x 1 pixel checkerboard pattern with the default secondary 3 color
(RGB 204-204-204).

3. Apply the pattern only to areas that might dither badly. Leave borders and other
detail lines as solid colors.

4. Adjust the transparency setting for the pattern layer until the pattern is dark
enough to mix with the color detail without overwhelming it visually. A 25%
transparency with the default secondary 2 color (RGB 153-153-153) produces a
good result for most graphics.

5. Test your results on your target 8-bit platforms.

6. If a pattern does not solve your problems, try using additional graphics techniques,
such as a gradient.

The following table shows the results of graphic reproduction in 8-bit color on
different operating systems.

Table 4 Variations in Reproduction of 8-Bit Color

. Microsoft
Original _ Mac OS CDE
Styles . Windows) .
Graphic) (8 bits) (8 bits)
(8 bits)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Plain

."":::..E&'
g

Dithering added

Gradient added @

Dithering added

to gradient

The plain graphic in the preceding table, which uses a large area of a single
web-safe color, dithers badly on Microsoft Windows and CDE. A gradient
effect is added to the original graphic to add some visual interest; this
produces a banding effect on Mac OS. Adding the dithered pattern along with
the gradient produces good results on all three platforms with 8-bit color. In
16-bit and 24-bit color, the graphic reproduction is very close to, or exactly the
same as, the originals.

Categorizing Application Graphics

Application graphics that you design fall into three broad categories:

e Icons, which represent objects that users can select, open, or drag

e Button graphics, which identify actions, settings, and tools (modes of the
application)

e Symbols, which are used for general identification and labeling (for instance, as
indicators of conditions or states)

Table 5 Examples of Application Graphics

Pre-Dithered
Graphic Type Examples Flush 3D Style (With Added
Gradients)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Icons

. DO (@& (F]

graphics

=1
0=y

[
= e

Symbols

= Use the GIF file format for application graphics. It usually results in a
smaller file size than the JPEG format and uses lossless compression.

& To facilitate localization, place all application graphics in resource

bundles.

& Where possible, use globally understood icons, button graphics, and

symbols. Where none exist, create them with input from international sources.
If you can't create a single symbol that works in all cultures, define appropriate
graphics for different locales (but try to minimize this task).

Designing Icons

Icons typically represent containers, documents, network objects, or other data
that users can open or manipulate within an application. An icon usually
appears with identifying text.

Sizes for icons vary from platform to platform. Two common sizes are 16 x 16
pixels and 32 x 32 pixels. In the Java look and feel, the smaller size is used in
the title bar of windows (to identify the contents of the window or minimized
window) and inside tree components (for container and leaf nodes). You can
use 32 x 32 icons for the desktop representation of Microsoft Windows
applications and for components in applications designed for users with visual
impairments, or for objects in a diagram, such as a network topology.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

s Design icons to identify clearly the objects or concepts they
represent. Keep the drawing style symbolic, as opposed to photo-realistic.
Too much detail can make it more difficult for users to recognize what
the icon represents.

= When designing large and small icons that represent the same object,
make sure that they have similar shape, color, and detail.

== Specify tool tips for each icon so that assistive technologies can
use the accessibleDescription property to find out how to use the icon.

= Specify the accessibleName property for each icon so that assistive
technologies can find out what the icon is.

<> Consider providing an option that enables users to switch from
smaller to larger icons.

=5 Since sizes of icons vary across platforms, determine the size
requirements of your target platform and provide suitably sized icons.

Working With Icon Styles

Icons can appear as flat drawings or as perspective drawings. The flush 3D
style is a unique effect that can be applied to either flat (2D) or perspective (3D)
icons.

The following figure shows flush 3D icons for files and folders drawn in the
perspective and flat styles. Icons drawn in the flush 3D style fit best with the
Java look and feel. For information on how to create the flush 3D style, see
Drawing Icons and Producing the Flush 3D Effect. Three visual elements
appear in the sample icons: an interior highlight (to preserve the flush style
used throughout the Java look and feel), a pattern to minimize dithering
(described in Working With Available Colors), and a dark border.

Figure 44 Two Families of Flush 3D Icons

@1 Perspective

P o
i

D B3 Flush

<z Usea single style to create a "family" of icons that utilize common

visual elements to reflect similar concepts, roles, and identity. lcons

in families might use a similar palette, size, and style.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Don"t mix two- and three-dimensional styles in the same icon family.

—# Use the flush 3D style so that your icons suit the Java look and
feel.

For more on the flush 3D style, see Producing the Flush 3D Effect.

Because icons must appear on various backgrounds across platforms, the
borders of graphics must maintain consistent color. Changing the appearance
of an object's border to look smoother at screen resolution in relationship to a
specific color is called anti-aliasing. In most application development cases,
anti-aliasing is not desirable because you are unlikely to be sure what
background color the object will appear against. However, within an icon,
anti-aliasing can provide smoother interior lines.

—# For satisfactory display on a wide range of background colors and
textures, use a clear, dark exterior border and ensure that there is no
anti-aliasing or other detail around the perimeter of the graphic.

Drawing Icons

The following section uses a simple folder as an example of how to draw an
icon. Before you start, decide on a general design for the object. In this
example, a hanging file folder is used to represent a directory.

1. Draw a basic outline shape

first.

.I-I-I.

L] .

L -
Icons can use as much of the available
LU L
space as possible because they are -.i--'--- =
. . H

displayed without borders. Icons =
should usually be centered L lcon

horizontally in the available space. baseline

i-hieight l
For vertical spacing, consider aligning gaseline e Xa I I I p e

to the lower edge of other icons in the
set, or aligning with the baseline of
text, as shown in the figure.

If multiple sizes of an icon are
required, work on them at the same
time rather than trying to scale down
a large icon later; all sizes then can
evolve into designs that are

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

recognizable as the same object.

2. Add some basic color (green is
used here).

3. Draw a highlight on the inside
top and left using white or a
lighter shade of the existing EEEEEEE
color. = . .

This practice creates the flush 3D
style of the Java look and feel. -

4. Add some detail to the icon.

In this case, the crease or "fold" mark
.IIIIIII.

in the hanging folder is drawn.

5. Try a gradient that produces a
"shining" effect instead of the flat

green. EEEEEEE
]]

Here a dark green has replaced the

black border on the right and bottom;
black is not a requirement as long as s
there is a well-defined border.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

6. Add a pattern to prevent coarse
dithering.

This technique minimizes banding and
dithering on displays with 256 or Pattern

fewer colors (see Maximizing Color

Quality).

Color detail

Ling

The first graphic is an exploded view
of an icon that shows how the pattern
is added.
HNENEEN
| |
The next graphic shows an icon in
which a pattern has been added to the

color detail.

7. Define the empty area around
the icon graphic (in which you
have not drawn anything) as

transparent pixels in the GIF file. H

This practice ensures that the

background color shows through; if

the icon is dragged to or displayed on)
Tmnsparent pixels

a different background, the area
surrounding it matches the color or
pattern of the rest of the background.

8. Test your icon on target platforms.

Designing Button Graphics

Button graphics appear inside buttons--most often in toolbar buttons. Such
graphics identify the action, setting, mode, or other function represented by the
button. For instance, clicking the button might carry out an action (creating a
new file) or set a state (boldfaced text).

© For a collection of button graphics designed in the Java look and

feel, see Appendix B. The graphics in this repository can also be found
on the book"s companion CD-ROM.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The two standard sizes for button graphics are 16 x 16 pixels and 24 x 24
pixels. You can use either size (but not both at the same time) in toolbars or
tool palettes, depending on the amount of space available. For details on
toolbars, see Toolbars.

It might be appropriate to use toolbar buttons that display text in addition to or
instead of graphics. Consider this approach if your usability studies establish
that the action, state, or mode represented by the button graphic is difficult for
users to comprehend.

If you include both text and graphics in a button, the size of the button will
exceed 16 x 16 or 24 x 24 pixels. Consider using tool tips instead, or let users
choose between displaying button text or using tool tips. For details, see Tool
Tips for Toolbar Buttons.

—# Use tool tips to help clarify the meaning of toolbar buttons.

= When designing your button graphics, clearly show the action, state,
or mode that the button initiates.

- Keep the drawing style symbolic; too much detail can make 1t more
difficult for users to understand what a button does.

= Use a flush 3D border to indicate that a button is clickable.

Draw a distinct dark border without anti-aliasing or other exterior
detail (except the flush 3D highlight) around the outside of a button
graphic.

@ Do not include text as part of your button graphics (GIF files).

Use button text instead. Keep the button text in a resource bundle to
facilitate localization.

=== Setting tool tips automatically sets the accessibleDescription of

an object, which in turn, greatly benefits users with physical and
cognitive limitations.

Using Button Graphic Styles

The following figure shows sample button graphics designed for toolbars and
for the contents of an internal utility window.

Figure 45 Button Graphics for a Toolbar and an Internal Utility Window

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

—# Use a single style to create a "family” of button graphics with
common visual elements. You might use a similar color palette, size, and
style for all button groups across your GUI, such as toolbar buttons,
toggle buttons, or command buttons. Review the graphics in context before
finalizing them.

Producing the Flush 3D Effect

The flush 3D effect simulates the appearance of beveled buttons or shapes
inset at the same level as the background. To achieve this effect, you need to
create a shadow and a highlight for both the background and the button
graphic. In smaller button graphics, you can achieve this effect by placing
highlights at the correct locations along the edges of the icon. (The shadows
are already provided by the darker outline of the button graphic.) In a larger
24 x 24 or 32 x 32 pixel graphic, you can use a graduated highlight within the
button graphic to simulate a more smoothly rounded edge.

With the flush 3D effect, the button graphic appears to have a light beveling
around the edges.

To produce the flush 3D effect on button graphics, add:

e An exterior white highlight on the outside right and bottom of the button graphic
itself

e Aninterior white highlight on the inside left and top of the button graphic

e Adark shadow inside the exterior white highlight and outside of the interior white
highlight (both shadows are already present if you created a button graphic with a
dark outline in the first place)

Figure 46 Flush 3D Effect in a Button Graphic

Shadow

Bxterior highlight

Interior highlight

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Working With Button Borders

The size of a button graphic includes all the pixels within the border. As shown
in the following illustration, horizontal and vertical dimensions are both either
16 or 24 pixels. The border abuts the button graphic (that is, there are no pixels
between the border and the graphic).

Figure 47 Button Graphics With Borders

=
L

24

16

|'1

F 9
b J

1k 24

Determining the Primary Drawing Area

Leave an apparent two pixels between the button border and the graphic.
Because the white pixels in both the button border and the button graphic are
less visually significant than the darker borders, the area used for most of the
drawing is offset within the 16 x 16 or 24 x 24 space. Actually, 1 pixel is
reserved on the left and top, and 2 pixels are reserved on the right and bottom
(but highlights are allowed to extend in this area). The following illustration
shows the standard drawing area for both button sizes.

Figure 48 Primary Drawing Area in Buttons

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

21

13

+— >
+“—F

13 21

The following illustration shows 16 x 16 and 24 x 24 button graphics that

use the maximum recommended drawing area. On all four sides, there are

2 pixels between the dark border of the button graphic and the dark portion of
the button border.

Figure 49 Maximum-Size Button Graphics

Drawing the Button Graphic

When drawing a button graphic, first decide on a general design that
represents the action or setting activated by the button. In the following
examples, a clipboard represents the Paste command.

When drawing a button graphic, first decide on a general design that
represents the action or setting activated by the button. In the following
examples, a clipboard represents the Paste command.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

1. Decide which sizes
you want to use for the
button or toolbar
graphic and identify
your primary drawing

area. 13

2. Draw a basic outline
shape, taking care to
remain within the

primary drawing area.

13

3. Add some basic
color.

13

13

]

21

21

2]

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

4. Add the flush 3D
effect by drawing
highlights on the
inside left and top, and
on the outside bottom
and right of the m m
outline. Note that the

highlights can extend

beyond the primary

drawing area.

This is a good basic

design, but because of

the large area using a

single color, the graphic
lacks visual interest and
might not reproduce well

on some systems.

5. Try a gradient
instead of the flat

color.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

6. Add a pattern. This
technique minimizes
banding and dithering
on displays with 256 or
fewer colors (see

Maximizing Color Pattern
Quality). Colar detail
Line

Here is an exploded view

of the button graphic and
its color overlay.

This figure shows the

effect of the pattern on

the color detail of the

button graphic.

7. Define the empty
area around your
button graphic (in
which you have not
drawn anything) as
transparent pixels in
the GIF file.

This practice ensures that

the background color

shows through; if the o

theme changes, the area
around the button

graphic will match the Transparent pixels
rest of the background
canvas in the interface.

8. Test your button graphic on target platforms.

Using Badges in Button Graphics

Badges are a kind of visual shorthand used extensively in toolbar button
design. The presence of a menu, the creation of a new object, the addition of

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

an object to a collection, and the review or editing of properties and settings
are typically represented by incorporating a badge into an existing button
graphic. This section suggests standard ways for you to incorporate badges
into the design of your toolbar button graphics.

© The badges in the button graphics in this chapter appear in several

of the graphics discussed in Appendix B and are included in the graphics
on the book"s companion CD-ROM.

Menu Indicators

An arrow in a button graphic indicates that a click (or a press) of the mouse
button displays a menu of choices. The following illustration shows the volume
toolbar button with a menu indicator.

Figure 50 Menu Indicator in a Volume Toolbar Button

fflenu indicator

To indicate that a click or press of the mouse button displays a
menu, provide an arrow menu indicator in the lower-right corner of toolbar
button graphics.

Badges can extend as far as one pixel from the button border, and their
highlights can touch the border. Use a 1-pixel-wide transparent area between
a badge and the main button graphic to set off the badge visually. The
following illustration shows the buffer area around the menu indicator. The
buffer area placed around the indicator shows the background of the toolbar
button, not the background of the volume graphic. For details, see Drawing the
Button Graphic.

Figure 51 Menu Indicator and Transparent Buffer Area

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Transparent pixels

<= Use transparent pixels around the menu indicator arrow to set it
off from the rest of the button graphic.

= Add the standard highlight below or to the right of the badge in
a button graphic.

The following figure shows the volume toolbar button with the menu indicator
at actual size (16 x 16 pixels).

Figure 52 Volume Toolbar Button (Actual Size)
L

The lower-right corner is the standard location for the arrow graphic (in locales
with left-to-right reading order). The following illustration shows the arrows for
16 x 16 and 24 x 24 pixel graphics.

Figure 53 Position and Space Around Menu Indicators

Arrowe qraphics

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

New Object Indicators

Some buttons create new objects. You can use a twinkle graphic to indicate
this button feature. In 16 x 16 pixel graphics, the twinkle graphic might touch
the lower edge of the button border, as shown in the following illustration.

Figure 54 New Object Indicator and Transparent Buffer Area

Trnsparent pixels
> To indicate the creation of a new object, provide a twinkle graphic
in the lower-right corner of toolbar button graphics.

The following illustration shows a twinkle graphic incorporated into a document
toolbar button to indicate that clicking the button creates a new document.

Figure 55 Document Toolbar Button With a New Object Indicator

Transparent pixels

Mew object indicetor

The following figure shows the toolbar button with the new object indicator at
its actual size (16 x 16 pixels).

Figure 56 New Document Toolbar Button (Actual Size)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Add Object Indicators

Some buttons add objects to a group. You can incorporate an addition symbol
into your button, as shown in the following figure, to indicate this aspect of the
button's features.

Figure 57 Add Object Indicator and Transparent Buffer Area

= To indicate the addition of a new object to a group, provide an
addition symbol in the lower-right corner of toolbar button graphics.

The following figure provides an example of the symbol incorporated into a
document toolbar button.

Figure 58 Document Toolbar Button With an Add Object Indicator

Transparent pixels

Add object indimtor

The following figure shows the toolbar button with the add object indicator at its
actual size (16 x 16 pixels).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 59 Add Document Toolbar Button (Actual Size)

B

Properties Indicators

Some buttons open a properties or settings window for the object or action
indicated by the main part of the button graphic. You can use a small check
mark to represent this action, as shown in the following illustration.

Figure 60 Properties Indicator and Transparent Buffer Area

ﬁ ﬁ Transparent pixels

Properties indicator

To indicate the opening of a properties or settings window or panel
for the object or action represented by the main part of a button graphic,
provide a small check mark in the lower-right corner of toolbar button
graphics.

The following figure shows a page setup button with the properties indicator at
its actual size (16 x 16 pixels).

Figure 61 Page Setup Toolbar Button (Actual Size)

=%

Combining Indicators

As a general rule, you should not need to combine the functions represented
by these indicators.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

2 Design toolbar buttons with badges individually rather than adding
badges programmatically. This practice ensures that the transparent
buffer area i1s tuned for each indicator.

= Do not use more than one of the Java look and feel badges (that is,
the menu, new object, add object, or properties indicators) in a single
button graphic.

If the button graphic needs to indicate that more choices are
available, use a menu indicator and drop-down menu. Ensure that menu items
are closely related and parallel.

‘= Do not overload toolbar buttons with features. Ensure that the
button graphic and its tool tip clearly indicate the function of the
toolbar button.

Designing Symbols

Symbols include any graphic (typically 48 x 48 pixels or smaller) that stands for
a state or a concept but has no directly associated action or object. Symbols
might appear within dialog boxes, system status alert boxes, and event logs.

The examples in the following figure show the graphics from an Info alert box
and a Question alert box and a caution symbol superimposed on a folder icon
to indicate a hypothetical state.

The style for symbols is not as narrowly defined as that for icons and button
graphics. The examples in the following figure use a flush effect for interior
detail but not for the border of the graphic.

Figure 62 Symbols

‘@ 1 B

Infarmation Caution Question
aymbol symbal sy bol

The question symbol is used in an input alert box, as shown in the following
figure.

Figure 63 Question Symbol in Alert Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

E"g% Input [x|

. What is your favorite movie?

E OK Cancel

#~ Ensure adequate contrast between a caution symbol and the icon or
background it appears against.

Designing Graphics for Corporate and Product Identity

Application graphics present an excellent opportunity for you to heighten your
corporate or product identity. This section presents information about splash
screens, About boxes, and login splash screens.

Note — The examples presented in this section use the sample text-editing and mail
applications, MetalEdit and MetalMail. They are not appropriate for third-party use.

—# Use the JPEG file format for any photographic elements in your
splash screens and About boxes.

Designing Splash Screens

A splash screen is a plain window that appears briefly in the time between the
launch of a program and the appearance of its main application window.
Splash screens disappear when the application is ready to run. Nothing other
than a blank space is included with a JFC-supplied plain window; you must
provide the border and the contents of the splash screen. For instance, the
black border on the window in the following figure is part of the file supplied by
the splash screen designer.

Figure 64 Splash Screen for MetalEdit

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

‘% LS.'ZIITZL Company logo

microsystems

METALEDIT

nr’\, \r‘-\,\ ﬂ\’i\(«»\ .

(IR -
PR S SN S SRR SRR R

Although not required, splash screens are included in most commercial
products. Splash screens typically have the following elements:

e Company logo
e Product name (trademarked, if appropriate)
e Visual identifier of the product or product logo

Check with your legal adviser about requirements for placing copyright notices
or other legal information in your splash screens.

<= To get the black border that is recommended for splash screens, you
must include a 1-pixel black border as part of the image you create. (You
can get a black border with a border object instead of putting a black
line in the image itself.)

== The JWindow component, not the JFrame component, is typically used
to implement the plain window that provides the basis for splash screens.

Designing Login Splash Screens

If your application requires users to log in, you might consider replacing the
traditional splash screen with a simple login window or a combination login and
splash screen.

Figure 65 shows the login splash screen for the MetalMail application.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

& Click here to view the corresponding code for Figure 65 (also

available on the book®"s companion CD-ROM).

Figure 65 Login Splash Screen for MetalMail

Log In - MetalMail

Splash screen elements

METALMAIL

Product name

Login Name: || — Login Marme text field
Password: | — Pasaword field
Mail Server: | Berus | | v|

Lt Fditable combo box for

| Log In || Cancel || Help | systemrequired data

L Cancel buttan (to exit login)
Log In button

The elements of this screen might include:

e Label and text field for a login user name

e Label and password field

e Labels and interactive components (such as editable combo boxes) for any other
information required by the system

e Buttons for logging in and canceling the login splash screen

If you want to increase the chance of users viewing your splash screen, itis a
good idea to combine the login window and splash screen.

> Provide a way for users to exit the login splash screen without first
logging in (if 1t is possible for users to do anything on the system without
first logging in).

=== The JDialog component, not the JWindow component, is typically used
to implement a login splash screen.

Designing About Boxes

An About box is a dialog box that contains basic information about your
application.

Figure 66 shows the About box for the MetalMail application.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 66 About Box for MetalEdit

About MetalEdit

METJ&LEDIT Product narme

Copyright @ 1399 Your organization, The about dialog box should
includ e wour arganization's standard copyright and traderm ark notices,

Of course wou should alsa include the product name and versian numbetr,
This dialoy bax is agood place for arganizational contact infarmation and
credits far the developers, If there is oo much material far asingle dialog
bos, add buttons at the bottom that take the userto ather dialog baxes,

@Suﬂ : ;"_'_ Company logos
micropysiems e
JAVA
— Close button

An About box might contain the following elements:

e Product name (trademarked, if appropriate)

e Version number

e Company logo

e Product logo or a visual reminder of the product logo
e Copyright, trademarks, and other legal notices

¢ Names of contributors to the product

Users typically display About boxes by choosing the About Application item
from the Help menu.

=5 Because the dialog box title bar might not include a Close button
on all platforms, always include a Close button in your About boxes so
that users can dismiss them after reading them. Follow the guidelines for
button placement described in Command Buttons in Dialog Boxes.

6: Behavior

Users interact with the computer by means of the mouse, the keyboard, and
the screen. (Throughout this book, "mouse” refers to any pointing device,
including standard mouse devices, trackballs, track pads, and so forth.) Such
interaction constitutes the "feel” portion of the Java look and feel.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

This chapter describes mouse operations, pointers, and drag-and-drop
operations. It discusses keyboard operations, including the use of keyboard
focus, keyboard shortcuts, and mnemonics in Java look and feel applications
It also offers guidance on how to provide feedback regarding application
progress or status.

Mouse Operations

In Java look and feel applications, the following common mouse operations are
available to users:

Moving the mouse changes the position of the onscreen pointer (often called the

"cursor").

e Clicking (pressing and releasing a mouse button) selects or activates the object
beneath the pointer. The object is usually highlighted when the mouse button is
pressed and then selected or activated when the mouse button is released. For
example, users click to activate a command button, to select an item from a list, or
to set an insertion point in a text area.

e Double-clicking (clicking a mouse button twice in rapid succession without moving
the mouse) is used to select larger units (for example, to select a word in a text
field) or to select and open an object.

e Triple-clicking (clicking a mouse button three times in rapid succession without
moving the mouse) is used to select even larger units (for instance, to select an
entire line in a text field).

e Pressing (holding down a mouse button) is used to display drop-down menus,
including those marked by menu indicators on buttons.

e Dragging (pressing a mouse button, moving the mouse, and releasing the mouse

button) is used to select a range of objects, to choose items from drop-down or

contextual menus, or to move objects in the interface. For example, users drag to
select a range of text in a document.

In your design, assume a two-button mouse. Use mouse button 1
(usually the left button) for selection, activation of components,
dragging, and the display of drop-down menus. Use mouse button 2 (usually
the right button) to display contextual menus. Do not use the middle mouse
button; i1t is not available on most target platforms.

2 Provide keyboard equivalents for all mouse operations, including
multiple selections.

2 Be aware that Macintosh systems usually have a one-button mouse,
other personal computers and network computers usually have a two-button
mouse, and UNIX systems usual ly have a three-button mouse. Macintosh users
can simulate mouse button 2 by holding down the Control key while mousing.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The following figure shows the relative placement of mouse buttons 1 and 2 on
Macintosh, PC, and UNIX mouse devices.

Figure 67 Mouse Buttons and Their Default Assignments

S

ffacintosh P LI,

Pointer Feedback

The pointer can assume a variety of shapes. For instance, in a text-editing
application, the pointer might assume an I-beam shape (called a "text pointer"
in the Java 2 platform) to indicate where the insertion point will be if the user
presses the mouse button. The insertion point is the location where typed text
or a dragged or pasted selection will appear. When the pointer moves out of
the editor pane, its appearance changes in accordance with the new
component the pointer rests over.

The Java look and feel defines a set of pointer types that map to the
corresponding native platform pointers; therefore, the appearance of pointers
can vary from platform to platform, as shown in the following table. When no
corresponding pointer exists in the native platform toolkit, the pointer is
supplied by the JFC.

Table 6 Pointer Types Available for the Java 2 Platform

Mlcrosoft

Pointer Macintosh I CDE Usage in Java Look and Feel Applications
Default [} [% k Pointing or selecting
Crosshair + —|— -+ Interacting with graphic objects
Hand @frﬁ' c[b E& | Panning objects by direct manipulation
Move &7 4—1—* -l-' Moving objects

Text I I I Selecting or inserting text

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Indicating that an operation is in progress and
Wait @ g p prog
= the user cannot do other tasks
— | Adjusting the upper (northern) border of an
N Resize + I T~ J 9 pper ()
object
Adjusting the lower (southern) border of an
S Resize + I o J J ¢)
object
Adjusting the right (eastern) border of an
E Resize 4 — = J ¢ ght ()
object
Adjusting the left (western) border of an
W Resize g — [« JHSHng ()
object
NW Adjusting the upper-left (northwest) corner of
. i " I~ .
Resize an object
Adjusting the upper-right (northeast) corner
NE Resize =l v A ! g pper-nght ()
of an object
Adjusting the lower-right (southeast) corner
SE Resize d, " | ! g gt €)
of an object
SW Adjusting the lower-left (southwest) corner of
_ Je e 4 _
Resize an object

=== In addition to the shapes in Table 6, a pointer graphic can be
defined as an image and created using Toolkit.createCustomCursor if you
are using the Java 2 platform.

Mouse-over Feedback

Mouse-over feedback is a visual effect that occurs when users move the
pointer over an area of an application window without pressing the mouse
button.

In the Java look and feel, mouse-over feedback can be used to show borders
on toolbar buttons when the pointer moves over them. A slightly different effect
is used to display tool tips. For details, see Toolbars and Tool Tips.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Clicking and Selecting Objects

In the JFC, the selection of objects with the mouse is similar to the standard
practice for other graphical user interfaces. Users select an object by clicking it.
Clicking an unselected object also deselects any previous selection.

Follow the general JFC-provided rules for text selection:

e Asingle click deselects any existing selection and sets the insertion point.

e Adouble click on a word deselects any existing selection and selects the word.

e Atriple click in a line of text deselects any existing selection and selects the line.

e A Shift-click extends a selection using the same units as the previous selection
(character, word, line, and so forth).

e Dragging (that is, moving the mouse while holding down mouse button 1) through
a range of text deselects any existing selection and selects the range.

= Follow the general JFC-provided rules for selection in selectable
lists and tables:

e Aclick on an object deselects any existing selection and selects the object.

e A Shift-click on an object extends the selection from the most recently selected
object to the current object.

e A Control-click on an object toggles its selection without affecting the selection of
any other objects. This operation can result in disjoint selections.

Displaying Contextual Menus

It can be difficult for users to find and access desired features given all the
commands in the menus and submenus of a complex application. Contextual
menus (sometimes called "pop-up menus") enable you to make functions
easily accessible by associating them with appropriate objects.

Users can open contextual menus in two ways:

e To pull down the menu, users can press and hold mouse button 2 over a relevant
object. Then they can drag to the desired menu item and release the mouse
button to choose the item.

e To post the menu (that is, to pull down the menu and leave it open), users can
click mouse button 2 over a relevant object. Then they can click the desired menu
item to choose it. The menu is dismissed when a menu item is chosen or the area
outside the menu is clicked.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

& Click here to view the corresponding code for Figure 68 (also
available on the book®"s companion CD-ROM).
Figure 68 Contextual Menu for a Text Selection

Figure 1, the engineering model has
the uzer interface conziztz of knobs

conirast, t

model — m| UL L\}? Ehik
left or rig] Copy Ctrl-C
these mow pacte Gl
cold water|——

the enging Check Spelling...

Because users often have difficulty knowing whether contextual
menus are available and what is in them, ensure that the items in your
contextual menu also appear in the menu bar or toolbar of the primary
windows in your application.

= Users on the Microsoft Windows and UNIX platforms display a
contextual menu by clicking or pressing mouse button 2. Macintosh users
hold down the Control key while clicking.

Drag-and-Drop Operations

Drag-and-drop operations include moving, copying, or linking selected objects
by dragging them from one location and dropping them over another. These
operations provide a convenient and intuitive way to perform many tasks using
direct manipulation. Common examples of drag and drop in the user interface
are moving files by dragging file icons between folders or dragging selected
text from one document to another. The Java 2 platform supports drag and
drop within an application, between two Java applications, or between a Java
application and a native application. For example, on a Microsoft Windows
system, users can drag a text selection from a Java application and drop it into
a Microsoft Word document.

<> Provide keyboard equivalents for all drag-and-drop operations
(such as Cut, Copy, and Paste).

Typical Drag and Drop

Drag and drop in Java applications is similar to dragging behavior on other
platforms. Users press mouse button 1 while the pointer is over a source
object and then drag the object by moving the pointer while holding down the
mouse button. To drop the object, users release the button when the pointer is

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

over a suitable destination. A successful drop triggers an action that depends
on the nature of the source and destination. If the drag source is part of a
range selection, the entire selection (for example, several file icons or a range
of text) is dragged. To cancel a drag-and-drop operation after it has started,
users drop the object over an invalid destination or press the Escape key.

Pointer and Destination Feedback

During any drag-and-drop operation, your Java look and feel application needs
to give visual feedback using the pointer and the destination.

> Provide the user with feedback that a drag operation is in progress
by changing the shape of the pointer when the drag is initiated. Use
different pointers to distinguish operations (such as copying or moving).

> Provide destination feedback so users know where the dragged object
can be dropped. Use one or both of the following methods to provide
destination feedback:

e Change the shape of the pointer to reflect whether the object is over a possible
drop target.

e Highlight drop targets when the pointer is over them to indicate that they can
accept the selection or source.

=== Java objects are specified by their MIME (Multipurpose Internet
Mail Extensions) types, and the Java™ runtime environment automatically
translates back and forth between MIME types and system-native types as
needed. As an object is dragged over potential targets, each potential
target can query the drag source to obtain a list of available data types
and then compare that with the list of data types that it can accept. For
example, when dragging a range of text, the source might be able to deliver
the text in a number of different encodings such as plain text, styled
text, or HTML text. If there is a match in data types, potential targets
should be highlighted as the pointer passes over them to indicate that
they can accept the dragged object.

Keyboard Operations

The Java look and feel assumes a PC-style keyboard. The standard ASCII
keys are used, along with the following modifier keys: Shift, Control, and Alt
(Option on the Macintosh); the function keys F1 through F12; the four arrow
keys; Delete, Backspace, Home, End, Page Up, and Page Down. Enter and
Return are equivalent. (Return does not appear on PC keyboards.)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

A modifier key is a key that does not produce an alphanumeric character but
can be used in combination with other keys to alter the meaning of those keys.
Typical modifier keys in Java look and feel applications are Shift, Control, and
Alt.

This section provides recommendations for the use of keyboard operations,
which include keyboard shortcuts, mnemonics, and other forms of navigation,
selection, and activation that utilize the keyboard instead of the mouse. (See
Appendix A for more on keyboard operations.)

A mnemonic is an underlined letter that typically appears in a menu title, menu
item, or the text of a button or other component. The underlined letter reminds
users how to activate the equivalent command by pressing the Alt key and the
character key that corresponds to the underlined letter. For instance, you could
use a mnemonic to give keyboard focus to a text area or to activate a
command button. A keyboard shortcut (sometimes called an "accelerator”) is a
keystroke combination (such as Control-A) that activates a menu item from the
keyboard even if the relevant menu is not currently displayed.

Keyboard Focus

The keyboard focus (sometimes called "input focus") designates the active
window or component where the user's next keystrokes will take effect. Focus
typically moves when users click a component with a pointing device or move
to the next component using keyboard equivalents. Either way, users
designate the window, or component within a window, that receives input.
(Many toolbar buttons are exceptions: for instance, a left-alignment button on a
toolbar should not take focus away from the text area where the actual work is
taking place.)

== When a window is first opened, assign initial keyboard focus to the
component that would normally be used first. Often, this is the component
appearing in the upper-left portion of the window. If keyboard focus is
not assigned to a component in the active window, the keyboard navigation
and control mechanisms cannot be used. The assignment of initial keyboard
focus 1s especially important for people who use only a keyboard to
navigate through your application--for instance, those with visual or
mobility impairments and many power users.

In the Java look and feel, many components (including command buttons,
checkboxes, radio buttons, toggle buttons, list boxes, combo boxes, tabbed
panes, editable cells, and tree components) indicate keyboard focus by
displaying a rectangular border (blue, in the default color theme).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 69 Keyboard Focus Indicated by Rectangular Border

] Images - @ Two Open
Moneditable combo box Eadio button Cormmnand button
Color | Sound rlmage| Eell Fepper
Qlive
FPepperani
Smoked Ham
Tabbed pane List bt
FirstMame | LasMame |Employee ID| Project | ® [Classical
Jakaoh Lehr 532 | Butler - | & [Eeethoven
Peter YWintar 27 | FireDon @ [Brahms
Sopia 377 | Krakatoa E"g Miza};t
o Schubert
Samuel Stewart 452 | Butler
&] lazz
Eva Kidney 1273 | Moonbeam & [Rock
Mira Brooks 182 | Moonbeam -
Table cell Tree compon ent

Editable text components, such as text fields, indicate keyboard focus by
displaying a blinking bar at the insertion point.

Figure 70 Keyboard Focus Indicated by Blinking Bar at Insertion Point

|5wing—54.giﬂ—|7 Blinking tar at insertion point

Menus indicate focus with a colored background for menu titles or menu items
(blue, in the default color theme).

@ Click here to view the corresponding code for Figure 71 (also

available on the book®"s companion CD-ROM).

Figure 71 Keyboard Focus Indicated by Colored Background

Edit |
Undo Cirl-Z
Redo Crl-w
Cut Ctrl-,
Co py Ctrl-C
Paste Ctrl-

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Split panes and sliders indicate focus by darkening the zoom buttons and
slider indicator (blue, in the default color theme) respectively.

Figure 72 Keyboard Focus Indicated by Drag Texture

T T T T T T
Ry OO OO o 5 A0

slider indicator

split pane zoom buttons

Keyboard Navigation and Activation

Keyboard navigation enables users to move keyboard focus from one user
interface component to another using the keyboard. Navigation does not
necessarily affect the selection and does not, by itself, cause activation.
Keyboard activation, on the other hand, enables users to cause an action by
using the keyboard.

In general, pressing the Tab key moves focus through the major components;
Shift-Tab moves through the components in the reverse direction. Control-Tab
and Control-Shift-Tab work in a similar fashion and are necessary when
keyboard focus is in an element that accepts tabs, such as a text area. Arrow
keys are often used to move within groups of components--for example, Tab
puts focus in a list box and then the arrow keys move focus among the list box
items. The Tab key is used to move among checkboxes.

Once an element has focus, pressing the spacebar typically activates its
function, such as selecting or deselecting a checkbox. In a list component,
pressing Shift-spacebar extends the selection; pressing Control-spacebar
toggles the selection state of the current item without affecting any other
selections. (Using the up and down arrow keys actually changes the selection
in a list component.)

Some components do not need explicit keyboard focus to be operated. For
example, users activate the default button in a dialog box by pressing the Enter
or Return key. Similarly, scrollbars can be operated from the keyboard using
keys such as Page Up and Page Down if focus is anywhere within the scroll
pane.

Keyboard navigation can be useful not only for accessibility purposes but also
for power users or users who choose alternative input methods like voice input
or touch screens.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

~ Ensure that all application functions are accessible from the
keyboard by unplugging the mouse and testing the application®s keyboard
operations.

=== Some of the keyboard operations in the tables in Appendix A are
temporarily incomplete or unimplemented. However, the key sequences
listed in this appendix should be reserved for future versions of the JFC
and the Java 2 platform.

Common keyboard navigation and activation operations are summarized in the
following table.

Table 7 Common Navigation and Activation Keys

Keyboard :
) Action
Operation
Tab' Navigates to the next focusable component
Navigates to the next focusable component (works even if the component
Control-Tabl)
that previously had focus accepts tabs)
Left arrow Moves focus |eft one character or component
Right arrow Moves focus right one character or component
Up arrow Moves focus up one line or component
Down arrow Moves focus down one line or component
Page Up Moves up one pane of information
Page Down Moves down one pane of information
Home Moves to the beginning of the data; in a table, moves to the beginning of a
row
End Movesto the end of the data; in atable, movesto the last cell in arow

Enter or Return

Escape

Spacebar

Activates the default command button

Dismisses a menu or dialog box without changes; cancels a drag-and-drop
operation in progress

Activates the component that has keyboard focus

! with Shift key, reverses direction

Note — The keyboard operations described in the previous table generally have separate
actions for navigation and activation. For the keyboard shortcuts and mnemonics

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

described in the following sections, however, the same action performs both navigation
and activation.

Keyboard Shortcuts

Keyboard shortcuts are keystroke combinations that activate a menu item from
the keyboard even if the menu for that command is not currently displayed.
Keyboard shortcuts usually consist of a modifier key and a character key, like
Control-Z, plus a few special keys such as F1 and Delete. Unlike mnemonics,
keyboard shortcuts do not post menus; rather, they perform the indicated
actions directly. Since all keyboard shortcuts are available at all times, you
cannot reuse them as you do mnemonics.

Figure 73 shows an example of keyboard shortcuts and mnemonics on a
typical Edit menu.

(&) Click here to view the corresponding code for Figure 73 (also

available on the book"s companion CD-ROM).

Figure 73 Edit Menu With Keyboard Shortcuts and Mnemonics

Edit |
Undo Crl-Z
Redo Cirl-r +—— Keyboard shartout
Cut Citrl-%, .
[Kneranic
Copy Ctrl-
Paste Ctrl-W
Delete Delete
Find... Ctrl-F
Find Again cl-c
Select All ctla

To use a keyboard shortcut in Java look and feel applications, users typically
hold down the Control key (and optionally, an additional modifier key, such as
Shift) and press the character key that is shown after the menu item; in some
cases, they press the single key that corresponds to the shortcut, such as the
Delete key in the previous figure. Typing a keyboard shortcut has the same
effect as choosing the corresponding menu item. For instance, to undo an
action, users can either choose the Undo item from the Edit menu or hold
down the Control key and press Z.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Specify keyboard shortcuts for frequently used menu items to
provide an alternative to mouse operation. You do not need to provide a
shortcut for all commands.

<> Display keyboard shortcuts using the standard abbreviations for key
names (such as Ctrl for the Control key), separated by hyphens.

~ Be aware of and use the common shortcuts across platforms. If your
application doesn"t use a particular command, you can use that common
shortcut for some other command. However, i1f a later version of your
application is likely to contain the common command, reserve the shortcut
so future users won"t have to relearn your shortcuts.

= Do not use the Meta key (the Command key on the Macintosh platform)
for a keyboard shortcut, except as an alternate for Control. It is not
available on some target platforms.

The common keyboard shortcuts (in the order of their use in menus) are
summarized in the following table. For an alphabetical listing of the shortcuts in
this table, see Common Keyboard Shortcuts.

Table 8 Common Keyboard Shortcuts (Organized by Menus)

Sequence Equivalent
Ctrl-N New (File menu)
Ctrl-O Open (File menu)
Ctrl-w Close (File menu)
Ctrl-S Save (File menu)
Ctrl-P Print (File menu)
Ctrl-zZ Undo (Edit menu)
Ctrl-y Redo (Edit menu)
Ctrl-X Cut (Edit menu)
Ctrl-C Copy (Edit menu)
Ctrl-v Paste (Edit menu)
Delete Delete (Edit menu)
Ctrl-F Find (Edit menu)

Ctrl-G Find Again (Edit menu)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Ctrl-A Select All (Edit menu)
Ctrl-H Replace (Edit menu)
Ctrl-B Bold (Format menu)

Ctrl-1 Italic (Format menu)
Ctrl-U Underline (Format menu)
Ctrl-L Align Left (Format menu)
Ctrl-E Align Center (Format menu)
Ctrl-R Align Right (Format menu)
F1 Help

Shift-F1 Contextual help

F5 Refresh

25 Because each platform has its own standard keyboard shortcuts,
ensure that any new keyboard shortcuts you have created are compatible
with existing shortcuts on all your target platforms.

@ To ease the localization process, place keyboard shortcuts in

resource bundles. If it turns out that something needs to be localized
because of a situation specific to a particular language, resource bundles
facilitate the process.

Mnemonics

Mnemonics provide yet another keyboard alternative to the mouse. A
mnemonic is an underlined alphanumeric character in a menu title, menu item,
or other interface component. It reminds the user how to activate the
equivalent command by simultaneously pressing the Alt key and the character
key that corresponds to the underlined letter or numeral.

© Click here to view the corresponding code for Figure 74 (also

available on the book"s companion CD-ROM).

Figure 74 File Menu With Mnemonics and Keyboard Shortcuts

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Llsers press AlEF to display menu

File |

Hew Ctrl-M

QOpen... Ctil-0

Close Ctel-if

Save Ctrl-5

Save As...

Page Setup

Print... Ctrl-P

Exit

|

| Then press X or AltX to et

When keyboard focus is not in a text element, the Alt modifier is not always
required. Menus are an example. For instance, to choose the Exit command
from the File menu, the user can hold down the Alt key and press F to post the
File menu, release the Alt key, and then press X.

Unlike keyboard shortcuts, mnemonics can be reused from one context to
another. Once users have displayed a menu with a keyboard sequence, the
subsequent keypress can activate a command only from that menu. Hence,
users can press Alt-F to display the File menu and then type A to activate the
Save As command, or press Alt-E to display the Edit menu, and then type A to
activate the Select All command.

You should provide mnemonics for components within the dialog boxes in your
application. In dialog boxes, users must press a modifier key to activate the
associated component. For instance, within a dialog box, you might have a
mnemonic for the Help button. Once keyboard focus is within the dialog box,
users press Alt and then H to activate the Help button.

—# Provide a mnemonic for all menu titles, menu items, and dialog box
components in your application.

> Do not associate mnemonics with the default button or the Cancel
button in a dialog box. Use Enter or Return for the default button and
Escape for the Cancel button instead.

= Choose mnemonics that avoid conflicts within a context. For
instance, you should not use the letter P as the mnemonic for both the
Print and Page Setup commands in the File menu.

<> Ensure that the mnemonics associated with menu titles are not reused
in any context in which the menus are active.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= When you assign mnemonics, fol low these guidelines in the specified
order.

1. Use common mnemonics as they appear in Table 9. (For an alphabetical listing of
the mnemonics, see Table 13.)

2. If the mnemonic does not appear in the table of common mnemonics, choose the
first letter of the menu item. (For instance, choose J for Justify.)

3. If the first letter of the menu item conflicts with the mnemonics of other items,
choose a prominent consonant. (For instance, the letter S may have already been
designated as the mnemonic for the Style command. Therefore, choose the letter
Z as the mnemonic for the Size command.)

4. If the first letter of the menu item and the prominent consonant conflict with those
of other menu items, choose a prominent vowel.

& Place mnemonics in resource bundles to facilitate the localization

process.
Table 9 Common Mnemonics (Organized by Menu)
Menu
_ Menu Items

Titles
File New, Open, Close, Save, Save As, Page Setup, Print, Exit
Edit Undo, Redo, Cut, Copy, Paste, Delete, Find, Find Again, Select All
Format Font, Style, Size, Bold, Italic, Underline, Align Left, Align Center, Align Right
vi Large Icons, Small Icons, List, Details, Sort By, Filter, Zoom In, Zoom Out,

iew

o Refresh
Help Contents, Tutorial, Index, Search, About Application

—# Enable users to use the Tab key to navigate to components without
their own text or labels. For instance, a text field might be dependent
on a checkbox or a radio button, as shown in the following figure.

Figure 75 Navigating to a Component Without Associated Text

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Appreciation Rates: i Assumed Appreciation Rate:

(@) Three Year Fund Histonyx 16.3%

& Mnemonics vary by locale, so use letters that occur in the localized

strings. However, for nonalphabetic languages, use the English mnemonic
at the trailing edge of the string. For an example, see Figure 18.

=== The setMnemonic method can be used to specify mnemonics for buttons,
checkboxes, radio buttons, toggle buttons, and menu titles. For
components such as text fields, list boxes, and combo boxes that do not
have text of their own, mnemonics can be specified on associated labels.
The setDisplayedvMnemonic method can be used for labels, and the
setMnemonic method for menu items. The labelFor property is used to
associate the label and 1ts mnemonic with the appropriate component.

=== The Java language underlines the first instance of a letter that
appears in the string regardless of whether that instance of the letter
led the designer to choose it as the mnemonic. Hence, i1t would display
the mnemonic for the Save As command as Save As, not Save As.

Operational Feedback

Users interact more smoothly with your application if you keep them informed
about the application's state. The information you provide can include a
response to an action that a user is intentionally controlling (such as changing
the shape of the pointer), or you can offer feedback about actions that the
application is performing on its own (such as a long copying operation). This
section focuses on feedback about operations that the application performs on
its own once the user initiates them.

You can use three kinds of visual feedback for operations that take a long time
to complete:

e Pointer feedback--changes the shape of the pointer (which tracks the mouse or
other pointing device)

e Progress animation--an indicator such as a progress bar that shows what
percentage of an operation is complete

e Status animation--an animation that shows an operation is ongoing

Animation is especially beneficial when you want to communicate that the
system is busy. Progress indication shows users the state of an operation;
status animation lets users know that an application or a part of an application

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

is not available until an operation is done. For more about animation in your
interface, see Animation.

= When your application is processing a long operation and users can
continue to work in other areas of the application, provide them with
information regarding the state of the process.

= During a long operation, when users must wait until the operation
is complete, change the shape of the pointer. For example, an
application™s pointer might change to the wait pointer after the user
selects a file and before the file opens.

For information on the JFC-supplied pointer shapes available in the Java look
and feel, see Table 6.

—# Use a wait pointer whenever users are (or could be) blocked from
interaction with the application for more than 2 seconds.

< Usea progress bar whenever users are blocked from interacting with
the application for more than 6 seconds.

“» Use a progress bar when users want to know when or whether the
operation has been completed, and the absolute or approximate proportion
of completion can be determined.

—# Use a status animation when an activity will take 6 or more seconds
and you can communicate only whether the process is live or not.

Progress Animation

Progress animation consists of a progress bar or percentage indicator that is
generated by an application. You can use progress animation to describe any
job in progress.

The most useful form of progress animation, a progress bar, is an interface
element that indicates one or more operations are in progress and shows
users what proportion of the operation has been completed. The progress bar
consists of a rectangular bar that fills as the operation progresses, as shown in
the following figure.

Figure 76 Progress Bar

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

You can orient the progress bar horizontally, so it fills from left to right, or

vertically, so it fills from bottom to top. Within the bounds of the progress bar,
you can display a text message that is updated as the bar fills. By default, the
message shows the percentage of the process completed--for example, 25%.

= If you know the estimated length of an operation (for example, if
the user is copying files) or the number of operations, use the Java look
and feel progress bar. This bar fills as the operation progresses.

<2z \When the user performs an operation whose function can be accurately
estimated, show the time remaining as part of the progress bar. For example,
you might use the message, "Two hours and 18 minutes remaining." In most
cases, you will need to base your estimate on typical throughput and adjust
your estimate as you determine how the current system load or network delay
affects throughput. These calculations sometimes result in an increase
in the remaining time.

> When the user performs an operation on objects of known size, or
when only the number of objects is known, equate the length of the progress
bar to the total units of work to be performed.

—# Update the progress bar to show the proportion completed at least
every 4 seconds. If you overestimate how much is already done, the progress
bar can remain at 99 percent until the task is complete. If you
underestimate how much is already done, fill the remaining portion of the
progress bar when the operation completes. The percentage done should
never decrease.

Use the most accurate form of progress bar (time remaining,
proportion remaining, objects remaining) available, given the data you
are trying to time.

= Users cannot interact with a progress bar. If you would like to
enable users to set a value in a range, use the slider (implemented with
the JSlider component).

Figure 77 shows the use of progress animation in a progress dialog box.
& Click here to view the corresponding code for Figure 77 (also
available on the book"s companion CD-ROM).

Figure 77 Animation in a Progress Dialog Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Filter in Progress - MetalPix

Progress bar

hiroshige.oif
1 |
About 25 seconds remaining

)
=

Status Animation

When you have no numeric information on which to base your progress
estimates, use a status animation to reassure the user that an otherwise
invisible activity is still in progress and the system has not crashed.

A status animation is a sequence of images designed to inform users that

an operation is in progress. A status animation loops endlessly until the
operation finishes or the user acts to stop the operation. The animation
reassures users that an otherwise invisible activity is still in progress and the
system has not crashed. Because the display duration of any status animation
is often unknown, you should design the loop to run continuously until the
operation completes.

For each status animation, include a still image and an animation. The still
image indicates that a process has stopped or that the system is inactive.
Make the still image different from the animation sequence so that users can
easily tell whether an activity is in progress (though possibly stalled) or the
system is quiescent.

When creating system status animation, consider the target users
and their environment. If the animation needs to be visible from across
the room, a bolder animation coupled with sound might be effective. On
the other hand, that same animation viewed by a user sitting at the
workstation would be annoying.

= When feasible, let users configure system status animation, so they
can adapt their systems to the environment.

—# In your status animations, provide two files, one an animation
sequence to display the active status and the other a still image to
display the inactive status.

=== Screen readers, which are used by people with visual impairments,
do not recognize images. Use the accessibleDescription field to describe
what is represented by the animation and change the description

appropriately when the status of the animation changes. Make sure that

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

this information results in a propertyChange event so that the user can
be notified of the change.

Design for Smooth Interaction

As a human interface designer, you do more than assemble the proper
interface components in a window. You also lay out the components to help
users understand the tasks they face and to foster a natural flow through the
activities. Good interface design frequently goes unnoticed because
everything works as expected. Users notice a poorly designed application that
puts GUI obstacles in their way. Thought, attention to detail, and testing with
real users can eliminate these difficulties.

This section examines the interaction flow in a simple login dialog box,
showing how careful attention to detail makes a significant difference in the
user experience. For more information, see Login Dialog Boxes. For a
discussion of password fields, see Password Fields.

Initial Focus

The login dialog box in Figure 78 is for MetalManage, a hypothetical
management application. This particular application requires users to type
both a login name and a password. When the dialog box initially appears, the
Login Name and Password fields are empty, and keyboard focus is in the
Login Name field, which is typically the first place that users type information.
The Log In button is unavailable because the application requires a login name
and password, and those fields are currently empty.

@ Click here to view the corresponding code for Figure 78 (also

available on the book®"s companion CD-ROM).

Figure 78 Simple Login Dialog Box in Its Initial Configuration

O Log In - Metal Manage

Login Name: ||

Password: |

| Cancel || Help |

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Whenever possible, design an interaction flow that prevents users
from making errors. For instance, make the Log In button unavailable until
the text fields of a login dialog box are filled in because pressing the
button earlier would result in an error.

Navigation

This login dialog box is designed with a standard tab traversal order. As shown
in the following figure, keyboard focus starts in the Login Name text field,
progresses to the Password field, then moves to the buttons in the command
button row, and finally loops back to the first text field. (The Log In button is
automatically dropped from the traversal order when it is unavailable.) Users
can navigate through the dialog box by:

Using the mouse

Pressing the Tab key (or Ctrl-Tab) to move forward through the components
Pressing Shift-Tab (or Ctrl-Shift-Tab) to move backward through the components
Using mnemonics

Most users find that their interaction with login dialog boxes becomes habitual.

Figure 79 Standard Tab Traversal in a Login Dialog Box

Ll

Log In - Metal Manage

Login Name: | L] |
[4
Password: | T |

Log in i‘Cancel | | . Help |

Ensure that keyboard navigation works smoothly in all dialog boxes.
Many users want to perform operations such as logging in using only the
keyboard.

The typical login sequence for most users involves typing a login name,
pressing Tab to advance focus to the Password field, typing a password,
and pressing Enter (or Return) to activate the Log In button.

This sequence works work well if the Log In button is the default command
button. However, making the Log In button the default button creates a
possible annoyance. Some users, particularly in login dialog boxes, habitually
press the Enter key to advance to the next text field.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

In a quick usability study conducted with this dialog box, about 25 percent of
users pressed the Enter key after typing their login names. Therefore, the
design was changed so that if users press Enter in the Login Name field,
keyboard focus advances to the Password field. Although this behavior is not
standard for the Enter key, it allows for very smooth use by the minority of
users who want to type their login names, press Enter, type their passwords,
and press Enter to get logged in. Furthermore, it does not interfere with the
typical use of the Tab key by most users.

If the Log In button had been the default button, pressing Enter after typing a

login name would activate the Log In button. An error would occur because the
user had not typed in a password. As a result, the new design made the Log In
button unavailable until both the Login Name and Password fields contain text.

Password Field

As soon as both the Login Name and Password fields contain text, the Log In
button becomes available and becomes the default button (as shown in the
following figure). Users can then press Enter to activate the Log In button.

Figure 80 Standard Login Dialog Box With Filled-in Text Fields

O Log In - MetalManage

Login Name: |apollog

Password: |+

| Log In || Cancel || Help |

If your application allows null passwords, the interaction is a little more
complex. In that case, make the Log In button available as soon as users type
a character in the Login Name field, so that they can attempt to log in without
typing a password. However, do not make the Log In button the default button
until keyboard focus moves to the Password field. Then users who press Enter
to move to the Password field cannot activate the Log In button by mistake.
Instead, move the focus to the Password field and only then make the Log In
button the default command button. Users can type in a password, if any, and
then press Enter to activate the Log In button.

Figure 81 Login Dialog Box With Null Passwords

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

O Log In = Metal Manage

Login Hame: |a

Password: ||

| Log In || Cancel || Help |

Status and Error Messages

The login dialog box has more than the recommended 17 pixels between the
Password field and the command button row. That extra space is used for
displaying status messages, such as the progress notification shown in the
following figure.

Figure 82 Status Message in a Login Dialog Box

O

Log In = Metal Manage

Login Name: |apollod

Password: |wereees

Verifying....... Frogram notification
or stiatus message

| Log In || Cancel || Help |

A status message appears in the form of a label while the system is verifying
the login attempt. Dots are added to the label at about 1 dot per second to
indicate that the system is still working.

You can use this same extra space to display short error messages--for
example, if the login attempt fails. You could display such error messages in a
standard error alert box. However, as long as the error message is brief, as
shown in the following figure, the status area in the login dialog box provides a
simple alternative that doesn't require users to dismiss a separate dialog box.

Figure 83 Error Message in a Login Dialog Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

O

Log In = Metal Manage

Login Name: |apollog]

Password: |+
L Login attempt failed. ————— Error message
| Log In | | Cancel | | Help |

Note that the text in the Login Name field is automatically selected when the
login fails, enabling users to type in a new login name easily or to press Tab or
Enter to navigate to the Password field (which then appears with its contents
selected).

Users typically observe the status area during the login attempt, so an error
message displayed there is easily seen, especially with the accompanying
graphic. Nevertheless, it is also advisable to play a sound when the error
message appears. The sound helps distracted users as well as visually
impaired people. Be sure to offer users the option to turn off the sound.

Text Selection and Filled Text Fields

When keyboard focus enters a text field (unless it does so because of a user
click in the field), select any existing text in the field and place the insertion
point at the end of the text, as shown in the following figure. Users can then
start typing characters to replace the existing text or they can press the Tab
key to move to the next field, leaving the original text intact.

When the text is selected, pressing the left or right arrow key deselects the text
and moves the insertion point (if possible), enabling users to correct the text
using only the keyboard. Of course, if users click in a text field, place the
insertion point as close to the click point as possible, without selecting text. For
more information on editable text field navigation, see Editable Text Fields.

Figure 84 Entering a Filled Text Field

O

Log In - Metal Manage

Login Hame: |apollog|

Password: | oo

Lo In || Cancel || Help |

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Part Ill: The
Components of the Java
Foundation Classes

This part consists of:

e Chapter 7: Windows and Panes

e Chapter 8: Dialog Boxes and Alert Boxes

e Chapter 9: Menus and Toolbars

e Chapter 10: Basic Controls

e Chapter 11: Text Components

e Chapter 12: Selectable Lists, Tables, and Tree Components

7: Windows and Panes

A window is a user interface element and container that designers use to
organize the information that users see in an application. The information in a
window consists of objects (and their properties) that enable users to perform
actions or to report information about actions. Primary windows, secondary
windows, utility windows, and plain windows provide the top-level containers
for your application. A primary window is a window in which the user's main
interaction with the data or document takes place. An application can use any
number of primary windows, which can be opened, closed, minimized, or
resized independently. A secondary window is a supportive window that is
dependent on a primary window (or another secondary window). A utility
window is a window whose contents affect an active primary window. Unlike
secondary windows, utility windows remain open when primary windows are
closed or minimized. An example of a utility window is a tool palette that is
used to select a graphic tool. A plain window is a window with no title bar or
window controls, typically used for splash screens.

Figure 85 Primary, Utility, Plain, and Secondary Windows

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

M Engineering Madals - MetalEdit
i Catl e NN
B=Ez #oe® by B

Somme might srgue thet the oglimel user interface i3 usually cne that
directly mmrpo:.ds to s tesk model, But basing the user mbe"'fm ana
lawe i cuod alvwys Lhe cormec] anavear either. fer Iwa
user's InsL hagbeen shoped by the tocls that were use

E,IJ\ 5 the interface to the exsting tusk
inta obml:be'hr wior. Second, different users masy o
differeni work confexte and be mstvad batter b difSery

thi.dﬂr@uui:hmlng

Im 1901 the Phelps tractor was introduced as & direct
hiazes in farm wrark, The Phelpe iracter could be hitel
wiggat, and farrnben used & pair of reine ko saninel th
wonld cartral & koree. The trectar ees stearad by pul

Sane T

O Warn
A

document?

Chamges
Thie documient you are closing has unsased changes,
Do o Wil 80 S e 1he chianges before cloging the

Secondary

Panels, panes, and internal windows are lower-

level containers for use within

primary and secondary windows. A panel is a container for organizing the
contents of a window, dialog box, or applet. A pane is a collective term for
scroll panes, split panes, and tabbed panes, which are described in this
chapter. (You can place panels in panes or panes in panels.) An internal

window is a container used in MDI applications

to create windows that users

cannot drag outside of the main backing window.

Figure 86 Scroll Pane, Tabbed Pane, Split Pane, and Internal Window

Pramaal
ik e elo v Sresel, il e sy Fulm Sovol] paee
ESwiri d sk e il b v md e e
Brpmirgraee
I B0 ok Phadpn rrvren wen i vl s g 0 e
- 1 bty i & . ol ke 0 o R e
L i Wil i Tkt Wl s bl e i
g s bl e bk v v e w g i
Tabbed pane
duiplaped in
3 diskag box
Split pane
T Ten e btk Tra Doy Comwpciae |]2 unare -
Tut Fei Eoeome EE L LT R
s P " SETirking W Fem e
o e 1y L ST Sm iy e g s ey
W i R e]
——— P T S TP —
ot Yoy 11 -mp.l_.. A e e
H § ThuPoninl sfRdD v e L L et
¥ =y | TheFai vl P bl P W s
Inteena = =
(& 1 e LT, RS A TE PR
windows T i Bt sidrerer et s s
| il B
_—
e e i i B
yrupme wrisdair
T
A2 ADNEE M BRT CL
Bma (1w e
racd el e
i vl s il i i M
S REN SNILIE 1E IR e e -

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

When you begin to organize the information in an application, ask yourself
these questions:

e Should information appear in a primary window or a secondary window?
¢ Which information goes in which kind of window?
e How are different kinds of windows titled?

This chapter uses the concept of an object, an entity your application
presents in i1ts interface and that users manipulate. While an object can
be logical to the user, i1t might have little relationship to the
implementation of the application. Objects have properties or sets of
values that users can view or change. Objects also have actions or
operations that can be performed on them.

Objects might be documents, the computers that an application monitors, or
even log entries--for example, a word processor works with documents,
chapters, and paragraphs. A mail program works with mail servers, mailboxes,
and mail messages.

Anatomy of a Primary Window

Primary windows act as top-level containers for the user interface elements
that appear inside them. A primary window might hold a series of embedded
containers. For example, a primary window in your application could have this
organization:

e The window frame contains a menu bar and a panel

e The menu bar contains menus

e The panel contains a toolbar and a scroll pane and scrollbar

e The toolbar contains toolbar buttons

e The scroll pane contains an editor pane with a plug-in editor kit for styled text

Figure 87 Components Contained in a Primary Window

wWind ow frame

Palnel
Menu bar i
Taolbar scroll pane and scrollbar
Menusl, 2, 3. /T\
Toolbar buttans Editor pane with styled text

12,3 plug-in kit

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Note the appearance of the embedded containers in an actual primary window
and their relationship to the underlying structure, as shown in Figure 88.

Figure 88 Anatomy of a Primary Window

Window
frame

Menu bar
and menus

toolbar buttons

Scroll pane
and scrollbar

as hi
i gleee” et irtrebi e contd T o
Editar pane . ,,.ﬂlpd s Fr.rlp’ ”:ﬂﬁ - wnwwu,r@
with styled text | Eign me PhET. T08 pair el T e
|:rlug il'lbrk't [n qﬂm farTib usﬂwe ._ﬂ,.:lw'
in ki _

Window frame —a
Menu bar
and menus

Toolbar and
toolbar buttons

Panel .
#—— Scrollbar in

Scroll pane scroll pane

Editar pane

Styled text

plug-in kit

Constructing Windows

A primary window, secondary window, utility window, or plain window can
serve as a top-level container for interface elements in your application.

Figure 89 Top-Level Containers

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Primany win diow

Secondany window
LT Y

Plain win dow

Litility window

Tools

E=> Primary windows are implemented using the JFrame component.
Secondary windows and utility windows are implemented using the JDialog
component (for dialog boxes and utility windows) or the JOptionPane
component (for alert boxes). Plain windows are implemented using the
JWindow component.

Primary Windows

Primary windows are provided by the operating system of the platform on
which the application is running--for instance, UNIX, Microsoft Windows, OS/2,
or Macintosh.

Specifically, you cannot alter the appearance of the window border and title
bar, including the window controls that affect the state of a window (for
example, the Maximize button in Microsoft Windows title bars). Window
behavior, such as resizing, dragging, minimizing, positioning, and layering, is
controlled by the operating system.

The content provided by your application, however, takes on the Java look and
feel, as shown in Figure 90 (which depicts a MetalEdit document window as it
appears on the Microsoft Windows platform).

@ Click here to view the corresponding code for Figure 90 (also

available on the book®"s companion CD-ROM).

Figure 90 Primary Window on the Microsoft Windows Platform

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Barder] Title bar _ Window
contrals

B Untitled - MetalEdit

File Edit Format Wiew Help

HaEE WnEe b EE=E
Althowgi the hurman Inteface designer and the sofware developer mightwall be the
same person, the hwo jobs require different fasks, skills, and loals, Primarily, this book

addresses the designerwho chooses the interface components, lavs them outin a set | |ava look and
ofviews, and designs the user intaraction model for an application. This book should feel window
algo prove useful for developers, lechnical writers, graphic adists, production and contents
marketing speclalists, and testers who paricipate Inthe creation of Java applications

and applats |

Typically, when users close or minimize a window, any associated secondary
windows are closed as well. However, the operating system does not take care
of this behavior automatically for JFC applications.

> Keep track of the secondary windows in your application; close thenm
if the primary window is closed or hide them i1f their primary window is
minimized.

2 Although native operating systems typically display a close control
on the title bar of windows, provide a Close item or Exit item in your
File menu as well.

== In the JFC, primary windows are created using the JFrame component.
This component appears with the border, title bar, and window controls
of the platform on which it is running. This is the JFC component you are
most likely to use as the top-level container for a primary window.

Secondary Windows

Secondary windows (dialog boxes and alert boxes) are displayed in a window
supplied by the native operating system. In the JFC, the component for dialog
boxes is called JDialog, and the component for alert boxes is JOptionPane.
These windows appear with the borders and title bars of the platform on which
they are running. Chapter 8 provides more guidelines for the design of dialog
boxes and alert boxes.

Figure 91 shows a JFC-supplied Warning alert box for the sample text-editing
application, MetalEdit.

& Click here to view the corresponding code for Figure 91 (also

available on the book®"s companion CD-ROM).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 91 Alert Box on the Macintosh Platform

r———————Thlebar

e ——————————— -_— £ _ § __

Save Changes?

The document you are closing has unsaved changes.
Do waou want to save the changes before closing the
dacument?

Baorder

| Save || Don't Save || Cancel |

Dialog and alert box behavior, such as dragging and closing, is controlled by
the native operating system. For keyboard operations that are appropriate to
dialog and alert boxes, see Table 23.

= Keep in mind that some platforms do not provide close controls in
the title bar for dialog boxes. Always provide a way to close the window
in the dialog box or alert box itself.

== The JOptionPane component is used to implement an alert box. If the

box supplied by the JFC does not suit your needs, you can use the JDialog
component.

Plain Windows

You can create a window that is a blank plain rectangle. The window contains
no title bar or window controls, as shown in the following figure. (Note that the
black border shown around this plain window is not provided by the JFC.)

Figure 92 Plain Window Used as the Basis for a Splash Screen

Q@ Sun.

PR VTR I

METALEDIT

| 4 ffffff
.\\t\hh*
_\ f!\I/ff

f//ff

v B
ffffd‘..'.r.r

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

A plain window does not provide dragging, closing, minimizing, or maximizing.
You can use a plain window as the container for a splash screen, which
appears and disappears without user interaction, as shown in the preceding
figure.

=== The JWindow component is used to implement plain windows. (The
JFrame component is used to implement primary windows.)

Utility Windows

A utility window is often used to display a collection of tools, colors, or patterns.
Figure 93 shows a utility window that displays a collection of objects.

Figure 93 Utility Window

Platformm-specific title barand barder

%]
AN Java look and feel window contents
(=

Unlike secondary windows, which should close automatically when their
associated windows are closed, utility windows should remain open when
primary windows are closed.

User choices made in a utility window refer to and affect the active primary
window. A utility window remains on screen for an extended period of time
while users go back and forth between the utility window and primary windows.
In contrast, a secondary window is designed to enable users to resolve an
issue in an associated primary window and is usually dismissed once users
have resolved the issue.

The same keyboard operations that apply in dialog boxes and alert boxes
apply to utility windows. For information on keyboard operations appropriate
for utility windows, see Table 14 and Table 23.

—~ Because utility windows are not dependent on a primary window, do
not automatically dismiss utility windows when primary windows are
closed.

> Ensure that the same initial focus and keyboard navigation features
available in secondary windows are available in utility windows.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

=== Utility windows in a non-MDI application are implemented using the
JDialog component, whereas in an MDI application, internal utility
windows are a specific style of the JInternalFrame component. Therefore,
internal utility windows can be used only within a backing window. Use
the client properties mechanism to set the JInternalFrame.isPalette to
true.

Organizing the Contents of Windows

The JFC provides a number of user interface elements you can use for
organizing the contents of windows: panels, tabbed panes, split panes, and
scroll panes. Panels and panes can be used to organize windows into one or
more viewing areas. A panel is a JFC component that you can use for
grouping other components inside windows or other panels.

A pane is a collective term used for scroll panes, split panes, and tabbed
panes, among others. Panes provide a client area where you can offer
control over which user interface elements users see. For instance, a scroll
pane enables the viewing of different parts of a client area; a tabbed pane
enables users to choose among screen-related client areas; and a split
pane enables users to allocate the proportions of a larger viewing area
between two client areas.

Figure 94 Lower-Level Containers

Panel

E scroll pane

I Tabbed pane

Split pane

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Panels

In contrast to scroll panes and tabbed panes, which typically play an
interactive role in an application, a panel simply groups components within a
window or another panel. Layout managers enable you to position
components visually within a panel. For a thorough treatment of the visual
layout and alignment of components, see Layout and Visual Alignment. For
more information on layout managers, see The Java Tutorial at
http://java.sun.com/docs/books/tutorial.

Scroll Panes

A scroll pane is a specialized container offering vertical or horizontal scrollbars
(or both) that enable users to change the visible portion of the window
contents.

Figure 95 provides an example of a scroll pane with a vertical scrollbar. The
size of the scroll box indicates the proportion of the content currently
displayed.

Figure 95 Scroll Pane in a Document Window

File Edit Format VYiew Help

nslea) (x/n]e)s b £

Sorne might argue that the optimal user interface is usually one that il
directly corresponds to o task model, But basing the user interface on a
task iz not always the correct answer either, for two reasons. First, the

user's task has been shaped by the toals that were used for it in the past, L
and blindly adapting the interface to the existing task can lock the user
into obsolete behaswior. Second, different users may operate in quite -
different work contexts and be served better by different interfaces.

iting new
I 1901 the Phelps tractor was introduced as o direct replacement for the
horse in farm work, The Fhelps tractor could be hitched to a carrage or
wagon, and farmers used a pair of reins to contral the tractor just as they
would control a horse, The tractor was steered by pulling on the

-

You can choose whether a scroll pane always displays scrollbars or whether
they appear only when needed.

2z Unless you have a compelling reason to do otherwise, use the default
setting for horizontal scrollbars, which specifies that they appear only
when needed.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

s Display a horizontal scrollbar if users can"t see all the
information in the window pane--for instance, in a word-processing
application that prepares printed pages, users might want to look at the
margins as well as the text.

= If the data in a list is known and appears to fit in the available
space (for example, a predetermined set of colors), you still need to place
the list in a scroll pane. Specify that a vertical scrollbar should appear
only if needed. For instance, if users change the font, the list items
might become too large to fit in the available space, and a vertical
scrollbar would be required.

IT the data i1n a scroll pane sometimes requires a vertical scrollbar
in the normal font, specify that the vertical scrollbar always be present.
This practice prevents the distracting reformatting of the display
whenever the vertical scrollbar appears or disappears.

=== Scrollbars are obtained by placing the component, such as a text
area, inside a scroll pane.

Scrollbars

A scrollbar is a component that enables users to control what portion of a
document or list (or similar information) is visible on screen. In locales with
left-to-right writing systems, scrollbars appear along the bottom and the right
sides of a scroll pane, a list, a combo box, a text area, or an editor pane. In
locales with right-to-left writing systems, such as Hebrew and Arabic,
scrollbars appear along the bottom and left sides of the relevant component.
By default, scrollbars appear only when needed to view information that is not
currently visible, although you can specify that the scrollbar is always present.

The size of the scroll box represents the proportion of the window content that
is currently visible. The position of the scroll box within the scrollbar represents
the position of the visible material within the document. As users move the
scroll box, the view of the document changes accordingly. If the entire
document is visible, the scroll box fills the entire channel.

Both horizontal and vertical scroll boxes have a minimum size of 16 x 16 pixels
so that users can still manipulate them when viewing very long documents or
lists.

At either end of the scrollbar is a scroll arrow, which is used for controlling
small movements of the data.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The following figure shows horizontal and vertical scrollbars. Each scrollbar is
a rectangle consisting of a textured scroll box, a recessed channel, and scroll
arrows.

Figure 96 Vertical and Horizontal Scrollbars

D

Scroll box

—vertical scroll bar
scroll channel

[« [EE B I
[|
L Horizontal scroll bar Scroll arrow

Do not confuse the scrollbar with a slider, which is used to select a value. For
details, see Sliders.

Users drag the scroll box, click the scroll arrows, or click in the channel to
change the contents of the viewing area. When users click a scroll arrow, more
of the document or list scrolls into view. The contents of the pane or list move
in increments based on the type of data. When users hold down the mouse
button, the pane or list scrolls continuously.

For a description of keyboard operations for scrollbars, see Table 22.

<= Scroll the content approximately one pane at a time when users click
in the scrollbar™s channel. Leave one small unit of overlap from the
previous information pane to provide context for the user. For instance,
in scrolling through a long document, help users become oriented to the
new page by providing one line of text from the previous page.

= Scroll the content one small unit at a time when users click a scroll
arrow. (The smallest unit might be one line of text, one row in a table,
or 10 to 20 pixels of a graphic.) The unit controlled by the scroll arrows
should be small enough to enable precise positioning of the text or
graphic but not so small that users must spend an impractical amount of
time using the scroll arrow.

Ensure that the scroll speed is fairly constant when users click
the scroll arrows. Ensure that scrollbar controls run quickly yet enable

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

users to perform the operation without overshooting the intended location.
The best way to determine the appropriate scrolling rate is to test the
scrolling rate with users who are unfamiliar with your application.

Ensure that the scrolling rate is appropriate across different
processor speeds.

@ Place scrollbars in the orientation that is suitable for the writing

system of your target locale. For example, in the left-to-right writing
systems (such as English and other European languages), the scrollbars
appear along the right side of the scroll pane or other component. In other
locales, they might appear along the left side of the scroll pane.

Tabbed Panes

A tabbed pane is a container that enables users to switch between several
content panes that appear to share the same space on screen. (The panes are
implemented as JPanel components.) The tabs themselves can contain text or
images or both.

A typical tabbed pane appears with tabs displayed at the top, but the tabs can
be displayed on any of the four sides. If the tabs cannot fit in a single row,
additional rows are created automatically. Note that tabs do not change
position when they are activated. For the first row of tabs, there is no separator
line between the active tab and the pane.

The following figure shows the initial content pane in the JFC-supplied color
chooser. Note that the tabbed pane is displayed within a dialog box that uses
the borders, title bar, and window controls of the platform on which its
associated application is running.

Figure 97 Swatches Content Pane in the JFC Color Chooser

Color Chooser

Tabbed pane

. | Swatches content pang

Dialog box buttons
{outside of tabbed
pane)

Tabs {with mnemanics)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Users choose which content pane to view by clicking the corresponding tab.
The content pane changes accordingly, as shown in the following figure of the
content pane associated with the RGB tab.

For a list of keyboard operations appropriate for tabbed panes, see Table 26.

Figure 98 RGB Content Pane in the JFC Color Chooser

Color Chooser
| Swatches | HSB RGH
Rd: ' m
0 85 170 255
Green: o {E} (33 |
0 85 170 o RGE content pane
Bhue; ' E
0 85 170 255
| ok | cancel || Reset | Dialog box buttons

You can use tabbed panes to good advantage in secondary windows, such as
a preferences dialog box, that require you to fit a lot of information into a small
area.

You can also use tabbed panes to provide a way for users to switch between
content panes that represent:

e Different ways to view the same information, like a color chooser's RGB and HSB
panes

e Different parts of an informational unit, like worksheets that are part of a workbook
in a spreadsheet application

Use headline capitalization for tab names.

Provide mnemonics so users can navigate from tab to tab and from
tabs to associated content panes using keyboard operations.

Do not nest tabbed panes.

—# If your tabbed pane requires multiple rows of tabs, consider
dividing the content among several dialog boxes or other components.
Multiple rows of tabs can be confusing. You might also consider displaying
the tabs vertically so more could be displayed in a single column.

Place any dialog box buttons outside the tabbed pane because they
apply to the whole dialog box (that is, all the panes) at once.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Split Panes

A split pane is a container that divides a larger pane into resizable panes.
Split panes enable users to adjust the relative sizes of two adjacent panes.
The Java look and feel drag texture (along with a pointer change when the
pointer is over the splitter bar) indicates that users can resize split panes.

To adjust the size of the split panes, users drag the splitter bar, as shown in
the following figure.

Figure 99 Split Pane (Horizontal Orientation)

splitter bar

Users can also control the splitter bar by clicking one of the optional zoom
buttons shown in the following figure. Clicking a button moves the splitter bar
to its extreme (upper, lower, left, or right) position. If the splitter bar is already
at its extreme position, clicking a zoom button in the direction of the split
restores the panes to the size they had before the zoom operation (or before
the user dragged the splitter bar to close one of the panes).

For a list of keyboard operations appropriate for split panes, see Table 25.

Figure 100 Zoom Buttons in a Split Pane (Vertical Orientation)

Toorn buttons

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Include zoom buttons in split panes because they are very convenient
for users.

Nested Split Panes

In addition to splitting panes either horizontally or vertically, you can nest one
split pane inside another. The following figure portrays a mail application in
which the top pane of a vertically split pane has a horizontally split pane (in
blue in the lower schematic diagram) embedded in it.

Figure 101 Nested Split Panes

Mested horizontal panes
within highlighted pane

=3 Inbox 4| Date | From | Subject
=9 SentWail Tua Fab 15 Kalhy Manno The Swing Connacion: 1.2.2 update -
'j' Trash 0 TusFeb 15 Michael Lux project schedules
= admin MonFeb 16 Paul Emering Rethinking tha Enarmprisa
=Y benafits MonFeb 16 Keith Brooks mouse double clicks in swing confrols
-] BF custormers : MonFeb 16 Catharing Covinglo 121 gel Iogetfmr for bunch Wednosday
=3 Bovdsiun 40 Yved Feb 17 Richard Gentner suggestion for woodworking project
= Mayer Wad Faih 17 Michael Lux Re: project schedules
Y wagenhan 1™ ThuFeb 18 HERIOG Re; ¥Weisentaler Ahnengalernie
Vertically =9 expiring - 9 ThuFeb 138 Mailthe Man Returning 1o society =

Date: YAed, Feb 17, 1099 24:57:23 PST

Tix Judith Steveart <pstewan @walercolorong=
Frome: Michael Lux <hpeistudindesign.cons
Subject: Re: project schedules

split pane

Judith,

Thanks for you commenta and cewisions to the project schedule. I like a lot of your
suggestions end we cen definively use the new layout.

Owerall the cime line nakes sense, but I wonder sbout the short time between alpha
and beta. Will we really have time to get feedback from our wsers and incorporace
what we leatn into the design. Imstead, if we could eliminace aome of the ssldom-
used features, we could move in the alpha date and hawve time To incorporate wser
feedback. Af an added bonus, the syscem would be much easier to learn and use,

Working With Multiple Document Interfaces

A multiple document interface (MDI) application provides a way to manage
multiple windows that are confined inside a main window called a backing
window (previously called a "desktop pane"). To support MDI designers, the
JFC provides the internal window and internal utility window.

Backing Windows

In an MDI application, a large window, called the backing window, contains
other windows. The menus and toolbars for the application are usually

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

displayed in the backing window rather than in each internal (primary) window.
For more on menus and toolbars, see Chapter 9.

== The JDesktopPane component is used to implement backing windows.

Internal Windows

Primary windows in MDI applications must stay inside the main backing
window and so are called "internal windows." The main backing window is a
native platform window with the native look and feel. However, in an MDI that
uses the Java look and feel, internal windows have window borders, title bars,
and standard window controls with the Java look and feel.

The following figure shows examples of internal windows for an MDI
application.

Figure 102 Internal Windows in an MDI Application

Application-specified icon [Drag area Minimize,
Title bar for internal window maximize, and
I close controls
[Metaz ol M | Inactive internal

[7] Java Look and Feel FeE B window
Active internal
window

Resize from
any corner
or side

Users can use the mouse to:

e Activate a window (and deactivate the previously activated window) by clicking
anywhere in the window

e Adjust the size of a resizable internal window by dragging from any side or corner

e Drag the internal window (by the title bar) within the backing window

e« Minimize, maximize, restore, and close the internal window by clicking the
appropriate window controls

For keyboard operations appropriate to internal windows, see Table 14.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

A minimized internal window is a horizontally oriented component (shown in
the following figure) that represents an internal window that has been
minimized. The width of these minimized internal windows is sized to
accommodate the window title. Minimized internal windows consist of a drag
area followed by an area containing an application-specific icon and the text of
the window title.

Figure 103 Minimized Internal Window

r Dragarea __ lcon and text area

L.
‘ 3 Java Look and Feel

Users can rearrange minimized internal windows by dragging the textured
area. Users can click the icon and text area in a minimized internal window to
restore the window to its previous location and size.

For details on the keyboard operations appropriate for minimized internal
windows, see Table 14.

Secondary Windows

In MDI applications, secondary windows have the same appearance and
behavior as they do in non-MDI applications. Unlike internal windows,
secondary windows can move outside the backing window.

=== |If you are working with an MDI application using the Java look and
feel, the JDialog component can be used to create secondary windows.

Internal Utility Windows

An internal utility window (previously called a "palette window") is a type of
internal window that floats above other internal windows within the backing
window for an MDI application.

The following figure shows an internal utility window from a hypothetical
graphical interface builder. A set of buttons enables users to construct menus.

Figure 104 Internal Utility Window

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Title bar

Close contraol

E
|=| |7=| Buttons
=

Internal utility windows can contain any component. Users can close internal
windows, but they cannot resize, minimize, or maximize them. The title bars of
internal utility windows cannot contain text.

For keyboard operations for internal utility windows, see Table 14.

—# Provide a close control on all internal utility windows.

=== An internal utility window is a specific style of JInternalFrame
and, therefore, can be used only within a backing window. Use the client
properties mechanism to set the JinternalFrame.isPalette to true.

Window Titles

This section discusses conventions for window titles of both primary and
secondary windows. Italics indicate text you must replace; window titles
themselves do not use the italic font style.

Title Text in Primary Windows

The title text in a primary window should use the format Document or Object
Name - Application Name. Figure 105 shows the proper format for the window
title, with the document title appearing first. If the title is truncated, the most
important part of the title remains visible.

Figure 105 Proper Format for Window Title

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

File Edit Format Yiew Help

Bsee) [x/n]es b EEE

Sorne might argue that the optimal user interface is usually one that il
directly corresponds to o task model, But basing the user interface on a
task iz not always the correct answer either, for two reasons. First, the

user's task has been shaped by the toals that were used for it in the past, L
and blindly adapting the interface to the existing task can lock the user
into obsolete behaswior. Second, different users may operate in quite -
different work contexts and be served better by different interfaces.

iting new
I 1901 the Phelps tractor was introduced as o direct replacement for the
horse in farm work, The Fhelps tractor could be hitched to a carrage or
wagon, and farmers used a pair of reins to contral the tractor just as they
would control a horse, The tractor was steered by pulling on the

-

= In primary windows, begin the window title text with a name
describing the contents of the window, followed by a space, a hyphen,
another space, and the application name.

Title Text in Secondary Windows

The title text in secondary windows should use the format Descriptive Name -
Application Name. The Application Name is optional but should be included if
users might not otherwise recognize the source of the secondary window.

<= In secondary windows, begin the window title with a name describing
the contents of the window. Follow that text with the application name
when users might be unclear which application is associated with the
window.

The secondary window in the following figure is often displayed by the
MetalButler calendar program while users are focused on some other task.
Therefore, its window title includes the application name.

Figure 106 Secondary Window Title With Optional Application Name

Appointment - MetalButler |

Reminder

11:00 am- 12:00 noon
Humman Interface Staff meeting
Corthout conference roam

Close

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The secondary window shown in Figure 107 is displayed immediately after a
user tries to save a new file with an existing name. The source of the alert box
is clear. Therefore, the window title does not include the application name.

(®) Click here to view the corresponding code for Figure 107 (also

available on the book"s companion CD-ROM).
Figure 107 Secondary Window Title Without Optional Application Name

= wWarning I

File Exists
Afile named "patience.qif” already exists.
% Replace existing file?

| Replace || Cancel |

Title Text in Internal Windows

The title text in internal windows should use the format Descriptive Name or
Descriptive Name - Tool Name. For an example of the title text in an internal
window, see Figure 102.

= In an internal window, provide the window title with a name
describing the contents of the window. Since the backing window makes the
application name clear, you can omit the application name. If there is
a tool within the application, you can use the format Descriptive Name
- Tool Name.

8: Dialog Boxes and Alert Boxes

A dialog box is a secondary window in which users perform a task that is
supplemental to the task in the primary window. For example, a dialog box
might enable users to set preferences or choose a file from the hard disk. A
dialog box can contain panes and panels, text, graphics, controls (such as
checkboxes, radio buttons, or sliders), and one or more command buttons.
Dialog boxes use the native window frame of the platform on which they are
running (in both non-MDI and MDI applications).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

An alert box is a secondary window that provides for brief interaction with
users. Alert boxes present error messages, warn of potentially harmful actions,
obtain a small amount of information from users, or display messages. The
basic alert box has a symbol that identifies the type of the alert, a textual
message, and one or more command buttons. The layout of these
components is determined by the JFC.

Figure 108 Dialog Box and Alert Box

Dialog box
y - r ion COE)
| Swatches 'I:[SB| RGE
Mert box
{on Microsoft
Windows)
[
aEmmE] Error B7 - MetalEdit [%]
2 N] 5 2
_hj a } IE zgmﬁ. Out of Paper
- 2] lﬂzﬁ;iﬂﬂ?'i;d ilg% To continue printing, add more paper to the printer
15 5 2 O - = T and press Continue.
Continue | cancel || Help
Preview
s] - [Sample Text Sample Text
. . . Cample Text Sample Text -
OK Cancel || Help

= Ifyou are designing an MDI application, use the JFC-supplied dialog
boxes and alert boxes. Because these secondary windows use the platform®s
native windows (and not the JFC-supplied internal window), they are free
to move outside the backing window.

Modal and Modeless Dialog Boxes

Dialog boxes can be modal or modeless. A modal dialog box prevents users
from interacting with the application until the dialog box is dismissed. However,
users can move a modal dialog box and interact with other applications while
the modal dialog box is open. This behavior is sometimes called
"application-modal.”

A modeless dialog box does not prevent users from interacting with the
application they are in or with any other application. Users can go back and
forth between a modeless dialog box and other application windows.

—# Use modeless dialog boxes whenever possible. The order in which
users perform tasks might vary, or users might want to check information

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

in other windows before dismissing the dialog box. Users might also want
to go back and forth between the dialog box and the primary window.

—# Use modal dialog boxes when interaction with the application cannot
proceed while the dialog box is displayed. For example, a progress dialog
box that appears while your application is loading its data might be a
modal dialog box if users can do nothing useful during the loading process.

Dialog Box Design

Figure 109 illustrates dialog box design guidelines for the Java look and feel.

The dialog box in the figure has a title in the window's title bar, a series of user
interface elements, and a row of command buttons. The default command
button is the OK button, indicated by its heavy border. The underlined letters
are mnemonics, which remind users how to activate components by pressing
the Alt key and the appropriate character key. The Ruler Units noneditable
combo box has initial keyboard focus, indicating that the user's next
keystrokes will take effect in that component. For a discussion of the text that
should appear in dialog box titles, see Title Text in Secondary Windows.

& Click here to view the corresponding code for Figure 109 (also

available on the book"s companion CD-ROM).

Figure 109 Sample Dialog Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

| Dialog boe title
[0 ==——— Preferences ———
| Initial keyboard focus
Ruler Units: | Centimeters I
Left Margin: | 25cm Right Margin: | 25 cm |
SUorE [1]' Hidden Text —| Liser interface elements

[¥] Margins J

Default Font: |Palatinu v| Size: 12 j
Time Format:) 1:15 P.M. —‘

i 13:15 P.M.
1 1:15:20 P.M. J
1 13:15:20 P.M.

Stationery: gramss i etalEditiStationery Browse ... |—— Standalane cormmand buttan

fnermonic

| ok || cancel || Help |_:|—Cummandbuttnnrw.f

Default command button

= In dialog boxes, include mnemonics for all user interface elements
except the default button and the Cancel button.

= When opening a dialog box, provide initial keyboard focus to the
component that you expect users to operate first. This focus is especially
important for users who must use a keyboard to navigate your application.

@& Consider the effect of internationalization on your design. Use a

layout manager, which allows for text strings to become bigger or smaller
when translated to another language.

For guidelines for the spacing between JFC components, see Layout and
Visual Alignment. For more information on internationalization, see Planning
for Internationalization and Localization. For details on keyboard support for
navigating through dialog boxes, see Table 23. For information on how to
capitalize text in dialog boxes, see Text in the Interface.

Tab Traversal Order

Tab traversal order is the order in which the components in a dialog box
receive keyboard focus on successive presses of the Tab key. If users press
the Tab key when keyboard focus is on the last component in the dialog box,
you should return keyboard focus to the first component.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 110 shows the tab traversal order that the designer has set for this
preferences dialog box.

© Click here to view the corresponding code for Figure 110 (also

available on the book"s companion CD-ROM).

Figure 110 Tab Traversal Order in the Sample Dialog Box

[0 =——"-=Preferenres 0————
| Tab traversal bagins hare
Ruler Units: | Centgneters - |"1
Left Margin: 2.5 id B A Ccm
Show: Hidden Text
Margins
Default Font: alatino - | Size: ¢ j
Tirme Format: 1:15 P.M.

13:15 PM. Keyboard focus returns
1:15:20 P.M. to first component

13:15:20 P.M.

Stationery:

|‘ OK I.Cancel |i‘uelp |

—» Specify a logical tab traversal order for the user interface
elements in a dialog box. The traversal order should match the reading
order for your application®s specified locale. For example, in English,
the traversal order is left to right, top to bottom. By default, the
traversal order is the sequence in which you added the components to the
dialog box.

=== The setNextFocusableComponent method from JComponent can be used
to specify the next component to receive keyboard focus. If a component
is unavailable, it is skipped in the tab traversal order.

Single-Use and Multiple-Use Dialog Boxes

Dialog boxes can be designed for single or multiple use. This usage
determines the combinations of command buttons that should appear in the
dialog box.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e If users are likely to perform one operation with the dialog box and then dismiss it,
a single-use dialog box is appropriate. The command buttons (except Help) in a
single-use dialog box perform their operations and then close the window. An
example of a single-use dialog box is a systems settings dialog box.

e If users might want to perform several operations with the dialog box before
dismissing it, a multiple-operation dialog box is appropriate. The command
buttons (except Close) in a multiple-use dialog box perform their operations and
leave the window open. An example of a multiple- use dialog box is a
sophisticated find-and-replace dialog box that provides command buttons for Find,
Find Next, Replace, and Replace All.

Command Buttons in Dialog Boxes

In dialog boxes, you can place command buttons alone or in a command
button row at the bottom of the dialog box, as shown in Figure 109. This
section provides some general guidelines about the uses and placement of
command buttons in dialog boxes.

—# Place command buttons that apply to the dialog box as a whole in
the command button row at the bottom of the dialog box. This includes all
buttons that dismiss the dialog box as one of their actions.

= Align buttons in the command button row along the lower-right edge
of the dialog box. (The alignment of the command button row in alert boxes,
including those supplied by the JFC, is different from the alignment in
dialog boxes.)

=~ Place command buttons that apply to one or a few components next
to their associated components. For instance, place a Browse button at
the trailing edge of the text field i1t fills in.

For general information on command buttons, see Command Buttons. For
guidelines on the spacing of command buttons, see Command Button Spacing
and Padding. For keyboard operations appropriate to command buttons, see
Table 17.

OK and Cancel Buttons

The OK and Cancel buttons work well in single-use dialog boxes (for instance,
those in which users specify options or settings). OK instructs the system to
apply and save the settings, whereas Cancel instructs the system to ignore
any changed settings. In most cases, OK is the default button. OK and Cancel

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

are appropriate in both modal and modeless dialog boxes. The following figure
shows a preferences dialog box with OK, Cancel, and Help buttons.

Figure 111 Dialog Box With OK, Cancel, and Help Buttons

Preferences - Metallyne E |
Display Toolbar: 1 Image
Language) Text
Fonts ® Image & Text
Security Links Expire: @ MNewver Hew Link: e
Cookies [After | 1\Week v| Used Link: [N
Qaclfe Initial Page: = Java Developer Connection

_Proxies) Home Page | hitp:itwn.mietaldyne.com |
Download
Java

| 0K | | Cancel | | Help |

= When users click the OK button in a dialog box, save the settings
or carry out the commands specified and close the dialog box. Whenever
possible, provide the button with a command name that describes the action
(such as Print or Find) instead of OK.

= When users click the Cancel button in a dialog box, close the window
and restore the settings in the dialog box to the state they were in when
the dialog box was opened.

>z Do not add a mnemonic to the Cancel button.

=== The Cancel button should be activated when users press the Escape
key. The Cancel button does not need keyboard focus for this interaction.
The Cancel button and its keyboard equivalent (Escape) are not built into
the JFC; you must implement them yourself.

Apply and Close Buttons

The Apply and Close buttons work well in multiple-use dialog boxes (those that
remain open for repeated use), as shown in the properties dialog box in the
following figure. Apply and Close often appear together in modeless dialog
boxes.

Figure 112 Dialog Box With Apply and Close Buttons

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Text Properties — MetalEdit

Eont: | Helvetica v|
Size: 18 ﬂ
Style: [v| Bold) Mormal
[_] Kalic) Superscript

[_| Underline @ Subscript

| Apphy || Close |

—# Use the Apply button to carry out the changes users specify in a
dialog box without closing the window.

—# In amultiple-use dialog box that is used to perform an action, use
a specific action name (such as "Find™) instead of "Apply." More than one
kind of action or apply button might be appropriate--for instance, "Find"
and "Replace.”

= Use aReset button to restore the values in a dialog box to the values
specified by the last Apply command. If users have not activated Apply,
restore the values in effect when the dialog box was opened. Do not close
the dialog box when users choose Reset. Place a Reset button between the
Apply and Close buttons.

= Include a Close button in a dialog box with an Apply (or other action)
button. Close dismisses the dialog box without applying changes.

> Because a Cancel button might make users think they can apply
changes temporarily and then rescind them, do not use a Cancel button in
a dialog box that includes an Apply button. Use a Close button instead.

IT the user has made changes in a dialog box and clicks Close before
clicking the Apply button, display a Warning alert box. The alert box
should ask the user whether to apply the changes before closing, discard
changes, or cancel the close operation.

Close Buttons

The Close button is commonly used to dismiss simple secondary windows,
such as an Info alert box. The Close button is also commonly used to dismiss
dialog boxes in which user actions take effect immediately. A Close button is
appropriate in both modal and modeless dialog boxes.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The following dialog box enables users to specify properties such as the width
and height of a rectangle. Changes take effect immediately. The dialog box
includes a Close button that users can click to dismiss the dialog box.

Even though the Close button has a mnemonic (usually C), you can also have
the Close button respond to the Escape key.

Figure 113 Dialog Box With a Close Button

O Rectangle — Properties

Wi dth: 34| Line Width: 2
Height:| 122 Rotation: 45
Edge: [N Fili: I

<= Never use an OK button in a window that has a Close button.

== When users click the Close button, dismiss the dialog box and do
not make additional changes to the system.

Help Buttons

You can include a Help button in any dialog box. A Help button enables users
to obtain additional information about the dialog box. For example, when users
click Help in the Error alert box in Figure 124, the application opens a window
with additional information on the cause of the error.

= When users click the Help button, open an additional window that
displays the help information. Avoid removing or obscuring information
in the window where users clicked Help.

> Place the Help button at the trailing edge of a group of command
buttons. For languages that read from left to right, the Help button should
be the rightmost button.

Default Command Buttons

The default command button is the button that the application activates when
users press Enter (or Return). The JFC gives the default command button a

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

heavier border than other command buttons. In most cases, you should make
the action that users are most likely to perform the default button, as shown
with the OK button in the following figure. The default button does not need to
have keyboard focus when users press Enter.

Figure 114 Dialog Box With a Default Command Button

Scale [
I Default command
| 0K || Cancel | button

When keyboard focus is on a component that accepts the Enter key, such as a
multiline text area, the default button is not activated when users press the key.
Instead, the insertion point moves to the beginning of a new line. To operate
the default button, users must move focus to a component that does not
accept Enter or press Ctrl-Enter.

—# If a dialog box has a default button, make it the first command
button in the group. For example, in languages that read from left to right,
the default button is the leftmost button.

= Since the Enter (and Return) key is already supplied by the JFC for
keyboard access, do not add a mnemonic for the default command button.

You are not required to have a default command button in every dialog box
and alert box. A command that might cause users to lose data should never be
the default button, even if it is the action that users are most likely to perform.
The alert box in Figure 115 asks users if they want to replace an existing file.
The alert box has Replace and Cancel buttons, neither of which is the default
command button. Even though the Replace button has focus, it cannot be
activated with the Enter key; it must be activated with the spacebar. This
approach gives the user time to reconsider a hasty, automatic confirmation.

© Click here to view the corresponding code for Figure 115 (also

available on the book"s companion CD-ROM).

Figure 115 Alert Box Without a Default Button

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

[=] Warning l

File Exists
Afile named "patience.qif” already exists.
% Replace existing file?

| Replace || Cancel |

Common Dialog Boxes

The find, login, preferences, and progress dialog boxes are common in many
applications. These dialog boxes are not supplied by the JFC. The following
sections show simple versions of these dialog boxes that are consistent with
the Java look and feel. You can adapt the designs for these dialog boxes to
Suit your needs.

Find Dialog Boxes

A find dialog box is a multiple-use window that enables users to search for a
specified text string. In most cases, you should make this dialog box modeless
so users can perform multiple searches in succession. An example is shown in

Figure 116.

& Click here to view the corresponding code for Figure 116 (also

available on the companion book®s CD-ROM).

Figure 116 Sample Find Dialog Box

binet: || — | Editable text field

vl Match Case) Start at Top
] WholeWord % Wrap Aroundl

|_Fina_| | Close

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Login Dialog Boxes

A login dialog box (shown in Figure 117) enables users to identify themselves
and enter a password. Depending on where you use this single-use dialog box
in your application, you can make it modal or modeless.

& Click here to view the corresponding code for Figure 117 (also

available on the book®"s companion CD-ROM).

Figure 117 Sample Login Dialog Box

O

Log In - Metal Butler

Login Hame: | phyllis3

Password: | s

- Password field with default
masking charmcter

I,

| Lo In || Cancel || Help |

For a discussion of effective interaction in login dialog boxes, see Design for
Smooth Interaction.

Preferences Dialog Boxes

A preferences dialog box (as shown in Figure 118) enables users to view and
modify the characteristics of an application.

As a general rule, you should make this single-use dialog box modeless.
@ Click here to view the corresponding code for Figure 118 (also
available on the book®"s companion CD-ROM).

Figure 118 Sample Preferences Dialog Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

[0 =—— Preferences

Ruler Units: | Centimeters - |

Left Margin: | 25cm Right Margin: | 2.5 cm

Show: [_] Hidden Text
[v| Margins

Default Font: |Palatinu b4 SiFe: 12 j

Time Format: ' 1:15 PM.
® 13:15 P.M.
i 1:15:20 P.M.
1 13:15:20 P.M.

Stationery: grams etalEditiStationerny EBrowse ...

| 0K || Cancel || Help |

If your preferences dialog box is very complex, you can simplify it by using a
tabbed pane to organize the options, as shown in Figure 111.

Progress Dialog Boxes

A progress dialog box provides feedback for long operations and lets users
know that the system is working on the previous command.

The progress dialog box in Figure 119 monitors the progress of a file copy
operation. The dialog box includes the JFC progress bar, a command button
that users can click to stop the process, and labels to further explain the
progress of the operation. If users can perform other tasks while the operation
is in progress, you should make a progress dialog box modeless.

& Click here to view the corresponding code for Figure 119 (also

available on the book"s companion CD-ROM).

Figure 119 Sample Progress Dialog Box

Fitter in Progress - MetalPix

Progress bar

Label — hiroshige.gif
I | Stop — Comrmand buttaon
— Ahout 25 seconds remaining

2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

s Display a progress dialog box (or supply a progress bar elsewhere
in your application) if an operation takes longer than 6 seconds.

= 1T a progress bar dialog box includes a button to stop the process,
place it after the progress bar. (In languages that read from left to right,
the button appears to the right of the progress bar.) If the state will
remain as it was before the process started, use a Cancel button. If the
process might alter the state as it progresses (for example, deleted
records will not be restored), use a Stop button. If stopping the process
could lead to data loss, give users a chance to confirm the Stop command
by displaying a Warning alert box.

<z Close a progress dialog box automatically when the operation is
complete.

<rIf delays are a common occurrence in your application (for example,
a web browser), build a progress bar into the primary window so that you
don®t have to keep displaying a progress dialog box.

& Because translation of the word "Stop"™ can result in words with

subtly different meanings, point out to your translators the specialized
meaning of the Stop button in a progress dialog box. Stop indicates that
the process might leave the system in an altered state, whereas Cancel
means that no change in the system state will occur.

Color Choosers

A color chooser provides one or more content panes from which users can
select colors and a preview mechanism by which users can view the selected
colors in context. You can display a color chooser in a dialog box, as shown in
the following figure. The three command buttons (OK, Cancel, and Help) are
part of the dialog box, not the color chooser. (A color chooser can also be
implemented in a multiple-use dialog box.)

Figure 120 JFC-Supplied Color Chooser

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Dialog box title bar

I|Ewat:hus 'HSE RGE

Content
Recant; panel

RS CTH]
e s O @]
o -ﬁ FE— W Color chooser

Preview

o n [Sample Text Sample Toxt Preview
Sample Text Sample Text panel
. | . Eample Text Sample Text -

oK Cancel | Help | {- Dialog box buttons

As supplied by the JFC, the color chooser offers users three methods for
selecting a color:

e Swatches. Users can select a color from a palette (as shown in the preceding
figure).

e HSB. Users can choose the hue, saturation, and brightness values for a color.

¢ RGB. Users can choose the red, green, and blue values for a color.

In addition, the color chooser offers a preview panel within the dialog box.

If your application requires a different method for choosing colors, you can add
a content pane with that feature. You can also remove existing content panes.
If you use only one content pane, the tabs disappear. In addition, you can
specify your own preview panel or alter the supplied one.

== The color chooser is a panel. The color panel can be inserted in
a dialog box by using the JDialog container. This operation 1is
accomplished with the static method CreateDialog on the JColorChooser
container. Alternately, this can be done with the ShowDialog method, which
creates, displays, and dismisses the dialog box.

Alert Boxes

An alert box, which conveys a message or warning to users, provides an easy
way for you to create a secondary window. The JFC provides four types of
alert boxes: Info, Warning, Error, and Question. Each alert box is provided with

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

a symbol that indicates its type. You provide the title, the message, and the
command buttons and their labels.

The layout of an alert box is provided in the JFC, so you don't have to worry
about the spacing and alignment of the message, symbol, and command
buttons. If you provide additional components, such as a text field, follow the
guidelines in Between-Component Spacing Guidelines. You can make an alert
box modal or modeless.

Figure 121 Standard Components in an Alert Box

Alert Title - Application Mame |
Brief Header)
The rermainder of the message goes here in plain fant. —Message with bald
| heading

Symbol that indicates
alert box ty pe

| Button 1 || Button 2 |] Cornmand button s
aligned with le

ligned with left

edge of message text

= Inanalertbox, begin your message with a brief heading in boldface.
Start the body of the message on a separate line.

—# If appropriate, provide a Help button in an alert box that opens
an additional window with more information. Do not close the alert box
when users click the Help button.

=== In the message for an alert box, the ... tags can be used
to render a heading in boldface. The
 tag can be used to create a line
break between the heading and the message body.

=== An alert box is created using the JOptionPane component.

For guidance on window title text for alert boxes, see Title Text in Secondary
Windows.

Info Alert Boxes

An Info alert box presents general information to users. The symbol in the Info
alert box is a blue circle with the letter i. The following dialog box, which
contains a schedule reminder, provides information about a meeting.

Figure 122 Info Alert Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Appointment - MetalButler |

Reminder

J%g 11:00 arn- 12:00 nooh
Human Interface Staff meeting

Corthout conference room

Close

= Provide a Close button to dismiss an Info alert box. Provide
additional command buttons, such as a Help button, if needed.

Warning Alert Boxes

A Warning alert box warns users about the possible consequences of an
action and asks users for a response. The symbol in the Warning alert box is a
yellow triangle with an exclamation point. The alert box in Figure 123 warns
users that a file save operation will replace an existing file.

(&) Click here to view the corresponding code for Figure 123 (also

available on the book"s companion CD-ROM).

Figure 123 Warning Alert Box

[=] Warning

File Exists
Afile named "patience.qif” already exists.
% Replace existing file?

Replace || Cancel |

<> Keep the message in a Warning alert box brief, and use terms that
are familiar to users.

= Include at least two buttons in a Warning alert box: one button to
perform the action and the other to cancel the action. Provide the command
buttons with labels that describe the action they perform.

> Do not make a command button whose action might cause loss of data
the default button. Users might press the Enter (or Return) key without

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

reading the message. IT the action that could result in data loss is the
most common action, do not provide a default button. (For an example of
a dialog box with this situation, see Figure 115.)

Error Alert Boxes

An Error alert box reports system and application errors to users. The symbol
in the Error alert box is a red octagon with a rectangle. The following Error alert
box reports that a printer is out of paper and provides users with three options.
Clicking the Continue button resumes printing and dismisses the alert box.
Clicking the Cancel button terminates the print job and dismisses the alert box.
Clicking the Help button opens a secondary window that gives background
information about the error.

Figure 124 Error Alert Box

Error number
in title

Error 87 - MetalEdit]|

Out of Paper
To continue printing, add more paper to the printer
and press Continue.

|Cuntinue || Cancel || Help |

= Include an error number in the title bar of an Error alert box. The
error number is helpful for users in obtaining technical assistance,
especially i1f the error message is localized in a language not spoken by
the technical support personnel.

= In the message of an Error alert box, explain what happened, the
cause of the problem, and what the user can do about it. Keep the message
brief and use terms that are familiar to users.

= If appropriate, provide a Help button in an Error alert box to open
a separate window that gives background information about the error. Do
not close the alert box when users click the Help button.

= If possible, provide buttons or other controls to resolve the error
noted in the Error alert box. Label the buttons according to the action
they perform. 1T users cannot resolve the error from the alert box, provide
a Close button.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Question Alert Boxes

A Question alert box requests information from users. You can add
components to this alert box (for example, a text field, list box, or combo box)
in which users can type a value or make a selection. The layout of the standard
components (the symbol, message, and command buttons) is provided by the
JFC. If you add components, follow the guidelines in Between-Component
Spacing Guidelines. The symbol in the Question alert box is a green rectangle
with a question mark.

The following Question alert box includes a label and text field in addition to
the standard components.

Figure 125 Question Alert Box

Narman Nopied - Ketsl Database

Fgé} Fnter your mama, Mussng
d — label
Hasmis || Tt Field
| (K | cancal | Help

When you add components to a Question alert box, align them with
the leading edge of the message. For languages that read from left to right,
the leading edge is the left edge.

9: Menus and Toolbars

A menu displays a list of options (menu items) for users to choose or browse
through. Typically, menus are logically grouped and displayed by an
application so that a user need not memorize all available commands. Menus
in the Java look and feel can appear "sticky"--that is, they remain posted on
screen after users click the menu title. Usually the primary means to access
your application’'s features, menus also provide a quick way for users to see
what those features are.

In Java look and feel applications, you can provide three kinds of menus:
drop-down menus, submenus, and contextual menus. A drop-down menu

is a menu whose titles appear in the menu bar. A submenu appears adjacent
to a menu item in a drop-down menu; its presence is indicated by an arrow
next to the item. A contextual menu displays lists of commands, settings, or

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

attributes that apply to the selected item or items under the pointer. Contextual
menus can also have submenus.

Figure 126 Drop-down Menu, Submenu, Contextual Menu, and Toolbar

Drap-down menu Submenuy Contextual menu
Eile | . Figure 1. the engineering model haz
Hew e File Edit Fopmat | Wiew Help | the weer interfoce comzizts of knobs
' | contrast, f et
Cipen.... o0 Font k| | e Cut il
Close 4l She b ¥ Bald CB Irﬁ:silmr-ﬂ Lopy Eii
- - cid-
Save CHil-3 Skze 'l 3 Halic S coid water Paste
Sowe s wAlignLeft iy | Underline o theengint Check Spelling.. |
— 7 Align Center v &
';“::5““” .) Align Right 1 ¢
- il
E it

EEmEE &mEe

A toolbar is a collection of frequently used commands or options that appear
as a row of toolbar buttons. Toolbars normally appear horizontally beneath a
primary window's menu bar, but they can be dragged anywhere in the window
or into their own window. Toolbars typically contain buttons, but you can
provide other components (such as text fields and combo boxes) as well.
Toolbar buttons can contain menu indicators, which denote the presence of a
menu. Toolbars are provided as shortcuts to features available elsewhere in
the application, often in the menus.

Menu Elements

Figure 127 shows an example of a drop-down menu that is activated and
displayed. Within the Format menu, the Style item is activated; a submenu
appears that includes the Bold, Italic, and Underline checkbox menu items.
(The Italic checkbox menu item is highlighted as if the pointer is positioned
over it.) In the Java look and feel, menus use a highlight color (primary 2) for
the background of activated menu titles and menu items.

A separator divides the menu items for specifying font, style, and size from the
alignment radio button items. Keyboard shortcuts appear to the right of the
frequently used menu items, and mnemonics are included for each menu title
and menu item.

@ Click here to view the corresponding code for Figure 127 (also

available on the book"s companion CD-ROM).

Figure 127 Menu Elements

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

fflenu title
File Edit |Format | View Help - tenu bar
Menu itern —I - Font b | [Checkbox meny itemn
Style ¥ ¥ Bold Ctrl-B+—— Keyboard shortout
Size ¥ [0 Kalic Ctrl-l
Separator ® Align Left coiL | 2 cirll) —— Unavailable meno tem
Fadio I_:-uttu:un —_1 Align Center ctil-E
rnenuy rtem — Align Right ctl-R
| féinernonic

Menu Bars

The menu bar appears at the top of a primary window and contains menu titles,
which describe the content of each menu. Menu titles usually appear as text;
however, it is possible to use a graphic or a graphic with text as a menu title.
Each menu title needs a mnemonic. See Mnemonics for details.

A drop-down menu appears when users choose a menu title in the menu bar.

—# Use a single word for each menu title.

= Use menu titles that make it easy for users to determine which menu
contains the items of interest to them. For example, the Format menu
typically contains commands that enable users to change the formatting
of their documents or data.

Be sure to include mnemonics for every menu title in your menu bar.

> Do not display menu bars in secondary windows.

—# Ifyou are writing an applet that runs in the user®"s current browser
window (with the browser menu bar), do not display your own menu bar in
the applet. Although applets displayed inside a browser window can have
their own menu bars in the JFC, users are often confused when both the
browser window and the applet have menu bars. If your applet requires a
menu bar, display the applet in a separate browser window that does not
have i1ts own menu bar or navigation controls.

= Even on Macintosh systems, which ordinarily place a menu bar only
at the top of the screen, menu bars are displayed in windows for a Java
look and feel application. On the Macintosh, the screen-top menu bar
remains, but, since all the application menus are in the windows, the only
command in the screen-top menu bar is Quit in the File menu. (Exit also
appears in the File menu of primary windows.)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Drop-down Menus

The menu bar contains all of the drop-down menus and submenus in your
application. Each menu in the menu bar is represented by its menu title. The
tittes describe the content of each menu.

Users can display menus in two ways:

e To post a menu (that is, to display it and have it stay open until the next click),
users click the menu title. Users can then move the pointer over other menu titles
to view other menus.

e To pull down a menu, users press the mouse button when the pointer is over the
menu title. The menu title is highlighted, and the menu drops down. When users
choose a command and release the mouse button, the menu closes.

For details on keyboard operations in menus, see Table 20.

Submenus

A submenu is a menu that users open by highlighting a menu item in a
higher-level menu. The title for a submenu is its menu item in the higher level
drop-down menu. Sometimes you can shorten a menu by moving related
choices to a submenu. Submenus (such as the Style submenu shown in the
following figure) appear adjacent to the submenu indicator. For instance, the
Style item opens a submenu consisting of three items: Bold, Italic, and
Underline. Note that the items in the Style submenu include both keyboard
shortcuts and mnemonics.

Users display submenus by clicking or by dragging over the menu item in the
higher-level menu item that is the submenu’s title. In Figure 128, the first item
in the submenu aligns with the submenu indicator, slightly overlapping the
higher-level drop-down menu. Just as in other menus, items in the submenu
are highlighted when the user moves the pointer over them.

& Click here to view the corresponding code for Figure 128 (also

available on the book"s companion CD-ROM).

Figure 128 Menu ltem With Its Submenu

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Fu[mat| Subrmenu title
Font - Subrmenu indictor
Style — ¥ ¥ Bold Ctil-B
Size ¢ O halic il | — Submenu

® Align Left ey |2 Underline Ctl-I

O Align Center cil-E e Keyboand shorteut

2 Align Right iR iin ermon ic

For a list of keyboard operations in submenus, see Table 20.

== Because many people (especially novice users, children, and older
people) find submenus difficult to use, minimize the use of submenus,
especially with these populations. If at all possible, avoid using a

second level of submenus. If you want to present a large or complex set
of choices, display them in a dialog box.

E=> Submenus are created using the JMenu component.

Menu ltems

A simple menu item consists of the command name, such as Undo.

When a menu item is available for use, its text is displayed in black, as shown
in Figure 129.

© Click here to view the corresponding code for Figure 129 (also

available on the book"s companion CD-ROM).

Figure 129 Typical Menu Items

Edit |
failable item Undo Ctrl-Z
Redo Ctrl-
cut Ctrl-
Highlighted itern —= Copy Ctrl-C
Paste Ctrl-wf
Eind... Ctrl-F
Linavailable itern ——
Select All i

When users position the pointer over an individual item within a menu, the
menu item (if available) is highlighted.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Users can activate menu items in two ways:

e In a posted menu, users click a menu item to activate it and close the menu.
e In a pulled-down menu, users drag over a menu item to highlight it. Releasing the
mouse button activates the command and closes the menu.

Keyboard shortcuts and mnemonics can also be used to activate menu items.
For details, see Keyboard Shortcuts and Mnemonics.

For a list of keyboard operations for menu items, see Table 20.
Available and Unavailable Items

When menu items do not apply to the current context, they are dimmed and
cannot be activated. Keyboard navigation skips over them. Here are some
guidelines for handling available and unavailable menu items in your
application.

= If an application feature is not currently applicable, make the
corresponding menu item unavailable and dim its text. For example, the
Undo command might not be available until the user has made a change In
a document window.

= If all the items in a menu are unavailable, do not make the menu
unavailable. If the menu itself is still available, users can display the
menu and view all its (unavailable) items. Similarly, if all the items
in a submenu are currently not available, do not make the original menu
title unavailable.

Composition and Construction of Items

Here are some recommendations for the use of concise language, consistent
capitalization, and keyboard operations in menu items.

—# Make your menu items brief. Menu items can be verb phrases, such
as Align Left. They can also be nouns, such as Font, particularly when
they display a submenu or a dialog box.

2z Never give a menu item the same name as 1ts menu title. For example,
an Edit menu should not contain an Edit menu item.

—# Use headline capitalization for menu items.

== Include mnemonics for all menu items.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

—# Offer keyboard shortcuts for frequently used menu items.

—# Use the same keyboard shortcut if a menu item appears in multiple
menus-- for instance, if a Cut item appears in a contextual menu as well
as iIn a drop- down Edit menu, use Ctrl-X for both.

== Use the same mnemonic if a menu item appears in several menus--for
instance, 1T a Copy 1tem appears in a contextual menu as well as in a drop-
down Edit menu, use copy for both.

Commonly used keyboard shortcuts and mnemonics are described in Table 12
and Table 13.

Ellipses in Iltems

Ellipses (...) are punctuation marks that indicate the omission of one or more
words that must be supplied in order to make a construction complete. In your
menus, you can use ellipses in a similar way: to indicate that the command
issued by a menu item needs more specification in order to make it complete.

2~ If a menu 1tem does not fully specify a command and users need a
dialog box to finish the specification, use an ellipsis after the menu
item. For example, after choosing Save As..., users are presented with
a file chooser to specify a file name and location.

> Do not use an ellipsis mark simply to indicate that a secondary or
utility window will appear. For example, choosing Preferences displays
a dialog box; because that display is the entire effect of the command,
however, Preferences is not followed by an ellipsis.

Separators

A separator is a line graphic that is used to divide menu items into logical
groupings.

Two separators are shown in Figure 130.
& Click here to view the corresponding code for Figure 130 (also
available on the book"s companion CD-ROM).

Figure 130 Separators in a Menu

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Edit |
Undo Ctrl-Z
Redo [SIS Separators
cut Ctrl- X
Copy Ctil-C
Paste Ctrl-W
Find... Ctrl-F
Select All i

Users can never choose a separator.

You can use separators to make lengthy menus easier to read. For instance, in
the typical File menu, shown in Figure 134, the commands that affect saving
are separated from those that are relevant to printing.

< Use separators to group similar menu items in a way that helps users
find items and better understand their range of choices.

= While separators serve important functions on menus, avoid using
them elsewhere in your application. Instead, use blank space or an
occasional titled border to delineate areas in dialog boxes or other
components.

== If amenu is or has the potential to become very long (for instance,
in menus that present lists of bookmarks or email recipients), display
the menu choices in multiple columns.

Menu Item Graphics

You can add application graphics before the leading edge of menu items in
your application, as shown in the following figure. Such graphics should
correspond to toolbar button graphics in your application.

Figure 131 Menu Item Graphics in a Menu

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

File |

(3 New Crl-H

= Open... Ctrl-0
Close Ctrl-

Save Crl-s

[Save As...

& Page Setup

Ly Print... Ctrl-F
Exit

> Provide menu item graphics when there are corresponding toolbar
button graphics in your application. The graphics help users associate
the toolbar button with the corresponding menu command.

Checkbox Menu Items

A checkbox menu item is a menu item that appears with a checkbox next to it
to represent an on or off setting. A check mark in the adjacent checkbox
graphic indicates that the attribute associated with that menu item is turned on.
A dimmed checkbox menu item shows a gray box (checked or unchecked) that
indicates that the setting cannot be changed. The following figure shows
checked, unchecked, and unavailable menu items.

Figure 132 Checkbox Menu ltems

MBold ———— "On* itemn
O falic ———— "0ff* item
[0 Underline

—— Unavailable tem

You can use checkbox menu items to present users with a nonexclusive
choice.

For a list of keyboard operations for checkbox menu items, see Table 20.

—r~ Use the standard checkbox graphic for checkbox menu items.

== Use checkbox menu items with restraint. As with all menu items,
after users choose a checkbox menu item, the menu is dismissed. To choose
another item, users must reopen the menu. If users must set more than one
or two related attributes, place the checkboxes in a dialog box (or provide
a utility window or toolbar buttons for the attributes).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Use checkbox menu items instead of the toggle menu items often used
on other platforms to indicate choices you can turn on or off. These toggle
menu 1tems (for instance, commands like Italics On and ltalics Off)
confuse users. It is unclear if the commands are telling users the current
state of the selected object or the state they can change the object to
by choosing the menu item.

Radio Button Menu Items

A radio button menu item is a menu item that appears with a radio button next
to it to represent an off or on setting. Each radio button menu item offers users
a single choice within a set of radio button menu items, as illustrated in the
following set of alignment options.

Figure 133 Radio Button Menu ltems

® Align Left ———— "On*item
0 Align Center ————— “ff* item
] — Linavailable item

For a list of keyboard operations for radio button menu items, see Table 20.

—# To indicate that the radio button items are part of a set, group
them and use separators to separate them from other menu items.

Common Menus

Several drop-down menus, such as File, Edit, Format, View, and Help, occur in
many applications. These menus are not supplied by the JFC. The following
sections show simple versions of these menus that are consistent with the
Java look and feel. You can adapt these menus to suit your needs.

= If your application needs the commonly used menus, place the menu
titles in thisorder: File, Edit, Format, View, and Help. 1T needed, insert
other menus between the View and Help menus (and sometimes between Edit
and View).

Typical File Menu

The first menu in the menu bar displays commands that apply to an entire
document or the application as a whole. (The first menu it the leftmost in
locales with left-to-right reading order.) Typically, this is called the File menu,

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

but in some cases another title might be more appropriate. Figure 134
illustrates common File menu items in order, with mnemonics and keyboard
shortcuts.

You can add or remove menu items as needed.
& Click here to view the corresponding code for Figure 134 (also
available on the book"s companion CD-ROM).

Figure 134 Typical File Menu

File |
Hew Ctrl-M
Open... Ctil-0
Close Ctel-if
Save Ctrl-5
Save As...
Page Setup
Print... Ctrl-P
Exit

Place commands that apply to the document or the main object (or
the application as a whole) in the File menu.

= 1T your application manipulates objects that your users might not
think of as "files," give the File menu another name. Ensure that the name
corresponds to the type of object or procedure represented by an entire
window in your application. For example, a project management application
could have Project as its first menu, or a mail application could have
a Mailbox menu.

> \lhen the Close item dismisses the active window, close any dependent
windows at the same time.

= Provide an Exit item, which closes all associated windows and
terminates the application. (Be sure to use Exit, not Quit.)

Typical Edit Menu

The Edit menu displays items that enable users to change or edit the contents
of their documents or other data. These items give users typical editing
features that apply to multiple data types, like graphics and text.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 135 shows common Edit menu items in order, with mnemonics and
keyboard shortcuts.

Figure 135 Typical Edit Menu

Edit |
Undo Crl-Z
Redo Ctrl-v
Cut Ctrl-x,
Copy Ctrl-C
Paste Cotrl-W
Delete Delete
Find... Ctrl-F
Find Again ctil-c
Select All ca

—~ Place commands that modify the contents of documents or other data
in the Edit menu, including Undo, Redo, Cut, Copy, Paste, and Find.

=== The Swing Undo package can be used to provide Undo and Redo features.

Typical Format Menu

The Format menu displays items that enable users to change such elements in
their documents as font, size, styles, and other attributes.

Figure 136 shows some common Format menu items with their mnemonics.
& Click here to view the corresponding code for Figure 136 (also
available on the book"s companion CD-ROM).

Figure 136 Typical Format Menu

Format |
Font b
Style ¢ ¥ Bold Ctrl-B
Size ¥ [0 Ralic Ctrl-l

® AlignLeft i | - Underline iU

Z Align Center ctl-E
Z Align Right ctil-R

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Typical View Menu

The View menu provides ways for users to adjust the presentation of data in
the active window. For instance, the View menu in a network management
application might have items that enable users to view large or small icons for
network objects. Other applications might offer list views and details views.
The possibilities for view names depend on the objects in your application.

Figure 137 Typical View Menu

View |

® | arge lcons
' Small Icons
i List

C Details

Sort By...
Filter

Zoom In
Zoom Qut

Refresh Fa

> Because the View menu enables users to change only the view of the
data (and not the content) in the current primary window, ensure that the
commands in the View menu alter the presentation of the underlying data
without changing it.

Typical Help Menu

The Help menu provides access to online information about the features of
your application. This menu also provides access to the application's About
box, which displays basic information about the application. For details, see
Designing About Boxes.

Help menu items vary according to the needs of the application. If the help
system you are using includes a built-in search feature, you might want to
include an Index or a Search item. Additional items might include a tutorial,
bookmarks for your product's home page, a bug database, release notes, a
Send Comments item, and so forth.

Figure 138 shows common Help menu items (in the typical order) with their
mnemonics.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

© Click here to view the corresponding code for Figure 138 (also

available on the book®"s companion CD-ROM).

Figure 138 Typical Help Menu

Help |
Contents
Tutorial
Index
Search...

4 bo ut MetalE dit

= In your Help menu, allow access to online information about the
features of the application.

—# Place a separator before an About Application item that displays
a window with the product name, version number, company logo, product logo,
legal notices, and names of contributors to the product.

=== JavaHelp", a standard extension to the Java 2 SDK, can be used to
build a help system for your applications.

Contextual Menus

Contextual menus, sometimes called "pop-up menus," offer only menu items
that are applicable or relevant to the object or region at the location of the
pointer. The appearance of contextual menus in the Java look and feel is
similar to that of drop-down menus, including the display of mnemonics,
keyboard shortcuts, and submenus. Contextual menus do not have a menu
title.

& Click here to view the corresponding code for Figure 139 (also
available on the book"s companion CD-ROM).
Figure 139 shows a contextual menu offering editing commands.

Figure 139 Contextual Menu

Cut cir-x
Copy cCiil-C
Paste cCii-w

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Users can display a contextual menu by clicking or pressing mouse button 2
while the pointer is over an object or area that is associated with that menu.
(On the Macintosh platform, users click or press the mouse button while
holding down the Control key.)

For keyboard operations appropriate to contextual menus, see Table 20.

== Ensure that any features you present in contextual menus are also
available in more visible and accessible places, such as drop-down menus.
Users might not know contextual menus are available, especially if you
do not use contextual menus consistently throughout your application.

- Display keyboard shortcuts and mnemonics in contextual menus that
are consistent with their usage in any corresponding drop-down menus.

= Ifnoobject is selected when a contextual menu is displayed, select
the object under the pointer and display the contextual menu appropriate
to that object. For instance, if the object under the pointer is text,
display the contextual menu with editing commands.

= If the pointer is over an existing selection at the time the user
opens the contextual menu, display the menu that is associated with that
selection.

2~ If the pointer is not over the currently selected object when the
user opens the contextual menu, create a new selection at the point where
the user pressed the mouse button. Display the contextual menu that is
appropriate to the object that is beneath the pointer.

IT the user opens a contextual menu when the pointer is over an area
that cannot be selected, such as the background of a container, remove
any existing selection and display the contextual menu for the container.

=== Contextual menus are created using the JPopupMenu component.

Toolbars

A toolbar provides quick and convenient access to a set of frequently used
commands or options. Toolbars typically contain buttons, but other
components (such as text fields and combo boxes) can be placed in the
toolbar as well. An optional, textured "drag area" on the toolbar indicates that
users can drag the toolbar anywhere in the window or into a separate window.
The drag area is on the leading edge when the toolbar is horizontal and on the
top when it is vertical.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 140 shows a toolbar with a drag area on the leading edge. For another
example, see Figure 8.

© Click here to view the corresponding code for Figure 140 (also

available on the book"s companion CD-ROM).

Figure 140 Horizontal Toolbar

Dmgarm—@iﬂv@ % ED @ &

Users typically access the components in the toolbar by clicking. For
information on the keyboard operations that are appropriate for toolbars, see
Table 32.

== Include commonly used menu items as buttons (or other components)
in your toolbar.

111 - -
= Even 1T your window has a toolbar, make all toolbar commands
accessible from menus.

> Be sure to provide tool tips for all toolbar buttons.

> Consider providing text on toolbar buttons as a user option. This
feature makes the meaning of the button clear to new users. It also enables
low- vision users to utilize large fonts.

= Because toolbars can be difficult for users with motor impairments
and are not always regarded as a good use of space, provide a way to hide
each toolbar in your application.

Provide large and small graphics (such as 24 x 24 and 16 x 16 pixels)
in your application and enable users to select the large graphics in all
parts of the application, including the toolbars.

Toolbar Placement

In general, a toolbar is located at the edge of the window or area on which it
operates.

—# If your window has a menu bar, place the toolbar horizontally
immediately under the menu bar.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= 1T you use multiple toolbars, provide a way for users to control
their display and organize their contents within logical groupings of
features.

Draggable Toolbars

You can specify that your toolbar be draggable. Users can then move the
toolbar or display it in a separate window. Users drag the toolbar by holding
down the mouse button while the pointer is over the drag area. An outline of
the toolbar moves as the user moves the pointer. The outline provides an
indication of where the toolbar will appear if the user releases the mouse
button.

When the pointer is over a "hot spot,” the outline has a dark border, indicating
the toolbar will anchor to an edge of the container, as shown in Figure 141.
The toolbar automatically changes its orientation between horizontal and
vertical depending on the edge of the window where it anchors.

© Click here to view the corresponding code for Figure 141 (also
available on the book"s companion CD-ROM).

Figure 141 Outline of a Toolbar Being Dragged
_"" (o | 5 ,:-3 -Ih ﬁ:‘ ': H Curment logation ol teolbar

e M5 & o A

D ajigineg e lbar o
Tiin I fi

i WO

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

If the pointer is outside a hot spot, the outline has a light border, indicating that
the toolbar will be displayed in a separate window. The following figure shows
the toolbar in a separate window. When the user closes the toolbar window,
the toolbar returns to its original location in the primary window.

Figure 142 Toolbar in a Separate Window

DllaE & &5 6]

=== A toolbar can dock (attach) along the interior top, bottom, left,
or right edge of a container. (The relocated toolbar does not obscure the
container contents; rather, the contents of the container are
repositioned to compensate for the new placement of the toolbar.)

Toolbar Buttons

A toolbar button is a command button or toggle button that appears in a toolbar,
typically as part of a set of such buttons. Toolbar buttons can also act as titles
to display menus. In other contexts, command buttons typically use text to
specify the operation or state they represent, but toolbar buttons typically use
graphics.

Toolbar graphics can be difficult for users to understand. Weigh the
comprehensibility of your graphics against the space taken up by button text
before deciding whether to use button text in addition to the button graphics.
Consider giving users the choice of whether to display button text.

—# Use button graphics that are either 16 x 16 or 24 x 24 pixels (but
not both in the same toolbar), depending on the space available in your
application.

Provide optional text-only toolbar buttons to enable viewing by
low-vision users.

—# If you use text on the toolbar buttons, provide a user setting to
display only the graphics. Using graphics only, you can conserve space
and display more commands and settings in the toolbar.

—# To create functional groupings of toolbar buttons in your
application, provide a separate toolbar for each. Using this technique,
the drag area serves as both a visual separator and a way to move the
toolbar button groups to convenient locations.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

For guidelines on the vertical and horizontal measurements for toolbar buttons
in toolbars, see Toolbar Button Spacing.

For more information on command buttons, see Command Buttons. For details
on toggle buttons, see Toggle Buttons.

Mouse-over Borders

To conserve space, you can use mouse-over borders (also called "rollover
borders") on toolbar buttons. This border appears around a button when users
move the pointer over it; otherwise, the border is invisible.

The following figure shows a toolbar button with a mouse-over border activated
for the Open button.

Figure 143 Mouse-over Border on a Toolbar Button

For specifications on spacing between toolbar buttons with mouse-over
borders, see Toolbar Button Spacing.

BiE@e ¥ h

=== The JToolBar.isRollover client property is set to true to enable
mouse-over borders.

Drop-down Menus in Toolbar Buttons

You can attach a drop-down menu to a toolbar button. The menu appears
when the user clicks (or presses and holds the mouse button over) the toolbar
button.

Figure 144 shows the drop-down menu indicated by a drop-down arrow on the
Open button. The menu shows a list of recently used files that users can open.
The mnemonics use numbers because the menu items are likely to change
often.

Figure 144 Toolbar Button With a Drop-down Menu

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

’J__‘ Button with dropdown armow
FEEEFE

1 HIG.Classes.doc
2 HIG.Colophon.doc
3 HIG.C ontrols.doc
4 HIG.Dialogs.doc
4 HIG.Glossany.doc

Other Documents...

For a discussion of how to use drop-down arrows as menu indicators, see
Using Badges in Button Graphics.

> Provide a menu indicator (the drop-down arrow) in the graphic for
any toolbar button that has a drop-down menu.

=E The behavior of drop-down arrows in toolbar buttons is unlike that
of some applications that do not use the Java look and feel. In the toolbar
buttons of these other applications, a click activates a default command,
whereas a press displays a menu.

Tool Tips for Toolbar Buttons

You can provide tool tips for the toolbar components. The tool tip displays
information about the component whenever the user rests the pointer over that
component. If you specify a keyboard shortcut for a toolbar component, the
JFC displays the shortcut in the tool tip. Figure 145 shows a tool tip that
describes the Cut button.

@ Click here to view the corresponding code for Figure 145 (also

available on the book®"s companion CD-ROM).

Figure 145 Tool Tip for a Toolbar Button

BEEE KEEe
5
ﬁjtﬂ&lectinn Cirl- —— Tool tip

—~ Ensure that the keyboard shortcuts for toolbar buttons match the
keyboard shortcuts for the corresponding menu items.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

2~ Attach tool tips to all toolbar components that do not include text
identifiers.

= If your application does not have menus, attach tool tips to the
toolbar buttons in order to display keyboard shortcuts.

Tool Tips

A tool tip provides information about a component or area whenever the user
moves the pointer to that area (and does not press a mouse button). These
small rectangles of text can be used anywhere in your application.

A tool tip is commonly associated with an interface element, where it provides
a short description of the component's function. If a component has a keyboard
shortcut, the shortcut is automatically displayed in the tool tip.

Figure 146 shows a tool tip that describes a slider.

Figure 146 Tool Tip for a Slider

Tool tip

Salary Contribution: 1 i_'*]

0% 24 4‘:{,|Sets your annual contribution as a percentage of gross salary |

You can also use tool tips with application graphics. A chart might have one
tool tip that provides the name and size of the graphic or several tool tips that
describe different areas of the graphic.

Figure 147 shows a tool tip on an area of the bar chart in the sample applet,
Retirement Savings Calculator.

Figure 147 Tool Tip on an Area Within a Chart

FI3.000
109,000 - B Frojscted

$Ea, 000

fea, 000 -

$2a,000

§52, 649 in 005 Tood fipdor one far

$39,000 -

o -

B | I = I I T v T 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

You can adjust the timing of the tool tips in your application. By default, a tool
tip appears after the user rests the pointer on the component or area for

750 milliseconds. It disappears after 4 seconds or when the user activates the
component or moves the pointer away from the component.

For keyboard operations in tool tips, see Table 31.

= Allow for the possibility that tool tips might become lengthy in
some locales. Always use an onset of 250 milliseconds for tool tips and
leave them displayed for 15 seconds.

= Make tool tips active by default, but provide users a way to turn
them off for the entire application. For example, you might provide a
checkbox either in the View menu or in a preferences dialog box.

—# Use headline capitalization for short tool tips and sentence
capitalization for longer ones. Try to be consistent within your
application.

=== A tool tip is specified in its associated component (and not by
calling the JToolTip class directly).

=== |If a component has a tool tip, the AccessibleDescription for that
component is automatically set to the tool tip text.

For details on the Java 2 Accessibility API, see Support for Accessibility.

10: Basic Controls

Buttons, combo boxes, and sliders are examples of controls--interface
elements users can manipulate to perform an action, select an option, or set a
value. A button is a control that users click to perform an action, set or toggle a
state, or set an option. In the Java look and feel, buttons include command and
toggle buttons, toolbar buttons, checkboxes, and radio buttons. A combo box
is a control that enables users to select one option from an associated list;
users can also type an option into an editable combo box. A list box is a control
that presents a set of choices from which a user can select one or more items;
items in a list box can be text, graphics, or both. (A related list component,
called a selectable list, is described in Chapter 12.) A slider is a control that
enables users to set a value in a range.

Figure 148 Buttons, Combo Box, List Box, and Slider

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Command buttons
in toolbar

Taggle buttans

in toolbar
5 y — Command
& Print Delete| | Submit | Submit buttons
Bell Pepper
. M ughroomm) Adventure | Radio
0.80 |- -
L] Olrva o Comedh buttans
0 ;;E'F'I'JEF'I'I”I List box
0.25 neapple
¥ Bold
0.50 |33U'SE|QE |_| = Checkboxes
Smoked Ham [Ralic
Editable
combo box
L #E‘ 1— Slider

0 20 a1 i1} I 100

= For text in buttons, sliders, and combo boxes, use headline
capitalization.

@ Make sure you use layout managers to lay out your controls so they

allow for the longer text strings frequently associated with
localization.

Command Buttons

A command button is a button with a rectangular border that contains text, a
graphic, or both. These buttons typically use button text, often a single word, to
identify the action or setting that the button represents. See Command Buttons
in Dialog Boxes for a list of commonly used command button names and their
recommended usage.

Command buttons in a dialog box can stand alone or appear in a row, as
shown in Figure 149.

@ Click here to view the corresponding code for Figure 149 (also

available on the book®"s companion CD-ROM).

Figure 149 Command Buttons in a Dialog Box

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Mail Notification

Signal Hew Mail With:

Beeps: 2 j

Flashes: 0 j

Sound File: | | | Browse ... I Standalone command button
Button border

| OK || Cancel || Help Il Button text

| Command button row

Command buttons that appear in toolbars are called "toolbar buttons."”
Typically, they use button graphics instead of button text.

Figure 150 shows toolbar buttons for a text-editing application.

@ Click here to view the corresponding code for Figure 150 (also

available on the book®"s companion CD-ROM).

Figure 150 Toolbar Buttons

DEEE woEw b EE=E

See Toolbar Buttons for details on toolbar buttons. For a discussion of badges
in toolbar buttons, see Using Badges in Button Graphics.

When a command button is unavailable, the dimmed appearance indicates
that it cannot be used. The following figure shows the appearance of available,
pressed, and unavailable command buttons.

Figure 151 Available, Pressed, and Unavailable Command Buttons

Users can click command buttons to specify a command or initiate an action,
such as Save, Cancel, or Submit Changes.

For a list of keyboard operations for the activation of command buttons, see
Table 17.

<= Display mnemonics in button text, with the exception of default
command buttons and the Cancel button in dialog boxes.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= To make command buttons without text more accessible, create tool
tips that describe or name the functions of the buttons.

& Make your button text easier to localize by using resource bundles.

A resource bundle stores text separately so that localizers don"t have
to change the application®s source code to accommodate translation.

For more on resource bundles in the localization process, see Resource
Bundles.

For general details on keyboard operations and mnemonics, see Keyboard
Operations and Mnemonics. For details on displaying a command button's tool
tip, see Table 31.

For details on the layout and spacing of command buttons, see Command
Button Spacing and Padding.

Default Command Buttons

One of the buttons in a window can be the default command button. The JFC
gives default command buttons a heavier border.

Default command buttons typically appear in dialog boxes. The default
command button is activated when users press Enter (or Return).

A default command button (such as Save in Figure 152) should represent the
action most often performed (if that action does not lead to loss of user data).

@ Click here to view the corresponding code for Figure 152 (also

available on the book®"s companion CD-ROM).

Figure 152 Default and Nondefault Command Buttons

| Save || Cancel |

The Enter and Return equivalents activate the default command button unless
keyboard focus is currently on a component that accepts the Enter or Return
key. For instance, if the insertion point is in a multiline text area and the user
presses Enter, the insertion point moves to the beginning of a new line rather
than activating a default button. In this case, users can press Ctrl-Enter to
activate the default button. Alternatively, they can press Ctrl-Tab to move the
focus out of the current component and then press Enter.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Since you are not required to have a default button in every circumstance, you
can use discretion about including them in your interface elements.

<= In most situations, make OK the default button.

= Never make an unsafe choice the default button. For instance, a
button that would result in the loss of unsaved changes should not be the
default command button.

=== The JFC does not automatically implement the Escape key as the
keyboard equivalent for the Cancel button, so this behavior must be
implemented. As with the Enter and Return keys for the default command
button, the Cancel button should not require keyboard focus to be
activated by the Escape key.

Combining Graphics With Text in Command Buttons

In some circumstances, you might use a graphic along with text to identify the
action or setting represented by a command button.

Figure 153 shows a Print button with a graphic on the leading edge of the text
and a Delete button with a graphic above the button text.

(&) Click here to view the corresponding code for Figure 153 (also

available on the book"s companion CD-ROM).

Figure 153 Command Buttons Containing Both Text and Graphics

il
S Print | | pelete

= In command buttons containing both text and graphics, place the text
after or below the image.

When adding graphics to buttons that typically use text, such as
dialog box command buttons, place the graphic on the leading edge of the
button text (that is, to the left of the text in left-to-right locales).
Include the graphic in such contexts, for instance, i1f the graphic serves
as a reminder of the toolbar button that initially displayed the dialog
box.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

> In contexts that typically use graphical buttons, such as toolbars,
place button text beneath the graphic or on the trailing edge (right in
left-to-right locales) of the button. Consider giving users the choice
of what to display and where to display it.

—# Use mnemonics in your command buttons--with the exception of the
default and Cancel buttons.

Provide a way to display text in command buttons as an aid to
low-vision users.

For a list of commonly used mnemonics organized by menus, see Table 9. For
an alphabetical list of commonly used mnemonics, see Table 13. Try to use
these mnemonics if possible. Do not duplicate mnemonics.

Using Ellipses in Command Buttons

When a command button does not fully specify an operation but instead that
operation is completed by a dialog box, notify the user by placing an ellipsis
mark after the button text. (Note that this applies only to text in buttons. No
ellipsis is used in graphics-only buttons.) For example, after clicking a Print...
button, users are presented with a dialog box in which to specify printer
location, how many copies to print, and so forth. By contrast, a Print command
that prints one copy to the default printer without displaying a dialog box would
not require an ellipsis mark.

—# When users must interact with a dialog box to finish the
specification of a command initiated in a command button, use an ellipsis
mark (...) after the button text. (Do not use an ellipsis with
graphics-only buttons.) When a full specification of the command is made
in the button text, do not use ellipses.

E=> The button text added to a command button that uses ellipses must
contain three periods.

Toggle Buttons

A toggle button is a button that represents a setting with two states--on and off.
Toggle buttons look similar to command buttons and display a graphic or text
(or both) to identify the button. The graphic or button text should remain the
same whether the button is in the on or off state. The state is indicated by
highlighting the background of the buttons.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Users can click toggle buttons to turn a setting on or off--for instance, to switch
between italic and plain style in selected text.

You can use toggle buttons to represent an independent choice, like
checkboxes (click here), or an exclusive choice within a set, like radio buttons

(click here).

=== Toggle buttons can be placed in a button group to get radio button
behavior.

Independent Choice

An independent toggle button behaves like a checkbox. Whether it appears
alone or with other buttons, its setting is independent of other controls. An
example of an independent toggle button is a Bold button on a toolbar, as
shown in the following illustration.

Figure 154 Independent Toggle Buttons in a Toolbar

b

When users click the Bold button, it is highlighted to indicate that the bold style
has been applied to the selection or that text to be entered will be bold. If the
button is clicked again, it reverts to the normal button appearance and the bold
style is removed from the selection.

z

u|

== Although checkboxes and independent toggle buttons have the same
function, as a general rule, use checkboxes in dialog boxes and menus and
use toggle buttons with a graphic in toolbars.

< Use toggle buttons (instead of checkboxes) in dialog boxes if you
need consistency with a toolbar.

For recommendations on the spacing of toggle buttons, see Toggle Button
Spacing.

Exclusive Choice

A toggle button can work as part of a group to represent an exclusive choice
within the set. A common example is a set of toolbar toggle buttons

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

representing left, centered, and right text alignment, as shown in the following
figure.

Figure 155 Exclusive Toggle Buttons

If users click the button representing left alignment, the button is highlighted to
indicate that text is aligned flush with the left border of the document. If users
then click the button representing centered alignment, the appearance of the
Align Left button reverts to the normal button appearance and the Center
button is highlighted to indicate centered alignment of the selected text.

You can use grouped toggle buttons with labels equally well in toolbars or
dialog boxes. In the example in Figure 156, the label identifies the
abbreviations in the button text within a dialog box.

& Click here to view the corresponding code for Figure 156 (also

available on the book"s companion CD-ROM).

Figure 156 Grouped Toggle Buttons With a Label

FlulerLInits:‘ in ” it H CIm ” m |

Label

For spacing guidelines for exclusive toggle buttons, see Checkbox and Radio
Button Layout and Spacing.

Checkboxes

A checkbox is a control that represents a setting or value with an on or off
choice. The setting of an individual checkbox is independent of other
checkboxes--that is, more than one checkbox in a set can be checked at any
given time.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

A check mark within the checkbox indicates that the setting is selected. The
following figure shows both available and unavailable checkboxes in selected
and unselected states.

Figure 157 Checkboxes

Check mark

v| Bold

Linavailable checkboxes
Checkbaox graphic—{] palic :I_

Ch eck box: text

The user clicks a checkbox to switch its setting from off to on, or on to off.
When a checkbox is unavailable, the user cannot change its setting.

For a list of keyboard operations for checkboxes, see Table 15.

—# Use the checkbox graphic that is supplied with the component (the
square box with or without the check mark inside).

—# Although checkboxes and independent toggle buttons have the same
function, as a general rule, use checkboxes in dialog boxes and menus,
and use toggle buttons with a graphic in toolbars.

& Display checkbox text to the right of the graphic unless the

application is designed for locales with right-to-left writing systems,
such as Arabic and Hebrew. In this case, display the text to the left of
the graphic.

=== The setMnemonic method can be used to specify mnemonics in
checkboxes.

In addition to standard checkboxes, the JFC includes a component that is the
functional equivalent of the checkbox for use in menus. See Checkbox Menu
Items for more information.

See Checkbox and Radio Button Layout and Spacing for specific
measurement guidelines.

Radio Buttons

A radio button represents an exclusive choice within a set of related options.
Within a set of radio buttons, only one button can be on at any given time. The
following figure shows active radio buttons and inactive radio buttons in both
on and off states.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 158 Radio Buttons

Fadio button graphic—) Adventure Linavailable mdio buttons
“On* indicator ————® Comedy :I_
Fadio button text

When users click a radio button, its setting is always set to on. An inner filled
circle within the round button graphic indicates that the setting is selected. If
another button in the set has previously been selected, its state changes to off.
When a radio button is unavailable, users cannot change its setting.

For a list of keyboard operations for radio buttons, see Table 21.

—# Use the supplied radio button graphics (the open buttons with inner
filled and unfilled circles).

== Provide mnemonics for each radio button choice, or place a mnemonic
on the label for the radio button group. In the latter case, the user
navigates among the individual radio buttons with Tab and Shift-Tab.
Putting the mnemonics on each radio button choice is preferable, since
that makes navigation easier for users.

= Although radio buttons and toggle buttons in a radio button group
have the same function, use radio buttons in dialog boxes and use grouped
toggle buttons with graphics in toolbars. Grouped toggle buttons with text
identifiers work well in either situation.

& Display radio button text to the right of the graphic unless the

application is designed for locales with right-to-left writing systems,
such as Arabic and Hebrew. In those locales, place the text to the left
of the graphic.

The JFC includes a component that is the functional equivalent of the radio
button for use in menus. See Radio Button Menu Items for more information.

See Checkbox and Radio Button Layout and Spacing for specifications on
spacing between radio button choices.

List Boxes

A list box is a one-column arrangement of items (text, graphics, or both) that
enables users to set a variable or a property somewhere in the application. List
boxes can be used as an alternative to combo boxes, radio buttons, and

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

checkboxes. A similar control, also implemented with the JList component, is
the selectable list. For details, see Selectable Lists.

You can use a list box to present users with a set of exclusive or nonexclusive
choices. For example, you might use a list box to present the days of the week,
from which users could select one day on which to start their calendars, as
shown in the following figure.

Figure 159 Exclusive List Box

W onday
Tuesday
Wednesday
Thursday +—— Selected item
Fricay
Saturday
Sunday

Or, you might use a list box to display pizza toppings, from which users could
make several choices, as shown in the following figure.

Figure 160 Nonexclusive List Box

Bell Fepper

M Lshroom
Qlive
Fepperoni 1
Fineapple
Sausage -
Smoked Ham

selected items

Note — Throughout this section, list boxes and selectable lists are referred to as list
components when their behavior and appearance is the same.

Use headline capitalization in list components.

= Provide a label with a mnemonic to enable keyboard navigation into
list components.

= When resizing a list component, be sure that it always displays a
whole number of lines.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Scrolling

You can provide vertical and horizontal scrolling of the items in list components
by placing the list inside a scroll pane. Users can then scroll the list as
described in Scroll Panes.

= If you place a list component in a scroll pane, set the vertical
and horizontal scrollbars to appear only when needed. This behavior is
the default behavior of scroll panes. If at all possible, display the list
component with a width that makes horizontal scrolling unnecessary.

Selection Models for List Components

The JFC provides three selection models that you can use to enable users to
select list items: single item, single range, and multiple ranges. Single-item
selection provides users with an exclusive choice. Single-range and
multiple-range selection provide users with nonexclusive choices.

When the user clicks an item in the list box, that item is chosen: the choice
persists even when the user has moved on to the next component. When a
user clicks an item in a selectable list, it is selected. If the user later selects
another object, this selection disappears.

Despite the different selection models for the two kinds of list components, the
methods for making those choices are the same. For simplicity, in the rest of
this section, the word "selection” is used to encompass both behaviors.

For the keyboard operations appropriate for list boxes and selectable lists, see
Table 19.

Single Item

You can enable users to select a single item by clicking it. The item gets
keyboard focus. The prior selection, if any, is deselected. In the following figure,
the user has selected Thursday.

Figure 161 Single-ltem Selection in a List Component

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

W onday
Tuesday
Wednesday
Thursday —
Fricay
Saturday
Sunday

Clicking here selecks this tem

Single Range of Items

You can enable users to select a single item or a range of items. Users select
an item by clicking it. The item gets keyboard focus and becomes the anchor
point of the selection. Users extend the selection by dragging or by moving the
pointer to another item and Shift-clicking.

In Figure 162, the user first clicked Pineapple and then Shift-clicked Sausage.
© Click here to view the corresponding code for Figure 162 (also
available on the book"s companion CD-ROM).

Figure 162 Range of Selected Items in a List Component

Bell Fepper
M ushroom
Olive
Fepperoni
FPineapple Clicking here selects this itern and sets theanchor point
Sausage ——— shifeclicking here extends the selection

Smoked Ham

Multiple Ranges of Items

You can enable users to select a single item, a range of items, or multiple
ranges of items (also known as "discontinuous," "discontiguous,” or "disjoint"
ranges). Users select a single item by clicking it and extend the selection by
Shift-clicking. To start another range, users Control-click an item. That item
then gets keyboard focus and becomes the anchor point of the new range. In
addition, the selection of the item is toggled--if the item was initially selected, it
is deselected, and vice versa. Shift-clicking extends the new range.

In the following figure, the user chose the first range by clicking Bell Pepper
and then Shift-clicking Mushroom. The user chose additional ranges by
Control-clicking Pepperoni and extending to Sausage with a Shift-click. Finally,
the user deselected an item in the range by Control-clicking Pineapple.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Figure 163 Multiple Ranges of Selected Items in a List Component

Clicking here selecks this item
7 and sets the anchor point

Bell Pepper

mMushrcom S Shift-clicking here extends

Olive the selection

Fepperani |
Control-clicking here Fineapple :I— Cantrol-clicking Pepperoni and
deselectsan item in Sausage Sausage definesanather mnge
the range Smoked Ham

Combo Boxes

A combo box is a component with a drop-down arrow that users click to display
an associated list of choices. If the list is too long to display fully, a vertical
scrollbar appears. The current selection appears in an editable or noneditable
text field next to the drop-down arrow. The user displays the list by clicking or
dragging the drop-down arrow.

The currently selected item appears in the pulled-down combo box. As a user
moves the pointer over the list, each option under the pointer is highlighted. If
the user selects an option from the list, that option replaces the current
selection. In the following figure, the currently selected item is Vanilla, and the
Guanabana option will replace Vanilla when the mouse button is lifted or the
spacebar is pressed.

Figure 164 Combo Box Display

Label with mnenmonic

e Combo boe
Flavor: | Vanilla I -
Butter Pecan || |
Chocolate
Guanabana))
Mango L List of options
Mocha Fudge
Strawherny N
Vanilla | |

Users can close editable or noneditable combo boxes by clicking the
drop-down arrow in the combo box again, selecting an item from the list, or
clicking anywhere outside the combo box.

For a list of keyboard operations appropriate for combo boxes, see Table 16.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

You can use combo boxes to provide a way for users to indicate a choice from
a set of mutually exclusive options. Noneditable combo boxes enable users to
select one item from a limited set of items. Editable combo boxes provide
users the additional option of typing in an item that might or might not be on the
list.

—# Use headline capitalization for the text in the combo box list.

= To facilitate keyboard access, provide labels with mnemonics for
combo boxes.

= You can specify the maximum number of i1tems to be displayed in a
combo box before a scrollbar appears. The default is 8; however, if you
know that your list contains 9 or 10 items, it is good practice to display
all the i1tems so users don"t have to scroll to see just one or two
additional items.

25 In the JFC, the term "combo box™ includes both of what Microsoft
Windows applications call "list boxes"™ and "combo boxes."

Noneditable Combo Boxes

Noneditable combo boxes (sometimes called "list boxes" or "pop-up menus")
display a list from which users can select one item.

The following figure shows a noneditable combo box with a drop-down arrow
to the right of the currently selected item. (Note the gray background in the
default Java look and feel theme, indicating that users cannot edit text.)

Figure 165 Noneditable Combo Box

Currently selected item
lgray background indicates
noneditable text)

Day: | Friday - Drop-dowen arrow

Sunday

Monday

Tuesday
VWednesday —|
Thursday

Friday

Saturday

Highlighted itern

To make a selection, users have two options:

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e They can click the combo box to post the list, position the pointer over the desired
option to highlight it, and click.

e They can press the mouse button in the combo box (which posts the list), drag
through the list to the desired choice and release the mouse button.

In either case, the currently selected item changes to reflects the choice.

Use a noneditable combo box instead of a group of radio buttons or
a list box if space is limited in your application.

Editable Combo Boxes

Editable combo boxes combine an editable text field with a drop-down arrow
that users click to display an associated list of options.

As shown in Figure 166, editable combo boxes initially appear as editable text
fields with a drop-down arrow. The white background of the editable combo
box indicates that users can type, select, and edit text.

© Click here to view the corresponding code for Figure 166 (also

available on the book®"s companion CD-ROM).

Figure 166 Editable Combo Box

Text field

Size: 1|w

To make a selection, users have three options:

e They can click the drop-down arrow to display the list, position the pointer over the
desired option to highlight it, and click.

e They can drag from the drop-down arrow to the desired selection and release the
mouse button.

¢ To make a customized selection, they can type text in the field and press Enter (or
move focus to another component). If the list is open, it will close.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

You can use an editable combo box to save users time by making the most
likely menu choices available while still enabling users to type other values in
the text field. An example might be the specification of a font size. The combo
box might initially display a current size of 11. Users could select from a list of
standard sizes (8, 9. 10, 12, 14, 16, or 18 points) or type in their own
values--for instance, 22 points.

= Whenever possible, interpret user input into an editable combo box
in a case- insensitive way. For example, it should not matter whether the
user types Blue, blue, or BLUE.

Sliders

A slider is a control that is used to select a value from a continuous or
discontinuous range. The position of the indicator reflects the current value.
Major tick marks indicate large divisions along the range of values (for instance,
every ten units); minor tick marks indicate smaller divisions (for instance, every
five units).

The default slider in the Java look and feel is a nonfilling slider. An example is
a slider that adjusts left-right balance in a stereo speaker system, as shown in
the following figure.

Figure 167 Nonfilling Slider

Channel

: Mi=jor tick mark
Left t Center Right

Indicator without keyboand focus) \— Azsociated tad:

A filling slider is also available. The filled portion of the channel, shown in the
following figure, represents the range of values below the current value--in this
case, the percentage of a paycheck allotted to a retirement savings plan.

Figure 168 Filling Slider

Filled portion of channel
Unfilled portion of channel

L | e | 1

1] 20 tﬂ (i1l i 1] 100
Indicatar (with keyboard focus)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Users can drag the indicator to set a specific value or click the channel to move
back and forth by one unit. Sliders can represent a series of discrete values, in
which case the indicator snaps to the value closest to the end point of the drag
operation.

For a list of keyboard operations for sliders, see Table 24.

= IT the slider represents a continuous range or a large number of
discrete values and the exact value that is chosen is important, provide
a text field where the chosen value can be displayed. For instance, a user
might want to specify an annual retirement savings contribution of 2.35%.
In such a situation, consider making the text field editable to give users
the option of typing in the value directly. Be sure to link the slider
and the text field so that each i1s automatically updated when the user
alters the other.

=== The JSlider.isFilled client property can be used to enable the
optional filling slider.

11: Text Components

Text components enable users to view and edit text in an application. The
simplest text component you can provide is a label, which presents read-only
information. A label is usually associated with another component and
describes its function. A text field is a rectangular area that displays a single
line of text, which can be editable or noneditable. A password field is an
editable text field that displays masking characters in place of the characters
that the user types.

Other text components display multiple lines of text. A text area displays text in
a single font, size, and style. You can configure an editor pane to display
different types of text through the use of a plug-in editor. The JFC editors
include a plain text editor, a styled text editor, an RTF (rich text format) editor,
and an HTML (Hypertext Markup Language) editor.

Figure 169 Text Components

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

| Label
Ardrass: |vinba-siGuch i —— Editable text field
Suvipl ol (7™ L Paseword field
LIFlsra I e 1 ————— Moneditable text field
I & gea iz FeslepreEnt, Ldqrent = ~eq dred b bsaree corpating ——— 1EXEAMER

prEsslras. Tha Jes Qr cTen " Werrace 12 1nflueced 3y bath 1ha mards
C1 wazra” Joaka ard 1hz ZCnotrairis 07 1hx LndcrlgIng rceCnian. [Thiaia
COTENGARZD b b daek T9ct ok all 3022 e Zngaged - kEe 9ars o<,
AT GG 0 aFFted g ek GdL e a0 bacget, 0 mar k>tng ard el =
COEMGFAT OMD . 00 IJNCE Cud Jthir focars

) Sk I-“JilLl:‘i'rT E
Editor pane with plug-in

- HTML editor kit

sllbacks ap 52U
Ml o vstarns

Custoneers absa bought

- il il - -
—res e Be 1 Maperbad - 221 z:qez 1 edizzn o v 1%,
Lliame ynne ol Fal s iecdey Fua P B3R C2000%0 | Noensin e go
LTha a raslaw inshest 067 < 3. 245 7 6
— Amaran.com Fales Renk: 27,225

s-—ill wfEnd abIi oy cectomer Rating TEICET
S =S Mumsher of Bewmersn &
Already Own 3 Rate 10 | Cuslomers walio bought Lhis book alse
bought:
Tz rproLa uzor
razorn —sndat zng. ‘ata & Ihe JFC WM Daeiisl A Fade w
th z proz. o N i e A e i gl T oy 1T W Ty
Carpone —
&l Bl ® Lo ;.}.’1' | Vol ety by Daad
o ?‘_ﬁ_ o ove Pogorsaoses aand Deakalaloy o laae
HOHE ! S Bade Prs gravoumyg Tachovguer by ||
o) oA Tiow Eulka =

@ Make your text easier to localize by using resource bundles. A
resource bundle stores text separately so that localizers don®t have to
change the application®s source code to accommodate translation.

For guidelines on translating text, see Planning for Internationalization and
Localization.

Labels

A label consists of read-only text, graphics, or both. Labels serve two functions
in an application:

e To identify components and enable navigation to components that don't have their
own text strings
e To communicate status and other information

Users cannot select a label or any of its parts.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Labels That Identify Controls

You can associate a label with a component (such as a text field, slider, or
checkbox) to describe the use of the component.

In Figure 170, the Salary Contribution label lets users know they can use the
slider to adjust their salary contribution.

@ Click here to view the corresponding code for Figure 170 (also

available on the book®"s companion CD-ROM).
Figure 170 Label That Describes the Use of a Slider

Label | I—Slider |

Salary Contribution: | =] 1

0% 2 45 0 g 10%

You can also use a label to describe a group of components.

In Figure 171, the Color label describes a group of three radio buttons. The
other text (Red, Yellow, and Blue) is part of the radio buttons and not a
separate component. The Color label is not a separate component for the
purpose of navigation.

& Click here to view the corresponding code for Figure 171 (also

available on the book"s companion CD-ROM).

Figure 171 Label That Describes a Radio Button Group

Label
Ii Fadio button text
Color: ' Red
i1 Yellow
= Blue

Keep label text brief, and use terminology that is familiar to
users.

= Use headline capitalization in the label text and place a colon at
the end of the text.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Available and Unavailable Labels

You can make a label available or unavailable so that its state is the same as
that of the component it describes. Available labels are drawn in the primary 1
color defined in the application's color theme. Unavailable labels are drawn in
the secondary 2 color defined in the application's color theme. The following
figure shows an available and unavailable label.

Figure 172 Available and Unavailable Labels

Size: Available

Linavailable

—# Make a label unavailable when the component it describes is
unavailable.

Mnemonics in Labels

You can specify a mnemonic for a label. When the mnemonic is activated, it
gives focus to the component that the label describes. This technique is often
used with a label that accompanies an editable text field. In the following figure,
the text field gets focus when users press Alt-N.

Figure 173 Label With a Mnemonic

Name: | |

L N emonic

—# If you can™t add a mnemonic directly to the component that requires
one, as in the case of an editable text field, place the mnemonic in the
component®s label.

=== The displayedVMnemonic property can be used to specify the mnemonic
in a label.

=== The labelFor property can be used to associate a label with another
component so that the component gains focus when the label®s mnemonic is
activated. This practice automatically sets the target”s accessible name.
The labelFor property is most easily set by using the JLabel .setLabelFor()
method.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

For a description of the alignment of labels and the spacing between a label
and its components, see Label Alignment and Spacing.

Labels That Communicate Status and Other

Information

You can use a label to communicate status or give information to users. In
addition, you can instruct your application to alter a label to show a change in
state.

The progress bar in Figure 174 uses two labels that change as the operation
progresses. The application changes the top label to reflect the file currently
being copied, and it updates the bottom label as the progress bar fills.

© Click here to view the corresponding code for Figure 174 (also

available on the book"s companion CD-ROM).

Figure 174 Labels That Clarify the Meaning of a Progress Bar

Filter in Progress - MetalPix

hiroshige.oif File being filtered
1 |
About 25 seconds remaining Estimated tinne to compl etion

)
=

= Use sentence capitalization in the text of a label that communicates
status. Do not provide end punctuation unless the text is a complete
sentence.

=== To ensure that the information in a status label is accessible to
all users, the accessibleDescription property of the window containing
the label should be set to the text of the label. Whenever the label changes,
a VISIBLE_PROPERTY_CHANGE event should be generated to cue assistive
technology to read the label again.

Text Fields

A text field is a rectangular area that displays a single line of text. A text field
can be editable or noneditable.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Noneditable Text Fields

In a noneditable text field, users can select and copy text to paste elsewhere
(something they cannot do with labels), but they cannot change the text in the
fields. Only the application can change the contents of a noneditable text field.
The background of a noneditable text field is the secondary 3 color defined in
the application's color theme. In the default theme, the background color is
gray, as shown in the following figure.

Figure 175 Noneditable Text Field

16.3%

Editable Text Fields

In an editable text field, users can type or edit a single line of text. For example,
a find dialog box has a text field in which users type a string for which they
want to search.

When a text field has keyboard focus, it displays a blinking bar that indicates
the insertion point. When users type in text that is too long to fit in the field, the
text scrolls horizontally. By default, the background of an editable text field is
white.

The following figure shows an editable text field with keyboard focus. The
Language label is a separate component from the text field.

Figure 176 Editable Text Field With Blinking Bar

Language: |Jak
I_ Label I_ Blinking barat insertion point

In an editable text field, users can:

e Insert characters at the insertion point and replace selected text by typing

e Cut, copy, and paste text by using menu commands or keyboard shortcuts (Ctrl-X
for Cut, Ctrl-C for Copy, and Ctrl-V for Paste)

e Set the insertion point by single-clicking

e Select a word by double-clicking

e Select the entire line of text by triple-clicking

e Select a range of characters by dragging

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e Select everything by navigating to the text field using the Tab key or the label's
mnemonic

The following figure shows a text field with the letters Jeffer selected. The
insertion point is at the end of the selected text and indicates that the text field
has keyboard focus. The selected text is overwritten when the user types or
pastes new text.

Figure 177 Editable Text Field With Selected Text

| Thomas Jefferdson |

When keyboard focus enters a text field by some means other than a user's
mouse click, select the entire contents of the text field. (This situation might
occur if the user navigated into the text field with a mnemonic or with the Tab
key, or if the initial focus when a dialog box opens is in the text field. (Figure 84
shows an example of such a situation.) Users can then start typing characters
to replace the existing text, or they can press the Tab key to move to the next
field, leaving the original text intact. When the text is selected, pressing the left
or right arrow keys deselects the text and moves the insertion point (if
possible), enabling users to correct the text using only the keyboard. Of course,
if users click in a text field, place the insertion point as close to the click point
as possible, without selecting text.

To associate a mnemonic with a text field, you must give the text field a label.
You can then assign a mnemonic to the label, and make the mnemonic give
focus to the text field. For details, see Mnemonics in Labels. For keyboard
operations appropriate to text fields, see Table 29.

- Depending on the type of data, you might be able to check individual
characters for errors as they are typed--for example, 1T users try to type
a letter into a text field that should contain only numbers. In this case,
do not display the character in the field. Instead, sound the system beep.
IT the user types three illegal characters in a row, display an Error alert
box that explains the legal entries for the text field.

= If you plan an action based on the string in the text field (such
as searching for the string or performing a calculation), start the action
when users signify that they have completed the entry by pressing Enter
or by moving keyboard focus outside the text field. Do not start the action
before the user has completed the text entry.

For keyboard operations for editable text fields, see Table 29.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Password Fields

The password field is an editable text field that displays a masking character
instead of the characters that users type. Asterisks are displayed in the
password field by default. You can designate any Unicode character as the
masking (also called "secure") character, but make sure the character is
available in the current font.

The password field is commonly used in a login dialog box, as shown in

Figure 178. The Password label is a separate component from the password
field.

© Click here to view the corresponding code for Figure 178 (also

available on the book®"s companion CD-ROM).

Figure 178 Password Field

O

Log In - Metal Butler

Label
Editable tesxt field

|
Login Mame: |phyllis?

Password field with asterisks
as masking charackers

|

Password: |+

Log In Cancel H Help |

A password field provides users with some of the editing capabilities of an
editable text field, but not the cut and copy operations. For keyboard
operations appropriate to password fields, see Table 29.

=== The setEchoChar method can be used to change the masking character--
for example, from asterisks to pound signs.

Text Areas

A text area provides a rectangular space in which users can view, type, and
edit multiple lines of text. The JFC renders such text in a single font, size, and
style, as shown in the following figure.

Figure 179 Text Area

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

In systems developrnent, judament is required to balance cornpeting
pressures. The design of an interface is influenced by bath the demands
of users® tasks and the constraints of the underlying mechanism. This is single fant. si
complicated by the fact that not all users are engaged in the same tasks. a:'un sﬁ:ylﬂen » SITE,
&ninterface is affected by schedule and budget, by marketing and sales
considerations, and nurmerous other factors.

Users can type and replace text in a text area. See Text Fields for a description
of text-editing features supplied by the JFC. For keyboard operations
appropriate to text areas, see Table 28.

You can enable word wrap so that the text wraps to the next line when it
reaches the edge of the text area, as shown in the preceding figure. You can
enable scrolling by placing the text area inside a scroll pane. In this case, the
text scrolls horizontally or vertically when it is too long to fit in the text area.

The following figure shows a text area inside a scroll pane. For information on
scrolling, see Scroll Panes.

Figure 180 Text Area in a Scroll Pane

The engineering of cofmplex artifacts such a2 car radios iz oftenn | a
lavered, resulting i a division of labor. An engifieer familiar |
with the properties of materials designed capacitors, resistors,
and other components. A radio dezighner knows the properties of
these componiesits tut not of the underlving materials. An
automotbile dezsignier iz familiar with the properties and]
requiremetits of the dJashboard radio that will cofinect to the
electrical svstem. bt may know nothing atout radio internals.

Computers also have several levelz of mechanizm. The deepest
lewrel iz the hardware, including the processor, controlled tv
programs writtetl in a machine language. Few programmers or |«

= If you place text in a scroll pane, ensure that the vertical
scrollbar is always there and provide a horizontal scrollbar only as
needed. This is not the default behavior of scroll panes.

= If the text area contains prose, enable word wrap. If the text area
contains information for which exact line breaks are important, such as
code or poetry, enable horizontal scrolling.

=== The lineWrap and wrapStyleWord properties of the text area can be
set to true to enable word wrap on word boundaries.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Editor Panes

An editor pane is a multiline text pane that uses a plug-in editor kit to display a
specific type of text, such as RTF (rich text format) or HTML (Hypertext Markup
Language). An editor kit is capable of displaying all fonts included with the
AWT. The JFC provides four kits that you can plug into an editor pane:

e Default editor kit

e Styled text editor kit
e RTF editor kit

e HTML editor kit

You can also create your own editor kit or use a third-party editor kit. For an
example of how to create an editor kit, see Java Swing, described in Java.

5> The setEditable method can be used to turn text editing on or off
in an editor kit.

Default Editor Kit

You can use the default editor kit to edit and display text in a single font, size,
and style. This kit is functionally equivalent to a text area.

Styled Text Editor Kit

You can embed images and components (such as tables) in a styled text editor
kit.

You can use a styled text editor kit to edit and display multiple fonts, sizes, and
styles, as shown in Figure 181.

(&) Click here to view the corresponding code for Figure 181 (also

available on the book"s companion CD-ROM).

Figure 181 Styled Text Editor Kit

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

4

Fgure 1. Two dasighe 1or Eitebea tzucets, Uhe vaay etertace tor the favoet oh tTe
Lell oz demren] vn g =oghaee. ing ceodel-Uie faocz)l Jeodies Jiseslls vonlol L Ll
and ecld waler flowe. The dtcectans lor the Iewost on the cighd @@ baged om 4 woer
teaf trodel-tudae the bardle op ard cowticohtool? the corodned (L rats) movite
it from side ke side contrals the bovpesstos

—— DICCLZRLHT MODILS COR AM INTLETACL

—— DEagners nf 10F bnE- atertace e & arm el ar athet cnm f1Rr 25tem
conacioaely or wesonsc ol lioose amodsl Jhuat will foro e besic for tha=
interiace. Zngitesr: :nvclived (o the design of the rvetem kewe extensire kadwledze -

rlultiple font sizes and styles

RTF Editor Kit

You can use an RTF editor kit to read, write, and display RTF text, as shown in
the following figure. The RTF editor kit offers all the capabilities provided by the
styled editor kit, and more.

Figure 182 RTF Editor Kit

3.2 The Central Role of
Language

Osrer the past million wears, humeans have evolved
langmage as our major comununicaton mode.
Language letz uz yefer to things that are not
immediately present, reason about potental
actions, and wse conditionals and other concepts
that are not awvailable with a see-and-point
interface. Another important propeity of langnage
missing in graphical interfaces is the ability to
encapsulate complex groups of objects or actions
and refer to them with a single name. An interface
that can better exploit hman language will be hath
more natiral and more powerful. Finally, natoral
languages can cope with amibignity and fu=swy
categories. Adding the ability to deal with

Think of the way a new Lbrary vzer might interact
with a reference librarsn. If the lbrardsn had a
comunand line interface, thew would only
understand & limited fomber of granunatically
perfect queries, and the novice vser would hawve 0
consult an obscure reference manval 0 leamn
which queries to write out. A reference libragian
with a WIMP interface wounld hawve a zet of menns
on their desktop; the vser wwould search the menvs
and point to the appropriate gquery. Meither
interface zeems very helpful. Iostead, Deal
reference Hbrardans ftalk with the vser for a while
o negotdate the actual query. Similaclwy, <we
envizion a computer interface that utilizez a
thesawms, spelling correcton, displays of what iz
pozzible, and knowledge of the vser and the task

[b

1]

HTML Editor Kit

You can use an HTML editor kit to display text in HTML 3.2. Users can click a
link on the HTML page to generate an event, which you can use to replace the
contents in the pane.

Figure 183 HTML Editor Kit

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

all books by Sun
Microsysterns

Customers also bought
thesze books

these other itermns

See Iargﬂpl’-ﬁtr

Share your thoughts
write a review

e-rnail a friend about
this itern

Already Own It? Rate It!

To improve your
recormrmendations, rate
thiz product:

i Mot Rated
e k.

Q) i
2 ik

Paperback - 221 pages 1 edition [July 1999]
Addizon-iesley Pub Co; ISBM: 0201615851 ; Oimensions (n
inches): 067 « 924 x 736

Amazon.com 5Sales Rank: 17,205
Avg. Customer Rating: AR
Mumber of Reviews: 5

Customers who bought this book also
bought:

@ The JFC Swing Tidorial: A Gulde o

— Links

Constructing GUTr by Eathy Walrath, Mary
Campione

& Craphic Java 2, Volume 2, Swing by David
M. Geary

& Jova Pafarmance and Scalability, Volume

1. Server-Side Programming Techmigues by
Dav Bulka

-

12: Selectable Lists, Tables, and
Tree Components

A selectable list is a one-column arrangement of items in which the items users
select are designated for a subsequent action, usually in an associated
component such as a table or a text field. Tables and trees provide a way to
organize related information so that users can easily compare the data. A table
is a two-dimensional arrangement of data. A tree component is an outline of
hierarchical relationships.

Figure 184 Selectable List, Table, and Tree Component

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Selectable list {with associated table)

ARy B Mars | Al | Cramwn
Agamemron - | Wuphy dapg Sam
g-:ms q | oty b Mgy
A o | | Teaty trd dranry
Hapgy Yoka cal Bty
Luibs &
Table

FiriMeme | Lasihgme |[EmployeelD| Projed

Jikob Lehn 532 | Buller =

Piter Wilrier 2T | FireDiag L

Sophia Arreann 3 Krakatoa o

Samus| Stewart 452 | Butier]

Eva Kldnery 1273 | Moonbearn

Mary Dobe B11 | FireDag

Roscoa i st 28 | FireDag

Wira Erooks 192 | Moonbeam -

Tree component
e[an
&= M=
® [Projects
& [Dizmonid

& [Fire station
&7 Elevalion

& 3 First flmar
[y communications
|_"| Garage
[y [Ehap

&[] Sacond foor

€ [Lanescaping

&] oambile house
& [Publizabons

Selectable Lists

Selectable lists are one-column collections of data in which selected items are
designated for a subsequent action. Command buttons can operate on this
selection. When users make another selection, any previous selection is
deselected. This is the same way selection works for many other objects,
including text. List boxes, which are also implemented with the JList
component, have a different selection model. In list boxes, the choices that the
user makes are persistent.)

In selectable lists, as in list boxes, a single item, a single range, or multiple
ranges can be selected. See Selection Models for List Components for details.

= Provide users with as much flexibility in making selections as makes
sense for your application.

=== Selectable lists are created using the JList component.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Selectable Lists and Associated Tables

Selectable lists are appropriate when you want a user to select a few items
from a long list so that your application can then display details of the selected
items in a table. The user selects an item in the list on the left (in left-to-right
locales) and presses the Add button. The selected item is removed from the
list on the left and appears (with additional detail) in the table on the right. The
most recently moved item appears selected in the table, as shown in the

following figure.

Figure 185 Selectable List and Associated Table

Abu
Agamemnan
Boris

Ben
CoffeeBoy
Etfta

Lulu

[F=Es
Qscar
Scout
Socks
Tahitha
Thaor

Trippy

Selectable Lists and Associated Text Fields

| AddD |

| < Remove |

| AddAlD |

| <t Remove All |

| #a Move Up |

| 22 Move Down |

M arre [Anirmal | Cwner
hf urpaby dog Sam
3 oofy fog Mickey
Tweety hiird Granmy
Y oko cat Elly

Selectable lists are also typically used in file choosers. Users select an item
from a list of files, and an editable text field reflects the choice, as shown in the

following figure.

Figure 186 Selectable List in File Chooser at Time of Selection

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

1 Application Data
] Desktop

1 Favaorites

1 MetHood

d Persanal

3 PrintHood

1 Recent

1 SendTo

1]

File name: |Des ktop Open

Files of type: | All Files {*.%) o Cancel

When keyboard focus moves to the editable text field, the selected item
remains in the list, but the highlighting is removed, as shown in the following
figure.

Figure 187 Selectable List in File Chooser After Change in Keyboard Focus

1 Application Data -
1 Desktop i
1 Favarites
1 MetHood
1 Persanal
1 PrintHood
1 Recent
1 SendTo

1]

File name: |Des ktop | Open

Files of type: | All Files {*.%) o Cancel

Note — Typically, double-clicking in a selectable list activates a dialog box's default
command. You must program this behavior explicitly; the JFC does not provide it
automatically.

Except for selection behavior, selectable lists are the same as list boxes,
described in List Boxes.

= Be sure to put your selectable list in a scroll pane if it contains
too many items to display all at once.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

= Always display a whole number of lines in scrolling lists.

Tables

A table organizes related information into a series of rows and columns. Each
field in the table is called a "cell." By default, a cell contains a text field, but you
can replace it with graphics and other components, such as a checkbox or
combo box. The cell with keyboard focus has an inner border, which is drawn
in the primary 1 color in the application's color theme.

The following figure illustrates the use of a table to display the records of
employees in a company database. The cell with the value 377 is selected and
has keyboard focus, but cannot be edited. The table lets you change an
employee's project, but not the first or last name or employee ID.

Figure 188 Table in a Scroll Pane

Moneditable cell with

kevboard focu s
| Column header
FirstMame | LastMame |EmployeelD| ' Project |
Jakob Lehin 532 | Butler -
Feter Winter 27 | FireDog
Sophia Amann AT | Krakatoa
Samuel Stewart 452 | Butler E — Serellbar
Eva Kidney 1273 | Moonhearm
fl &y Diole 311 | FireDog
Roscoe Arrovesimith 28 | FireDog :I—R':“"’
Mira Brooks 192 | Moonhearm =
|

' Editable calunin
Maneditable colurnns

The background color of a cell depends on:

e Whether the cell is selected
o Whether the cell is editable or noneditable
e The background color of the table

The following table shows how a cell gets its background color.

Table 10 Background Color of Table Cells

Type of Cell Background Color Example

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

An unselected cell | The background color of the table, which is white | Kidney
(editable) by defaullt.

An unselected cell | The secondary 3 color, which is gray in the default | Lena
(noneditable) color scheme.

_ | White. The inner border is drawn in the primary 1
A sdlected cell that is

, color to indicate that the cell has keyboard focus.
editable and currently has ,))
(For information on color themes in the Java look
keyboard focus

and feel, see Colors.)

A selected cell that is _ o | :
The primary 3 color, which is light blue in the __SUrJhla

noneditable and currentl
y default color theme. The inner border is primary 1.
has keyboard focus

The primary 3 color, which is light blue in the
Any other selected cell

default color theme.

Users can select a cell and edit its contents if the component in that cell
supports editing. For example, if a cell contains a text field, users can type, cut,
copy, and paste text. For more information on editing text in a table, see
Editable Text Fields.

Users can press Tab to advance to the next cell and select its contents. For the
keyboard operations that are appropriate for tables, see Table 27.

=== The gray background of noneditable cells is not a default JFC
behavior, but it is a recommended practice. You must explicitly specify
the color.

Table Appearance

The JFC provides several options that enable you to define the appearance of
your table. You can turn on the display of horizontal and vertical lines that
define the table cells, as shown in Figure 188. You can set the horizontal and
vertical padding around the content of a cell. You can also set the width of the
columns.

= When resizing a table vertically, make sure that it always displays
a whole number of rows.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Table Scrolling

You can provide scrolling of your table by placing the table inside a scroll pane.
A table has column headers only when it is in a scroll pane. For information on
scrolling, see Scroll Panes.

Column Reordering

You can enable users to rearrange the columns in the table. When users drag
the column header to the right or left, the entire column moves. Releasing the
mouse button places the column at the new location.

The following figure shows the Last Name column being dragged to the right.
In this case, the column is selected (although users can also drag an

unselected column).

Figure 189 Reordering Columns by Dragging a Column Header

FirstMame |Employee 1D Last Nfgne oject |]
Jakaob 5332 Lehn =
Peter 27 Winter 1
Sophia ary ZIIIEI B
Samuel 452 Stewart ’ E
Eva 1273 Kidney 1ea
T 311 Ciole g
Roscoe 28 Arrowesimith g
Wira 192 Brooks nearm =

Column Resizing

You can enable users to resize the columns in a table. Users drag the border
of the column header to the right to make the column wider and to the left to
make the column narrower. When users resize a column, you must decide
whether to change the width of the entire table or adjust the other columns so
that the overall width is preserved. The JFC-supplied resize options are
described in the following table. (Numbers represent relative widths.)

Table 11 Table Resize Options

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The original table. The double arrow shows the —r
east resize pointer before the columns are
. 40 40 G0 100
resized.
Resize next e
Resizes the columns on either side of the
. A a0 20 100

border being moved. One column becomes
bigger, while the other becomes smaller. !-: * t.n!
Resize subsequent e
Resizes the column whose border was moved

. . L 40] 45 75
and al columns to its right. This option is the - n -
default option. 2 - - S
Resize last =
Resizes the column whose border was moved || 40 age] 60 60

and the last (rightmost) column.

—
I+
I+

Resize all o

Resizes all other columns, distributing the | 22 go 43 a0

remaining space proportionately. M t t t |
% ¥

Resize off

Resizes the column whose border was moved o

and makes the table wider or narrower to adjust 40 ae 60 100

the space added or removed from the column.
Thisis the only option that changes the overall
width of the table.

»
B

Use either the Resize Next or Resize Off options (described in
Table 11) to avoid unexpected results in your tables.

Row Sorting

You can give users the ability to sort the rows in a table by clicking the column
headers. An email application, which displays a list of messages in a table, is
well suited for row sorting. As shown in the following figure, users can sort the
messages by date, sender, or subject. The header of the From column
appears in bold to indicate that the messages are currently sorted
alphabetically by sender.

Figure 190 Row Sorting in an Email Application

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

—— Bold column header indicates sort ord er

Date [From [Subject B
M Tue Feh 2 HERZOG Wiesentaler Ahnengalerie -~
ThuFebh18 HERZOG Fe: Weisentaler Ahnengalerie
Tue Febh 15 Kathy Menno The Swing Connection: 1.3 update
hon Fek 16 Keith Brooks mouse double clicks in swing controls
M FriFeh12 lisa.meyersi@yene Re: Security office request
FriFeb 4 Michael Lux fwrd: Feedback on Swing
M Wed Feb 17 Michael Lux Fe: project schedules
9 TueFeh15 Michael Lux project schedules
SatFeb 13 Michael Lux random musings on carnival -]

== Put column header text in bold to indicate the table column that
currently determines the sort order. If something happens to invalidate
the sort order, remove the visual indicator.

—# 1T your application has a menu bar, provide row sorting as a set
of menu 1tems as well (for example, include "Sort by Sender™ in the View
menu). This practice makes sorting available through the keyboard.

=== Row sorting is not included with the table component. However, the
JFC contains sample code that can be used to implement row sorting. See
The Java Tutorial (described in Java) for more information.

Selection Models for Tables

When designing a table, you must decide which objects (cells, rows, or
columns) users can select. The JFC provides 24 models for selecting objects
in tables, but they are not all distinct.

= The following nine selection models are recommended for use in the
Java look and feel:

e No selection

e Single cell

e Single range of cells

e Single row

e Single range of rows

e Multiple ranges of rows

e Single column

e Single range of columns

e Multiple ranges of columns

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

No Selection

You can turn off selection in a table. Nothing is selected when users click in a
cell.

Single Cell

You can enable users to select a cell by clicking it. The cell gets keyboard
focus, which is indicated by an inner border. Any previous selection is
deselected.

In the following figure, the cell containing 377 is selected and has keyboard
focus. The cell cannot be edited, as indicated by the primary 3 background
color.

Figure 191 Single-Cell Selection

—— Clicking here selects this cell

Firstame | LastMame |EmbloyeelD| Project |
Jakob Lehn 5§32 Butler B
FPeter Winter 27 | FireDong
Sophia Armann 3FT | Krakatoa i
samuel Stewart 452 | Butler &
Eiva Kidney 1273 | Moonheam
=T Dale 811 | FireDog
Roscoe Arrowsimith 28 | FireDong
Wira Erooks 182 | Moonbeam -

Range of Cells

You can enable users to select a single cell or a rectangular range of cells.
Users select a cell by clicking it. That cell gets keyboard focus and becomes
the anchor point of the selection. Users extend the selection by moving the
pointer to a new cell and Shift-clicking. Users can also select a range of cells
by dragging through the range.

In the following figure, the user has selected the range by clicking Sophia and
then Shift-clicking 1273. The cell containing Sophia is noneditable, as
indicated by its blue background.

Figure 192 Range of Selected Cells

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

—— Clicking here selects the cell and sets the anchor point

FirstMame | | LastMame |ErmployeelD| Froject |
Jakob Lehn 532 Butler +]
Feter Winter 27 | FireDog
Sophia Amann AFT | Krakatoa
Sarmuel Stewart 452 | Butler [
Eva Kidney 1273 | Moonhearm
fl &y Diole 311 | FireDog
Roscoe Arrovesimith 28 | FireDog
Mira Brooks 192 | Moonhearm =

I— Shift-clicking here extends the selection

In range selection, the selection always extends from the cell with the anchor
point to the cell where the user Shift-clicked. If users move the pointer within
the selection and Shift-click, the selection becomes smaller. For example,

if the user Shift-clicks Stewart in the preceding figure, the selection is reduced
to four cells (Sophia, Amann, Samuel, and Stewart).

Single Row

You can enable users to select an entire row by clicking any cell in the row.
The clicked cell gets keyboard focus, which is indicated by an inner border.
Any previous selection is deselected.

In the following figure, the user has clicked the cell containing 811. This cell is
not editable, as indicated by its background color.

Figure 193 Single-Row Selection

FirstMame | LastMame |ErmployeelD| Froject |
Jakob Lehn 532 Butler +]
Feter Winter 27 | FireDog
Sophia Amann AFT | Krakatoa
Sarmue| Stewart 452 | Butler [
Eva Kidney 1273 | Moonhearm
fl &y Diole 311 | FireDog
Roscoe Arrovesimith 28 | FireDog
Mira Brooks 192 | Moonhearm =

L Clicking here selects the row

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Single Range of Rows

You can enable users to select one row or a range of rows. Users select a row
by clicking any cell in the row. The cell that has been clicked gets keyboard
focus and becomes the anchor point of the selection. Users extend the
selection by moving the pointer to a new row and Shift-clicking. Users can also
select a range of rows by dragging through the range.

In the following figure, the user has clicked Krakatoa and then Shift-clicked the
FireDog in Mary Dole's row. The cell containing Amann is editable, as
indicated by its white background.

Figure 194 Range of Selected Rows

— Clicking here selects the row

and sets the anchor point
FirgtMame | LastMame |[Employee D] Froject |

Jakah Lehn 532 | Butler -

Peter Winter 27 | FireDong

Sophia Arnann 377 |Krakatna |_

Samuel Stewart 452 | Butler i

Eia Kidney 1273 | Moonheam

lary Dole 811 | FireDog

Roscoe Arrowesimith 28 | FireDong

Mira Erooks 192 | Moonbeam -

|— Shift-clicking here
extendsthe selection

In range selection, the selection always extends from the row with the anchor
point to the row where the user has Shift-clicked. If users Shift-click within an
existing selection, the selection becomes smaller. For example, if the user
Shift-clicks Butler in the preceding figure, the selection is reduced to the two
rows containing Krakatoa and Butler.

Multiple Ranges of Rows

You can enable users to select a single row, a range of rows, or multiple row
ranges (also known as "discontinuous,” "discontiguous," or "disjoint" ranges).
Users select a single row by clicking any cell in the row and extend the
selection by Shift-clicking. To start another range, users Control-click any cell
in a row. The cell gets keyboard focus and becomes the anchor point of the
new range. The selection of the row toggles as follows:

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

e If the row is not already selected, it is selected. A subsequent Shift-click selects all
rows from the anchor point to the row where the user has Shift-clicked.

e If the row is within an existing selection, the row is deselected. A subsequent
Shift-click deselects all rows from the anchor point to the row where the user has
Shift-clicked.

Users can also select another range by dragging through the range while
holding down the Control key.

In Figure 195, the user has selected the first range by clicking Winter and then
Shift-clicking Amann. The user has created another range by Control-clicking
Mary and then Shift-clicking Roscoe. The cell containing Mary has keyboard
focus and is noneditable.

@ Click here to view the corresponding code for Figure 195 (also

available on the book®"s companion CD-ROM).

Figure 195 Multiple Ranges of Selected Rows

— Clicking here selects the row and setstheanchor point

— Shift—clicking here ectend s the selection

FirstMame | LastMarhe| [Employee 1D Froject |

Jakah Lehn 532 Butler +]
FPeter Winter 27 | FireDong

Sophia Amann ArT | Krakatoa

Samuel Stewvart 452 | Butler [
Eia Kidney 1273 | Moonheam

fl &y Diole 311 | FireDog

Roscoe Arravesimith 28 | FireDog

Mira Brooks 192 Moonheam =

L Control-clicking here selects the row and rmoves theanchor point

L shift-clicking here extends the selection

Multiple-range selection is well suited for an email application that uses a table
to display message headers, as shown in Figure 190. Users can select one or
more message headers (especially useful for deleting, moving, or forwarding
messages).

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Single Column

You can enable users to select an entire column by clicking any cell in the
column. The cell that was clicked gets keyboard focus, which is indicated by an
inner border. Any previous selection is deselected.

In the following figure, the user has clicked Krakatoa in the Project column.
The white background indicates that the cell can be edited.

Figure 196 Single-Column Selection

FirgtMame | LastMame |[Employee D] Froject |

Jakab Lehn 532 Butler B
Peter Winter 27 | FireDong

Sophia Arnann 3T |Krakatna |_
Samuel Stewart 452 | Butler i
Eia Kidney 1273 | Moonhbean

i any Dole 811 | FireDog

Roscoe Arrowesimith 28 | FireDong

fira Brooks 192 | Moonbean =

— Clicking here

selects the column

Single Range of Columns

You can enable users to select one column or a range of columns. Users
select a column by clicking any cell in the column. The cell that was clicked
gets keyboard focus and becomes the anchor point of the selection. Users
extend the selection by moving the pointer to a new column and Shift-clicking.
Users can also select a range of columns by dragging through the range.

In the following figure, the user has clicked 1273 and then Shift-clicked Amann.
The cell containing 1273 cannot be edited, as indicated by its background
color.

Figure 197 Range of Selected Columns

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

FirstMame | LastMame |EmployeelD| Froject |

Jakohb Lehn 532 | Butler -
Peter YWinter 27 | FireDog

Sophia Amann 37T | Krakatoa

Sarmuel Stewvart 452 | Butler [
Eva Kidney 1273 | Moonbeam

T Diole 211 | FireDog

Roscoe Arrowsimith 28 | FireDong

Wira Brooks 192 | Moonhearm =

— Clicking here selects the row and sets theanchor point

Shift-clicking here extendsthe selection

In range selection, the selection always extends from the column with the
anchor point to the column where the user has Shift-clicked. If users Shift-click
within an existing selection, the selection becomes smaller.

Multiple Ranges of Columns

You can enable users to select a single column, a range of columns, or
multiple-column ranges (also known as "discontinuous," "discontiguous," or
"disjoint” ranges). Users select a single column by clicking any cell in the
column and extend the selection by Shift-clicking. To start another range,
users Control-click any cell in the column. The cell gets keyboard focus and
becomes the anchor point of the range. The selection of the column toggles as
follows:

e If the column is not already selected, it is selected. A subsequent Shift-click
selects all columns from the anchor point to the column where the user
Shift-clicked.

e If the column is within an existing selection, the column is deselected. A
subsequent Shift-click deselects all columns from the anchor point to the column
where the user Shift-clicked.

Users can also select or deselect another range by dragging through the range
while holding down the Control key.

In the following figure, the user has clicked Peter and then Shift-clicked Amann.
The user has selected another range by Control-clicking Krakatoa, which has
keyboard focus and can be edited, as indicated by its white background.

Figure 198 Multiple Ranges of Selected Columns

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Clicking here selects the column and sets the anchor point

— Shift=clicking here extends the selection

FirstHame | LastMame| |EmployeelD| Project |]

Jakohb Lehin 532 | Butler -

Peter Winter 27 | FireDog | Control-clicking here
Sophia Amann 3V |Krakatua ;:ul:if:;::;ﬁlci:rnp?:?:t
Sarmuel Stenvart 452 | Butler [

Eva kidney 1273 | Moonbeam

fl &y Diole 211 | FireDog

Roscoe Arrowesimith 28 | FireDong

Wira Brooks 192 | Moonheam =

= Give your users as much flexibility in your selection scheme as
makes sense for your application. Enable selection of a range or multiple
ranges if you can.

Tree Components

A tree component represents a set of hierarchical data in the form of an
indented outline, which users can expand and collapse. Tree components are
useful for displaying data such as the folders and files in a file system or the
table of contents in a help system.

A tree component consists of nodes. The top-level node, from which all other
nodes branch, is the root node. Nodes that might have subnodes are called
"containers.” All other nodes are called "leaves." The default icon for a
container is a folder, and the default icon for a leaf is a file. Each node is
accompanied by text.

Turners appear next to each container in the tree component. The turner
points right when the container is collapsed and down when the container is
expanded.

In the following figure, the Projects, Fire station, First floor, and Landscaping
nodes are expanded containers; all the other containers are collapsed.
Landscaping is a container without subnodes. Communications, Garage, and
Shop are leaves.

The turner, container, and leaf graphics shown in Figure 199 are the default
graphics provided by the JFC.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

© Click here to view the corresponding code for Figure 199 (also

available on the book®"s companion CD-ROM).

Figure 199 Tree Component With Top-Level Lines

Top-level line — & T A

@] Misc

@ [Projects
Collapsed container — [@ [Diarnond
Expanded container — [@ [T Fire station

Iwith subnodes) @ [Elevation

Turner @ [Firstfloor

Leaf [y Communications
[y Garage
[Shop

@= [Secand floor

Expanded container ——— [@ [Landscaping

fwithout subnodes) & [Gamble house
@] Publications

Users can click a right-pointing turner to expand its container so that the
contents are visible in the tree component. The turner rotates to point
downward. Clicking a downward-pointing turner collapses its container so that
the contents are no longer visible. For the keyboard operations that are
appropriate for tree components, see Table 33.

= In most tree components, display the second level of the hierarchy
as your highest level. Your outline will be easier to use if you do not
display the root node.

< Display turners for all containers in the tree component, including
the containers at the highest level. Turners remind users that they can
expand and collapse the node.

=== Setting the rootVisible property of the tree component to false
turns off the display of the root node.

=== Setting the showsRootHandles of the tree component to true turns
on the display of turners for the highest-level containers.

Lines in Tree Components

The JFC provides three options for including lines in a tree component. The
first option is not to include any lines. The second option is to draw lines that

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

separate the top-level nodes, as shown in Figure 199. The third option is to
draw lines that define the hierarchical relationships of the nodes, as shown in
the following figure.

Figure 200 Tree Component With Hierarchy Lines

® [Classical
@=] Early Music

@ [JBarogue
&] Albinoni

® [Bach
=& Brandenburg Concertas
2 Cello Suites
& Magnificat
=R Massin B minor
=B wWell Termpered Clavier

&] Handel

| | @ [vivaldi
Hierarchy ling——m—— g E Rormantic

&[] Jazz
& [Rock

Custam graphic
for leaf node

= I your tree component contains three or more levels, use lines to
delineate the hierarchical relationships of the nodes.

=== The client property JTree.lineStyle can be set to None to display
no lines, to Horizontal to display top-level lines, and to Angled to
display hierarchy lines.

Graphics in Tree Components

You can substitute your own graphics for the JFC-supplied container and leaf
node graphics. For example, if your hierarchy represents the clients and
servers in a network, you might include graphic representations of the clients
and servers. In Figure 200, a custom music graphic is used for the leaf nodes.
You might also use separate graphics to show when a container is expanded
and when it is collapsed.

Editing in Tree Components

You can enable users to edit the text in a tree component. When editing is
enabled, users can change text using the same editing commands that they
use for text fields. These commands are described in Editable Text Fields.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

To start editing a node in a tree component, users can:
e Click, pause, click, and wait 1200 milliseconds
e Triple-click

e Press F2 when a node is selected

== Setting the editable property to true enables editing of all nodes
in the tree.

Part IV: Backmatter

This part consists of:

e Appendix A: Keyboard Shortcuts, Mnemonics, and Other Keyboard
Operations

e Appendix B: Graphics Repository

e Appendix C: Localization Word Lists

e Appendix D: Switching Look and Feel Designs

e Glossary

A: Keyboard Shortcuts,
Mnemonics, and Other Keyboard
Operations

This appendix presents common keyboard shortcuts and mnemonics in
alphabetical order and summarizes JFC-supplied keyboard navigation,
activation, and selection operations in a series of tables (arranged
alphabetically by component). The left column describes a keyboard operation
(for example, left arrow key) and the right column of each table describes the
corresponding action (for example, moving focus to the left).

Navigating means to move the input focus from one user interface component
to another; activating refers to operating the component; selecting means to
choose one or more user objects such as text or icons, typically for a
subsequent action. For an overview of these concepts, see Keyboard
Navigation and Activation.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

In general, navigating between components uses these keys:

e Tab. Moves keyboard focus to the next component or to the first member of the next
group of components (the upper-left component in left-to-right reading order).

e Ctrl-Tab. Moves keyboard focus to the next component or to the first member of the next
group of components when the current component accepts atab (asin text fields, tables,
text areas, and tabbed panes).

e Shift-Tab. Moves keyboard focus to the previous component or to the last component in
the previous group of componentsin precisely the reverse order of the navigation
specified by pressing Tab.

e Ctrl-Shift-Tab. Moves keyboard focus to the previous component or to the last
component in the previous group of componentsin precisely the reverse order of the
navigation specified by pressing Tab. Ctrl-Shift-Tab works when the current component
accepts tabs.

e Arrow keys. Move keyboard focus between the individual components within a group of
components--for example, between menu items in a menu, between tabs in a tabbed pane,
or from character to character in atext field or text component.

Some actions in the table list several possible keyboard operations,
separated by a comma. For example, both Home and Ctrl-Home move focus to
the beginning of a list.

~ Ensure that you provide multiple operations that take into account
the differences between operating environments if your application runs
on several.

=== Some of the keyboard operations described in the following tables
might be temporarily incomplete or not implemented. However, these key
sequences should be reserved for future versions of the JFC and the Java 2
platform.

=== The arrow keys are insensitive to the component orientation feature
in the Java 2 SDK. (Component orientation is the automatic positioning
of components to reflect the writing system of a locale--for instance,
left to right, or right to left.) For example, the right arrow moves the
action right regardless of the orientation of the locale.

Common Keyboard Shortcuts

The following table provides an alphabetically sorted list of common keyboard
shortcuts. Use this table to see which keyboard shortcuts are used and which
are available. (You can use these shortcuts for other purposes if your
application does not provide the associated function and will not add that

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

function in the foreseeable future.) For a table of keyboard shortcuts organized
according to menus, see Table 8.

Table 12 Alphabetical List of Common Keyboard Shortcuts

Sequence Equivalent
Ctrl-A Select All (Edit menu)
Ctrl-B Bold (Format menu)
Ctrl-C Copy (Edit menu)

Ctrl-E Align Center (Format menu)
Ctrl-F Find (Edit menu)

Ctrl-G Find Again (Edit menu)
Ctrl-H Replace (Edit menu)

Ctrl-1 Italic (Format menu)
Ctrl-L Align Left (Format menu)
Ctrl-N New (File menu)

Ctrl-O Open (File menu)

Ctrl-P Print (File menu)

Ctrl-R Align Right (Format menu)
Ctrl-S Save (File menu)

Ctrl-U Underline (Format menu)
Ctrl-v Paste (Edit menu)

Ctrl-w Close (File menu)

Ctrl-X Cut (Edit menu)

Ctrl-Y Redo (Edit menu)

Ctrl-zZ Undo (Edit menu)

Delete Delete (Edit menu)

F1 Help

F5 Refresh

Shift-F1 Contextual help

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Common Mnemonics

The following table provides an alphabetically sorted list of common
mnemonics for menu items within the common menus. Use this table to
determine which mnemonics are used and which are available. For a list of
common mnemonics organized by the common order in menus, see Table 9.

Table 13 Alphabetical List of Common Mnemonics

Letter Menu Items
A Select All (Edit menu), Save As (File menu), About Application (Help menu)
B Bold (Format menu)

Copy (Edit menu), Close (File menu), Align Center (Format menu), Contents

C
(Help menu)
D Delete (Edit menu), Details (View menu)
E Edit menu
F File menu, Find (Edit menu), Filter (View menu)
G Large Icons (View menu)
H Help menu
| Index (Help menu), Italic (Format menu)
L Align Left (Format menu), List (View menu)
M Small Icons (View menu)
N Find Again (Edit menu), New (File menu)
(0] Open (File menu), Zoom Out (View menu)
P Paste (Edit menu), Print (File menu)
R Format menu, Redo (Edit menu), Align Right (Format menu), Refresh (View menu)
S Save (File menu), Search (Help menu), Sort By (View menu)
T Cut (Edit menu), Tutorial (Help menu)
U Undo (Edit menu), Page Setup (File menu), Underline (Format menu)
\Y View menu

X Exit (File menu)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

z Zoom In (View menu)

Checkboxes

The following table lists the keyboard operation for checkboxes. For more
information on this component, see Checkboxes.

Table 15 Keyboard Operation for Checkboxes

Keyboard Operation Action

Spacebar Switches the setting of the checkbox

Combo Boxes

The following table lists the keyboard operations for combo boxes. For details
on this component, see Combo Boxes.

Table 16 Keyboard Operations for Combo Boxes
Keyboard Operation Action

Spacebar, down arrow,))
Posts associated list
Alt-down arrow

When menu is posted, moves highlight up or down within list,
Up arrow, down arrow] o .
selecting highlighted item

Enter, Return, spacebar Closes list, maintaining latest selection

Escape Closes list, returning to prior selection

Command Buttons

The following table lists the keyboard operations for command buttons. For
more information on this component, see Command Buttons.

Table 17 Keyboard Operations for Command Buttons

Keyboard Operation Action
Spacebar Activates command button that has keyboard focus

Enter, Return Activates default button (does not require keyboard focus)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Escape Activates Cancel button (does not require keyboard focus)

HTML Editor Kits

HTML editor kits use the navigation, selection, and activation sequences
described in Table 28, plus the two listed here. For details on the appearance
and behavior of this component, see HTML Editor Kit.

Table 18 Keyboard Operations for HTML Panes

Keyboard Operation Action

) Navigates to link and other focusable elements (click here for a
Tab, Ctrl-Tab, Shift-Tab, o
) description of the directions associated with these keyboard
Ctrl-Shift-Tab

operations)

Enter, Return, spacebar | Activates link

List Components

The actions listed in the following table assume multiple selection in list boxes
and selectable lists. For more information on the appearance, behavior, and
selection of these components, see List Boxes and Selectable Lists.

Table 19 Keyboard Operations for Lists

Keyboard _
. Action
Operation
Up arrow Moves focus up one row or line and selects the item
Down arrow Moves focus down one row or line and selects the item
b U Moves focus up one information pane minus one line, selecting the first
age Up L . .
line in the information pane
Moves focus down one information pane minus one line, selecting the
Page Down

last line in the information pane
Home, Ctrl-Home Moves focus to beginning of list
End, Ctrl-End Moves focus to end of list
Ctrl-A, Ctrl-/ Selects all items in list

Ctrl-\ Deselects all items in list

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Spacebar
Ctrl-spacebar
Shift-spacebar
Shift-down arrow
Shift-up arrow
Shift-Home
Shift-End
Shift-PgUp

Shift-PgDn

Menus

Makes a selection and deselects any previous selection
Switches selection without affecting previous selections
Extends selection

Extends selection down one item

Extends selection up one item

Extends selection to beginning of list

Extends selection to end of list

Extends selection up one information pane

Extends selection down one information pane

The keyboard operations in this table apply to menu bars, drop-down menus,
submenus, contextual menus, menu items, radio button menu items, and
checkbox menu items. For a discussion of menus, see Chapter 9.

B
keyboard.

Keyboard
Operation

F10

Shift-F10

Right arrow and

left arrow
Up arrow
Down arrow

Enter, Return,

spacebar

Escape

In the Java 2 SDK, contextual menus cannot be posted from the

Table 20 Keyboard Operations for Menus

Action

Moves focus to menu bar and posts first menu
Displays contextual menu

Navigates right or left among titles in menu bar, posting current menu,
displaying submenus (right arrow), and navigating back from submenu to

higher-level menu
Navigates within menus, displaying submenus

Navigates within menus, moving to the next item without displaying a

submenu

Activates menu item, dismisses menu, and goes to last window item that

had focus

Dismisses menu without taking action and returns focus to last component

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

that had focus; when in submenu, dismisses submenu and returns to
higher-level drop-down or contextual menu

Radio Buttons

The following table lists the keyboard operation for radio buttons. For a
discussion of the appearance and behavior of this component, see Radio
Buttons.

Table 21 Keyboard Operation for Radio Buttons

Keyboard Operation Action
Spacebar Turns on radio button
Scrollbars

Users can operate scrollbars from the keyboard when keyboard focus is
anywhere in the scroll pane. If there are scroll panes within scroll panes, the
keyboard operates the innermost scrollbar. For a discussion of the appearance
and behavior of this component, see Scrollbars.

Table 22 Keyboard Operations for Scrollbars

Keyboard Operation Action

Up arrow Moves information pane up one line

Down arrow Moves information pane down one line

Page Up Moves up one information pane minus one line

Page Down Moves down one information pane minus one line
Ctrl-Home Moves to beginning of data

Ctrl-End Moves to end of data

Ctrl-PgDn Moves right one information pane minus one column

Ctrl-Pg Up Moves left one information pane minus one line or column

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Secondary Windows and Utility Windows

The following table lists the keyboard operations for secondary windows
(dialog boxes and alert boxes). Utility windows use the same operations. For
comprehensive treatment of dialog boxes and alert boxes, see Chapter 8. For
a discussion of utility windows, see Utility Windows.

=== Keyboard navigation support for the JDialogPane component is not
fully operational in the Java 2 SDK. The action specified for the Escape
key must be programmed by the developer.

Table 23 Keyboard Operations for Dialog Boxes

Keyboard .
_ Action
Operation
AILF6 Navigates into secondary window; when in secondary window, navigates
to the associated higher-level window
Escape Activates Cancel button (no need for keyboard focus)

Enter, Return Activates default command button (no need for keyboard focus)

Sliders

The following table lists the keyboard operations for sliders. Sliders can be
either vertical or horizontal, so keyboard operations are provided for each case.
For details on this component, see Sliders.

Table 24 Keyboard Operations for Sliders

Keyboard _
. Action
Operation
Arrow keys Changes value of slider
H Moves to leading-edge value (in left-to-right reading order, the value at
ome
the left edge or bottom)
End Moves to the trailing-edge value (in left-to-right reading order, the value
n
at the right edge or top of the slider)
Page) .
Jumps towards right or top (approximately 20% of the scale)
Ctrl-PgUp
Page Down, | Jumps towards left or bottom direction (approximately 20% of the scale)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Ctrl-PgDn

Split Panes

The following table lists the keyboard operations for split panes. After users
enter a split pane, pressing Tab cycles the focus to the components within the
split pane. For a description of the appearance and behavior of this component,

see Split Panes.

Table 25 Keyboard Operations for Split Panes

Keyboard .
_ Action
Operation
Tab. E6 Navigates between split panes and gives focus to last element that
ap,
had focus
F8 Gives focus to splitter bar

Arrow Kkeys, Home,

End Changes location of splitter bar in splitter pane
n

Tabbed Panes

The following table lists the keyboard operations for tabbed panes. For a
description of the appearance and behavior of this component, see Tabbed
Panes. When a tabbed pane initially gets focus, the focus goes to one of the
tabs, not to one of the content panes.

Table 26 Keyboard Operations for Tabbed Panes

Keyboard Operation Action

Arrow keys Navigates through tabs

Ctrl-down arrow Moves from tab to its associated content pane

Ctrl-up arrow Moves from content pane to its associated tab

Ctrl-PgDn Moves to next content pane (changing the corresponding tab)

Ctrl-PgUp Moves to previous content pane (changing the corresponding tab)

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Tables

The following table lists the keyboard operations for tables. For a description of
the appearance and behavior of this component, see Tables.

Keyboard

Operations
Enter (or Return)

Shift-Enter
Shift-Return)

Tab
Shift-Tab
Down arrow

Up arrow

Page Down

Page Up

Ctrl-PgUp

Ctrl-PgDn

Home

End
Ctrl-Home
Ctrl-End
F2

Escape
Ctrl-A

Shift-down arrow

Table 27 Keyboard Operations for Tables

Action

Deselects current selection and moves focus down one cell

Deselects current selection and moves focus up one cell

Deselects current selection and moves focus right one cell
Deselects current selection and moves focus left one cell
Deselects current selection and moves focus down one cell
Deselects current selection and moves focus up one cell

Deselects current selection, scrolls down one information pane, and
selects the last visible cell in the current column

Deselects current selection, scrolls up one information pane, and

gives focus to first visible cell in the current column

Deselects current selection, scrolls left one information pane, and
gives focus to first visible cell in the current row

Deselects current selection, scrolls right one information pane, and

selects the last visible cell in the current row

Moves focus and information pane to first cell in the current row
Moves focus and information pane to last cell in the current row
Moves focus and information pane to first cell in the current column
Moves focus and information pane to last cell in the current column
Enables editing in a cell

Resets cell to the state it was in before it was edited

Selects entire table

Extends selection down one row

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Shift-up arrow
Shift-left arrow
Shift-right arrow
Shift-Home
Shift-End
Ctrl-up arrow

Ctrl-down arrow

Ctrl-Shift-up arrow

Ctrl-Shift-down arrow

Ctrl-Shift-Home
Ctrl-Shift-End
Shift-PgDn
Shift-PgUp
Ctrl-Shift-PgDn

Ctrl-Shift-PgUp

Extends selection up one row

Extends selection left one column

Extends selection right one column

Extends selection to beginning of row

Extends selection to end of row

Navigates up one row without affecting the selection
Navigates down one row without affecting the selection

Navigate up one row and select the new item without deselecting

any current selections

Navigate down one row and select the new item without deselecting

any current selections

Extends selection to beginning of column
Extends selection to end of column

Extends selection down one information pane
Extends selection up one information pane
Extends selection right one information pane

Extends selection left one information pane

Text Areas and Default and Styled Text Editor Kits

The following table lists the keyboard operations for text areas and the default
and styled text editor kits. For details on the appearance and behavior of these
components, see Text Areas, Default Editor Kit, and Styled Text Editor Kit.

Table 28 Keyboard Operations for Text Areas and Default and Styled Text

Keyboard Operation

Up arrow
Down arrow
Left arrow

Right arrow

Editor Kits
Action
Moves insertion point up one line
Moves insertion point down one line
Moves insertion point to the left one component or character

Moves insertion point to the right one component or character

Sun - Java Look and Feel Design Guidelines, 2" Edition

Page Up

Page Down
Ctrl-PgUp
Ctrl-PgDn
Home

End
Ctrl-Home
Ctrl-End
Ctrl-left arrow
Ctrl-right arrow
Ctrl-A, Ctrl-/
Ctrl-\

Shift-up arrow

Shift-down arrow

Shift-left arrow
Shift-right arrow

Shift-PgUp

Moves up one information pane
Moves down one information pane
Moves left one information pane
Moves right one information pane
Moves to beginning of line

Moves to end of row or line

Moves to beginning of data

Moves to end of data

Moves to beginning of previous word
Moves to beginning of next word
Selects all

Deselects all

Extends selection up one line
Extends selection down one line
Extends selection left one character
Extends selection right one character

Extends selection up one information pane

made by dotneter@teamfly

Shift-PgDn Extends selection down one information pane
Ctrl-Shift-PgUp Extends selection to the left one information pane
Ctrl-Shift-PgDn Extends selection to the right one information pane
Shift-Home Extends selection to beginning of line
Shift-End Extends selection to end of line

Ctrl-Shift-Home Extends selection to beginning of data
Ctrl-Shift-End Extends selection to end of data
Ctrl-Shift-right arrow Extends selection to next word

Ctrl-Shift-left arrow Extends selection to previous word

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Text Fields

The following table lists the keyboard operations for text fields. For details on
this component, see Text Fields.

Keyboard

Operation
Right arrow
Left arrow

Ctrl-right arrow

Ctrl-left arrow

Home

End

Shift-Home
Shift-End
Shift-left arrow
Shift-right arrow

Ctrl-Shift--left

arrow

Ctrl-Shift--right

arrow

Ctrl-A

Table 29 Keyboard Operations for Text Fields

Action

Moves insertion point one character to the right
Moves insertion point one character to the left
Moves insertion point to beginning of next word

Moves insertion point to beginning of current word, or, if insertion point
is already at the beginning of the current word, moves it to the beginning

of the previous word

Moves insertion point to beginning of text field
Moves insertion point to end of text field
Extends selection to beginning of line

Extends selection to end of line

Extends selection one character to the left

Extends selection one character to the right

Extends selection to previous word

Extends selection to next word

Selects all characters in the text field

Toggle Buttons

The following table lists the keyboard operation for toggle buttons. For details
on this component, see Toggle Buttons.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Table 30 Keyboard Operation for Toggle Buttons

Keyboard Operation Action
Spacebar Switches button on or off
Tool Tips

The following table lists the keyboard operations for tool tips. For details on this
component, see Tool Tips.

Table 31 Keyboard Operations for Tool Tips

Keyboard Operation Action

Ctrl-F1 Displays or dismisses tool tip
Escape Dismisses tool tip
Toolbars

The following table lists the keyboard operations for toolbars. For details on the
appearance and behavior of this component, see Toolbars.

Table 32 Keyboard Operations for Toolbars

Keyboard Operation Action
Arrow keys Navigates within toolbar
Spacebar Activates toolbar button

Tree Components

The following table lists the keyboard operations for tree components. For
details on the appearance and behavior of this component, see Tree

Components.

Table 33 Keyboard Operations for Tree Components

Keyboard .
_ Action
Operation

Right arrow Expands current node

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Left arrow Collapses current node

Up arrow Moves selection up one node

Down arrow Moves selection down one node
Home Moves selection to first node in tree
End Moves selection to last node in tree
Page Up Scrolls up one information pane
Page Down Scrolls down one information pane

Moves left one information pane, if not everything is visible in a

Ctrl-PgUp
horizontal orientation
Ctrl-PgDn Moves right one information pane, if not everything is visible in a
horizontal orientation
Ctrl-A, Ctrl-/ Selects all nodes in tree
Ctrl-\ Deselects all
Shift-up arrow Extends selection up
Shift-down arrow Extends selection down
Shift-Home Extends selection to beginning of tree
Shift-End Extends selection to end of tree
Shift-PgUp Extends selection up one information pane
Shift-PgDn Extends selection down one information pane
Ctrl-Shift-PgDn Extends selection right one information pane
Ctrl-Shift-PgUp Extends selection left one information pane

B: Graphics Repository

This appendix presents toolbar button and menu item graphics designed
specifically for use in Java look and feel applications. The information is based
on the Java Look and Feel Graphics Repository, which is available at
http://java.sun.com/products/jfc/tsc.

& The contents of this appendix are available on the book™s companion

CD-ROM.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

<= As a general rule, use 16 x 16 pixel graphics for menu items and
24 x 24 pixel graphics for toolbar buttons.

These professional-quality graphics can save valuable development time and
ensure consistent graphics and terminology across Java look and feel
applications.

The graphics are organized into six functional groups:

e General

e Navigation
o Text

e Tables

e Media

e Development tools
The repository provides:

e Small and large graphics. The 16 x 16 and 24 x 24 pixel graphics.

e Description. Explanation of the concept underlying each pair of graphics. Use
this information to help you decide whether these graphics are appropriate to
represent a specific feature of your application. You might use a modified,
context-driven version of this explanation to describe the feature in your status
bar.

e Name. Title to be used in corresponding menu items or button text. Variables, set
off by curly braces, appear in some name fields. If the runtime value of this
parameter is available, provide it for users.

e Tool tip. Brief phrase appearing next to the pointer when the pointer is over one of
these graphics. Variables, set off by curly braces, appear in some of the tool tip
fields. If the runtime value of this parameter is available, provide it for users.

e Keyboard shortcut. Keystroke combination (usually a modifier key and a
character key) that activates the related menu item. Attach shortcuts to simple and
constantly used features (like Ctrl-X for Cut). Ensure that each shortcut is unique
within your application. For more information and guidelines on shortcuts, see
Keyboard Shortcuts. For a summary of shortcuts, see Table 8.

e Mnemonic. A mnemonic shows users which key to press (in conjunction with the
Alt key) to activate a command or another GUI component. This section suggests
appropriate letters to underline (in order of preference) in the related menu item or
button. Choose from among the suggested mnemonics to aid consistency. For
rules on choosing mnemonics for your toolbar buttons and menu items, see
Mnemonics.

e File name. The relative path name for the specified graphic in the Java Archive.
The online file name follows this format:

.. ./toolbarButtonGraphics/groupName/NameSize.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

All of the graphics reside in the toolbarButtonGraphics folder of the Java
Archive. Therefore, the file-name information includes only the groupName
subdirectory and NameSize.giT file name. Because the graphics are located in
subdirectories, the path information is necessary. For instance, the repository
contains two graphics for Stop--one for media transport and one for general use.

e Other notes. Miscellaneous information about the graphics, including
cross-references to related graphics or concepts.

> Provide both graphics and text in a toolbar when you deem it
appropriate--for instance, to accommodate novice or occasional users and
those with poor vision. If you decide to display both button text and
graphics, provide a way for end users to indicate their preferences for
button text only, graphics only, or button text and graphics.

5> You can use the information in this appendix to create Swing actions.
For more on Swing actions, see the Java 2 Platform, Standard Edition, v
1.3 API Specification by visiting
http://java.sun.com/j2se/1.3/docs/api/javax/swing/Action.html.

General Graphics

This section provides general-purpose graphics that represent:

e Adding objects

e Saving edits or checkpoints

e Stopping tasks or processes

e Adjusting the screen display

e Changing magnification levels

e Specifying preferences and properties
e Printing

e Displaying and retrieving previously visited locations
e Creating and sending electronic mail
e Aligning and justifying objects

e Searching

e Editing objects and data

e Importing and exporting objects

e Providing help and information

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Adding Objects

This section contains graphics that represent the addition of an object
to an existing set of objects.

Add

Graphics Y El

Adds an object to an
existing set of objects

Description
Name Add {Object Name}
Tool Tip Add {Object Name}

Mnemonic A, D

.../general/Add16.gif

File Name .
.../general/Add24.gif
For more information on
the plus symbol in the
Other .
lower- right corner of the
Notes .
document graphic, see
Add Object Indicators.
New

Graphics 0 D*

Description | Creates a new object
Name New {Object Name}
Tool Tip New {Object Name}
Shortcut Ctrl-N

Mnemonic | N, W

File Name | .../general/Newl16.qgif

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Other
Notes

Open

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Saving Edits or Checkpoints

.../general/New24.qgif

For more information on
the twinkle symbol on the
lower-right corner of the
document graphic, see
New Object Indicators.

=L |

Opens the specified
object

Open {Object Name}
Open {Object Name}
Ctrl-O
O, P N

.../general/Openl6.gif
.../general/Open24.gif

The graphics in this section provide representations for saving edits or
checkpoints for a specified object or group of objects.

Save

Graphics

Description

mE

Commits all interim edits
or checkpoints for an
object to a permanent
storage area

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Name
Tool Tip
Shortcut

Mnemonic

File Name

Save All

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Save As

Graphics

Description

Name
Tool Tip

Mnemonic

Save
Save
Ctrl-S
S,V

.../general/Savel6.gif
.../general/Save24.gif

=

Commits all interim changes
of a group of objects to a
permanent storage area

Save All
Save All
A,S,V, L

.../general/SaveAll16.gif
.../general/SaveAll24.gif

Bl

Saves the object being
edited to a different,
permanent storage area

Save As
Save As

A, S,V

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.../general/SaveAs16.gif

File N
e Tame .../general/SaveAs24 . gif

Stopping a Task

The graphic in this section represents stopping an action or a process.
Compare this section to Stop, which is for media transport processes.

Stop

Graphics 0

Halts the execution of a
task

Description
Name Stop {Action or Process}
Tool Tip Stop {Action or Process}
Mnemonic |S, T, P

.../general/Stop16.gif

File Name .
.../general/Stop24.gif
The Stop feature should
Other i
be available only when
Notes

there is an activity to halt.

Updating the Screen Display

This section provides graphics to represent updating the screen
display with new data.

Refresh

Graphics @%

Description | Updates screen display with

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

new data
Name Refresh {Object Name}
Tool Tip Refresh {Object Name}

Mnemonic R, F S, H

.../general/Refresh16.gif

File N
e Name .../general/Refresh24.gif

Changing Magnification Levels

This section provides graphics to represent changing the
magnification level used to view an object.

Zoom

Graphics @ O\

Changes the
Description | magnification level used
to view an object

Name Zoom
Tool Tip Zoom
Mnemonic Z, M

.../general/Zoom16.gif

File N .
e Name .../general/Zoom?24.gif

Zoom In

Graphics @;‘@%

Increases the magnification
Description | level used (to view the
details of an object)

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Name Zoom In
Tool Tip Zoom In
Mnemonic |1, Z, N, M

.../general/ZoomInl6.gif

File N)
e Name .../general/ZoomIn24.gif
Zoom Out

Graphics 9\@%

Decreases the magnification
Description | level used (to view more of an
object)

Name Zoom Out
Tool Tip Zoom Out
Mnemonic O, Z, T, M

.../general/ZoomOutl6.gif

File N .
e Name .../general/ZoomOut24.gif

Specifying Preferences and Properties

This section provides graphics to represent the display of:

e Global attributes of the current application that might be set by users

(preferences)

e Local characteristics of a selected object that might be specified by users

(properties)

Preferences

Graphics B 5 -

Description | Displays global attributes of the

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Name
Tool Tip

Mnemonic

File Name

Other
Notes

current application that might be
set by users

Preferences
Preferences
PR, F

.../general/Preferencesl16.gif
.../general/Preferences24.gif

See Properties Indicators.

Properties

Graphics B D,
Displays local characteristics of
Description | a selected object that might be
edited by users
Name Properties
Tool Tip Properties
Mnemonic |P,R, T, S
File Name .../generaI/Propert!e316.g!f
.../general/Properties24.qif
Other . .
See Properties Indicators.
Notes
Printing

This section provides graphics that represent operations such as page
setup, printing, and print previews.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Page Setup

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

Print

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

28

Enables users to specify
properties for the current print
job

Page Setup
Page Setup
G,S,P

.../general/PageSetupl6.gif
.../general/PageSetup24.gif

See Properties Indicators. Page
setup properties might include
printer selection, paper
orientation, size, and so forth.

55

Sends an object or set of
objects to be printed

Print
Print
Ctrl-P
P, R, N

.../general/Print16.gif
.../general/Print24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Print Preview

Graphics B @]

Provides a preliminary
. representation of the output that
Description .
would be generated by the Print
menu item
Name Print Preview
Tool Tip Print Preview

Mnemonic R, P, V, W

.../general/PrintPreviewl16.gif
.../general/PrintPreview24.gif

File Name
Displaying and Retrieving Previously Visited

Locations

This section provides graphics that represent bookmarks and history
files.

A bookmark is a saved URL (uniform resource locator) for a web
page that has been added to a list of saved URLs. When users view a
particular web site and want to return to it subsequently, they can
create a bookmark for the site.

On the other hand, a history file displays a list of previously visited
locations (or opened files).

Bookmarks

Graphics N &

Displays a list of documents

Description .
b marked for later retrieval

Name Bookmarks

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Tool Tip Bookmarks
Mnemonic B, K, M, R

.../general/Bookmarks16.gif

File N
e Name .../general/Bookmarks24.gif

History

Graphics D

Displays a list of previously
Description | visited locations (or opened

files)
Name History
Tool Tip History

Mnemonic H, S, T, Y

.../general/History16.gif

File N
e Name .../general/History24.gif

Creating and Sending Electronic Mail

This section provides graphics that represent the creation and sending

of electronic mail messages.

Compose Mail

Graphics @Eﬁl
. Creates a new electronic mail
Description
message
Name Compose Mail
Tool Tip Compose Mail

Mnemonic M, L, C

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

.../general/ComposeMaill6.qgif

File N
e Tame .../general/ComposeMail24.qgif

Send Mail

Graphics | @l2

. Sends the specified electronic
Description .
mail message

Name Send Mail
Tool Tip Send Mail
Mnemonic |S, M, L, N

.../general/SendMaill16.gif

File N
e Name 1 /general/SendMail24.gif

Aligning Objects

This section contains graphics that represent the alignment of objects.
Compare these graphics with the graphics in Justifying Objects.

Do not use these graphics for textual objects. Instead use the
graphics described in Text Alignment and Justification.

Aligning Objects

This section contains graphics that represent the alignment of objects.
Compare these graphics with the graphics in Justifying Objects.

Do not use these graphics for textual objects. Instead use the
graphics described in Text Alignment and Justification.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Align Bottom

+—s

Graphics [allml

Positions an object so that it lines
Description | up with the lower horizontal edge
of its container

Name Align Bottom {Object Name}
Tool Tip Align Bottom {Object Name}
Mnemonic B, T, M

.../general/AlignBottom16.gif

File N
e Name .../general/AlignBottom24.gif

Align Center

Graphics .lli

Positions an object so that it is in
Description | the middle of its container along
both horizontal and vertical axes

Name Align Center {Object Name}
Tool Tip Align Center {Object Name}
Shortcut Ctrl-E

Mnemonic 'C, N, T, R

.../general/AlignCenter16.gif

File N : .
e Name .../general/AlignCenter24.gif

Other Do not use these graphics for
Notes textual objects; see Align Center.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Align Left
Graphics r.:]ﬂ__
Positions an object to line up
Description | with the leading vertical edge
of its container
Name Align Left {Object Name}
Tool Tip Align Left {Object Name}
Shortcut Ctrl-L
Mnemonic L, K T
File Name .../generaI/AI!gnLeft16.g!f
.../general/AlignLeft24.gif
Do not use these graphics for
Other textual objects; gsel?a Align
Notes . ’
Left.
Align Right
Graphics ,_ﬂlE
Positions an object to line up
Description | with the trailing vertical edge of
its container
Name Align Right {Object Name}
Tool Tip Align Right {Object Name}
Shortcut Ctrl-R
Mnemonic R, G, H, T
File Name .../generaI/AI!gnR!ght16.g!f
.../general/AlignRight24.gif
Other Do not use these graphics for
Notes textual objects; see Align

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Right.

Align Top

Graphics | [|:|

Positions an object to line up
Description | with the upper horizontal
edge of its container

Name Align Top {Object Name}
Tool Tip Align Top {Object Name}
Mnemonic | T, P

.../general/AlignTopl16.gif

File N
e Name .../general/AlignTop24.gif

Justifying Objects

This section provides graphics to represent the justification of objects.
Compare these graphics to those described in Text Alignment and
Justification.

Horizontally Justify

Graphics EE

Positions an object so that it fills the middle
Description | of its container evenly all the way to either
vertical edge

Name Horizontally Justify {Object Name}
Tool Tip Horizontally Justify {Object Name}
Mnemonic |H, R, Z

.../general/AlignJustifyHorizontal16.gif

File N . : . .
e Name .../general/AlignJustifyHorizontal24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Other Do not use these graphics for textual
Notes objects; see Justify.

Vertically Justify

Graphics ‘]]'H]

Positions an object to fill the middle of its
Description | container evenly all the way to either
horizontal edge

Name Vertically Justify {Object Name}
Tool Tip Vertically Justify {Object Name}
Mnemonic (V,R, T

.../general/AlignJustifyVertical16.gif

File Name
.../general/AlignJustifyVertical24.gif

Other Do not use these graphics for textual

Notes objects; see Justify.

Searching

This section provides graphics that represent search operations
ranging from simple find-and-replace features within a document or a
web page to a more comprehensive search feature with a scope as
broad as one or more web sites or the entire World Wide Web.

Find In
Graphics &&
Displays a window that
. enables the user to
Description . L
specify criteria to search
for a specified object
Name Find In {Scope}

Tool Tip Find In {Scope}

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Shortcut Ctrl-F
Mnemonic |F, N, D
File Name .../generaI/Fl_nd16.g|_f
.../general/Find24.gif
Compare to Search. Find
is used within an object
(such as a document),
whereas Search is used
Other .
for more extensive
Notes . .
operations across objects
(for instance, multiple
documents within a
folder).
Find Again
Graphics q@
Searches for the next instance
Description | of the object specified by the
previous Find In command
Name Find Again {Object Name}
Tool Tip Find Again {Object Name}
Shortcut Ctrl-G
Mnemonic | A, G, N
File Name .../generaI/F!ndAga!nl6.g!f
.../general/FindAgain24.gif
Other Compare to Find In and
Notes Search.
Replace
Graphics @@

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Substitutes one object for

Description

P another
Name Replace
Tool Tip Replace

Shortcut Ctrl-H
Mnemonic R, P, L, C

.../general/Replacel6.qgif

File N .
e Name .../general/Replace24.gif

Search

Graphics ﬂ@

Searches for a specified

Description
b object
Search {Obj i
Name {Object Name} {in
Scope}
Search {Object Name in
Tool Tip {0bj L

Scope}
Mnemonic S, R, C, H

.../general/Search16.gif

File Name .
.../general/Search24.gif
Other .
Compare to Find In.
Notes

Editing Objects and Data

The graphics in this section represent common editing features such
as copying, cutting, pasting, undoing, and redoing.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Copy

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Cut

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic
File Name

Other
Notes

m [

Duplicates the selected
object and makes it
available to be pasted
elsewhere

Copy
Copy
Ctrl-C
C,RY

.../general/Copyl6.gif
.../general/Copy24.gif

% db

Removes the selected
object from its current
location and makes it
available to be pasted
elsewhere

Cut
Cut
Ctrl-X
T, C

.../general/Cutl6.gif
.../general/Cut24.gif

See also Delete and

Remove.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Delete

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

Remove

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

o 1

Removes the selected
object from its current
location

Delete
Delete
Delete
D, L T

.../general/Deletel6.gif
.../general/Delete24.gif

See also Remove and Cut.

Removes the selected item
from its current context

Remove
Remove
R, M,V

.../general/Removel6.gif
.../general/Remove24.gif

See also Delete and Cut.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Paste

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

Edit

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

@ [

Inserts an object or data
previously placed in a
temporary holding area

Paste
Paste
Ctrl-Vv
P,S T

.../general/Pastel6.gif
.../general/Paste24.gif

The object or data is
usually placed in the
temporary holding area
by the Cut or Copy
command. Compare to
Copy and Cut.

Y

Enables users to modify
the selected object

Edit
Edit
E,D, T

.../general/Edit16.gif
.../general/Edit24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Undo

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Redo

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

29

Reverses the last
transaction

Undo {Action}
Undo {Action}
Ctrl-Zz

U,N, D

.../general/Undol6.gif
.../general/Undo24.gif

eC

Reverses the effect of the
last undone transaction

Redo {Action}
Redo {Action}
Ctrl-y

R, D

.../general/Redo016.gif
.../general/Redo24.gif.

Importing and Exporting Objects

The graphics in this section represent the importing and exporting of
objects. To import involves bringing objects or data (for example,
documents created in another application, text files, and graphics files)
into your application. To export means to save an object or data in a
format other than your application's native format.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Import

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Export

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Providing Help and Information

& i

Opens an object or data
that is in a format other
than the application’s
native format

Import
Import
I, M, P T

.../general/lmportl6.gif
.../general/lmport24.qgif

& dh

Saves an object or data in a
format other than the
application's native format

Export
Export
X, E, P T

.../general/Exportl16.gif
.../general/Export24.gif

This section contains graphics that represent standard and contextual
help, information about an object or a task, About boxes, and tips of

the day.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Help

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

mlZ]

Provides instructions and
information to aid users
in completing tasks

Help
Help
F1

H, L, P

.../general/Helpl6.gif
.../general/Help24.qif

As a general rule, help
provides a system for
browsing, searching,
viewing, and reading
information. It has more
options than contextual
help but might require
activity that is tangential
to the user's task.

Contextual Help

Graphics

Description

Name
Tool Tip

Shortcut

k> ke

Displays information to users based
on their working location in a piece of

software
Contextual Help
Contextual Help

Shift-F1

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Mnemonic

File Name

Other
Notes

C, T, X,H

.../general/ContextualHelp16.gif
.../general/ContextualHelp24.gif

Compare to the previous section.

Information

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

About

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other

@

Displays information about an
object or task

Information

Information

I,N,F, O

.../general/Information16.gif
.../general/Information24.gif

P

Provides information
about the application as a
whole

About {Application Name}
About {Application Name}
A B, T

.../general/Aboutl16.gif
.../general/About24.gif

For more information on

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Notes About boxes, see
Designing About Boxes.

Tip of the Day

Graphics @ @

Provides a short hint about a
feature of the application

Description
Name Tip of the Day
Tool Tip Tip of the Day

Mnemonic | T, D, P

.../general/TipOfTheDay16.gif

File N
e Name .../general/TipOfTheDay24.gif

Navigation

This section contains graphics that represent vertical and horizontal
traversal as well as traversal to an initial, well-known location.

Vertical Traversal

The graphics in this section apply to navigation through objects with a

vertical orientation.

Down To

Graphics | 4 %7

Description | Moves to the next location
Name Down to {Location}
Tool Tip Down to {Location}

Shortcut Alt-down arrow

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Mnemonic D, W, N

.../navigation/Down16.gif

File Name) . .
.../navigation/Down24.gif
Use Down To when the
orientation of the object

Other . . .

Notes being traversed is vertical.
For horizontally oriented
objects, use Forward To.

Up

Graphics | & &%

Moves to the previous

Description .

location
Name Up to {Location}
Tool Tip Up to {Location}

Shortcut Alt-up arrow
Mnemonic (U, P

.../navigation/Up16.gif

File Name . . .
.../navigation/Up24.gif
Use Up when the
orientation of the object
Other . . ;
being traversed is vertical.
Notes

For horizontally oriented

objects, use Back To.

Horizontal Traversal

The graphics in this section apply to navigation through objects with a
horizontal orientation, such as web pages in a web site.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Back To

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

¢ €

Moves to the
location

previous

Back to {Location}
Back to {Location}
Alt-left arrow

B, C, K

.../navigation/Back16.gif
.../navigation/Back24.gif

Use Back To when the
orientation of the object
being traversed is
horizontal. For vertically
oriented objects, see Up.

Forward To

Graphics

Description
Name

Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

> &

Moves to the next location
Forward to {Location}
Forward to {Location}
Alt-right arrow

F, R, W, D

.../navigation/Forward16.gif
.../navigation/Forward24.gif

Use Forward To when the
orientation of the object being
traversed is horizontal. For

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

vertically oriented objects, use
Down To.

Returning to an Initial Location

This graphic represents movement to an initial location--for instance,
the first page in a web site.

Home To

Graphics ﬂﬁ'

Description | Moves to an initial location
Name Home To {Location}

Tool Tip Home To {Location}
Shortcut Home

Mnemonic ' H, M, O

.../navigation/Home16.gif

File N . .
e Name .../navigation/Home24.gif

Table Graphics

The graphics in this section represent frequently used table features,
including operations on columns and tables.

Column Operations

This section contains graphics for operations on table columns.

Delete Column

Graphics i Di[

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Removes the current column in a

Description

P table
Name Delete Column
Tool Tip Delete Column

Mnemonic (C,D, L, T

.../table/ColumnDeletel6.gif

File N
e Name .../table/ColumnDelete24.gif

Insert Column After

w

Graphics g H

Adds a new column after the current

Description .

column in a table
Name Insert Column After
Tool Tip Insert Column After

Mnemonic C, I, A

.../table/ColumninsertAfter16.gif

File N
e Name .../table/ColumnlinsertAfter24.gif

Insert Column Before

Graphics B m

Adds a new column before the current

Description .

column in a table
Name Insert Column Before
Tool Tip Insert Column Before

Mnemonic (C, I, B

File Name | .../table/ColumnlinsertBeforel6.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.../table/ColumninsertBefore24.gif

Row Operations

This section contains graphics for operations on table rows.

Delete Row

Graphics @@

L Removes the current row of a
Description

table
Name Delete Row
Tool Tip Delete Row

Mnemonic R, D, W, L

.../table/RowDeletel6.gif

File N :
e Name .../table/RowDelete24.gif

Insert Row After

Graphics H=sH

Adds a new row after the current

Description .

b row in a table
Name Insert Row After
Tool Tip Insert Row After

Mnemonic R, I, A

.../table/RowlInsertAfter16.gif

File N :
e Name .../table/RowlInsertAfter24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Insert Row Before

Graphics -E|>l;

Adds a new row before the current

Description

P row in a table
Name Insert Row Before
Tool Tip Insert Row Before

Mnemonic R, I, B

.../table/RowlInsertBeforel6.gif

File N
e Name .../table/RowlInsertBefore24.gif

Text

This section presents graphics for the alignment and justification of
textual objects as well as the use of type styles for text.

Text Alignment and Justification

These graphics represent the alignment of text objects. For the
alignment of graphical objects, see Aligning Objects.

Align Center

Graphics

-

Places the selected text in
Description | the middle of the specified
unit

Name Align Center
Tool Tip Align Center
Shortcut Ctrl-E

Mnemonic |C, N, T, R

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.../text/AlignCenter16.gif

File Name . .
.../text/AlignCenter24.gif
An example of the unit
specified in the description is
a line or paragraph. Use this
Other graphic only for text. The
Notes generic Align Center graphic
might be more appropriate
for other uses. See Align
Center for details.
Justify
Graphics E=
Spaces selected lines of text
. to come out evenly at both
Description . . .
margins, including the last
line (called "forced justify")
Name Justify

Tool Tip Justify
Mnemonic ' J, S, T, F

.../text/AlignJustify16.gif

File Name . . .
.../text/AlignJustify24.gif
Use these graphics only for
text. The generic

Other Horizontally Justify and

Notes Vertically Justify might be
more appropriate for other
uses.

Align Left

Graphics

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Places the selected text

Description | along the left edge of the
specified unit

Name Align Left

Tool Tip Align Left

Shortcut Ctrl-L

Mnemonic L, F T

File Name .../text/AI!gnLeft16.g!f
.../text/AlignLeft24.gif
An example of the unit
specified in the
description is a line or

h. Use the Ali

Other paragrap : se the Align

Notes Left graphic only for text.
See Align Left for graphics
that might be more
appropriate for other
needs.

Align Right

Graphics |==
Places the selected text

Description | along the right edge of the
specified unit

Name Align Right

Tool Tip Align Right

Shortcut Ctrl-R

Mnemonic R, G, H, T

File Name .../text/AI!gnR!ght16.g!f
.../text/AlignRight24.gif

Other An example of the unit

Notes specified in the description

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

is a line or paragraph. Use
this graphic only for text.
See Align Right for graphics
that might be more
appropriate for other
needs.

Type Style Graphics

This section contains graphics that represent frequently used type
styles for text.

Bold

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Italic

Graphics

Description

Name

Tool Tip

b b

Displays text in boldface
type style

Bold
Bold
Ctrl-B
B,L,D

.../text/Bold16.gif
.../text/Bold24.gif

Displays text in an italic
type style

Italic

Italic

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Shortcut Ctrl-I
Mnemonic I, T, L, C

.../text/Italicl16.gif

File N
e Name 1 Jtext/1talic24.gif

Normal

Graphics nh

Displays text without any
Description | deviations from the
regular style

Name Normal
Tool Tip Normal
Mnemonic (N, R, M, L

.../text/Normall6.gif

File N
e Name .../text/Normal24.gif

Underline

Graphics ulU

Displays text with a thin
Description | line underneath each

character
Name Underline
Tool Tip Underline

Shortcut Ctrl-U
Mnemonic U, N, D, R

.../text/Underlinel6.gif

File N : :
e Name .../text/Underline24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Media

The graphics in this section represent:

e Creation, selection, or opening of a movie (that is, a full-motion video
with sound that is formatted for inclusion in an application)
¢ Movement through time-sensitive data

Creating a Movie

The graphics in this section represent the creation, selection, or
opening of a movie.

Movie

Graphics = E

Creates, selects, or opens
a movie

Description
Name Movie
Tool Tip Movie

Mnemonic (M, V, O

.../media/Moviel6.qgif

File N
e Name .../media/Movie24.qif

Moving Through Time-Based Media

This section contains graphics that represent movement through
time-based media including spoken audio, music, images, animation,
and video.

Several of these graphics use the concept of the play head, which
defines the location in the media stream where the time-based media
recommences its presentation once an action is carried out. For
instance, Pause stops the media display temporarily without changing
the position of the play head. On the other hand, Stop halts the

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

presentation of the time-based media and moves the play head to the
beginning of the media object.

Fast Forward

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Pause

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

w PP

Advances rapidly through
time-based media

Fast Forward
Fast Forward
FS, T

.../media/FastForward16.gif
.../media/FastForward24.gif

n

Stops the media display
temporarily without
changing the position of
the play head

Pause
Pause
P, S, A

.../media/Pausel6.gif
.../media/Pause24.gif

When play is continued,
Pause does not return to
the beginning of the
media object, but
resumes where it left off.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Play

Graphics 3 I}

L. Renders time-based
Description .
media
Name Play
Tool Tip Play

Mnemonic P, L,Y

.../media/Play16.gif

File N
e Name 1 Jmedia/Play24.gif

Rewind

Graphics Fr 44

Moves quickly backward

Description . .
through time-based media

Name Rewind

Tool Tip Rewind

Mnemonic (R, W, N, D

.../media/Rewind16.gif

File Name . . .
.../media/Rewind24.gif
other Use thes.e graphics only
for media transport or
Notes
other temporal events.
Step Back

Graphics di 4ﬂ

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Description

Name
Tool Tip

Mnemonic

File Name

Moves the play head back
one unit

Step Back
Step Back
B,C,K,S

.../media/StepBack16.gif
.../media/StepBack24.gif

Step Forward

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

Stop

Graphics

Description

Name

» b

Moves the play head forward one
unit

Step Forward
Step Forward
FR,W D

.../media/StepForward16.gif
.../media/StepForward24.gif

Use these graphics only for
media transport or other
temporal events.

mE

Halts the presentation
and returns to the
beginning of the media
object

Stop

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Tool Tip Stop
Mnemonic |S, T, P
File Name .../med!a/Stop16.g!f
.../media/Stop24.qgif
Use these graphics only
for media transport or
other temporal events.
Other . .
Notes The generic graphic
described in Stop is more
appropriate for other
uses.
Volume
Graphics quﬂﬂ
. Provides a way to adjust
Description
the sound volume
Name Volume
Tool Tip Volume
Mnemonic |V, L, M
. .../media/Volumel6.qgif
File Name . .
.../media/Volume24.gif
Other Use these graphics only for
Notes audio media.
Navigation

This section contains graphics that represent vertical and horizontal
traversal as well as traversal to an initial, well-known location.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Vertical Traversal

The graphics in this section apply to navigation through objects with a
vertical orientation.

Down To

Graphics w ¥

Description | Moves to the next location
Name Down to {Location}

Tool Tip Down to {Location}
Shortcut Alt-down arrow

Mnemonic | D, W, N

.../navigation/Down16.gif

File Name . . .
.../navigation/Down24.gif
Use Down To when the
orientation of the object

Other . . .
being traversed is vertical.

Notes . .
For horizontally oriented
objects, use Forward To.

Up

Graphics AP

Moves to the previous
location

Description
Name Up to {Location}
Tool Tip Up to {Location}
Shortcut Alt-up arrow

Mnemonic | U, P

File Name | .../navigation/Up1l16.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.../navigation/Up24.gif

Use Up when the
orientation of the object
being traversed is vertical.
For horizontally oriented
objects, use Back To.

Other
Notes

Horizontal Traversal

The graphics in this section apply to navigation through objects with a
horizontal orientation, such as web pages in a web site.

Back To

Graphics £ @

Moves to the previous

Description .

location
Name Back to {Location}
Tool Tip Back to {Location}

Shortcut Alt-left arrow
Mnemonic B, C, K

.../navigation/Back16.gif

File Name . . .
.../navigation/Back24.gif
Use Back To when the
orientation of the object
Other . .
being traversed is
Notes

horizontal. For vertically
oriented objects, see Up.

Forward To

Graphics B §>

Sun - Java Look and Feel Design Guidelines, 2" Edition

Description
Name

Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

Moves to the next location
Forward to {Location}
Forward to {Location}
Alt-right arrow

F, R, W, D

.../navigation/Forward16.gif
.../navigation/Forward24.gif

Use Forward To when the
orientation of the object being
traversed is horizontal. For
vertically oriented objects, use
Down To.

made by dotneter@teamfly

Returning to an Initial Location

This graphic represents movement to an initial location--for instance,
the first page in a web site.

Home To

Graphics ﬁﬁ

Description | Moves to an initial location
Name Home To {Location}

Tool Tip Home To {Location}

Shortcut Home

Mnemonic ' H, M, O

. .../navigation/Home16.gif
File Name /navigation/Home16.g

.../navigation/Home24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Table Graphics

The graphics in this section represent frequently used table features,
including operations on columns and tables.

Column Operations

This section contains graphics for operations on table columns.

Delete Column

Graphics 14 Di[

Removes the current column in a

Description

b table
Name Delete Column
Tool Tip Delete Column

Mnemonic [C, D, L, T

.../table/ColumnDeletel6.qgif

File N ;
e Tame .../table/ColumnDelete24.gif

Insert Column After

e

Graphics g [

Adds a new column after the current

Description

b column in a table
Name Insert Column After
Tool Tip Insert Column After

Mnemonic ' C, I, A

.../table/ColumninsertAfter16.qgif

File N -
e Tame .../table/ColumninsertAfter24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Insert Column Before

Graphics it ﬁ]

Adds a new column before the current

Description

P column in a table
Name Insert Column Before
Tool Tip Insert Column Before

Mnemonic (C, I, B

.../table/ColumninsertBeforel6.gif

File N
e Name .../table/ColumninsertBefore24.gif

Row Operations

This section contains graphics for operations on table rows.

Delete Row

Graphics @@

Removes the current row of a

Description

P table
Name Delete Row
Tool Tip Delete Row

Mnemonic R, D, W, L

.../table/RowDeletel6.gif

File N :
e Name .../table/RowDelete24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Insert Row After

Graphics =3

Adds a new row after the current

Description

P row in a table
Name Insert Row After
Tool Tip Insert Row After

Mnemonic R, I, A

.../table/RowlinsertAfter16.gif

File N
e Name .../table/RowlinsertAfter24.gif

Insert Row Before

Graphics E}E

Adds a new row before the current

Description

P row in a table
Name Insert Row Before
Tool Tip Insert Row Before

Mnemonic R, I, B

.../table/RowlInsertBeforel6.gif

File N
e Name .../table/RowlInsertBefore24.gif

Text

This section presents graphics for the alignment and justification of
textual objects as well as the use of type styles for text.

Text Alignment and Justification

These graphics represent the alignment of text objects. For the
alignment of graphical objects, see Aligning Objects.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Align Center

Graphics

Description

Name
Tool Tip
Shortcut

Mnemonic

File Name

Other
Notes

Justify

Graphics

Description

Name
Tool Tip

Mnemonic

-

Places the selected text in
the middle of the specified
unit

Align Center
Align Center
Ctrl-E

C,N, T,R

.../text/AlignCenter16.qgif
.../text/AlignCenter24.qif

An example of the unit
specified in the description is
a line or paragraph. Use this
graphic only for text. The
generic Align Center graphic
might be more appropriate
for other uses. See Align
Center for details.

Spaces selected lines of text
to come out evenly at both
margins, including the last
line (called "forced justify")

Justify
Justify

J, S, T,F

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.../text/AlignJustify16.gif

File Name . . .
.../[text/AlignJustify24.gif
Use these graphics only for
text. The generic

Other Horizontally Justify and

Notes Vertically Justify might be
more appropriate for other
uses.

Align Left

Graphics E=

Places the selected text
Description | along the left edge of the
specified unit

Name Align Left
Tool Tip Align Left
Shortcut Ctrl-L
Mnemonic 'L, F T

.../text/AlignLeftl6.gif

File Name . .
.../text/AlignLeft24.gif
An example of the unit
specified in the
description is a line or
h. he Ali
other paragrap : Use the Align
Left graphic only for text.
Notes

See Align Left for graphics
that might be more
appropriate for other
needs.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Align Right

Graphics b |

Places the selected text
Description | along the right edge of the
specified unit

Name Align Right
Tool Tip Align Right
Shortcut Ctrl-R

Mnemonic R, G, H, T

.../text/AlignRight16.gif

File N
e Name | Jtext/AlignRight24.gif

An example of the unit
specified in the description
is a line or paragraph. Use

Other this graphic only for text.

Notes See Align Right for graphics
that might be more
appropriate for other
needs.

Type Style Graphics

This section contains graphics that represent frequently used type
styles for text.

Bold

Graphics b b

Displays text in boldface

Description
type style

Name Bold

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Tool Tip Bold
Shortcut Ctrl-B
Mnemonic | B, L, D

.../text/Bold16.gif

File Name | /Jtext/Bold24.gif

Italic

b 19

Graphics i

Displays text in an italic

Description

type style
Name Italic
Tool Tip Italic

Shortcut Ctrl-I
Mnemonic I, T, L, C

.../text/Italic16.gif

File N
e Name 1 Jtext/1talic24.gif

Normal

Graphics nn

Displays text without any
Description | deviations from the
regular style

Name Normal
Tool Tip Normal
Mnemonic (N, R, M, L

File Name | .../text/Normall6.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

.../text/Normal24.gif

Underline

Graphics ull

Displays text with a thin
Description | line underneath each

character
Name Underline
Tool Tip Underline

Shortcut Ctrl-U
Mnemonic U, N, D, R

.../text/Underlinel6.gif

File N : .
e Name .../text/Underline24.gif

Media

The graphics in this section represent:

¢ Creation, selection, or opening of a movie (that is, a full-motion video
with sound that is formatted for inclusion in an application)

¢ Movement through time-sensitive data

Creating a Movie

The graphics in this section represent the creation, selection, or

opening of a movie.

Movie

Graphics B8 E

Description | Creates, selects, or opens

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

a movie
Name Movie
Tool Tip Movie

Mnemonic (M, V, O

.../media/Moviel6.gif

File N
e Name 1 Jmedia/Movie24.gif

Moving Through Time-Based Media

This section contains graphics that represent movement through
time-based media including spoken audio, music, images, animation,
and video.

Several of these graphics use the concept of the play head, which
defines the location in the media stream where the time-based media
recommences its presentation once an action is carried out. For
instance, Pause stops the media display temporarily without changing
the position of the play head. On the other hand, Stop halts the
presentation of the time-based media and moves the play head to the
beginning of the media object.

Fast Forward

Graphics M [}[}

Advances rapidly through

Description

P time-based media
Name Fast Forward
Tool Tip Fast Forward

Mnemonic F S, T

.../media/FastForward16.gif

File N
e Name .../media/FastForward24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Pause

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

Play

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

i 0

Stops the media display
temporarily without
changing the position of
the play head

Pause
Pause
P,S, A

.../media/Pausel6.gif
.../media/Pause24.qgif

When play is continued,
Pause does not return to
the beginning of the
media object, but
resumes where it left off.

» P

Renders time-based
media

Play
Play
P,L,Y

.../media/Play16.gif
.../media/Play24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Rewind

Graphics # 44

Moves quickly backward

Description

P through time-based media
Name Rewind
Tool Tip Rewind

Mnemonic (R, W, N, D

.../media/Rewind16.gif

File Name . . .
.../media/Rewind24.gif
U h hi I
Other se t es.e graphics only
for media transport or
Notes
other temporal events.
Step Back

Graphics 4l 4”

Moves the play head back
one unit

Description
Name Step Back
Tool Tip Step Back
Mnemonic | B, C, K, S

.../media/StepBack16.gif

File Name .../media/StepBack24.gif

Step Forward

Graphics ir ﬂ[)

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

Stop

Graphics

Description

Name
Tool Tip

Mnemonic

File Name

Other
Notes

Moves the play head forward one
unit

Step Forward
Step Forward
FR,W D

.../media/StepForwardl16.gif
.../media/StepForward24.gif

Use these graphics only for
media transport or other
temporal events.

m B

Halts the presentation
and returns to the
beginning of the media
object

Stop
Stop
S, T,P

.../media/Stop16.gif
.../media/Stop24.gif

Use these graphics only
for media transport or
other temporal events.
The generic graphic
described in Stop is more
appropriate for other
uses.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Volume

Graphics] |5G

Provides a way to adjust

Description

P the sound volume
Name Volume
Tool Tip Volume

Mnemonic |V, L, M

.../media/Volumel6.gif

File Name . .

.../media/Volume?24.gif
Other Use these graphics only for
Notes audio media.

Graphics for Development Tools

The development graphics represent objects or processes in the
software development process.

Creating and Deploying Applications and
Applets

The graphics in this section represent:

e The creation, selection, and opening of an application, an applet, a J2EE
application, a J2EE application client, and a J2EE server

e The addition of a J2EE application client to a J2EE application

e The deployment (that is, installation in an operational environment) of an
application

A J2EE application consists of J2EE components (application clients,
applets, HTML pages, JSP pages (JavaServer Pages), servlets, and
enterprise beans) that run on the J2EE platform. J2EE applications are
typically designed for distribution across multiple computing tiers.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

A J2EE application client is a first-tier client program that executes in
its own Java virtual machine, but might access J2EE components in
the web or business tier.

A J2EE server is a collection of runtime services provided by the J2EE
platform. These include HTTP (Hypertext Transfer Protocol), HTTPS
(Secure Hypertext Transfer Protocol), JTA (Java Transaction API),
RMI-110OP (Remote Method Invocation-Internet Inter-ORB Protocol),
Java IDL (Java Interface Definition Language), JDBC (Java Database
Connectivity), JMS (Java Message Service), JNDI (Java Naming and
Directory Interface), JavaMail, and JAF (JavaBeans Activation
Framework). Although J2EE servers usually come packaged with web
and EJB containers, they are not required to. For example, an OS
vendor could supply the runtime services while a separate vendor
supplied the J2EE containers.

For deployment, a J2EE application is packaged in an EAR (Enterprise
Archive) file.

Note — You can use a twinkle badge with these graphics to indicate a new
applet, application, J2EE application, J2EE application client, J2EE server, bean,
enterprise bean, host, and server. For details, see New Object Indicators.

Applet

Graphics @

L Creates, selects, or opens an
Description
applet

Name Applet
Tool Tip Applet
Mnemonic (A, P, L, T

.../development/Appletl6.gif

File Name .../development/Applet24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Application

Graphics a &

. Creates, selects, or opens
Description L.
application
Name Application

Tool Tip Application

Mnemonic A, P, L, N

File Name

an

.../development/Application16.gif

.../development/Application24.gif

Applet

Graphics

Creates, selects, or opens an
applet

Description

Name Applet
Tool Tip Applet
Mnemonic A, P, L, T

.../development/Appletl6.gif

File N
e Name .../development/Applet24.gif

Application

Graphics ey ,ﬂ

Creates, selects, or opens

Description L
application

Name Application

an

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Tool Tip Application
Mnemonic A, P, L, N

.../development/Application16.gif

File N
e Name .../development/Application24.gif

J2EE Application

Graphics o Q

Description | Creates, selects, or opens a J2EE application
Name J2EE Application

Tool Tip J2EE Application

Mnemonic | E, A, P, L, C

.../development/J2EEApplication16.gif

File N
e Name .../development/J2EEApplication24.gif

J2EE Application Client

Graphics i m

Description | Creates, selects, or opens a J2EE application client
Name J2EE Application Client

Tool Tip J2EE Application Client

Mnemonic (C,L, N, T

.../development/J2EEApplicationClient16.gif

File N
e Name .../development/J2EEApplicationClient24.gif

Add J2EE Application Client

Graphics E‘Lm

Description | Adds a J2EE application client to a J2EE application

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Name Add J2EE Application Client
Tool Tip Add J2EE Application Client
Mnemonic ' C,L, N, T, A

.../development/J2EEApplicationClientAdd16.gif

File N . . :
e Name .../development/J2EEApplicationClientAdd24.gif

J2EE Server

Graphics i [D

Creates, selects, or opens a J2EE
server

Description
Name J2EE Server
Tool Tip J2EE Server

Mnemonic 'S, R, V

.../development/J2EEServerl6.gif

File N :
e Name .../development/J2EEServer24.gif

Deploy Application

Graphics a4 fﬂ

Description | Deploys a J2EE application to a J2EE server
Name Deploy Application

Tool Tip Deploy Application

Mnemonic (D, P, L, Y, A

.../development/ApplicationDeploy16.gif

File N
e Name .../development/ApplicationDeploy24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition

Creating and Adding Beans and Enterprise

Beans

The graphics in this section represent the creation, selection, and
opening of a bean (a component using the JavaBeans specification)
and an enterprise bean (a component based on the EJB architecture
for development and deployment of object-oriented, distributed,

enterprise-level applications).

Bean
Graphics e ®
L Creates, selects, or opens a
Description
bean
Name Bean
Tool Tip Bean
Mnemonic B, N, E
File Name .../development/Beaan.g!f
.../development/Bean24.gif
Add Bean
Graphics ﬁ@;
. Adds a bean to an existing set of
Description .
objects
Name Add Bean
Tool Tip Add Bean
Mnemonic (B, N, D
File Name .../development/BeanAdd16.gif

.../development/BeanAdd24.gif

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Enterprise JavaBean

Graphics e @

Description | Creates, selects, or opens an enterprise bean
Name Enterprise JavaBean

Tool Tip Enterprise Bean

Mnemonic E,J,B, N, T, P

.../development/EnterpriseJavaBeanl16.gif

File N . :
e Name .../development/EnterpriseJavaBean24.gif

Creating Hosts and Servers

The graphics in this section represent the creation, selection, or
opening of a host (a computer system that is accessed by one or more
computers and workstations at remote locations) and a server (a
network device that manages resources and supplies services to a
client).

Host
Graphics EQ
. Creates, selects, or opens a
Description
host
Name Host
Tool Tip Host

Mnemonic H, S, T

.../development/Host16.gif

File N .
e Name .../development/Host24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Server

Graphics 0 |j

Creates, selects, or opens a

Description

server
Name Server
Tool Tip Server

Mnemonic 'S, R, V

.../development/Serverl6.gif

File N
e Name .../development/Server24.gif

Creating and Adding Java Archive Files

The graphics in this section represent the creation, selection, and
opening of:

e JAR (Java Archive) files
e Enterprise JavaBeans JAR files (a Java Archive file for an enterprise bean)
e EAR (Enterprise Archive) files

It also provides graphics to represent the addition of a Java Archive
file to an existing set of objects.

JAR

Graphics 2 @

Creates, selects, or opens a

Description

PHON T 5AR file
Name Java Archive
Tool Tip Java Archive

Mnemonic | J, R, A

.../development/Jarl6.gif

File N .
e Tame .../development/Jar24.gif

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Enterprise JavaBean JAR

Graphics 3 @

Creates, selects, or opens an Enterprise JavaBeans

Description

JAR
Name Enterprise JavaBean JAR
Tool Tip Enterprise JavaBean JAR

Mnemonic E,J,B,N, T, P

.../development/EnterpriseJavaBeanJar16.gif

File N : .
e Name .../development/EnterpriseJavaBeanJar24.gif

Add JAR

Graphics @@

Adds a JAR to an existing set of
archives

Description
Name Add Java Archive
Tool Tip Add Java Archive
Mnemonic ' J, R, A, D

.../development/JarAdd16.qgif

File N
e Name .../development/JarAdd24.qgif

Creating and Adding Web Archive Files and

Web Components

The graphics in this section represent the:

e Creation, selection, and opening of a J2EE Web Archive file (WAR)

e« Addition of a WAR to an existing set of objects

e Creation, selection, and opening of a web component (an executable file
that is contained in a WAR file)

e Addition of a web component to a WAR file

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

WAR

Graphics @

Creates, selects, or opens a
J2EE WAR file

Description
Name J2EE Web Archive
Tool Tip J2EE Web Archive
Mnemonic W, R, A

.../development/Warl16.gif

File N
e Name .../development/War24.gif

Add WAR

Graphics @@

Adds a WAR to an existing set of
objects

Description

Name Add J2EE Web Archive
Tool Tip Add J2EE Web Archive
Mnemonic W, B, R, C

.../development/WarAdd16.gif

File Name | /development/WarAdd24.gif

Web Component

Graphics ﬁ@

Description | Creates, selects, or opens a web component

Name Web Component
Tool Tip Web Component

Mnemonic W, B, C, M

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

.../development/WebComponentl16.gif

File N
e Tame .../development/WebComponent24.gif

Add Web Component

Graphics ﬂ@

Description | Adds a web component to a WAR file
Name Add J2EE Web Component

Tool Tip Add J2EE Web Component
Mnemonic W, B, C, A, D

.../development/WebComponentAdd16.gif

File N
e Name .../development/WebComponentAdd24.gif

C: Localization Word Lists

This appendix contains a list of words and phrases encountered in
using or developing standard Java applications with the Java look and
feel. The tables provide translations for interface elements and
concepts in French, German, Spanish, Italian, Swedish, Japanese,
Simplified Chinese, Traditional Chinese, and Korean. The terms
appear in two tables--one for European and another for Asian
languages. The tables follow these conventions:

e Terms that are intended for use as menu names, menu items, or button
text are boldfaced.

e Parenthetical explanations of terms in English are not necessarily
translated into other languages.

¢ Synonyms are separated by commas in some languages.

European Languages

Table 34 Word List for European Languages

English French German Spanish Italian Swedish

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

10

11

12

13

14

15

16

17

18

19

20

About

{Application}

(item in Help

menu)

About boxes

Abstract ~ Window
Toolkit
accessibility

active components

active windows

alert boxes
Align Center
(item in Format
menu)

Align Left (item in

Format menu)

Align Right (item

in Format menu)

alignment

anchor point

animation

applet

application

Apply (button)

arrow keys

assistive

technologies

background

backing windows

A propos de

I'application

Boites de dialogue A

propos de

Outils de fenétre

abstraite

accessibilité

composants actifs

fenétres actives

boites d'alerte

Centrer

Aligner a gauche

Aligner a droite

alignement

point d‘ancrage

animation

applet

application

Appliquer

touches de

défilement

technologies

d'assistance

arriére-plan

fenétres auxiliaires

Anwendungsinfo

Feldinfo

Abstract Window Toolkit

Eingabehilfe

aktive Komponenten

aktive Fenster

Warnfelder

Zentriert

Linksblindig

Rechtsbundig

Ausrichtung

Ankerpunkt

Animation

Applet

Anwendung

Ubernehmen

Pfeiltasten

Hilfstechnologien

Hintergrund

Notizblockfenster

Acerca de (la aplicacién)

Cuadros de dialogo Acerca de

Caja de herramientas

ventanas abstractas

accesibilidad

componentes activos

ventanas activas

cuadros de dialogo de alerta

Centrar

Alinear a la izquierda

Alinear a la derecha

alineacion

punto de anclaje

animacion

subprograma

aplicacion

Aplicar

teclas de flecha

tecnologia de asistencia

fondo

ventanas de apoyo

Informazioni

sull'applicazione

finestre Informazioni su

Abstract Window Toolkit

accessibilita

componenti attivi

finestre attive

finestre di avviso

Centra

Allinea a sinistra

Allinea a destra

allineamento

punto di ancoraggio

animazione

applet

applicazione

Applica

tasti freccia

tecnologie di assistenza

sfondo

finestre ausiliarie

Om prognamn

Om-rutor

Abstract Window Toolkit

atkomlighet

aktiva komponenter

aktiva fonster

varningsrutor

Centrera

Vansterjustera

Hoégerjustera

justering,

blankettinpassning

forankringspunkt

animering

miniprogram

program, tillampning

Anvand

piltangenter

hjalpmeddelande

bakgrund, arbeta

bakgrunden

underliggande fonster

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Beeps (label in

notification dialog

box)
bit depth
Bold (item in

Format menu)

bold text

borders

Browse (button)

browser

button border

button graphics

button text

Cancel (button)

capitalization

caution symbol

CDE style look and

feel

cells (in tables)

channels (in

scrollbars)

checkbox menu

items

checkboxes

choosers

clicking

client properties

Bips (libellé dans la
boite de dialogue

d'avertissement)

profondeur de bits

Gras

texte gras

bordures

Parcourir

navigateur

bordure du bouton

graphiques du

bouton

texte du bouton

Annuler

mise en majuscules

symbole d'attention

apparence de type

CDE

cellules (d'un

tableau)

canaux (dans les
barres de

défilement)

options de menu

avec case a cocher

cases a cocher

sélecteurs

cliquer

propriétés du client

Signalténe
(Bezeichnung im
Benachrichtigungsdialo

gfeld)

Bit-Tiefe

Fett

fettgedruckter Text

Rahmen

Durchsuchen

Browser

Schaltflachenumrandun

Schaltflachengrafik

Schaltflachentext

Abbrechen

Grofschreibung

Warnsymbol

Erscheinungsbild im

CDE-Stil

Zellen (in Tabellen)

Kanéle (in

Bildlaufleisten)

Kontrollkastchen-Menu

elemente

Kontrollkastchen

Auswahl

klicken

Client-Eigenschaften

Sefiales acusticas (etiqueta
del cuadro de didlogo de

notificaci én)

profundidad de bit

Negrita

texto en negrita

bordes

Explorar

navegador

borde de botén

gréafico de botén

texto de bot6n

Cancelar

uso de mayusculas

simbolo de precaucion

apariencia del estilo de CDE

celdas (en tablas)

canales (en barras de

desplazamiento)

opciones de menu con casillas

de verificacion

casillas de verificacion

selectores

hacer clic

propiedades de cliente

Segnali acustici

(etichetta nella finestra

di dialogo di notifica)

profondita di bit

Grassetto

testo in grassetto

bordi

Sfoglia

browser

bordo del pulsante

grafica del pulsante

testo del pulsante

Annulla

lettere maiuscole

simbolo di attenzione

aspetto stile CDE

celle (nelle tabelle)

canali (nelle barre di

scorrimento)

voci di menu con casella

di selezione

caselle di selezione

selettori

clic del mouse

proprieta client

ljudsignaler

bitdjup

Fetstil

fetstil

konturlinjer

Bladdra

(webb)lasare

knappens kant

bild fér knapp

knappens text

Avbryt

versaler, gor till versaler

varningssymbol

CDE-kénsla

celler

kanaler

kryssrutealternativ

kryssrutor

viljare

klicka

klientegenskaper

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Close (button or

item in File menu)

close control

color choosers

column (in tables)

column header (in

tables)

combo boxes

command button

row

command buttons

components

containers

content panel (in a

color chooser)

content panes

Contents (item in

Help menu)

contextual menus

Continue (button

in Error alert box)

control type style

Control-clicking

Fermer

commande de

fermeture

sélecteurs de

couleurs

colonne (d'un

tableau)

en-téte de colonne

(d'un tableau)

boites de dialogue

mixtes

rangée de boutons

de commande

boutons de
commande
composants
conteneurs
panneau de

contenu (dans un
sélecteur de

couleurs)

sous-fenétres de

contenu

Contenu

menus contextuels

Continuer

caractéres de type

controle

Ctrl + clic

SchlieBen

Steuerelement

schlieBen

Farbauswahl

Spalte (in Tabellen)

Spaltentberschrift (in

Tabellen)

Kombinationsfelder

Befehlsschaltflachen-Z

eile

Befehlsschaltflachen

Komponenten

Container

Inhaltbedienfeld (in

einer Farbauswahl)

Inhaltteilfenster

Inhalt

Kontextmenis

Weiter

Steuerelementtyp-Stil

Klicken bei gedriickter

Umschalttaste

Cerrar

control de cierre

selectores de color

columna (en tablas)

cabecera de columna (en

tablas)

cuadros combinados

fila de botones de comando

botones de comando

componentes

contenedores

panel de contenido (en un

selector de color)

paneles de contenido

Contenido

menus contextuales

Continuar

estilo del tipo de control

Control + clic

Chiudi

controllo di chiusura

selettori dei colori

colonne (nelle tabelle)

intestazione

colonne (nelle tabelle)

caselle combinate

riga dei pulsanti

comando

pulsanti di comando

componenti

contenitori

delle

di

pannello del contenuto

(@in un

colore)

pannelli del contenuto

Sommario

menu contestuali

Continua

stile di caratteri

controllo

Ctrl + clic del mouse

selettore del

di

Stang

stangningsknapp

fargvaljare

kolumn

kolumnrubrik

kombinationsruta

knapprad

kommandoknapp

komponent

behallare

innehallspanel

innehallsfénster

Innehall

sammanhangsberoende

meny

Fortsatt

teckensnitt for styrtecken

Ctrl-klicka

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

controls

Control-Tab

Copy (item in Edit

menu)

crosshair pointer

cross-platform

color

cross-platform

delivery

currency formats

Cut (item in Edit

menu)

data structure

Date Format (label
in preferences

dialog box)

default

default command

buttons

Default Font (label
in preferences

dialog box)

default Java look

and feel theme

default pointer

delay indication

destination

feedback

contréles

Ctrl + Tab

Copier

pointeur en croix

couleur

multi-plateforme

visualisation

multi-plateforme

formats de devise

Couper

structure de

données

Format de date
(libellé dans la boite

de dialogue de

préférences)

par défaut
boutons de
commande par
défaut

police par défaut

(libellé dans la boite
de dialogue de

préférences)

apparence Java par

défaut

pointeur par défaut

indication de

temporisation

réaction de

destination

Steuerelemente

STRG + Tab

Kopieren

Kreuzzeiger

plattformubergreifende

Farbe

plattformibergreifende

Ubermittlung

Wahrungsformat

Ausschneiden

Datenstruktur

Datumsformat
(Bezeichnung im
Dialogfeld

Einstellungen)

Standardeinstellung

Standardbefehlsschaltfl

achen

Standardschriftart
(Bezeichnung in
Dialogfeld

Einstellungen)

Standard-Java-Erschei

nungsbild

Standardzeiger

Verzdgerungsanzeige

Ziel-Feedback

controles

Control + Tab

Copiar

puntero en forma de cruz

color para mdltiples
plataformas
entrega en multiples

plataformas

formatos de divisa

Cortar

estructura de datos

Formato de fecha (etiqueta en
cuadro de didlogo de

preferencias)

predeterminado, de forma
predeterminada
botones de comando

predeterminados

Fuente predeterminada

(etiqueta en cuadro de

didlogo de preferencias)

tema con apariencia Java

predeterminada

puntero predeterminado

indicacion de retraso

informacién de destino

controlli

Ctrl + Tab

Copia

puntatore a croce

colore multipiattaforma

utilizzo multipiattaforma

formati di valuta

Taglia

struttura dei dati

Formato della data
(etichetta nella finestra
di dialogo delle

preferenze)

valore predefinito

pulsanti di comando

predefiniti

Carattere

predefinito

(etichetta nella finestra

di dialogo delle
preferenze)
tema predefinito

dell'aspetto Java

puntatore predefinito

indicazione di ritardo

feedback di destinazione

reglage

Ctrl-Tabb

Kopiera

hérkorsmarkér

plattformsoberoende farg

plattformsoberoende

sandning

valutaformat

Klipp ut

datastruktur

Datumformat

standard

standardkommandoknapp

Standardteckensnitt

standardtema for

Java-kénsla

standardmarkor

fordrojningsvarning

malaterkoppling

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

dialog boxes

dimmed text

disabilities

disjoint selection

distribution

dithering

dockable toolbars

Document (item

in Format menu)

Don't Save

(button in Warning

alert boxes)

double-clicking

drag and drop

drag area

drag texture

dragging

drop-down arrows

drop-down menus

Edit (menu)

editable combo

boxes

editable text fields

editor panes

boites de dialogue

texte en grisé

invalidités

sélection disjointe

distribution

réduction

barres d'outils

ancrables

Document

Ne pas

enregistrer

double-cliquer

glisser-déposer

zone de

déplacement

texture de

déplacement

déplacement

fléches de
défilement vers le

bas

menus déroulants

Editer

boites de dialogue

mixtes modifiables

champs de texte

modifiables

sous-fenétres

d'éditeur

Dialogfelder

grau dargestellter Text

Behinderungen

nichtzusammenhéngen

de Auswahl

Verteilung

Rasterung

verankerbare

Symbolleisten

Dokument (Element

im Menu "Format")

Nicht Speichern

doppelklicken

Ziehen und Ablegen

Ziehbereich

Textur beim Ziehen

Ziehen

Dropdown-Pfeile

Dropdown-Menuis

Bearbeiten

bearbeitbare

Kombinationsfelder

bearbeitbare Textfelder

Editorteilfenster

cuadros de diadlogo

texto atenuado

incapacidades, minusvalias

seleccion discontinua

distribucion

interpolacion

barras de herramientas

acoplables

Documento

No guardar

hacer doble clic

arrastrar y soltar

area de arrastre

textura de arrastre

arrastre

flechas de lista desplegable

menus desplegables

Editar

cuadros combinados editables

campos de texto editables

paneles del editor

finestre di dialogo

testo non disponibile

accesso facilitato

selezione discontinua

distribuzione

dithering

barre degli strumenti

ancorabili

Documento

Non salvare

doppio clic del mouse

trascinare e rilasciare

area di trascinamento

trascinamento trama

trascinamento

frecce di selezione

menu a discesa

Modifica

caselle combinate
modificabili

campi di testo
modificabili

riquadri dell'editor

dialogrutor

nedtonad text

handikapp

bruten markering

distribution

nyansutjamning

dockningsbara

verktygsfalt

Dokument

Spara inte

dubbelklicka

dra och slapp

dragruta

dra struktur

dra

nedrullningspil

nedrullningsbara menyer

Redigera

redigerbar

kombinationsruta

redigerbara textfalt

redigeringsfonster

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

111

112

113

ellipsis marks

Error alert boxes

error messages

exclusive choice (in

toggle buttons)

Exit (item in File

menu)

extended selection

feedback

fields

File (menu)

filling slider

Find (item in Edit

menu)

find dialog boxes

Find Next (item in

Edit menu)

Flashes (label in

notification dialog

box)

flush 3D effects

Font (menu or
item in Format
menu)
fonts

Format (menu)

points de
suspension

boites d'alerte
d'erreur

messages d'erreur

choix exclusif (dans
un bouton a

bascule)

Quitter

sélection étendue

réaction

champs

Fichier

curseur de

remplissage

Rechercher

boites de dialogue

de recherche

Rechercher

suivant

Clignotement
(libellé dans la boite
de dialogue

d'avertissement)

supprimer les effets

3D

Police

polices

Format

Auslassungszeichen

Warnfelder mit

Fehlermeldungen

Fehlermeldungen

exklusive Auswahl (in

Umschaltschaltflachen)

Beenden

erweiterte Auswahl

Feedback

Felder

Datei

Full-Schieberegler

Suchen

Dialogfelder "Suchen™

Weitersuchen

Blinksignal

(Bezeichnung in

Dialogfenster

Benachrichtigung)

3D-Effekte lI6schen

Zeichen

Schriftarten

Format

puntos suspensivos

cuadros de alerta de error

mensajes de error

seleccion exclusiva

botones de conmutacion)

Salir

seleccion ampliada

retroalimentacion

campos

Archivo

deslizador de relleno

Buscar

cuadros de didlogo Buscar

Buscar siguiente

Parpadea (etiqueta del cuadro

de dialogo de notificacién)

vaciar efectos 3D

Fuentes

fuentes

Formato

puntini di sospensione

finestre di avviso di

errore

messaggi di errore

scelta esclusiva (negli

interruttori)

Esci

selezione estesa

feedback

campi

File

cursore di riempimento

Trova

finestre di dialogo di

ricerca

Trova successivo

Segnali luminosi

(etichetta nella finestra

di dialogo di notifica)

elimina effetti 3D

Carattere

caratteri

Formato

punkter, tre punkter

felrutor

felmeddelanden

envalsinstallning

Avsluta

utdkad markering

bekréftelse

falt, rutor

Arkiv

dragrelage for utfyllnad

Sok

sok-dialogrutor

Sok nasta

blinkar

tom 3D-effekter

Teckensnitt

teckensnitt

Format

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

formatted text

panes

function keys

GIF (Graphics

Interchange

Format)

grids

hand pointers

headline

capitalization

Help (button or

menu)
Hidden Text
(checkbox in

preferences dialog

box)

highlighting

horizontal scrollbar

hot spot

HSB (tab for hue,

saturation, and

brightness in color

choosers)

HTML editor kits

I-beam pointer

icons

inactive

sous-fenétres de

texte formaté

touches de fonction

GIF (abréviation de
«Graphics
Interchange

Format»)

grilles

pointeurs & main

mise en majuscule
de la premiere

lettre des mots

dans les titres

Aide

Texte masqué (case
a cocher dans la
boite de dialogue

préférences)

mise en surbrillance

barre de défilement

horizontale

point de repere

HSB (onglet de
réglage de la teinte,
de la saturation et
de la luminosité

dans un sélecteur

de couleurs)

éditeurs HTML

pointeur en |

icones

composants inactifs

formatierte

Textteilfenster

Funktionstasten

GIF (Graphics

Interchange Format)

Raster

Handzeiger

Grofschreibung in

Uberschriften

Hilfe
verborgener Text
(Kontrollkastchen in

Dialogfenster

Einstellungen)

Hervorhebung

horizontaler Rollbalken

Hotspot

HSB (Register fur

Farbton, Sattigung und
Helligkeit in

Farbauswahl)

HTML-Editor-Kits

Einflgemarke, 1-Zeiger

Symbole

inaktive Komponenten

paneles de texto con formato

teclas de funcion

GIF (Graphics Interchange

Format)

rejillas

punteros de mano

uso de mayusculas en la

primera letra de los titulos

Ayuda

Texto oculto (casilla de

verificacion del cuadro de

didlogo de preferencias)

resaltar

barra de desplazamiento

horizontal

zona activa

HSB (pestafia de tono,

saturaciéon y brillo en los

selectores de color)

kits de edicién de HTML

Puntero en forma de |

iconos

componentes inactivos

riquadri di testo
formattato

tasti funzione

GIF (Graphics

Interchange Format)

griglie

puntatori a forma di

mano

titolo con iniziale

maiuscola

Guida

Testo nascosto (casella
di selezione nella

finestra di dialogo delle

preferenze)

evidenziazione

barra di scorrimento

orizzontale

punto focale

TSL (scheda per

tonalita, saturazione e

luminosita nei selettori

del colore)

kit dell'editor HTML

puntatore a forma di |

icone

componenti non attivi

fonster med formaterad

text

funktionstangenter

GIF

Interchange Format)

stodlinjer, rutnat

hand-markor

versal rubrik

Hjalp

dold text

markering

horisontell rullningslist

aktiv punkt

HSB

HTML-redigeringsprogram

I-markor,

insattningspunkt

bilder

inaktiva komponenter

(Graphics

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

components

inactive menu

items

inactive windows

independent choice

(in toggle buttons)

Index (item in

Help menu)

indicators

Info alert box

information symbol

initial keyboard

focus

insertion point

installation screens

internal utility

windows

internal windows

internationalization

Italic (item in

Format menu)

italic text

Java 2 SDK

Java 2D API

Java Accessibility

API

Java Accessibility

Utilities

options de menu

inactives

fenétres inactives

choix indépendant

(dans un bouton a

bascule)

Index

indicateurs

boite d'alerte

d'informations

symbole

d'information

zone d'entrée

clavier initiale

point d'insertion

écrans d'installation

fenétres d'utilitaires

internes

fenétres internes

internationalisation

Italique

texte en italique

Java 2 SDK

APl Java 2D

APl d'accessibilité

Java

utilitaires

d'accessibilité Java

inaktive Menulielemente

inaktive Fenster

unabhangige Auswahl

(in

Umschaltschaltflachen)

Index

Anzeigen

Info-Warnfeld

Informationssymbol

Anfangstastaturfokus

Einfiigemarke

Installationsbildschirm

internes

Hilfsprogramm-Fenster

interne Fenster

Internationalisierung

Kursiv

kursiver Text

Java 2 SDK

Java 2D API

Java-Zugriffs-AP1

Java-Zugriffs-Hilfsprogr

amme

opciones de menu inactivas

ventanas inactivas

seleccion independiente (en

botones de conmutacion)

Tndice

indicadores

cuadro de alerta de

informacion

simbolo de informacién

orientacion inicial del teclado

punto de insercién

pantallas de instalacién

ventanas de utilidad internas

ventanas internas

internacionalizacion

Cursiva

texto en cursiva

Java 2 SDK

Java 2D API

Java Accessibility APl (APl de

accesibilidad de Java)

Java Accessibility Utilities

(Utilidades de accesibilidad de

voci di menu non attive

finestre non attive

scelta indipendente

(negli interruttori)

Indice

indicatori

finestra di avviso di

informazioni

simbolo informazioni

immissione iniziale da

tastiera

punto di inserimento

schermate di

installazione

finestre di utility interne

finestre interne

internazionalizzazione

Corsivo

testo in corsivo

Java 2 SDK

Java 2D API

API di Java Accessibility

Utility di Java

Accessibility

inaktiva menyalternativ

inaktiva fonster

oberoende val

Innehall

indikatorer

informationsruta

informaitonssymbol

preliminar

tangentbordsaktivering

insattningspunkt

installationsskarmbilder

interna verktygsfénster

interna fonster

sprékanpassa,

internationalisera

Kursiv

kursiv text

Java 2 SDK

Java 2D API

Java-atkomst-API

Verktyg for Java-atkomst

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

149

150

151

152

154

156

157

158

159

160

161

162

163

164

Java Development

Kit

Java Foundation

Classes

JavaHelp

Java look and feel

JFC application

JPEG (Joint

Photographic

Experts Group)

Justify (item in

Format menu)

keyboard

activation

keyboard focus

keyboard

navigation

keyboard

operations

keyboard shortcuts

labels

layout managers

leaf (in tree

component)

Left Margin (label
in preferences

dialog box)

environnement de
développement

Java

classes de base

Java

JavaHelp

apparence Java

application JFC

JPEG (abréviation
de «Joint

Photographic

Experts Group»)

Justifié

activation clavier

zone d'entrée

clavier

navigation clavier

opérations clavier

raccourcis clavier

libellés

gestionnaires de

disposition

noeud terminal
(dans une

arborescence)

Marge gauche
(libellé dans la boite

de dialogue de

Java Development Kit

Java Foundation

Classes

JavaHelp

Java-Erscheinungsbild

JFC-Anwendung

JPEG (Joint
Photographic Experts
Group)

Blocksatz

Tastaturaktivierung

Tastaturfokus

Tastaturnavigation

Tastenbefehle

Tastenkombinationen

Bezeichnungen

Layout-Manager

Blatt (in
Baumkomponente)

Linker Rand
(Bezeichnung in

Dialogfenster

Java)

Java Development Kit (Kit de

desarrollo de Java)

Java Foundation

(Clases basicas de Java)

JavaHelp

apariencia Java

aplicacion JFC

Foundation Classes)

JPEG (Joint

Experts Group)

Justificar

activacion de teclado

orientacion del teclado

navegacioén por teclado

operaciones del teclado

teclas de método abreviado

etiquetas

administradores de
distribucion

hoja (en componente de
arbol)

Margen izquierdo (etiqueta

del cuadro de didlogo de

preferencias)

Classes

(Java

Photographic

Java Development Kit

Java Foundation Classes

JavaHelp

aspetto Java

applicazione JFC

JPEG (Joint Photographic

Experts Group)

Giustifica

attivazione della tastiera

immissione da tastiera

tramite

spostamento

tastiera

operazioni da tastiera

tasti di scelta rapida

etichette

gestori di layout

foglia (riferito a un
componente di una

struttura ad albero)

Margine sinistro
(etichetta nella finestra

di dialogo delle

Java Development Kit

Java Foundation Classes

JavaHelp

Java-kéansla

JFC-tillampning

JPEG (Joint Photographic

Experts Group)

Raka marginaler

aktiver ing med

tangetbordet

tangentbordsaktiverat

navigering med

tangentbordet

tangentbordsfunktioner,

-arbete

kortkommandon

etiketter

layouthanterare

lI6v

Vanstermarginal

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

legal notices

links

lists

localization

Log In (button in
login splash

screen)

login dialog boxes

Login Name text
field

login splash
screens

look and feel
designs

major tick marks

(in sliders)

Margins (checkbox

in preferences
dialog box)
Match Case

(checkbox in find

dialog box)

menu bars

menu items

menu separators

préférences)

notices légales

liens

listes

localisation

Connexion

boites de dialogue

de connexion

champ de texte

Nom de connexion

écrans de
connexion
apparences
marques de
graduation

principales (dans un
curseur de

sélection)

Marges (libellé dans
la boite de dialogue

de préférences)

Respecter la casse
(case a cocher dans
la boite de dialogue

Rechercher)

barre de menus

options de menu

séparateurs de

menu

Einstellungen)

rechtlicher Hinweis

Verknupfungen

Listen

Lokalisierung

Anmelden

Anmeldedialogfelder

Textfeld

“"Anmeldename"

BegriiBungsbildschirme

Erscheinungsbild-Desig

ns

Hauptmarkierungen (in

Schiebereglern)

Rander
(Kontrollkastchen im
Dialogfenster

Einstellungen)

Kontrollkastchen

"GroR-/Kleinschreibung

beachten™

Mendleisten

Menuelemente

Menttrennlinien

advertencias legales

enlaces

listas

localizacion

Iniciar sesion

cuadros de didlogo de

conexiéon

campo de texto Nombre de

inicio de sesion

pantalla de bienvenida

disefios de apariencia

marcas de comprobacion
principales (en los

deslizadores)

Margenes (casilla de

verificacion del cuadro de
didlogo de preferencias)

Coincidir mayusculas y
minusculas (casilla de
cuadro de

verificacion del

didlogo Buscar)

barras de menu

opciones de mena

separadores de mena

preferenze)

note legali

collegamenti

elenchi

localizzazione

Login

finestre di dialogo di

login

campo di testo Nome di

login

schermate iniziali di

login

strutture di aspetto

segni di graduazione
principali (nei cursori di

scorrimento)

Margini (casella di
selezione nella finestra
di dialogo delle

preferenze)

Maiuscole/minuscole

(casella di selezione

nella finestra di dialogo

Trova)

barre dei menu

voci di menu

separatori dei menu

jurdisk text

lankar

listor

lokal anpassning,

overséttning

Logga in

dialogrutor fér inloggning

textfaltet Anvandarnamn

valkomstbild vid

inloggning

design av utseende

stora skalstreck

marginaler

matcha

gemena/VERSALER

menyrad

menyalternativ

menyavskiljare

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

180

181

182

184

185

186

187

189

190

191

192

194

195

menu titles

menus

message (in alert

dialog box)

Microsoft Windows

style look and feel

middle mouse

button

MIME
(Multipurpose

Internet Mail

Extensions)

minimized internal

windows

minimized

windows

minor tick marks

(in sliders)

mnemonics

modal dialog boxes

model

modeless dialog

boxes

modifier keys

Modify (command

button)

mouse button 1

titres de menu

menus

message (dans une
boite de dialogue

d'alerte)

apparence de style

Microsoft Windows

bouton central de la

souris

MIME (abréviation

de «Multipurpose

Internet Mail
Extensions»)
fenétres internes
réduites

fenétres réduites

marques de
graduation
secondaires (dans

un curseur de

sélection)

touches

mnémotechniques

boites de dialogue

modales

modéle

boites de dialogue

amodales

touches

modificatrices

Modifier

bouton 1 de la

souris

Mendititel

Menus

Meldung (in
Dialogfenster

Warnmeldung)

Erscheinungsbild im

Microsoft Windows-Stil

mittlere Maustaste

MIME (Multipurpose
Internet Mail
Extensions)

minimierte interne
Fenster

minimierte Fenster

untergeordnete
Markierungen (in

Schiebereglern)

Mnemo-Technik

modale Dialogfenster

Modell

moduslose

Dialogfenster

Zusatztaste

Andern

Maustaste 1

titulos de mena

menus

mensaje (en cuadro de

didlogo de alerta)

apariencia de estilo Microsoft

Windows

botén central del ratén

MIME (Multipurpose Internet

Mail Extensions)

ventanas internas

minimizadas

ventanas minimizadas

marcas de comprobacion

secundarias (en deslizadores)

mnemotecnia

cuadros de didlogo modales

modelo

cuadros de dialogo sin modo

teclas modificadoras

Modificar

botén 1 del ratéon

titoli dei menu

menu

messaggio (in una

finestra di avviso)

aspetto di stile Microsoft

Windows

pulsante centrale del
mouse

MIME (Multipurpose
Internet Mail

Extensions)

finestre interne ridotte

ad icona

finestre ridotte ad icona

segni di graduazione

secondari (nei cursori di

scorrimento)

(caratteri) mnemonici

finestre di dialogo

modali

modello

finestre di dialogo non

modali

tasti modificatori

Modifica

pulsante 1 del mouse

menyrubrik

menyer

meddelande

Microsoft Windows-kénsla

mellersta musknappen

MIME (Multipurpose

Internet Mail Extensions)

minimerade interna
fonster
minimerade fonster,

fonsterikon

sma skalstreck

memosymbol

tillstdndsberoende

dialogrutor

modell

tillstdndsoberoende

dialogrutor

modifieringstangent

Andra

musknapp 1

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

mouse button 2

mouse buttons

mouse devices

mouse operations

mouse-over

feedback

move pointers

multiple document

interface (MDI)

multiple selection

native code

navigation

nested split panes

New (item in File

menu)
nodes (in tree
components)

noneditable combo

boxes

text

noneditable

fields

nonfilling slider

Normal (item in

Format menu)

notification dialog

box

bouton 2 de la

souris

boutons de souris

souris

opérations a la

souris

réaction au passage

de la souris

pointeurs de

déplacement

interface MDI

sélection multiple

code natif

navigation

sous-fenétres

divisées emboitées

Nouveau

noeuds (dans une

arborescence)

boites de dialogue
mixtes non

modifiables

champs de texte

non modifiables

curseur de sélection

sans remplissage

Normal

boite de dialogue

d'avertissement

Maustaste 2

Maustasten

Mausgeréte

Mausbefehle

Darstellungséanderung
bei Berthrung mit dem

Maus-Cursor

Bewegungszeiger

Multiple Document

Interface (MDI)

Mehrfachauswahl

nativer Code

Navigation

verschachtelte geteilte

Fenster

Knoten (in

Baumkomponente)

nichtbearbeitbare

Kombinationsfelder

nichtbearbeitbare

Textfelder

nichtfullende

Schieberegler

Normal

Dialogfeld

“Benachrichtigung™

boton 2 del ratén

botones del ratén

dispositivos de ratén

operaciones de ratén

informacién contextual del

puntero

punteros de movimiento

Interfaz de documentos

mdltiples (MDI)

seleccion multiple

cédigo nativo

navegacion

divisiones de panel anidadas

Nuevo

nodos (en componentes de

arbol)

cuadros combinados no

editables

campos de texto no editables

deslizador de no relleno

Normal

cuadro de didlogo de

notificacion

pulsante 2 del mouse

pulsanti del mouse

dispositivi mouse

operazioni del mouse

informazioni al

passaggio del mouse

puntatori di

spostamento

MDI (Multiple Document

Interface)

selezione multipla

codice nativo

navigazione

riquadri di divisione
nidificati

Nuovo

nodi (riferito a

componenti di una

struttura ad albero)

caselle combinate non

modificabili

testo

campi di non

modificabili

cursore senza

riempimento

Normale

finestra di dialogo di

notifica

musknapp 2

musknappar

musenheter

mushantering, arbete

med musen

bekraftelse av

markdrposition

forflyttningsmarkor

Multiple Document

Interface (MDI)

flerval

egen kod

navigering

kapslade delfonster

Nytt

noder

icke redigerbar

kombinaionsruta

icke redigerbara textfalt

skjutreglage utan

utfylinad

Normal

meddelanderuta

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

Object (menu)

OK (button)

padding (command

buttons)

Page Setup (item

in File menu)

panels

panes

Paragraph (item

in Format menu)

password fields

Paste (item in Edit

menu)

pixels

plain text

plain text area

plain windows

platforms

plug-in editor kit

pluggable look and

feel

pointers

posted menus

posting menus

Preferences (item

in File menu)

Objet

OK

remplissage
(boutons de

commande)

Mise en page

panneaux

sous-fenétres

Paragraphe

champs de mot de

passe

Coller

pixels

texte ordinaire

zone de texte

ordinaire

fenétres ordinaires

plateformes

kit d'édition de

plug-ins

apparence

modulaire

pointeurs

menus postés

menus de postage

Préférences

Objekt

OK

Fullen

(Befehlsschaltflachen)

Seite einrichten

Bedienfelder

Teilfenster

Absatz

PaRlwortfelder

Einfagen

Pixel

Nur-Text

Nur-Text-Bereich

normale Fenster

Plattformen

Plug-in-Editor-Kit

leicht zu erfassendes

Erscheinungsbild

Zeiger

standig sichtbare

Menus

Menus standig sichtbar

machen

Einstellungen

Objeto

Aceptar

margen interior (botones de

comando)

Configuracion de pagina

paneles

panel, division

Parrafo

campos de contrasefia

Pegar

pixeles

texto sin formato

area de texto sin formato

ventanas normales

plataformas

modulo del kit de edicion

apariencia conectable

punteros

menus publicados

publicar menus

Preferencias

Oggetto

OK

riempimento (pulsanti di

comando)

Imposta pagina

pannelli

riquadri

Paragrafo

campi di

password

Incolla

pixel

testo normale

area di testo normale

finestre normali

piattaforme

kit dell'editor plug-in

aspetto innestabile

puntatori

menu pubblicati

pubblicazione dei menu

Preferenze

immissione

Objekt

OK

utfylining

Utskriftsformat

fonster med flikar

delfonster som kan

forstoras eller férminskas

Stycke

l6senordsfalt

Klistra in

pixel, bildpunkt

endast text

ruta med text

vanliga fonster

plattformar

insticksprogram for
redigering
inskicksmodul for

utseende (kénsla)

pekare, markérer

fasta menyer

fasta menyer

Instéllningar

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

234

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

preferences dialog

boxes

pressing a key

preview panel (in a

color chooser)

primary colors

primary windows

Print (item in File

menu)

print dialog boxes

printer

product name

progress bars

progress dialog

boxes

progress feedback

progress indication

Question alert

boxes

radio button group

radio button menu

items

radio buttons

Redo (item in Edit

menu)

boite de dialogue de

préférences
appuyer sur une
touche

panneau de

prévisualisation
(dans un sélecteur

de couleurs)

couleurs primaires

fenétres principales

Imprimer

boites de dialogue

d'impression

imprimante

nom du produit

barres de

progression

boites de dialogue

de progression

réaction de

progression

indication de

progression

boites d'alerte de

question

groupe de boutons

radio

options de menu

avec boutons radio

boutons radio

Refaire

Dialogfelder

“Einstellungen™

eine Taste driicken

Vorschauteilfenster (in

einer Farbauswahl)

Grundfarben

Basisfenster

Drucken

Dialogfelder "Drucken™

Drucker

Produktbezeichnung

Statusanzeige

Dialogfelder "Status™

Status-Feedback

Statusanzeige

Fragewarnhinweise

Optionsfeldgruppe

Optionsfeld-Menuielem

ente

Optionsfelder

Wiederholen

cuadros de didlogo

preferencias

pulsar una tecla

panel de vista previa

selector de color)

colores primarios

ventana principal

Imprimir

cuadros de didlogo

impresion

impresora

nombre de producto

barras de progreso

cuadros de didlogo

progreso

informacién de progreso

indicacién de progreso

cuadros de alerta

interrogacion

grupo de botones de radio

de

(en

de

de

opciones de menu de botén de

radio

botones de radio

Rehacer

finestre di dialogo delle

preferenze

premere un tasto

pannello di anteprima

(in un selettore del

colore)

colori primari

finestra primaria

Stampa

finestre di dialogo di

stampa

stampante

nome del prodotto

barre di avanzamento

finestre di dialogo di

avanzamento

informazioni sullo stato

di avanzamento

indicazione di
avanzamento

finestre di avviso di
richiesta

gruppo di pulsanti di
scelta

voci di menu con

pulsanti di scelta

pulsanti di scelta

Ripeti

dialogrutor

installningar

trycka pa en tangent

granskningsruta

grundfarger

huvudfénster

Skriv ut

dislogrutor for utskrift

skrivare

produktnamn

forloppsindikator

dialgrutor for status

statusruta

statusmeddelande

frageruta

(envals)knappgrupp

knappalternativ

envalsknapp

Gor om

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

252

253

254

256

257

258

259

260

261

262

263

264

265

266

Replace (button in

Warning alert box)

Reset (button)

resize pointers

resource bundles

reverse video

theme

RGB (tab for red,

green, and blue
values in a color
chooser)

Right Margin (label
in preferences

dialog box)

row (in tables)

Ruler Units (label in
preferences dialog

box)

Save (button or

item in File menu)

Save As (item in

File menu)

scale

scroll

scroll arrows

scroll box

Remplacer

Restaurer

pointeurs de

redimensionnement

ensembles de
ressources

théme vidéo
inverse

RGB (onglet de

réglage des niveaux

de rouge, vert et

bleu dans un
sélecteur de
couleurs)

Marge droite (libellé

dans la boite de
dialogue de
préférences)

ligne, rangée (d'un

tableau)

Graduations de la
regle (libellé dans la
boite de dialogue de

préférences)

Enregistrer

Enregistrer sous

mettre a I'échelle

faire défiler

fleches de
défilement

curseur de
défilement

Ersetzen

Zuricksetzen

GroRenanderungszeige

Ressourcenpaket

umgekehrtes

Videomotiv

RGB (Register fur Rot-,
Grun- und Blauwerte in

einer Farbauswahl)

rechter Rand

(Bezeichnung im

Dialogfenster

Einstellungen)

Zeile (in Tabellen)

Linealeinheiten

(Bezeichnung im

Dialogfenster

Einstellungen)

Speichern

Speichern unter

skalieren

rollen

Bildlaufpfeile

Bildlauffeld

Sustituir

Restablecer

punteros de redimensién

grupos de recursos

tema de video inverso

RGB (pestafia de los valores

rojo, verde y azul en el

selector de color)

Margen derecho (etiqueta del

cuadro de dialogo de

preferencias)

fila (en tablas)

Unidades de la regla (etiqueta
del cuadro de didlogo de

preferencias)

Guardar

Guardar como

escalar

desplazar

flechas de desplazamiento

cuadro de desplazamiento

Sostituisci

Reimposta

puntatori di

ridimensionamento

bundle di risorse

tema di video inverso

RGB (scheda per i valori
di rosso, verde e blu in

un selettore del colore)

Margine destro

(etichetta in una finestra

di dialogo delle

preferenze)

righe (nelle tabelle)

Unita righello (etichetta
nella finestra di dialogo

delle preferenze)

Salva

Salva con nome

scalare

scorrere

frecce di scorrimento

casella di scorrimento

Ersatt

Aterstall

pekare som andrar

storleken

resursmangder

skrivbordstemat omvéand

video

RGB

Hégermarginal

rader i tabeller

linjalens gradering

Spara

Spara som

skala

bladdra, rulla

rullningspilar

bladdringsruta,

rullningsruta

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

267

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

scroll channels

scroll panes

scrollbars

Search (item in

Help menu)

secondary colors

secondary

windows

Section (item in

Format menu)

select

Select (button in
notification dialog

box)

Select All (item in

Edit menu)

selected items

selection

sentence

capitalization

separators

Shift-clicking

Shift-Tab

Show (label in

preferences dialog

box)

single-clicking

canaux de

défilement

sous-fenétres de

défilement

barres de

défilement

Rechercher

couleurs

secondaires

fenétres

secondaires

Section

sélectionner

Sélectionner

Sélectionner tout

éléments

sélectionnés

sélection

mise en majuscules

de phrases

séparateurs

Maj + clic

Maj + Tab

Afficher (libellé

dans la boite de

dialogue de

préférences)

cliquer une fois

Bildlaufkanale

Bildlaufteilfenster

Bildlaufleisten

Suchen

sekundére Farben

untergeordnete Fenster

Abschnitt

auswahlen

Auswahlen

Alles markieren

markierte Elemente

Auswahl

GroRschreibung des

Satzes

Trennzeichen

Klicken bei gedriickter

Umschalttaste

STRG + Tab

Anzeigen (Bezeichnung

im Dialogfenster

Einstellungen)

einmal klicken

canales de desplazamiento

paneles de desplazamiento

barras de desplazamiento

Busqueda

colores secundarios

ventanas secundarias

Seccién

seleccionar

Seleccionar

Seleccionar todo

elementos seleccionados

seleccion

uso de mayusculas en una

frase

separadores

Mayus + clic

Mayus + Tab

Mostrar (etiqueta del cuadro

de dialogo de preferencias)

un solo clic

canali di scorrimento

riquadri di scorrimento

barre di scorrimento

Ricerca

colori secondari

finestre secondarie

Sezione

selezionare

Seleziona

Seleziona tutto

voci selezionate

selezione

frase con iniziale

maiuscola

separatori

Maiusc + clic del mouse

Maiusc + Tab

Mostra (etichetta nella

finestra di dialogo delle

preferenze)

singolo clic del mouse

bladdra bland kanaler

rullningsfonster

rullningslist

Sok

sekundara farger

sekundarfonster

Avsnitt

markera, valj(a)

Markera

Markera alla

markerade objekt

markerat, val

g6r mening versal

avskiljare

Skift-klicka

Skift-Tabb

Visa

enkelklicka

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

285

287

288

289

290

291

292

293

294

295

296

297

299

300

Size (item in

Format menu)

sliders

small type style

sort order

Sound File (label in

notification dialog

box)

spacing

splash screens

split panes

splitter bars

Start at Top (radio
button in find

dialog box)

Stationery (label in
preferences dialog

box)

Stop (button)

Style (item in

Format menu)

styled text editor
(styled text plug-in

Kit)

submenus

Submit (command

button)

Taille

curseurs de

sélection

petits caracteres

ordre de tri

Fichier son (libellé
dans la boite de

dialogue

d'avertissement)

espacement

écrans de

présentation

sous-fenétres

divisées

barres de division

Commencer en
haut (bouton radio
dans la boite de

dialogue

Rechercher)

Papier a lettres
(libellé dans la boite

de dialogue de

préférences)

Arréter

Style

éditeur de texte
stylisé (ensemble
de plug-ins de style

de texte)

sous-menus

Soumettre

GroRe

Schieberegler

kleiner Schriftstil

Sortierreihenfolge

Sounddatei
(Bezeichnung in
Dialogfenster

Benachrichtigung)

Abstand

Eréffnungsbildschirme

geteilte Fenster

Trennbalken

Abwarts (Optionsfeld
im Dialogfenster
Suchen)

Stationar (Bezeichnung
im Dialogfenster

Einstellungen)

abbrechen

Schriftstil

Schriftart-Editor

Untermenus

Senden

Tamafio

deslizadores

estilo pequefio de fuente

orden de clasificacion

Archivo de sonido (etiqueta

del cuadro de didlogo de

notificacién)

espaciar

pantallas de bienvenida

paneles de division

barras de divisi6n

Iniciar en parte superior
(botén de radio del cuadro de

dialogo Buscar)

Material de papeleria

(etiqueta del cuadro de

didlogo de preferencias)

Detener

Estilo

editor de texto con estilo (kit
del complemento de estilos de

texto)

submenus

Enviar

Dimensioni

cursori di scorrimento

stile a caratteri piccoli

criterio di ordinamento

File sonori (etichetta

nella finestra di dialogo

di notifica)

spaziatura

schermate iniziali

riquadri di divisione

barre di divisione

Cerca in basso (pulsante
di scelta nella finestra di

dialogo Trova)

Elementi decorativi
(etichetta nella finestra
di dialogo delle

preferenze)

Stop

Stile

editor di testo con stile

(kit dei plug-in per testo

con stile)

menu secondari

Inoltra

Storlek

reglage

liten stil

sorteringsordning

Ljudfil

avstand

valkomstskarm

delade fonster, delfonster

delningslist

radioknappen Sokriktning

nedat

Brevpapper

Stopp

Stil

typografiprogram,

typografiskt

redigeringsprogram

undermeny

Skicka

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

Swatches (tab in

color choosers)

Swing class

symbols

system status

animation

system type style

tab traversal

tabbed panes

tables

text areas

text fields

text pointers

theme mechanism

themes

title bars (in

windows)

toggle buttons

tool tips

toolbar buttons

toolbars

trademark

information

tree components

Echantillons (onglet
dans un sélecteur

de couleurs)

classe Swing

symboles

animation d'état du

systeme

caractéres de type

systeme

parcours d'onglet

sous-fenétres a

onglets

tables

zones de texte

champs de texte

pointeurs de texte

mécanisme de
théme

thémes

barres de titre

(dans une fenétre)

boutons a bascule

info-bulles

boutons de barre

d'outils

barres d'outils

information sur les
marques

commerciales

composants d‘'une

arborescence

Muster (Register

Farbauswahl)

Swing-Klasse

Symbole

in

Systemstatusanimation

Systemtypstil

Registerdurchlauf

Teilfenster

Registerformat

Tabellen

Textbereiche

Textfelder

Textzeiger

Motivmechanismus

Motive

Titelleisten

Fenstern)

Umschaltflachen

Quickinfo

(in

Symbolleisten-Schaltfla

chen

Symbolleisten

Warenzeicheninformati

onen

Baumkomponenten

Muestras (pestafia en

selectores de color)

clase Swing

simbolos

animacion del estado del

sistema

estilo de fuente del sistema

secuencias con la tecla Tab

paneles con pestafias

tablas

areas de texto

campos de texto

punteros de texto

mecanismo de tema

temas

barras de titulo (en ventanas)

botones de conmutacién

informacion sobre
herramientas
botones de barra de

herramientas

barras de herramientas

informacién sobre marcas

comerciales

componentes de arbol

Campioni

selettore dei colori)

classe Swing

simboli

animazione dello stato

del sistema

stile di caratteri

sistema

spostamento

tasto Tab

riquadri a schede

tabelle

aree di testo

campi di testo

puntatori del testo

meccanismo dei temi

temi

barre dei titoli

windows)

interruttori

descrizione comandi

pulsanti della barra degli

strumenti

barre degli strumenti

informazioni sui marchi

di fabbrica

componenti di

struttura ad albero

(scheda nel

tramite

una

fargprov

Swing-klass

symboler

animering av

systemstatus

systemsteckensnitt

tabbforflyttning

fonster med flikar

tabeller

textomraden

textfalt, textrutor

textmarkor

tema-mekanism

skrivbordsteman

namnlist

vaxlingsknappar

hjalpmeddelande

knappar i verktygsfalt

verktygsfalt

information om

varumarke

tradkomponenter

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

triple-clicking

turners (in tree
components)
Tutorial (item in
Help menu)

unavailable items

Underline (item in

Format menu)

Undo (item in Edit

menu)

usability testing

user interface

elements

user type style

utility windows

version numbers

vertical scrollbar

View (menu)

visual design

visual identifier

wait pointers

Warning alert
boxes
Whole Word

(checkbox in find

triple-cliquer

symbole +/-
permettant de
développer ou de

réduire une

arborescence

Didacticiel

options non

disponibles

Souligner

Défaire

essai d'utilisation

éléments
d'interface

utilisateur

caractéres de type

utilisateur

fenétres d'utilitaire

numéros de version

barre de défilement

verticale

Affichage

conception visuelle

identificateur visuel

pointeurs d'attente

boites d'alerte

d'avertissement

Mot entier (case a

cocher dans la boite

dreimal klicken

Symbol +/- zum

Ein-/Ausblenden (in
Baumstrukturkompone

nten)

Lernprogramm

nichtverfugbare

Elemente

Unterstreichen

Ruckgéangig

Verwendbarkeitsprifun

Elemente der

Benutzeroberflache

benutzerspezifisches

Schriftformat

Dienstprogrammfenste

Versionsnummern

vertikale Bildlaufleiste

Ansicht

visueller Entwurf

visueller Bezeichner

Wartezeiger

Warnfelder

Kontrollkastchen

"Ganzes Wort"

hacer clic tres veces

giradores (en componentes

de arbol)

Tutorial

elementos no disponibles

Subrayar

Deshacer

prueba de uso

elementos de la interfaz de

usuario

estilo de fuente del usuario

ventanas de utilidades

nameros de version

barra de desplazamiento

vertical

disefio visual

identificador visual

punteros de espera

cuadros de Advertencia

Palabras completas (casilla de

verificacion del cuadro de

triplo clic del mouse

commutatori (riferito a

componenti di una

struttura ad albero)

Esercitazione

opzioni non disponibili

Sottolinea

Annulla

test d'uso

elementi dell'interfaccia

utente

stile di carattere

dell'utente

finestre di utilita

numeri di versione

barra di scorrimento

verticale

Visualizza

progettazione visiva

identificatore visivo

puntatori di attesa

finestre di avviso

Avvertenza

Parola intera (casella di

selezione nella finestra

trippelklicka

nodpunkt

Sjalvstudier

ej tillgangliga alternativ

Understruken

Angra

funktionstest

anvandargranssnittets

delar

anvandarens typsnitt

verktygsfonster

versionsnummer

vertikal rullningslist

Visa

grafisk layout

synlig identifierare

vanta-markér, timglas

varningsruta

Hela ord

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

339

340

341

342

343

344

345

346

dialog box)

window borders

window controls

de dialogue

Rechercher)

bordures de fenétre

controles de fenétre

Fensterrand

Fenstersteuerelemente

dialogo Buscar)

bordes de ventana

controles de ventana

di dialogo Trova)

bordi della finestra

controlli della finestra

window frame cadre de fenétre Fensterrahmen marco de ventana cornice della finestra
windows fenétres Fenster ventanas finestre

word order ordre des mots Wortstellung orden de palabras ordine delle parole
word wrap renvoi a la ligne Wortumbruch ajuste de linea a capo automatico

botones de | pulsanti di

zoom buttons boutons de zoom Zoom-Schaltflachen
ampliacién/reduccién ingrandimento/riduzione
sous-fenétres de paneles de | riquadri di

zooming panes

zoom

Zoom-Bereiche

ampliacién/reduccion

ingrandimento/riduzione

Asian Languages: Japanese

Table 35 Word List for Asian Languages

English Japanese

About {Application} (item in [(77Y7—av&) IZDLT] ([~
Help menu) 1*=1—0RE)

About boxes [HEATEH] 7 ba

Abstract Window Toolkit
2 —+H RN RE

Abstract Window Toolkit

accessibility

active components FOT47aii—3k

active windows TIT4T940F

alert boxes FI3—bRuoR

Align Center (item in Format [PR#R] (BX] A=2—0EE)
menu)

Align Left (item in Format [EH#IZ] (ER] A=a—DIHE)

fonsterkant,

fonsterkontur

fonsterreglage

fonsterram

fonster

ordfoljd

radbrytning

zoom-knappar, knappar

for att forstora eller

forminska

zoom-rutor, delfonster
som kan forstoras eller

forminskas

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

menu)

Align Right (item in Format [E#iZ] (E=X] A=2—0DIEE)

menu)
alignment
anchor point
animation

applet
application
Apply (button)
arrow keys
assistive technologies
background
backing windows

Beeps (label in notification

dialog box)

bit depth

Bold (item in Format menu)
bold text

borders

Browse (button)
browser

button border

button graphics

button text

Cancel (button)
capitalization

caution symbol

CDE style look and feel

cells (in tables)

Al

Fuh—iA sk
F=A—aw
FILwhk
FIVr—iaz

GER) (R 22)
KEF—

2 —+ ¥ B A
IAS/ Ly b Ly DV
TASTE S v P 7d v

[E—T78&] GBS A 7OTEvIZADT
L)

EvhOiRE

[FR—ILF] (ER] A=a—DHE)
R—=ILFTFAB

R

[F572X] (K2

Filrh g

RA R
RALTIT490 A
HETHA

[HHL] (FR22)

AICFEM

RS

CDE A %A1 Look & Feel

I (F—TILT)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

channels (in scrollbars)
checkbox menu items
checkboxes

choosers

clicking

client properties

Close (button or item in File
menu)

close control

color choosers

column (in tables)
column header (in tables)
combo boxes

command button row
command buttons
components

containers

content panel (in a color
chooser)

content panes
Contents (item in Help menu)
contextual menus

Continue (button in Error alert
box)

control type style
Control-clicking
controls
Control-Tab

Copy (item in Edit menu)

FoRIL (RH0—)L/—T)
FrudhwiAA=2—18E
FruduA

Fa—Ff

Ul

IS4 F 0 Ta
(FACB](FES), L] ([77AIL] A
—a—®mIEH)
sA—XaxkO—-J
HS—Fa—+

F (T—TILT)

i~y (T—7IT)
ARV IR
aAvFRET

= o S i B
aR—a b

T F

AT VAT (AhTF—Fa—HT)

STV ERE
[B&] ((~ILT] A=a—DEE)
AT EARAZa—

[#E8R] K2 (T5—FF—FRYHRD

RA)

A RA—=ILAATRARA I
Ctrl F— + 2w
g = ey |

Ctrl F¥— + Tab ¥F—

[FE—] (#@%] A=2—0OEE)

Sun - Java Look and Feel Design Guidelines, 2" Edition

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

crosshair pointer
cross-platform color
cross-platform delivery
currency formats

Cut (item in Edit menu)
data structure

Date Format (label in
preferences dialog box)

default
default command buttons

Default Font (label in
preferences dialog box)

default Java look and feel theme
default pointer
delay indication
destination feedback
dialog boxes
dimmed text
disabilities

disjoint selection
distribution
dithering

dockable toolbars

Document (item in Format

menu)

Don't Save (button in Warning
alert boxes)

double-clicking

drag and drop

+FRRIA
SORT Sy I+—Lh5—
ORI vk T+—LERIE
EREL

[Fwh] (R3] A=2—ODIRE)
T3S

[BftERX)(EEDERSATFOTRY
HADFAIL)

FIH I
FAAIL O FAER

[FIHIEIH M (HEDERLAT
O Ry I ZADFRIL)

F 74 L0 Java Look & Feel 7—+
T4 IR A B

EIE SR

FEET1—Fsivy

i = bl S

BRFRFETHA

TAATEUT 4

FEHEER

i

TaFd

FoF s y—Lri—

[F¥Faxwk] (B3] A=2—DEE)

[REFLILY (EE75—bRYI 20K
>)

TN)i

FSwid &kOu

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

drag area

drag texture
dragging
drop-down arrows
drop-down menus
Edit (menu)
editable combo boxes
editable text fields
editor panes
ellipsis marks
Error alert boxes

error messages

exclusive choice (in

buttons)

Exit (item in File menu)

extended selection
feedback

fields

File (menu)

filling slider

Find (item in Edit menu)

find dialog boxes

Find Next (item in Edit menu)

Flashes (label in notification

dialog box)

flush 3D effects

Font (menu or item in Format

menu)

fonts

FSw i Rk
FSudTOATF Y
FSwi

FRwTH 72K
FOwISowA=n—
[#R2%K] A=2—
RIERIBED RV IR
BERRETHFAR I —ILE
IT45EE

HERELS
IS—=FS5—kHysR
IS—Ayt—

Hefth 892 4R (T ILARET)

[T ({F7A] *=2—OEE)
HisRER

Pl e A L)

F4—ILF

[ZFPAIL] A=a—

AN TASAF

[BE] (B8] A=a—OWE)
BERA47OTRUIR

[REBRE] (%] A=21—DHEE)

[Rik] GRRAATFOT R IADT~A
JL)

I5wisa 3D MR

[FAk] ((BHX] AZ2—DERB), [Z4

h] A=a—

FEDIS

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Format (menu)
formatted text panes
function keys

GIF (Graphics
Format)

Interchange

grids

hand pointers

headline capitalization
Help (button or menu)

Hidden Text (checkbox in

preferences dialog box)
highlighting

horizontal scrollbar

hot spot

HSB (tab for hue, saturation,
and brightness color
choosers)

in

HTML editor kits
I-beam pointer
icons

inactive components
inactive menu items
inactive windows

independent choice (in toggle
buttons)

Index (item in Help menu)
indicators

Info alert box

information symbol

initial keyboard focus

[E=H] A=a2—
ERX{FETHFRANEE

FFdia T —

GIF (Graphics Interchange Format)

1wk

FOROEA A

R L OASTEER

[~LT] (B, [NV T] A=a—

MBLFFRN (EEOEES 47O
R uIZDFzuIR v R)

s I
KERZO—)Ls—
HRykARYE-

HSB (h5—Fa—YTOEEL, F
B, BAHED4AT)

HTML TF 2% vk

l-beam A4

FAaL
Fh5sFdolhlvasti—3k
FoT47THNAZ21—IEE
FITATTlalvr4Fy
IR TF LAELuER (IR R T)

[#&BI] ([~NILT] A=a—®DIEE)
A ibr—=4

W7 I—FRvIA

W=

M F—HR—FI74+—h=A

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

insertion point
installation screens
internal utility windows
internal windows
internationalization
Italic (item in Format menu)
italic text

Java 2 SDK

Java 2D API

Java Accessibility API
Java Accessibility Utilities
Java Development Kit
Java Foundation Classes
JavaHelp

Java look and feel

JFC application

JPEG (Joint
Experts Group)

Photographic

Justify (item in Format menu)
keyboard activation

keyboard focus

keyboard navigation

keyboard operations

keyboard shortcuts

labels

layout managers

leaf (in tree component)

Left Margin (label in

preferences dialog box)

HARA

A2 A—ILEIE

MEI =T UT a0 FD
AElD B

E kL

(A& u7] (EX] A =2 —OEE)
A2 F% Ak

Java 2 SDK

Java 2D API

Java Accessibility API

Java Accessibility 2 —T)T
Java Development Kit

Java Foundation Classes
JavaHelp

Java Look & Feel

JFC 7) r—iaz

JPEG
Group)

[MEA] (ER] A= —DHE)

(Joint Photographic

F—HR—FIZk5HED
F—R—F7+—hR
F—R—FFES =23z
F—R—FifE
F—R—Fia—rhuk

FUb

LAFP IR F:—%

=2 (V=R -=F2}T)

(EX—2v] (REDERES (7O
RuZZAMZAIL)

Experts

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

165 | legal notices EfelEtRE

166 | links U

167 lists YA+

168 localization Hhigk 5 GAE

169 Log In (button in login splash El?gp{p] (AT A AT Sv A BEED
screen)

170 login dialog boxes AT A EATATHR IR

171 Login Name text field (BT LB (THFARITA—ILE)

172 login splash screens Oy A AT 5w 1E@

173 look and feel designs Look & Feel FH4 >

174 major tick marks (in sliders) A ¥¥ =T 4 v II—=T (AF45T)

175 Margins _(checkbox in gﬂ;;;jffﬁ,?%ﬁgf?n vk)
preferences dialog box)

176 Match Case (checkbox in find E}?ﬁiil;ﬁiggiﬂﬂﬂﬂfﬁ] &
dialog box)

177 | menu bars Az a—si—

178 menu items A=a—1HHE

179 menu separators Ama—tAL—%

180 menu titles Aza—RAL

181 menus A=a—

182 | message (in alert dialog box) g:;-]z—:; (FS—HIATRTRIIA

Microsoft Windows style look Microsoft Windows 224 /L@ Look &

183
and feel Feel

184 | middle mouse button F s A s

MIME (Multipurpose Internet | MIME (Multipurpose Internet Mail

185) : :
Mail Extensions) Extensions)

186 minimized internal windows TAAMEENT=AE D 2 2 KD

187 minimized windows TAaAAbEN =91 FS

188 minor tick marks (in sliders) RAFT—FT 4 9II—0 (RS54 T)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

mnemonics S

modal dialog boxes E—HILAATFOT RV IR
model TTIL

modeless dialog boxes FE—FINFAFTOTRIIA
modifier keys fEahF—

Modify (command button) [ZEE] (avFHRay)

mouse button 1 I 7ARA A

mouse button 2 NIARRL, 2

mouse buttons TARIL

mouse devices Y IATINAA

mouse operations R ARLE

mouse-over feedback RPRA—IN—D4—F iy
move pointers BB 2

multiple document interface i .
multiple document interface (MDI)

(MDI)

multiple selection HEEGER

native code FAT4FT2—F

navigation FTES =3z

nested split panes ANFOSEXE

New (item in File menu) [#iRR] (7 AIL] A=2—DIRE)

nodes (in tree components) J—F(YY—arKR—-F>FT)

noneditable combo boxes BEF AT RRY X
noneditable text fields BEFTTFHARTA—ILF
nonfilling slider I RSAE

Normal (item in Format menu) [E#¥] ((EX] A=2—DIRE)
notification dialog box HHAATOATHRYIA
Object (menu) (AT xR AZa—

OK (button) [T#&] (R5)

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

padding (command buttons)

Page Setup (item in File menu)

panels
panes

Paragraph (item in Format

menu)

password fields

Paste (item in Edit menu)
pixels

plain text

plain text area

plain windows

platforms

plug-in editor kit
pluggable look and feel
pointers

posted menus

posting menus

File

Preferences in

menu)

(item

preferences dialog boxes
pressing a key

preview panel color

chooser)

(in a

primary colors
primary windows
Print (item in File menu)

print dialog boxes

INT A2 (AT FRAY)

[R—ZHE) ([F7AI] A=a—DIF
E)

At
[E4ET]

[/$557357] (EX] A=2—OHE)

INAD—=FT4=—JLE
[A—ZAF] (#EE] A=a—DIEE)
Ea€iL

TL—2TxAF
L—r TR AMER
Tl—rg4bg
FoubI4—L

IS AT TF18% vk
757 A A8k Look & Feel
0
BERFREA=ZL—
EEZTA=02—

[REDFEE] (771 A=2—DE
E)

BEOTEESTATFOTHRUIA
F—DOFT

FLEa—nRIL (WF—Fa2—HT)

R

Fo4k7

[AIRI] ([Z7A)] A=a—DWE)
RIS A 7OT R T2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

241 printer UM

242 product name Wmad

243 progress bars it 45 0 N —

244 progress dialog boxes EHT A TFOTHRYTR
245 progress feedback T —F /T

246 progress indication i kb

247 Question alert boxes HR7I—kRyOR

CARELATIN—T

wJi

248 | radio button group

249 radio button menu items ZUAREL A= —IEE

250 | radio buttons STARI

251 Redo (item in Edit menu) [BE1T] (%] A=21—0DEE)

055 Replace (button in Warning %*R] GEHF A FOFHR o ADRS
alert box)

253 Reset (button) [Uevk] (F2)

254 | resize pointers A XEERAA

255 | resource bundles =Rk

256 reverse video theme JIN—RAET#HT—%

RGB (tab for red, green, and RGB (W3—Fa—FTOH, &, FO

257
blue values in a color chooser) Ens7)

Right Margin (label in [BE¥—L2] (EEQEEF/7OT

258 e =
preferences dialog box) FYIADT NI

259 row (in tables) T (7—7ILT)
260 Ruler Units (label in preferences [L—2Hi{i] (EEDEEL 17O
dialog box) RITADTNIL)
Save (button or item in File [f&fF] (R22), [(RF](F71IL] 4
261 menu) =a1—0ORE)

262 Save As (item in File menu) [RIBREF] (ZFAI] A=a—OHE)
263 scale A=
264 scroll A20—)L

265 | scroll arrows Ao0—)LXEH

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

266 scroll box Ao0—)LRy 2R
267 scroll channels AZ0—)LF %)L
268 scroll panes Ao0—)LEE
269 scrollbars A7O0—)lii—

270 Search (item in Help menu) [8&R] ([(~ILT] A=a—MIEE)
271 | secondary colors
272 secondary windows a2

273 | Section (item in Format menu) [£%i32] (E:] A=Zoa—0ORE)

274 select iR
75 Select (button in notification [ﬁ?ﬁ] (RS A T ASR Y I AOKRS
dialog box))

276 | Select All (item in Edit menu) [TTERR] (B%] A=2—0DIRE)

277 | selected items BB

278 | selection iR

279 sentence capitalization NEHOXRIFEA

280 separators L —%

281 Shift-clicking Shift F— + JJwZ

282 | Shift-Tab Shift F+— + Tab F—

083 Show (label in preferences Egiﬁi}ﬁmﬂﬁ‘?ﬂf?nﬁfﬂfv?l
dialog box)

284 single-clicking TG)Y

285 | Size (item in Format menu) [X] ((ER] A=a—DWE)

286 sliders ATAE

287 small type style AE—ILELTRRAIL

288 sort order J—rIERF

289 S_ound File (label in notification gﬁgggﬁ:}fw] (EENSE A F O Ay
dialog box)

290 | spacing fiil b

291 splash screens ATy A EE

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

split panes

splitter bars

Start at Top (radio button in find

dialog box)

Stationery (label in preferences

dialog box)

Stop (button)

Style (item in Format menu)

styled text editor (styled text

plug-in kit)

submenus

Submit (command button)

Swatches (tab in
choosers)

Swing class

symbols

system status animation

system type style
tab traversal
tabbed panes
tables

text areas

text fields

text pointers
theme mechanism
themes

title bars (in windows)
toggle buttons

tool tips

o | EAET]
SEl -

[REMSHIE] (BREAATOTRYIA
DT FARI)

[RT—iaF) (EEOEEF4 705
Ru T AMSL)

[ehik] (AR
[REAIL] ([(BHK] A=2—OIEE)

ERXAETFALIT 4R (RE2A1ILTF
ANTST L%)

HIAZa2—
[Efd] (a7 ERE)

A F9F (WS—Fa1—HFD27)

Swing 93 A

e I

AT LRET = A3
DATLBATREA)L
BITRS—H)L

B HEEE

=

THFAMEE
THFRALTA—ILF
THFAMRA42
T—TAh=X L

F—=

BARILIS— (4 EHT)
L1V L,

wW— e

Sun - Java Look and Feel Design Guidelines, 2" Edition

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

toolbar buttons
toolbars

trademark information
tree components
triple-clicking

turners (in tree components)
Tutorial (item in Help menu)

unavailable items

Underline (item in Format

menu)

Undo (item in Edit menu)
usability testing

user interface elements
user type style

utility windows

version numbers
vertical scrollbar

View (menu)

visual design

visual identifier

wait pointers

Warning alert boxes

Whole Word (checkbox in find
dialog box)

window borders
window controls
window frame

windows

W= L i—RAa

Y=l i—

FEEHRWH

WY =R =F b
RITID)us

F—F (YY—arHR—F>+T)

[531_”’7"’] ([~IT]) A=a—D IR

RIRTAIDIEE
[F#8) (Bxt) A=2—DEE)

[IZET] ([(R¥E] A=2—0OHE)
A—HFE)T1+TRE
A—HA 7 —AER
A—HRAT2EA)L
A—TAUTAI4F2
N—avHis
EEAZO—)L/A—

[#®R] A=a—
REHTFI
WREARMICHEHINT LER
15
EETI—FRYIA

[EX—H] (BFR)FAT7aTRvIAD
FrudRyIR)

Rl

P] N B 1 N m B [
ROV i)
AR

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

343

344

345

346

word order &l

word wrap Rl
zoom buttons A— LA
zooming panes A—LEEH

Asian Languages: Simplified Chinese

10

11

12

13

14

15

16

17

18

Table 36 Word List for Asian Languages

English

Simplified Chinese

About {Application} (item in Help FTRIFHFEF ¢ “Hih" G rp o)

menu)

About boxes

Abstract Window Toolkit
accessibility

active components
active windows

alert boxes

Align Center (item in Format
menu)

Align Left (item in Format menu)
Align Right (item in Format menu)
alignment

anchor point

animation

applet

application

Apply (button)

arrow keys

assistive technologies

T HE

AlEIR

i&shH

=N la"::lr [~

REAE

B (R

RSB O T AN

ST

E/F R
HAF ol B ARG E D

ES B

il 4,

1]

AR

R FRTE
REFE (3HD
7 3

A

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

19 | background G

20 backing windows JE#E O

,, | Beeps (label in notification dialog SENG CELENH VA HE P RIFRAE D
box)

22 bit depth {or 8 3 R

23 | Bold (item in Format menu) Mk CHrHEF R

24 bold text B

25 borders LR (o

26 Browse (button) Pl (iad

27 | browser i B A

28 | button border Y wlih 57

29 | button graphics Fi L E b

30 | button text Yl

31 | Cancel (button) BUiE (sl

32 capitalization N5

33 | caution symbol Ppalbric

34 | CDE style look and feel CDE [AUR B 5 [A

35 | cells (in tables) FEILkE (FH)

36 | channels (in scrollbars) HIE (ERFET)

37 | checkbox menu items B3 HE ST

38 | checkboxes HikHE

39 | choosers IR

40 | clicking i

41 | client properties % P etk

42 | Close (button or item in File menu) <@ (fEHIEL “30{F " AP

43 close control e
44 | color choosers A i PR ae

45 | column (in tables) e 2T

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

46 | column header (in tables) b (kg
47 | combo boxes HlalE

48 | command button row i HHLAT

49 | command buttons i - il

50 | components £ 1

51 | containers A

52 | content panel (in a color chooser) #F I (FIESFEET)

53 | content panes RECE
54 | Contents (item in Help menu) WA (T ED R PRI
55 | contextual menus EFacaee

56 Continue (button in Error alert box) ZE&k (UL EHE T (D

57 | control type style FFF

58 | Control-clicking fifk Curl B —TF

59 | controls %

60 | Control-Tab #{E Cerl 8eHE Tab 8

61 Copy (item in Edit menu) SR CH R 3 P 00D

62 | crosshair pointer FeE

63 | cross-platform color EEEEE

64 | cross-platform delivery (e

65 currency formats B i X

66 | Cut (item in Edit menu) B AR SLE PRI

67 | data structure G)

g | Date Format (label in preferences H Ak CEETAEE S %)
dialog box)

69 | default 2Rk

70 | default command buttons A i 2 L

1 Default Font (label in preferences #hihT7-if CEZEIUN IFHEA b)

dialog box)

72 | default Java look and feel theme Ak Java YEHEISRM 1AE

Sun - Java Look and Feel Design Guidelines, 2" Edition

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

default pointer
delay indication
destination feedback
dialog boxes
dimmed text
disabilities

disjoint selection
distribution
dithering

dockable toolbars

Document (item in Format menu)

Don't Save (button in Warning alert

boxes)
double-clicking
drag and drop
drag area

drag texture
dragging
drop-down arrows
drop-down menus
Edit (menu)
editable combo boxes
editable text fields
editor panes
ellipsis marks
Error alert boxes

error messages

exclusive choice (in toggle buttons)

SRk ek
iR R

H i 2 ot

B 1 HE

Wi e L
H

A T
v

R

Af {5 Al T L5

3O (R AR PRI

ARAF CESREEPEHD

Wiky

Fi Al

iz <

fizh & #
tEzh

F i sk
FRrat e
Hsd (g
n] Gadf a5 HE
AT AT B
TR
TBE

i i & HE

iR

ME— PR IR (PR G ddiHlh)

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

Exit (item in File menu)
extended selection
feedback

fields

File (menu)

filling slider

Find (item in Edit menu)
find dialog boxes

Find Next (item in Edit menu)

HBH SRR TR
b

Rt

B

At i)

HIFEHE R

B R PE)
PESRRT G

BERF—A CHRE P I

Flashes (label in notification dialog |4k

box)

flush 3D effects

Font (menu or item in Format &

menu)

fonts
Format (menu)
formatted text panes

function keys

Bl 3D R

FAE USRI | PR

F 1k
BR G
e 58 S B
it B

GIF (Graphics Interchange Format) GIF (EEZE#k)

grids

hand pointers

headline capitalization
Help (button or menu)

Hidden Text (checkbox
preferences dialog box)

highlighting
horizontal scrollbar

hot spot

o i

TRt

friE RS

AL (HD) | CHEhIER

in (BB A CE R IEHED £ B EHE)

R
AR Esh

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

HSB (tab for hue, saturation, and HE b

brightness in color choosers)

HTML editor kits
I-beam pointer
icons

inactive components
inactive menu items
inactive windows

independent choice (in
buttons)

Index (item in Help menu)
indicators

Info alert box

information symbol

initial keyboard focus
insertion point

installation screens
internal utility windows
internal windows
internationalization

Italic (item in Format menu)
italic text

Java 2 SDK

Java 2D API

Java Accessibility API

Java Accessibility Utilities
Java Development Kit

Java Foundation Classes

HSB (@ifhigseash i, wm Bz
o)

HTMLE4E T B 46

I-beandiF £t

Pt

{EiE Eh L1

{35 2 3L 4 0

FC AT 1

AR ()

#3| CHB AR T
R
HEESHE

fi L bid

fEA

Te i

P TR B

P i

= {k

AR (RS PRI
g

Java 2 SDK

Java 2D API

Java A[{£HITE API
Java A F5 I S T FE IF
Java JF A T 1L

Java 3

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

151 JavaHelp JavaHelp

152 Java look and feel Java $FE M0

153 | JFC application JFEC R

154 JPEG (Joint Photographic Experts JPEG (ER# P84 52)
Group)

155 Justify (item in Format menu) I b S AP YTED

156 keyboard activation BR A E

157 | keyboard focus HitE

158 | keyboard navigation A S A

159 keyboard operations 5 B L

160 | keyboard shortcuts fros

161 labels pp

162 layout managers 1 R AR

163 | leaf (in tree component) CINRE L ECEL S

164 Left Margin (label in preferences iR CHETEHED AR
dialog box)

165 legal notices ERr ikl

166 | links i

167 | lists JIE

168 | localization Atk

169 Log In (button in login splash =3 R BLE S R HD
screen)

170 | login dialog boxes A

171 Login Name text field el ARTFE

172 login splash screens e LB

173 look and feel designs ¢ S+ W T

174 major tick marks (in sliders) EZImel (FEATR B

175 | Margins (checkbox in preferences IER CHIRTUHEHE S A =R HE)

dialog box)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Match Case (checkbox in find dialog | L 15 (R RIRHER &%
176 9 i)

box)

177 | menu bars EHF

178 menu items BRI

179 menu separators AT AT

180 menu titles L

181 menus FH

182 message (in alert dialog box) HE GREAMIEHES)

g3 Microsoft Windows style look and i Windows [k Y 57 i 5170
feel

184 middle mouse button RLtrh

185 | MIME (Multipurpose Internet Mail MIME GHEF Internet BEF REME %)
Extensions)

186 minimized internal windows mhMER AR D

187 minimized windows dge MU R

188 minor tick marks (in sliders) AR (FEHFR B

189 mnemonics Hhid 7F

190 | modal dialog boxes FE A HE

191 model Rt

192 modeless dialog boxes R RS HE

193 modifier keys (g5

194 Modify (command button) el G HHD

195 mouse button 1 Rlbr |

196 mouse button 2 Blizat 2

197 | mouse buttons R g

198 mouse devices R

199 mouse operations LR AE

200 mouse-over feedback B b B 2 B i

201 move pointers Hahtatt

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

202 | multiple document interface (MDI) | #3550 (MDD

203 multiple selection ¥ kT

204 | native code AP

205 | navigation i

206 | nested split panes BT o1 B R s

207 | New (item in File menu) Ha oot
208 nodes (in tree components) Wl CRERTED

209 noneditable combo boxes AT G R 2 A HE

210 noneditable text fields A AT 4 65 LA B

211 | nonfilling slider AR R

212 Normal (item in Format menu) TiE R PRI
213 notification dialog box i A HE

214 Object (menu) M E (GER)

215 OK (button) WhE (D

216 padding (command buttons) Hige (a1l

217 Page Setup (item in File menu) MEEE oo Rm)
218 panels 11 #2
219 panes it

220 Paragraph (item in Format menu) Bt Chs el SR Eg

221 password fields O 4B

222 Paste (item in Edit menu) RERE CrEBAETSERP YT
223 | pixels RE

224 | plain text yR (15 W S

225 | plain text area PR i NE

226 plain windows kA O

227 platforms e

228 | plug-in editor kit HhfFHE TH

229 pluggable look and feel A i =, 57 i 2+

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

pointers

posted menus

posting menus
Preferences (item in File menu)
preferences dialog boxes
pressing a key

preview panel (in a color chooser)
primary colors

primary windows

Print (item in File menu)
print dialog boxes

printer

product name

progress bars

progress dialog boxes
progress feedback
progress indication
Question alert boxes
radio button group

radio button menu items
radio buttons

Redo (item in Edit menu)

Replace (button in Warning alert

box)

Reset (button)
resize pointers
resource bundles

reverse video theme

tiita)

CLARIE RS

FIE T

HIEEE ot R R
P 30 0 X T E HE

fii—i-

Pl (fE AR
=R e

i

FTED (OO 38 P D)
T EIR R HE

fTETHL

7= i 45

i PE 4%

HERE R 15 HE

i R

HERE R

] 1B S HE

B S LA

P F B A T

S|

W g P D

B (D

M (dE
R
gl gL

F AT o

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

3 7 'ﬂ”:-_l'. &1 45 ﬂl I g
RGB (tab for red, green, and blue Rﬁr{ﬂ!?l.ﬂﬁ?%ﬁﬁ‘ﬁ']:"' @, SEME

values in a color chooser)

Right Margin (label in preferences | #1125 CFTEEAA IEHE PRI)
dialog box)

row (in tables) ir (TERKET)

Ruler Units (label in preferences B/ CHIETIEHET FIFr2E)
dialog box)

Save (button or item in File menu) /7 (fHlal “0fF" FEE gy

Save As (item in File menu) BEXH LSRR
scale #4845

scroll)|

scroll arrows FEhW 3k

scroll box e

scroll channels i Ehil i

scroll panes B RS

scrollbars Hoha

Search (item in Help menu) fWE N I PRI
secondary colors)

secondary windows FHHhEE O

Section (item in Format menu) RS R Y I
select pLEE

Select (button in notification dialog &3 (f%HL

box)

Select All (item in Edit menu) HEESE IR E I
selected items T SE T

selection M FE

sentence capitalization aTFRE

separators yoult CEE

Shift-clicking folk Shift @A —F

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

282 | Shift-Tab fifE Shift BEf{L Tab &

og3 | Show (label in preferences dialog B CHIETREHE P e kras)
box)

284 single-clicking i

285 | Size (item in Format menu) Ko CRg A R AP R

286 | sliders BR

287 small type style MNEFFE

288 | sort order FIF 7 0L

ogg | Sound File (label in notification AR IO GEERREHE P ATEr i)
dialog box)

290 spacing (1] 268

291 splash screens [3

292 | split panes W)

293 splitter bars G & 35 4

Start at Top (radio button in find Mz (R B HE AR Y SRk
294)
dialog box)

Stationery (label in preferences fr#h (FEIAT I HE bR

295 dialog box)

296 ' Stop (button) ik CiEHD

297 | Style (item in Format menu) FELA O Rl JER Ao

298 styled text editor (styled text FFACASHRE A (FF A SCAEIHENR)
plug-in kit)

299 submenus FALE

300 Submit (command button) #2824

301 | Swatches (tab in color choosers) & (EEZEFR TR

302 Swing class Swing 3
303 symbols 5
304 system status animation SRR S]

305 | system type style R THE

Sun - Java Look and Feel Design Guidelines, 2" Edition

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

tab traversal

tabbed panes

tables

text areas

text fields

text pointers

theme mechanism
themes

title bars (in windows)
toggle buttons

tool tips

toolbar buttons
toolbars

trademark information
tree components

triple-clicking

turners (in tree components)

Tutorial (item in Help menu)

unavailable items

Underline (item in Format menu)

Undo (item in Edit menu)
usability testing

user interface elements
user type style

utility windows

version numbers

vertical scrollbar

View (menu)

BB
itill e o B
b
LA
LA B
LA EE
E L
]
R (O
7% Je il
CREAR
TR
TRE
i brfs B
BT
“ifi
hrEEas CRHELED
R CHBYT PR
A~ a] H BT
TRI U RERREED
M ComET AL R
A A A,
Hi P S AT
FE P
SRR O
ESE
i) &

WE)

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

334

335

336

337

338

339

340

341

342

343

344

345

346

visual design
visual identifier
wait pointers

Warning alert boxes

Whole Word (checkbox in find dialog
box)

window borders
window controls
window frame
windows

word order
word wrap
zoom buttons

zooming panes

AL ATy
PR ER IR
MR iREr
B S HE
AEICAE (R AHEHED R E ik
fED

B iR 4E

B 334

B L HESE

i H

i) -
AT

HE 3
i R

Asian Languages: Traditional Chinese

Table 37 Word List for Asian Languages

English
About {Application} (item in Help
menu)
About boxes
Abstract Window Toolkit
accessibility
active components
active windows
alert boxes

Align Center (item in Format
menu)

Traditional Chinese

RAGY (AEFIFE=) (7 WhlhaR
H chederhay)

RIS T

MRS T TR

BT TH

C{ETCi

I

ST

Bp (" e DRI EE)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

FEHT (il ThREZRPIYEE)

9 Align Left (item in Format menu)

TRl chiesfEdbEE
10 | Align Right (item in Format menu) SARM (T H DhERIVHE)

11 | alignment S

12 | anchor point e

13 animation Bl

14 | applet applet

15 | application FE R
16 Apply (button) M (i)
17 | arrow keys PR S

18 | assistive technologies LTl
19 | background HE

20 | backing windows e

1 Beeps (label in notification dialog "#H# GEAIEEE B IIFEEE)

box)
22 | bit depth vt 3 5
23 Bold (item in Format menu) FEMD (" 48 EhhEFe N E)
24 bold text @=L
25 borders i
26 | Browse (button) B
27 browser T2 A
28 | button border Fesi i
29 | button graphics v Zialu e
30 button text g e
31 | Cancel (button) L (s
32 capitalization HE
33 | caution symbol AN G

34 | CDE style look and feel CDE #lo e

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

35 | cells (in tables) fBTEH (fEFAsh)

36 channels (in scrollbars) FEGE (TR Eh)

37 checkbox menu items B ERTE

38 | checkboxes AT

39 choosers MR

40 clicking HE—T

41 client properties P P it

42 | Close (button or item in File menu) AR (o "R s hERHITE)
43 | close control R

44 | color choosers TR

45 | column (in tables) T HEZAHh)

46 | column header (in tables) {TEREE (fEFkE)

47 combo boxes AT

48 | command button row fiaridy)

49 | command buttons fraqriein

50 components ToiF

51 | containers e

52 | content panel (in a color chooser) %M (fEfEFEEIFEERT)
53 content panes R ESest

54 Contents (item in Help menu) PO (T WBIERY] s DifiERATIRE)
55 | contextual menus ET2CEhfiess

56 | Continue (button in Error alert box) #&#f (&= b s
57 | control type style FERER R

58 | Control-clicking fietE Ctrl iz — T

59 | controls =i

60 | Control-Tab Fi(E Ctrl Sh¥ifiz Tab &

61 | Copy (item in Edit menu) S (iR shieR I E)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

crosshair pointer
cross-platform color
cross-platform delivery
currency formats

Cut (item in Edit menu)
data structure

Date Format (label in preferences
dialog box)

default
default command buttons

Default Font (label in preferences
dialog box)

default Java look and feel theme
default pointer

delay indication

destination feedback

dialog boxes

dimmed text

disabilities

disjoint selection

distribution

dithering

dockable toolbars

Document (item in Format menu)

Don't Save (button in Warning alert
boxes)

double-clicking
drag and drop

drag area

(R

LB EEE

WHPERNE

R =

BT (T AR chaeFhEE)
TG

Hits = (LA S EaEh
Harhy)

fHAw
i g iFm TR L4 i

fHar P8 (AP ERE
B R AYHRER)

fH Java YLt FRE
i EeiEty
RESSR A
B Rl

RE T

FE=sigmm s kg
A (TR ohiiemTIIE)

FERG BRI R

AP T
FEN BT
fiE

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

88 | drag texture HERE

89 dragging 2

90 | drop-down arrows THRIETTEH

91 | drop-down menus THEEEHESS

92 | Edit (menu) R (ohiEsR)

93 | editable combo boxes] Bl RH 5 B

94 | editable text fields] S

95 | editor panes PR = e

96 ellipsis marks PR

97 | Error alert boxes BT TR

98 | error messages HRIRE.

99 | exclusive choice (in toggle buttons) %A (fEUTEUE)

100 Exit (item in File menu) BEW (T ThRERPINEE)

101 | extended selection REf =35

102 | feedback |l

103 fields i

104 File (menu) 3 (ThHER)

105 | filling slider KRR 48

106 | Find (item in Edit menu) I (T hRefehyEE)

107 | find dialog boxes EPRERET

108 Find Next (item in Edit menu) ST (R PRERTIEE)

109 Flashes (label in notification dialog | (1S5S T PR EE)
box)

110 flush 3D effects Tl 3D Wi

111 Font (menu or item in Format E? (SRR " DRI
menu)

112 fonts F8

113 Format (menu) = ChiiEs)

Sun - Java Look and Feel Design Guidelines, 2" Edition

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

formatted text panes

function keys

GIF (Graphics Interchange Format)

grids
hand pointers
headline capitalization

Help (button or menu)

Hidden Text (checkbox
preferences dialog box)

highlighting
horizontal scrollbar

hot spot

in

HSB (tab for hue, saturation, and

brightness in color choosers)
HTML editor Kits

I-beam pointer

icons

inactive components
inactive menu items

inactive windows

independent choice

buttons)

(in

Index (item in Help menu)

indicators

Info alert box
information symbol
initial keyboard focus

insertion point

toggle

e DS et
LhfiEsE

GIF (|l 22 ksl
HEDR

F AR

B KRS

WHBRR AT (IR aishaEFs)
R T (A BT 8
JiiR)

FASEEE

R L

3

HSB (1538 {5 o e -
REOFIIFE 2 SE PR R)

HTML #3201
CFEdaEt

hiet| 77

IELAFTTHF

IELIETHhERTE

IETIERE

WL (TR D)

Fl (" wiBmRY L ThRERPINEE)

fomde
=ik TN
T
G SER TR,

EAR

made by dotneter@teamfly

5PN

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

installation screens Eog kg

internal utility windows PIEl L AR =
internal windows AL T
internationalization Rl L

Italic (item in Format menu) 28 (T ThEERPNEE)
italic text R

Java 2 SDK Java 2 SDK

Java 2D API Java 2D API

Java Accessibility API Java Wi T H API
Java Accessibility Utilities Java Bl T 50 AR
Java Development Kit Java 58 T H

Java Foundation Classes Java ZEREATA]
JavaHelp JavaHelp

Java look and feel Java LR

JFC application JFC FERFEN

JPEG (Joint Photographic Experts JPEG (i =iz WSiEril)
Group)

Justify (item in Format menu) B TR iRERTIYEE)
keyboard activation A e]

keyboard focus FERHIEDS

keyboard navigation SRR

keyboard operations FRFEARIE

keyboard shortcuts SRR

labels T

layout managers i BB

leaf (in tree component) SEEERHETIF)

Left Margin (label in preferences 7=i#% ([EHLFE5E BP9 SE)
dialog box)

legal notices R E L

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

166 | links G

167 lists i B

168 | localization N

169 Log In (button in login splash A (TEAPE SRR
screen)

170 | login dialog boxes T A BRE T

171 Login Name text field AT LML)

172 login splash screens T ALYE TR

173 | look and feel designs SRR RSt

174 | major tick marks (in sliders) FEAIRERRC (T)

175 Margins (checkbox in preferences |i#¥% (flE F9ar 555 T AP T 3)
dialog box)

176 Match Case (checkbox in find dialog A J TAHFETF ("aik, o
box) ol AT PR T)

177 menu bars Thileze5

178 menu items HEFREE

179 menu separators ThfE e BT

180 menu titles LIHELR RS

181 menus Lhifes

182 message (in alert dialog box) AE {EFTRHAE)

183 Microsoft Windows style look and Microsoft Windows £ U7 S A
feel

184 middle mouse button B e

185 MIME (Multipurpose Internet Mail MIME (% i REiE e RS g)
Extensions)

186 minimized internal windows fi M PSR

187 minimized windows f MR

188 minor tick marks (in sliders) R IR (TERN S &)

189 mnemonics) e

190 modal dialog boxes R SIS T

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

191 model EaRY

192 modeless dialog boxes SRR BRE T
193 modifier keys fefififr ot

194 Modify (command button) oy (FhmiEs
195 mouse button 1 PR 1

196 mouse button 2 Fr i 2

197 mouse buttons i e

198 mouse devices R

199 mouse operations T ERE

200 mouse-over feedback i AR i
201 move pointers TR TR

202 multiple document interface (MDI) ZHI={F7E (MDI)

203 multiple selection 5%

204 native code R

205 ' navigation =80

206 nested split panes R TEY 53 HIETHS

FARTIESE (' f3E , ThEERPIEHE)

207 | New (item in File menu)

208 nodes (in tree components) A ENAERHE T)

209 | noneditable combo boxes FE T AR 7 T

210 noneditable text fields EQEF =l iphrasa i

211 nonfilling slider FERTHN RS 22

212 Normal (item in Format menu) —f (| fEE L DhgERtPINEE)
213 | notification dialog box WEAERE TR

214 Object (menu) % (ThiESD)

215 OK (button) T (&5

216 padding (command buttons) HLfd (friicsh)

(T RERORER PIEE)
217 | Page Setup (item in File menu) FRIEIRE (RLhESR L o

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

218 panels (i1} i7d

219 panes Efts

220 Paragraph (item in Format menu) E&# (" #4200 DHfEZERINTETIE)
221 password fields A i

222 | Paste (item in Edit menu) REE ("R hfigserhiyEEE)
223 | pixels {85

224 plain text —

225 | plain text area —R TR

226 | plain windows — T

227 platforms BE

228 | plug-in editor kit EAGEEENTH

229 pluggable look and feel Hl{ERE R

230 | pointers At

231 | posted menus SASTRR I EE

232 | posting menus ArELhhEd

BEAEEF ("t e P E)

233 | Preferences (item in File menu)

234 | preferences dialog boxes fE = ERE T

235 | pressing a key i TRt

236 preview panel (in a color chooser) M (fEfFzSER)
237 primary colors B

238 | primary windows e

239 Print (item in File menu) TUER (" HEEE ShiEFPEE)
240 print dialog boxes VIEN S 5E Tt

241 printer SIE

242 product name 2 T

243 progress bars FERY

244 | progress dialog boxes TR HRE T

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

progress feedback
progress indication
Question alert boxes
radio button group

radio button menu items
radio buttons

Redo (item in Edit menu)

Replace (button in Warning alert
box)

Reset (button)
resize pointers
resource bundles
reverse video theme

RGB (tab for red, green, and blue
values in a color chooser)

Right Margin (label in preferences
dialog box)

row (in tables)

Ruler Units (label
dialog box)

in preferences

Save (button or item in File menu)

Save As (item in File menu)

scale

scroll

scroll arrows
scroll box
scroll channels

scroll panes

I |l

HEERR

P T TR

B R R

RS EThiERTEE
Eh
Hfi (T HE
AR (B

IhREFRPEE)

HAY (144D
AAREEE
i

R E#E

RGB (fmE Rl
R R (il SR

B (AN S ERE T P FEER)

¥ {EF= D)
FOB AT (A A BT SRS TR PR ER)

B JEsher T HE) EsPEE)

ST (

HE=E |, Thie=PIn=EE)

EE
)
e
FET TR
HeminEE

Felh gt

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

269 | scrollbars Femhh

r HEGHE | gy T
270 Search (item in Help menu) B (WD PRERTIVRE)
271 secondary colors R
272 secondary windows WHEGHET
273 Section (item in Format menu) BB (" #E L ez E)
274 | select HEH

275

Select (button in notification dialog
box)

FEEY GRS e)

SRR () hiERhEE)

276 | Select All (item in Edit menu)

277 | selected items HENEE

278 selection L

279 sentence capitalization B

280 | separators oy R

281 | Shift-clicking f#(E Shift SEiffE—T

282 | Shift-Tab f{F Shift &l Tab &

83 Show (label in preferences dialog == (A SIFERE B R
box)

284 | single-clicking ifE—TF

285 | Size (item in Format menu) A (TR THREFRPIYEIE)

286 sliders AR AR

287 small type style il S

288 sort order HEFFERF

289 Sound File (label in notification =¥ EFt=E (RIS A IYEREE)
dialog box)

290 | spacing Gl

291 splash screens IR

292 | split panes G HIET

293 | splitter bars o5

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Start at Top (radio button in find HIfFaPis (=i Eiag H
294 | i B E T)
dialog box)

295 Stationery (label in preferences & (A FEF 255 T TP EEEE)
dialog box)

296 Stop (button) =2k (i)
297 Style (item in Format menu) fE=l (el DheEZPINTEE)

PSS (BT RE AT
styled text editor (styled text R aREE R (AT
298 o 5)

plug-in kit)

299 | submenus FIUHERS
300 Submit (command button) R (PR

301 Swatches (tab in color choosers) ol (RS as e HL R)

302 Swing class Swing #1751
303 symbols T

304 system status animation F AU R NET
305 | system type style FAUEA R
306 tab traversal FEREE
307 tabbed panes B S
308 tables 7%

309 text areas pras

310 text fields R
311 text pointers L FAEER
312 | theme mechanism R
313 themes Tl

314 title bars (in windows) EUS (fEmRE)
315 toggle buttons I
316 | tool tips CEET
317 toolbar buttons C A

318 toolbars =X

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

319 trademark information ratEEn

320 tree components b b

321 triple-clicking =T

322 turners (in tree components) TSR EERE)

I (RhBDEA | ThREFRINEE)

323 Tutorial (item in Help menu)

324 unavailable items L I E

325 Underline (item in Format menu) | E## (" #40 ohfigzerhiymE)

326 Undo (item in Edit menu) KU HRlE L ohfiesRrhIy I E)

327 | usability testing TR

328 user interface elements RS TR

329 user type style 0 A HE A

330 utility windows A RE

331 version numbers AR

332 | vertical scrollbar FELCHEEEL

333 View (menu) Bl (ThiEz

334 | visual design afaRagEt

335 | visual identifier H iR S

336 wait pointers FRHAER

337 Warning alert boxes TR

338 Whole Word (checkbox in find dialog =5 #F5fHTF(" ik, ¥
box) af T AR)

339 window borders Gakeipt 26

340 window controls P R

341 window frame TRETHESE

342 windows T

343 word order LFNIF

344 word wrap R EERTT

345 | zoom buttons e i

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

346 zooming panes R

Asian Languages: Korean

Table 38 Word List for Asian Languages

English Korean
1 About {Application} (item in EEZE0H 8 (=52 =2 &
Help menu) =)
2 About boxes e AT
3 Abstract Window Toolkit FHAER &3
4 accessibility 2|
5 active components 24 44 g4
6 active windows g4
7 alert boxes A0 AT}

Align Center (item in Format JIE0 E&(M4 Hw2l &)

8
menu)

o Align Left (item in Format 2% EE (M2 H=E &5)
menu)

10 Align Right (item in Format &% &8(M 4 H== &)
menu)

11 alignment 2=

12 | anchor point

13 | animation CHLITN Ol &
14 | applet HE=

15 | application sBEZ=Z)Y
16 | Apply (button) HE (HE)
17 | arrow keys stafE 3

18 | assistive technologies A3 JI=

19 | background WICkEE

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

20 | backing windows LS

o1 Beeps (label in notification dialog £ -1S(== U2 &A= clOlE)
box)

22 bit depth HIE 0l

23 | Bold (item in Format menu) M (M4 HFE &)

24 bold text FeH SAE

25 | borders =W

26 | Browse (button) Z0LEJ| (HE)

27 browser Sct2 M

28 button border HE 214

29 | button graphics HE ~ZJcHi

30 | button text HE SHAE

31 | Cancel (button) Ha (HE)

32 | capitalization HE X HAl

33 | caution symbol 20l

34 | CDE style look and feel CDE AEt2 22 2 &

35 | cells (in tables) E(H)

36 | channels (in scrollbars) HE(228 Si)

37 checkbox menu items EelE e &S

38 | checkboxes 2helet

39 | choosers HMEJ

40 clicking =27

41 client properties Schoe S8 3%

42 Close (button or item in File E21(It& H&2 HE = &5)
menu)

43 close control RO 221

44 color choosers s ad MER)|

45 column (in tables) E2(2)

ne
2
n
iy
&

46 column header (in tables)

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

47 | combo boxes S5 &bkl
48 | command button row HEl HE &
49 | command buttons HE HE
50 | components 78 Sa
51 | containers & oA

52 content panel (ln a color HE HE(8a 85 :"'}
chooser)
53 | content panes IHE BAl @19

54 | Contents (item in Help menu) SXHE==E w2 &)
55 | contextual menus a2 2= U

Continue (button in Error alert HEH(2F 210 472 HE)

o6 box)

57 | control type style HH 78 A

58 | Control-clicking HH-5=271

59 | controls KA 2

60 | Control-Tab HoH-=

61 Copy (item in Edit menu) BEAMEE Hx2 &=)

62 crosshair pointer J=A8IH E2IE

63 cross-platform color aA2A EHE Mal

64 | cross-platform delivery A EWUBHE

65 | currency formats =2t "4

66 | Cut (item in Edit menu) SctHIN(EE He 25)

67 | data structure HOoIe 2=

68 Date Format (label in 2N #a(2E &F 3 452 0|
preferences dialog box) =)

69 | default JI=et

70 | default command buttons J= HE HE

1 Default Font (label in preferences 7= S&(&3 & & Mk & A2 20|

dialog box) £)

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

default Java look and feel theme
default pointer
delay indication
destination feedback
dialog boxes
dimmed text
disabilities

disjoint selection
distribution
dithering

dockable toolbars

Document (item in Format

menu)

Don't Save (button in Warning
alert boxes)

double-clicking
drag and drop
drag area

drag texture
dragging
drop-down arrows
drop-down menus
Edit (menu)
editable combo boxes
editable text fields
editor panes
ellipsis marks
Error alert boxes

error messages

JIE Java 228 2! A2 HIOF
JiIg 22id

A& A

[Het Ol=

[Hat &K

s|0IGtH A A&
ME S}

(2= GHE A=

HH 5Z
WIE =
3 Jiss B4 25

=A (A4 Hiwe g85)

HE el 0 & X2 HE)

A
or
JT
}
M
=
S

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

exclusive choice (in toggle SE= & (E= BE)

buttons)

Exit (item in File menu)
extended selection
feedback

fields

File (menu)

filling slider

Find (item in Edit menu)
find dialog boxes

Find Next (item in Edit menu)

Flashes (label in notification

dialog box)

flush 3D effects

Font (menu or item in Format

menu)

fonts

Format (menu)
formatted text panes

function keys

GIF (Graphics Interchange

Format)

grids

hand pointers

headline capitalization
Help (button or menu)

Hidden Text (checkbox
preferences dialog box)

highlighting

horizontal scrollbar

in

M= =201

ZINEE H=2 &5)

21 Hat & X

S #I1(BE Hwa &5)
EAHAEE Uizt 252 d0IS)

3D E4AM =0

sHE(lw £= As HF2 &5)

23
RETGIED!
MAIOI AIME A FAl 29

=3l

GIF (Graphics Interchange Format)
=N

=22 FoIH

Bl K2 Xzt

CEYHE £= H)

ENF HAS (Y S U8 4%
D)

StE H A

iz A& 9l

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

hot spot

HSB (tab for hue, saturation, and
brightness in color choosers)

HTML editor Kits
I-beam pointer
icons

inactive components
inactive menu items
inactive windows

independent choice (in toggle
buttons)

Index (item in Help menu)
indicators

Info alert box

information symbol

initial keyboard focus
insertion point

installation screens

internal utility windows
internal windows
internationalization

Italic (item in Format menu)
italic text

Java 2 SDK

Java 2D API

Java Accessibility API

Java Accessibility Utilities

Java Development Kit

b A BE
B

e

HSB(& HE4Del M TS, 2010 O

2t B)

HTML 3 &)1 2]

=

| 2! T OIE
o012
IS 24 Q4
HISH Ol 32
Hlg e &

S HE(ES HE)

HPNEZE H=2 &5)

HAJ, BEA JIE

Y A I

38 JIS

FIFRE THA

s

X gl

L5 RECIE &

LHs &
= HIst

JIEEEB(MY Hwsl E5)

pJE=t-TE- RPN

Java 2 SDK

Java 2D API

Java @i~ AP

Java Ml A R ECIE

Java JHE F|E

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

Java Foundation Classes
JavaHelp
Java look and feel

JFC application

JPEG (Joint Photographic Experts

Group)

Justify (item in Format menu)
keyboard activation

keyboard focus

keyboard navigation

keyboard operations

keyboard shortcuts

labels

layout managers

leaf (in tree component)

Left Margin (label in preferences

dialog box)
legal notices
links

lists

localization

Log In (button in login splash

screen)

login dialog boxes

Login Name text field

login splash screens

look and feel designs

major tick marks (in sliders)

Margins (checkbox

n

Java JI 2t Sl A

JavaHelp

Java P2 2 A2
JFC 28127

JPEG (Joint Photographic Experts
Group)

YEMHA Hw2 &=

NEE &dg

INEBE EHA

FIEE Ol=

125 &
IEE &=
dliOI=

dl010t=2 22l X
2(EL 74 240HAM)

2 E u(d 43 et &2 dolg)

BE ST

F== HA(ECOIH)

GH(EE &3 Uat A2 #ele)

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

preferences dialog box)

Match Case (checkbox in find H/=E A #E(FJ] Lisr & 442 &2

dialog box)
menu bars
menu items
menu separators
menu titles

menus

message (in alert dialog box)

Microsoft Windows style look and

feel

middle mouse button

MIME (Multipurpose Internet Mail

Extensions)

minimized internal windows

minimized windows

minor tick marks (in sliders)

mnemonics

modal dialog boxes
model

modeless dialog boxes

modifier keys

Modify (command button)

mouse button 1
mouse button 2
mouse buttons
mouse devices
mouse operations

mouse-over feedback

=]

O HAIS

0
10

15
=

Gl

ir

Ol

=
4
AL
=

iy MS

Ol 5=

HIAIXI(E L2 CHEE & At)

Microsoft Windows - EF2! T 2F B &

2t
=

E2t 012

— Wi

HE

MIME (Multipurpose Internet Mail

Extensions)

HastsE UWF &

243t &

g3 HA(=2H0IH)

LI5S

D& [Hzh &AL

1l

H)
"ul'l

HIZE (K3 & X

=& 3|

+E(TY HE)
DISA HE 1

DIRA HE 2

DIRA HE
DA Z3I

DI~ S

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

move pointers

multiple document interface
(MDI)

multiple selection

native code

navigation

nested split panes

New (item in File menu)

nodes (in tree components)
noneditable combo boxes
noneditable text fields
nonfilling slider

Normal (item in Format menu)
notification dialog box

Object (menu)

OK (button)

padding (command buttons)
Page Setup (item in File menu)
panels

panes

Paragraph (item in Format
menu)

password fields

Paste (item in Edit menu)
pixels

plain text

plain text area

plain windows

platforms

Ol=

el

2ie

[+ 2 M S HOIA(MDI)

il

e
L

Iz

1
=

[
al
1

oIS

EH 28 FA 29

MZ BS0I(TH Ul 8=)
CE(Ee 74 240HM)
ME BIls 25 AT

WA EJHs MAE WC
WL s S2401H

EE(MA s 25)

e LI HE)

HOIX &3 (LY Mimel &)
1

HAl 219

KL
N

CERE TR

02
{0
1

-

HI
2

EI(HE N2l &85)

JH
=

¥

e

= | [F
J JHE
5

m

e
L3
T
s
m

02

2

e
x
0z

e
i
Ok

Sun - Java Look and Feel Design Guidelines, 2" Edition

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

plug-in editor kit
pluggable look and feel
pointers

posted menus

posting menus

Preferences (item in File menu)

preferences dialog boxes
pressing a key

preview panel (in a
chooser)

primary colors

primary windows

Print (item in File menu)
print dialog boxes
printer

product name

progress bars

progress dialog boxes
progress feedback
progress indication
Question alert boxes
radio button group

radio button menu items
radio buttons

Redo (item in Edit menu)

Replace (button in Warning alert

box)
Reset (button)

resize pointers

Sd 2 Mg JE

3

I KH 2}

b =]

Sl Jis P

#

egel]s
HAME Bl

H AL Ol

B S (ML xS oS)

&H L& [(Hat &K

n

5201

Uicl 221 2A SS(E& d=500)

202l [HEE &F Al
Tl

HZE OIS
ME HAME
A2 [Hat &AL

Riey [c oy

=
i

¥ HAl

kgl
|
(i

10] A &7

[l

il HE &

ctll2 HE U= &5
cH? HE

CiAl 8(EE Dl &%)

HHRII(HE)

HE 3 (HE)

T 301 =3

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

resource bundles

reverse video theme

RGB (tab for red, green, and blue
values in a color chooser)

Right Margin (label in
preferences dialog box)
row (in tables)

Ruler Units (label in preferences
dialog box)

Save (button or item in File

menu)

Save As (item in File menu)
scale

scroll

scroll arrows

scroll box

scroll channels

scroll panes

scrollbars

Search (item in Help menu)
secondary colors

secondary windows

Section (item in Format menu)
select

Select (button in notification

dialog box)
Select All (item in Edit menu)
selected items

selection

in

r?

A

i

s
[l

R o1 A

&
m

I O

r

RGB(M 4 87| =2hM, =4 gl T}
ghed g0l CHSt &)

2
ol

= ol &3

)
2(H)

=4 BHEE 28 UE
01 =)

HMEMHE = OHE Hw 85)

ML

=P

AAE AT
’A'_'JE 1 =
A3E

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

sentence capitalization
separators
Shift-clicking

Shift-Tab

Show (label in preferences dialog
box)

single-clicking

Size (item in Format menu)
sliders

small type style

sort order

Sound File (label in notification =

dialog box)
spacing

splash screens
split panes
splitter bars

Start at Top (radio button in find
dialog box)

Stationery (label in preferences
dialog box)

Stop (button)
Style (item in Format menu)

styled text editor (styled text
plug-in kit)

submenus

Submit (command button)
Swatches (tab in color choosers)
Swing class

symbols

=& HE Xzt
Al
Shift-+ = JI

gt
HI

Shift-Tab

HA(E &2 Uzt & 408 dO[E)

Wl

ro

W 2
SN(MA Hlimel 8=

=etold

A
Mo
10

>

=

AEr

il
[
e

M

Fil
W

]
0z

IYER U3 &% o)

(A
Jd

AlE S

E

s

=

a9y

Ml
[

H
H

o

=]
o
=

4
AL
=

HEFH 2J(2J] U= 2842 ctl]
2 HE)

BIUAEE €8 U=z d0g diols)

A(HE)
AEHRI(A Al DI2l 8S)
AEIY HAE BEJ|(ABY HAE

AE(dE8J(2)

g 2YA

=

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

system status animation
system type style

tab traversal

tabbed panes

tables

text areas

text fields

text pointers

theme mechanism
themes

title bars (in windows)
toggle buttons

tool tips

toolbar buttons
toolbars

trademark information
tree components

triple-clicking

turners (in tree components)

Tutorial (item in Help menu)

unavailable items

Underline
menu)

(item in

Undo (item in Edit menu)
usability testing

user interface elements
user type style

utility windows

Format

AAE AEH OHLIOIOl &

ANAE 28 AEt

& 23l
EUEl T Al 2104
SNE
UAE 108

HAE DIC
e AE TIOIF
B0 7128
El O

HE ZAS(EUH 2US)

=2 HE
c 7 M
TR RS HE
c3 22

sdHA 3%
Ecl 74 @4
H 852

HAEZ 4 240M4)

ad HA(EE N 25)

_j||.5:.:;\1 E".-&h

AMEX STHHOI A 24
ME] 28 AR

=EIAC &

made by dotneter@teamfly

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

331 version numbers HE HD

332 | vertical scrollbar Mz A5 ot
333 View (menu) SO0

334 | visual design Aak DA

335 | visual identifier Aok AT

336 wait pointers K21 TelH

337 | Warning alert boxes 1 28 o

338 Whole Word (checkbox in find &0 EHE(2J] et & A2 #Elet)

dialog box)
339 window borders =g Y|
340 window controls & HIH I
341 window frame & Ty
342 windows &
343 word order CHH = A
344 word wrap SHE = b
345 | zoom buttons /=4 HE
346 zooming panes EH/EA T A HA

D: Switching Look and Feel

Designs

As a developer, you might want to provide users with the ability to
switch the appearance of components within applications. This
appendix contains some information about the pitfalls of letting users
change the look and feel, along with guidelines on how to present the
choice to users when necessary. The ability to switch look and feel
designs is intended for use as a design- time feature rather than a
runtime feature.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Pitfalls of User-Controlled Switching

The Swing components and the pluggable look and feel mechanism
enable users to select the look and feel of an application. This choice
is misleading, however, since a significant portion of the feel of an
application is its general design, layout, and terminology.

It is usually unwise to give end users the ability to swap look and feel
designs while working in your application. Switching look and feel
designs in this way primarily swaps the appearance of the
components. The layout and vocabulary used are programmed in and
do not change. For instance, swapping look and feel designs does not
change the titles of the menus.

The JFC has no special provisions that enable users to select a look
and feel on the fly. The look and feel switching seen in many demos
shows some of the power of the JFC, but on-the-fly look and feel
switching was not a core design goal. As a result, there is no
guarantee that user interfaces designed properly in one look and feel
can migrate cleanly to another look and feel.

Successful user-controlled switching requires that the infrastructure
behind the components have an understanding of each platform's
design, layout, and nomenclature. In practice, there is more to a
Microsoft Windows, Mac OS, or CDE application than the appearance
and behavior of individual components.

2 Do not enable user-controlled look and feel switching in your
application without careful consideration.

The following figure illustrates a file chooser built in the CDE style,
using Swing components.

Figure 201 CDE File Chooser

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

The next figure shows what a component-level switch from the CDE to
the Macintosh look and feel might look like.

Figure 202 Macintosh File Chooser (Simple Look and Feel Switch)

Enter path or folder name:
sk DisrosharmidemayiciSwingSet |

Filter
i) @

Falders

images
SCCE

Entar fila narme:

[Updste | [camcat] [en]

The component-level look and feel switch has not created a Macintosh
file chooser. A higher level of understanding of the design principles
for the Macintosh platform would be needed for this transformation to

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

occur correctly. The following figure shows what a correct
transformation to the Macintosh file chooser might look like.

Figure 203 Macintosh File Chooser (Following Macintosh Style)

Open: BEEIt

[swingset :] ool

Dube Modified | &

*ﬁ e P g | fav s Today =

[+ Eﬁ niages Today
B wiernatvissowranel s Toduy
. gAF a0 favs Today
'ﬂ ProgressPane | jivas Today
':E RadioButionP anel. java Today

b G sccs Taduy

[cancer | [open |

While the JFC does not provide a general solution to complete
user-controlled look and feel switching, a specific application could
ensure the correct layout and nomenclature for each look and feel
that it supports. However, this would likely entail a significant amount
of work.

If you are developing an application with more than a single target

platform, consider using a cross-platform look and feel design, such
as the Java look and feel.

Guidelines for Switching Look and Feel

Designs

If you absolutely must switch look and feel designs, follow these
guidelines.

How to Present the Choice

< Place the choice of look and feel designs inside your application’'s
preferences dialog box.

= List your application’s default look and feel first. If the default is
the Java look and feel, it should be followed by the look and feel of the
platform your application is most likely to run on. Make these choices

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

radio button menu items because only one main look and feel can be
active at any time.

Nomenclature

> Always use "Java look and feel," not "Java" or "Metal." (Metal is
the package name for the Java look and feel.)

Glossary

Abstract Window See AWT.
Toolkit
accessibility The degree to which software can be used

comfortably by a wide variety of people,
including those who require assistive
technologies or those who use the keyboard
instead of a pointing device. An accessible
JFC application employs the Java
Accessibility APl and provides keyboard
operations for all actions that can be carried
out by use of the mouse. See also assistive
technology, Java Accessibility API, Java
Accessibility Utilities, keyboard operations.

activation Starting the operation of a component. See
also available, choose, navigation, select.

alert box A secondary window used by an application
to convey a message or warning or to gather
a small amount of information from the
user. Four standard alert boxes (Info,
Warning, Error, and Question) are supplied
for JFC applications. Alert boxes are created
using the JOptionPane component. See also

dialog box.

anti-aliasing A change in the appearance of the border of
an application graphic such as an icon, so
that it looks smoother at screen resolution
and in relationship to a specific color.

applet A program, written in the Java language,

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

application

assistive technology

available

AWT

backing window

that a user can interact with in a web
browser. See also application, browser.

A program that combines all the functions
necessary for a user to accomplish a
particular set of tasks (for instance, word
processing or inventory tracking). Unless
stated otherwise, this book uses
"application™ to refer to both applets and
standalone applications. See also applet.

Hardware or software that helps people with
disabilities use a computer (or provides
alternative means of use to all users).
Examples include pointing devices other
than the mouse, audio or text-only
browsers, and screen readers that translate
the contents of the screen into Braille, voice
output, or audible cues. See also

accessibility.

Able to be interacted with. When a
component is unavailable, it is dimmed and
is unable to receive keyboard focus.

(Abstract Window Toolkit) The class library
that provides the standard API for building
GUIs for Java programs. The Abstract
Window Toolkit (AWT) includes imaging
tools, data transfer classes, GUI
components, containers for GUI
components, an event system for handling
user and system events among parts of the
AWT, and layout managers for managing
the size and position of GUI components in
platform-independent designs. (The GUI
components in the AWT are implemented as
native-platform versions of the
components, and they have largely been
supplanted by the Swing components.) See
also JEC, Swing classes.

A container, a sort of "virtual desktop,™ for
an MDI application. Backing windows are
created using the JDesktopPane
component. See also internal window, MDI.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

badge

bean

bit depth

bookmark

browser

button

checkbox

checkbox menu item

A graphic added to existing toolbar buttons
that indicates a change in the action of the
button--for instance, the display of a menu,
the creation of a new object, the addition of
an object to a collection, or the review or
editing of settings and properties.

A reusable software component written to
the JavaBeans specification. See also
JavaBeans.

The amount of information (in bits) used to
represent a pixel. A bit depth of 8 supports
up to 256 colors; a bit depth of 24 supports
up to 16,777,216 colors.

A URL (uniform resource locator) that has
been added to a list of saved links. When
users view a particular web site and want to
return to it subsequently, they can create a
bookmark for it.

An application that enables users to view,
navigate through, and interact with HTML
documents and applets. Also called a "web
browser." See also applet.

A collective term for the various controls
whose on-screen appearance typically
simulates a push button or a radio button.
The user clicks buttons to specify commands
or set options. See also checkbox, command
button, radio button, toggle button, toolbar
button.

A control, consisting of a graphic and
associated text, that a user clicks to turn an
option on or off. A check mark in the
checkbox graphic indicates that the option is
turned on. Checkboxes are created using
the JCheckBox component. See also radio
button.

A menu item that appears with a checkbox
next to it to represent an on or off setting. A
check mark in the checkbox graphic
indicates that the menu item is turned on.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

choose

click

client

color chooser

combo box

command button

Checkbox menu items are created using the
JCheckBoxMenultem component. See also
checkbox, menu item.

(1) In human interface design, refers
narrowly to turning on a value in a
component that offers a set of possible
values, such as a combo box or a list box.
(2) In technical documentation, refers
generally to the action of clicking a menu
title or menu item. See also activation,
select.

To press and release a mouse button.
Clicking selects or activates the object
beneath the button.

In the client-server model of
communications, a process that requests
the resources of a remote server, such as
computation and storage space. See also
server.

A component that enables a user to select a
color. Color choosers are created using the
JColorChooser component. See also HSB,
RGB, utility window.

A component with a drop-down arrow that
the user clicks to display a list of options.
Noneditable combo boxes have a list from
which the user can choose one item.
Editable combo boxes offer a text field as
well as a list of options. The user can make a
choice by typing a value in the text field or
by choosing an item from the list. Combo
boxes are created using the JComboBox
component.

A button with a rectangular border that
contains text, a graphic, or both. A user
clicks a command button to specify a
command to initiate an action. Command
buttons are created using the JButton
component. See also button, toggle button,
toolbar button.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

component

container

contextual menu

control

CORBA

cross-platform

cursor

default command
button

A subclass of java.awt.component or, by
extension, the interface element
implemented by that subclass. See also
control, object, Swing classes.

A component (such as an applet, window,
pane, or internal window) that holds other
components.

A menu that is displayed when a user
presses mouse button 2 while the pointer is
over an object or area associated with that
menu. A contextual menu offers only menu
items that are applicable to the object or
region at the location of the pointer.
Contextual menus are created using the
JPopupMenu component. See also menu.

An interface element that a user can
manipulate to perform an action, choose an
option, or set a value. Examples include
buttons, sliders, list boxes, and combo
boxes. See also component, object.

(Common Object Request Broker
Architecture) An architecture for the
creation, exchange, and management of
distributed program objects in a network.
CORBA enables programs on different
platforms to communicate in a distributed
environment.

Pertaining to heterogeneous computing
environments. For example, a
cross-platform application is one that has a
single code base for multiple operating
systems.

See pointer.

The command button that the application
activates if a user presses Enter or Return.
Default buttons in Java look and feel
applications have a heavier border than
other command buttons. See also command
button.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

deployment

designer

dialog box

dithering

drag

drag and drop

drop-down arrow

drop-down menu

The process of installing software into an
operational environment.

A professional who specifies the way that
users will interact with an application,
chooses the interface components, and lays
them out in a set of views. The designer
might or might not be the same person as
the developer who writes the application
code.

A secondary window displayed by an
application to gather information from
users. Examples of dialog boxes include
windows that set properties of objects, set
parameters for commands, and set
preferences for use of the application.
Dialog boxes can also present information,
such as displaying a progress bar. A dialog
box can contain panes, lists, buttons, and
other components. Dialog boxes are created
using the JDialog component. See also alert
box, color chooser, internal utility window,
secondary window, utility window.

Simulating unavailable colors in a displayed
graphic by using a pattern of two or more
available colors.

To move the mouse while holding down a
mouse button. See also drag and drop.

To drag an interface element to a new
location in order to move, copy, or link it.
See also drag.

The triangular indicator that a user clicks to
view more options than are visible on
screen--such as the list attached to a combo
box or the menu provided by some toolbar
buttons. See also badge.

A menu that is displayed when a user
activates a menu title in the menu bar or
toolbar. Drop-down menus are created
using the JMenu component. See also menu,
menu bar.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

EAR

editable combo box

editor pane

EJB

export

flush 3D style

focus

GIF

(Enterprise Archive) A file format used for
deploying a J2EE application. An.ear
(Enterprise Archive) file consists of one or
more J2EE modules and a deployment
descriptor. Within the .ear file, components
are grouped into separate module
types--JSP pages, servlets, and HTML pages
are grouped into web archive files (.war
files) while enterprise beans are grouped
into EJB modules (EJB .jar files). See also
EJB, J2EE application, JSP, WAR.

See combo box.

A text component that supports a variety of
plug-in editor kits. The JFC includes editor
kits that can display plain, styled, HTML, and
RTF data. Editor panes are created using the
JEditorPane component. See also plug-in
editor Kit.

(Enterprise JavaBeans) A component
architecture for development and
deployment of object-oriented, distributed,
enterprise-level applications. Applications
written using the Enterprise JavaBeans
architecture are scalable, transactional,
multiuser, and secure. See also JavaBeans.

To save an object or data in a format other
than the application's native format. See

also import.

In the Java look and feel, the effect created
by rendering on-screen graphics whose
surfaces appear to be in the same plane as
the surrounding canvas and whose border
has a bevel.

See keyboard focus.

(Graphics Interchange Format) An 8-bit
graphics format developed by CompuServe
and commonly used on the World Wide Web.
GIF files are limited to 256 colors, and they
compress without loss of information. The
GIF format is typically used for graphics in

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

host

HSB

HTTP

HTTPS

icon

1HOP

import

input focus

insertion point

the Java look and feel. See also bit depth,
JPEG.

A computer system that is accessed by one
or more computers and workstations at
remote locations.

For "hue, saturation, brightness." In
computer graphics, a color model in which
hue refers to a color's light frequency,
saturation is the amount or strength of the
hue (its purity), and brightness is the
amount of black in the color (its lightness or
darkness). See also RGB.

(Hypertext Transfer Protocol) An application
protocol that governs the exchange of files
(including text, images, sound, and video)

on the World Wide Web. See also HTTPS.

(Secure Hypertext Transfer Protocol) A web
protocol that governs encryption and
decryption (including user page requests
and pages sent back by web servers).
Developed by Netscape, HTTPS is
nonproprietary. See also HTTP.

An on-screen graphic representing an
interface element that a user can select or
manipulate--for example, an application,
document, or disk.

(Internet Inter-ORB Protocol) A protocol
used for communication between CORBA
common object request brokers. See also
CORBA.

To bring an object or data file (for instance,
a document created in another application,
a text file, or a graphics file) into an
application. See also export.

See keyboard focus.

The place, usually indicated by a blinking
bar, where typed text or a dragged or
pasted selection will appear. See also

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

internal window

internal utility
window

internationalization

J2EE

J2EE application

pointer.

A window used in MDI applications that a
user cannot drag outside of the backing
window. In an MDI application that uses the
Java look and feel, internal windows have a
window border, title bar, and standard
window controls with the Java look and feel.
Internal windows correspond to a non-MDI
application's primary windows. Internal
windows are created using the
JinternalFrame component. See also
backing window, MDI, primary window.

In an MDI application with the Java look and
feel, a modeless window that typically
displays a collection of tools, colors, or
patterns. Internal utility windows float on
top of document (internal) windows. User
choices made in an internal utility window
affect whichever internal window is active.
Internal utility windows are created using
the JinternalFrame component. See also
internal window, utility window.

The process of preparing software so that it
is suitable for the global marketplace, taking
into account wide variations in regions,
languages, and cultures.
Internationalization usually requires the
separation of component text from code to
ease the process of translation. See also
localization, resource bundle.

(Java 2 Platform, Enterprise Edition) The
edition of the Java 2 platform that combines
a number of technologies (such as
enterprise beans, JSP pages, CORBA, and
XML) in one architecture with a
comprehensive application programming
model and compatibility test suite for
building enterprise-class server-side
applications. See also CORBA, EJB, JSP.

An application that consists of J2EE
components (application clients, applets,

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

J2EE application
client

J2EE server

J2SE

JAF

JAR

HTML pages, JSP pages, servlets, and
enterprise beans) that run on the J2EE
platform. J2EE applications are typically
designed for distribution across multiple
computing tiers. For deployment, a J2EE
application is packaged in an .ear
(Enterprise Archive) file. See also EAR,
J2EE.

A first-tier client program that executes in
its own Java virtual machine but might
access J2EE components in the web or
business tier.

The collection of runtime services provided
by the J2EE platform. These include HTTP,
HTTPS, JTA, RMI-11OP, Java IDL, JDBC, JMS,
JNDI, JavaMail, and JAF. Although J2EE
servers usually come packaged with web
and EJB containers, they are not required to.
For example, an OS vendor could supply the
runtime services while a separate vendor
supplied the J2EE containers.

(Java 2 Platform, Standard Edition) The
standard edition of the essential Java 2
platform, which includes tools, runtime
services, and APIs for developers who are
writing, deploying, and running applets and
applications in the Java programming
language. See also Java 2 SDK.

(JavaBeans Activation Framework) A
standard extension to the J2SE and J2EE
platforms. JAF enables developers to use
standard services to determine the type of
an arbitrary piece of data, gain access to
and discover available operations, and
instantiate the appropriate bean to perform
those operations. See also JavaBeans.

(Java Archive) A platform-independent file
format that bundles classes, images, and
other files into one compressed file,
speeding download time.

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Java 2D API

Java 2 Platform,
Enterprise Edition

Java 2 Platform,
Standard Edition

Java 2 SDK

Java Accessibility
API

Java Accessibility
Utilities

JavaBeans

JavaBeans
Activation

A programming interface (part of the JFC in
the Java 2 SDK) that provides an advanced
two-dimensional imaging model for complex
shapes, text, and images. Features include
enhanced font and color support and a
single, comprehensive rendering model.
See also JFC.

See J2EE.

See J2SE.

The software development kit that
developers need to build applications for the
Java 2 Platform, Standard Edition, v. 1.3,
and the Java 2 Platform, Enterprise Edition.
See also JDK, J2EE, J2SE.

A programming interface (part of the JFC)
that enables assistive technologies to
interact and communicate with JFC
components. A Java application that fully
supports the Java Accessibility API is
compatible with such technologies as screen
readers and screen magnifiers. See also
accessibility, assistive technology, Java
Accessibility Utilities, JFC.

A set of classes (provided in the Java 2 SDK)
for use by the vendors who create assistive
technologies or automated tool tests. They
enable assistive technologies to locate and
query user interface objects inside a Java
application. See also accessibility, assistive
technology, Java Accessibility API, JEC.

An architecture that defines a portable,
platform-independent, reusable component
model. Beans are the basic unit in this
model. You can deploy beans in a network
on any major operating system. See also
EJB.

See JAF.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Framework

Java Development
Kit

Java Foundation
Classes

Java IDL

Java look and feel

JavaMail
JavaServer Pages

JDBC

JDK

JFC

JFC application

See JDK.

See JEC.

An interface definition language that
provides CORBA interoperability and
connectivity capabilities for the J2EE
platform. See also CORBA, J2EE.

The default appearance and behavior for JFC
applications, designed for cross-platform
use. The Java look and feel works in the
same way on any platform that supports the
JFC. See also JEC, pluggable look and feel
architecture.

An API for sending and receiving email.
See JSP.

(Java Database Connectivity) An industry
standard for database-independent
connectivity between the Java platform and
a wide range of databases. The JDBC
interface provides a call-level API for
SQL-based database access.

(Java Development Kit) Software that
includes the APIs and tools that developers
need to build applications for those versions
of the Java platform that preceded the Java
2 platform. See also Java 2 SDK.

(Java Foundation Classes) A part of the Java
2 platform that includes the Swing classes,
pluggable look and feel designs, and the
Java Accessibility API. The JFC also includes
the Java 2D API, drag and drop, and other
enhancements. See also AWT, pluggable
look and feel architecture, Swing classes.

An application built with the JFC. See also
JFC.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

JMS

JNDI

JPEG

JSP

JTA

keyboard focus

keyboard operations

(Java Message Service) An API for
enterprise messaging systems.

(Java Naming and Directory Interface) An
interface to multiple naming and directory
services. As part of the Java Enterprise API
set, JNDI enables seamless connectivity to
heterogeneous enterprise naming and
directory services. Developers can build
powerful and portable directory-enabled
Java applications using this
industry-standard interface.

A graphics format developed by the Joint
Photographic Experts Group. The JPEG
format is frequently used for photographs
and other complex images that benefit from
a larger color palette than a GIF image can
provide. JPEG compression is "lossy";
decompressed images are not identical to
uncompressed images. See also GIF.

(JavaServer Pages) An extensible web
technology that uses template data, custom
elements, scripting languages, and
server-side Java objects to return dynamic
content to a client. Typically, the template
data consists of HTML or XML elements, and,
in many cases, the client is a web browser.
JSP technology is an extension of servlet
technology. It facilitates the addition of
dynamic data to an otherwise static web
page. See also servlets.

(Java Transaction APIl) An API that enables
applications and J2EE servers to access
transactions.

The active window or component where the
user's next keystrokes will take effect.
Sometimes called the "input focus.” See
navigation, select.

A collective term for keyboard shortcuts,
mnemonics, and other forms of navigation
and activation that utilize the keyboard

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

keyboard shortcut

label

layout manager

list box

list components

localization

instead of the mouse. See also keyboard
shortcut, mnemonic.

A keystroke combination (usually a modifier
key and a character key, like Control-C) that
activates a menu item from the keyboard
even if the relevant menu is not currently
displayed. See also keyboard operations,
mnemonic.

Static text that appears in the interface. For
example, a label might identify a group of
checkboxes. (The text that accompanies
each checkbox within the group, however, is
specified in the individual checkbox
component and is therefore not considered
a label.) Labels are created using the JLabel
component.

Software that assists the designer in
determining the size and position of
components within a container. Each
container type has a default layout
manager. See also AWT.

A set of choices from which a user can
choose one or more items. Items in a list can
be text, graphics, or both. List boxes can be
used as an alternative to radio buttons and
checkboxes. The choices that users make
last as long as the list is displayed. List
boxes are created using the JList
component. See also combo box, selectable
list.

A collective term for the two components
that provide a one-column arrangement of
data. See also list box, selectable list.

The process of customizing software for a
particular locale. Localization usually
involves translation and often requires
changes to colors, fonts, keyboard usage,
number formats, and date and time
formats. See also internationalization,
resource bundle.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

look and feel

MDI

menu

menu bar

menu item

menu separator

middle mouse button

MIME

The appearance and behavior of a complete
set of GUI components. See also Java look
and feel.

(multiple document interface) An interface
style that confines all of an application’s
internal windows inside a backing window.
See also backing window, internal window,
internal utility window.

A list of choices (menu items) logically
grouped and displayed by an application so
that a user need not memorize all available
commands or options. Menus in the Java
look and feel are "sticky"--that is, they
remain posted on screen after the user
clicks the menu title. Menus are created
using the JMenu component. See also
contextual menu, drop-down menu, menu
bar, menu item, submenu.

The horizontal strip at the top of a window
that contains the titles of the application's
drop-down menus. Menu bars are created
using the JMenuBar component. See also
drop-down menu.

A choice in a menu. Menu items (text or
graphics) are typically commands or other
options that a user can select. Menu items
are created using the JMenultem
component. See also checkbox menu item,
radio button menu item.

See separator.

The central button on a three-button mouse
(typically used in UNIX environments). The
Java look and feel does not utilize the middle
mouse button. See also mouse button 2.

(Multipurpose Internet Mail Extensions) An
Internet standard for sending and receiving
non-ASCII email attachments (including
video, audio, and graphics). Web browsers
also use MIME types to assign applications
that interpret and display files that are not

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

minimized internal
window

mnemonic

modal dialog box

modeless dialog box

modifier key

mouse button 1

mouse button 2

formatted in HTML.

A reduced representation of an internal
window in an MDI application. Minimized
internal windows look like horizontally
oriented tags that appear at the lower-left
corner of the backing window. The user can
drag minimized internal windows to
rearrange them. See also MDI.

An underlined alphanumeric character,
typically in a menu title, menu item, or the
text of a button or component. A mnemonic
shows the user which key to press (in
conjunction with the Alt key) to activate a
command or navigate to a component. See
also keyboard operations, keyboard
shortcut.

In a JFC application, a dialog box that
prevents the user's interaction with other
windows in the current application. Modal
dialog boxes are created using the JDialog
component. See also dialog box, modeless

dialog box.

In a JFC application, a dialog box whose
presence does not prevent the user from
interacting with other windows in the
current application. Modeless dialog boxes
are created using the JDialog component.
See also dialog box, modal dialog box.

A key (for example, the Control or the Shift
key) that does not produce an alphanumeric
character but rather modifies the meaning
of other keys.

The primary button on a mouse (the only
button, for Macintosh users). By default,
mouse button 1 is the leftmost button,
though users might switch the button
settings so that the rightmost button
becomes mouse button 1. See also middle
mouse button, mouse button 2.

On a two-button or three-button mouse, the

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

mouse-over
feedback

movie

multiple document
interface

native code

navigation

noneditable combo
box

object

button that is used to display contextual
menus. By default, mouse button 2 is the
rightmost button on the mouse, though
users might switch the settings so that the
leftmost button becomes mouse button 2.
On mouse devices with only one button,
users get the effect of mouse button 2 by
holding down the Control key when pressing
mouse button 1. See also contextual menu,
middle mouse button, mouse button 1.

A change in the visual appearance of an
interface element that occurs when the user
moves the pointer over it--for example, the
display of a button border when the pointer
moves over a toolbar button.

A full-motion video with sound that is
formatted for inclusion in an application.

See MDI.

Code that refers to the methods of a specific
operating system or is compiled for a
specific processor.

The movement of input focus from one user
interface component to another via the
mouse or the keyboard. Navigation by itself
doesn't result in activation of a component
or selection of an object. See also activation,
keyboard focus, select.

See combo box.

(1) In user interfaces, a logical entity that an
application presents in an interface and that
users manipulate--for instance, a
document, chapter, or paragraph in a word-
processing application, or a mail server,
mailbox, or mail message in a mail program.
(2) In programming, the principal building
block of object-oriented applications. Each
object is a programming unit consisting of
data (instance variables) and functions

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

padding

pane

panel

password field

plain window

pluggable look and
feel architecture

plug-in editor kit

pointer

(instance classes). A component is a
particular type of object. See component.

The empty space between the text and the
border of command buttons. (Padding is
also used to denote the spaces between the
contents of table cells and cell borders.)

A collective term for scroll panes, split
panes, and tabbed panes.

A container for organizing the contents of a
window, dialog box, or applet. Panels are
created using the JPanel component. See
also tabbed pane.

A special text field in which the user types a
password. The field displays a masking
character for each typed character.
Password fields are created using the
JPasswordField component.

An unadorned window with no title bar or
window controls, typically used for splash
screens. Plain windows are created using
the JWindow component. See also primary
window, window controls.

An architecture that separates the
implementation of interface elements from
their presentation, enabling an application
to dynamically choose how its interface
elements interact with users. When a
pluggable look and feel is used for an
application, the designer can select from
several look and feel designs.

An editor that can be used by the editor
pane. The JFC supplies plug-in editor Kits for
plain, styled, RTF, and HTML data.

A small graphic that moves around the
screen as the user manipulates the mouse
(or another pointing device). Depending on
its location and the active application, the
pointer can assume various shapes, such as
an arrowhead, crosshair, or clock. By

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

primary window

progress bar

radio button

radio button menu
item

resource bundle

RGB

RMI

moving the pointer and pressing mouse
buttons, a user can select objects, set the
insertion point, and activate windows.
Sometimes called the "cursor.” See also
insertion point.

A top-level window of an application, where
the principal interaction with the user
occurs. The title bar and borders of primary
windows always retain the look and feel of
the user’s native platform. Primary windows
are created using the JFrame component.
See also dialog box, secondary window.

An interface element that indicates one or
more operations are in progress and shows
the user what proportion of the operations
has been completed. Progress bars are
created using the JProgressBar component.
See also control, slider.

A button that a user clicks to set an option.
Unlike checkboxes, radio buttons are
mutually exclusive--choosing one radio
button turns off all other radio buttons in the
group. Radio buttons are created using the
JRadioButton component. See also
checkbox.

A menu item that appears with a radio
button next to it. Separators indicate which
radio button menu items are in a group.
Choosing one radio button menu item turns
off all others in that group. Radio button
menu items are created using the
JRadioButtonMenultem component.

The place where an application retrieves its
locale-specific data (isolated from source
code). See internationalization, localization.

For "red, green, blue.” In computer
graphics, a color model that represents
colors as amounts of red, green, and blue.
See also HSB.

(Remote Method Invocation) A distributed

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

scroll arrow

scroll box

scroll pane

scrollbar

secondary window

object model for Java programs in which the
methods of remote objects written in the
Java programming language can be called
from other virtual machines, possibly on
different hosts.

In a scrollbar, one of the arrows that a user
can click to move through displayed
information in the corresponding direction
(up or down in a vertical scrollbar, left or
right in a horizontal scrollbar). See also
scrollbar.

A box that a user can drag in the channel of
a scrollbar to cause scrolling in the
corresponding direction. The scroll box's
position in the scrollbar indicates the user's
location in the list, window, or pane. In the
Java look and feel, the scroll box's size
indicates what proportion of the total
information is currently visible on screen. A
large scroll box, for example, indicates that
the user can peruse the contents with just a
few clicks in the scrollbar. See also scrollbar.

A container that provides scrolling with
optional vertical and horizontal scrollbars.
Scroll panes are created using the
JScrollPane component. See also scrollbar.

A component that enables a user to control
what portion of a document or list (or similar
information) is visible on screen. A scrollbar
consists of a vertical or horizontal channel, a
scroll box that moves through the channel of
the scrollbar, and two scroll arrows.
Scrollbars are created using the JScrollBar
component. See also scroll arrow, scroll
box, scroll pane.

A modal or modeless window created from
and dependent upon a primary window.
Secondary windows set options or supply
additional details about actions and objects
in the primary window. Secondary windows
are dismissed when their associated primary

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

selectable list

select

separator

server

servlets

slider

window is dismissed. Secondary windows
are created using either the JDialog
component (for dialog boxes and utility
windows) or the JOptionPane component
(for alert boxes). See also alert box, dialog
box, primary window.

A one-column arrangement of data in which
the items that users select from the list are
designated for a subsequent action.
Command buttons can operate on this
selection. When another selection is made,
any previous selection in the selectable list
is deselected. Selectable lists are created
using the JList component. See also list box.

(1) In human interface design, refers
narrowly to designating one or more
objects, typically for a subsequent action. Ul
components are activated while user objects
are selected.

(2) In technical documentation, refers
generally to the action of clicking list items,
checkboxes, radio buttons, and so forth. See
also activation, choose, navigation.

A line graphic that is used to divide menu
items into logical groupings. Separators are
created using the JSeparator component.

A network device that manages resources
and supplies services to a client. See also
client.

Server-side programs that give Java
technology-enabled servers additional
features. Servlets provide web developers
with a simple, consistent mechanism for
extending the features of a web server and
for gaining access to existing business
systems. See also JSP.

A control that enables the user to set a value
in a range--for example, the RGB values for
a color. Sliders are created using the JSlider
component.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

splash screen

split pane

submenu

Swing classes

tabbed pane

table

text area

text field

A plain window that appears briefly in the
time between the launch of a program and
the appearance of its main application
window.

A container that enables the user to adjust
the relative size of two adjacent panes. Split
panes are created using the JSplitPane
component.

A menu that is displayed when a user
chooses an associated menu item in a
higher-level menu. (Such menu items are
identified by a rightward-facing triangle.)
Submenus are created using the JMenu
component.

A set of GUI components, featuring a
pluggable look and feel, that are included in
the JFC. The Swing classes implement the
Java Accessibility APl and supply code for
interface elements such as windows, dialog
boxes and choosers, panels and panes,
menus, controls, text components, tables,
lists, and tree components. See also AWT,
JFC, pluggable look and feel architecture.

A container that enables the user to switch
between several components (usually
JPanel components) that appear to share
the same space on screen. The user can
view a particular panel by clicking its tab.
Tabbed panes are created using the
JTabbedPane component.

A two-dimensional arrangement of data in
rows and columns. Tables are created using
the JTable component.

A multiline region for displaying (and
sometimes editing) text. Text in such areas
Is restricted to a single font, size, and style.
Text areas are created using the JTextArea
component. See also editor pane.

An area that displays a single line of text. In
a noneditable text field, a user can copy, but

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

theme mechanism

time-based media

title bar

toggle button

tool tip

toolbar

toolbar button

not change, the text. In an editable text
field, a user can type new text or edit the
existing text. Text fields are created using
the JTextField component. See also
password field.

A feature that enables a designer to specify
alternative colors and fonts across an entire
Java look and feel application. See also Java
look and feel.

Information that is time sensitive, including
spoken audio, music, animation, and video.

The strip at the top of a window that
contains its title and window controls. See
also window controls.

A button that alternates between two states.
For example, a user might click one toggle
button in a toolbar to turn italics on and off.
A single toggle button has checkbox
behavior; a programmatically grouped set
of toggle buttons can be given the mutually
exclusive behavior of radio buttons. Toggle
buttons are created using the JToggleButton
component. See also checkbox, radio
button, toolbar button.

A short text string that appears on screen to
describe the interface element beneath the
pointer.

A collection of frequently used commands or
options. Toolbars typically contain buttons,
but other components (such as text fields
and combo boxes) can be placed in toolbars
as well. Toolbars are created using the
JToolBar component. See also toolbar
button.

A button that appears in a toolbar, typically
a command or toggle button. A toolbar
button can also display a menu. Toolbar
buttons are created using the JButton or
JToggleButton component. See also
command button, toggle button.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

top-level container

tree component

turner

unavailable

utility window

WAR

web browser

web component

window

The highest-level container for a Java
application. The top-level containers are
JwWindow, JFrame, and JDialog.

A representation of hierarchical data (for
example, directory and file names) as a
graphical outline. Clicking expands or
collapses elements of the outline. Tree
components are created using the JTree
component.

A graphic used in the tree component. The
user clicks a turner to expand or collapse a
container in the hierarchy.

Not applicable in the current system state.
When a component is unavailable, it
appears dimmed and is skipped by keyboard
navigation.

A modeless window that typically displays a
collection of tools, colors, fonts, or patterns.
Unlike internal utility windows, utility
windows do not float. User choices made in a
utility window affect whichever primary
window is active. A utility window is not
dismissed when a primary window is
dismissed. Utility windows are created using
the JDialog component. See also internal
utility window, secondary window.

(Web Archive) A file format used for files
that contain the web content of a J2EE
application. See J2EE application, web

component.

See browser.

An executable file (for instance, a servlet or
JSP page) that is contained in a WAR (Web
Archive) file. See also WAR.

A user interface element that organizes and
contains the information that users see in an
application. See also dialog box, internal
utility window, plain window, primary
window, secondary window, utility window.

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

window controls Controls that affect the state of a window
(for example, the Maximize button in
Microsoft Windows title bars).

Index

Numerals

8-bit colors, 1—2
256-color displays, 1—2

About Application item (Help menu), 1
About boxes

designing, 1

supplied graphics for, 1

Abstract Window Toolkit (AWT), 1
accelerator keys. See keyboard shortcuts
access keys. See mnemonics
accessibility, 1—2

accessible names and descriptions, 1
color and, 1—2

ease of use and, 1

icon size and, 1

JFC support for, 1

keyboard focus and, 1, 2—3
keyboard shortcuts and, 1—2

labels and, 1, 2

legal requirements, 1

mnemonics and, 1—2, 3—4
multiplexing look and feel, 1
recommended reading, 1

tab traversal and, 1, 2

tool tipsand, 1, 2, 3

usability studies for, 1

activation, 1—2

active components. See available components, spacing of
active windows

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

color design for borders, 1, 2
example, 1

add object indicators, 1—2
addition symbol (badge), 1—2
alert boxes, 1—2

See also dialog boxes
capitalization of text in, 1

Error, 1—2, 3

Info, 1

keyboard operations for, 1
platform-specific examples, 1
Question, 1

Warning, 1, 2—3

alignment. See spacing and alignment
Alt key, 1, 2—3

Americans With Disabilities Act, 1
animation, 1—2

See also mouse-over feedback
progress, 1—2

status, 1—2

supplied graphics for, 1—2
anti-aliasing, 1

applets, 1—2

browser windows and, 1—2
examples, 1, 2—3

JFC downloads with, 1

menus in, 1

mnemonics in, 1
recommended reading, 1
security issues, 1

supplied graphics for, 1
application graphics, 1—2

See also button graphics; colors; icons
About boxes, 1
badges in, 1—2

corporate and product identity and, 1—2
GIF files and, 1—2
internationalization, 1—2, 3
Java look and feel style, 1
JPEG files and, 1—2, 3

splash screens, 1—2

supplied with JFC, 1—2
symbols, 1—2

tree components, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

application windows. See primary windows
applications

compared with applets, 1, 2, 3—4
supplied graphics for, 1—2

Apply button, 1

arrows. See arrow keys; indicators; scroll arrows
assistive technologies, 1, 2

See also accessibility

audience for this book, 1

available components, spacing of, 1—2

AWT (Abstract Window Toolkit), 1

Return to the top of the index.

B

background canvas, color design for, 1, 2
backing windows, 1—2

keyboard operations, 1

secondary windows and, 1
Backspace key, 1

badges

add object indicators, 1—2
combining indicators, 1

menu indicators, 1—2

new object indicators, 1—2
properties indicators, 1—2

beans, supplied graphics for, 1—2
behavioral design, 1—2
bibliography, 1—2

bit depth, 1

black, use in Java look and feel, 1, 2
blinking. See animation

blues, use in Java look and feel, 1, 2
borders

in button graphics, 1, 2

color design for, 1

inicons, 1

boxes. See About boxes; alert boxes; checkboxes; combo boxes;
dialog boxes; list boxes

branding, for products, 1—2
browser windows, 1, 2—3, 4—5
button controls, 1, 2—3

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

See also button graphics; checkboxes; command buttons;
mouse buttons; radio buttons; toggle buttons; toolbar buttons
button graphics, 1—2

See also spacing and alignment

badges in, 1—2

bordersin, 1, 2

defined, 1

drop-down arrows in, 1

supplied with JFC, 1—2

use with text, 1, 2, 3—4

Return to the top of the index.

C

Cancel button, 1, 2
capitalization, 1—2
cascading menus. See submenus
case-sensitivity, in user input, 1
caution symbols, 1

CDE look and feel, 1, 2
CD-ROM resources, 1

cells in tables, 1—2, 3, 4
channels (for scrollbars), 1
check mark graphics, 1—2
checkbox menu items, 1—2
example, 1

keyboard operations for, 1—2
checkboxes, 1

example, 1

font design for, 1

keyboard operations for, 1

in menus, 1, 2—3

spacing of, 1—2, 3

text with, 1, 2

choosers, color, 1—2, 3—4
choosing menu items, 1
clicking, 1—2

See also dragging
Control-clicking, 1
double-clicking, 1, 2

as selection technique, 1
Shift-clicking, 1

triple-clicking, 1, 2

client, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

client properties, 1

Close button, 1, 2—3

close controls, 1, 2, 3, 4

See also window controls
Close item (File menu), 1, 2
collapse box. See window controls
color choosers, 1—2, 3—4
color model, 1, 2—3

colors, 1—2

See also application graphics
black, 1, 2, 3,4

blues, 1, 2, 3

cross-platform, 1—2
dithering, 1, 2—3

graphic file formats and, 1—2
grays, 1,2,3,4

Java look and feel model, 1—2
primary, 1, 2, 3

redefining, 1—2

secondary, 1, 2, 3,4

table of Java look and feel colors, 1—2
web-safe, 1, 2

white, 1, 2, 3

columns in tables

reordering, 1

resizing, 1—2

selecting, 1—2

supplied graphics for, 1
combo boxes, 1—2
capitalization of text with, 1
defined, 1

editable, 1—2

example, 1
internationalization, 1
keyboard operations for, 1
noneditable, 1—2

command buttons, 1—2

See also button graphics; default command buttons; toolbar
buttons

in alert boxes, 1

Cancel, 1, 2

Close, 1, 2

color design for, 1

default, 1, 2—3

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

ellipsis mark in, 1
examples, 1, 2, 3

font design for, 1
graphics in, 1

Help, 1

keyboard operations for, 1
OK, 1

Reset, 1

spacing of, 1, 2, 3
text with, 1, 2, 3, 4—5
Command key, 1

commands, menu. See menu items

common dialog boxes, 1—2

common menus, 1—2

company logos, 1—2

components, 1—2

spacing between, 1—2

spacing for JFC, 1—2

specifying look and feel of, 1—2

table of major JFC components, 1—2

containers, 1—2

See also dialog boxes; windows

content panes, 1—2

contextual help, supplied graphics for, 1

contextual menus, 1—2

See also menus

defined, 1

displaying, 1

keyboard operations for, 1—2

Control key, 1, 2, 3—4,5

control type style, in Java look and feel, 1, 2

controls, 1—2

See also checkboxes; combo boxes; command buttons; list
boxes; radio buttons; sliders; toggle buttons; window controls
capitalization of text with, 1

in menus, 1—2

Copy item (Edit menu), supplied graphics for, 1
copyright information, 1, 2

corporate identity, graphics and, 1—2

crosshair pointers, 1

cross-platform colors, 1—2

See also colors

cross-platform delivery guidelines, defined, 1

cursors. See pointers

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Cut item (Edit menu), supplied graphics for, 1

Return to the top of the index.

D

data loss and alert boxes, 1
default colors, 1—2

See also colors

default command buttons, 1—2
See also command buttons
behavior of, 1—2

examples, 1, 2

examples of, 1

mnemonics with, 1

default editor kit, 1, 2—3

default fonts, 1

default pointers, 1

delay feedback, 1—2

Delete key, 1, 2

design principles. See principles of design
destination feedback, 1—2
development graphics, supplied, 1—2
dialog boxes, 1—2

See also alert boxes; command buttons; spacing and alignment;
utility windows

capitalization of titles and text in, 1
command buttons in, 1—2

default command buttons in, 1
find, 1

initial keyboard focus in, 1
international considerations, 1, 2
keyboard operations for, 1

login, 1—2, 3

mnemonics in, 1

modes, 1

multiple-use, 1

platform-specific examples, 1—2
preferences, 1—2, 3—4, 5—6
progress, 1—2

single-use, 1

tab traversal in, 1, 2

as top-level containers, 1—2
Dialog font, 1

dimmed text, color design for, 1, 2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

disabilities. See accessibility
dithering, 1, 2—3

in button graphics, 1

inicons, 1

prevention of, 1—2

dockable toolbars, 1—2

dots in menus. See ellipsis mark
double-clicking, 1, 2
downloading applets, 1

drag texture, 1, 2
drag-and-drop operations, 1—2
dragging

and dropping, 1—2

as selection technique, 1, 2
title bars, 1

toolbars, 1—2

drop-down arrows

See also indicators

for combo boxes, 1—2

for submenus, 1—2

for toolbar buttons, 1—2, 3—4
drop-down menus, 1

See also menus

common, 1—2

defined, 1

displaying, 1

examples, 1—2

keyboard operations for, 1—2
titles of, 1

toolbar buttons and, 1—2

Return to the top of the index.

E

EAR files, supplied graphics for, 1—2
ease of use. See principles of design
Edit menu, 1

example, 1

keyboard shortcuts in, 1, 2
mnemonics in, 1, 2—3

supplied graphics for, 1—2

editable combo boxes, 1—2

See also combo boxes

example, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

in login splash screens, 1
editable text fields, 1, 2—3
editing

password fields, 1

selection techniques, 1—2, 3
supplied graphics for, 1—2
tables, 1

text, 1—2

text fields, 1—2

tree components, 1

editor panes, 1—2

example, 1

keyboard operations for, 1—2
8-bit colors, 1—2

ellipsis mark

in command buttons, 1

in menu items, 1

email, supplied graphics for, 1
End key, 1, 2

enterprise beans, supplied graphics for, 1—2

Error alert boxes, 1—2
error messages
capitalization of, 1

in Error alert boxes, 1—2
in login dialog boxes, 1
Escape key, 1, 2, 3,4
Exit item (File menu), 1, 2

exporting objects, supplied graphics for, 1—2

Return to the top of the index.

F

Federal Rehabilitation Act, 1
feedback

while dragging, 1
mouse-over, 1, 2
operational, 1—2

pointer style as, 1, 2, 3, 4
progress bars, 1

progress dialog boxes, 1—2

fields. See password fields; text fields

File menu, 1
Close itemin, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Exititemin, 1

keyboard shortcuts in, 1, 2

mnemonics in, 1, 2—3

supplied graphics for, 1—2, 3, 4—5
Find Again (Edit menu), supplied graphics for, 1
find dialog boxes, 1

Find item (Edit menu), supplied graphics for, 1
flush 3D effects

See also application graphics

button graphics and, 1—2, 3
component spacing and, 1—2

default theme and, 1, 2

example, 1

icons and, 1—2, 3

symbols and, 1

folders, supplied graphics for, 1

fonts

See also text

international considerations, 1
redefining, 1—2

size, 1

table of default fonts, 1

Format menu, 1

example, 1

keyboard shortcuts in, 1, 2, 3
mnemonics in, 1—2

supplied graphics for, 1—2

formatted text panes. See editor panes
formatting classes, 1

function keys, 1

Return to the top of the index.

G

GIF (Graphics Interchange Format), 1—2
glossary, 1—2

gradients

See also application graphics

in button graphics, 1—2

dithering added to, 1

inicons, 1

graphic conventions in this book, 1—2
graphic file formats, 1—2

Graphics Interchange Format (GIF), 1—2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Graphics Repository, 1—2

graphics. See application graphics; button graphics; colors
grays, use in Java look and feel, 1, 2, 3

grids, 1—2

Return to the top of the index.

H

hand pointers, 1

handicaps. See accessibility

headline capitalization style, 1—2

Help button, 1

Help menu, 1—2

About Application item in, 1

mnemonics in, 1, 2—3

supplied graphics for, 1—2

help messages, capitalization of, 1

hierarchical menus. See submenus
highlighting, color design for, 1

history files, supplied graphics for, 1

Home key, 1, 2

home location, supplied graphics for, 1
horizontal traversal, supplied graphics for, 1—2
hosts, supplied graphics for, 1

HTML banners, 1—2

HTML editor kits, 1, 2, 3—4

HTTP (Hypertext Transfer Protocol), 1

HTTPS (Secure Hypertext Transfer Protocol), 1
human interface principles. See principles of design

Return to the top of the index.

I-beam pointer. See pointers
icons, 1—2

See also application graphics
accessibility and, 1
bordersin, 1

capitalization of text with, 1
drawing, 1—2
internationalization, 1—2, 3
selection, 1, 2

textin, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

tool tips for, 1

implementation tips, defined, 1
importing objects, supplied graphics for, 1
inactive windows

color design for, 1, 2

example, 1

indicators, 1—2

add object, 1—2

combining, 1

for combo boxes, 1—2

menu, 1—2

new object, 1—2

properties, 1—2

in sliders, 1—2

for submenus, 1—2

for toolbar buttons, 1—2, 3—4
in tree components, 1

Info alert boxes, 1

informational symbols, 1

input focus. See keyboard focus
insertion point, 1, 2, 3
interaction, design for smooth, 1—2
internal frames. See internal windows
internal utility windows, 1—2
internal windows, 1—2

color design for, 1, 2

keyboard operations for, 1

title text in, 1
internationalization, 1—2

fonts and, 1

formatting classes and, 1
graphics and, 1—2, 3

layout managers and, 1
mnemonics and, 1, 2
placement of checkbox text, 1
placement of radio button text, 1
recommended reading, 1
resource bundles and, 1, 2, 3
scrollbars and, 1

sort order and, 1

Stop button and, 1

studying different locales, 1

text handling and, 1—2, 3

word lists for, 1—2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

word order and, 1
internationalization guidelines, defined, 1

Return to the top of the index.

J

J2EE application clients

defined, 1

supplied graphics for, 1

J2EE applications

defined, 1

supplied graphics for, 1

J2EE components, 1

J2EE servers

defined, 1

supplied graphics for, 1

JAF (JavaBeans Activation Framework), 1
JApplet component. See applets

JAR files, supplied graphics for, 1—2

Java 2 SDK (Java 2 Software Development Kit), 1—2
Java 2D API, 1

Java Accessibility API, 1

See also accessibility

Java Accessibility Helper, 1, 2

Java Accessibility Utilities, 1

Java applets. See applets

Java Foundation Classes. See JFC

Java IDL (interface definition language), 1

Java look and feel

color model, 1—2

compared to other designs, 1

defined, 1

design fundamentals, 1—2

fontsin, 1

keyboard operations in, 1—2

mouse operations in, 1—2

visual tour of, 1—2

Java look and feel standards, defined, 1
JavaHelp, 1

JavaMall, 1

JButton component. See command buttons; toolbar buttons
JCheckbox component. See checkboxes
JCheckboxMenultem component. See checkbox menu items
JColorChooser component. See color choosers

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

JComboBox component. See combo boxes

JDBC (Java Database Connectivity), 1
JDesktopPane component. See backing windows
JDialog component. See dialog boxes; utility windows
JEditorPane component. See editor panes

JFC (Java Foundation Classes)

downloading with applets, 1

features of, 1—2

table of major JFC components, 1—2

JFrame component. See primary windows
JiInternalFrame component. See internal windows
JLabel component. See labels

JList component. See list components

JMenu component. See drop-down menus; submenus
JMenuBar component. See menu bars

JMenultem component. See menu items

JMS (Java Message Service), 1

JNDI (Java Naming and Directory Interface), 1
Joint Photographic Experts Group (JPEG), 1, 2
JOptionPane component. See alert boxes

JPanel component. See panels

JPasswordField component. See password fields
JPEG (Joint Photographic Experts Group), 1, 2
JPopupMenu component. See contextual menus
JProgressBar component. See progress bars
JRadioButton component. See radio buttons
JRadioButtonMenultem component. See radio button menu items
JScrolIBar component. See scrollbars
JScrolIPane component. See scroll panes
JSeparator component. See separators

JSlider component. See sliders

JSP (JavaServer Pages), 1

JSplitPane component. See split panes

JTA (Java Transaction API), 1

JTabbedPane component. See tabbed panes
JTable component. See tables

JTextArea component. See text areas
JTextField component. See text fields
JTextPane component. See editor panes
JToggleButton component. See toggle buttons
JToolBar component. See toolbars

JTooltip component. See tool tips

JTree component. See tree components
justification of objects, supplied graphics for, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

JWindow component. See plain windows

Return to the top of the index.

K

key bindings. See keyboard operations
keyboard focus, 1—2

accessibility and, 1, 2—3

defined, 1

initial, 1—2

in selectable lists, 1

utility windows and, 1

keyboard navigation, 1—2

See also keyboard operations
keyboard operations, 1—2

See also keyboard shortcuts; mnemonics
for navigation and activation, 1—2
tables of, 1—2

keyboard shortcuts, 1—2

See also keyboard operations; mnemonics
alphabetical list of, 1—2

defined, 1

duplicates in contextual menus, 1
duplicates in toolbar buttons, 1
example, 1

font design for, 1

in tool tips, 1

style in menus, 1, 2

and supplied graphics, 1

table of common sequences, 1

keys

Alt, 1, 2—3

Backspace, 1
Command, 1

Control, 1, 2,3—4,5,6
Delete, 1

End, 1,2

Escape, 1,2, 3,4
function, 1

Home, 1, 2

Meta, 1

modifier, 1, 2—3

Sun - Java Look and Feel Design Guidelines, 2" Edition

made by dotneter@teamfly

Option, 1
Page Down, 1, 2
Page Up, 1, 2

space?)a?, i >
Tab, 1, 2, 3,

> o

Return to the top of the index.

L

labels, 1—2

See also text

and accessibility, 1

available and unavailable, 1
capitalization of, 1—2

color design for, 1, 2—3
communicating status with, 1
example, 1

font design for, 1

identifying controls with, 1—2
internationalization and, 1
mnemonics in, 1

spacing and alignment of, 1, 2
layers. See containers

layout managers, 1, 2

layout. See spacing and alignment
legal requirements

About boxes, 1

accessibility and, 1

splash screens, 1

list boxes, 1—2

See also combo boxes; list components

list components

keyboard operations for, 1—2
list boxes, 1—2

scrolling in, 1

selectable lists, 1—2
selection in, 1, 2—3

lists. See list components
localization, 1—2

See also internationalization
application graphics and, 1
button graphics and, 1

word lists for, 1—2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

login dialog boxes, 1—2, 3

login splash screens, 1—2

look and feel designs, 1—2, 3—4

See also Java look and feel

lower-level containers, 1—2

See also panels; scroll panes; split panes; tabbed panes
Lucida font, 1

Return to the top of the index.

M

Macintosh look and feel, 1

MDI (multiple document interface), 1—2
media, supplied graphics for, 1—2

menu bars, 1—2

in applets, 1

example, 1

keyboard operations for, 1—2

menu indicators. See drop-down arrows

menu items, 1—2

See also keyboard shortcuts; menus; mnemonics
About Application (Help menu), 1

available and unavailable, 1, 2

capitalization of, 1
checkbox, 1—2
choosing, 1
Close (File menu), 1,
color design for, 1, 2, 3,4, 5

ellipsis mark in, 1

example, 1

Exit (File menu), 1, 2

graphics in, 1

highlighted, 1

keyboard operations for, 1—2

radio button, 1

in submenus, 1

table of common keyboard shortcuts, 1

table of common mnemonics, 1

menu separators, 1, 2

menu titles, 1

See also keyboard shortcuts; menu items; menus; mnemonics
capitalization of, 1

example, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

font design for, 1

order of, 1

menus, 1—2

See also contextual menus; drop-down menus; keyboard
shortcuts; menu bars; menu items; menu titles; mnemonics;
submenus

applets and, 1

choosing items, 1

common in Java look and feel, 1—2
displaying, 1

Edit, 1, 2, 3, 4

ellipsis mark in, 1

File, 1,2, 3

Format, 1, 2

Help, 1, 2—3

keyboard operations for, 1—2

order of, 1

separators, 1, 2

types of, 1

View, 1

Meta key, 1

Metal. See Java look and feel
MetalEdit application, 1—2

Microsoft Windows look and feel, 1, 2
MIME (Multipurpose Internet Mail Extensions), 1
minimized internal utility windows, 1, 2
minimized windows, example, 1
mnemonics, 1—2

See also keyboard operations; keyboard shortcuts
accessibility and, 1—2, 3—4
alphabetical list, 1—2

in applets, 1

defined, 1

in dialog boxes, 1, 2

examples, 1, 2

international considerations, 1, 2

in labels, 1, 2

and supplied graphics, 1

table of common assignments, 1
modal dialog boxes, 1

modeless dialog boxes, 1

models (in components), 1—2
modifier keys, 1, 2—3

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

See also keyboard shortcuts; mnemonics
mouse buttons, 1—2

mouse operations, 1—2

See also dragging

clicking, 1—2, 3

displaying contextual menus, 1

mouse-over feedback, 1, 2

move pointers, 1

movies, supplied graphics for, 1

moving through time-based media, supplied graphics for, 1—2
multiplatform design, recommended reading, 1
multiple document interface (MDI), 1—2

Return to the top of the index.

N

native code, 1

navigation, 1—2

See also keyboard operations
accessibility considerations, 1, 2
between components, 1

defined, 1

keyboard, 1—2

supplied graphics for, 1—2

tab traversal, 1, 2, 3

tables of keyboard operations, 1—2
through text fields, 1—2

nested panes, 1, 2, 3

New item (File menu), supplied graphics for, 1
new object indicators, 1—2

nodes, in tree components, 1—2
noneditable combo boxes, 1—2
See also combo boxes

noneditable text fields, 1

See also text fields

null passwords, 1

Return to the top of the index.

O

object-oriented graphics, supplied, 1—2
OK button, 1, 2
Open item (File menu), supplied graphics for, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

operational feedback, 1—2
option buttons. See radio buttons
Option key, 1

Return to the top of the index.

P

padding. See spacing and alignment

Page Down key, 1, 2

Page Setup item (File menu), supplied graphics for, 1
Page Up key, 1, 2

palette windows. See internal utility windows; utility windows
palettes, color, 1, 2, 3

See also color choosers; colors

panels, 1—2, 3

panes. See scroll panes; split panes; tabbed panes
password fields, 1—2, 3—4

Paste item (Edit menu), supplied graphics for, 1
plain windows, 1—2, 3—4

platform-specific design, recommended reading, 1—2
pluggable look and feel architecture, 1—2

See also Java look and feel

plug-in editor kits. See editor panes

pointers, 1—2

changing shape of, 1, 2, 3, 4

table of Java 2 platform types, 1

pop-up menus. See combo boxes; contextual menus
pop-up windows. See dialog boxes

posting menus, 1, 2

pre-dithered gradients, 1—2, 3, 4—5

See also application graphics

preferences dialog boxes, 1—2, 3—4, 5—6, 7
preferences indicators, 1—2

primary colors, in Java look and feel, 1, 2

primary windows, 1—2

See also windows

defined, 1

platform-specific examples, 1, 2

principles of design, 1—2

accessibility, 1—2

applets and, 1—2

internationalization and, 1—2

recommended reading, 1—2

Print item (File menu), supplied graphics for, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

product names, 1, 2

progress animation, 1—2

progress bars, 1, 2—3

color design for, 1, 2

defined, 1

progress dialog boxes, 1, 2—3
progress feedback, 1—2

See also feedback

properties indicators, 1—2

Properties item, supplied graphics for, 1

Return to the top of the index.

Q

Question alert boxes, 1
guestion symbols, 1
Quit. See Exit item

Return to the top of the index.

R

radio button menu items, 1

example, 1

keyboard operations for, 1—2

radio buttons, 1

capitalization of text with, 1

example, 1

keyboard operations for, 1—2

in menus, 1

spacing of, 1

reading order and localization, 1—2
recommended reading, 1—2

Redo item (Edit menu), supplied graphics for, 1
Reset button, 1

resize pointers, 1

resource bundles, 1, 2, 3

Retirement Savings Calculator applet, 1—2
reverse video, 1

RMI-IIOP (Remote Method Invocation-Internet Inter-ORB
Protocol), 1

rollovers. See mouse-over feedback

rows in tables

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

selecting, 1—2

sorting, 1

supplied graphics for, 1
RTF editor kit, 1

Return to the top of the index.

S

Save As item (File menu), supplied graphics for, 1
Save item (File menu), supplied graphics for, 1
screen display updates, supplied graphics for, 1—2
screen readers, 1, 2
See also accessibility
scroll arrows, 1—2
scroll boxes, 1

color design for, 1, 2
example, 1

scroll panes, 1, 2—3, 4—5
scrollbars, 1—2

example, 1

internationalization considerations, 1

keyboard operations for, 1—2

in list components, 1

in tables, 1

search operations, supplied graphics for, 1—2
secondary menus. See submenus

secondary windows, 1, 2—3

See also alert boxes; dialog boxes

security of information, in applets, 1

selectable lists, 1—2

See also list components

selection, 1—2, 3

of items in list components, 1—2

of items in selectable lists, 1

of table cells, 1—2

of table columns, 1—2

of table rows, 1—2

of text fields, 1—2

sentence capitalization style, 1

separators, 1, 2

servers, supplied graphics for, 1

servlets, 1

settings indicators, 1—2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

shadows, color design for, 1, 2
shortcut keys. See keyboard shortcuts
shortcut menus. See contextual menus
sliders, 1—2

capitalization of text with, 1
defined, 1

drag texture in, 1

example, 1

keyboard operations for, 1
small type style, in Java look and feel, 1, 2
sorting order and localization, 1
spacebar, 1, 2

spacing and alignment, 1—2

in alert boxes, 1

inside button graphics, 1

of checkboxes, 1, 2

of command buttons, 1—2, 3
between components, 1—2
design grids and, 1—2

in dialog boxes, 1—2

of labels, 1, 2

layout managers and, 1, 2

in login dialog boxes, 1

of radio buttons, 1

in tables, 1

of text, 1—2, 3

of titled borders, 1—2

of toggle buttons, 1—2

of toolbar buttons, 1

splash screens, 1—2, 3—4
split panes, 1—2

drag texture in, 1

keyboard operations for, 1
splitter bars, 1

standard menus. See drop-down menus
status animation, 1—2

status messages, 1—2

Stop button, 1

styled text editor kit, 1, 2—3
submenus, 1—2

See also menus

defined, 1

keyboard operations for, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

Swing classes, 1

Swing. See JFC

switching look and feel designs, 1—2
symbols, 1, 2—3

system colors, 1

system type style, in Java look and feel, 1, 2

Return to the top of the index.

T

Tab key, 1, 2, 3, 4

tab traversal, 1, 2

tabbed panes, 1—2
capitalization of tab names, 1
keyboard operations for, 1
tables, 1—2

cell background color, 1
editing cells, 1

example, 1

font design for, 1

format options, 1

keyboard operations for, 1—2
reordering columns, 1

resizing columns, 1—2
scrolling in, 1

selectable lists and, 1
selecting cells, 1—2

selecting columns, 1—2
selecting rows, 1—2

selection techniques in, 1
sorting rows, 1

supplied graphics for, 1—2
text, 1—2

See also editor panes; fonts; labels; password fields; text areas;
text fields

in buttons, 1—2, 3, 4
capitalization in interface, 1—2
color design for, 1
internationalization and, 1, 2, 3
pointers, 1

selection, 1, 2

spacing and alignment, 1—2, 3
supplied graphics for, 1—2
use in labels, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

text areas, 1—2, 3—4

text fields, 1—2

in combo boxes, 1, 2

design for smooth interaction, 1—2
examples, 1, 2

font design for, 1

keyboard operations for, 1
selectable lists and, 1—2

in sliders, 1

themes, 1—2

three-dimensional effects. See flush 3D effects
thumbs. See scroll boxes; sliders
tip of the day, supplied graphics for, 1
title bars

See also window titles

alert box examples, 1
capitalization of text in, 1

color design for, 1, 2

dialog box examples, 1

dragging, 1

textin, 1—2

window examples, 1

titled borders, 1—2

toggle buttons, 1—2

See also button graphics; command buttons; toolbar buttons
example, 1

keyboard operations for, 1

tool tips, 1—2

and accessibility, 1, 2
capitalization of, 1

font design for, 1

keyboard operations for, 1

timing of, 1

for toolbar buttons, 1

toolbar buttons, 1—2

See also button graphics; command buttons; toggle buttons
badges in, 1—2

examples, 1, 2

graphics in, 1—2

with menus, 1—2

spacing of, 1

textin, 1

tool tips for, 1

toolbars, 1—2

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

docking, 1—2

examples, 1, 2

keyboard operations for, 1
spacing of buttons in, 1

tool tips for, 1

top-level containers, 1—2

See also dialog boxes; plain windows; primary windows; utility
windows

trademarks, 1, 2

translated text, 1—2

for Stop button, 1

word lists for localization, 1—2
tree components, 1—2

font design for, 1

keyboard operations for, 1—2
tree views. See tree components
triangles. See drop-down arrows
triple-clicking, 1, 2

turners, 1—2

twinkle graphics, 1—2

type styles

in Java look and feel, 1

supplied graphics for, 1—2
typography. See fonts; text

Return to the top of the index.

U

unavailable components, spacing of, 1—2
unavailable menu items, 1, 2

Undo item (Edit menu), supplied graphics for, 1
usability studies

accessibility issues, 1

interaction issues, 1

internationalization, 1

user type style, in Java look and feel, 1, 2
utility windows, 1—2

defined, 1

keyboard operations for, 1

Return to the top of the index.

Vv

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

version numbers, in About box, 1

vertical spacing. See spacing and alignment

vertical traversal, supplied graphics for, 1—2

View menu, 1

keyboard shortcut in, 1

mnemonics in, 1—2

visual design, 1—2

See also application graphics; colors; spacing and alignment
visual identifiers, product, 1, 2

Return to the top of the index.

W

wait pointers, 1, 2

WAR files, supplied graphics for, 1—2
Warning alert boxes, 1, 2—3
warning symbols, 1

web components, supplied graphics for, 1—2
web. See applets

web-safe colors, 1, 2

white, use in Java look and feel, 1, 2
window controls

close controls, 1, 2, 3, 4

in internal windows, 1

in plain windows, 1—2
platform-specific examples, 1

in primary windows, 1—2

window titles

capitalization of text in, 1, 2

font design for, 1

for internal windows, 1

for primary windows, 1

for secondary windows, 1

for user documents, 1

windows, 1—2

See also alert boxes; dialog boxes
active, 1, 2, 3

browser, 1, 2—3, 4—5
capitalization of titles, 1, 2

color design for, 1, 2, 3

frames and, 1

internal, 1

internal utility, 1—2

keyboard focus, 1

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

keyboard operations for, 1—2

in MDls, 1

panels and panes in, 1—2, 3—4
plain, 1—2, 3—4
platform-specific examples, 1, 2
primary, 1, 2—3

secondary, 1, 2—3

title textin, 1, 2, 3, 4—5

as top-level containers, 1—2
utility, 1, 2—3

Windows. See Microsoft Windows look and feel
word lists for localization, 1—2
word order and localization, 1
word wrap, in text areas, 1—2

Return to the top of the index.

Z

zoom box. See window controls
zoom buttons, 1—2

zooming panes, 1

zooming, supplied graphics for, 1—2

Colophon

Second Edition

LEAD WRITER
Patria Brown

LEAD HUMAN INTERFACE DESIGNER
Teresa Roberts

MANAGING EDITOR
Sue Factor

GRAPHIC DESIGNER AND COVER ART
Bruce Lee

PRODUCTION EDITOR
Bob Silva

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

MANAGEMENT TEAM
Anant Kartik Mithal, Teresa Roberts, Lynn Weaver

GUIDELINE CONTRIBUTORS
Michael Albers, David-John Burrowes, Jeff Dunn, Don Gentner, Robin Jeffries,
Bruce Lee, Teresa Roberts, Harry Vertelney

CODE SAMPLE CONTRIBUTORS
Jeff Dunn and Peter Zavadsky

CD-ROM WRITER
Jason Duran

Special thanks to Don Gentner for his work on the first edition and for
considerable contributions to the second edition before his retirement.

Grateful acknowledgments to Susanne Andersson, Marney Beard, Jim Dibble,
Jeff Dunn, Earl Johnson, Dave Mendenhall, Mike Mohageg, Lynn Monsanto,
Jennifer Ofiana, Raj Premkumar, Moazam Raja, Luke Shi, Young Song, Terri
Walton, and the SOLVE team.

This book was written on Sun Microsystems workstations using Adobe®
FrameMaker software. PostScript files were digitally imposed and then printed
computer-to-plate on a Creo iIMPAct system. Line art was created using Adobe
lllustrator. Screen shots were edited in Adobe Photoshop.

Text type is SunSans and bullets are ITC Zapf Dingbats. Courier is used for
computer voice.

The online version was created using WebWorks Publisher Professional
Edition.

First Edition

LEAD WRITER
Patria Brown WRITERS
Patria Brown, Gail Chappell

LEAD HUMAN INTERFACE DESIGNER
Don Gentner

JAVA LOOK AND FEEL CREATOR
Chris Ryan

Sun - Java Look and Feel Design Guidelines, 2" Edition made by dotneter@teamfly

MANAGING EDITOR
Sue Factor

GRAPHIC DESIGNER
Gary Ashcavai

ILLUSTRATORS
Gary Ashcavai, Don Gentner, Chris Ryan

PRODUCTION EDITOR
Bob Silva

PRODUCT MARKETING MANAGER
Christine Bodo

MANAGEMENT TEAM
Laine Yerga, Lynn Weaver, Rob Patten

GUIDELINE CONTRIBUTORS

Don Gentner, Chris Ryan, Michael C. Albers, Brian Beck, David-John
Burrowes, Carola Fellenz, Robin Jeffries, Earl Johnson, Jeff Shapiro,
Dena Shumila

Special thanks to Jonathan Schwartz
and the Enterprise Products Group in Java Software

Grateful acknowledgments to Ruth Anderson, Maria Capucciati, Tom Dayton,
Martine Freiberger, Janice Gelb, Dale Green, Mary Hamilton, George Kaempf,
Andrea Mankoski, Anant Kartik Mithal, Moggy O"Donovan, Ray Ryan, Scott
Ryder, Tom Santos, the Swing Team, Harry Vertelney, Willie Walker, Steve
Wilson, and all our internal and external reviewers

